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Abstract

Future Radio Access Networks will need to cope with an increasing complex-
ity and new challenges due to the introduction of heterogeneous application
scenarios, from enhanced Mobile Broadband to Network Slicing service diver-
sification. In this context, the new trend of Open RAN is gaining importance,
envisioning a transformation of traditional Radio Access Networks toward soft-
warization, virtualization and disaggregation of network functionalities, lever-
aging open and programmable protocols and interfaces. Embracing this new
trend, this thesis aims to evaluate the software-based solutions promoted by
the O-RAN Alliance, one of the major contributors toward an open and intelli-
gent RAN architectural framework, aligned with 5G standards. The work will
focus on the practical challenges which have been encountered while deploying
the available O-RAN software over a virtualized infrastructure, investigating
the compatibility of its integration within a containerized environment orches-
trated by Kubernetes.
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Chapter 1

Introduction

In the last decade Software Defined Networking (SDN) and Software Defined
Radio (SDR) paradigms took much more importance in the scenario of modern
5G cellular networks.

In fact the need to cope with heterogeneous 5G applicative scenarios and
use cases, including performance enhancement for mobile broadband users,
ultra-reliable low latency services and massively dense connectivity scenarios,
increased the complexity of mobile radio networks and the need of flexibility in
the struggle of keeping under control satisfying Quality of Experience (QoE)
levels while possibly serving in a different way differentiated kind of services
leveraging Network Slicing techniques [1].

For these reasons the research and a number of standardization bodies and
industrial associations are moving from the monolithic black box approach of
4G cellular networks towards softwarization, virtualization and disaggregation
of network functionalities [2].

Starting from these premises, new techniques and trends are currently un-
der study and several 5G software-based projects and alliances are embracing
the open source approach while addressing the introduction of SDN approaches
at the edge of networks and in particular in the Radio Access Network (RAN)
segment. Even if from one hand this trend produced new frameworks and
libraries available to the wireless community, on the other hand the adop-
tion of open source softwarization has led to a multitude of solutions whose
interoperability and interactions are often unclear [3]. Figure 1.1 shows an
high level view over the main frameworks involved in the context of current
programmable 5G networks.

1



2 CHAPTER 1. INTRODUCTION

Regarding the RAN evolution, the trend is to move gradually towards the
concept of “Open RAN”: the term Open RAN, which is pushed ahead by a
number of major telecom operators and standardization bodies [4], extends
both the concept of Centralized/Cloudified RAN (C-RAN) - a RAN in which
specific functionalities can be centralized at the Base Band Unit (BBU) such
that to have a wider view and a better control over the network while exploiting
simpler and cheaper Remote Radio Headers (RRH) - and the concept of vRAN
- a RAN in which specific functionalities can be abstracted from specialized
black box hardware and designed through a Network Function Virtualization
(NFV) approach in which softwarized network functions can be deployed over
general purpose servers and hardware. In addition to including these two
concepts, the Open RAN has two more important aspects: the disaggregation
of the RAN architecture, for which functionalities are intended to be split
among different logical blocks, and the introduction of open standards and
interfaces among these building blocks [5].

Following the trend of an Open RAN, at the moment the most important
contribution is the work brought ahead by the O-RAN Alliance consortium [6]
and in this document the reference design proposed by such organization will
be presented.

The work presented in this thesis aims to investigate the feasibility of the
deployment of the O-RAN software on a virtualized infrastructure starting
from the documentation currently made available by the open source commu-
nity [7]. Moreover the work will highlight possible critical issues which could
be encountered while approaching the integration of different infrastructural
components and it will analyze in particular the role of Kubernetes in the or-
chestration of the virtualized resources [8]. Given the objectives of this work,
the adopted approach will focus on practical aspects of the deployment from
an early stage.

In Chapter 2 the O-RAN architecture will be presented, from the descrip-
tion of its building blocks and functionalities up to the current O-RAN related
works and exemplar platforms. In Chapter 3, a possible solution for the deploy-
ment of a virtual infrastructure able to host O-RAN software components will
be described, and the role of Kubernetes as Virtual Infrastructure Management
(VIM) framework will be contextualized. Moreover, a detailed description of
the procedural installation steps and choices adopted for the integration of such
technologies over the virtualized environment will be shown. Chapter 4 then
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will present the available path toward the deployment of specific softwarized
O-RAN functional blocks referring to the currently available software release.
Finally in Chapter 5 a performance assessment over the last deployed compo-
nent will be done, highlighting in particular the performance achieved by the
system for the installation of this component over the underlying containerized
environment managed by Kubernetes.

Figure 1.1: High-level relationship among MANO, RAN and edge frameworks,
and virtualization components [3]
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Chapter 2

O-RAN Alliance

2.1 Overview

O-RAN Alliance is an industrial consortium which aims to bring future Radio
Access Networks (RAN) toward openness and intelligence, defining standard-
ized open network interfaces and APIs and leveraging emerging deep learning
techniques to embed intelligence in every layer of the RAN architecture [9].

Being founded in February 2018 by AT&T, China Mobile, Deutsche Telekom,
NTT DOCOMO and Orange [6], O-RAN Alliance can be considered precursor
and promoter of the new concept of Open RAN defined as “a disaggregated
RAN, which is subdivided into several independent systems by using open and
interoperable protocols and interfaces” [5].

Leveraging these premises, O-RAN “aims to drive the mobile industry to-
wards an ecosystem of innovative, multi-vendor, interoperable, and autonomous
RAN, with reduced cost, improved performance and greater agility” [10].

The key principles of the O-RAN Alliance are:

1. pushing the industry towards open and interoperable interfaces, lever-
aging RAN virtualization and AI enabled data-driven RAN Intelligence
and automation;

2. maximizing the utilization of common-off-the-shelf (COTS) hardware;

3. specifying APIs and interfaces, driving standardization processes or eval-
uate open-source implementation where possible.

5



6 CHAPTER 2. O-RAN ALLIANCE

In the scenario of “open and programmable” future 5G software-defined
cellular networks O-RAN represents one of the major solutions towards soft-
warization, virtualization and disaggregation of RAN functionalities.

In fact, well-defined interfaces between the different elements of the RAN
enable the possibility to define an open and agile architecture in which any O-
RAN component exposes the same APIs such that different implementations
of the same functionality can be interchanged easily, letting operators and
third-party entities to deploy differentiated services [3].

Moreover, following the trend of cloud-native infrastructures, O-RAN will
enhance RAN disaggregation and virtualization by means of the definition of
a specific type of Edge Cloud system, called O-Cloud, leveraging lightweight
virtualization technologies and edge-cloud orchestration frameworks offered
by open source communities like Kubernetes and Linux Foundation’s Open
Network Automation Paltform (ONAP) [9].

Finally it aims to bring intelligence to the RAN by means of an AI powered
hierarchical controller structure which could enable different kinds of closed-
control loops enhancing RAN automation at different time-scales [3].

2.2 Overall architecture of O-RAN

Following the principles introduced in Section 2.1, O-RAN relies on the disag-
gregated RAN architecture proposed by 3GPP for the Next Generation RAN
(NG-RAN) [11] which is based on a functional split among three main entities:
Centralized Unit (CU), Distributed Unit (DU) and Remote Radio Unit (RU)
- as shown in Figure 2.1 [12].

In addition to this O-RAN defines and aims to standardize a set of open
interfaces between these components and introduces the so called Radio Intel-
ligent Controller (RIC) which embeds data-driven intelligence and can control
some specific Radio Resource Management (RRM) functionalities (like Mo-
bility Management or Interference Management) exposed by the rest of the
processing units in the RAN while keeping available legacy RRM [13].
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Figure 2.1: Open RAN - Network Transformation [12]

The functional split adopted by O-RAN for these three logical blocks is
shown in Figure 2.2 and concerns:

• O-CU-CP which embeds the control protocols of layer 3 and terminates
the 3GPP N2 interface towards Access and Mobility Function (AMF) of
the 5G Core network (5GC);

• O-CU-UP which embeds data plane protocols of layer 3 and terminates
the 3GPP N3 interface towards User Plane Function (UPF);

• O-DU which embeds layer 2 and High-PHY functions and terminates F1
3GPP interfaces towards respectively O-CU-CP and O-CU-UP;

• O-RU which is intended to enable intra-PHY Lower-Layer Split (LLS)
and for which is under study an Open-Fronthaul interface in order to
enable real-time control from O-DU and IQ samples data-transfer [14].

Moreover O-RAN introduces a hierarchical controller structure made up
of two different RICs: the Non-Real Time RIC (Non-RT RIC) and the
Near-Real Time RIC (Near-RT RIC). The former is intended to bring
to the RAN an higher level point of view to determine RAN optimization
actions while the latter is intended to monitor and control via policies specific
functionalities of the other processing nodes.
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Figure 2.2: O-RAN Functional Split [12]

Finally the O-RAN architecture is intended to be integrated with the latest
Long Term Evolution (LTE) E-UTRAN (Evolved UMTS Terrestrial Radio
Access Network) and the current 5G NG-RAN (Next Generation RAN) in
which New Radio (NR) gNBs and ng-eNBs - respectively 5G base stations and
evolved LTE base stations to be deployed within 5G Core (5GC) - cooperate
in non-stand-alone RAN deployments [11].

For this reason, to interconnect all these logical blocks and to make them
interoperable, O-RAN alliance includes and specifies two well-defined and open
control interfaces called A1 and E2: these two interfaces, similarly to 3GPP
defined interfaces, permit to expose specific RAN functionalities and data to-
wards and within the hierarchical controller structure and in particular:

• The E2 interface permits to connect the Near-RT RIC towards any
node in the RAN which supports the E2 termination and uses O-RAN
open APIs (like O-DUs, O-CUs, O-eNBs. . . ), enabling the RIC to col-
lect data and monitor/control specific RRM functionalities (like Radio
Scheduling policies or handover thresholds for Mobility Management);

• The A1 interface supports different kinds of workflow messages between
the two RICs (for example enrichment data, policy-based guidance and
ML management from Non-RT RIC to Near-RT RIC) and represent the
main component of the Non-RT RIC framework.
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As shown in Figure 2.3 the E2 interface terminates in the previous defined
logical blocks which can be either part of the O-Cloud infrastructure (see
Subsection 2.2.1) - hosted in VMs and containers - or be proprietary sites like
for example E-UTRAN eNBs exposing open interfaces [13]; for this reason in
O-RAN specifications they are called E2 Nodes.

In Section 2.3 the hierarchical RIC structure and other two relevant man-
agement interfaces O1 and O2 will be described in details and three different
time-scale control loops will be characterized.

Figure 2.3: Overall Architecture and Open Interfaces [13]

2.2.1 O-Cloud Platform and Deployment Options

The O-RAN effort towards hardware and software disaggregation of the RAN
is led by the definition of a specific kind of Edge-Cloud Platform called O-
Cloud: this platform comprises all the physical infrastructure nodes capable to
host O-RAN functions (like Near-RT RIC, O-DU, etc.) and all the supporting
software components (e.g. OS, VM monitoring, container runtime) [15].
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This kind of abstraction permits to characterize differentiated deployment
options for the O-RAN architecture, even if most commonly is assumed the
solution providing Near-RT RIC and O-CU located in Regional or Edge Cloud
servers and the O-RU located at the Cell Site due to the tight relation with
specialized radio hardware and latency stringent functionalities. Different so-
lutions can then be assumed for the O-DU and depending by the use case it
can be deployed either in physical resources near the Radio Unit or virtualized
in an Edge Cloud server as shown in Figure 2.4 [3].

Figure 2.4: Logical and Physical deployment options for O-RAN. [3]
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2.3 O-RAN RIC Structure and Control Loops

The O-RAN RIC hierarchical structure enables two of the three different con-
trol loops supported by O-RAN, the Non-Real Time control loop and the
Near-Real Time control loop, but in practice all elements of the architecture
can interact differently in all the three types of loops [13].

Basically, the effort of O-RAN Alliance moves toward separating radio re-
source management aspects depending on the time scale, introducing where
possible value-added services like intelligent management and optimization.

In Figure 2.5 the control loops are defined based on the controlling entity
and since typically these entities are meant to be part of different segments of
the RAN they are expected to react in specific latency intervals, even if the
timing of these control loops is mostly use case dependent.

Figure 2.5: O-RAN Control Loops [13]

2.3.1 Real Time control loop

Being controlled by O-DU it concerns all the RRM actions which take place
at MAC layer, like for example Dynamic Radio Resource assignment (Radio
Scheduling), or at High-PHY layer, like Link Adaptation techniques such as
Adaptive Modulation and Coding (AMC).
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As told introducing Section 2.3 O-DU will not be the sole entity involved in
the control loop; actually it continuously receives Channel Quality Indicators
(CQIs) -estimations of the channel conditions, user throughput and spectrum
usage- from User End-devices (UEs) and takes decision in order to choose
for example the best modulation and coding schemes to be taken in order to
satisfy specific performance requirements.

Moreover O-DU could receive specific control messages from O-CU through
F1-c interface, for example on the desired resource allocation for data traffic
[16], making O-DU de facto controlled by O-CU.

What’s introduced by O-RAN is the possibility to expose part of the O-DU
functions to the Near-RT RIC by means of the E2 interface Service Model [17].

Then depending on the specific use case and based on the functions ex-
posed in the E2 Service Model, the Near-RT RIC may monitor, suspend/stop,
override or control via policies the behavior of the controlled entity.

Finally the Real Time control loop, involving entities belonging to localities
of the Edge Cloud near to radio headers, is typically characterized by latency
intervals below 10 milliseconds.

2.3.2 Near-Real Time control loop

The Near-RT RIC is logically placed between the Service Management and
Orchestration (SMO) layer and the underlying RAN disaggregated architec-
ture. Typically is intended to be deployed at the top of the Edge Cloud or in
Regional Cloud - refer to Subsection 2.2.1 for deployment options - and can be
connected to multiple O-CUs, O-DUs and O-eNBs enhancing operational chal-
lenging functions such as per-UE controlled load-balancing, Resource Block
(RB) management, interference detection and mitigation [9].

As mentioned introducing Section 2.2 this controller structure is compat-
ible with legacy RRM and aims to introduce value-added services thanks to
embedded intelligence and by means of the possibility to on-board modular
control applications called “xApps” which can be also provided by third par-
ties. Such kinds of applications are made of one or more microservices and are
intended to monitor or control specific RAN functions in specific controlled E2
nodes [17].

The Near-Real Time control loop can then be enabled thanks to a fine
grained RAN data collection from E2 interface and it is steered via policies
and enrichment data provided via A1 interface from Non-RT RIC [13].
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Figure 2.6: Near-RT and controlled Nodes [17]

Finally the data collected by the xApps are processed and can be fed to
other xApps which could implement different services like, for example, the
inference of a Machine Learning model in order to make predictions. Once
a prediction is made then specific policies are defined and instantiated by
other xApps such that configuration commands could be sent via E2 interface
directly to CU/DU. This kind of workflow is just one of the possibilities enabled
by the RIC hierarchical structure: different possible use cases are introduced in
Section 2.5 and explained in details in [18]. In particular the “QoE prediction
use case” shows a possible implementation involving Machine Learning (ML)
models: such kind of solution requires that ML models should be trained offline
in Non-RT RIC, while model inference is meant to be executed real-time in
Near-RT RIC [10].

Due to its characteristics the Near-RT control loop is expected to react
between 10 milliseconds up to 1 second.

2.3.3 Non-Real Time control loop

The Non-RT RIC is intended to enable an high level intelligent RAN optimiza-
tion and it is co-located within the Service Management and Orchestration
(SMO) framework - see Section 2.4. Even if it is logically separated by SMO
framework, it represents a subset of SMO functionalities which are needed to
enable the communication via A1 interface towards the Near-RT RIC.
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In addition to this the Non-RT RIC can host a set of modular applications
called “rApps” which, similarly to “xApps” for Near-RT RIC, provides value-
added services like:

• Providing policy-based guidance and enrichment information across A1
interface;

• Performing data analytics, AI/ML training and inference for RAN opti-
mization or for the use of other rApps;

• Recommending configuration management actions over O1 interface.

This modular structure is designed in order to make portable the Non-RT
RIC and to make it independent from the SMO framework deployment.

Furthermore the Non-RT RIC, to enhance RAN optimization actions, may
need to access specific SMO services, but how this can be done is not in the
scope of O-RAN Alliance work. However there are particular SMO functional-
ities that the Non-RT RIC can leverage, like for example O1 and O2 interfaces
defined by O-RAN:

• The O1 interface take care of Fault, Configuration, Accounting, Per-
formance and Security (FCAPS) network management aspects between
SMO and O-RAN network elements - refer to Section 2.4 for further
details;

• The O2 interface is responsible for instantiation and life cycle manage-
ment of Virtual Network Functions (VNFs) hosted by O-Cloud.

Even if such kind of network management functionalities are not meant to
be part of the Non-RT RIC, they may be influenced by Non-RT RIC for the
sole purpose of RAN resources optimization.

For this reasons the Non-RT RIC can enable the Non-Real Time control
loop based on an high amount of data collected either from Near-RT RIC
policies feedbacks, RAN data, network management interfaces and external
cloud resources leveraging big-data analytics and ML/AI training/inference to
determine RAN optimization actions.

Finally thanks to its high level point of view the Non-RT RIC can either
provide policy-based guidance, ML management and enrichment information
towards Near-RT RIC and activate RAN optimization actions with latency in
the order of 1 second [19].
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2.4 Service Management Aspects

As anticipated in Section 2.3 the Service Management and Orchestration (SMO)
framework must ensure the Non-RT RIC to access specific functionalities re-
lated to RAN optimization actions like in particular collecting Performance
Measurements (PM) through O1 and O2 interfaces.

In addition to this the SMO must take care of the orchestration of the
Network Functions Virtualization Infrastructure (NFVI), managing the life
cycle of O-RAN network elements (Near-RT RIC, O-CU, O-DU, O-RU) which
can be either Virtual Network Functions (VNFs) hosted in specific location of
the O-Cloud infrastructure or Physical Network Functions (PNFs) exposed by
cell sites.

For non-virtualized parts, typically O-RU functionalities which are related
to area coverage and need to be placed at cell sites, the SMO supports the
deployment of physical network elements on dedicated physical resources with
management through the O1 interface.

For virtualized network elements, the SMO has the capability to inter-
act with the O-Cloud to perform network element life cycle management, for
example it can instantiate the virtualized network element on the target in-
frastructure through the O2 interface or indicate the selected geo-location for
each VNF to be instantiated.

Finally the Service Management and Orchestration framework must be able
to support the communication between the deployed network elements and so
it is in charge of IP addressing, network reconfiguration and system updates.

Then to guarantee various deployment solutions the Operation and Main-
tenance architecture defined by O-RAN describes in details the requirements
needed such that the SMO framework can be provided by third-party Network
Management Systems (NMS) or orchestration platforms like for example the
Linux Foundation’s Open Network Automation Platform (ONAP) [20].

2.5 O-RAN Use Cases

As anticipated in Subsection 2.3.2 with the example of the “QoE prediction use
case” workflow, O-RAN Alliance provides within the reference design speci-
fications also the description of an initial set of use cases each one with the
purpose to demonstrate different capabilities of the architecture.
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Some of these use cases - like “QoE prediction use case” - describe how
the utilization of ML technologies can be exploited to deploy models using
long term data along with policies to control real time behavior of RAN, some
other refer to solutions for RAN optimization in which only policies and con-
figurations mechanisms are involved, like for example the “Traffic Steering use
case”.

As shown in Figure 2.7 O-RAN propose a variety of use cases, some of
them very general like for example the “RAN Sharing use case” that aims
to show the CAPEX reduction within the adoption of an O-RAN approach
to this kind of scenario, some other concern the enhancement of particular
functionalities like the previous cited “Traffic Steering use case” or the “QoS
Based Resource Optimization” one, some other specifically address particular
applications like for example “Context Based Dynamic Handover Management
for V2X” or “Flight Path Based Dynamic UAV Resource Allocation” [10].

Figure 2.7: O-RAN Use Cases [10]

2.5.1 Traffic Steering Use Case

This particular use case proposes a solution to activate per-UE load balancing
leveraging O-RAN capabilities to move from the typical cell-centric approach.
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In fact traditional network traffic control optimization typically requires a
lot of manual intervention and being a passive mechanism it’s also character-
ized by slow feedback responses.

The workflow proposed by O-RAN for an efficient UE-centric traffic steering
mechanism starts from a fine grained data collection via O1 interface from O-
CU and O-DU towards the Non-RT RIC.

The collection of data and enrichment information then is expected to
enable a long term data analytics at the Non-RT RIC in order to determine
specific actions to be taken for different UEs, based on QoS requirements or
S-NSSAI (Single-Network Slice Selection Assistance Information).

After that new policies are defined reporting which specific cell is expected
to serve the specific UE, based on the preferred Radio Access Technology
(RAT), frequency band and other access channel characteristics.

Finally these policies are fed via A1 interface towards the Traffic Steering
xApp in the Near-RT RIC where they can be converted into control messages
and sent towards E2 nodes [18].

It is possible to notice that two control loops are involved:

• The Non-RT loop which updates policies with a latency greater than 1s;

• The Near-RT loop which controls handovers with a latency in the order
of 10ms.

This specific use case is reported as an example of the possible control pro-
cedures which O-RAN envisions to support in future open RAN deployments
and shows how two different time scale control loops can be involved to jointly
reach the desired optimization goal.

2.6 Exemplar Platforms

In order to contextualize the vision and the reference design promoted and
developed by the O-RAN Alliance, in this Section the most relevant entities
involved in the definitions and developments of O-RAN related works will be
presented.

Figure 2.8 collocates O-RAN specifications as a derivation of specific 3GPP
5G Standards, in particular those one related to the RAN, like the functional
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split among CU and DU, the definition of interfaces among them and the
relation with the Service Management and Orchestration Framework (MANO)
of Network Function Virtualization (NFV). As introduced in Section 2.2 in fact
part of the work of the O-RAN group aims to align and integrate the proposed
architecture within the 5G RAN reference design.

Starting from this O-RAN aims to provide additional features to the RAN,
introducing the Radio Intelligent Controller functional blocks definitions within
the SMO/Non-RT RIC framework and the Near-RT RIC framework, defining
a set of new open and programmable interfaces (A1, E2, O1 and O2) and spec-
ifying the proposed Lower-Layer Split among DU and RU within the related
Open-Fronthaul interface.

On the other hand the O-RAN Alliance reference design is being adopted
by other organizations in order to develop O-RAN based exemplar platforms.
For example the SD-RAN project of the Open Networking Foundation (ONF)
aims to build an exemplar platform based on the realization of a Near-RT RIC
(called µONOS-RIC) and a set of exemplar xApps to provide developers and
operators with open source emulators on which testing O-RAN functionalities.
Finally, O-RAN Alliance together with the Linux’s Foundation created the O-
RAN Software Community (OSC) that focus on the development of an open-
source software reference design for the whole O-RAN as will be introduced in
Chapter 3 [12].

Figure 2.8: O-RAN Related Entities [12]



Chapter 3

Virtual Infrastructure and
Management Frameworks

As introduced in Chapter 2, O-RAN Alliance provides a reference design for the
Open RAN architecture they envisions for which they also specifies all the re-
quirements needed to guarantee satisfying openness, security, intelligence and
automation standards. In this Chapter an experimental approach for the de-
ployment of the required software components will be presented and described
in details as a possible testbed for further experimental demonstrations.

3.1 Open Platforms

3.1.1 O-RAN SC

Even if for the moment there’s not a unique and standardized approach for
the integration of O-RAN functionalities within the RAN, O-RAN Alliance,
in collaboration with the Linux’s Foundation, created the O-RAN Software
Community (OSC) to support the creation of software for the Radio Access
Network and to leverage other Linux’s Foundation projects while addressing
challenges like software scaling or 3GPP standards alignment [7].

Aiming to provide an open-source software reference design for the whole
O-RAN, from November 2019 until now, the OSC released four versions of
the software including in each new one support for additional components of
the architecture. Even if first ones supported few functionalities, from the
“Bronze release” - June 2020 - a lot of documentation and some procedures to

19
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reach the deployment of basic components were released. Then starting from
the “Cherry release” - out date December 2020 -, apart from the updated
software reference for the simulation of the A1, E2 and O1 interfaces, there
was a more complete support for different functionalities, starting from the
demonstration of some use cases (like for example the policy-based Traffic
Steering workflow using A1 and E2 interfaces) up to data gathering solutions
for different interfaces or compatibility solutions for OAM issues [21]. Finally
with the “Dawn release” - out date July 2021 - a better integration with the
other software components was reached and, as will be shown in Chapter 4, at
the moment results to be the more stable solution for the software deployment.

3.1.2 MANO/VIM Frameworks

Considering the “open approach” which O-RAN aims to provide to the telco
industry, it’s not specifically addressed which kind of solution to adopt in term
of MANO frameworks, Virtual Infrastructure Managers (VIM) or Cloud Plat-
forms, but for the moment among the open source projects providing such kind
of frameworks is clear which one are more likely to be integrated within future
O-RAN deployments. The first is the Linux’s Foundation Open Network
Automation Platform (ONAP) - as anticipated in Section 2.4 - which
from the Frankfurt release - out date June 2020 - specifically addresses to be
compatible with O-RAN specifications and, aiming to be a comprehensive plat-
form for real-time, policy-driven orchestration and automation of physical and
virtual network functions, it is recommended by the OSC as the first choice
for SMO/Non-RT RIC framework deployment [22]. The second one is Ku-
bernetes (K8s) to be exploited as a VIM, thanks to it’s effort in providing
an higly scalable platform to orchestrate containerized applications [8].

3.2 Deployment Choices

3.2.1 Reference Documentation

For the software development the OSC refers to the web-based collaborative
platform Confluence, on which shares the source code and all the documenta-
tion needed for the installation of the last software releases [23]. In particular
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it provides a Getting Started guide to easily reach a set up of O-RAN includ-
ing SMO/Non-RT RIC framework, Near-RT RIC with Traffic Steering related
xApps, A1 and O1 interfaces use case flow demonstration [24].

The guide is based on the OSC’s projects documentation in [25], and in
particular it refers to the “Integration and Testing” project’s it/dep repository
which hosts deployment and integration artifacts such as scripts, Helm charts,
and other files used for deploying O-RAN basic components over a Kubernetes
cluster.

However, even if the guide aims to demonstrate the deployment of the O-
RAN software release, it does not permits to manage in a modular fashion the
installation of the underlying virtual infrastructural modules (like Kubernetes
and its package manager known as Helm [26]).

For this reason the choice was to follow the it/dep documentations in order
to refer directly to the related “Installation Guide” [27], in particular to derive
the requirements and to find an alternative way to deploy a kubernetes cluster.

This choice, apart from giving the possibility to obtain a customized in-
stallation, was made in order to keep track of possible installation problems
while integrating up to date new releases of different software modules.

Regardless of the underlying infrastructure, the deployment of any O-RAN
component present in the it/dep repository requires to be installed on top of
a Kubernetes cluster with the following characteristics [27]:

• Kubernetes v.1.16.0 or above;

• helm v2.12.3 or above;

• Read-write access to directory /mnt.

So, to avoid the bare execution of the installation scripts provided by the
OSC and with the intent of setting up each component in a modular way, once
having derived the requirements from the “Installation Guide”, it was decided
to proceed following a different guide provided by the ONAP Operation Man-
ager (OOM) project for the deployment of a Kubernetes cluster. Such a guide
refers to the deployment of the module SDN-C (Software Defined Network -
Controller) on some VMs managed by a Kubernetes cluster composed of a
master node and three worker nodes [28].

This choice was steered by the fact that starting from the OSC meeting
of 12th August 2019 [29] was clarified the expected integration of the O-RAN
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OAM Architecture into ONAP and so both the OSC project and some ONAP
projects are working on such integration.

Finally the ONAP guide in [28] provides a step by step approach to the
deployment of a simple Kubernetes cluster, making easier to keep track of the
installation of each single infrastructural module.

3.2.2 The Host

Given the fact that - referring to the Installation Guide in [27] - the deployment
can be done on a wide range of hosts, including bare metal servers, OpenStack
VMs, and VirtualBox VMs, having the possibility to utilize an HP server with
72 logical cores and 256 GB of RAM, the choice was to instantiate some VMs
directly on the server in order to recreate a local deployment and to have
the possibility to derive reliable performance evaluations over the deployed
components.

First of hall the OS requirements were derived from the prerequisites of the
virtual infrastructural components needed to be installed on top of the host
installation. Since the last versions of Kubernetes, Docker and Helm requires
at least Ubuntu 18.04 Bionic Beaver, the adoption of such distribution was
taken to create a simple OS image to be replicated in the deployment - refer
to Appendix A for further details.

Then some VMs were instantiated thanks to Linux Kernel-based Virtual
Machine module (KVM) - a full virtualization solution for Linux on x86 hard-
ware - through which is possible to run multiple virtual machines running
unmodified Linux images thanks to the fact that each VM is provided with
private virtualized hardware [30]. In order to get remote access to the HP
server then, a two hop port forwarding was needed such that it was possible to
configure remotely the VMs through the Virtual Machine Manager interface.

In Appendix A some screenshot of the configuration on Virtual Machine
Manager and the port forwarding commands needed for remote connection
are reported, while in Figure 3.1 the final virtual infrastructure is represented
graphically:
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Figure 3.1: Virtual Infrastructure

As shown in Figure 3.1 the choice was to install four identical VMs on
which allocate the minimum resource requirements in term of number of virtual
CPUs, RAM memory and HDD storage, with the intent to understand the limit
of the overall software installation.

3.2.3 Container Runtime and Kubernetes

The container runtime environment within Kubernetes management frame-
work represents the virtualized platform on which each O-RAN logical com-
ponent, considered as a set of containerized applications, needs to be installed
on. As shown in Figure 3.2 for example each O-RAN building block (like the
Near-RT RIC) is orchestrated by a Kubernetes cluster which is in charge to
schedule resources like storage and containers for each different softwarized
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functionality (colored blocks like the E2 Termination) managing also their
lifecycle. Practically Kubernetes organizes resources to be scheduled in logical
structures called Pods which are the execution environment for each different
application [27].

Figure 3.2: Installation Architecture [27]

Given these premises, Kubernetes has a crucial role in the orchestration and
resource management aspects for the deployment of an O-RAN based solution
over a virtualized infrastructure.

3.3 Installation steps

Starting from the VMs deployment presented in Subsection 3.2.2, the subse-
quent step was to setup each VM in order to host Kubernetes facilities following
the previous cited ONAP guide in Subsection 3.2.1 [28] for reference.
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3.3.1 VMs setup

In this Subsection are reported the procedural steps executed to setup each VM;
most of them have to be executed on each VM, few ones only on the master:

(1) Add host names of kubernetes nodes (master and workers) to /etc/hosts:

ubuntu@u18 -k8s -master:~$ sudo vim /etc/hosts

ubuntu@u18 -k8s -master:~$ cat /etc/hosts

127.0.0.1 localhost

127.0.1.1 u18 -k8s -master

# The following lines are desirable for IPv6 capable hosts

::1 ip6 -localhost ip6 -loopback

fe00 ::0 ip6 -localnet

ff00 ::0 ip6 -mcastprefix

ff02 ::1 ip6 -allnodes

ff02 ::2 ip6 -allrouters

127.0.0.1 host.minikube.internal

192.168.122.60 u18 -k8s -master control -plane.minikube.internal

192.168.122.61 u18 -k8s -worker01

192.168.122.62 u18 -k8s -worker02

192.168.122.63 u18 -k8s -worker03

(2) Turn off firewall and allow all incoming HTTP connections through
iptables command:

ubuntu@u18 -k8s -master:~$ sudo iptables -nL

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy DROP)

target prot opt source destination

DOCKER -USER all -- 0.0.0.0/0 0.0.0.0/0

DOCKER -ISOLATION -STAGE -1 all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED ,ESTABLISHED

DOCKER all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Notice: as shown input and output chain rules already accept connections.
This step is crucial since integrated networking services among nodes and
containers will leverage iptables proxy.

(3) Fix server timezone and select local timezone with command
sudo timedatectl set-timezone Europe/Rome and check:
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ubuntu@u18 -k8s -master:~$ date

Fri Jul 23 17:19:03 CEST 2021

(4) Setup Network Time Protocol (NTP) server on your image if needed. It is
important that all the VM’s clocks are synchronized or it will cause problems
joining kubernetes nodes to the kubernetes cluster:

sudo apt install ntp

sudo apt install ntpdate

ubuntu@u18 -k8s -master :/etc$ cat ntp.conf

...

# Specify one or more NTP servers.

# Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board

# on 2011 -02 -08 (LP: #104525). See http ://www.pool.ntp.org/join.html for

# more information.

pool 0. ubuntu.pool.ntp.org iburst

pool 1. ubuntu.pool.ntp.org iburst

pool 2. ubuntu.pool.ntp.org iburst

pool 3. ubuntu.pool.ntp.org iburst

# Use Ubuntu ’s ntp server as a fallback.

pool ntp.ubuntu.com

...

Notice: It was left the already present configuration with the NTP Pool
Project’s servers.

(5) Update the VMs with the latest core packages and reboot:

sudo apt clean

sudo apt update

sudo apt -y full -upgrade

sudo reboot

(6) Some of the clustering scripts require JSON parsing, so install jq on the
master only:

sudo apt install -y jq

(7) Finally it was possible to check time synchronicity by launching sequen-
tially date command in all the three worker nodes through a cycle:

ubuntu@u18 -k8s -master:~$ for i in 1 2 3; do echo $i; time ssh ubuntu@u18 -k8s -

worker0$i ’date ’; done

1
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Fri Jul 23 17:25:26 CEST 2021

real 0m0.612s

user 0m0.028s

sys 0m0.000s

2

Fri Jul 23 17:25:27 CEST 2021

real 0m0.591s

user 0m0.021s

sys 0m0.004s

3

Fri Jul 23 17:25:27 CEST 2021

real 0m0.596s

user 0m0.017s

sys 0m0.011s

3.3.2 Docker container runtime

Once the VMs were properly configured, the following step was to install the
container runtime and the choice was to proceed installing Docker Engine
by following Docker documentations in [31]:

(8) Installing Docker Runtime Environment:

Uninstall the Docker Engine, CLI, and Containerd packages:

sudo apt -get purge docker -ce docker -ce-cli containerd.io

Notice: Images, containers, volumes, or customized configuration files on
your host are not automatically removed, so delete all images, containers, and
volumes through:

sudo rm -rf /var/lib/docker

sudo rm -rf /var/lib/containerd

Update the apt package index and install packages to reach the repository over
HTTPS:

sudo apt -get update

sudo apt -get install \

apt -transport -https \

ca-certificates \

curl \

gnupg \

lsb -release
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Add Docker’s official GPG key:

sudo curl -fsSL https :// download.docker.com/linux/ubuntu/gpg | sudo gpg --

dearmor -o /usr/share/keyrings/docker -archive -keyring.gpg

Use the following command to set up the stable repository:

sudo echo \

"deb [arch=amd64 signed -by=/usr/share/keyrings/docker -archive -keyring.gpg]

https :// download.docker.com/linux/ubuntu \

$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list >

/dev/null

Install docker engine and reboot:

sudo apt -get update

sudo apt -get install docker -ce docker -ce-cli containerd.io

sudo reboot

Verify Docker installation:

sudo docker run hello -world

ubuntu@u18 -k8s -master:~$ sudo docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

31367262 b441 hello -world "/ hello" 6 hours ago Exited (0) adoring_hoover

3.3.3 Kubernetes packages

Finally, having installed and verified the container runtime environment on
each VM, the last step before configuration was to install Kubernetes packages
following Kubernetes documentations in [32]:

(9) To run K8s is necessary to disable swap in order to make sure that the
kubelet agent will work properly.

So swap was disabled with the following command and by launching free com-
mand on each worker node it was possible to see no swap space allocated:

sudo swapoff /swapfile

ubuntu@u18 -k8s -master:~$ for i in 1 2 3; do echo $i; ssh ubuntu@u18 -k8s -

worker0$i ’free -h’; done

1
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total used free shared buff/cache available

Mem: 15G 739M 9.6G 796K 5.4G 14G

Swap: 0B 0B 0B

2

total used free shared buff/cache available

Mem: 15G 741M 9.6G 816K 5.4G 14G

Swap: 0B 0B 0B

3

total used free shared buff/cache available

Mem: 15G 742M 9.6G 816K 5.4G 14G

Swap: 0B 0B 0B

(10) Before the installation of kubernetes packages is important to verify that
the MAC address and product uuid are unique for every node.

(11) Another step before installation is to make sure that the network plugins
will be able to see bridged traffic through the iptables proxy in order to manage
the IP network among containers and pods. For this reason the br_netfilter

module was loaded and consequently the sysctl configuration was changed as
follow:

Check if the br_netfilter is loaded:

ubuntu@u18 -k8s -master:~$ lsmod | grep br_netfilter

br_netfilter 24576 0

bridge 155648 1 br_netfilter

‘‘cat <<EOF | sudo tee /etc/modules -load.d/k8s.conf

br_netfilter

EOF ’’

Configure sysctl:

‘‘cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge -nf -call -ip6tables = 1

net.bridge.bridge -nf -call -iptables = 1

EOF ’’

ubuntu@u18 -k8s -master:~$ sudo sysctl --system

* Applying /etc/sysctl.d/10-console -messages.conf ...

kernel.printk = 4 4 1 7

* Applying /etc/sysctl.d/10-ipv6 -privacy.conf ...

net.ipv6.conf.all.use_tempaddr = 2

net.ipv6.conf.default.use_tempaddr = 2

* Applying /etc/sysctl.d/10-kernel -hardening.conf ...

kernel.kptr_restrict = 1

* Applying /etc/sysctl.d/10-link -restrictions.conf ...

fs.protected_hardlinks = 1

fs.protected_symlinks = 1

* Applying /etc/sysctl.d/10-lxd -inotify.conf ...

fs.inotify.max_user_instances = 1024
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* Applying /etc/sysctl.d/10-magic -sysrq.conf ...

kernel.sysrq = 176

* Applying /etc/sysctl.d/10-network -security.conf ...

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.all.rp_filter = 1

net.ipv4.tcp_syncookies = 1

* Applying /etc/sysctl.d/10- ptrace.conf ...

kernel.yama.ptrace_scope = 1

* Applying /etc/sysctl.d/10- zeropage.conf ...

vm.mmap_min_addr = 65536

* Applying /usr/lib/sysctl.d/50- default.conf ...

net.ipv4.conf.all.promote_secondaries = 1

net.core.default_qdisc = fq_codel

* Applying /etc/sysctl.d/99- sysctl.conf ...

* Applying /etc/sysctl.d/k8s.conf ...

net.bridge.bridge -nf -call -ip6tables = 1

net.bridge.bridge -nf -call -iptables = 1

* Applying /etc/sysctl.conf ...

(12) Installing kubeadm, kubelet and kubectl.

• kubeadm: the command in charge to initialize the k8s cluster in the master
node, used also to attach other nodes to the cluster;

• kubelet: the component that runs on all of the machines in your cluster in
charge to manage resources, instantiate Pods and Containers and manage
their lifecycles;

• kubectl: the command line util to talk to your cluster, used to configure
manually Pods, Deployments, Services and other k8s resources in the
cluster.

Update the apt package index and install packages needed to use the Kubernetes
apt repository:

sudo apt -get update

sudo apt -get install -y apt -transport -https ca-certificates curl

Download the Google Cloud public signing key:

sudo curl -fsSLo /usr/share/keyrings/kubernetes -archive -keyring.gpg https ://

packages.cloud.google.com/apt/doc/apt -key.gpg

Add the Kubernetes apt repository:

echo "deb [signed -by=/usr/share/keyrings/kubernetes -archive -keyring.gpg] https

:// apt.kubernetes.io/ kubernetes -xenial main" | sudo tee /etc/apt/sources.

list.d/kubernetes.list
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Update apt package index, install kubelet, kubeadm and kubectl, and pin their version:

sudo apt -get update

sudo apt -get install -y kubelet kubeadm kubectl

sudo apt -mark hold kubelet kubeadm kubectl

(13) Configuring a cgroup driver:

- cgroups (a.k.a. Control groups) are Linux kernel tools used to constrain
resources that are allocated to processes. Typically Linux distributions use
systemd as init system, which also act as a cgroup manager.

Notice: Matching the container runtime and kubelet cgroup drivers is required
or otherwise the kubelet process will fail.

Given these premises, since a single cgroup manager simplifies the view of
what resources are being allocated, the choice was to configure systemd as cgroup

driver for both the container runtime and the kubelet agent:

Create (or edit) the /etc/docker/daemon.json configuration file and include the fol-
lowing:

ubuntu@u18 -k8s -master:~$ sudo cat /etc/docker/daemon.json

{

"exec -opts": [" native.cgroupdriver=systemd "]

}

Restart Docker and check:

sudo systemctl restart docker

ubuntu@u18 -k8s -master:~$ sudo docker info | grep "Cgroup Driver"

Cgroup Driver: systemd

Then since the kubelet agent is configured by default to use systemd as cgroup driver
there was no need of further configurations.

(14) If there was a previous K8s installation:

Make sure /etc/kubernetes/ directory to be empty:

sudo rm -rf /etc/kubernetes /*

Check if k8s ports are not already in use:

For example it was found an instance of kubelet already listening over port 10250
so it is was decided to reset the service:
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ubuntu@u18 -k8s -master:~$ sudo lsof -nPi | grep kubelet

kubelet 8580 root 13u IPv4 147813 0t0 TCP 127.0.0.1:42111 (LISTEN)

kubelet 8580 root 16u IPv4 145982 0t0 TCP

192.168.122.60:52670 - >192.168.122.60:6443 (ESTABLISHED)

kubelet 8580 root 29u IPv4 147824 0t0 TCP 127.0.0.1:10248 (LISTEN)

kubelet 8580 root 34u IPv6 146046 0t0 TCP *:10250 (LISTEN)

sudo kubeadm reset

sudo systemctl restart kubelet

Conclusion: As told at the beginning of this Section, these steps need to be
executed on each VM, while in Subsection 3.3.4 the specific configuration of
the master node will be shown.

3.3.4 Master Node Configuration

This Subsection, starting from the ONAP guide cited in Subsection 3.2.1 [28],
introduces the steps needed to configure the master node of the proposed K8s
cluster. The master node in a cluster, is a node which hosts the control plane
functionalities needed to orchestrate and control the operation of the cluster,
by exposing interfaces and APIs in order to deploy, schedule and manage the
lifecycle of containers [33].

(1) To setup the K8s master node it was sufficient to launch the command
below:

ubuntu@u18 -k8s -master:~$ sudo kubeadm init

...

Your Kubernetes control -plane has initialized successfully!

To start using your cluster , you need to run the following as a regular user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively , if you are the root user , you can run:

export KUBECONFIG =/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork ].yaml" with one of the options listed at:

https :// kubernetes.io/docs/concepts/cluster -administration/addons/

Then you can join any number of worker nodes by running the following on each

as root:



3.3. INSTALLATION STEPS 33

kubeadm join 192.168.122.60:6443 --token rkgi2l.ayu7qs8gxci5r9c7 \

--discovery -token -ca-cert -hash sha256:

e77ee7ca568f89a0b2b26f46cfa36f46e74c3627664824ca38b5cf3640355572

Notice: the reported lines of the output log show the token needed to attach
worker nodes to the cluster, for this reason is important to save this log in
a file. However, for security reasons, the token will expire in 24 hours. In
Subsection 3.3.5 will be shown how to regenerate the token.

In order to start using the cluster as a regular user, the suggested commands
were launched:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Then, after the initialization of all the control plane Pods, it was possible
to check what the kubeadm agent actually deployed:

ubuntu@u18 -k8s -master:~$ sudo kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

kube -system coredns -558 bd4d5db -7bvf5 0/1 Pending 0 3h39m

kube -system coredns -558 bd4d5db -fxt2h 0/1 Pending 0 3h39m

kube -system etcd -u18 -k8s -master 1/1 Running 0 3h40m

kube -system kube -apiserver -u18 -k8s -master 1/1 Running 0 3h39m

kube -system kube -controller -manager -u18 -k8s -master 1/1 Running 0 3h39m

kube -system kube -proxy -txfdk 1/1 Running 0 3h40m

kube -system kube -scheduler -u18 -k8s -master 1/1 Running 0 3h39m

Notice: The K8s version installed, by default install the add-on CoreDNS
which is a flexible, extensible DNS server that can serve as the Kubernetes
cluster DNS.

Other K8s control plane services are respectively [8]:

• etcd : a consistent and highly-available key value store used as Kuber-
netes’ backing store for all cluster data;

• kube-apiserver : represent the front end of the K8s control plane, exposing
APIs such that to enable interaction toward and within the cluster;

• kube-controller-manager : a daemon that embeds the core control loop
which watches the shared state of the cluster through the apiserver and
makes changes attempting to move the current state towards the desired
state. Practically it is the entity which enable automatic control over
the cluster;
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• kube-scheduler : the process in charge to schedule resources to different
applications. In practice each application is intended to run within a
set of Pods - i.e. the abstraction of the set of resources (containers,
volumes) required by the application itself - and so the scheduler deter-
mines which Nodes are valid placements for each Pod in the scheduling
queue according to constraints and available resources in term of CPU
and memory.

Notice: kube-proxy is a network proxy that runs on each node in the cluster.
It maintain network rules in the node enabling pods to communicate each
other in the cluster and letting services to be exposed inside and/or outside
the cluster.

Once having the control plane Pods up and running, by following the guide
in [28], the subsequent steps were to intall a Pod Network add-on - needed
to let Pods communicate with eachother - and to install the latest version of
Helm package manager.

(2) For the Pod Network the choice was arbitrarily and the Weave Net plugin
was installed following these steps:

Download the configuration file:

ubuntu@u18 -k8s -master:~$ wget -O weaver.yaml "https :// cloud.weave.works/k8s/

net?k8s -version=$(kubectl version | base64 | tr -d ’\n’)"

Apply the configuration:

ubuntu@u18 -k8s -master:~$ sudo kubectl apply -f weaver.yaml

serviceaccount/weave -net created

clusterrole.rbac.authorization.k8s.io/weave -net created

clusterrolebinding.rbac.authorization.k8s.io/weave -net created

role.rbac.authorization.k8s.io/weave -net created

rolebinding.rbac.authorization.k8s.io/weave -net created

daemonset.apps/weave -net created

In order to verify that the Pod Network is up, it’s possible to check the new
Pod deployed and notice that now the two CoreDNS Pods are running:

ubuntu@u18 -k8s -master:~$ sudo kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

kube -system coredns -558 bd4d5db -7bvf5 1/1 Running 0 34d

kube -system coredns -558 bd4d5db -fxt2h 1/1 Running 0 34d

kube -system etcd -u18 -k8s -master 1/1 Running 0 34d

kube -system kube -apiserver -u18 -k8s -master 1/1 Running 0 34d

kube -system kube -controller -manager -u18 -k8s -master 1/1 Running 0 34d
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kube -system kube -proxy -txfdk 1/1 Running 0 34d

kube -system kube -scheduler -u18 -k8s -master 1/1 Running 0 34d

kube -system weave -net -t8z5l 2/2 Running 1 34s

(3) Intalling Helm from script:

The official Installation Guide for Helm provide an installation script that
automatically dowload and install the latest version [34]:

curl -fsSL -o get_helm.sh https ://raw.githubusercontent.com/helm/helm/master/

scripts/get -helm -3

ubuntu@u18 -k8s -master:~$ chmod 700 get_helm.sh

ubuntu@u18 -k8s -master:~$ ./ get_helm.sh

Downloading https ://get.helm.sh/helm -v3.6.3-linux -amd64.tar.gz

Verifying checksum ... Done.

Preparing to install helm into /usr/local/bin

helm installed into /usr/local/bin/helm

ubuntu@u18 -k8s -master:~$ helm version

version.BuildInfo{Version :"v3.6.3", GitCommit :"

d506314abfb5d21419df8c7e7e68012379db2354", GitTreeState :"clean", GoVersion

:"go1 .16.5"}

Notice: Differently from older versions, starting from Helm 3.0.0, there was
no more need of installing Tiller - the server side of Helm. The removal of
Tiller was chosen for security reasons: while in a first phase Tiller was helpful
to allow first-time users to start experimenting with Helm and Kubernetes in
a multi-tenant shared cluster scenario in which the same set of releases was
shared with Tiller, now it’s possible to simply fetch Helm release information
from the Kubernetes API server [35].

3.3.5 Join Worker nodes to cluster

Once having initialized the master node the next step was to join to the cluster
the other three worker nodes.

Please notice that this step was not a requirement for the deployment of
any component present in the it/dep repository of the Integration and Testing
OSC’s project, but the choice of maintaining three additional worker nodes was
taken in order to see how Kubernetes facilities would behave orchestrating O-
RAN components over a multi-node cluster with lack of resources in order
to discover possible critical situations or limits of the virtual infrastructure
manager framework.
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In order to join nodes to an existing cluster there is the need of a bidirec-
tional trust procedure made up of a discovery phase, in which the worker node
trust the Kubernetes Control Plane, and a TLS bootstrap phase, in which
the Kubernetes Control Plane trust the worker node. kubeadm tool provides the
possibility to realize this procedure thanks to a shared token:

First check if the token can be retrieved by command on master:

kubeadm token list

If there is no output of the above command then there is the need to generate
the token again from master:

ubuntu@u18 -k8s -master:~$ kubeadm token create --print -join -command

kubeadm join 192.168.122.60:6443 --token mdiw0c.c1u9x190x7kuwd3w

--discovery -token -ca-cert -hash

sha256:e77ee7ca568f89a0b2b26f46cfa36f46e74c3627664824ca38b5cf3640355572

Notice: The token generated will last 23 hours.

Then it is sufficient to launch the generated command on any of the worker
nodes.

Finally it is possible to check that new nodes are connected directly on the
master:

ubuntu@u18 -k8s -master:~$ kubectl get nodes -A

NAME STATUS ROLES AGE VERSION

u18 -k8s -master Ready control -plane ,master 39d v1.21.3

u18 -k8s -worker01 Ready <none > 5m37s v1.21.3

u18 -k8s -worker02 Ready <none > 112s v1.21.3

u18 -k8s -worker03 Ready <none > 56s v1 .21.3

Notice: For any worker node which joins the cluster, two new Pods: one
weaver-net and one kube-proxy ) are deployed on the master node and assigned to
the worker:

ubuntu@u18 -k8s -master:~$ kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

kube -system coredns -558 bd4d5db -7bvf5 1/1 Running 0 39d

kube -system coredns -558 bd4d5db -fxt2h 1/1 Running 0 39d

kube -system etcd -u18 -k8s -master 1/1 Running 0 39d

kube -system kube -apiserver -u18 -k8s -master 1/1 Running 0 39d

kube -system kube -controller -manager -u18 -k8s -master 1/1 Running 0 39d

kube -system kube -proxy -2kgxw 1/1 Running 0 10m

kube -system kube -proxy -llrbh 1/1 Running 0 5m40s

kube -system kube -proxy -sm9qx 1/1 Running 0 6m36s

kube -system kube -proxy -txfdk 1/1 Running 0 39d

kube -system kube -scheduler -u18 -k8s -master 1/1 Running 0 39d

kube -system weave -net -dsjn4 2/2 Running 1 6m36s
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kube -system weave -net -nzpr7 2/2 Running 1 10m

kube -system weave -net -sp278 2/2 Running 0 5m40s

kube -system weave -net -t8z5l 2/2 Running 1 4d5h

3.4 Considerations

This Chapter aimed to describe a particular approach to setup the prerequisites
needed to start using O-RAN software components in a specific virtualized
environment.

The choice was to deploy the system on a virtual infrastructure made up
of four nodes with limited resources in order to possibly analyze the behavior
of management software components like Kubernetes in not ideal conditions.
Moreover the lack of available standardized configuration procedures for the
overall system led to the choice to discover a path toward the deployment
of such components which was as modular as possible in order to be possibly
adopted as a starting point for further works or to be tailored based on different
requirements.

Finally, the choice to adopt the most recent releases of all the software
components highlighted the fact that the integration among them is supported
and permits to start deploying O-RAN software modules on the base of an up
to date underlying virtualized environment.

As it will be shown in Chapter 4 a different consideration must be done
over the O-RAN software release. At the moment in fact the development of
the O-RAN software reference is still under work in order to be fully integrated
with the latest releases of all the other infrastructural modules.
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Chapter 4

O-RAN Software deployment

As anticipated in Chapter 3 the choice made for the deployment of the O-RAN
software components developed by the OSC was to start from the it/dep
repository of the Integration and Testing project.

4.1 Integration and Testing project

The Integration and Testing project is focused on testing the requirements doc-
umented in each release, either for end to end demonstrations and for use case
testing. In particular its it/dep repository provides deployment and integra-
tion artifacts such as scripts, Helm charts, and other files for the installation
of the Cherry release and of the Dawn release of the O-RAN software and
time by time is being updated in order to adjust the software reference with
bug corrections and in order to align the current release with the new ver-
sions of the other infrastructural components, like for example introducing the
compatibility with Helm 3.0.0 [36].

At the moment the it/dep repository contains:

• Deployment scripts for a 1-node Kubernetes cluster;

• Deployment scripts and Helm charts for Near-RT RIC Platform;

• Deployment scripts and Helm charts for infrastructure services support-
ing the Near-RT RIC Platform (like services to expose APIs outside the
cluster, for example to exhange data with the SMO/Non-RT RIC frame-
work on another cluster);

39
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• Deployment scripts and Helm charts for auxiliary services (like ONAP
management functionalities as Virtual Event Streaming (VES) collectors
for performance metrics);

• Deployment scripts for O-DU high project;

• Deployment scripts for SMO/Non-RT RIC Platform.

Please notice that, at the moment, the available support documentation
for the O-RAN related software is still incomplete and there’s not a unique
approach toward the deployment of all the different components. The soft-
ware community in fact is still updating the online documentation with the
troubleshoot of different problematic situations, like for example the fact that
some specific components or Helm charts result to be deprecated, but at the
moment for some of the O-RAN components related projects it is still missing
a reference (e.g. descriptions of E2 Termination or E2 Manager components).

Given these premises, the choice was to start deploying the Near-RT RIC
software components referring to the it/dep Installation Guide in [27] with
the intent to demonstrate their deployment feasibility and to keep track of all
the possible installation issues.

Then in Section 4.4, the deployment procedures to on-board and install
xApps over the RIC Platform Cluster will be shown.

4.2 RIC Platform Cluster

As shown in Chapter 3 each O-RAN building block is represented by a set
of Kubernetes resources collected and deployed over a cluster. Referring to
Figure 3.2 the components of the Near-RT RIC are collected under the RIC
Platform cluster and they can be deployed exploiting RIC Platform deployment
artifacts present in the it/dep repository.

To organize the deployments artifacts of the different components, the var-
ious RIC Platform components are placed into two groups: infrastructure and
platform, respectively denoted as ric-infra and ric-platform groups [37].

The ric-infra group is expected to be deployed in each cluster. It consists
of components such as Kong Ingress Controller or additional various func-
tionalities like Prometheus Alert Manager or Prometheus Server - a service to
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collect performance metrics in containerized environments [38]. In particular
the Kong Ingress Controller proxies incoming API calls into the cluster and
makes service APIs provided by Kubernetes resources accessible at the clus-
ter node IP and port via a URL path [27]. For its characteristic the Kong
Ingress Controller is exploited for cross-cluster communications and to expose
services, but also to let the kubelet agent to exchange data within the cluster
through HTTP/REST methods or to enable the developer to access Kuber-
netes resources with curl command.

The ric-platform group is deployed in the RIC cluster and consists of all
Near-RT RIC Platform components, including:

• DBaaS: realized with a single container running Redis database provides
a backend service for Shared Data Layer (SDL). Typically exploited for
sharing the state data of an application within a namespace;

• E2 Termination;

• E2 Manager;

• A1 Mediator: listens for policy type and policy instance requests sent
via HTTP (the “northbound” interface), and publishes those requests to
running xApps via RMR messages (the “southbound” interface);

• Alarm Manager: is responsible for managing alarm situations in RIC
cluster applications and interfacing with northbound applications such
as Prometheus Alert Manager towards the SMO;

• Routing Manager: is responsible for distributing routing policies among
the other platform components and xApps;

• Subscription Manager: is responsible for managing E2 subscriptions from
xApps to the E2 Node (eNodeB or gNodeB);

• App manager: tool for deploying and managing various RIC xApp ap-
plications through HTTP/REST methods;

• xApp On-Boarder: provides the xApp On-Boarding service to operators.
It consumes the xApp descriptor and optionally additional schema file,
and produces xApp Helm charts;
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• VESPA Manager: adapts near-RT RIC internal statistics’ collection us-
ing Prometheus Server to scrape metrics from platform and xApp mi-
croservices and forward them to ONAP collectors, for example in the
SMO framework;

• Jaeger Adapter: manager for kubernetes Custom Resources - extension
of kubernetes API;

• O1 Mediator: support for the O1 interface;

• InfluxDB(optional): provided a persistent data storage in previous re-
leases. At the moment NFS Server Provisioner needed component is
deprecated.

4.3 RIC Platform Installation

Approaching the installation of the RIC Platform the choice was to follow
the it/dep Installation Guide in [27] having already installed the kubernetes
cluster described in Chapter 3 which is different from the cluster proposed by
the OSC.

First of all the cluster installed in this work consists of a master node and
three worker nodes while the solution proposed by the Integration and Testing
project consists of a 1-node kubernetes cluster. Secondly the choice taken was
to install the most recent versions of Docker, Kubernetes and Helm, while,
complying with the it/dep requirements, specific versions of such software
components are recommended for the installation.

Given these premises, the first step was to download the it/dep repository:

ubuntu@u18 -k8s -master:~$ git clone https :// gerrit.o-ran -sc.org/r/it/dep

Cloning into ’dep ’...

remote: Counting objects: 3, done

remote: Total 5116 (delta 0), reused 5116 (delta 0)

Receiving objects: 100\% (5116/5116) , 2.41 MiB | 1.59 MiB/s, done.

Resolving deltas: 100\% (2039/2039) , done.

Notice: The previous command creates the dep directory in the file system,
cloning inside it the set of installation scripts and support files needed for the
deployment.

Then to download the specific configuration recipes and artifacts related to
the RIC Platform, the command below was required in order to recursively
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update the repository:

ubuntu@u18 -k8s -master:~$ cd dep/

ubuntu@u18 -k8s -master:~/dep$ git submodule update --init --recursive --remote

Submodule ’ric -dep ’ (https :// gerrit.o-ran -sc.org/r/ric -plt/ric -dep) registered

for path ’ric -dep ’

Cloning into ’/home/ubuntu/dep/ric -dep ’...

Submodule path ’ric -dep ’: checked out ’

cffb2d9d3bf96bc49d0b48ffc2483151ca73115e ’

After that it was possible to see which configuration files have been downloaded
in the repository:

ubuntu@u18 -k8s -master:~$ ls dep/RECIPE_EXAMPLE/PLATFORM

example_recipe.yaml

example_recipe_oran_cherry_release.yaml

example_recipe_oran_dawn_release.yaml

Notice: The latest version of the repository consists of a Master branch for
the installation of the last stable version of the software, the Cherry release,
and another branch with the most recent updates for the deployment of the
Dawn release.

At this point it was required to modify the recipe files with the host IP in
order to make possible the access to RIC Platform K8s resources using this
address:

ubuntu@u18 -k8s -master:~$ host u18 -k8s -master

u18 -k8s -master has address 127.0.1.1

u18 -k8s -master has address 192.168.122.60

ubuntu@u18 -k8s -master:~$ vim dep/RECIPE_EXAMPLE/PLATFORM/

example_recipe_oran_cherry_release.yaml

...

extsvcplt:

ricip: "192.168.122.60"

auxip: "10.0.0.1"

...

...

dbaas:

...

...

# Enable pod anti affinity only if you have more than 3 k8s nodes

enablePodAntiAffinity: true

...

Notice: Since in this work it will not be deployed the AUX Cluster - a cluster
containing auxiliary services - there was not the need to specify its IP address.
Moreover, as suggested by the comment in the dbaas global settings, Pods Anti-
affinity was enabled - this function will permit the kube-scheduler to assign
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Pods to specific Nodes based on which Pods are currently running on it.

The recipe modifications were applied in both the two configuration files:
example_recipe_oran_cherry_release.yaml and example_recipe_oran_dawn_release.yaml.

Once configured properly the recipe files, they have to be passed as inputs
to the deployment scripts provided by the software community in the dep/bin

directory. In particular the deploy-ric-platform script prepares common files and
sets up an Helm local repository, then launches the installation script dep/ric

-dep/bin/install. This second installation script prepares some global variables
and configures some kubernetes resources needed before the installation - like
the namespaces needed to subdivide resources into virtually isolated subgroups
inside the cluster - and finally it launches recursively the helm install command
for the deployment of each RIC Platform component.

As will be shown in the following Subsections, the installation script will
deploy in the ricplt namespace all the components cited in Section 4.2.

4.3.1 Cherry Release (Master branch)

For the installation of the Cherry release there was the need to pass as input
the path to the related configuration recipe while launching the deployment
script:

ubuntu@u18 -k8s -master:~$ cd dep/bin/

ubuntu@u18 -k8s -master:~/dep/bin$ nohup sudo ./deploy -ric -platform ../

RECIPE_EXAMPLE/PLATFORM/example_recipe_oran_cherry_release.yaml > deploy -

ric -platform -cherry -log.out 2>&1 &

Notice: The choice was to launch the command using the nohup tool to avoid
interruptions during its execution. With this tool it is also possible to redirect
the standard output in a file in order to check possible error messages.

After the execution of the installation script it was possible to check the current
Pods deployment:

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl get pods -n ricplt

NAME READY STATUS RESTARTS AGE

deployment -ricplt -a1mediator -866 d459c54 -xw58m 1/1 Running 0 77s

deployment -ricplt -alarmmanager -757 c64c75c -zfd52 1/1 Running 0 35s

deployment -ricplt -appmgr -79 db86497b -kw5xq 1/1 Running 0 111s

deployment -ricplt -e2mgr -56 f7c9887d -5zwfd 1/1 Running 0 94s

deployment -ricplt -e2term -alpha -5ff4df546 -q8rj4 0/1 Running 1 86s

deployment -ricplt -jaegeradapter -5bf9b64956 -pdcm7 1/1 Running 2 52s
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deployment -ricplt -o1mediator -7bb959ccd6 -2msdh 1/1 Running 0 43s

deployment -ricplt -rtmgr -5b7bc745f9 -9fs2d 1/1 Running 0 103s

deployment -ricplt -submgr -8f56cb6cb -d7vvl 1/1 Running 0 69s

deployment -ricplt -vespamgr -bc9696b54 -9zz6p 1/1 Running 0 60s

deployment -ricplt -xapp -onboarder -7d5657b97c -xbspc 2/2 Running 0 2m

r4-infrastructure -kong -599499 fbd8 -gjvgp 1/2 ImagePullBackOff 0 2m17s

r4-infrastructure -prometheus -alertmanager -7cc48c5988 -gk97 2/2 Running 0 2m17s

r4-infrastructure -prometheus -server -7f74bdfc6d -ns5l7 1/1 Running 0 2m17s

ricplt -influxdb -meta -0 0/1 Pending 0 26s

statefulset -ricplt -dbaas -server -0 1/1 Running 0 2m8s

Notice: from the list of Pods it is possible to derive some considerations:

• InfluxDB Pod is Pending: since, for deployment choice, the optional Per-
sistent Volume storage was not initialized, the scheduling mechanism is
blocked since it cannot found any node compatible with the deployment.
By calling kubectl describe, looking at the Event section of the output, it is
possible to see the warning message from the scheduler:

ubuntu@u18 -k8s -master:~/dep$ kubectl describe pod ricplt -influxdb -

meta -0 -n ricplt

...

Events:

Type Reason Age From

---- ------ ---- ----

Warning FailedScheduling 48s (x18 over 18m) default -scheduler

Message

----

0/4 nodes are available: 4 pod has unbound immediate

PersistentVolumeClaims.

• E2 Termination Pod is not READY: the Pod is Running which means that the
container is running. The fact that it is not ready means that it is failing
some of the initializing procedures. In Subsection 4.3.2 this issue will be
analyzed in details.

• Kong Pod is in ImagePullBackOff: this Pod’s state means that one of its
containers could not start because Kubernetes could not pull a suitable
container image. With kubectl describe it is possible to see the messages
from the kubelet agent:

ubuntu@u18 -k8s -master:~/dep$ kubectl describe pod r4-infrastructure -

kong -599499 fbd8 -gjvgp -n ricplt

...

Events:

Type Reason Age From Message

---- ------ ---- ---- ----

Warning Failed 6m47s (x3 over 7m39s) kubelet Failed to pull image
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"kong -docker -kubernetes -ingress -controller.bintray.io/kong -ingress -

controller :0.7.0"

Warning Failed 6m47s (x3 over 7m39s) kubelet Error: ErrImagePull

Warning Failed 6m33s (x5 over 7m38s) kubelet Err: ImagePullBackOff

Normal BackOff 2m40s (x21 over 7m38s)kubelet BackOff pulling image

Before starting troubleshooting any of the other issues, the first thing was to
resolve the Kong Ingress Controller one. In fact, as told introducing the
ric-infra components in Section 4.2, the Kong Ingress Controller is necessary
to communicate via HTTP/REST methods within the cluster.

By searching inside the Kong’s Helm chart, it was found that the chart was
deprecated:

ubuntu@u18 -k8s -master:~$ cat dep/ric -dep/helm/infrastructure/subcharts/kong/

README.md

# DEPRECATED

This chart has been deprecated in favor of

Kong ’s official chart [repository ](https :// github.com/kong/charts).

All users are advised to immediately migrate over to the new repository.

...

So the subsequent step was to find a way to update the current image
within the running Kong deployment.

First of all the new location of the Kong Ingress Controller image was
found by searching the repository over the web-based collaborative platform
GitHub - accessible here [39]. Then the choice was to directly modify the
running deployment with the command kubectl edit deploy and change the entry
related to the container image with the name of the new repository.

Here it is possible to see the configuration file before the change:

ubuntu@u18 -k8s -master:~$ kubectl get deployment r4-infrastructure -kong -n

ricplt -o yaml

apiVersion: apps/v1

kind: Deployment

...

...

spec:

...

image: kong -docker -kubernetes -ingress -controller.bintray.io/kong -ingress -

controller :0.7.0

imagePullPolicy: IfNotPresent

...
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Here it is reported the command utilized and the edited file with the new
entry:

ubuntu@u18 -k8s -master:~$ kubectl get deployments -A | grep kong

ricplt r4-infrastructure -kong

ubuntu@u18 -k8s -master:~$ kubectl edit deploy r4 -infrastructure -kong -n ricplt

apiVersion: apps/v1

kind: Deployment

...

...

spec:

...

image: kong/kubernetes -ingress -controller :0.7.0

imagePullPolicy: IfNotPresent

Notice: After this command, the kube-controller-manager entity of the Ku-
bernetes control plane is noticed that the configuration file has been edited
and automatically restarts the deployment.

After this procedure it was possible to check that the new deployed Pod was
running correctly:

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl get pods -n ricplt | grep kong

NAME READY STATUS RESTARTS AGE

r4-infrastructure -kong -5b7cdc9dbc -cs5pl 2/2 Running 1 32s

Finally, as suggested by the Installation Guide in [27], the curl command re-
quired to check whether the Application Manager container is running correctly
was launched:

ubuntu@u18 -k8s -master:~/dep/bin$ curl -v http :// localhost :32080/ appmgr/ric/v1/

health/ready

* Trying 127.0.0.1...

* TCP_NODELAY set

* Connected to localhost (127.0.0.1) port 32080 (#0)

> GET /appmgr/ric/v1/health/ready HTTP /1.1

> Host: localhost :32080

> User -Agent: curl /7.58.0

> Accept: */*

>

< HTTP /1.1 200 OK

< Content -Length: 0

< Connection: keep -alive

< Date: Fri , 17 Sep 2021 13:17:46 GMT

< X-Kong -Upstream -Latency: 4

< X-Kong -Proxy -Latency: 1

< Via: kong /1.4.3

<

* Connection #0 to host localhost left intact



48 CHAPTER 4. O-RAN DEPLOYMENT

Notice: as shown in the output the Kong service proxies correctly the request
toward the Application Manager container.

At this point the choice was not to get further with the deployment of xApps
on the Cherry release because of another deployment issue with the Routing
Manager component. The problem was noticed observing that, time-by-
time, the Routing Manager pod was restarting until reaching the CrashLoopBackOff

state. This particular error state is difficult to troubleshoot since could happen
for various reasons and there is not a unique strategy to cope with that.

A common method to start facing this kind of problems is start collecting
output logs from containers, in order to catch more specific information.

So the choice was to catch some logs from the Routing Manager’s container
thanks to kubectl logs command:

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl logs deployment -ricplt -rtmgr -5

f7545bfc5 -vpdr9 -n ricplt | grep -B 6 -A 6 appmgr

{"ts ":1631882816860 ," crit ":" INFO","id":" rtmgr","mdc ":{" time ":"2021 -09 -17 T12

:46:56"} ," msg":" Invoked httprestful.httpGetXApps: http :// service -ricplt -

appmgr -http :8080/ ric/v1/xapps"}

{"ts ":1631882821771 ," crit ":" INFO","id":" rtmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:01"} ," msg":" restapi: method=GET url=/ric/v1/health/ready "}

{"ts ":1631882821771 ," crit ":" INFO","id":" rtmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:01"} ," msg":" restapi: method=GET url=/ric/v1/health/alive "}

{"ts ":1631882831861 ," crit ":" WARNING","id":" rtmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:11"} ," msg":" cannot get xapp data due to: Get http :// service -ricplt -

appmgr -http :8080/ ric/v1/xapps: net/http: request canceled (Client.Timeout

exceeded while awaiting headers)"}

Notice: the last WARNING message suggests that there could be a problem re-
ceiving an HTTP response from the App Manager component.

Given the output obtained by the Routing Manager logs, it was decided to
check also the logs of the Application Manager:

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl logs deployment -ricplt -appmgr -7475457

bd7 -zsxq6 -n ricplt

{"ts ":1631882840152 ," crit ":" INFO","id":" appmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:20Z","xm ":"0.4.3"} ," msg":" Listing deployed xapps failed: Error:

context deadline exceeded\n"}

{"ts ":1631882840152 ," crit ":" INFO","id":" appmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:20Z","xm ":"0.4.3"} ," msg":" Helm list failed: Error: context deadline

exceeded\n"}

{"ts ":1631882841599 ," crit ":" ERROR","id":" appmgr","mdc ":{" time ":"2021 -09 -17 T12

:47:21Z","xm ":"0.4.3"} ," msg":" Command failed: exit status 1 - Error:

context deadline exceeded\n, retrying "}

Notice: From the output it is possible to see that there is an execution error.
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As told before, the choice was not to get further into troubleshooting this
issue since it deviates from the scope of this work. However this kind of issues
are frequent approaching the deployment and the integration of different open-
source software components and this example was cited to highlight the fact
that at the moment there is not a unique path to get through the installation
of the O-RAN software without encounter similar obstacles.

4.3.2 Dawn Release

Before starting with the deployment of the Dawn release there was the need
to uninstall the previous deployment shown in Subsection 4.3.1.

The it/dep repository provide also scripts for the disassembling of the
deployment and they can be found in the dep/bin directory. Similarly to the
installation scripts, the uninstalling command requires the same recipe files
passed for the installation:

ubuntu@u18 -k8s -master:~/dep/bin$ nohup sudo ./undeploy -ric -platform ../

RECIPE_EXAMPLE/PLATFORM/example_recipe_oran_cherry_release.yaml > undeploy

-ric -platform -cherry -log.out 2>&1 &

After the termination of the command above it was possible to check that only
kube-system pods were left:

ubuntu@u18 -k8s -master:~$ kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

kube -system coredns -558 bd4d5db -7bvf5 1/1 Running 0 54d

kube -system coredns -558 bd4d5db -fxt2h 1/1 Running 0 54d

kube -system etcd -u18 -k8s -master 1/1 Running 0 54d

kube -system kube -apiserver -u18 -k8s -master 1/1 Running 0 54d

kube -system kube -controller -manager -u18 -k8s -master 1/1 Running 0 54d

kube -system kube -proxy -2kgxw 1/1 Running 0 15d

kube -system kube -proxy -llrbh 1/1 Running 0 15d

kube -system kube -proxy -sm9qx 1/1 Running 0 15d

kube -system kube -proxy -txfdk 1/1 Running 0 54d

kube -system kube -scheduler -u18 -k8s -master 1/1 Running 0 54d

kube -system weave -net -dsjn4 2/2 Running 1 15d

kube -system weave -net -nzpr7 2/2 Running 1 15d

kube -system weave -net -sp278 2/2 Running 0 15d

kube -system weave -net -t8z5l 2/2 Running 1 19d

Then it was possible to proceed with the deployment of the Dawn release:

nohup sudo ./deploy -ric -platform ../ RECIPE_EXAMPLE/PLATFORM/

example_recipe_oran_dawn_release.yaml > deploy -ric -platform -dawn -log.out

2>&1
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Once the command was terminated, in order to check if the Kubernetes Ingress
Controller Pod was running the correct image, - see Subsection 4.3.1 for ref-
erence - the troubleshooting procedure adopted previously was repeated:

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl get deployments -A | grep kong

ricplt r4-infrastructure -kong 0/1 1 0 2m31s

ubuntu@u18 -k8s -master:~/dep/bin$ kubectl edit deployment r4 -infrastructure -

kong -n ricplt

deployment.apps/r4-infrastructure -kong edited

Notice: this time it was left less time to the containers to initialize before
editing the kong deployment, so to ensure that start-up phases were not inter-
rupted, the choice was to exploit recursively the kubectl rollout restart command
to trigger the re-initialization of the deployed components:

ubuntu@u18 -k8s -master:~$ kubectl get deployments -n ricplt | awk ’{print $1}’
| xargs -I {name} kubectl rollout restart deployment {name} -n ricplt

Error from server (NotFound): deployments.apps "NAME" not found

deployment.apps/deployment -ricplt -a1mediator restarted

deployment.apps/deployment -ricplt -alarmmanager restarted

deployment.apps/deployment -ricplt -appmgr restarted

deployment.apps/deployment -ricplt -e2mgr restarted

deployment.apps/deployment -ricplt -e2term -alpha restarted

deployment.apps/deployment -ricplt -jaegeradapter restarted

deployment.apps/deployment -ricplt -o1mediator restarted

deployment.apps/deployment -ricplt -rtmgr restarted

deployment.apps/deployment -ricplt -submgr restarted

deployment.apps/deployment -ricplt -vespamgr restarted

deployment.apps/deployment -ricplt -xapp -onboarder restarted

deployment.apps/r4-infrastructure -kong restarted

deployment.apps/r4-infrastructure -prometheus -alertmanager restarted

deployment.apps/r4-infrastructure -prometheus -server restarted

After that it was possible to check the pods state:

ubuntu@u18 -k8s -master:~$ kubectl get pods -n ricplt

NAME READY STATUS RESTARTS AGE

deployment -ricplt -a1mediator -68 b5dd6d68 -wncvb 1/1 Running 0 2m9s

deployment -ricplt -alarmmanager -bcd465c98 -qvq44 1/1 Running 0 2m9s

deployment -ricplt -appmgr -686 b64f4fb -92spm 1/1 Running 0 2m9s

deployment -ricplt -e2mgr -577 f59dfb7 -xrbgs 1/1 Running 0 2m9s

deployment -ricplt -e2term -alpha -85 d8964d98 -skd9f 0/1 Running 1 2m9s

deployment -ricplt -e2term -alpha -9d6698f67 -4skvs 0/1 Running 12 35m

deployment -ricplt -jaegeradapter -699 f775f6c -jt5vj 1/1 Running 0 2m9s

deployment -ricplt -o1mediator -85 b5b576c -86jvx 1/1 Running 0 2m8s

deployment -ricplt -rtmgr -667 ff65bdc -b6vhw 1/1 Running 0 2m8s

deployment -ricplt -submgr -86 b4c7bbf7 -w75zs 1/1 Running 0 2m8s

deployment -ricplt -vespamgr -78 db4c995c -5wl5j 1/1 Running 0 2m8s

deployment -ricplt -xapp -onboarder -cf59d477f -mcg8c 2/2 Running 0 2m8s

r4-infrastructure -kong -7d65fb8c65 -w57l5 2/2 Running 1 2m8s

r4-infrastructure -prometheus -alertmanager -bf47c57c6 -kbvg9 2/2 Running 0 2m7s
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r4-infrastructure -prometheus -server -fd6f5c4cb -r6mc9 1/1 Running 0 2m7s

ricplt -influxdb -meta -0 0/1 Pending 0 34m

statefulset -ricplt -dbaas -server -0 1/1 Running 0 35m

Notice: this time, a part from the InfluxDB and the E2 Termination issues,
there were not problems with the Routing Manager component.

E2 Termination: As anticipated in Subsection 4.3.1, it was possible to char-
acterize in details the E2 Termination issue:
By checking the Event log with the command kubectl describe pod, it was possible
to understand the reason of the failure:

ubuntu@u18 -k8s -master:~$ kubectl describe pod deployment -ricplt -e2term -alpha -5

d58698bc6 -7m858 -n ricplt

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

[FAIL] too few messages recevied during timeout window: wanted 1 got 0

Warning Unhealthy 2m29s kubelet Liveness probe failed: 1631814604269 80/

RMR [INFO] ric message routing library on SI95 p=43523 mv=3 flg=01 id=a

(11838 bc 4.7.4 built: Apr 27 2021)

[FAIL] too few messages recevied during timeout window: wanted 1 got 0

Normal Killing 2m29s kubelet Container container -ricplt -e2term failed

liveness probe , will be restarted

Notice: the Liveliness probe of the E2 Termination deployment is failing.
Liveliness probe and Readiness probe are automatic healthcheck procedures
needed to guarantee the correct behavior of the Running container (e.g. they
could be used to check if the component communicates correctly with other
ones). In particular this check is done by executing a command on the Running

container and evaluating the result.
In order to mitigate and eventually resolve this issues it was decided to modify
specific configurations of such Liveliness and Readiness probes:

ubuntu@u18 -k8s -master:~$ kubectl get deploy deployment -ricplt -e2term -alpha -n

ricplt -o yaml

...

livenessProbe:

exec:

command:

- /bin/sh

- -c

- /opt/e2/rmr_probe -h 0.0.0.0:38000

failureThreshold: 3

initialDelaySeconds: 120

periodSeconds: 10

successThreshold: 1

timeoutSeconds: 60
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...

Notice: Since increasing timeouts was not sufficient to mitigate the problem,
the last choice was to try a second common procedure toward troubleshooting.
A common way to derive further information over a container failure is to
execute kubectl exec command in order to launch a command or a bash terminal
over the problematic container. The choice was to try executing the /opt/e2/

rmr_probe directly on the container in order to check its output:

ubuntu@u18 -k8s -master:~$ kubectl exec -ti deployment -ricplt -e2term -alpha -

b6fd4489b -vtjxg -n ricplt -- bash

root@e2term -alpha :/opt/e2# ./ rmr_probe --help

usage: ./ rmr_probe [-h host:port] [-n msg -count] [-p port | -r] [-t seconds]

[-v]

root@e2term -alpha :/opt/e2# ./ rmr_probe -h 0.0.0.0:38000 -t 10 -v

[INFO] listen port: 43949; sending 1 messages

1631893202000 116/ RMR [INFO] ric message routing library on SI95 p=43949 mv=3

flg =01 id=a (11838 bc 4.7.4 built: Apr 27 2021)

[INFO] RMR initialised

[INFO] starting session with 0.0.0.0:38000 , starting to send

[INFO] connected to 0.0.0.0:38000 , sending 1 pings

[INFO] sending message: health check request prev=0 <eom >

[FAIL] too few messages recevied during timeout window: wanted 1 got 0

Notice: given the output derived from the command above, the last choice in
order to mitigate the error was to increase up to 30 seconds the timeout and
consequently to configure such change in the deployment artifact:

root@e2term -alpha :/opt/e2# ./ rmr_probe -h 0.0.0.0:38000 -t 30 -v

[INFO] listen port: 43808; sending 1 messages

1631894293734 56/RMR [INFO] ric message routing library on SI95 p=43808 mv=3

flg =01 id=a (11838 bc 4.7.4 built: Apr 27 2021)

[INFO] RMR initialised

[INFO] starting session with 0.0.0.0:38000 , starting to send

[INFO] connected to 0.0.0.0:38000 , sending 1 pings

[INFO] sending message: health check request prev=0 <eom >

[INFO] got: (OK) state=0

[INFO] good response received; elapsed time = 15727787 mu -sec

ubuntu@u18 -k8s -master:~$ kubectl edit deploy deployment -ricplt -e2term -alpha -n

ricplt

...

livenessProbe:

exec:

command:

- /bin/sh

- -c

- /opt/e2/rmr_probe -h 0.0.0.0:38000 -t 30

failureThreshold: 3

initialDelaySeconds: 120
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periodSeconds: 10

successThreshold: 1

timeoutSeconds: 60

...

readinessProbe:

exec:

command:

- /bin/sh

- -c

- /opt/e2/rmr_probe -h 0.0.0.0:38000 -t 30

failureThreshold: 3

initialDelaySeconds: 120

periodSeconds: 60

successThreshold: 1

timeoutSeconds: 60

...

Notice: this workaround does not resolve the problem - in fact the Liveliness
and Readiness probes still fails sometimes - but this procedural steps aimed
to show a possible procedure toward troubleshooting.

Finally, before continuing with xApp deployment, there was the need to check
the health of the App Manager container:

ubuntu@u18 -k8s -master:~$ curl -v http :// localhost :32080/ appmgr/ric/v1/health/

ready

* Trying 127.0.0.1...

* TCP_NODELAY set

* Connected to localhost (127.0.0.1) port 32080 (#0)

> GET /appmgr/ric/v1/health/ready HTTP /1.1

> Host: localhost :32080

> User -Agent: curl /7.58.0

> Accept: */*

>

< HTTP /1.1 200 OK

< Content -Length: 0

< Connection: keep -alive

< Date: Thu , 16 Sep 2021 16:58:55 GMT

< X-Kong -Upstream -Latency: 6

< X-Kong -Proxy -Latency: 2

< Via: kong /1.4.3

<

* Connection #0 to host localhost left intact

4.4 RIC xApp Deployment

Starting from the Dawn release deployment, the first choice for the installation
of xApps was to follow the Installation Guide made available by the OSC in
[27] in order to deploy the exemplar HelloWorld xApp documented in [40].
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The deployment of an xApp consists of two steps: the On-Boarding phase
and the actual deployment phase. The On-Boarding phase consists to provide
to the xApp On-Boarder component of the RIC Platform cluster an xApp
descriptor - a .json file which defines the behavior of the xApp - and an optional
schema - a .json schema file that validates the self-defined parameters. These
files, needed for deploying exemplar xApps, are provided by the OSC. Each
testing xApp is released in a different project’s repository, for example the
Hello World xApp files can be retrieved over the GitHub web based platform
under the ric-app/hw repository in [41].

Given these premises, the first step was to install the dms_cli tool which fa-
cilitates the On-Boarding by consuming the xApp descriptor and an additional
schema file, producing related xApp Helm charts:

(1) Create a local Helm repository:

ubuntu@u18 -k8s -master:~$ sudo docker run --rm -u 0 -it -d -p 8090:8080 -e

DEBUG=1 -e STORAGE=local -e STORAGE_LOCAL_ROOTDIR =/ charts -

v $(pwd)/charts :/ charts chartmuseum/chartmuseum:latest

Unable to find image ’chartmuseum/chartmuseum:latest ’ locally

latest: Pulling from chartmuseum/chartmuseum

596 ba82af5aa: Pull complete

97 cda76ac4f8: Pull complete

7cd1b4b8c77a: Pull complete

Digest: sha256 :7

fb4cd65d68978b1280f39cedc8c4db8c96efe6f622160a109b425a95098615f

Status: Downloaded newer image for chartmuseum/chartmuseum:latest

9c98f979c08b93bbe8b879600f0664b00967301530a68a825809be999fcda945

Notice: in the On-Boarding phase, the xApp Helm chart will be loaded into
this private Helm repository for which is important to specify a port different
from 8080.

(2) Set up the environment variable needed to dms_cli tool to connect with the
local repository: export CHART_REPO_URL=http://0.0.0.0:8090.

(3) Install dms_cli tool:

Download dms_cli artifacts:

ubuntu@u18 -k8s -master:~$ git clone "https :// gerrit.o-ran -sc.org/r/ric -plt/

appmgr"

Cloning into ’appmgr ’...

remote: Counting objects: 9, done

remote: Total 698 (delta 0), reused 698 (delta 0)

Receiving objects: 100\% (698/698) , 1.05 MiB | 1.05 MiB/s, done.

Resolving deltas: 100\% (219/219) , done.
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Change directory to ./appmgr/xapp_orchestrater/dev/xapp_onboarder and install Python
pip3 package installer:

sudo apt install python3 -pip

sudo chmod -R 755 /usr/local/lib/python3 .6

ubuntu@u18 -k8s -master:~/appmgr/xapp_orchestrater/dev/xapp_onboarder$ pip3 --

version

pip 9.0.1 from /usr/lib/python3/dist -packages (python 3.6)

Notice: the Python package installer is needed to launch the dms_cli installa-
tion script.

To avoid possible problems with conflicting situations launch the following
command to uninstall previous instances:

pip3 uninstall xapp_onboarder

Finally install dms_cli with:

pip3 install ./

At this point it was possible to start with the On-Boarding procedures
for the actual xApp deployment:

(1) Prepare configuration descriptor and optional schema:
For this step two files have been created in the /home/ubuntu directory:
hwxapp_descriptor_test.json

hwxapp_schema_test.json.

In the former was copied the content of ric-app/hw/init/config-file.json file while
in the latter was copied the content of ric-app/hw/init/schema.json file. The refer-
ence files were found available under the ric-app/hw repository in [41].

(2) Launch On-Boarding command:

ubuntu@u18 -k8s -master:~$ dms_cli onboard /home/ubuntu/hwxapp_descriptor_test.

json /home/ubuntu/hwxapp_schema_test.json

{

"status ": "Created"

}

Notice: this command consumes the descriptor in order to generate a Helm
chart and other deployment artifacts for the xApp.

(3) Once the xApp is On-Boarded, launch the following command to install it
in the ricxapp namespace:
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ubuntu@u18 -k8s -master:~$ dms_cli install hwxapp 1.0.0 ricxapp

status: OK

ubuntu@u18 -k8s -master:~$ kubectl get pods -n ricxapp

NAME READY STATUS RESTARTS AGE

ricxapp -hwxapp -76 d4684bb5 -r4bc2 0/1 ContainerCreating 0 11s

Notice: the command correctly reaches the local repository and exploiting
the Hello World xApp’s Helm chart instantiate the required Pod instance in
the ricxapp namespace.

Observation: the procedure shown in this Section exploit a local repository
and the dms_cli tool to interface with the deployed kubernetes cluster. An xApp
deployment method involving the xApp On-Boarder component unfortunately
is still not implemented in the Dawn release.

4.5 Considerations

At this point it was reached a quite stable installation of the RIC Platform
cluster, in which it was also determined a method to deploy xApp microser-
vices. This represents the conclusion of the deployment work presented in this
thesis. The next Chapter otherwise will focus on the derivation of some mea-
sures related to the deployment of multiple xApps over the obtained cluster.



Chapter 5

Performance Assessment

In this Chapter will be shown the performance assessment performed over
the last software component installed. The HelloWorld xApp’s project pro-
vides an xApp able to trigger specific communications toward and within other
components of the RIC Platform cluster (like triggering E2 and A1 workflow
messages), and for this reason it does not provides a service which could be
directly accessed or queried through HTTP/REST methods [40]. Given this
premise the choice was to evaluate the performance in the on-boarding and de-
ploying phases achieved by both the dms_cli service and the Kubernetes control
plane. As anticipated in Section 4.4 while deploying the HelloWorld xApp,
each different xApp is characterized by a descriptor which permits to define the
behavior of the xApp’s microservice. When passed to the dms_cli tool, this last
one is in charge to populate the local repository with the Helm chart related
to the requested xApp deployment. This procedure is similar to that one op-
erated by the xApp On-Boarder component, but provides a simpler interface
to operators and developers for installing their xApps.

The objective of this Chapter is to assess the expected deployment time of
multiple xApps over the obtained cluster. The measures concern in practice
two situations:

1. the evaluation of the average deployment time given an empty cluster in
which either the namespace and other xApps are still not present;

2. the evaluation of a possible change in the expected deployment time
given a load of previous installed xApps while installing subsequently
multiple xApps over the same cluster.
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In order to perform the measurements, the choice was to relay on bash
scripting and to create cyclic procedures to reiterate measures multiple times.
In particular the choice was to capture the timestamp before and after each
execution of the dms_cli in order to derive the CPU time needed to execute the
command and before and after the check over the deployed Pod state. In the
case of dms_cli response, it was expected a relatively higher execution time for
the dms_cli install w.r.t the dms_cli uninstall command, since the former one must
establish a connection to the local Helm repository and access the related Helm
charts before the deployment. In the case of waiting the deployment status
of each xApp instead, it was expected to evaluate the average time needed by
Kubernetes in order to satisfy the deployment request of a particular xApp
given the previous cited situations: the first deployment of the xApp in the
empty system and the sequential installation of multiple identical xApps over
a system in which is already present a load of previous installed xApps.

In the following paragraphs are reported graphically the measures per-
formed. In particular in Figure 5.1 is reported a table showing the average
deployment times given an empty cluster, for which a single xApp was in-
stalled and uninstalled sequentially 50 times.

Figure 5.1: Average deployment times in an empty cluster

As expected it is possible to see that the dms_cli install command take more
time for its execution since it needs to interact with the repository. On the
other hand the dms_cli uninstall take less time since it simply needs to initialize
the withdrawal procedure. For both installation and withdrawal phases then,
the commands executions take less than 1 second while the time needed to
complete the installation procedure is quite different from the time needed for
the Pod termination. In the installation phase in fact the times are comparable
with the time needed for the creation and the start up of containers, while
the termination procedures of Pods relies on a series of checks and timeouts
managed by Kubernetes, which considerably slows the procedure down.
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Figure 5.2: Average on-boarding times given an increasing load

Regarding the second case, in which is intended to assess a possible de-
ployment time offset while installing subsequently multiple xApp replica over
the same cluster, it was evaluated first the average time obtained while on-
boarding recursively the needed Helm charts over the local repository - as
shown in Figure 5.2. Then with a cyclic installation of the 50 on-boarded
xApps it was possible to show the instantaneous variation of the installation
time given the increasing load in terms of previous installed xApps as it is re-
ported in Figure 5.3. Finally in Figure 5.4 is reported the average installation
time given the increasing load.

As it is possible to see from the figures the temporal values are not varying
in a systematic way and it is not possible to assess a meaningful correlation
among the number of xApps and the deployment time. Moreover the time
obtained for small N indexes is reported only for reference just to show the
fact that the values are comparable with the time values observed with greater
N indexes. For example, in Figure 5.2, the fact that the measure related to
a single on-boarding results to be greater than the average time of 50 on-
boarding reiterations is not indicative of a systematic behavior and it is due
to the specific execution of the command.
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Figure 5.3: Instantaneous installation times given an increasing load

Figure 5.4: Average installation times given an increasing load
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Notice: the missing values in Figure 5.3 are irrelevant outliers since they
reveal to be excessively out of the range of possible values due to reasons
which are independent from the platform examined.

Finally, as shown in Figure 5.3 and Figure 5.4, considering up to 50 reit-
erations there is not a meaningful correlation among the given load - in terms
of installed xApps - and the deployment time measured.

These measurements concluded the work of performance assessment which
shows the fact that the deployment time of the HelloWorld xApp’s microservice
is independent of the number of queries in this specific case. However, it was
possible to notice and report how Kubernetes react to the increasing load in
terms of deployed services, and here is reported the case of a specific xApp
re-scheduling on another worker node due to lack of node’s resources:

ubuntu@u18 -k8s -master:~$ kubectl get pods -n ricxapp -o wide

...

ricxapp -hwxapp37 -d8f6c74fc -54qnl 1/1 Running 0 ... u18 -k8s -worker03

ricxapp -hwxapp37 -d8f6c74fc -6tckp 0/1 Evicted 0 ... u18 -k8s -worker01

ricxapp -hwxapp37 -d8f6c74fc -82qxm 0/1 Evicted 0 ... u18 -k8s -worker01

ricxapp -hwxapp37 -d8f6c74fc -d27wc 0/1 Evicted 0 ... u18 -k8s -worker01

ricxapp -hwxapp37 -d8f6c74fc -pf42d 0/1 Evicted 0 ... u18 -k8s -worker01

ricxapp -hwxapp37 -d8f6c74fc -zr8zg 0/1 Error 1 ... u18 -k8s -worker01

...

ubuntu@u18 -k8s -master:~$ kubectl describe pod ricxapp -hwxapp37 -d8f6c74fc -zr8zg

-n ricxapp

.......

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 6m16s default -scheduler

Successfully assigned to u18 -k8s -worker01

Warning Evicted 6m15s kubelet

The node was low on resource: ephemeral -storage.

Normal SandboxChanged 6m13s kubelet

Pod sandbox changed , it will be killed and re-created.

Normal Pulled 6m12s (x2 over 6m15s) kubelet

Container image already present on machine

Normal Created 6m12s (x2 over 6m15s) kubelet

Created container hwxapp

Normal Started 6m11s (x2 over 6m15s) kubelet

Started container hwxapp

Normal Killing 6m11s (x2 over 6m14s) kubelet

Stopping container hwxapp
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Chapter 6

Conclusions

This thesis started by presenting the efforts of the O-RAN Alliance group,
which is operating in the context of software based solutions for open and pro-
grammable Radio Access Networks. The O-RAN Alliance group is working
over a reference design envisioning to provide operators and service providers
with a common methodology while approaching the deployment of disaggre-
gated and softwarized 5G RANs. At the same time the combined effort of
O-RAN with the Linux’s Foundation brought to the production of an early
stage of software releases and documentations, delivered as an exemplar plat-
form for the development of further RAN software.

The objective of this thesis was to assess the feasibility of the deployment
of the O-RAN software components over a virtualized infrastructure, investi-
gating the capability of the available software at current state. Moreover, this
work aimed to underline the critical issues which could be encountered while
addressing the integration of different software components and to evaluate the
critical role of Kubernetes in the orchestration of containerized applications.
Given the objectives of this work, the adopted approach converged to prac-
tical aspects and in particular it was able to show the deployment of specific
O-RAN software components over a customized virtual environment.

The adopted deployment choice was to setup the virtual infrastructure and
the virtual infrastructure management framework - represented by Kubernetes
- in a modular fashion such that it was possible to keep track of each step
of the installation. Leveraging this choice then, it was possible to select the
most recent release of each infrastructural software component highlighting
the compatibility among them. Finally, approaching the O-RAN software
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installation it was possible to underline some critical issues encountered in
the deployment process. For example it was possible to show the fact that
some components present in the provided repository were deprecated and that,
referring to specific branches of the software release, the documentation is still
incomplete.

Despite the technical obstacles mentioned above, in this thesis the deploy-
ment of an exemplar xApp was successfully achieved, and it was possible to
perform some basic evaluations on performance. The performance metrics as-
sessed refer to the evaluation of the time required by an xApp to be deployed
over the cluster in two different situations: the average deployment time given
an empty cluster and the average time given an increasing load of previous
installed xApps.
To conclude this work of thesis it is possible to say that the procedural steps
adopted can be considered as a baseline for further investigations over the O-
RAN software deployment feasibility, also depending on the evolution of the
available software components.
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Appendix A

Appendix: Host VMs setup

In this Appendix is described step by step the procedure adopted to instantiate
and obtain remote access to some Ubuntu 18.04 VMs managed by KVM on
a remote HP server hosted by the University department as anticipated in
Chapter 3.

In Figure A.1 is reported again the final topology for reference.

A.1 Network nodes and NAT port forwarding

To get remote access to the VM deployment there was the need of a two-hop
NAT port forwarding for each VM:

• the inner one permits to redirect the connection from the private LAN
192.168.10.0/24 connecting the two servers to the specific IP address of
each VM;

• the outer one permits to connect directly from the university public IP
address, by redirecting connections for specific TCP ports towards the
internal IP address:port pair of the HP server.

Here the forwarding rules applied for each connection:

Inner NAT port forwarding:

root@server -hp-netlab:~# iptables -t nat -A PREROUTING -d 192.168.10.203 -p

tcp --dport <internal port > -j DNAT --to -dest 192.168.122.50:22

root@server -hp-netlab:~# iptables -I FORWARD 1 -d 192.168.122.50 -p tcp --

dport 22 -j ACCEPT
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Figure A.1: Virtual Infrastructure Reference
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Outer NAT port forwarding:

[root@deis80 ~]# iptables -t nat -A PREROUTING -i br -eth5 -d 137.204.57.80 -p

tcp --dport <external port > -j DNAT --to -dest 192.168.10.203: < internal

port >

[root@deis80 ~]# iptables -A FORWARD -d 192.168.10.203 -p tcp --dport <

internal port > -m state --state NEW -j ACCEPT

A.2 VMM: VM creation on remote server

In order to deploy four identical VMs based on Ubuntu 18.04 distribution
over the remote HP server it was created a basic image of the OS in order to
replicate it multiple times.

In Figure A.2 are reported the steps to create a VM image with different
characteristic with respect to that one exploited in the deployment of this
work, but in general the steps are similar and they were done starting from an
Ubuntu 18.04 disk image with 4 CPUs and 10 GB of HDD and 16 GB of RAM
instead of doing them from the disk image shown in Figure A.2 in which are
considered 8 CPUs, 160 GB of HDD and 32 GB of RAM.

Once having created a base VM called “ubuntu1804-base”, then was suffiecient
to clone such VM and rename each new one with the related name and role as
shown in Figure A.3.

Finally the choice was not to configure an isolated IP network among the
new created VMs since was considered sufficient the default private network
interconnecting the VMs on the remote HP server.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure A.2: VMM procedural steps
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(a) u18-k8s-master (b) u18-k8s-worker01

(c) u18-k8s-worker02 (d) u18-k8s-worker03

Figure A.3: VM clones
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