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Abstract

In bin picking applications, robots manipulate randomized objects placed

in a bin. For that, the objects must be located before picking. The proce-

dure of localization relies heavily on data from cameras. In the literature

many approaches are available bymeans of the traditional computer vision

approaches that work very well in an industrial scenario, while for more

challenging situations artificial intelligence must be adopted. So, this the-

sis addresses this problem by presenting a possible solution for detecting

objects and estimating their poses. Many convolutional neural networks

exist to detect objects but still a reliable approach for estimating the pose

of casual objects does not exist, in this thesis the problem will be solved

for a certain category of objects, that is objects in which the orientation

is clear from a purely geometrical point of view. In addition, the prob-

lem will be solved by using a collaborative robot, so that the task can be

performed in a shared environment with people without hurting them.
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Chapter 1

Introduction

1.1 Motivations

The idea behind this thesis come from the need of more reliable computer

vision system for detecting objects, in the literature many valuable tech-

niques exist but they work well in controlled environment where light,

shadow, shape is always the same. In the next pages, instead, a novel

approach will be introduced to explore new possible scenarios based on

artificial intelligence, by using convolutional neural networks.

1.2 Constructa Sistemi S.r.l

Constructa Sistemi S.r.l is the company in which this project has been

carried out. Constructa has been operating in the factory of automation

industry since 1984. They found their identity in the 90s when they got

involved in the household appliances sector where, in addition to operating

as a supplier of assembly lines and testing, they soon became a leader in the
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production of silicone coating systems. In the years that followed, while

continuing to operate in the household appliances sector, Constructa has

expanded its operating space, completed projects and supplied for a vast

number of varied sectors including: [3]

1. Gluing applications

2. Assembly lines

3. Automatic testing

4. Robotized handling

5. Collaborative robots

6. Artificial vision



Chapter 2

Universal Robot 10e

The project can be mainly divided into two parts, the computer vision part

and the control of the robot, in this chapter the latter will be discussed.

2.1 The robot

For the application a universal robot 10e is used. The UR10e is an ex-

traordinarily versatile collaborative industrial robot, delivering both high

payload (12.5 kg) lift and long reach (1300mm)whichmakes it well suited

for a wide range of applications in machine tending, palletizing, and pack-

aging [19]. They have many benefits, like:

1. Flexibility, they can be moved between tasks quickly and are able to

reuse programs for recurrent tasks, giving customers the flexibility

to automate multiple manual tasks within one production facility

even with just one cobot;

2. Safety, these cobots are able to take over strenuous tasks in danger-
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ous or dull environments to minimize risk in the production process.

3. Easy programming, a user friendly and intuitive teach pendant allow

operators to program a cobot by moving its arms to the desired way-

points, or simply using drag-and-drop functions on a touchscreen

tablet.

To pick up the objects a tool was necessary and usually for bin pick-

ing application the best one is the vacuum because it can pick up an object

even if it has in its neighborhood obstacles, but at the same time a vacuum

has not a big strength and only some kind of objects can be grasped by us-

ing this kind of tools. For these reasons a gripper is used. A gripper RG6

of OnRobot, this gripper has 6 kg of payload and an opening of 150mm.

As already said a very user-friendly HMI is present for this kind of

robot, but in this case every step of the project will be carried on by using

ROS, in this way it is possible to control the robot (fig. 2.1), the gripper

(fig. 2.2) and the camera simultaneously.
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Figure 2.1: The Universal Robot 10e



2.2 ROS 14

Figure 2.2: OnRobot RG6 gripper

2.2 ROS

ROS stands for Robot Operating System, it is a flexible framework for

writing robot software. It is a collection of tools, libraries, and conven-

tions that aim to simplify the task of creating complex and robust robot

behavior across a wide variety of robotic platforms [16].

ROS is an open-source, meta-operating system for robots. It provides the

services expected from an operating system, including hardware abstrac-

tion, low-level device control, implementation of commonly used func-

tionality, message-passing between processes, and package management.

It also provides tools and libraries for obtaining, building, writing, and

running code across multiple computers [2].

The reasons behind the choice of using ROS are a lot, like:

• ROS is general purposes, it can be used for manipulator, mobile
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robots or drones;

• There are tons of available packages that are free and ready to be

used;

• Multiple robots can be controlled simultaneously with it;

• Code can be written either with python or C++;

• It uses few resources and space, indeed it can also be used in micro

controller like Raspberry Pi;

Given the above reasons also in the following project ROS will be

adopted to control each part of the application. ROSMelodic will be used

and all the script will be written in Python.

Since the great spread of ROS in the industry almost for each robot

on the market there is already the driver for interconnecting it with ROS,

so also for the Universal Robot family there is the related driver, that is

the ur_robot_driver. This driver allows communication between the robot

and ROS, so that everything can be controlled in a standard way. The pro-

tocol that is used is the Real Time Data Exchange (RTDE), this interface

is available on all the robots of the universal robot series and it provides

a way to synchronize external applications with the UR controller over a

standard TCP/IP connection, without breaking any real-time properties of

the UR controller [17]. The interface makes available a great number of

ports, each one with a specific role, some are for listening from the robot to

the PC and other are to send commands to the robot, by knowing the pro-

tocol and the ports to be used it is possible to control completely the robot.
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The ROS driver does nothing different from what is reported above,

that is exchanging information between the robot and the PC in a bidirec-

tional way, moreover it makes available many commands and information

on the ROS platform. The core of the ROS framework is the nodes, the

topics and the messages. The nodes are basically executable scripts that

represent a subprogram inside the ROS application, so they are the brain.

The messages are a simple data structure, comprising typed fields, e.g.

the pose message contains information about the position and orientation

of the robot in the space and it is standardized so that every robot library

sends the same type of message regarding the pose. Finally the topics

are named buses over which nodes exchange messages, nodes can be sub-

scribed to a topic or they can write on it, e.g. whenever a node write a

pose message to the topic /follow_joint_trajectory/goal another node that

is subscribed to this topic will send the pose to the robot and it will start

moving.

Basically, this is how ROS framework works, so every information the

robot sends to the PC is modified and published on a topic to be available

to the user, while other topics are free to be used by nodes to send com-

mands to the robot.

All the parts of this application are controlled by ROS, so also for control-

ling the camera a driver must be used, so that, for example, it is possible

to get the current image by asking it to a topic. More difficult is com-

munication with the gripper, because it is not supported by the Universal

Robot Driver; to solve the problem the gripper is controlled by using a

set of digital outputs on the robot. For example, if the robot must close

the gripper the ROS node will set the digital output 2 to high and a thread

running on the robot will detect the event and close the gripper; once the

action is done the output is set to low. In the same fashion the opening
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procedure is done.

2.3 Hand-Eye Calibration

In robotics and mathematics, the hand eye calibration problem (also called

the robot-sensor or robot-world calibration problem) is the problem of de-

termining the transformation between a robot end-effector and a camera

or between a robot base and the world coordinate system.

Figure 2.3: Hand eye problem

The problem of hand eye calibration takes the form AX = ZB, in

which:
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1. A is the transformation of the target frame with respect the camera

frame (cTw);

2. X is the transformation of the base with respect the target frame

(wTb);

3. Z is the transformation of the gripper with respect the camera (cTg);

4. B is the transformation of the base with respect the gripper (gTb).

To solve this problem at least three measurements must be taken, but to

obtain good results the more samples are used the lower the error is. The

idea to solve the problem is to move the robot step by step and for each

positions do two operations, the first one is to register the transformation

of the gripper with respect the base (gTb) that is easily provided by the

robot itself by knowing the joint configuration. The second one is to ob-

tain the transformation between the target frame and the camera (cTw), that

is gathered by using a chessboard with a known pattern and with known

size (this topic is studied in 3.1).

Once at least three measurements of these transformations are gathered

the problem can be solved, but in this kind of task many errors may arise,

due to the camera distortions or the errors in the robot joints positions, so

more than three measurements must be taken, so that the computation of

the solution become an optimization problem to minimize the error [14].

Traditionally this task is carried on by hand, there is an operator that

manually moves the robot and for each new position records the configu-

ration, since this task should be performed for each new robot a new ROS

script has been written to do the procedure automatically. A chessboard

8x5 has been used for the operation, by knowing the intrinsic parameters
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of the camera it is possible for each position to know the extrinsic ones

based on the recognition of the pattern. This operation, that is the identi-

fication of the pattern position in the scene will be seen in 3.1.

So, the ROS node takes as input only the position above the center of

the pattern and then automatically moves the robot in 30 positions record-

ing for each one the pose of the pattern with respect the camera and the

pose of the tool with respect the base. Once this operation is terminated

the hand eye calibration can be performed to obtain the rigid transforma-

tion between the camera and the base; for this operation theoretically 3

positions are enough, but to deal with error it is better to use more poses,

so that the problem becomes an optimization one in which the error must

be minimized. Then the computation will be made with the OpenCv func-

tion hand_eye_calibration, once this solution is gathered it is possible to

know for each point of the surface framed by the camera the position of

that point with the respect the base of the robot.

In this case, the hand eye procedure returned as result:

cTg =


0.999 0.0150 0.00647 −0.0141

−0.0150 0.999 −0.00248 −0.0643
−0.00651 0.00238 0.999 0.0959

0 0 0 1

 (2.1)

By looking at the transformation of the camera with the respect the

end effector of the robot (2.1) it can be observed that the orientation is

defined by an almost identity matrix, so there is no angle offset between

the camera and the robot end effector, while there is a linear offset of' 9.5
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cm along the z axis, of ' −6.4 cm along y and ' −1.4 cm along x.

By knowing these information the whole hand eye problem is solved.

2.4 Control of the robot

The control of the robot is one of the main tasks for the application, be-

cause if the robot is not controlled properly the task will fail. However,

the task is not complicated, but some decisions must be made; the idea is

simple: the robot must go to a shot position, find the piece, grasp it and re-

lease it in a desired configuration. Three main approaches were available

to perform the task and each one has been tested and has its own peculiar-

ities and disadvantages.

The simplest one is based on one shot position and has not an intermediate

step to refine the grasping, in this case the robot is in its fastest configu-

ration, but it has some limitations. By using only one shot position and

having a 2D camera it is not possible to have a 3D information about the

scene, so it must use a predefined depth to grasp objects. Furthermore,

without using an intermediate station to refine the pose it is not possible

to have a very good placement of the object in the final configuration,

because the scene has other objects and there may be occlusions or distor-

tions. So this technique may be good for all those cases in which speed is

an important requirement and it does not require a precise placement.

The second approach is with the intermediate step and with only one shot

position, so still no information about depth is available, but it is possi-

ble to obtain a much clearer pose estimation. The idea is that in the main

scene with the other object the robot detects the target one with a good ap-

proximation of the orientation and of the center point, but it happens that
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sometimes the picking point is above or below the real center. In these

cases, after the object has been picked up it might be useful to release it

in a second position and take another shot to refine the grasping.

For last the more complete approach is the one with two shot positions

and an intermediate station, in this case by using two photos it is possible

to reconstruct better the scene and to obtain information about the depth

at which the objects are, the drawback is that this operation will spend al-

most three times more than the first one.

These are the three main scenarios carried out by the robot, so for each

one a script has been made, even if the first approach has not been widely

used because in this project the final placement was important. For the

first test screws will be used and the scope is to release them in vertical

position with the head on a planar surface, so just a couple of millimeters

of error may create several problems.

2.5 Moving The robot

Motion planning is always one of the main concern when dealing with

robots, that is a sub-field of automation that deals with moving individual

parts of a machine in a controlled manner. This is especially helpful in

applications such as production lines, where power, efficiency, and accu-

racy of movement are of vital importance.

In robotics motion planning is very important, every time that a manipu-

lator must perform an action a motion planning operation must be carried

out. There are different types of target operations that can be useful:

• Position control;

• Velocity control;



2.5 Moving The robot 22

Figure 2.4: Setup of the whole application, on the right the pieces dis-

placed randomly can be observed, in the center the intermediate station

for the refine the grasping, on the left the final configuration of the pieces.
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• Force control;

• Impedance control.

Depending on the task one of these actions must be controlled, if not

the robot cannot move. To actuate this kind of actions some information

about the robot must be available, indeed in almost every robot there are

motors and encoders to know and change the joint configuration, while in

the reality the most of the times it is needed to move the robot to a po-

sition in the world frame. So, every time that the robot must be moved

a conversion between the joint and the world frame must be done; to do

it the inverse kinematics must be known to compute the correspondence

between a point in the 3D world and the robot configuration in the joint

space.

Assuming a linear movement between two points is required the steps

that the motion planner must do are the following ones:

1. Compute the linear path between the two points, that is, given a step

(e.g. 10 mm), find all the points at distance 10 mm in the 3D world

that are in the between the initial and the final point;

2. Transform each one of these points from the 3D world to the joint

space, that is associate the 3D point to a vector of 6 elements (for a

6 DOF robot), each one corresponding to the value of one joint;

3. Send all points to the robot.

To pursue this task many tools exist, in particular MoveIt is very used

across the world. It is a free software that runs on top of ROS and it is a
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primary source of the functionality for manipulation (and mobile manip-

ulation) on it [13].

MoveIt can handle different types of problems like trajectory generation,

collision avoidance, grasping actions and other ones; in this project the

trajectory generation tool has been used. This problem is not too compli-

cated but having a software that easily do it could be very useful.

MoveIt has a graphical interface (figure 2.5) in which it is possible to de-

fine the geometry and the characteristics of the robot, to run the URDF

model of the robot must be uploaded. The Unified Robotic Description

Format (URDF) is an XML file format used in ROS to describe all ele-

ments of a robot like the sensors, the motors, the scene, the kinematics

and so on. By uploading this file in the GUI it is possible to add other

information (e.g. constraints to avoid collision or positions in space) and

once the setup is completed it is possible to download it. This file will be

used during the motion planning of the robot to get the trajectories.

At run time to get the trajectory it is enough to send to MoveIt the

type of trajectory, the initial point, the final one and the step with which

the trajectory must be done, then it will compute the 3D points of the path

and the joint configurations related to each point of the space by means of

the inverse kinematics. Once everything is done the points are sent to the

robot to start moving.
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Figure 2.5: MoveIt setup assistant



Chapter 3

Computer Vision

In this chapter the computer vision part will be faced, two are the main

tasks to be considered: the detection of objects and the estimation of the

orientation and pose.

3.1 The Camera

The choice of the camera and the lens is very important when dealing with

computer vision task, so in this section some considerations will be made.

Depending on the applications 2D or 3D camera should be adopted, in par-

ticular the first one can give information along X and Y distances without

any knowledge of depth, while the second one gives a complete knowl-

edge about distances along X, Y and Z. The time consumption in gather-

ing and elaborating the image is the biggest problem of 3D cameras, but

sometimes they became fundamental, in the specific case of this task it

depends, if the pieces rely on the same surface and there is not overlap-

ping a 2D camera would be enough, while instead if pieces are place in a
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Figure 3.1: 2D Camera Ueye

box randomly a 3D camera became essential.

Although the available camera for the project was a 2D camera and so this

one will be used, but with a trick the depth problem will be solved too.

In particular the camera belongs to the IDS factory and the model is a UI-

5480CP, it is fitted with the 5 megapixel CMOS sensor. About half an

inch in size, the sensor delivers a resolution of 2560 x 1920 pixels as well

as rolling and global start shutter features. The sensor is extraordinarily

sensitive and is a real megapixel CCD replacement. The various shutter

modes provide ideal parameters for every application to produce sharp,

low-noise images [8].

Another important parameters is the choice of the lens, by looking at

the distance and the area that must be framed; in this case a Kowa LV1214

has been used with 2/3” and focal length 12mm. With this setup the best

trade off between the height of the robot and the maximum size of the area

to place the objects could be found. [10]
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Figure 3.2: Kowa lens 12mm

3.2 Camera calibration

Every time a camera is used for position estimation task is very important

that it has been calibrated opportunely, if not the task is not feasible.

Camera calibration is the process whereby all parameters defining the

camera model are estimated for a specific camera device.

The pinhole camera model is represented by the Perspective Projection

Matrix (PPM), which in turn can be decomposed into 3 independent to-

kens: intrinsic parameter matrix (A), rotation matrix (R) and translation

vector (T ). Depending on the application, either the PPM only or also its

independent components (A,R,T ) need to be estimated.

Many camera calibration algorithms do exist. The basic process, though,

relies always on setting up a linear system of equations given a set of

known 3D-2D correspondences, so as to then solve for the unknown cam-
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era parameters.

To obtain the required correspondences specific physical objects (re-

ferred to as calibration targets) having easily detectable features (such as

e.g. chessboard or dot patterns) are typically deployed.

Figure 3.3: Camera representation

The general form of the Perspective Projection Matrix (PPM or P) can

be thought of as encoding the position of the camera with respect to the

world into G, the perspective projection carried out by a pinhole camera

into the canonical PPM [I|0] and, finally, the actual characteristics of the
sensing device into A. Matrix A, which models the characteristics of the

image sensing device, is called ”Intrinsic Parameter Matrix”.

A =


au 0 u0

0 av v0

0 0 1

 =


fku 0 u0

0 fkv v0

0 0 1

 (3.1)

In 3.4 the intrinsic matrix A is represented, where:
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• f is the focal length of the pinhole system

• ku = 1
δu

, kv = 1
δv
are, respectively, the inverse of the horizontal

and vertical pixel size

• u0, v0 are the coordinates of the piercing point wrt the top-left corner

Intrinsic parameters are 5 but can be reduced in number by setting

au = f · ku , av = f · kv such quantities representing, respectively, the

focal length expressed in horizontal and vertical pixel size.

The number of intrinsic parameters estimated by OpenCV is thus 4.

The pixel size is usually provided in the camera data sheet: if it is known,

the metric focal length can be recovered.

Matrix G, which encodes the position and orientation of the camera

with respect to the World Reference Frame (WRF), is called Extrinsic

Parameter Matrix.

• As a rotation matrix (3x3=9 entries) has indeed only 3 independent

parameters (DOF), which correspond to the rotation angles around

the axis of the RF, the total number of extrinsic parameter is 6 (3

translation parameters, 3 rotation parameters)

• Hence, the general form of the PPM can be thought of as encoding

the position of the camera with respect to the world into G, the per-

spective projection carried out by a pinhole camera into the canoni-

cal PPM [I|0] and, finally, the actual characteristics of the sensing
device into A.

Camera calibration approaches can be split into two main categories:

• Those relying on a single image featuring several (at least 2) planes

containing a known pattern.
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Figure 3.4: Chessboard used for camera calibration

• Those relying on several (at least 3) different images of one given

planar pattern. (We are using this kind of approach!)

For solve the calibration problem the Zhang’smethod is used, in which

a chessboard must be printed with a predefined number of corner (8x5 in

this case) and size of each square (10mm). Once this operation is done the

camera must take at least 3 photos of the pattern, but for minimizing the

error several ones are taken, and for each image it searches for the upper

left corner and knowing the real distance between each corner it’s able to

estimate the distortion in the image.

Once the calibration is terminated the output parameter are returned,

in particular:

• Root Mean Square = 0.7584757
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(a) (b)

Figure 3.5: Pattern used by camera calibration

• Camera Matrix =


5.8221e + 03 0.0000e + 00 1.2842e + 03
0.0000e + 00 5.8267e + 03 9.8479e + 02
0.0000e + 00 0.0000e + 00 1.0000e + 00


• Distortion coefficients = [−1.5848e − 02 − 2.8086e + 00

2.1425e − 043.8741e − 034.5146e + 01]

Then for each image also the rigid transformation between the camera

and the pattern are provided, for example for the image 3.5a the output of

the calibration problem is:

• Translation vector =
[
−46.234 −14.420 377.778

]
mm

• Rotation vector =
[
−0.0639 −0.0294 0.0314

]
And in particular this information will be used for the hand eye cali-

bration of section 2.3.
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3.3 Object detection

Object detection has been one of the major problem in computer vision,

many different solutions have been taken in considerations. Nowadays

two ways are mainly used: convolutional neural networks or classical

computer vision algorithms.

The latter one will now be taken in consideration. This approach is based

on finding features in the model image to be compared with the features

of the sample images to find matches, the most famous one is SIFT. The

features are invariant to image scaling and rotation, and partially invariant

to change in illumination and 3D camera viewpoint. They are well local-

ized in both the spatial and frequency domains, reducing the probability of

disruption by occlusion, clutter, or noise. Large numbers of features can

be extracted from typical images with efficient algorithms. In addition,

the features are highly distinctive, which allows a single feature to be cor-

rectly matched with high probability against a large database of features,

providing a basis for object and scene recognition. The cost of extract-

ing these features is minimized by taking a cascade filtering approach, in

which the more expensive operations are applied only at locations that

pass an initial test. Following are the major stages of computation used to

generate the set of image features:

1. Scale-space extrema detection: The first stage of computation searches

over all scales and image locations. It is implemented efficiently by

using a difference-of-Gaussian function to identify potential interest

points that are invariant to scale and orientation.

2. Keypoint localization: At each candidate location, a detailed model

is fit to determine location and scale. Keypoints are selected based
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on measures of their stability.

3. Orientation assignment: One or more orientations are assigned to

each keypoint location based on local image gradient directions. All

future operations are performed on image data that has been trans-

formed relative to the assigned orientation, scale, and location for

each feature, thereby providing invariance to these transformations.

4. Keypoint descriptor: The local image gradients are measured at the

selected scale in the region around each keypoint. These are trans-

formed into a representation that allows for significant levels of lo-

cal shape distortion and change in illumination. [12]

For image matching and recognition, SIFT features are first extracted

from a set of reference images and stored in a database. A new image is

matched by individually comparing each feature from the new image to

this previous database and finding candidate matching features based on

Euclidean distance of their feature vectors.

The keypoint descriptors (fig. 3.6) are highly distinctive, which allows

a single feature to find its correct match with good probability in a large

database of features. However, in a cluttered image, many features from

the background will not have any correct match in the database, giving

rise to many false matches in addition to the correct ones. [12]

The biggest advantage of SIFT is that few time is required to implement

it, just one image is enough to obtain good results. The main problem

instead is that it is very sensitive to the light change, shadow and occlusion;

the time consumption is another issue that must be taken in consideration

using this kind of approaches. SIFT has been tested for this specific task

with not very good results, the problem is that when many equal objects
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Figure 3.6: Structure of SIFT descriptor

are in the scene it is difficult for the algorithm to find correspondences

with the geometry of the object.

The second typology of methods is the ones based on artificial intel-

ligence, that nowadays is becoming the most spread. An artificial neural

network (ANN) is based on a collection of connected units or nodes called

artificial neurons, which loosely model the neurons in a biological brain.

Each connection, like the synapses in a biological brain, can transmit a

signal to other neurons. An artificial neuron that receives a signal then

processes it and can signal neurons connected to it. The ”signal” at a con-

nection is a real number, and the output of each neuron is computed by

some non-linear function of the sum of its inputs. The connections are

called edges. Neurons and edges typically have a weight that adjusts as

learning proceeds. The weight increases or decreases the strength of the

signal at a connection. Neurons may have a threshold such that a signal

is sent only if the aggregate signal crosses that threshold. Typically, neu-

rons are aggregated into layers. Different layers may perform different

transformations on their inputs. Signals travel from the first layer (the in-
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Figure 3.7: Structure of an artificial neural network

put layer), to the last layer (the output layer), possibly after traversing the

layers multiple times (fig. 3.7).

Using ANN, image classification problems become difficult because

2-dimensional images need to be converted to 1-dimensional vectors. This

increases the number of trainable parameters exponentially. Increasing

trainable parameters takes storage and processing capability. For this rea-

son in image classification convolutional neural networks (CNN) aremore

used, the main difference is that only the last layer of a CNN is fully con-

nected whereas in ANN, each neuron is connected to every other neurons.

Once the network has been created it must be trained, this operation is very

time consuming because a very large amount of images must be gathered

and very performing hardware should be used. The training phase is di-

vided in two parts, the forward propagation, in which an image is used as

input obtaining a certain output, and the backward propagation in which
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the error between the true output and the estimated one is back propagated

to refine the value of each layer.

Once this operation has been completed the test phase can begin to obtain

some indexes about the performances of the net.

SIFT

• Easy and fast to be imple-

mented;

• Not robust to light changes or

shadow;

• Fast computation;

• Poor generalization;

• Not robust to non linear trans-

formation;

• More relevant for identifica-

tion tasks.

CNN

• Big image set is required;

• Lots of processing power and

time is needed for implement

the net;

• More relevant for classifica-

tion and categorization tasks,

has very good generalization

abilities;

• Currently very popular model

for image and video tasks.

3.4 YOLO

YOLO [15] is a convolutional neural network (CNN) for doing object de-

tection in real-time. The algorithm applies a single neural network to the

full image, and then divides the image into regions and predicts bounding

boxes and probabilities for each region. It has been the first net in which

the detection and the classification problem has been treated in a unique
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regression problem.

YOLO is popular because it achieves high accuracy while also being able

to run in real-time. The algorithm “only looks once” at the image in the

sense that it requires only one forward propagation pass through the neural

network to make predictions. For this reason it is extremely fast, one fast

version works at 155 fps with a mean average precision (mAP=52.7%)

on the database VOC07, while the base version works at 45 fps with

mAP=63.4% on the same train set.

The network architecture is inspired by the GoogLeNet [18] model for im-

age classification. The network has 24 convolutional layers followed by

2 fully connected layers (fig. 3.9). Instead of the inception modules used

by GoogLeNet, a 1 × 1 reduction layers followed by 3 × 3 convolutional

layers are used, similar to Lin et al [18]. The full network is shown in

figure 3.8.

The separate components of object detection are unified into a single

neural network. The network uses features from the entire image to predict

each bounding box. It also predicts all bounding boxes across all classes

for an image simultaneously. This means the network reasons globally

about the full image and all the objects in the image. The YOLO design

enables end-to-end training and real time speeds while maintaining high

average precision. The system divides the input image into an S × S grid.

If the center of an object falls into a grid cell, that grid cell is responsible

for detecting that object. Each grid cell predicts B bounding boxes and

confidence scores for those boxes. These confidence scores reflect how

confident the model is that the box contains an object, formally we define

confidence as Pr(Object) · IOU .

If no object exists in that cell, the confidence scores should be zero. Oth-
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Figure 3.8: Layers of YOLO
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Figure 3.9: Structure of YOLO

erwise the confidence score should be equal to the intersection over union

(IOU) between the predicted box and the ground truth.

Each bounding box consists of 5 value: x, y, w, h, and confidence. The

(x, y) coordinates represent the center of the box relative to the bounds of

the grid cell. W and H represent the width and height of the rectangle. Fi-

nally the confidence prediction represents the IOU between the predicted

box and any ground truth box. Each grid cell also predicts C conditional

class probabilities, Pr(Class|Object). These probabilities are conditioned

on the grid cell containing an object. Only one set of class probabilities is

predicted per grid cell, regardless of the number of boxes B.

At test time the conditional class probabilities is multiplied by the in-
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dividual box confidence predictions,

Pr(Classi|Object) · Pr(Object) · IOU truth
pred = Pr(Classi) · IOU truth

pred

(3.2)

which gives class-specific confidence scores for each box. These scores

encode both the probability of that class appearing in the box and howwell

the predicted box fits the object [15].

Many different ways are available for running YOLO, for coherency with

the rest of the project OpenCV will be used through the DNN (Deep Neu-

ral Networks) module.

3.5 Training e test

Build the image set in the proper way is fundamental to obtain reliable

results, indeed many problems could arise from a bad image set. One of

the major problems that might arise is a lack of accuracy, the net is not able

to detect objects, but at the same time avoiding overfitting is important.

Overfitting happens when your model fits too well to the training set. It

then becomes difficult for the model to generalize to new examples that

were not in the training set. For example, your model recognizes specific

images in your training set instead of general patterns.

Both these aspects depend on the choices made during the creation of the

image set, here some rules that should be followed:

1. Collect images of the object from different angles and perspectives.

2. Gather images of the object in variable lighting conditions.

3. Gather images with different object sizes and distances for greater
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variance.

4. Ensure your future input images are clearly visible. Otherwise, train

the model to classify objects that are partially visible by using low

visibility datapoints in your training dataset.

To avoid overfitting, then, it is important to use images enough differ-

ent from one other, if not the net could be trained to recognize that specific

image and not the pattern related to the target object. While to increase

accuracy themost images as possible should be usedwithout causing over-

fitting, so it would be important to consider all the possible angulation and

conditions.

For this specific task, a slightly different approach has been chosen,

that is because the environment in which the convolutional network should

work is quite stable, so the same conditions are always maintained. The

task is supposed to be used in a factory or a laboratory where the light is

always the same and the objects are the same size. For this reason, a few

images also give satisfactory results in terms of accuracy, but the bigger

is the data set the better should be the results if the previous rules were

followed.

As rule of thumb at least 100 images should be used for each label, in this

specific case only one label is necessary and 219 images have been used

for the training; the target of the application is to detect objects placed in

a random way, so in the image set both single objects and multiple objects

are present. All the photos have been taken with the same camera in the

same environment. Once this operation was concluded the classification

started, that is assigning to each image the information about the presence

and the position of objects, in particular the idea is to have a text file for
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each image in which the bounding boxes are defined. A bounding box is

a rectangular that encapsulates the target object, it is defined by the po-

sition of the lower left corner and the width and height of the box. To

simplify this operation some tools exist, their aim is to help users to draw

the bounding boxes over the image and save the information in the text

file, in particular LabelImg was used for this task [11], but in section 5.1

a new desktop application is developed to simplify the labelling process.

Once all the 219 images were classified the training phase started. By

using convolutional neural networks like YOLO only the last layers usu-

ally must be trained, because these are pretrained nets that have already

been trained with millions of images, so the longest part has already been

made. For this kind of operation, suitable hardware should be used, like

high performing GPUs, to speed up the process, in this case the cloud

computing hardware of Google has been used. They made available on

Google Colaboratory (also known as Colab) GPUs that can be used freely

by whoever has an account, Colab is a free Jupyter notebook environment

that runs in the cloud and stores its notebooks on Google Drive. By using

this tool, the training phase with the cloud computing takes around 2.50

hours.

After the training phase has been terminated the evaluation of the net-

work must be carried out, to do it many different tools are available. Mean

average precision (mAP) is a very common tool to evaluate classification

task, it relies on the concept of precision that defines how accurate the
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predictions are. i.e., the percentage of the predictions are correct:

Precision = TP

TP + FP
(3.3)

TP = True Positives (Predicted as positive as was correct)

FP = False Positives (Predicted as positive but was incorrect)

Recall is another important index, it measures how many true positives

are found inside all the real positives, that is:

Recall = TP

TP + FN
(3.4)

FN = False Negatives (Failed to predict an object that was there)

By knowing these two values the definition of Average Precision (AP)

can be made as the area under the precision-recall curve, that can be seen

in 3.10.
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Figure 3.10: Precision-recall curve for a classifier.

When average precision is used for binary classifiers the definition is

clear and unique, instead if localization is also of interest then another def-

inition must be used. In object detection task two are the main objectives,

identify correctly the target and localize it, to evaluate the latter one the

IoU index is used. IoU, Intersection over Union, is a metric for evaluating

the overlap between two boxes, given the true box containing the object

and the one estimated by the classifier, the scope is to know how much

these two boxes are similar, that is the ratio between the intersection and

the union, the bigger the ratio is the higher is the similarity.

So, for object detection precision and recall are computed by using IoU

values for a specific threshold, i.e., considering a threshold of 0.7 if the
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IoU is greater than 0.7 the sample is considered as Positive, if lower as

Negative.

To compute the mean average precision a new python script has been

written, the aim of it is to run the convolutional neural networks on the test

images and compare the results with the true boxes that were previously

defined. Once the predictions have been made the algorithm computes

the intersection and the union between the two bounding boxes to get the

IoU ratio, then if the IoU is greater than a given threshold the sample is

addressed as True Positive, instead if IoU is lower than a threshold it is

addressed as False Positive, finally if the number of true boxes is greater

than the number of estimated boxes minus the False Positive then the sam-

ple is considered False Negative.

By taking 30 images, not belonging to the train set, for testing purposes

the previous computation can be made to get the average precision and the

average recall. The results are:

AveragePrecision = 0.9047 (3.5)

AverageRecall = 0.9523 (3.6)
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Figure 3.11: True boxes (left image) and estimated boxes (right image)

Figure 3.12: Intersection between estimated and true bounding boxes, in

light blue the intersection box is highlighted.
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3.6 Orientation estimation

Once the object is detected and the bounding box is found the robot needs

the pose estimation of the target. To perform this operation different ap-

proaches are available, in the following different opportunities are pre-

sented.

By using the shape of the bounding box, it could be possible to get in-

formation about the orientation of the object, that is if one side of the

rectangular is much greater than the other it means that side is closer to

the main orientation, if the two side are similar it should mean the object

is in a diagonal position with respect the camera. By using this knowledge

some information can be gathered, the orientation could be estimated by

computing the arco tangent of the ratio between the two sides, while the

center with the middle point of the bounding box.

The second approach is still based on YOLO, but it’s more elaborated,

that is rotating the image 360 times (one for each degree) and for each one

finds the bounding box, the degree corresponding to the minimal area of

the bounding box should be the orientation of the object; but this approach

would take much time and still it’s not sure that the correct result would

be found.

Another one is based on creating a new convolutional neural network that

predicts the orientation, this could be a very clever and efficient way to

proceed but in the literature the results of this approach are not satisfactory

at all, so it will not be taken in consideration.

Finally, the approach used in this specific task is a traditional computer

vision algorithm, which tries to find the main orientation of objects based

on their specific geometric shapes.

This algorithm is thought for estimating the orientation of a specific class
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of objects, that is objects with one size much greater than the other and

with linear profile, for pieces that do not correspond to this description

the algorithm should be refined.

To develop the algorithm screws are used as sample, these ones are

long objects in which the thread is the part that is more highlighted from

an edge detection. To get the edges of the image Canny has been used, it

is an operator that uses a multi-stage algorithm to detect a wide range of

edges in images; in figure 3.13 the image before and after the edge detec-

tion can be seen.

After that the algorithm starts looking for lines in the image enough long to

be part of the thread, to do it the Hough operator is used, it works as follow.

The set of all straight lines in the picture constitutes a two-parameter fam-

ily. If a parametrization is fixed for the family, then an arbitrary straight

line can be represented by a single point in the parameter space. By using

the form shown in equation 3.7 it is possible to define a line by means of

θ and ρ.

x · cosθ + y · sinθ = ρ (3.7)

If we restrict θ to the interval [0, π], then the normal parameters for a

line are unique. With this restriction, every line in the x − y plane corre-

sponds to a unique point in the θ-ρ plane.

Supposing to have a set {(x1, y1), ..., (xn, yn)} of figure points, to find the

straight lines they must be transformed into the sinusoidal curves:

ρ = xi · cosθ + yi · sinθ (3.8)

At that point it is possible to show that the curves corresponding to
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colinear figure points have a common point of intersection. This point in

the θ − ρ plane defines the line passing through the colinear points. Thus,

the problem of detecting colinear points can be converted to the problem

of finding concurrent curves [6].

By using these approach and defining as constraint the minimum length

of these lines it is possible to find several correspondent lines inside the

bounding box containing the screw. Then filtering these result is impor-

tant, the idea is to use a statistical approach to remove the outliers and take

the final estimated orientation by computing the median of the remaining

lines.

The other information needed to the robot, beyond the orientation, is the

picking point; two are the ways to get it. The first approach is to use the

information of YOLO, that is using the center of the bounding box. The

second approach is to use the center of the lines that represent the thread.

Both these ones work properly and has been tested successfully, in the

simulation the latter approach will be preferred. Knowing the orientation

and the position of the center of the object it is possible to move the robot

to that position for the picking.
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Figure 3.13: Image inside bounding box and its edge detection
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Figure 3.14: Result of the orientation algorithm on one screw, the green

line represents the main axis and the red point the point in which the robot

will pick the object

3.7 Second Stage Orientation

As said in section 2.4 in some scenarios it may be convenient to use an

intermediate station to refine the grasping. That should be a position in

which the object is released after it has been picked up. If this position is

not used a poor pose estimation might arise, that is because in the main

scene many objects are present and disturbances and noises may exist in

the image. Instead, if this station is used the object is released on a clean

surface without any occlusion or distortion, the consequence is that the

conditions in which the object is placed are always the same, so a high
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repeatability can be obtained by an algorithm.

The main problem in using the information coming from the main scene

is that the middle point is not always in the real center of screw, and it is

more difficult to understand if the head of the screw is below or above the

picking point, and this information is very important if the object must be

released in a given configuration.

Another limitation of not using this step is that every time objects are

picked with the same inclination with respect to the surface, that is the

gripper is always vertical with respect to the ground. If the final place-

ment must be precise the object should always be picked up with the same

inclination with respect to the ground, by picking and releasing them over

a planar surface this issue is always solved.

By considering the above reasons it seems reasonable to use this procedure

almost always, even if the time required will inevitably increase. Once the

object is released the steps are the following ones.

The robot will run YOLO again on the new scene image to predict the

bounding box. In this case the frame is clean from disturbances or other

objects so the prediction of the neural network will be very reliable, so

that we can use the center point of the bounding box as a new picking

point. By doing that it is expected that each time YOLO will return the

same result, because objects are the same size and all the environmental

conditions are the same.

To understand the position of the head of the screw, instead, the bounding

box is divided in two halves, above and below. The idea is like the one

used for searching the lines, the half with more lines will be identified like

the ”tail” while the other one like the ”head”. At this point the robot can

grasp the object again in the new point.
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Figure 3.15: Result of the second stage orientation recognition



Chapter 4

Generalization of the algorithm

Until this point the task was tested only with a particular object and with

objects that lie on the same plane, because without a 3D camera it was

not possible to get information about the distance of the objects from the

camera.

In this chapter both these two constrains will be faced trying to relax them

to generalize the algorithm. So, in the following a technique to get 3D

information from a 2D camera will be tested and two new neural networks

will be trained.

4.1 3D Vision

3D vision is the branch of computer vision whose aim is to build a 3D

model of the scene gathering information along x,y and z axes. There are

many ways to get 3D images, in the following lines some of them will be

explored:

1. Time-of-flight (TOF)
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2. Stereo vision

3. Laser triangulation

4. Structured light

Mimicking human vision, the stereo vision technique uses a pair of

cameras to record the same 2D view of the target object taken from two

different angles. Knowing the fixed relative positioning of the two cam-

eras, software compares corresponding points in the two flat images, iden-

tifies disparities and through triangulation produces a full 3D point cloud

[1] (4.1b).

A line laser is a relatively cheap and simple active light source that can be

used together with a camera to avoid the stereo vision setup with two cam-

eras and an RPP. This old technique is simple, low cost, fast and highly

accurate. Laser triangulation is one of the most popular and commonly

used 3D imaging techniques and is deployed in a wide range of interior

and exterior applications [1] (4.1c).

The structured light technique is like that of laser triangulation but is ex-

tended to a whole field. It is called a full-field method because it provides

an entire 3D image of the object, and not just of a single cross-sectional

line. It records the geometric distortion of a known illumination pattern

projected onto the surface of a static three-dimensional target object [1]

(4.1d).

Taking a time-domain rather than a spatial-domain approach to 3D imag-

ing, time-of-flight laser scanners, sometimes also called LIDAR systems

or laser radars, effectively remove the baseline. By measuring the time

delay between emitted laser light and the reflected laser light from the

object’s surface, we can get a precise distance measurement [1] (4.1a).
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(a) Time of Flight (b) Stereo vision system

(c) Laser trinagulation (d) Structured light

Figure 4.1: Different 3D acquisition systems

4.1.1 Stereo-Vision

Stereo vision is the extraction of 3D information from images gathered

with 2D camera, it is one of the major vision modules by which one can

induce the depth of the surface shape and the volume information of the
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objects. Stereo vision systems usually are built with a system of two 2D

cameras rigidly connected, the frames grabbed by these two cameras are

named conjugate images and it is possible to get information about the

depth by exploring the concept of disparity.

Stereo vision deals with three major problems: correspondence ge-

ometry, camera geometry and scene geometry. Of these, stereo match-

ing deals with correspondence geometry and remains the major research

area [9]. The two images gathered by the cameras in this system must

be rectified, that consists in projecting the images onto a common im-

age plane in such a way that the corresponding points have the same row

coordinates. In that way the image planes are coplanar and the epipolar

lines are collinear and thus the search for matching points becomes a one-

dimensional search problem.

disparity = x − x′ = B · f

Z
(4.1)

x and x′ are the distances between the corresponding points in image

plane. B is the distance between two cameras, that is known and fixed,

and f is the focal length of camera, known by the camera calibration prob-

lem. So, in short, the above equation says that the depth of a point in a

scene is inversely proportional to the difference in distance of correspond-

ing image points and their camera centers. So, with this information, we

can derive the depth of all pixels in an image.

Since in this specific task only a 2D camera was available the classi-

cal stereo vision system could not be faced in the traditional way, but it

was necessary to use the same camera in different position for detecting
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Figure 4.2: Stereo vision architecture

Figure 4.3: Stereo vision rectified structure
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the correspondences and estimating the distances. So, with respect to the

previous case the camera will take a shot of the scene from a predefined

position, then it will move to a second position moving only along the y

axis of the robot for 6 cm and it will take a second shot.

Once both images are available it is possible to compute the disparity and

then estimate the distance at which the target point is. In figure 4.4 two

images can be observed, figure 4.4a represents the left one and figure 4.4b

the right one; in both the images the same three bounding boxes are de-

tected, for each one the picking point is found and then used as reference

point to compute the disparity.

By using the already available information, as the focal length and the dis-

tance between the two shot positions, with the disparity it is possible to

know the distance of each point from the camera. In this particular case

these distances are reported in figure 4.5, the screw on the bottom is the

closest one with ' 49.4cm, then the one on the top right with ' 56.9cm

and the furthest on the left with ' 60.1cm.

By measuring the real distances and comparing them with the ones esti-

mated the error is about half centimeter; this result is not bad, but at the

same time in the industry this error would not be tolerated. So, even if the

algorithm produces very good results, these ones are not enough for be

applied to applications in which a high accuracy is required. To conclude,

it can be said that a 3D camera would be more appropriate for this type of

application.
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(a)

(b)

Figure 4.4: Left and right image acquire by the camera
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Figure 4.5: Scene with the estimated values of depth, expected values :

60, 56.3, 50 cm

4.2 Multi objects recognition

In chapter 3 an algorithm to detect objects and to recognize the orienta-

tion has been developed and tested for a singular object, a screw. In this

section the algorithm will be tested with new sets of objects, and it will be

proved it could be a general purpose approach to solve bin picking prob-

lems.

4.2.1 Training 2 new CNNs

To detect new objects 2 new classifiers must be trained, as samples a

lighter and a marking pen are chosen. To the train the two neural networks

2 sets of 40 images are used, as before all images have been labelled before
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Figure 4.6: Sample images from the lighter train set

Figure 4.7: Sample images from the pencil train set

carring out the training; once this has been done YOLOmust be re-trained

with the new sets. Since the images are quite clean from disturbances the

results are very good, that is an average loss around 0.08 and average mAP

equal to 0.96.

But it was already known that YOLO could work properly with these

two objects, the real challenge was to prove that also the orientation algo-

rithm could work, so that it could be proved that it is general purpose for

a class of objects.

To do that the same algorithm used for the screw has been tested on the
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test set of the lighter and the marking pen, the results were excellent, with-

out changing any parameters the code worked perfectly. In figure 4.8 two

samples from the test sets are plotted, the bounding box, the orientation

and the picking point can be observed and they match the real ones.

In this particular case nothing was changed before running the algorithm,

but in general the only parameters that should be changed is the mini-

mum/maximum length of the lines detected by the Hough transform, in

particular this measurement could be obtained by using:

MinimumLenght = 0.7 · ObjectLenght

P ixelSize · Distance
(4.2)

In equation 4.2 the only parameters the user should set are the real

size of the object and the distance of it from the camera. Once these two

parameters are known the algorithm will consider as minimum length for

the lines the 70 percent of the expected length in pixels of the object.

The fact of the algorithm worked well with these two object do not

mean that it should work with any object, indeed these two were not cho-

sen randomly. The lighter and the marking pen, like the screw, have two

characteristic that are very important:

• One side is much greater than the other one.

• The profile of the objects is linear, that is it can be approximated by

straight lines.

To conclude, every object that has these characteristics theoretically could

be used in the application without any relevant change.

Instead, the procedure explained in section 3.7 to detect the upper part of

the object can not be generalized, that is because it relies on the detection
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Figure 4.8: Result of the detection and orientation algorithm on the two

new classes of objects

of a particular detail in the object. So, in this case for each new object a

new approach should be developed.



Chapter 5

Oriented bounding boxes for

accuracy index

To evaluate the results of the orientation accuracy, the real orientation of

each object in the test set was needed. Understand howmuch the estimated

orientation was far from the real one was of interest.

Doing this operation by hand would have required a lot of time and effort,

while the best idea was to create a tool that could do this operation in a

fast and reliable way. In this chapter the idea behind this procedure is

explained.

5.1 Labelling Desktop Application

Many applications exist for drawing oriented boxes on images for clas-

sification purposes, these are tools that allow the user to create rectangle

on the image to classify them in each category. For example, in section

3.5 the program labelImg has been used to classify the training set before
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training the convolutional neural network; this kind of apps are very user

friendly but all of them have a big limitation, they do not deal with orien-

tation.

This fact can be easily explained because the kind of problems treated in

this thesis has not been addressed by the scientific community as relevant

yet, that is no one has solved it in a clear way. But many researchers

worldwide have tried to solve it, the application that is explained in the

following lines wants to be a help to whoever wants to face this kind of

problem.

Figure 5.1: Initial page of the app for the labelling

The application (fig. 5.1) has three main tools:

• Drawing the classical bounding box as a rectangle.



5.1 Labelling Desktop Application 68

• Drawing an oriented bounding box as an oriented rectangle.

• Drawing a line representing the main orientation of the object.

The app does not deal only with the orientation problem, because often

this is not needed, for this reason the classical approach with the standard

rectangle is still present.

Then the other two tools are similar, but they might be needed for dif-

ferent kinds of applications. If predicting the position and orientation of

the whole object in space is needed, then the oriented rectangle would be

the best choice. Instead, if only the orientation is of interest, it might be

enough using a line to classify the angle of the object with respect to the

x axis of the image.

These three tools are used inside an app that is very user friendly and has

other utility to make the job of classification easier.

Figure 5.2: Instructions for the app
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Figure 5.3: Instructions for the app

In figures 5.2 and 5.3 a brief explanation of the app tool is provided,

the main features are:

• Single images or whole folder of images can be loaded;

• It works with multiple objects inside the same image and also with

different labels, that can be changed in the Text Box on the right;

• Different type of information can be saved: rectangles, oriented

rectangles and lines;

• A file with the same name of the image is savedwith the information

related to the labels.

In figure 5.4 the classical bounding box is used, for each typology of

tool a user control is added to the image with the information related to
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Figure 5.4: Using the classical bounding box for the classification

the position of the boxes in the image. In particular for the rectangle the

origin point, the width and the height are provided, the same information

will be saved in the related .txt file.

In figure 5.5 oriented bounding boxes, this is one of the tool that was

not present in the previous applications. To draw this kind of form the

user must select four points in the image and then the app will draw the

rectangle related to the user choice. In the image it can be observed that

the app works well also with different labels in the same image.

In figure 5.6 the last tool is used, that is the line. In the image two

screws are placed with different orientations and the user has drawn the

lines that fit the main orientation of the two objects. In particular in this

case in the user control on the right the two extreme points are shown

together with the orientation of the object, the orientation goes from -90

to +90, where the 0 represent an object with the main axis parallel to the
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Figure 5.5: Using the oriented bounding boxes for classifying different

objects on a table

horizontal axis.

5.2 Evaluation of the orientation task precision

In section 3.6 an algorithm to find out the orientation of the object detected

byYOLO has been formulated, as already pointed out the algorithmworks

quite well, but until now this evaluation was based only on a purely sub-

jective point of view. This means that by looking at the graphical results

on the test set the orientation of the line plotted seems to match the real

one.

To be more precise and be able to provide reliable indexes about the

performances a routine has been implemented.
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Figure 5.6: Using the oriented line for classify/get the orientation of each

object

The idea is to repeat the same operation made to evaluate the perfor-

mance of YOLO. The first step is finding the real orientation of each object

in the test image set and save all the information about each image in a file,

this operation is done entirely by using the app explained in section 5.1.

The second step is running the whole algorithm for the pose estimation

and save on text file the information about the estimated orientation of

each object, it is important that the two orientations are calculated in the

same way with the same reference system.

Once both these actions are made the difference between the real and

the estimated orientation has been computed; then the average error has

been obtained with the formula:
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AverageError =
∑

i |RealAnglei − EstimatedAnglei|
NumberOfItems

(5.1)

The formula 5.1 is used to compute the error in the estimation of the

angle, in particular a python script has been written. This script opens the

two text files related to each image and compares the orientation of the

corresponding bounding boxes appending the difference to a list. Once

each image has been inspected the script uses the above formula to com-

pute the average error, by trying it on the test set the error is of 2.83 degrees

(or 0.05 radiant).

This result is positive, that is because the error is very low, moreover

the real measures have been taken by hand so they are not very accurate

and it is very unlikely that some algorithm could reach 0 error, that is not

because the algorithm does not work, but because the measures taken by

hands are not reliable.



Chapter 6

Experimental analysis

6.1 Experiments

In this final chapter the test and the evaluation of the task will be made.

As mentioned in section 2.4 two are the main experiments of interest: the

bin picking application with two shot positions and an intermediate stop

for refining the grasping and the case with only one shot position.

The latter one is now taken in account, in this case the scene must be

composed by pieces that are almost on the same plane, they can overlap but

not too much, for example in figure 6.1 it can be observed a casual initial

configuration. Two problems will arise by having objects on different

planes, the first one is that the robot has a pre-defined height, and so it will

try to arrive to that position, the second one is that the camera calibration

has beenmade for a specific plane, then by changing the plane the previous

calibration does not hold anymore and so the distances computed by the

algorithm along x and y will be imprecise.

From the robot point of view instead the procedure will be the following
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one:

1. The robot is brought from the home position to the shot one;

2. The camera frames the scene and the algorithm (running still on

ROS) provides the picking point and the orientation of the gripper;

3. The robot goes on the target point and starts going down until the

pre-defined height and closes the gripper;

4. The robot goes up and move to the intermediate station for releasing

the piece;

5. Once the robot is over the object the camera grabs another photo

computing themiddle point and estimating the position of the screw’s

head with respect to the center;

6. At this point the gripper will go to the new picking point, and only

if the head is below the center the robot will rotate of 180 degree;

7. Finally the object will be released in a pattern in vertical position

with the head on the ground.

This routine is repeated until all the pieces have been moved from the

initial configuration to the final one, an example of the final pattern is pro-

vided in figure 6.2.
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Figure 6.1: Initial configuration:

objects placed in random positions

Figure 6.2: Final configuration: ob-

jects in desired positions

In figure 6.3 can be seen on the left the robot over the scene while

the camera is elaborating the image, while on the top right corner it is

represented the simulation on RViz running on the computer and in the

bottom right corner there is the image elaborated by the camera. In the

scene 8 screws are present one over the other one, different elements can

be seen in the picture:

• The green rectangle that is the bounding box provided by YOLO;

• The green line that is the main axis of inertia of the object, so it will

be the rotation that the robot wrist will perform;

• the green point that is the picking point of the object.

In the figure 6.4 it can be observed the gripper over the picking point

with the right orientation. After this operation the robots will move in the

configuration represented in figure 6.5 where on the bottom right corner

the new scene is depicted: the white bounding box is the result of Yolo

and the picking point is the center of the rectangle. Finally, the object is

released in figure 6.5 in a pre-defined pattern.
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Figure 6.3: The robot in the shot position runs the computer vision algo-

rithm.

Figure 6.4: The robot picks up the object in the right position and orien-

tation.
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Figure 6.5: In the second stage the orientation is adjusted and the head is

identified.

Figure 6.6: The object is released in the final configuration and the pro-

cedure starts from the begin.
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The second experiment of interest is the one related to the computa-

tion of the depth, as said in section 4.1.1 to do it two images of the same

scene must be available. The general procedure is very similar to the one

presented in page 75, the only difference is that an additional step must be

added, that is after point 2 the robot will be moved in a second position

along the y axis to grab another frame and only at that point it will com-

pute the position of the center point, this time both along x,y,z axis. In

figure 6.7 the scene in this second scenario can be observed, three screws

are placed at different heights, by taking two shots the robot is able to de-

tect the distance between the camera and the objects and then it will pick

up the object that is closer to the camera.

Figure 6.7: The robot is picking up the closer object to the camera.
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6.2 Results

By running the previous experiments some considerations can be made.

Both the task of interest work pretty well, the robot is able to perform the

desired operation in a correct way: detection, picking and releasing.

The application at themoment is quite slow, it takes a bit less than 1minute

for each object; but this is due to the fact that the hardware is not opti-

mized for working with deep learning algorithm and also because we are

performing the motion with a collaborative robot in reduced mode, in that

way it doesn’t makes damages to itself or to the environment.
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Conclusions

To conclude some considerations are reported in the following lines.

Considering the first scenarios, that is the one with only one shot posi-

tion, it could be said that overall the algorithm proposed works quite well,

in particular if the scene conditions respect the initial assumptions every-

thing works fine, that is pieces must be almost on the same surface and

there must be enough space for the gripper to pick up the objects without

colliding.

To analyze better the results each part of the application is considered sep-

arately: object detection, pose estimation and robot behaviour.

The neural networks that have been developed works very well and

with a good accuracy, in particular also in harsh environments. The esti-

mated latency for YOLO is of 22ms but due to the poor hardware available

(no GPU) the time required for the detection is over 1 second; with a suit-

able hardware the performances of the vision algorithm would increase a

lot.
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The orientation part instead is a totally new approach, differently from

YOLO, and so more considerations should be made. This technique has

the aim of estimate the orientation of pieces that has well defined charac-

teristic, that is objects with one side greater than the other one and with

linear edges; in this case the algorithm has been tested with a screw, a

lighter and a pencil mark.

In the literature the algorithms similar to the one that has been imple-

mented in this application has been tested with only typology of object,

like for detecting car direction [4] or boats orientation [20]. Both these

have shapes that could work also with the algorithm presented so far, due

to their profile, so it can be said that the majority of times the orientation

is needed this algorithm should work.

By comparing this approach with YOLO it can be said that it is less gen-

eral purpose, and that is true because YOLO works with every type of

object, while these algorithm only with a restricted class. At the same

time it should be reported that implementing YOLO requires much more

time than the new algorithm, that is ready to be used for every object be-

longing to the just said category.

Moreover the most of the times orientation is needed the objects have a

side much greater than the other and linear profile, so this approach could

cover the majority of scenarios.

Talking about performances, instead, the time required for the whole com-

putation is ' 0.15 seconds with a poor hardware, so considering both the
parts of the computer vision task, detection and pose estimation, during

the test experiments ' 1.2 seconds was required to do the whole proce-

dure, but it is reasonable that with a suitable hardware the time should

decrease to a couple of tenths of a second.
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The second stage station has revealed itself as a very important part

of the process, it allows the detection of the objects and of their middle

point with a very good accuracy and repeatability. Since the objects are

released always in the same point with the same orientation, the condition

are very similar, then YOLO always returns the same bounding box; dif-

ferently than before this estimate is very reliable and for this reason it can

be used for estimating the picking point.

The second part of this second stage is the identification of the head of the

screw, that still works very well thank to the conditions of the environ-

ment.

This, anyways, is the only part of the task that cannot be general purpose,

because any object has its own detail to distinguish the two ends, so a spe-

cific approach must be developed, but it should be an easy task looking

for a detail in one of the two half of the object.

The last part to be evaluated is the robot, which is the only actuator of

the application so it has the responsibility that everything works fine, in

particular the most complicated aspect from the robot point of view is the

picking of the objects, because in the other phases the robot moves almost

to a fixed position. In the picking operation two are the main problems :

the first one is that the gripper could encounter obstacles during the de-

scending phase and the second is defining in the correct way the position

to which it must move. As it can be observed in the chapter 3 the camera

is able to understand the position returning the correct pixel distance, but

then these distances must be transformed in the positions in meters to feed

the robot; this operation may seem easy but it hides some problems. Even

if the hand eye calibration has been done correctly, it has been done with
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respect to a precise plane, if the plane is changed this does not hold any-

more; so until the objects are displaced on the same surface the problem

is solved, while if this is not the case a new transformation must be used.

In conclusion, the desired result has been reached and it is very inter-

esting. But some limitations are present, if the objects are not on the same

plane this approach is not convenient because a 3D camera would have

much greater performances.

In relation to this last aspect the second scenario must be taken in account,

that is the one in which two shots of the same scene are taken to get in-

formation about the depth. This second algorithm works the same as the

previous one, but it take a second photo of the objects; this fact increases

for sure the time required for the whole procedure, a double time must

be considered for the acquisition and elaboration of the image, but at the

same time it provides a more complete information.

As seen in section 4.1.1 the approach works well, but for sure by using a

real stereo vision system the accuracy would increase and the computation

time would decrease.
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