
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA

DIPARTIMENTO di

INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE

“Guglielmo Marconi”

DEI

MASTER’S DEGREE

IN

TELECOMMUNICATIONS ENGINEERING

[9205]

Master Thesis

in

Laboratory of Networking M

Orchestration of a MEC-based multi-protocol

IoT environment

Candidate Supervisor

BASSI LORENZO Prof. WALTER CERRONI

__________________ Co-supervisor

Prof._________ DAVIDE BORSATTI

Academic Year: 2020/2021

Session II

2

CONTENT

CONTENT ... 2

ACRONYMS .. 7

ABSTRACT ... 11

INTRODUCTION .. 12

CHAPTER 1: VIRTUALIZATION TECHNOLOGY IN MODERN NETWORKS 15

1.1 Network Function Virtualization (NFV) Architecture 19

1.2 Methods of Virtualization: VM, LXC, Docker, Kubernetes 20

1.3 Kubernetes ... 22

1.3.1 Kubernetes Architecture... 23

1.4 Virtualized Network Functions (VNFs) .. 25

1.4.1 Element Manager (EM).. 25

1.4.2 Network Function Virtualization Infrastructure (NFVI) 26

1.4.3 Operation Support system (OSS) and Business Support System (BSS) .. 28

1.5 Physical Network Functions (PNFs) .. 28

1.6 Containerized Network Functions (CNFs) .. 28

CHAPTER 2: NFV MANAGEMENT AND ORCHESTRATION (MANO) 30

2.1 NFV MANO architectural framework ... 31

2.1.1 – Virtualised Infrastructure Manager (VIM).. 31

2.1.2 – NFV Orchestrator (NFVO) ... 32

2.1.3 – VNF Manager (VNFM) .. 35

2.2 NFV-MANO data repositories ... 36

2.3 MANO Descriptors .. 37

2.4 Forwarding Graph .. 38

CHAPTER 3: OPEN SOURCE MANO (OSM) .. 41

3.1 Network Service Lifecycle .. 44

3.1.1 Setup and configuration of a VNF ... 45

3

3.2 Cloud Init ... 46

3.3 Charms ... 47

3.3.1 Cloud .. 47

3.3.2 Container .. 47

3.3.3 Controller ... 47

3.3.4 Model ... 47

3.3.5 Bundle .. 48

3.3.6 Machine .. 48

3.4 Types of charms ... 49

3.5 JUJU ... 52

3.5.1 Juju controller... 53

3.6 Juju and Proxy Charms .. 54

3.7 Virtualized Network Function Descriptor (VNFD) ... 57

3.8 VNF Workflow .. 58

3.8.1 On-boarding ... 58

3.8.2 Day 0 .. 59

3.8.2.1 Requirements .. 59

3.8.3 Day 1 .. 60

3.8.3.1 Requirements .. 60
3.8.4 Day 2 .. 61

3.8.4.1 Requirements .. 61
3.8.5 Termination .. 62

3.9 OSM Primitives for PNFs .. 63

3.10 The role of Kubernetes inside OSM .. 66

3.10.1 Association of K8s cluster to a VIM .. 68

3.10.2 Helm charts .. 69

3.11 Summary OSM and concepts .. 70

3.11.1 Modelling NFs though packages .. 72

CHAPTER 4: MEC PLATFORM .. 74

4.1 Introduction .. 75

4.2 Multi-access Edge Computing framework .. 76

4.2.1 System level ... 77

4.2.2 Host level ... 77

4.3 MEC architecture in NFV .. 79

4

CHAPTER 5: OPENSTACK SOFTWARE .. 80

5.1 OpenStack .. 81

5.1.1 OpenStack to deploy a VNF .. 82

5.2 OpenStack Logical architecture ... 83

5.3 OpenStack architecture .. 85

5.3.1 Nova ... 86

5.3.2 Cinder ... 87

5.3.3 Horizon: ... 87

5.3.4 Neutron ... 88

5.3.5 Heat .. 89

5.3.6 Tacker ... 90

5.3.7 Glance .. 91

5.3.8 Swift ... 91

5.3.9 Ironic .. 92

CHAPTER 6: OPC UA PROTOCOL... 93

6.1 OPC Protocol ... 96

6.2 OPC UA Protocol .. 97

6.3 OPC UA Architecture .. 98

6.4 Information modelling and Address Space .. 99

6.4.1 Nodes ... 100

6.4.2 References .. 101

6.4.3 NodeClasses ... 102

6.4.4 Variables .. 104

6.4.5 OPC UA NodeID Concept ... 104

6.4.6 XML Notation .. 106

6.5 Access to the Namespace of a Server .. 108

6.6 OPC UA Subscription .. 109

6.7 Certification ... 111

6.8 Discovery process .. 112

6.8.1 Local Discovery ... 114

6.8.2 Multicast Subnet Discovery ... 114

6.8.3 Global Discovery ... 115

6.8.4 Certificate Management with GDS .. 116

5

6.9 Configuration process .. 117

6.9.1 Server Configuration .. 117

6.9.2 Client configuration ... 117

6.9.3 Connection between client and Server ... 118

6.10 MQTT Digression .. 119

CHAPTER 7: OPC UA IMPLEMENTATION .. 121

7.1 Open62541 ... 121

7.1.1 Channel establishment between client and Server 121

7.1.2 Creation of a Docker Container ... 125

7.2 OPC UA with Python Libraries ... 126

7.2.1 Analysis of the traffic exchanged between client and server 126

7.3 Code OPC UA Client and Server .. 138

7.3.1 Python code OPC UA Server ... 138

7.3.2 Python code OPC UA Client ... 143

7.4 OPC-UA GUI .. 150

7.4.1 Client GUI .. 150

7.4.2 Modeler GUI .. 153

CHAPTER 8: ORCHESTRATION OF AN IOTAAS ENVIRONMENT....................... 155

8.1 Description of the testbed .. 157

8.2 Description of the code .. 158

8.2.1 Docker images .. 158

8.2.2 Helm Charts ... 159

8.2.3 OSM Descriptors .. 160

8.2.4 OPC UA Server code ... 163

8.2.5 OPC UA Client code .. 167

8.3 Registration of services inside the MEC Platform ... 169

8.3.1 Registration of OPC UA Server service on the MEC Platform 170

8.3.2 Registration of MQTT Broker service on the MEC Platform................ 173

8.4 The Client .. 175

8.5 Deployment of the IIoTaaS environment .. 177

8.6 Measurements .. 184

8.6.1 PoC Implementation .. 189

CONCLUSIONS .. 192

6

APPENDIX .. 193

BIBLIOGRAPHY ... 214

FIGURES INDEX .. 221

TABLES INDEX ... 225

7

ACRONYMS

A

AMQP → Advanced Message Queuing Protocol

B

BSS → Business Support System

C

CA → Certificate Authority

COAP → Constrained Application Protocol

COTS → Commercial Off-The-shelf

CNF → Containerized Network Function

CNTT → Common NFVI Telecommunications Taskforce

CPS → Cyber-Physical System

CRL → Certificate Revocation Lists

D

DDS → Data distribution Service

DS → Discovery Server

E

EC → Electrotechnical Commission

EM → Element Manager

F

FCAPS → Fault, Configuration, Accounting, Performance and Security

8

G

GDS → Global Discovery Server

GUID → Globally Unique Identifier

I

IoT → Internet of Things

IIoTaaS → Industrial IoT as a Service

IPA → Ironic Python Agent

K

KNF → Kubernetes-based Network Function

KPIs → key performance indicators

KDU → Kubernetes Deployment Unit

L

LDS → Local Discovery Server

LSD-ME → LSD with Multicast Extension

M

MAQP → Advanced Message Queuing Protocol

MEAO → Multi-access Edge orchestrator

MEC → Multi-access Edge Computing

MI → Monitored Item

mDNS → multicast DNS

MQTT → Message Queuing Telemetry Transport

N

NBI → NorthBound Interface

NFV → Network Function Virtualization

NFVI → Network Function Virtualization Infrastructure

NFVI-PoP → NFVI Point of Presence

NFVO → NFV Orchestrator

9

NFV-MANO → NFV Management and Orchestration

NFPs →Network Forwarding Paths

NSD → Network Service Descriptor

NSI → Network Slice

O

OSM → Open Source MANO

OSS → Operation Support system

OPC UA → Open Platform Communication Unified Architecture

UASC → OPC UA Secure Conversation

P

PDU → Physical Deployment Unit

PNF → Physical Network Function

PNFD → Physical Network Function Descriptor

Q

QoS → Quality of Service

R

RO → Resource Orchestrator

S

SDN → Software Define Networking

SO → Service Orchestrator

SOA → Service Oriented Architecture

V

VCA → VNF Configuration and Abstraction

VDU → Virtual Deployment Unit

VI → Virtualization Infrastructure

VIM → Virtualised Infrastructure Manager

10

VL → Virtual Link

VLD → Virtual Link Descriptor

VNF → Virtualized Network Function

VNFC → VNF Components

VNFD → Virtualized Network Function Descriptor

VNFM → VNF Manager

VNFFGD → VNF Forwarding Graph Descriptor

VNF-FG → VNF Forwarding Graph

VRF → Virtual Routing and Forwarding

11

ABSTRACT

Nowadays we are witnessing to a continuous increasing of the number of IoT

devices that must be configured and supported by modern networks. Considering an

industrial environment, there is a huge number of these devices that need to coexist

at the same time. Each one of them is using its own communication/transport

protocol, and a huge effort needs to be done during the setup of the system. In

addition, there are also different kind of architectures that can be used. That’s why

the network setup is not so easy in this kind of heterogeneous environment.

The answer to all these problems can be found in the emerging cloud and edge

computing architectures, allowing new opportunities and challenges. They are

capable of enable on-demand deployment of all the IoT services.

In this thesis is proposed a Multi-access Edge Computing (MEC) approach to face

all the possible multi-protocol scenarios. All the services are transformed into MEC-

based services, even if they are running over multiple technological domains.

As result, was proved that this kind of solution is effective and can simplify the

deployment of IoT services by using some APIs defined by the MEC standard.

As above mentioned, one of the most important tasks of these new generation’s

networks is to be self-configurable in very low amount of time and this will be the

scope of my research.

The aim of this thesis is to try to reduce as much as possible the time that a certain

network requires to be self-configured in an automatic way considering an Industrial

IoT as a Service (IIoTaaS) scenario.

12

INTRODUCTION

In the last years, we have seen an increase of the number of devices that are

connected to the Internet. Nowadays, in all the application fields, there is the

necessity of automation and control that is granted by IoT devices. Considering as

example an industrial scenario, a huge number of IoT devices are used to manage

and control production lines.

The number of businesses that use the IoT technologies has increased from 13%

in 2014 to about 25% today. The worldwide number of IoT-connected devices is

projected to increase more than 40 billion by 2023 [1].

Another important aspect to consider, is the vehicular communication industry.

For sure in the next years, we will see an increasing number of vehicles will be

connected to some kinds of networks.

It is obvious that current networks and infrastructures are not suitable to handle

such number of devices that request a large variety of services and requirements.

It is evident that we need to develop new infrastructures capable of a self-

autonomous configuration to guarantee all the requested services and suitable

programmable platforms. This trend is also accompanied to the new 5G technologies

which enables hyperconnected-machines using massive machine-type and ultra-

reliable low latency communications.

This led to the concept of Industry 4.0, which can take advantage of the

integration of IoT devices into modern network technologies like Network Function

Virtualization (NFV) and Software Defined Networking (SDN).

One of the most important tasks of these new generation’s networks is to be self-

configurable in very low amount of time. This will be the scope of my research.

There is a huge variety of components and different technologies from different

manufacturers which need to communicate each other.

All these factors led Edge and Cloud Computing a part of the answer of all these

necessities. That’s why they are one of the most active areas of development. This

13

kind of solution bring some compute, storage and network capabilities in the user

premises allowing a local processing of the data without the need to reach the cloud.

There are lots of standardization bodies, such as ETSI, GSMA (and the previously

mentioned 3GPP) which are trying to do design the architecture of edge systems

which can handle and support all the characteristics previously mentioned.

NFV applies the Cloud Computing approach to the networking to make networks

scalable and adaptable. In this way it is possible to create a network that is

configurable in an automated way despite the big number of services and

applications that are requested. All the resources and capabilities are virtualized and

offered “as a service”.

After that this small introduction, it is clear that the transition to Industry 4.0 is

strictly related to the adoption and the development of these new technologies. In

this way IoT devices can benefit of high connectivity and processing in a full

automated environment using appropriate GUIs and platforms. This led to the

inception of an Industrial IoT as a Service (IIoTaaS) model.

The aim of this thesis is to try to reduce as much as possible the time that certain

networks require to be self-configured in an automatic way considering an IIoTaaS

scenario where a multitude of sensors using their own communication/transport

protocol, need to coexist inside it.

During this research, I used Open Source MANO, OpenStack and Kubernetes to

manage and orchestrate the setup of a certain network, trying to reduce as much as

possible the time needed to complete the task. In this way was possible to unify

under the same framework the orchestration fog and edge resources. In particular, the

framework used is compliant with the Multi-access Edge Computing (MEC) which

can bring all the functionalities offered by the MEC-based approach.

As result of this study shows that the automation setup and deployment of an

IIoTaaS environment is feasible. The whole task can be accomplished in tens of

seconds (always under 1 minute).

The document is structured as follows. Chapter 1 briefly illustrates the use of the

virtualization in modern technologies.

14

Chapter 2 has the role to introduce the Network Function Virtualization paradigm

and the architectural framework designed by ETSI.

Chapter 3 continues the illustration of the ETSI framework, introducing Open

Source MANO from the software point of view.

Chapter 4 is focused on a detailed explanation of an internal component of the

framework in question, which is called MEC Platform.

Chapter 5 is dedicated to the description of OpenStack, which is a software used

for the management of virtual machines.

Chapter 6 introduces the two transport protocols used in this thesis. They are

MQTT and OPC UA (with more emphasis on the latter). Chapter 7 then is dedicated

to a detailed and deep explanation of the OPC UA protocol.

In the end, Chapter 8 presents the activity that was carried out for the deployment

of the desired system, including all the testing and measurements carried. In the end,

conclusions are carried.

15

Capitolo 1

CHAPTER 1:

VIRTUALIZATION TECHNOLOGY IN MODERN

NETWORKS

As previously mentioned in the introduction section, the number of services that

are simultaneously running networks is increasing day by day. If we take into

consideration 5G networks, it is necessary to provide a huge number of services and

functionalities.

New networks implement a huge number of dedicated functionalities, which are

generally called network function or “middle-boxes”. A middlebox is defined as any

intermediary device performing functions other than the normal, standard functions

of an IP router on the datagram path between a source host and destination host [2].

In general, functions that are implemented inside middle boxes are:

• Security functions: Firewall, Intrusion Detection/Prevention Systems

(IDS/IPS).

• Performance functions: Proxy/Caches, WAN optimizers, Protocol

accelerators

This new kind of network architecture cannot be sustained by classical networks

where we use specialized hardware for all the functions that are needed. Nowadays

the continuous evolution on services, require a new model, where all resources and

capabilities are virtualized and offered “as a service” allocated on-demand through

the cloud.

16

Figure 1.1 : Example architecture VNF

To do that, some solutions like fog and edge computing are adopted. It this way is

possible to decentralize network resources in the premises of the final user. This is a

very power solution in an IIoTaaS scenario because allow to implement all the

requested functionalities.

In addition to this, 5G network slicing is an advanced approach that allow all the

features of remote monitoring and dynamic service allocation that are requested.

And here is where the concepts of NFV and SDN comes to our aid.

Network Function Virtualization (NFV) and Software Define Networking

(SDN) are two approaches that are based on the concept of network abstraction.

SDN → Separate network control functions from network forwarding functions.

It abstracts physical networking resources and moves decision making to a virtual

network control plane.

NFV → Abstract network forwarding and other networking functions from the

hardware on which it runs. As result, it virtualizes all physical network resources

beneath a hypervisor, which allows the network to grow without the addition of more

devices.

17

Even if the two paradigms are quite different, have a common final purpose that is

to make networks more flexible and dynamic allowing them to be adaptable to all

types of architectures and infrastructures.

Figure 1.2 : SDN/NFV/Cloud paradigm in comparison

An important aspect that Network Virtualization can provide, is the possibility do

deploy a huge number of services and functions without the need of specialized

hardware components.

All the middle-boxes previously mentioned are no more running on a specific

hardware but are running on a virtualized one. In this way there is no more the

problem to be restricted to a single vendor.

To clarify what I mean, I will consider an example:

Suppose a case where we have a network managed by a Cisco router. Cisco

provides specialized hardware that can perform in a very efficient way all the

functionalities that are requested. Suppose now that a new protocol is realised.

Unfortunately, we would be not able to use that protocol, because we are restricted

to the functionalities provided by the vendor Cisco. If we want to use that new

software, we need to wait that a new update form Cisco will add that new

functionality.

18

In this example is clear that if we choose a classic network infrastructure, we are

bounded to commands and functionalities that are defined by the vendor we choose.

If instead of using a specialized hardware, we would have chosen a general-

purpose hardware, we would have the possibility to virtualize the specific function

that is needed. In this way would be possible to use that new functionality as soon as

is realised.

From my point of view, this is the most important advantage that NFV can

provide. In old networks, VNF approach was not used. As consequence was used a

specialized hardware that execute all the services that are requested.

This approach cannot be used in modern networks. As previously mentioned, the

number of network services that are requested is increasing day by day. For this

reason, it is impossible to have a network infrastructure that has a specialized

hardware. In this case would be very difficult, if not impossible, to deploy a new

service that requires a certain hardware that is not present in that infrastructure.

NFV/SDN paradigm can solve all these problems because are able to provide:

• Possibility to virtualize every kind of hardware: Therefore, it is possible to

deploy every type of service resolving the need of a specialized hardware.

• Possibility of scalability: Allow to reconfigure and scale the network depending

by the traffic and services that are requested.

• Portability: Possibility to deploy network functions over heterogeneous hardware

architecture.

• Control and data plane are decoupled. → Applications and networks services see

the underlying physical infrastructure as an abstracted virtual entity.

• Network intelligence logically centralized.

• Management and Orchestration: Node control plane functions are directly

programmable.

19

1.1 Network Function Virtualization (NFV) Architecture

The concept of NFV is standardized by the European Telecommunications

Standards Institute (ETSI) [3].

The main goal of this concept is the possibility to make possible the dynamic

configuration of cloud environments. In this way networks can be adaptable and

reconfigured based on the current demand of services and user traffic.

There are several advantages that NFV can offers with respect to the classical

networks:

- Portability and Interoperability

- Performance

- Management and Orchestration

- Security

- Network stability

- Energy efficiency

- Adaptability, co-existence and integration with existing platforms

Figure 1.3: ETSI Architecture

As shown in Figure 1.3, there are some functional blocks in the NFV architecture.

20

1.2 Methods of Virtualization: VM, LXC, Docker, Kubernetes

In this section is presented a briefly introduction about all the different

virtualization technologies that are used for the purpose of this thesis.

One of the goals of modern software development is to keep several applications

running on the same host, but at the same time, each one isolated from the others.

This can be done by using Virtual machines or Linux containers.

1) Virtual machine (VM):

Require a lot of resources (memory and CPU). It is needed to virtualize both

kernel and hardware.

Is based on the Hypervisor-based virtualization.

Hypervisor is a process that is running in the host machine. Its job is to

separate OS and application from the hardware of the host.

This solution is widely used in supercomputer, where is necessary to run

multiple VMs simultaneously. All the VMs can utilize the CPU and memory

resources that are allocated for them, but at the same time are all independent

one from each other.

2) Container Based:

Are a very used solution nowadays.

Containers are piece of software that can be executed directly on the kernel of

the host. This means that is not required the virtualization of the hardware.

Only the virtualization of the OS is needed.

The two types of virtualizations that I have mentioned have the advantage to

allocate dynamically resources that are needed.

There are also some problems too:

Virtual machines → Require resources of virtualize Hardware and OS.

Containers → Require resources for the virtualization of the OS.

21

Here is where the Docker software can come to our aid. When the software is

launched, the Docker daemon can interact directly with the kernel host and allow the

interaction between the host machine and all the Docker containers that are running.

Docker → No need of virtualization of Hardware or OS.

The container is directly executed on the Kernel Host.

Hypervisor Container Docker

Table 1: Virtualization Technologies

22

1.3 Kubernetes

Kubernetes (K8s) is an open-source software designed for automating

deployment, scaling, and management of containerized applications [4].

To achieve this result, all the containers are organized into high-level logical units

which allow the management and control of them.

The main features which are guaranteed by the software are:

• Automated rollouts and rollbacks and Automatic bin packing:

K8s can monitor the current status of the application and perform some

configuration changes in real-time. Based on the resource requirement can

guarantee best-effort services. This feature is also denoted as horizontal

scaling.

• Storage orchestration

• Secret and configuration management (extensibility)

The application can scale, reconfigure or update the current configuration

without the need of building from scratch the entire application.

• IPv4 or IPv6 dual stack

• Self-healing

K8s can restarts containers that fail or in case there are other problems in

an automated way, without the need of advertise of the problem to the

client.

All these features are obtained by means of APIs which are accessible through the

bash with the command kubectl.

23

1.3.1 Kubernetes Architecture

Figure 1.3: Kubernetes architecture: Control Plane + Nodes

As shown in Figure 1.3, K8s architecture can be splitted into two different parts:

1) Control Plane (master node)

The control plane represents the core of the application. Inside it we can find

the master node which is responsible to control the entire status of the system

through different functional blocks:

• Kube-controller-manager: Is a daemon process which act as a

controller. In this way make possible to deploy the wanted

application.

• Cloud-controller-manager: Is responsible of interconnection

the cluster with the cloud provider’s API.

 Kube-api-server: Is the functional block responsible to manage

the REST API interface.

• Kube-scheduler: Depending by the nodes characteristic assign

to them all the tasks to be accomplished.

24

• Etcd: Is a sort of database which contains all the information

about the current state of the system.

2) Nodes/pods

K8s generic nodes are all the machines which are responsible to execute all

the tasks assigned by the master node. A single node is called pod. A pod can

be seen as instance that has some tasks to execute. To execute them, each node

has a runtime engine container what can be handled by some platform like

Docker or Open Container.

To make everything working, some processes are running inside each node:

Kubelet: Is a sort of daemon responsible of the interaction with the

master node. We can see it as a sort of agent which is responsible to

control that all the containers are running in the pod.

• Kube-proxy: Is a proxy responsible of the management of the traffic

between the internal network of cluster and all the external ones.

In this chapter is provided only a brief introduction to K8s. A further development of

this can be found in Section 3.10, when this software will be used in combination

with OSM.

25

1.4 Virtualized Network Functions (VNFs)

Are all the network functions that are virtualized through the utilization of

software components like Virtual Machines (VMs) or Containers. We have multiple

ways to do that. It is in fact possible that a VNF is deployed in a single VM or can be

composed by several software components called VNF Components (VNFC).

Through the interaction of these components, it is possible to obtain the wanted

function.

Figure 1.4: VNF Architecture [5]

We can also see that there are some interfaces that link all the VNFC that are

inside the VNF block with other functional blocks: EM, VNF Manager and NFVI

that will be descripted soon.

1.4.1 Element Manager (EM)

Is the entity that is responsible of the management of FCAPS (Fault,

Configuration, Accounting, Performance and Security) of the VNF:

26

-Fault: management of fault in the network function

-Configuration: Configuration of the network function by means of several

parameters

-Accounting: Tracking network utilization information, such that individual users,

departments, or business units can be appropriately billed or charged for

accounting purposes [6].

-Performance: collection of data regarding the performance of the network

function.

-Security: security management for the access to the configuration of the network

function.

1.4.2 Network Function Virtualization Infrastructure (NFVI)

This block represents the core of the entire infrastructure because it includes the

totality of all general-purpose hardware components that is used by the

infrastructure.

All the virtual components that are created run over this general-purpose

hardware.

From Figure 1.5 it is possible to see that there are three types of resources:

• Computer domain resource: It is subdivided into 3 other categories:

- Computing Hardware: In general, we have a COTS (Commercial

Off-The-shelf) hardware because as previously mentioned is

necessary to have a general-purpose hardware where is possible to

implement every kind of function.

- Storage Hardware: volumes of storage at either block or file-

system level

27

- Network Hardware: includes switching functions and links.

• Hypervisor Domain resources: Is the part related to the virtualization

process. Virtual compute and Virtual storage are classified inside this

category.

• Network domain resource: This includes Network hardware (physical

resources) and Virtual networking.

Figure 1.5: NFVI Infrastructure

It is clear that NFVI resources can be both virtualized and non-virtualized

resources.

Is defined NFVI Point of Presence (NFVI-PoP) a node that allocates some

resources that are needed for a certain VNF.

The allocation of those resources can be a complex task. To manage and

orchestrate all these operations there is a specific entity called NFV-MANO that will

be explained in the next section.

As already said in the introduction part, the NFVI has a very important role in the

process of virtualization. It is in fact able to provide to all those software components

28

of the VNFs to be decoupled from the hardware resources. As result, is possible to

ensure portability on different hardware platform. We can see it as a sort of IaaS

because has the possibility of delivering VNFs that support the actual services that

are provided by a Network Operator.

1.4.3 Operation Support system (OSS) and Business Support System (BSS)

Is the functional block that is in general used by vendors and telco operators for

the management of the entire system.

In particular, the OSS has the role of monitoring the Quality of Service (QoS)

while the BSS has a role related to the management of the commercial transaction’s

telco operator with its customers.

1.5 Physical Network Functions (PNFs)

In general, Physical Network Functions are implemented using a set of software

modules deployed on a dedicated hardware.

Nowadays the approach is moving in the direction of a cloud environment where

everything is based on cloud resources.

In this way is possible to offer scalability, security, and the possibility to upgrade the

PNF as soon as is needed.

1.6 Containerized Network Functions (CNFs)

In the previous section I have explained and analized what are the characteristics of

virtualization offered by containers.

As general case is possible to use containers as boxes inside which is possible to

deploy the wanted service.

We can use LXC or a software container manager like Docker or Kubernetes for the

deployment of the container.

29

In case is used Kubernetes, the NF that is created is called Kubernetes-based

Network Function (KNF).

30

Capitolo 2

CHAPTER 2:

NFV MANAGEMENT AND ORCHESTRATION

(MANO)

We have previously mentioned the NFVI. It is the entity that can guarantee the

decoupling of Network Function from the hardware infrastructure which they are usually

tight to. This process of decoupling imposed by NFV exposes a new set of entities

(VNFs) and a new set of relationships with the NFVI.

This process is quite complex because requires the collaboration of some functional

blocks described before. To handle the management and orchestration of all these

blocks, comes to our aid the NFV-MANO.

The NFV Management and Orchestration (NFV-MANO) is in charge of manage the

NFVI and orchestrate the allocation of resources needed by the Network Services and

VNFs. This functional-management block has all the components to coordinate all the

operations needed for the deployment of them.

NFVI → Manage and orchestrate virtualized and non-virtualized resources.

Virtualized resources are catalogued to be offered as abstracted services. They can be

distributed over multiple NFVI-PoPs and the management and orchestration. The

allocation and release of them is a dynamic process that is very complex and is done by

the VNF lifetime (explained in the next section).

VNFs → FCAPS and lifecycle management. This are essential tasks because provide

some monitor KPIs that are stored inside a monitor template and will be used for scaling

operations.

NS → Responsible for the Network Service lifecycle management (will be treated

soon)

31

2.1 NFV MANO architectural framework

The NVF Management and Orchestration (NFV-MANO) architectural framework

has the role to manage the NFVI and orchestrate the allocation of resources and

Network Functions requested for the deployment of Network Services and VNFs.

The decoupling imposed by NFV requires a new and different set of management

and orchestration functions.

The NFV MANO architectural framework identifies the following functional

blocks:

2.1.1 – Virtualised Infrastructure Manager (VIM)

The Virtualised Infrastructure Manager (VIM) is responsible for controlling and

managing the NFVI compute, storage and network resources, that are provided by an

operator.

All these resources are kept under the control of the VIM that manages their

virtualization using hypervisors and other network controllers.

 Some important aspects and functions are performed by the VIM:

• Manage and orchestrate the allocation of upgrade/release/reclamation of

NFVI resources.

• Control the assignment of the virtualised resources to the physical compute,

storage, networking resources.

• Supporting the management of VNF Forwarding Graphs.

• Managing the information related to hardware and software resources. In this

way it is possible to know in advance what will be the performances

provided.

• Management of the virtualised resource.

32

• Management of software images (add, delete, update, query, copy) as

requested by other NFV-MANO functional blocks (e.g. NFVO)

• Collection of performance and fault information (e.g. via notifications) of

hardware resources (compute, storage, and networking) software resources

(e.g. hypervisors), and virtualised resources (e.g. VMs);

2.1.2 – NFV Orchestrator (NFVO)

The NFVO is the entity that has the role of taking orchestration decisions over the

virtualization of all those resources that are under his authority. In general, has the

role of managing physical, computing, storage, and network resources.

The two main important functionalities that it performs are:

1) Lifecycle management of NSs, fulfilling the NS Orchestration functions.

This is done by the Network Service Orchestrator. The Resource

Orchestrator keeps under control of all the instances and resource that are

allocated for all the VNFs. In this way is possible to keep track of the

utilization of them but also manage their utilization.

2) Orchestration of NFVI resources across multiple VIMs. This is done by

the Resource Orchestrator (RO). An important functionality performed by

the Orchestrator is the deployment of the so-called Network Service

Descriptors (NSDs). A descriptor can be seen as a sort of catalogue where

are stored some information and characteristics regarding a specific NS.

(NSDs will be described in the next section).

These two functionalities that I reported above can summarize in an exhaustive

way the role of the NFVO.

33

All the functionalities and capabilities offered by the NFVO through the Network

Service Orchestrator are [7]:

• Management of NS deployment templates and VNF Packages (e.g., on-

boarding, validation).

• NS instantiation and NS instance lifecycle management, (e.g., update,

query, scaling, performance measurement, event collection and

correlation, termination).

• Management of the instantiation of VNF Managers (where applicable)

• Management of the instantiation of VNFs, in coordination with VNF

Managers.

• Validation and authorization of NFVI resource requests from VNF

Managers.

• Management of the integrity and visibility of the NS instances through

their lifecycle, and the relationship between the NS instances and the

VNF instances, using the NFV Instances repository.

• Management of the NS instances topology, (e.g., create, update, query,

delete VNF FGs).

• NS instances automation management.

• Policy management and evaluation for the NS instances and VNF

instances.

• Validation and authorization of NFVI resource requests from VNF

Managers.

34

• NFVI resource management across operator's Infrastructure Domains

including the distribution, reservation and allocation of NFVI resources to

NS instances and VNF instances by using an NFVI resources repository.

• Supporting the management of the relationship between the VNF

instances and the NFVI resources allocated to those VNF instances by

using NFVI Resources repository and information received from the

VIMs.

• Policy management and enforcement for the NS instances and VNF

instances (e.g., NFVI resources access control, reservation and/or

allocation policies, placement optimization based on affinity and/or anti-

affinity rules as well as geography and/or regulatory rules, resource usage,

etc).

• Collect usage information of NFVI resources by VNF instances or groups

of VNF instances, for example, by collecting information about the

quantity of NFVI resources consumed via NFVI interfaces and then

correlating NFVI usage records to VNF instances.

All these functionalities provided by the Resource Orchestrator allow to the

NFVO to perform correctly all the tasks required. In particular the NFVO services

are used to support the access to the NFVI resources in an abstracted manner

independently of any VIMs, as well as governance of VNF instances sharing

resources of the NFVI infrastructure.

35

2.1.3 – VNF Manager (VNFM)

The VNFM is the functional entity that has the role to manages lifecycle

management of VNF instances. To each instance is associated a VNF Manager that

perform some important functions:

• VNF instantiation

• VNF instantiation feasibility checking.

• VNF instance software update/upgrade.

• VNF instance modification.

• VNF instance scaling out/in and up/down.

• VNF instance-related collection of NFVI performance measurement results and

faults/events information.

• VNF instance assisted or automated healing.

• VNF instance termination.

• VNF lifecycle management change notification.

• Management of the integrity of the VNF instance through its lifecycle.

All these instances for the management of the lifecycle are specified and

contained inside a template called Virtualized Network Function Descriptor (VNFD).

All the VNFDs are stored inside the NFV catalogue. NFV-MANO uses a VNFD

to create instances of the VNF it represents and also to manage the lifecycle of those

instances.

The NFVO is a very important function block because through the information

that are stored inside the templates VNFDs can guarantee the flexible deployment

and portability of VNF instances on multi-vendor and diverse NFVI environments.

To do that, hardware resources need to be properly abstracted, and this is done by

creating the proper VNFDs.

36

2.2 NFV-MANO data repositories

From Figure 2.1 is shown that there are four types of data repositories:

1) NS Catalogue:

It is a sort of repository that store all the on-boarded network services and is

used during the creation and management of the deployment templates (will

be described on section 2.3).

2) VNF Catalogue:

It is a sort of repository that store all the on-boarded VNF Packages.

3) NFV instances Repository:

Holds information of all VNF instances and Network Service instances. For

each Network service we have a different record that is updated during its

lifecycle to have a full description of the actual status of all the NS that are

currently offered.

4) NFVI Resources Repository:

Contains all the information about all the NFVI resources (available or

reserved or allocated). NFVI Resources Repository has a fundamental role

because through the cooperation with the NFVO can track the

reservation/allocation of NFVI resources.

37

Figure 2.1: NFV-MANO Architecture

We can also identify some reference points that can be seen as interfaces that

interconnect two different blocks of the structure.

- Os-Ma-nfvo, interface between OSS/BSS and NFVO

- Ve-Vnfm-em, interface between EM and VNFM

- Ve-Vnfm-vnf, interface between VNF and VNFM

- Nf-Vi, interface between NFVI and VIM

- Or-Vnfm, interface between NFVO and VNFM

- Or-Vi, interface between NFVO and VIM

- Vi-Vnfm, interface between VIM and VNFM

2.3 MANO Descriptors

All the services that need to be deployed by the vendor operator need to be described

in some way.

The description of a NS is done though some specific elements:

• Virtualised Network Function Descriptor (VNFD):

38

It is a sort of index-template that contains all the references to all other

descriptors which describe components that are part of that Network Service.

It is stored inside the VNF catalogue.

• Physical Network Function Descriptor (PNFD):

Describes all the resources and connectivity information that are necessary

for the interconnection between a Virtual Link (VL) and a Physical Network

Function (PNF)

• Virtual Link Descriptor (VLD):

It is a template that describes resource requirements of a virtual link. All these

information is used by the NFVO to correctly orchestrate all the other

functional blocks in order to satisfy them.

• VNF Forwarding Graph Descriptor (VNFFGD):

It is a description of the Network Service that we want to implement. It

contains all the references to the VNFs and PNFs and Virtual Links that

connect them.

• Network Service Descriptor (NSD):

The Network Service Descriptor is a template file, that contains all the

information and parameters used by the Orchestrator (NFVO) for deploying

network services [8].

It can be seen as a sort of container or index that keeps all the data of the

other descriptors. Also provides a description of some components that are

part of the Network Service. Through the NSDs the NFVO can handle the life

cycle management of a Network Service.

2.4 Forwarding Graph

Each network service can be represented in a schematic way using a VNF

Forwarding Graph (VNF-FG).

39

This means that a NF can be fully described through this abstract representation that

defines the sequence of VNFs, PNFs and the set of logical and virtual links (VLs)

that a certain packet has to traverse in order to make possible the wanted service.

Figure 2.2: Example of a Forwarding Graph [9]

To summarize, a Forwarding Graph can give some information to the service

provider that is working to develop the NS and understand how the traffic is flowing

inside the network.

Some Network Forwarding Paths (NFPs) can be identified and be used to forward

the packet to the correct interface depending by the service that we are considering.

40

Figure 2.3: Network Service Descriptor elements

At the end of the day, we can state that a NS can be seen as an interconnection of

multiple Network Functions arranged as a set of functions with unspecified

connectivity between them or according to one or more forwarding graphs.

41

Capitolo 3

CHAPTER 3:

OPEN SOURCE MANO (OSM)

As previous mentioned, management and orchestration are essential elements in a

network deployment. There is huge number of different services that Industries want

to deploy and a big number of vendors providing different VNFs.

For this reason, is very important to find a way to combine all these different

VNFs and “hope that everything will work fine”. Even if we have all the VNF

descriptors, is difficult to predict what would be the integration of different VNFs

under the same network.

The reason of that is because VNF descriptors are only a theoretical description of

a certain service and does not represent the complexity of the real environment.

Figure 3.1: ETSI Architecture Services and Vendors

42

The problem of the approach “hoping that everything will work fine” cannot be

applied in all the application domains.

If we consider the case of a vehicle communication domain, we must be sure that

the network will be stable and working as expected. In that domain, network

operators and engineers have people’s life in their hand.

Here is where OMS software shows it’s potential. In fact, is capable to enable an

eco-system where different VNF vendors can offer their service and apply it to

different network infrastructures.

Open-Source MANO (OSM) is an open-source management and orchestration

(MANO) platform aligned with the ETSI NFV specifications [10].

As shown in Figure 3.1, the OSM architecture is responsible of the orchestration

of the NFVO and VNFM.

The VIM instead is out of the focus of this functional block. This because it

already exists a certain number of existing management infrastructures like ONOS or

OpenStack that are specialized over the VIM functionalities.

The OSM software can be described by means three different software

components:

1) Resource Orchestrator (RO):

Acts as NFVO as described for the MANO architecture. It is responsible of

the orchestration of resources and is composed by some software python

scripts.

It is possible to interact with this software component by means of the

NorthBound Interface (NBI), by using some specific APIs [11].

2) VNF Configuration and Abstraction (VCA):

Is responsible of the lifecycle management of the VNF and manage them in

real time, like the VNF Manager in the MANO framework. To do that is

required the Juju software that has the role to concentrate all the resources

needed for the deployment of the VNF in a single application.

Juju Software will be treated in a next section.

43

3) Service Orchestrator (SO):

Is responsible of the correct functioning of the VCA and RO, but also other

important functions. In fact, can control the interaction between JUJU and

RO.

In addition, provides a GUI for the entire management of the whole OSM

framework.

OSM is an open software that offers a well-known Information Model (IM) aligned

with standard ETSI NFV SOL006 that can be used to model all the Network Services

required by operators without worrying of the virtualization of resources and the

underlying structure. SOL006 is described through YANG models.

YANG is a data model language that is used to define entities and their structure, but

also how all those entities relate each other.

The YANG model is defined by standard, but it is possible to add new features that

are not yet present in the standard (augment as shown in Figure 3.3).

Figure 3.2: YANG model

At the end of the day, through this software is possible to define which entities exist

within the NFV domain and how to relate them to create descriptors for the

deployment of the Network Service we want to implement.

44

Through these entities is possible the management and the automation of the entire

lifecycle of NF or NS or Network Slices.

A Network Slice (NSI) can be seen as an aggregation of Network Service. This is an

independent entity that can be deployed repeatedly. This means that the same slice

can deployed multiple times choosing the NSs contained inside every slice.

3.1 Network Service Lifecycle

During the deployment and cycle of Network Service, we can identify a series of

common steps that need to be followed to properly accomplish the task.

We can call lifecycles of a VNF all the steps that allow to the VNF to be instantiated,

managed, scaled up or down, and terminated when is no more needed.

As previously mentioned inside the MANO framework there are some functional

blocks that work together for the correct deployment of the VNF.

• NFVO → Responsible of the VNF Orchestration but also controls the

management of the VNF Manager.

• VIM → Is responsible of the management of the virtualized network

resources.

 The VNF lifecycle is not controlled by a single functional block but involve many of

them. To enter more in details, the validation of the VNF Lifecyle is a complex work

made mainly through the collaboration of the NFVI, NFVM and the NFV Function.

This process is essential in the efficiency of the Network Service. If all the steps are

done correctly, we can reduce a lot the time for the deployment of certain services.

To do that, some validation steps are performed to achieve the best performance for

the setup of the service.

The MANO framework performs some evaluation tests that can be seen as a sort of

benchmark tests. In this way is possible to evaluate what are the actual performance

offered in terms of features and scalability that are provided by the NFV.

45

Figure 3.3: VNF Lifecycle

3.1.1 Setup and configuration of a VNF

Figure 3.4: VNF Configuration [13]

The aim of the OSM is to take a Network vendor software and break it down into a

series of descriptors written in SOL006 code. Through them is possible to model the

wanted service and make it manageable (Day 0).

The service so far created can be located somewhere in the network. In the moment

the service is launched, provides some base functionalities (Day 1).

The service so far create can be modelled and scaled in a horizontal way by adding

new instances to that service (Day 2).

The setup of a VNF is based on some packages called Charms.

46

A Charms can be seen as book containing some information and pieces of software.

Some useful and well-known scripts can be stored inside them [13].

This means that they are quite useful when we want to implement a certain

application. By looking at them we could find some useful information for the

implementation of the NS. The aggregation of multiple charms is called Bundle.

The concepts of Charms and Bundle will be treated in section 3.3.

The OSM platform is based on this concept for the deployment of network services.

To do that, are used three types of software. They are called Juju and Cloud-init and

Charms.

3.2 Cloud Init

Cloud-init is developed and released as free software under the GPLv3 open-

source license. It was originally designed for the Ubuntu distribution of Linux in

Amazon EC2 but is now supported on many Linux and UNIX distributions [15].

This software is used for the execution of scripts that can be uploaded un the

cloud before the deployment of a service or virtual machine.

In particular, it is possible to identify three different types of scripts:

• Cloud config (used in OSM)

• Script shell

• Text only

Those scripts are executed in the beginning of the deployment of the VNF.

The cloud image that needs to be used by the VNF and initialize the system based

on that.

The cloud-init scripts can execute some actions:

• Configure the users and hosts.

• Configure ssh keys.

• Create passwords.

• Add repository.

47

3.3 Charms

A charm is a collection of scripts and metadata that contains all the data and

knowledge about a particular software product. Charms make it easy to reliably and

repeatedly deploy applications, then scale them as required with minimal effort [16].

In the OSM system, charms are used for the deployment of cloud resources.

There are some important concepts related to the software that are: Cloud,

Container, Controller, Model, Bundle and Machine [17].

3.3.1 Cloud

 Is the term that identify all those resources (machines, instances, and storage) that

are used for the deployment of the wanted NVF. As mentioned before, it is the

component that classify Juju as IaaS like other cloud services such as AWS,

Microsoft Azure, OpenStack-based cloud.

3.3.2 Container

Is not a keyword inside the Juju concept. It is used to refer an LXD-based

machine.

3.3.3 Controller

The Juju controller is responsible of the initial creation of the cloud instance.

Through the use of APIs can manage and control all the cloud resources that are

needed. Juju controller will be explained more in detail in a next section.

3.3.4 Model

 Is a sort of virtual space where all the cloud resources requested by the controller

are allocated. It can be seen as a sort of VM. All the resources that are allocated for a

specific controller are isolated form the others.

48

Figure 3.5: Collection of Charms

3.3.5 Bundle

A bundle is a collection of different charms that offer different services that are

complementary each other and can be linked together to deploy the NS wanted with

all the functionalities required.

3.3.6 Machine

Represents the cloud instance that is requested by Juju.

49

3.4 Types of charms

We can identify two types of charms depending by the type of workload that is

requested by the service:

• Native Charm: Are much easier to be implemented. Only the Juju

controller (that will be explained in the next section) is hosted inside the

OSM host. In this case the Charm is running directly inside the VM.

• Proxy Charms: The OSM host contains both the Juju controller and the

charm. All the complex code is running inside the OMS host and is sent to

the targeted VM (in this case managed by OpenStack VIM) by means of

ssh.

 They run outside the application like in a specific LXC container that can

be configure depending by the VNFs that we want to obtain. This is a very

powerful solution because enables the possibility of configuration

properties to PNFs and HNFs.

Figure 3.6: Differences between Proxy Charms and Native Charms

50

A proxy charms can be seen as a layered structure like the ISO/OSI layer

structure. Each layer adds new functionalities underneath ones.

Figure 3.7: Example of layers contained in a Charm [18].

To enter more in detail, there some basic layers that are common in all the

charms:

- Basic layer → Contains the core needed for other layers for function

properly.

-

- Vnfproxy → Imports the required functions to run actions in the VNF via

SSH. This layer has been designed to aid in the development of proxy

charms.

- Metrics → Imports the required functions to get metrics from the VNF.

- RESTAPI → Imports the required functions to run actions in the VNF via

REST API.

- Netconf → imports the required functions to run actions in the VNF via

Netconf primitives.

51

To deploy a NS could be necessary to use multiple Charms. By interconnecting

multiple Charms and allow them to interoperate each other is possible to obtain the

wanted functionality.

As shown in Figure 3.9, each charm offers one or more matching integration points

which are used to interconnect two different charms and exchange data and

information.

Figure 3.8: Interconnection between Charms

52

3.5 JUJU

Juju is an open-source application developed by Canonical. It is used as modelling

tool for the deployment, configuration, scaling and operates cloud infrastructures

quickly and efficiently on public clouds such as AWS, GCE, and Azure along with

private ones such as MAAS, OpenStack, and vSphere [19].

Its role in the OSM ecosystem is to manage and orchestrate cloud resources. To

compare it with other existing technologies, can be classified as an IaaS like in

OpenStack.

To understand better what the role of Juju is, is betted to define first what are the

modules that we can find inside the Juju architecture:

• Juju Deployer/Controller → Allows to interact with the cloud software

through some APIs.

• Juju CLI → Is the command line interface that allow to access and interact

with the Controller.

Figure 3.9: Juju architecture

• Juju GUI → Is the same concept of the Juju CLI but in this case the software

also provides a graphical interface with some useful tools.

• Juju State Server → It is the entity in charge of the management of the data

that is uploaded on the cloud by the software.

53

• Charm Store → It is a sort of repository where preconfigured bundles and

scripts can be downloaded and used.

• Juju Agent → It is a software that is execute inside every Juju machine and

operate at the application level. Usually is responsible of tracking state

changes, respond to those changes, and pass updated information back to the

controller.

Figure 3.10: Example Juju

Represented in Figure 3.11, there is an example of the deployment of an IaaS

service. The Controller send all the instructions to the State Server that download

from the cloud (Charm Store) the platform needed.

Alter that, it is possible to instantiate 4 Virtual Machines that are running Ubuntu

as OS.

3.5.1 Juju controller

The Juju Controller is a core component inside the OSM architecture because can

be seen as a lifecycle manager.

The VCA functional block is represented by the Juju Controller which deploy all

the Charms and actions that are needed.

54

3.6 Juju and Proxy Charms

Referred to the OSM ecosystem, Juju software act as an orchestrator. Through the

data and functionalities that are described inside Charms, can manage the VNF in

terms of configuration and life-cycle management. All the resources that are needed

for a certain VNF are managed by this application. This means that for what concern

the MANO framework, all functionalities of the VNF Manager and Element

Manager are provided by Juju.

Only instantiation and termination operations are not controlled by it.

This software is installed inside the VCA module as shown in Figure 3.12.

Figure 3.11: Deployment of a VNF through Juju and Proxy Charms

All the Charms are supported by the Juju software.

Charms can be seen as a piece of codes to be executed to setup a certain service

required by a vendor operator.

In the real applications, both Proxy and Native Charms are used.

In case we want to develop a PNF, the operator code cannot be inside the NF. In

this case is necessary to use Proxy Charms that are running outside the actual NF.

55

Figure 3.12: Implementation using Proxy and Native Charms

In case we want to deploy a VNF we can use both approach:

• In case the VNF is already configure with the software it needs, is possible

to operate using Proxy Charms. By means of APIs offered by the VNF is

possible to execute the wanted functionalities from outside.

• In case the code of the operator is in the same VNF is possible to operate

by means of Native Charms.

In general, charms are installed into a container that is responsible for day-1 and

day-2 configuration. These actions are typically executed remotely via ssh.

All the commands and steps that are needed for the deployment of the VNF are

transformed into Juju actions.

Juju actions are the set of scripts and commands that need to be executed to

provide the wanted service.

OSM primitives are Charm Action scripts. Each primitive is a charm action script

that produce an output given some parameters in input.

Generally speaking, the functioning of Juju Actions is similar to that one of a

software automation tools (like Ansible). In the case of Juju all the action parameters

are defined inside a YAML file called action.yaml.

56

The following primitives represents Charm actions scripts:

• actions: list actions defined for a service.

• run-action: queue an action for execution

• show-action-output : show output of an action by ID

• show-action-status : show status of all actions filtered by optional ID

• Backup

• Monitor

• Debug

• Add users, policies, rules, etc.

• Manage certificates, keys, etc.

• Rotate logs.

Figure 3.13: OSM workflow for the deployment of a VNF [20]

In Figure 3.14 is shown an example of how a proxy charm fits into the OSM

workflow:

• A VNF package is instantiated via the LCM.

• The LCM requests a virtual machine from the RO.

• The RO instantiates a VM with your VNF image.

• The LCM instructs N2VC, using the VCA, to deploy a VNF proxy charm and

tells it how to access your VM (hostname, username, and password).

57

3.7 Virtualized Network Function Descriptor (VNFD)

In the previous chapter I have discussed about the role of Descriptors.

Now I want to examine more in detail what is the role of the VNFD in the OSM

architecture.

Generally speaking, a VNFD is a component that has inside:

- Metadata

- Charms

The integration between these two, allow the definition of some actions and

primitives.

Figure 3.14: VNFD Structure

Inside the metadata are contained all the description of the network service like

connection points, VDUs etc.

Inside charms instead is contained all the code for the real deployment of the NF.

Primitive are actions exposed by the operator. In other world, OSM primitives are

actions exposed by the Charm.

58

3.8 VNF Workflow

Juju and cloud-init software have to work together for the management of the

VNF configuration.

Figure 3.15: VNF steps

Starting from the VNF Package (which contains all the details of the service that

we want to deploy), the main steps that we have to follow are:

0. Onboarding Requirements

1. Day 0: VNF Instantiation & management setup

2. Day 1: VNF Services initialization

3. Day 2: VNF Runtime operations

4. Termination

3.8.1 On-boarding

In this stage we have the validation of the descriptors of the NS. If they pass the

validation of the OSM dashboard, it means that they can be used for the deployment

of the service ad are added to the OSM catalogue.

As previous mentioned, for each NS we need two descriptor packages:

-VNFD packages

-NSD packages

59

3.8.2 Day 0

At this phase we have a first initialization of all the VNFs. By using all the

packages that are stored in the catalogue during the on-boarding phase, it is possible

to create an initial configuration for the VNF. All these configurations are used by

the VDUs for the first deployment of the VNFs.

All the cloud-init scripts, functions and parameters that are needed for the

deployment of the service that is described inside the descriptors are aggregated.

At this step, the VNFs that are created do not correspond to the final one. They are

just a “first release” that will be modified in the following steps. All functions and

scripts identified by the cloud-init software can be changed or adapted in later stages

by different infrastructures.

Just for completeness, I want to mention that in the last release of OSM, native

Charms can be used during the Day-0 configuration replacing the cloud-init scripts.

3.8.2.1 Requirements

In all these stages we have some minimum requirements that need to be satisfied.

Not all the NSs require the same amount of resources. Depending by the VNF that

we need for the realization of the NS, we need some physical and hardware resources

that must be present in the infrastructure.

Figure 3.16: VNF Requirements

In Figure 3.17 is reported an example that shows the definition of requirements of

different VDUs (VDU is main function of every VNF component).

60

3.8.3 Day 1

In this phase we have the first real deployment of the service. At the end of this

stage, all the services defined inside the VNF are automatically initialized.

All the steps that are necessary to do that, are defined inside a proxy Charm that

need to be properly created for the scope in a Linux machine. In this way it is

possible to provide all the steps and instructions that are needed for the creation of

the VNFs that are required by the NS.

As example some actions that can be install packages, edit config files, execute

commands, etc.

At the end of this step the machine is configured for providing services

3.8.3.1 Requirements

At this stage, requirements are:

- Identifying dependencies between components.

- Defining the required configuration for service initialization.

- Identifying the need for instantiation parameters: Non all the parameters have

the same importance. Some of them are more important than others and can be

requested immediately during the Day-1 phase, while others can be requested

after. For this reason, it is important to identify those parameters that are require

immediately for the instantiation of the service.

61

3.8.4 Day 2

The scope of this phase is to provide all the elements and components in the VNF

package to allow the re-configuration of the VNF. In this way its behaviour can be

modified during runtime, being able to monitor its main KPIs, and running scaling or

other closed-loop operations over it.

To achieve that level or runtime reconfigurability, the OSM platform creates a

Proxy Charms and include it in the descriptor.

Some on demand actions are performed like dump logs, backup mysql database,

etc.

3.8.4.1 Requirements

At this stage, requirements are:

• Identifying dependencies between components: It is necessary to identify

if a certain VNF component need to access to a specific parameter that is

coming from another component. This is essential to understand what is

the correct workflow that permit the runtime operations.

• Defining all possible configurations for runtime operations

• Defining KPIs: some relevant metrics need to be collected.

Some examples of them could be:

- Metrics collected from the VIM/NFVI:

o CPU Usage.

o Memory Usage.

o Network activity indicators like bandwidth usage or packet

drop rate.

- Metrics collected from the VNF/RM:

o Active users.

o Size of the database.

o Application status.

62

3.8.5 Termination

This is the last step on the Network Service lifecycle. All the resources that were

allocated by the VIM are freed (both virtual and hardware resources).

Figure 3.17: Example MySQL Day-1 and Day-2 [21]

63

3.9 OSM Primitives for PNFs

Before proceeding to the Primitive concept is necessary to analyse more in detail

the difference between PNF and VNF.

PNF → Is a fixed asset and it is not possible to manage the lifecycle. We can

define it as a high-cost unit.

An example of a PNFs are all the purpose build appliances, like a firewall. When

you need a firewall in your network, you order it and the vendor that produce it will

ship to you a piece of hardware with the software already installed on it. In this case

it is not possible to have the control over that software. It is only possible to interact

with the firewall by using a set of APIs which are defined by the vendor.

VNF → We can define it as a low-cost unit. OSM can create and destroy a VNF

on demand. In this way it is possible to make VNFs recyclable. It is possible to

instantiate VNFs depending by the service required or by the overload state of the

network.

There is another category which is called Hybrid Network Function (HNF) which

is the composition of both physical and virtual elements.

After having analysed the difference between PNF and VNF, a question naturally

arises: Does a PNF always mean pure Bare Metal?

If we remain stick to what is written above, the answer could seem yes.

That is not completely true.

A PNF is a network function that is tightly coupled between the software and the

hardware that it's running on.

It is a fixed function that is executed over a specialized hardware but there can be the

possibility that the PNF is a Virtual Machine.

This means that a PNF can be seen as black box that is executed in a VM without the

possibility to have any lifecycle control over it.

64

As stated before, the trend today is to try to visualize as much as possible all the

network infrastructure, but we have to consider also the real-world scenario that

could be messy and crowded.

There can be some situations where the ability of orchestration the full lifecycle of

the PNF is unwanted.

To clarify what I mean, I’ll make an example.

We take as reference a company that is quite small and has an internal network that

is composed by a server and some hosts interconnected. This company requires a

firewall which can protect the exchange the access and the exchange of data between

the internal network and the rest of the IT network.

In this case the company is quite small and does not want to use OSM to manage the

entire lifecycle of the Virtual Firewall with the risk of creating a second instance of it

and perhaps mess up network firewall rules which were previously carefully defined.

This is an example just to make understand that PNFs can be Network appliances

and can be executed over VMs.

Now that we have analysed the PNFs in detail, a new question arises: VNFs are

always a VNF or a Container?

The answer is NO. VNF does not always mean running in VM or a Container.

Inside OpenStack (a software which will be treated in a next Chapter) there is a

functional block called Ironic which takes bare-metal servers which are previously

commissioned (can be seen as black boxes) and it exposes them to OpenStack as if

they were VMs.

From an external point of view, it looks like a VM. Actually, Ironic is taking the

image that was stored in OpenStack and copy it to the physical disk and boot the bare

metal server based on that image.

The bare metal server can be seen as a sort of VM but is running it without a

hypervisor.

65

At the end of the day, is possible to understand that real world networks are messy.

It is possible to have VMs running on bare metal, but also PFNs running in

virtualized environments.

• In a PNF the software is already installed.

• In a VNF OSM has the role to install the software in a new VM that is created

on demand for that software to live with it on runtime.

The role of OSM is to manage this complexity. From the point of view of OSM,

there are no difference between VNF, or PNF or HNF.

Now that we have understood what the real difference between VNF is and PNF is

possible to analyse more in detail how OSM manage the lifecycle of PNFs.

When OSM need to create a PNF it simply creates a model (execution environment)

of the network service. After launching the model which represent the PNF, we can

communicate with it as if it were a VM that OSM launched.

This execution environment could be in LXC Container or Kubernetes pod. Inside

this environment the proxy code is injected. This code can communicate with the

PNF.

This approach is simply building up an environment where the code can act over the

PNF but keeping it pure without any modification.

66

3.10 The role of Kubernetes inside OSM

Kubernetes can be seen as a system which provide some APIs which can be used

for the management of the lifecycle of NFs.

Those APIs can be seen as a high-level service’s objects which are modelled with

K8s manifest files in YAML format. Those objects can be quite complex, and it is

common the creation of packages which contain all the necessary software.

Two types of package format can be present:

• Helm Charts: Indirect call to the K8s API via helm

• Juju charms and Bundles: Indirect call to the K8s API via Juju.

The major functionalities offered by these high-level object components can be:

• Pod sets: Deployment of containers (called Pod in K8s) either stateless or

stateful.

• Services: ClusterIP. NodePort, LoadBalancer

• Storage of persistent volumes.

Figure 3.18: K8s APIs

67

From the Figure 3.19, it is possible to see that in the K8s architecture there can be

some Master nodes which offer the APIs previously mentioned.

There are also a set of nodes (workers) which are running in the workload, like

containers.

To run a service on K8s is necessary to run a K8s Cluster which can created in

different ways:

• Standalone: Using some specific software like OpenShift, Charmed K8s or

Ericsson CCD.

• Public cloud: Is possible to use the APIs of a public cloud like AWS or

VMware Cloud PKS to deploy a cluster.

• Can run over a Bare Metal or in VMs running in a VIM.

After the cluster is created, independently by the way it is done, it provides all the

K8s APIs. The full catalogue of K8s objects is entirely incorporated.

• All the Helm Charts are stable applications that are ready to be used.

• Juju bundles are widely used for inter-object configuration.

In OSM there are different kind of deployment unit which are used for the

composition of the wanted Network Function:

• Virtual Deployment Unit (VDU): Are VMs

• Physical Deployment Unit (PDU): Are Physical nodes

• Kubernetes Deployment Unit (KDU): Are K8s applications.

K8s, like OSM is a model-driven platform. To be used and configured, are necessary

some files or descriptors which contains all the data and steps necessary for the

deployment of the K8s applications.

Inside each descriptor, there are some sections where is possible to define some

fields related to the network function.

In general, a network function can require:

• KDUs that are based on helm charts or juju bundles.

• K8s cluster requirements

• Link cluster networks to external connection points

68

All the OSM lifecycle operations can be done also by K8s applications as shown in

Table 2.

OSM operations K8s

NS instantiate Install

NS primitive Update and rollback

NS termination Delete

Table 2 : Translation OSM primitives

3.10.1 Association of K8s cluster to a VIM

Every time we deploy a Network Function or a Network Service, we need to specify

the VIM where they are going to be deployed.

To do that we can have two possibilities:

1) The K8s cluster is running inside the VIM itself, as shown in Figure 3.20.

2) The K8s cluster is outside the VIM. In this case all the nodes are

interconnected though an external network to the VIM, as shown in Figure

3.21.

Figure 3.19: K8s cluster inside the VIM

Figure 3.20: K8s cluster outside the VIM

69

3.10.2 Helm charts

Kubernetes uses the helm-chart concept to manage and deploy applications.

Helm a package manager for K8s applications which uses a package format called

Charts.

A Helm-chart is a packaged format for deploying of K8s applications.

All the packages that are available for K8s applications are stored inside some

repositories. The most used repositories are called Stable, Incubator and Bitnami.

All the updated repositories can be found at [22].

Figure 3.21: Helm chart file structure

Figure 3.22 reports all the structure of an Helm Chart.

There are some fields inside the structure that are important:

• Chart.yaml: is a sort of README file that contains all the information about

the Helm Chart.

• Values.yaml: contains all the values of the variable that are needed for the

correct deployment of the application. Those values can be updated to create

real-time changes inside the application.

• Templates: is a directory that is necessary for the creation of the K8s

manifest file.

70

3.11 Summary OSM and concepts

In this chapter were introduced many concepts and arguments. This final section

contains a sort of summary of how the OSM platform works.

Figure 3.22: OSM packages

OSM provides a platform to create Naas and to manage them.

From this platform, we can create Network Functions or Network Services or

Network Slices by aggregating multiple NSs.

To achieve this result there are some files, called packages, which contains all the

information and resource descriptors (written in YANG language – SOL006) about

the three services previously mentioned: NSs, NFs and NSI.

This the reason why OSM is called model-driven platform. It allows to make VNFs

and NSs as portable and reusable as possible.

Those packages are provided by the vendor and fully described the function:

• Topology

• Parameters

• Actions for Day-0, Day-1, Day-2.

71

All packages just describe the service from a functional point of view. They do

not care about the target infrastructure or the hardware components on the top if

it they would be deployed.

Thanks to a set of VIM connectors, OSM can deploy the device described in the

descriptors inside a NFVI. This phase is called instantiation and deployment of the

services.

Figure 3.23: OSM actions and procedures

In addition to the information contained in the packages, OSM require some actions

to be performed over the VNFs that are instantiated. All these actions are performed

by means of Charms.

This is almost all the theory that is behind the OSM model.

During the development phase of a Network Service, we can identify 3 different

stages:

1) Design time

Is the stage where are build all the NF and NS descriptors, but also all Day-1

and Day-2 logic to complete all the packages.

72

2) Provisioning time

Is where the onboarding happens. All the packages are onboarded into the

OSM platform.

3) Run Time

Is the time where being possible to see in action the VNFs and NSs.

Two phases can be identified:

• Instantiation: Is the phase where is required the choice in which VIM

to deploy the NS and which instantiation parameters to use.

All these tasks are performed by Day-0 and Day-1 operations.

o Day-0: Is the minimal configuration that allow to a VNF to be

reachable through a management interface.

o Day-1: Action that are done once the NF is reachable.

• Operation phase (Day-2)

Figure 3.24: Example modelling a NF through a NF package

3.11.1 Modelling NFs though packages

As previously mentioned, a package contains all the information for the correct

deployment of the NS or NF.

A NF package is mainly composed by two elements:

1) Descriptors: are written in YAML

73

2) Other files:

• Charms

• KDU objects: Juju bundles and helm chart

• Day-0 configuration files for cloud-init

• Checksums

An example of that structure is represented in Figure 3.25.

74

Capitolo 4

CHAPTER 4:

MEC PLATFORM

In the previous chapters I have introduced the principal concepts of the NFV and

MANO frameworks.

In this chapter is presented the Multi-access Edge Computing (MEC) concept. It can

be one of the possible solutions that allow to achieve the requirements previously

mentioned.

MEC initiative is an Industry Specification Group (ISG) within ETSI and can offer

application developers and content providers cloud-computing capabilities and an IT

service environment at the edge of the network.

In this thesis, MEC platform functionalities are used with the aim of unifying the

orchestration of heterogeneous fog and edge resources. In this way all the advantages

of a MEC-based solutions can be used for the development and the deployment of

IIoTaaS applications.

75

4.1 Introduction

The MEC Platform is an environment where MEC applications can register and

advertise their services.

It can be seen as a DNS proxy/server that contains all the endpoints of all the MEC

applications that has registered their services.

The platform can also advertise and offer MEC services to other MEC applications

that request endpoint information how to reach certain services that were previously

registered to it.

All the reference points between the MEC platform and the MEC applications, as

defined in ETSI GS MEC 003 [23].

Some of the most import functions that are implanted by the platform are:

• MEC service assistance:

- Authentication and authorization of producing and consuming

MEC services.

- A means for service producing MEC applications to

register/deregister towards the MEC platform the MEC services

they provide, and to update the MEC platform about changes of the

MEC service availability.

- A means to notify the changes of the MEC service availability to

the relevant MEC application.

- discovery of available MEC services.

• MEC application assistance:

- MEC application start-up procedure.

- MEC application graceful termination/stop.

• Traffic routing: traffic rules update, activation, deactivation.

• DNS rules: DNS rules activation and deactivation.

76

• Timing: provides access to time-of-day information.

• Transport information: provides information about available transports.

4.2 Multi-access Edge Computing framework

Multi-access Edge Computing is the software entity that allow to all the MEC

applications to run over a virtualized infrastructure.

Figure 4.1: MEC system reference architecture

In Figure 4.1 is represented the MEC framework. All the entities can be grouped into

two groups: System level and Host level.

Inside those two levels, there are some functional blocks that I’ll briefly comment

how they are organized from the architectural point of view, because some of them

are already described in Chapter 1 and Chapter 2.

77

4.2.1 System level

• Multi-access Edge orchestrator (MEAO): is the core of the entire MEC

system level because is responsible to maintain an overall view of the

MEC system.

Relies on the NFV Orchestrator (NFVO) for resource orchestration and for

management of the set of MEC application.

In particular, the main functionalities of it are:

o On-boarding of application packages (checking the

integrity and authenticity of them, validating application

rules and requirements etc.)

o Depending by the application constraints and available

resources, selects the appropriate MEC host for the

instantiation of the applications.

o Management of instantiation and termination of application

4.2.2 Host level

• MEC Host: Is the entity which offers all the resources (compute, storage,

and network) for the handling of the Virtualization Infrastructure (VI) and

the MEC platform itself. In particular, the VI executes all the commands

received by the MEC platform. This is made through the VI’s data plane

that routes the traffic to the corresponding service or application.

• MEC Platform: This term refers to all the services and functionalities that

are required to all the MEC applications that are running on a certain VI.

In particular, the main functionalities that this entity is in charge of, are:

o Setup the environment where all the MEC applications can

find or discover alle the MEC services that are provided by

the platform.

78

o Management of the traffic rules among all the different

MEC applications. This is done by sending some

commands to the data plane.

• MEC Applications: All the MEC applications that need to be executed are

instantiated through virtual machines that are running inside the VI of the

MEC host.

All these applications have some requirements and rules that need to

be respected (latency, resources etc). All these requirements need to be

respected end validated by the MEC system level.

In case some requirements are missing, they can be set to default values.

• MEC Platform manager: Has the role of the management of the

application’s lifecycle. To do that, controls and manages all the

applications requirements and rules.

It is also responsible to receive from the VIM all the performance

measurements to process them.

• Virtualization Infrastructure Manager: I mention this entity just for

completeness. The working principle of the VIM is already described in

Section 2.1.1.

79

4.3 MEC architecture in NFV

The MEC concept can be overlapped to that one of NFV. From the point of view of

the ETSI MANO framework, the MEC platform is deployed as a VNF.

Figure 4.2 : MEC reference architecture

In Figure 4.2 is shown the MEC architecture. We can see it as an extension of the

previously described MANO architecture because many components are the same

and are previously described.

All the reference points inside the architecture are described in the reference

RGS/MEC-0003v211Arch approved by ETSI. The document can be found at [24].

80

Capitolo 5

CHAPTER 5:

OPENSTACK SOFTWARE

So far there has been talk of the OSM software that is responsible of the management

of the VNFO and the VNFM.

The MANO framework also includes the VIM. For the management of it a new

software is required. In this case OpenStack software comes to our aid.

Figure 5.1: ETSI Architecture Services and Vendors

81

5.1 OpenStack

OpenStack is a cloud operating system that controls large pools of compute, storage,

and networking resources throughout a datacentre. It is possible to see it as

Infrastructure as a Service (IaaS) where a set of cloud resources are all managed and

provisioned through Application Programmable Interfaces (APIs) with common

authentication mechanisms [25].

Resources and functionalities are abstracted by means of virtualization techniques

(like hypervisors, LXC or VMS).

It is an open-source software that is widely used in all the Infrastructure as a

Service projects.

GSMA and Linux Foundation work together for the definition of the Common

NFVI Telecommunications Taskforce (CNTT). The scope of the CNTT is to identify

all the properties of a Telco Cloud. They identify OpenStack as the reference

architecture form the management of virtual machines.

It is a very powerful tools that is widely used in Network Function Virtualization. In

our case-study the management system offered by this software can be used inside

the MANO Framework for the control of the cloud infrastructure. At the end of the

day, we can say that OpenStack software acts as a VIM.

Figure 5.2: OpenStack as VIM inside the MANO architecture [26]

82

5.1.1 OpenStack to deploy a VNF

From the introduction section of this chapter, it is easy to understand that OpenStack

software is used by OSM every time a new VNF (which contains some code to be

executed like Native or Proxy charms) needs to be deployed.

As reference example suppose that a Proxy charm needs to be executed. This charm

contains all the code necessary to create the wanted NF.

To do that, OSM tells OpenStack to launch a new VM based un a basic Ubuntu

image installing only shh and some essential packages. All the code contained in the

Proxy charm is executed inside this VM.

Now is possible to undusted better what is the role of a proxy charm.

A charm has the role to perform operations on a VNF and install the needed software

on demand. The base image of the VM (Ubuntu in this example) can be changed at

any time.

83

5.2 OpenStack Logical architecture

The logical architecture of the software [27] can be seen as an interconnection of a

huge number of independent blocks, that are called OpenStack Shared Services.

All these running processes, need to communicate each other to build up the required

service.

To do that, Advanced Message Queuing Protocol (AMQP) message broker is used.

This means that the list of services with the correspondent state is stored inside a

database. Depending by the service that is required, the broker can choose those ones

that are needed.

There is an administrator (controller node) that has the role to mage all these

services. To distinguish between them, each one authenticates itself by means of an

Identity service (that work in an independent way with respect to all the other).

For each service there is one or more services/processes/nodes that are running in the

background.

In particular, there can be three types of nodes:

- Computing nodes → Represent the real computing and storage capability.

- Network nodes → Are responsible of the network configuration and management.

- Storage nodes

 An API process is running, waiting for API requests. In case a request is receive, it

is immediately forwarded internally to the related service to be accomplished.

From the user view point it is very easy to interact with OpenStack because the

software provides a web-based user interface (using Horizon Dashboard). The user

can interact with the Dashboard by inserting some commands or issuing API requests

through tools like browser plug-ins or url.

84

Figure 5.3: OpenStack logical architecture

The functionalities that OpenStack software can provide are:

• Self-service:

The OpenStack cloud service that is offered should be able to auto-configure

itself without the need the human interaction.

• Bidirectional Compatibility:

All the software components should be compatible independently from the

version of the cloud architecture that is used.

• Cross-Project Dependencies:

All the operators have to choose as much as possible well-known

functionalities that are already presented and used. In this way is possible to

focus the attention of few software and functionalities and keep them

updated. In this way is possible to avoid a large variety of ad-hoc solution or

proprietary software.

85

5.3 OpenStack architecture

Inside the OpenStack architecture, is possible to identify some functional blocks

that perform all the functions that are needed.

Figure 5.4: OpenStack architecture [28]

OpenStack architecture is reported in Figure 5.4.

86

The core components of the OpenStack’s architecture are:

5.3.1 Nova

It is the component that is responsible of the creation and management of VMs

and Containers [29]. All the functionalities that are provided by this component are

executed by means of a certain number of daemons that are running on the top of

Linux servers.

Figure 5.5: Nova architecture [30]

From Figure 5.5, we can see some of functional blocks that are working together

to achieve the wanted functionalities:

• DB: sql database for data storage.

• API: component that receives HTTP requests, converts commands and

communicates with other components via the oslo.messaging queue or HTTP.

• Scheduler: decides which host gets each instance.

• Compute: manages communication with hypervisor and virtual machines.

87

• Conductor: handles requests that need coordination (build/resize), acts as a

database proxy, or handles object conversions.

• Placement: tracks resource provider inventories and usages.

5.3.2 Cinder

Is the OpenStack Block Storage service [31] for providing volumes to other

components like Nova virtual machines, Ironic bare metal hosts, etc.

In particular, volumes functionalities that provided are:

• Create a volume.

• Attach a volume to an instance.

• Detach a volume from an instance.

• Create a snapshot from a volume.

• Edit a volume.

• Delate a volume.

From the user perspective, is possible to create and manage volumes using

Horizon interface or directly by means of REST API.

5.3.3 Horizon:

Is the component in charge of providing a user web dashboard to manage and

control all the components of the OpenStack architecture.

88

5.3.4 Neutron

Neutron is an OpenStack project [32] that can provide Networking as a Service

(NaaS) between interfaces and devices managed by other OpenStack services [33]

(e.g., nova).

To do that, a series of APIs and plug-ins are used. The logical architecture, has

some functional blocks inside it:

• Neutron-server: Act as a controller that receives all the APIs and route

them to the correspondent plug-in.

• Networking Pug-ins and agents: Are responsible of create networks or

subnetworks with the corresponding IP addresses. Different types of

plugins and agents depend by the vendor and cloud technology we are

working on.

• Messaging queue: Has mainly two jobs to handle:

- Route information between the neutron-server and all the agents.

- Act as database to store information regarding networking states and

plug-ins.

Neutron is also responsible of the support to the multi-tenancy isolation.

Multitenancy is a very important concept in cloud computing. It is referred to the

case where multiple costumers of a cloud vendor need to access to the same

computing resources. In case there are multiple users in a cloud infrastructure there

can be the possibility that they are requesting a certain common resource. This kind

of technology allows to share the resource between them all. In the meanwhile, cloud

customers are not aware of each other, because the data is kept totally separated.

89

Figure 5.6: Multitenant vs Single Tenant [34]

To achieve this, are used some techniques to isolate the incoming traffic from the

different vendors and redirect it to the correspondent resource. Protocols like VLAN

in trunk mode or VXLAN tunnels are used to do that.

At the end of the day, all these functionalities are needed to maintain traffic

isolation across Layer 3 devices.

This is also called Virtual Routing and Forwarding (VRF).

5.3.5 Heat

Is the component responsible of the orchestration of cloud applications [35]. This

is achieved by means of some templates that can be seen as a sort of Network

Descriptors which contain the necessary information for the deployment of the

service.

A Heat template describes the infrastructure for a cloud application in text files

which are readable and writable by humans and can be managed by version control

tools.

90

5.3.6 Tacker

Is the component that behave as a VNF Manager and NFV Orchestrator in order

to take control of Network services and VNFs [36].

NFV Infrastructures can be Kubernetes or OpenStack.

Figure 5.7: Tacker architecture [37]

As we can see from Figure 5.7 about the architecture, there are some functional

blocks and packages:

• Packages:

o python-tackerclient - is the package for CLI and REST API calling.

o tacker - is the main package for Tacker project.

• Components:

o tacker-client - provides CLI and communication with Tacker

via REST API.

o server - provides REST API and calls conductor via RPC.

91

o conductor - implements all logics to operate VNF and call required

drivers providing interface to NFV infrastructures.

o infra-driver - is responsible for exact actions to operate OpenStack or

Kubernetes resources.

o vim-driver - is responsible for registration of VIM.

o mgmt-driver - is responsible for exact actions to configure VNFs.

o monitor-driver - is responsible for exact actions to monitor VNFs.

o policy-driver - is responsible for policy based VNF operations.

5.3.7 Glance

It is an image service inside the OpenStack architecture [38]. Using a REST API

interaction, each user can perform operations that involves images like discovering,

registering and retrieving virtual machine images.

This is a central component for OpenStack because lays the foundations of IaaS.

Is able to accept APIs requests but also supports the storage of disk or server images

that can come from different repositories.

5.3.8 Swift

It is the component of the OpenStack architecture which provides multi-tenant

Object Storage system [39].

Can offer a high scalability. For this reason, can manage large amounts of

unstructured data.

92

5.3.9 Ironic

Ironic [40] is the functional block dedicated for the configuration of the Ironic

Python Agent (IPA) for the deployment of bare metal nodes instead of virtual

machines.

The bare metal concept is the opposite with respect to the virtualization one. I

have previously stated that the virtualization allows to run every type of function

over a general-purpose hardware.

This solution does not fit in all allocative fields. There are some specific tasks

where the virtualization approach cannot be taken. Here is where the bare metal

solution can be useful.

The bare metal solution provides a specialized hardware for the execution of

specific tasks.

93

Capitolo 6

CHAPTER 6:

OPC UA PROTOCOL

As previously discussed in the introductory section, industry 4.0 scenarios require

new types of protocols and network architecture to be able to satisfy requirement of

services.

All the interconnected intelligent devices that are installed over machines lead to the

IIoTaaS concept.

This is also called Cyber-Physical System (CPS) because can combine statistics,

computer modelling, and real-time data measured on physical systems. The final

scope of this approach is to create a model that can be efficient and responsive under

multiple working scenarios.

To do that, is necessary to deploy a distributed network infrastructure. In this new

kind of architecture there are some devices in the premises of sensors that act as

collectors and brokers. The intelligence and the storage instead, is localized in a

cloud server that is capable of high performance in terms of storage and

computational power.

Those solutions are respectively called cloud and edge computing.

In addition to that, there are all the paradigms of virtualization so far described.

Resources and services are virtualized and offered as a service.

94

An example of a possible IIoTaaS could be the following as described in the Figure

6.1:

• The things: Are all the sensors that we have in the premises of machines

for monitoring and control them.

• Sensors and actuators & Data aggregation and Gateways:

They represent the Fog cloud. Are placed near machines to collect all the

data coming from IoT sensors and manage all communication and

commands to send to them.

• Edge IT: It is capable of a certain computational power for the

deployment of a quick data analytics based on data coming from IoT

devices. This local processing is essential for low latency services.

• Data centre & Cloud IT: Are servers with huge computational power and

large amount of storage available. They can deeply analyse long-term data

received from the factory premises and all the data coming from the IoT

sensors.

Figure 6.1: IIoTaaS example approach [41]

95

To implement these concepts, is required the use of an IoT messaging protocols.

Well known protocols that could fit these requirements are:

-MQTT: Message Queuing Telemetry Transport

-MAQP: Advanced Message Queuing Protocol

-COAP: Constrained Application Protocol

-DDS: Data distribution Service

-OPC UA: Open Platform Communication Unified Architecture

All those protocols above mentioned could satisfy requirements of Industry 4.0 and

implement an IIoTaaS.

This thesis will be focused on the use of the OPC UA protocol for the

implementation of a VNF service based on that protocol.

96

6.1 OPC Protocol

OPC stands for Open Platform Communication. With the term OPC we are not

referring to a specific protocol but more in general we are referring to a multitude of

different protocols.

I report here some history to contextualize the OPC UA protocol that is used

nowadays.

In 1996 was launched the OPC Foundation and Monitoring of Industry Equipment.

The aim of this project is to find a way to solve all the interoperability and

communication problems that are always present between devices of different

vendors, which could also have different functionalities.

This first protocol that was launched in 1996 was based over a Client/Server

Architecture where an OPC-Client and an OCP-Server exchange between each other

data and information.

This approach is no more usable nowadays because of several problems that I will

not deeply explain in this thesis.

Just to mention, one of the big problems of this protocol is security in the flow of

information between OPC-client and OPC-server (and vice versa).

97

6.2 OPC UA Protocol

The main scope of this project is to find a way to standardize the exchange of data

and information inside an industry 4.0 scenario.

In 2008 the OPC UA (Unified Architecture) was released. It is possible to see it as an

improved version of the original OPC Client/Server. This new release can fit all the

requirements requested in the modern industrial field.

This new protocol is now based on a service-oriented architecture (SOA). This

means that all the software components can be used and assessed through service

interfaces that are using common standards.

This is a key aspect because every type of software component can be easily

integrated in new applications without any problem of compatibility.

For this reason, starting from 2015 the new protocol OPC UA (Unified Architecture)

was recommended by International Electrotechnical Commission (IEC) as a

reference architecture model to be followed in the industry 4.0 [42].

OPC UA is a standardized client-server-architecture. A big improvement with

respect to the original OPC protocol is related to the security aspect. For the reliable

end to end transmission of data from the IoT (generally sensor placed inside the

machine) to the decentralized cloud server, is used TCP and HTTP protocol. For

what concerns the authentication process done by each client and server is used

OpenSSL protocol.

The main features that are offered by this protocol are [43]:

• Secure, reliable and vendor-independent exchange of information

• Vendor-independent platform: The OPC-UA offers no dependency from

any vendor that is producing a certain application. The communication is

independent from any programming language or operative systems on which

the application is executed.

• Secure TCP and HTTP as previously mentioned.

98

• Protection against unauthorized access: Some standards like SSL, TSL or

AES are used to guarantee security.

• Accessibility and Reliability: The architecture can offer a reliable

communication mechanism capable of automatic error detection (by means of

redundancy functions). In this way it is possible a reliable communication

between the OCP-Client and OPC-Server.

6.3 OPC UA Architecture

A Service-Oriented Architecture is a sort of service provider that offers a certain

number of services that process some requests and send back the response to the

client that requested it.

All these services are running inside a server. A generic client can invoke a service

by means of service calls. Any time a client requires a new service, a new session in

established and is based on a secure channel that can guarantee integrity and

confidentiality for the reasons previously explained.

Figure 6.2: OPC UA Stack Architecture

In Figure 6.2, is represented a first overview of the stack architecture of this protocol.

As previously mentioned, the OPU UA is based on a client-server architecture. In the

real implementations instead, it is possible that a single application can act both as

cloud and server at the same time.

The entire software stack could be implemented in many different programming

languages to conciliate the vendor-independent platform concept previously

mentioned.

99

In general, the most common programming languages used for the Software stack

can be Java, C, C++ or Python.

The implementation of applications can be done through the OPC UA Software

Development Kit (OPC UA SDK).

6.4 Information modelling and Address Space

An important aspect to a vendor-independent platform is the necessity to design an

information model that can fit all the requirement from different vendors

applications.

OPC UA provides only a simple infrastructure of the information model, but it is

possible to adapt it by means of extensions. This means that each vendor could

implement the information model (or object) that is needed inside its application.

Starting from the base information model offered by the OPC UA is possible to

model some extension models to obtain the wanted result.

When a certain vendor has produced its own extensions could share it to all clients

that are requesting the application implemented by it.

In this way is possible to obtain an address space that allow to OPC UA-Servers to

represent objects in a standard way to all OPC UA-Clients.

Those objects are container for Variables and Method as shown in Figure 6.3

Figure 6.3: OPU UA Objects [44]

100

6.4.1 Nodes

Nodes are the base component of the information model. Objects and all components

that compose them, are described in the address space by means of interconnected

nodes.

Each node is identified by:

• node-id: Identify in a unique way a certain node. OPC UA utilize two types

of variables:

o name: Is the real name of the node.

o namespace: It is the URL that identify that node.

In a next section will be developed deeply the concept of node-id

• attributes: Are descriptors and contain all the information of the node.

Attributes are different depending by the NodeClass of the node.

(NodeClasses will be explained in the next section).

Inside attribute descriptions are stored some fields that to describe a certain

node:

o Attribute id

o Name

o Description

o Type of data

o Mandatory/optional: Additional field that indicate if the attribute

needs to be applied when the node is executed.

A client can access to attributes using services: Read, Write, Query, Subscription,

Monitored etc.

An important aspect is related to the fact that the set of attributes of a certain node

cannot be modified or extended by clients or servers. Once they are defined, they

cannot be modified anymore.

All the attributes, nodes and references are assigned as soon a Node is instantiated

inside the Address Space.

101

The address space can be seen as a sort of catalogue that contains all the information

of a certain information model. This structure is stored in the OPC UA-Server.

An OPC UA-Client can access to it for gathering information about the model.

Figure 6.4: OPC UA Nodes, Attributes and References

6.4.2 References

References are the interconnections between nodes as shown in Figure 6.4.

The OPC UA defines a hierarchical structure of nodes. By means of references, is

possible to define this structure.

To achieve this, a single reference is represented through a triad of parameters:

• Source node: Is the source of this process and keeps stored inside all the data

referred to the reference.

• Target node: Generally, is in the same address space of the OPC-Server, but

it is possible to be located inside a different one.

• Reference type node: Are NodeClasses (will be explained soon in the next

section).

102

6.4.3 NodeClasses

The OPC UA uses NodeClasses to define attributes and references for different

nodes [45].

As for nodes, NodeClasses cannot be redefined or extended by Client or Servers.

OPC UA define two macro categories that identify eight different node classes:

1) Access classes:

• Object: used to represent systems, system components, real-world objects,

and software objects.

• Variable: used to represent the content of an Object.

• Method: used to represent a Method in the server address space.

• View: used to restrict the number of visible Nodes and References in a

large Address Space. By using Views servers can organize their Address

Space and provide views on it tailored to specific tasks or use cases.

Figure 6.5: OPC UA Node Classes

103

2) Type classes:

• ObjectType: represents a type of node for objects in the server address

space. ObjectTypes can be seen as classes in object-oriented languages.

• VariableType: represents a type of node for variables in the server address

space. Are typically used to define which properties are available on the

Variable instance.

• ReferenceType: used to represent the type of references used by the

server.

• DataType: represented as Nodes of the NodeClass in the Address Space.

Figure 6.6: Attributes of OPC UA NodeClasses

104

6.4.4 Variables

Variables are of course used for the representation of certain values.

Inside the OPC UA protocol are defined two different types of variables:

• Properties: Like attributes, properties can be seen as a sort of descriptors.

They can contain server-defined meta data of objects, data variables. With

respect to attributes, properties can be defined and modified by the OPC-

Server.

• Data Variables: Are the content of an object.

6.4.5 OPC UA NodeID Concept

As mentioned in a previous section, to uniquely identify a Node inside the OPC UA

address space we use the NodeID.

The Namespace act as a URI that is responsible of the assignment of certain

identifiers element which identify in a unique way each NodeId. In this way, multiple

OPCUA Servers can use the same identifier to identify the same Object. This

enables Clients that connect to those Servers to recognise Objects that they have in

common.

Namespace URIs, like Server names, are identified by numeric values in OPC

UA Services (this allows an easy and more efficient table lookups and transfer of it).

The numeric values used to identify namespaces correspond to the index into

the NamespaceArray.

A basic example of a possible URI an OPC UA namespace is:

http://opcfoundation.org/UA/”

whose corresponding index in the namespace table is 0, as shown in Figure 6.7.

105

Figure 6.7: Namespace Server and NodeID

To enter more in detail, each NodeID is composed by three elements:

• Namespace Index: it is a number used to identify the namespace URI. As

shown in Figure 6.7 all the values of the Index are stored inside the Server

Namespace Table.

• Identifier Type: represent the format and data type of the identifier. The

possible types of data that can be represented are:

o Numeric value

o String

o Globally Unique Identifier (GUID)

o Opaque: that is referred to a specific format in ByteString

The type of data to be used depend by the requirement to satisfy in our

service.

• Identifier: The identifier for a node in the address space of an OPC UA

server. It is possible to use the same Identifier for different nodes that are part

of a different namespace as shown in Figure 6.7.

106

6.4.6 XML Notation

There can be also a different XML notation:

ns=<namespaceIndex>;<identifiertype>=<identifier>

• <namespace index> → The namespace index formatted as a base 10 number.

If the index is 0, then the entire “ns=0;” clause is omitted

• <identifier type> → A flag that specifies the identifier type as shown in

Figure 6.8

Figure 6.8: Identifier Types

Figure 6.9: Examples of possible NodeIDs representation

In Figure 6.9 are reported some possible examples of NodeID’s representation using

different Identifiers and Identifier Types.

In Figure 6.10 is shown a particular case where are defined in the same way for what

concerns Identifier and IdnetifierType. We can distinguish them because they belong

to a NamespaceIndex.

107

Figure 6.10: Nodes with the same identifier in different namespaces

108

6.5 Access to the Namespace of a Server

So far, I have introduced the structure of the information model that is used to store

data and variables inside a Server.

Now I need to explain how a client can get access to that model.

To make possible to get access to the namespace of the server, the client must keep

update his namespace. In this way the two namespaces of the two entities can match,

allowing the client to know how to access the data in real time.

Figure 6.11 is presented an example with all the steps that are implemented to carry

out the procedure.

Figure 6.11 Read the namespace of the Server

In this example, the client wants to read the Node represented by the identifier

“MyTemperature” which belongs to the namespace identified by the URI

“urn:MyCompany:UaServer:Model2”.

109

From the point of view of the client, the Node “MyTemperature” has a namespace

index “2” but doesn’t yet know the corresponding namespace index in the Server

namespace table (which is “3”).

To correctly access to the Node, the client must get access to the namespace of the

server (read namespace table).

The Server send back the namespace index “3” which correspond to the namespace

URI “urn:MyCompany:UaServer:Model2” inside his namespace.

The client can now update his namespace index whit the current value “3”.

From this moment the Client has all information that is needed to access the correct

node inside the namespace of the server, in our example “ns=3;s=MyTemperature”

in XML notation.

6.6 OPC UA Subscription

The OPC UA protocol offer a mechanism called subscription that allow to an OPC

UA-Clients to get access to information and services. In particular, a Client can

request the subscription to a group of Nodes which are providing some important

services, necessary for the correct deployment of a certain application.

After the subscription, the Server manages all these items, meaning that, it notifies to

Clients only when changes occur. This mechanism is implemented to reduce the

amount of data exchanged and bandwidth utilization.

This means that if the OPC UA-Client does not receive any status change from the

server, nothing is changing inside the Classes.

To accomplish the subscription there is an entity called Monitored Item (MI) that is

created as soon as the session is created and has the role of notify status changes that

are happening in the classes.

The subscription process starts from the Client side, by add a Monitor Item to the

subscription.

110

The MI can notify only three different types of “changes”, as reported in Figure 6.12:

• Subscribe to data changes of Variable Values (Value attribute of a Variable)

• Subscribe to Events of Objects (EventNotifier attribute of an Object &

EventFilter Set).

• Subscribe to aggregated Values, which are calculated in client-defined time

intervals, based on current Variable Values.

Figure 6.12: Subscription Process

It is also necessary to establish a session between OPC UA-Server and OPC UA-

Client. To do that a Secure Channel is established between the two entities.

Figure 6.13: Subscription process and Secure Channel

111

There are other parameters that characterize the Subscription:

• Sampling interval: Its value must be defined for each MI and represent the

frequency at which the server checks the data source for changes.

• Publishing interval (reporting): When a change is detected, the

correspondent update is not sent immediately. This because also the

Notification Message (reporting) is sent periodically. It can happen that the

sampling interval is much smaller than the periodicity of the reporting. In this

case the server stores inside a queue all the detection and wait the next

reporting. The size of the queue is not fixed and require to be set for each MI

depending by the application requirements. In case the queue is full a discard

policy is applied to the oldest report in the queue.

• KeepAlive: In case no notification changes have to be reported, the Server

send a KeepAlive notification to the Client. In this way the Server make the

Client aware of the fact that nothing is changed in the status of the node, but

the service is up and running.

If nothing is received at the Client side that could be the possibility that the

Secure Channel is no more active.

6.7 Certification

All the OPC UA devices to be identifiable from the other devices need the so-called

Application Instance Certificate associated with a public/private pair of keys.

- The private key is secret and is used for encrypting messages.

- The public key is used to verify the trust relation and encrypt messages.

A digital certificate is used for the certification of the ownership of a public key.

Everything is managed by the Certificate Authority (CA) that acts as a trusted third

party. The CA is aware of the entire list of public keys and can verify the ownership

of them. The CA certificate is added to the trust list of all the applications.

112

This is an essential point because allow to all applications that are signed by the CA

to communicate each other.

All the certificates are located inside the Certificate Store:

• Trusted certificates: Self-signed certificates of trusted OPC UA application or

CA certificates from trusted CAs. In general, are used for secure connection

to a server.

• Own certificates: Application Instance certificate and private key

• Issuers: All the certificates that are not directly trusted. In this case they

require a chain of CA certificates.

• Self-certificates: All the certificates that are released by the application itself.

In general, are created as soon as the application is stared. During this first

procedure, is necessary to establish a trust connection between Client and

Server. To do that the client certificates are added to the trusted list inside the

server and vice versa.

• Rejected certificates: All the certificate referred to applications that are not

able to establish trusted connection are classified as rejected.

6.8 Discovery process

The discovery is the process performed by the OPC UA-Client for the research of the

necessary information to setup a subscription to a certain OPC UA-Server that

contains one or more classes and variables [46].

A Discovery Server (DS) contains the list of Servers and the related information of

them. Inside this list are specified all the endpoints that are necessary for the

connection to a certain server. OPC UA Protocol ensure that all servers have at least

one endpoint. This is essential, otherwise clients were not able to connect to it.

113

When an OPC UA-Client wants to implement a certain application, must search it

inside the DS and find all the information to establish a connection with the wanted

server.

This last procedure is done through the GetEndpoints or Discovery URL service for

gathering information from a server. After this procedure, the client can establish a

connection with the Server.

Figure 6.14: Subscription Process

The endpoints that are required for the correct subscription procedure are:

• Endpoint URL: Protocol and network address.

• Security Policy Name: For a set of security algorithms and key length.

• Message Security Mode: Security level for exchanged messages.

• User Token Type: Types of user authentication supported by the server.

The discovery process so fare described can be done at three different levels:

• Local Discovery

• Multicast subnet Discovery

• Global discovery

114

6.8.1 Local Discovery

Is used when a Client has the knowledge that the server he is looking for, is located

on a certain host.

The standard OPC UA defines that Local Discovery Server (LDS) service is up and

running on default port 4840.

All servers must be registered to the LDS service which also include security

configuration by adding the server certificate in the trust list of it.

6.8.2 Multicast Subnet Discovery

Is used when the Client has only a restricted knowledge where to find the Server. In

this specific case the OPC UA foresees the use of multicast DNS (mDNS).

The mDNS is a service used in small networks or subnets like in the case of OPC UA

ecosystem. The working principle is the same of the DNS but instead of sending the

request to the server DNS, it is sent in broadcast to all the devices connect to the

network by means of a multicast request. When the wanted Server receives the

request, responds directly to the Client.

Every time we send a multicast request in the network, we increase a little by the

traffic inside the network, but the objective of this approach is to reduce as much as

possible the complexity of networks.

The overall result is to obtain Zero Configuration Network (Zeroconf). In this

approach all the devices of the network can find and to talk each other without the

need of a network configuration because the multicast procedure is embedded inside

the TCP/IP protocol.

This functionality so far discussed is implemented by LSD with Multicast Extension

(LSD-ME).

It is important to notice that this procedure is not directly implemented by the OPC

UA-Clients. They simply send the FindServerOnNetwork request to the LSD-ME.

The latter sends the multicast to all the other LSD-MEs to find the wanted OPC UA-

Server.

All the procedure is schematized in the Figure 6.15 down below.

115

Figure 6.15: Multicast Subnet Discovery

6.8.3 Global Discovery

This approach is used when the discovery of the server is no more restricted to a

small subnet (solved through mDNS) but is referred to wide networks composed by a

huge number of Servers.

For these cases, the OPC UA Global Discovery Server (GDS) act as a sort of DNS

server. Is in fact responsible of the central certificate management and the

distribution of CA certificates.

To make possible that all the OPC UA-Servers will be included in the research done

by the GDS, is necessary that they are registered as application to the GDS.

Figure 6.16: Global Discovery + Client and Server are in the same Subnet

In case the GDS is not in the same subnet of the OPC UA-Client it is necessary to

pass through the LSD-ME suing the previously explained FindServerOnNetwork

function.

Figure 6.17: Global Discovery + Client and Server are into two different subnets

116

6.8.4 Certificate Management with GDS

The GDS does not only act as discovery entity but plays an important role also in the

process of certification management of all the OPC UA applications that are

registered. This because all the applications that are registered in the GDS require

administrative rights. Generally, this operation is handled by the CA, but there can be

some cases where the GDS take its place.

 It can happen that the GDS is responsible of:

- Management of self-signed certificates.

- Generation of CA signed Application Instance Certificates.

- Distribution of the CA related Certificate Revocation Lists (CRL).

The procedure of the generation of administrative rights of the application registered

inside the GDS is composed by two steps shown in Figure 6.18:

1) All the clients and servers are registered through DirectoryType

RegisterApplication.

2) A call to CertificateDirectoryType StartSigningRequest for the creation of the

CA signed certificate. In this way the private key of the entity (could be client

or server) is only used to sign the request and is not revealed outside.

The CA can now sign and create the public key using the request of the

entity.

Figure 6.18: Registration of applications

117

6.9 Configuration process

Now that I have introduced all the principal concepts of the OPC UA Protocol is

possible to see more in detail the procedure for the correct setup of the service. This

procedure starts from the configuration of server and client and finishes with the

connection between them.

6.9.1 Server Configuration

The configuration at the server side is done through:

• An application instance certificate identifying the server installation.

• A certificate store, including a list of trusted and rejected application instance

certificates.

• At least one endpoint

Figure 6.19: Server Configuration

6.9.2 Client configuration

The configuration at the client side is done through:

• An application instance certificate to identify the client application.

• A certificate store, including a list of trusted certificates.

• The list of server endpoints

Figure 6.20: Client configuration

118

6.9.3 Connection between client and Server

A client is looking for the wanted service. As previously mentioned, this operation is

done using the Discovery Server that provides all the necessary tools:

• Endpoints to reach the wanted Server

• Public key of the server

• Certificate of the server

Figure 6.21: Exchange of data during the configuration between Client and Server

The client has at disposal the public key of the server and its certificate. These two

elements are necessary to add the server inside the Client’s trust list at the Client

side.

Once this operation is done, the secure connection can be established from the Client

to the server.

It is important to make notice that the secure channel that is established so fare is not

bidirectional. It is only a secure channel from the Client to the Server, but on the

other side is missing the secure channel because at this step the Server already does

not trust on the Client.

To do that, is often required the direct intervention from an administrator that moves

the client certificate form the list of rejected to that one of trusted certificates as

shown in Figure 6.22.

Figure 6.22: Adding the Client to the trusted list at the Server side.

119

Now the procedure is completed. A bidirectional channel is established between

client and server.

Figure 6.23: Bidirectional channel established between Client and Server

6.10 MQTT Digression

The final aim of this thesis is the orchestration of an IIoTaaS environment, where

all the services are offered by entities that use OPC UA or MQTT as communication

protocol. So far, I describe in detail the OPC UA protocol, because my work is

focused on that. This section is dedicated to a small digression on the MQTT

protocol.

As mentioned in the introduction part of this chapter, MQTT is one of the most

used communication protocols in an IoT environment. Is a topic-base protocol that

runs over TCP/IP and is based on a publish-subscribe mechanism.

All the entities that are defined by the MQTT protocol can be partially overlapped

with those of the OPC UA.

The entities defined by the protocol are:

• Publisher: Act as the OPC UA Server. Is responsible of offer a certain

service.

• Subscriber/Client: Is the entity that is look for a certain service offered by a

certain server.

• Broker: Can be seen as a sort of Discovery Server of the OPC UA

architecture.

120

Figure 6.24: MQTT entities

In this case the information model is organized in a hierarchy of topics. Each

publisher must send to the Broker all the items that it wants to distribute. The Broker

is now aware of all the topics that are offered by the Publishers and make them

available to all the clients. In this way clients can subscript to the topics they are

interested in to receive updates of their state.

When a Publisher has an update from a certain topic, notify it to the Broker.

The broker finally distributes the information with all the clients that are

subscribed to that specific topic.

It is evident, that the major difference with respect to the OPC UA case is that

Publishers and Clients/Subscribers don’t interact directly each other.

Clients/Subscribers are not aware of the location or the configuration of Publishers

because everything is managed by an intermediate entity that is represented by the

Broker.

This is a big difference with the OPC UA protocol, where clients need to know all

the endpoint information of the service, they are interested in.

MQTT is also a bidirectional communication protocol. This means that Publisher

and Clients (but also Broker) are not constrained entities, and they are able to publish

data and subscribe to certain services at the same time. This possibility can happen

also with the OPC UA Protocol.

121

Capitolo 7

CHAPTER 7: OPC UA IMPLEMENTATION

For the implementation of OPC UA, I have evaluated two possible solutions to

find which one is the best for my study case.

These two possible implementations of the OPC UA functionalities are

Open62541 or the utilization of Python Libraries.

7.1 Open62541

Open62541 is an open-source C (C99) implementation of OPC UA licensed under

the Mozilla Public License v2.0 [47].

C99 (previously known as C9X) is an informal name for ISO/IEC 9899:1999, a

past version of the C programming language standard.

This software implements the OPC UA binary protocol stack as well as a client

and server SDK.

7.1.1 Channel establishment between client and Server

In this paragraph is shown an experimental scenario where is established the

connection between a OPC UA Server and Client.

For the deployment of the scenario, two virtual machines are created and handled

by OpenStack.

As shown in Figure 7.1, the two machines are connected to the same mgmtNet. In

this way they can see each other.

The IP addresses of the two machines are:

- Server → 10.15.2.53

- Client → 10.15.2.19

122

Figure 7.1: OPC UA Server and Client VMs

As application example, I created a Server that generates a random number every

second. This service is exposed on a certain port that can be defined by the user. In

this case the service endpoint is the ens3 interface of the Server (with IP address

10.15.2.53) exposed on port 5555.

From the Server side, the service can be run through the following command:

./myServer ip_address port_number

$./myServer 10.15.2.53 5555

Figure 7.2: OPC UA Server random number generation

In Figure 7.2 is reported the creation of the server and the generation of random

numbers.

123

Now that the service is up and running, the client can access to that service by

accessing the server on that port (5555).

To do that I created a python scritp that ask to the user to inser ip address and port

number for the connection with the server.

It is possible to see from Figure 7.3, that the application is working correctly. All the

numbers generated by the server are correctly received by the client.

Figure 7.3: OPC UA Client

An additional confirmation that everything is working correctly can be spotted in

Figure 7.4 at the Server side. After the correct establishment of the channel, we have

the following output in the bash:

Connection 4 | New connection over TCP from 10.15.2.19

Connection 4 | SecureChannel1 | Secure channel1 opened with securityPolicy http://opcfoundation.org

Connection 4 | Session 5c117655-f400-8c8a-7687-f8nf26a24a14

Figure 7.4: OPC UA Server channel established message

To see what is the set of messages that are exchanged between the two entities for

setup the service, I captured the traffic on the server port 5555.

In Figures 7.5 and 7.6 are shown all the messages that are exchanged to properly

create the session between the Client and the Server.

124

Once the session is established, the client asks to the server the data to read through a

ReadRequest.

The server sends the value through a ReadResponse.

Figure 7.5: Traffic captured between Client and Server

Figure 7.6: OPC UA Session creation

125

7.1.2 Creation of a Docker Container

The case study of this thesis requires that all the application that are implemented,

are running over a container. For this reason, is necessary that both Client and Server

are running on a Docker container.

I created two Docker images and uploaded them into the Docker Hub. They

contain all the necessary software for the Deployment of the two applications.

The image of the server is made with an environment variable called time. It

represents the periodicity at which the server generates random numbers.

This variable can be set during the launching phase of the container using the

command:

sudo time docker run --net=host --rm -e time=X lorenzobassi/opcua_server_reconfigurable

where X represents the periodicity in seconds that we want to set.

After the command is launched, it requires some time before the server is effectively

up and running. This is because the server is written in C99 code. It means that it

must be compiled and built to generate an executable file that is launched.

The entire operation requires around 30 seconds before the server is up and running.

Unfortunately, this time required for launch a container is too high and cannot match

the low delay requirements that are requested for the scope.

For this reason, I choose to not proceed with the software Open6254 because

requires compiling and rebuild the server every time a small change is applied inside

the lines of code of that are controlling it (and the same is for the client side).

126

7.2 OPC UA with Python Libraries

Python libraries for the implementation of OPC UA [48], can solve some of the

problems that are shown by Open6254 software. It is a more flexible and easier

solution to be implemented. All the software is written in Python scripts that can be

executed immediately without the need build an executable file required by the C99

solution.

All the software needed is contained in a package called “opcua” that follow IEC

62541 standard and can be installed using pip command. It contains some libraries

called “client”, “server” and “ua” that must be imported inside the code. This

python implementation of the OPC UA is quasi complete and has been tested against

many different OPC UA stacks.

All these properties are compliant with the application I am looking for. At the end

of the day, this second approach represent a good solution for my scope, and I choose

to proceed in this direction.

The installation of this software on Ubuntu is very easy and can be made through

these commands:

pip install opcua

In this way the Python package opcua is installed. It contains all the functions that

are needed for the execution of the OPC UA software.

apt install python-opcua # Library

apt install python-opcua-tools # Command-line tools install opcua

With these latter, are installed some Python libraries and some command line

tools needed.

7.2.1 Analysis of the traffic exchanged between client and server

As in the case of Open6254, I have evaluated the traffic exchanged between client

and server for the establishment of the channel. With respect to the case of Open6254

I implemented additional functionalities. It is possible for the OPCUA Client to ask

for subscription of a variable inside the server.

127

That is why new types of packets are used in the communication.

 In this case, the protocol used for the establishment of the secure channel is OPC

UA Secure Conversation (UASC) that uses binary encoded Messages.

This protocol is used in several applications where there is the need to operate with

transport protocols that have a limited buffer size.

In this specific case, the protocol does not operate directly over the entire OPC UA

message. The packet is instead segmented into multiple chunks called

MessageChunks. This is an essential step because all the chunks must not overcome

the buffer size that is set at 8192 bytes for the TrasportProtocol.

The security is achieved over the entire OPC UA message by acting over all the

single chunks of which it is spitted.

At the receiver side, all the chunks are received and need to be reordered to

reconstruct the original OPC UA message.

This operation can be done thanks to a 4-byte sequence that is assigned to each

MessageChunk as shown in Figure 7.7. These bytes are sequence numbers used to

detect replay attacks and possibly avoid them.

Figure 7.7 : UASC Message Structure

During the establishment of the secure channel some messages are exchanged. Down

below I briefly describe the most important fields inside them (the full description of

the content of the packets can be found at: [49].

128

- Hello message.

o ReceiveBufferSize: The largest MessageChunk that the sender can

receive.

o SendBufferSize: The largest MessageChunk that the sender will send.

o MaxMessageSize: The maximum size for any response Message.

o MaxChunkCount: The maximum number of chunks in any

response Message.

o EndpointUrl: The URL of the Endpoint which the Client wished to

connect to. The encoded value shall be less than 4096 bytes.

- Acknowledge message

o ReceiveBufferSize:

o SendBufferSize:

o MaxMessageSize:

o MaxChunkCount:

The conversation for the creation of the secure channel between the two entities can

be made starting either from client or server by creating a TransportConnection.

UASC uses TCP/IP protocol for the communication between client and server,

because can guarantee full-duplex communication between the two entities. A socket

of the TCP/IP can be seen as a TransportConnection in this new paradigm.

- If the client starts the TransportConnection, the first message that is

exchanged is a Hello message (sent by the client itself) used to specify the

maximum buffer size handled by the Client.

The server responds with an Acknowledge Message to start the negotiation for

the buffer size.

At the end of the negotiation, the SendBufferSize field specifies the size of the

MessageChunk that will be used during the communication between client

and server.

At the end of the negotiation, the client sends a OpenSecureChannelRequest.

In case the server accepts it, a new channel related to the

TransportConnection is created with a SecureChannelId.

129

Figure 7.8 : Initiation of the TransportConnection by the Client

- If the server starts the procedure of the creation of the TransportConnection,

the only difference with respect to the previous case is the first message

exchanged. In this case, the server sends a ReverseHello to the client.

When the TransportConnection is accepted by the client, it responds with an

Hello message. At this point, the situation is the same described in the

previous case. The negotiation procedure will start following the same steps

described before.

Figure 7.9 : Initiation of the TransportConncetion by the Server

Figure 7.10 : Capture of the traffic related to creation of the secure channel.

130

In Figure 7.10 are reported the packet exchanged between client and server for the

procedure of the creation of the secure channel.

The way the two entities are interacting each other can be seen as a WebSocket.

A WebSocket is a protocol that is used in case is needed a bi-directional

communication between two entities like in the case of OPC UA.

The procedure for the setup of the web socket is represented in Figure 7.11 and starts

with a HTTP GET request.

Figure 7.11 : Steps for the creation of a WebSocket

At this point, the secure channel is created. Server and Client know how to send

messages each other.

Now that the channel is created the other functionalities can be implemented.

In case the client requires the subscription to a variable inside the server, other types

of messages are exchanged.

First, the client is not aware how to reach the variable inside the server. This means

that it must discover the Reference of that specific node that the client is interested in

the subscription. To do that, the Client uses the browse service to navigate inside the

AddressSpace of the server and find references of that node. In general, are called

131

“browse path” and are composed by a starting Node and a RelativePath. The Node

identify the Node itself from which the RelativePath is referred to.

This operation is achieved through a BrowserRequest/BrowserResponse.

After that the client has discovered the reference of the node a

TranslateBrowsePathsToNodeIds is sent to the server for the translation of the paths

previously mentioned in the corresponded NodeIds.

Now the client is aware of all the information needed to reach and identify in a

unique way the variable inside the NameSpace of the server that it is interested to

read. The client requests the subscription to that variable through a

CreateSubscriptionRequest/CreateSubscriptionResponse.

After the subscription, a MonitoredItem is needed to update changes of the

variable as described in Section 6.6 by means of Notifications.

Each MonitoredItem sends a Notification by looking at the Subscriptions to a certain

variable. A Notification is created at every occurrence of data changes or event

which involve the subscribed variable.

All Notifications are not sent immediately but are packaged into

NotificationMessages that are sent periodically to the client following a specific

Publishing interval.

In Figure 7.12 are reported all the steps that are involved in the subscription.

There are four parameter that characterize each MonitoredItem [50]:

- Monitoring Mode

This parameter is used for the activation and deactivation of a sampling or the

reporting of Notifications.

- Filter

It is a criterion that is applied to each sample generated by the server and

evaluate if in necessary to generate the Notification related to it.

132

- Sampling Interval

This period is referred to the fastest rate at which the server samples all the

data changes of the items of the subscription.

This parameter is established by the client as soon as the MonitoredItem is

created. In case is set to a negative number, it refers to the default value that

is defined during the instantiation.

It is important to notice that does not represent the maximum threshold at

which the server can sample the data. It defines the “best effort” rate of

sample the data. It is possible that the server could go beyond that threshold

and sample at a faster rate but would be useless with the type of item that the

server is managing.

A sample rate equal to 0 is used in two situations:

o In case the client is interested only in the subscription of events.

o The client needs the fastest sampling rate that the Server can handle.

There can be the possibility that the client requests a sampling rate that is not

supported. In this case the server assigns the most appropriate interval that

can meet the request of the client.

All the mechanism explained so far is referred to a sampling model.

There can be the possibility to define an exception-based model. In this case

there is not a definition of a sampling interval, and the server simply reports

all data changes.

Figure 7.12 : Monitored Item block diagram

133

- Queue parameters

After that a sample has passed the criteria previously described, a Notification

is generated. All the notifications that are generated in the sampling interval

are stored inside a queue, waiting the end of the sampling interval.

The queue size is determined at the creation of the MonitoredItem, also

including the FIFO or LIFO discard policy to be applied in case of queue

saturation.

This mechanism is schematized in Figure 7.13.

Figure 7.13 : Handling of the queue saturation

Now that the subscription procedure is finally completed, client and server can

exchange packets containing values of the variable subscribed by the client.

The client sends a PublishRequest to the server. When the server will receive it, is

allowed to transit a PublishResponse for the notification of an event over the

subscribed variable. The PublishResponse is not immediate. As previously

mentioned, the instant of transmission depends on several factors, like the Sampling

interval or the instant at which there is a change in the status of the variable.

This procedure allows to achieve the best performance in terms bandwidth

consumption.

134

In case the Client does not require any subscription, variables are reported with a

polling method. This means a certain variable is reported cyclically using

ReadRequest/ReadResponse like in the case of Open62541.

This case is shown in Figure 7.14, where alle the ReadRequest/ReadResponse starts

to be exchanged starting from packet 31, even if there are no changes in the variable

and with a very high periodicity.

Figure 7.14 : Traffic before the creation of the subscription

After completing the subscription things are improves a lot in terms of bandwidth

consumption. In case a certain variable that the client is subscribed in, is changing

slowly, there is a big reduction the packet exchanged. There is no more the need of

cyclically send and receive ReadRequest/ReadResponse. All the variables that are

included in the subscription are included in the same

PublishRequest/PublishResponse packet.

This means that in case of subscription to multiple variables, the saving in terms of

bandwidth is bigger, because all the notification changes are grouped inside a single

PublishRequest/PublishResponse.

135

This mechanism can be verified in different traffic captures reported from Figures

7.15 to 7.18. The first column represents the time passed since the capture is started.

It is possible to see that by increasing the Sampling interval, also the

PublishRequest/PublishResponse periodicity increases.

Figure 7.15 : (Server publication time = 1s) (Sampling interval = 1s)

Figure 7.16 : (Server publication time = 1s) (Sampling interval = 5s)

Figure 7.17 : (Server publication time = 1s) (Sampling interval = 10s)

Figure 7.18 : (Server publication time = 10s) (Sampling interval = 2s)

136

Just to make a rough estimation I also report the amount of data saved comparing the

cases shown in Figure 7.14 and Figure 7.17.

Figure 7.14 represents the case before the subscription where

ReadRequest/ReadResponse are exchanged with an approximate periodicity of

0.0027 seconds. A ReadRequest has a size of 165 bytes, while a ReadResponse only

145 bytes. Considering a period of 0.05 seconds, the total amount of data exchanged

using these two types of packets is 6708 bytes.

In this case if we consider 20 seconds an approximate data flow between client and

server is around 134160 bytes

Figure 7.17 instead, is the case of subscription and the MonitoredItem procedure

already completed with a Sampling interval equal to 10 seconds.

Figure 7.19 : Data saving with (Server publication time = 1s) (Sampling interval = 10s)

In this case the amount of data exchanged in 10 seconds is 1566 bytes (as show in

Figure 7.19). This rapresent an improvement of almost 98% of the previuos case.

No subscription

Pubblication time = 1s

Subscription

Pubblication time = 1s

Sampling interval = 1s

Subscription

Pubblication time = 1s

Sampling interval = 5s

Subscription

Pubblication time = 1s
Sampling interval = 10s

134160 bytes 8194 bytes 2304 bytes 1566 bytes

Table 3 : Traffic referred to a Server publication time = 1s

In Table 3 are reported all the different traffic size in different conditions.

In Figure 7.20 is reported the trend of the traffic size. As previously mentioned, by

increasing the Sampling interval, the traffic size decreases because all the new

changes of a variable are grouped and reported inside a single packet.

137

Figure 7.20 : Traffic packets between client and server

138

7.3 Code OPC UA Client and Server

In this section I show a simple example with a brief explanation of the Python code

used for the interaction between an OPC UA Client and Server including the

possibility of subscription.

7.3.1 Python code OPC UA Server

OPC UA Server script

import uuid

from threading import Thread

import copy

import logging

from datetime import datetime

import time

from math import sin

import sys

import random

from opcua.ua import NodeId, NodeIdType

sys.path.insert(0, "..")

try:

 from IPython import embed

except ImportError:

 import code

 def embed():

 myvars = globals()

 myvars.update(locals())

 shell = code.InteractiveConsole(myvars)

 shell.interact()

from opcua import ua, uamethod, Server

class SubHandler(object):

 def datachange_notification(self, node, val, data):

 print("Python: New data change event", node, val)

method to be exposed through server

def func(parent, variant):

 ret = False

 if variant.Value % 2 == 0:

139

 ret = True

 return [ua.Variant(ret, ua.VariantType.Boolean)]

@uamethod

def multiply(parent, x, y):

 print("multiply method call with parameters: ", x, y)

 return x * y

class VarUpdater(Thread):

 def __init__(self, var):

 Thread.__init__(self)

 self._stopev = False

 self.var = var

 def stop(self):

 self._stopev = True

 def run(self):

 while not self._stopev:

 v = sin(time.time() / 10)

 self.var.set_value(v)

 time.sleep(0.1)

if __name__ == "__main__":

 # optional: setup logging

 logging.basicConfig(level=logging.WARN)

 # now setup our server

 server = Server()

 hostname = str(sys.argv[1])

 port = str(sys.argv[2])

 domain = "opc.tcp://"

 ddd = ":"

 final_address = (domain+hostname+ddd+port)

 server.set_endpoint(final_address)

 server.set_server_name("FreeOpcUa Example Server")

 server.set_security_policy([

 ua.SecurityPolicyType.NoSecurity,

 ua.SecurityPolicyType.Basic256Sha256_SignAndEncrypt,

 ua.SecurityPolicyType.Basic256Sha256_Sign])

 # setup our own namespace

 uri = str(sys.argv[4])

 idx = server.register_namespace(uri)

140

 # create a new node type we can instantiate in our address space

 dev = server.nodes.base_object_type.add_object_type(idx, "MyDevice")

 dev.add_variable(idx, "sensor1", 1.0).set_modelling_rule(True)

 dev.add_property(idx, "device_id", "0340").set_modelling_rule(True)

 ctrl = dev.add_object(idx, "controller")

 ctrl.set_modelling_rule(True)

 ctrl.add_property(idx, "state", "Idle").set_modelling_rule(True)

 # populating our address space

 # First a folder to organise our nodes

 myfolder = server.nodes.objects.add_folder(idx, "myEmptyFolder")

 # instanciate one instance of our device

 mydevice = server.nodes.objects.add_object(idx, "Device0001", dev)

 mydevice_var = mydevice.get_child(["{}:controller".format(idx), "{}:state".format(idx)])

 # get proxy to our device state variable

 # create directly some objects and variables

 #Definition of the new object

 obj = str(sys.argv[5])

 myobj = server.nodes.objects.add_object(idx, obj)

 #Definition of sensors

 sensore1 = str(sys.argv[6])

 sensore2 = str(sys.argv[7])

 myvar = myobj.add_variable(idx, sensore1, 6.7)

 mysin = myobj.add_variable(idx, sensore2, 0, ua.VariantType.Float)

 myvar.set_writable() # Set MyVariable to be writable by clients

 mystringvar = myobj.add_variable(idx, "MyStringVariable", "Really nice string")

 mystringvar.set_writable() # Set MyVariable to be writable by clients

 myguidvar = myobj.add_variable(NodeId(uuid.UUID('1be5ba38-d004-46bd-aa3a-

b5b87940c698'), idx, NodeIdType.Guid),

 'MyStringVariableWithGUID', 'NodeId type is guid')

 mydtvar = myobj.add_variable(idx, "MyDateTimeVar", datetime.utcnow())

 mydtvar.set_writable() # Set MyVariable to be writable by clients

 myarrayvar = myobj.add_variable(idx, "myarrayvar", [6.7, 7.9])

 myarrayvar = myobj.add_variable(idx, "myStronglytTypedVariable", ua.Variant([], ua.Varian

tType.UInt32))

 myprop = myobj.add_property(idx, "myproperty", "I am a property")

 mymethod = myobj.add_method(idx, "mymethod", func, [ua.VariantType.Int64], [ua.VariantTyp

e.Boolean])

 multiply_node = myobj.add_method(idx, "multiply", multiply, [ua.VariantType.Int64, ua.Var

iantType.Int64], [ua.VariantType.Int64])

 # import some nodes from xml

 server.import_xml("custom_nodes.xml")

141

 myevgen = server.get_event_generator()

 myevgen.event.Severity = 300

 # starting!

 server.start()

 print("Available loggers are: ", logging.Logger.manager.loggerDict.keys())

 vup = VarUpdater(mysin) # just a stupide class update a variable

 vup.start()

 try:

 var = myarrayvar.get_value()

 var = copy.copy(var)

 var.append(9.3)

 myarrayvar.set_value(var)

 mydevice_var.set_value("Running")

 myevgen.trigger(message="This is BaseEvent")

 server.set_attribute_value(myvar.nodeid, ua.DataValue(9.9))

 sleep = int(sys.argv[3])

 while 15 == 15:

 temp = random.randint(1,10)

 server.set_attribute_value(myvar.nodeid, ua.DataValue(temp))

 print("Nuovo valore myvar : ", temp)

 time.sleep(sleep)

 embed()

 finally:

 vup.stop()

 server.stop()

The script of the Server requires 7 paramters to be executed:

- The ip addres where the server is executed

hostname = str(sys.argv[1])

- The port where the service is exposed

port = str(sys.argv[2])

- The periodicity between a publication and the following ones

sleep = int(sys.argv[3])

- The uri to be set in the namespace containing the variables of the server.

uri = str(sys.argv[4])

idx = server.register_namespace(uri)

142

- The name of the object which contains the variables.

obj = str(sys.argv[5])

- The names of the variables.

sensore1 = str(sys.argv[6])

sensore2 = str(sys.argv[7])

This script is capable of the creation of an object with two variables inside the

namespace of the Server.

create directly some objects and variables

#Definition of the new object

 myobj = server.nodes.objects.add_object(idx, obj)

#Definition of sensors

 myvar = myobj.add_variable(idx, sensor1, 6.7)

 myvar.set_writable() # Set MyVariable to be writable by clients

After that the server can be started:

now setup our server

 server = Server()

As example the variable sensor1 is added inside the object of the server’s namespace

(referenced through the variable myvar). Is also initialized at an initial value 6.7 and

set as writable by the user.

myvar = myobj.add_variable(idx, sensore1, 6.7)

myvar.set_writable()

Then a random number is generated and associated to that variable (still referenced

through myvar) using an infinite loop while.

while 15 == 15:

 temp = random.randint(1,10)

 server.set_attribute_value(myvar.nodeid, ua.DataValue(temp))

 print("Nuovo valore myvar : ", temp)

 time.sleep(sleep)

The periodicity of publication is respected through the parameter sleep defined by

the user.

143

Inside the server is also defined a method called multiply that can be accessed by the

client using command line. This method takes in input two variables and gives back

their product.

@uamethod

def multiply(parent, x, y):

 print("multiply method call with parameters: ", x, y)

 return x * y

As example, the server can be executed using the command:

python3 server-example.py 0.0.0.0 4840 1 http://examples.freeopcua.github.io object1 sensor1 sensor2

In this case the parameters are:

- hostname = 0.0.0.0

Using 0.0.0.0 we are executing the server in all the addresses available.

- port = 4840

- sleep = 1 second

- uri = http://examples.freeopcua.github.io

- obj = object1

- sensore1 = sensor1

- sensore2 = sensor2

7.3.2 Python code OPC UA Client

OPC UA Client script

import sys
sys.path.insert(0, "..")
import logging
import time

try:
 from IPython import embed
except ImportError:
 import code

 def embed():
 vars = globals()
 vars.update(locals())
 shell = code.InteractiveConsole(vars)
 shell.interact()

144

from opcua import Client
from opcua import ua

class SubHandler(object):

 def datachange_notification(self, node, val, data):
 print("Python: myvar is: ", val)

 def event_notification(self, event):
 print("Python: New event", event)

if __name__ == "__main__":
 logging.basicConfig(level=logging.WARN)

 hostname = str(sys.argv[1])
 port = str(sys.argv[2])
 domain = "opc.tcp://"
 ddd = ":"
 final_address = (domain+hostname+ddd+port)

 client = Client(final_address)

 try:
 client.connect()
 client.load_type_definitions() # load definition of server specific
structures/extension objects

 # Client has a few methods to get proxy to UA nodes that should always be in address
space such as Root or Objects
 print("---------------------------------------")
 root = client.get_root_node()
 print("Root node is: ", root)
 objects = client.get_objects_node()
 print("Objects node is: ", objects)
 print("---------------------------------------")

 # gettting our namespace idx
 uri = str(sys.argv[4])
 idx = client.get_namespace_index(uri)

 # Now getting a variable node using its browse path
 print("---------------------------------------")
 print("Informazioni variabile myvar")
 myvar = root.get_child(["0:Objects", "{}:object1".format(idx),
"{}:sensor1".format(idx)])
 obj = root.get_child(["0:Objects", "{}:object1".format(idx)])
 print("myvar is: ", myvar)

 print("---------------------------------------")

 # subscribing to a variable node
 handler = SubHandler()
 tempo_aggiornamento = 1000 * int(sys.argv[3])
 sub = client.create_subscription(tempo_aggiornamento, handler)
 handle = sub.subscribe_data_change(myvar)
 time.sleep(0.1)

 # we can also subscribe to events from server

145

 sub.subscribe_events()

 # calling a method on server
 print("---------------------------------------")
 res2 = obj.call_method("{}:multiply".format(idx), 3, 2)
 print("method result is: ", res2)
 print("---------------------------------------")

 embed()
 finally:
 client.disconnect()

The script of the Client requires 4 paramters to be executed:

- The ip addres where the server is executed.

hostname = str(sys.argv[1])

- The port where the service is exposed.

port = str(sys.argv[2])

- The sampling rate at which the data is reported to the client.

tempo_aggiornamento = 1000 * int(sys.argv[3])

- The uri of the server’s namespace where are stored objects and variables.

uri = str(sys.argv[4])

idx = client.get_namespace_index(uri)

This piece of software allows the connection to the Server identified by the endpoint

information passed as parameters.

Once the user set the ip address and the port of the server, the connection can be

established:

try:
 client.connect()

Through the variable myvar is referenced the variable sensor1 contained inside

the object object1 inside the server’s namespace:

myvar = root.get_child(["0:Objects", "{}:object1".format(idx), "{}:sensor1".format(idx)])
obj = root.get_child(["0:Objects", "{}:object1".format(idx)])

146

Now the subscription to that variable can be requested specifying the sampling

interval:

subscribing to a variable node
 handler = SubHandler()
 tempo_aggiornamento = 1000 * int(sys.argv[3])
 sub = client.create_subscription(tempo_aggiornamento, handler)
 handle = sub.subscribe_data_change(myvar)
 time.sleep(0.1)

The subscription in controlled by the function datachange_notification that

publish the value of the variable (or the list of values that are published during the

sampling interval):

def datachange_notification(self, node, val, data):
 print("Python: myvar is: ", val)

Is also set the subscription to all the events of the server:

we can also subscribe to events from server
 sub.subscribe_events()

Finally, two numbers are passed to the method multiply defined by the server:

calling a method on server
print("---------------------------------------")
res2 = obj.call_method("{}:multiply".format(idx), 3, 2)
print("method result is: ", res2)
print("---------------------------------------")

As result the server responds with the result of their product.

In Tables 4 and 5 are reported all the output bash of the Server and the Client. It is

possible to see that all the values published by the server are correctly reported by to

the client.

OPC UA Server

ubuntu@lorenzo-vm:~/ $ python3 server-example.py 0.0.0.0 4840 1 http://examples.freeopcua.github.io object1 sensor1 sensor2

WARNING:opcua.server.server:Endpoints other than open requested but private key and certificate are not set.

WARNING:opcua.server.binary_server_asyncio:Listening on 0.0.0.0:4840

Nuovo valore myvar : 9

Nuovo valore myvar : 5

multiply method call with parameters: 3 2

Nuovo valore myvar : 3

Nuovo valore myvar : 5

147

Nuovo valore myvar : 4

Nuovo valore myvar : 10

Nuovo valore myvar : 10

Nuovo valore myvar : 2

Nuovo valore myvar : 10

Nuovo valore myvar : 5

Nuovo valore myvar : 2

Nuovo valore myvar : 8

Nuovo valore myvar : 5

Table 4: OPC UA Server bash

OPC UA Client

ubuntu@opc-ua-server-1-mgmtvm-0:~/$ python3 client-python.py 10.15.2.231 4840 1 http://examples.freeopcua.github.io

Root node is: i=84

Objects node is: i=85

Informazioni variabile myvar

myvar is: ns=2;i=13

method result is: 6

Python 3.6.9 (default, Jan 26 2021, 15:33:00)

>>> Python: myvar is: 5

Python: myvar is: 3

Python: myvar is: 5

Python: myvar is: 4

Python: myvar is: 10

Python: myvar is: 2

Python: myvar is: 10

Python: myvar is: 5

Python: myvar is: 2

Python: myvar is: 8

Table 5: OPC UA Client bash

148

Server (Publish interval = 1s) Client (Sampling interval = 1s)

Nuovo valore myvar : 9

Nuovo valore myvar : 5

Nuovo valore myvar : 3

Nuovo valore myvar : 5

Nuovo valore myvar : 4

Nuovo valore myvar : 10

Nuovo valore myvar : 10

Nuovo valore myvar : 2

Nuovo valore myvar : 10

Nuovo valore myvar : 5

Nuovo valore myvar : 2

Nuovo valore myvar : 8

>>> Python: myvar is: 5

Python: myvar is: 3

Python: myvar is: 5

Python: myvar is: 4

Python: myvar is: 10

Python: myvar is: 2

Python: myvar is: 10

Python: myvar is: 5

Python: myvar is: 2

Python: myvar is: 8

Table 6: Client-Server communication with sampling interval = 1s

Table 6 reports the side by side the output of Tables 4 and 5. These results are

referred to a case were server and client are set respectively with the same publish

interval and sampling interval to 1 second. In this case the client is continuously

updated at every publication of the server.

In case the sampling interval is set to 5 seconds (as reported in table 7), all the

publication of the server in that period are grouped and reported in a single message.

Server (Pubblish interval = 1s) Client (Sampling interval = 5s)

Nuovo valore myvar : 7

Nuovo valore myvar : 5

Nuovo valore myvar : 8

Nuovo valore myvar : 4

Nuovo valore myvar : 10

Nuovo valore myvar : 8

Nuovo valore myvar : 2

>>> Python: myvar is: 4

Python: myvar is: 10

Python: myvar is: 8

Python: myvar is: 2

149

Nuovo valore myvar : 5

Nuovo valore myvar : 10

Nuovo valore myvar : 2

Nuovo valore myvar : 8

Nuovo valore myvar : 3

Nuovo valore myvar : 5

Nuovo valore myvar : 3

Nuovo valore myvar : 1

Nuovo valore myvar : 10

Nuovo valore myvar : 2

Nuovo valore myvar : 10

Nuovo valore myvar : 3

Nuovo valore myvar : 10

Nuovo valore myvar : 7

Nuovo valore myvar : 10

Nuovo valore myvar : 8

Nuovo valore myvar : 1

Nuovo valore myvar : 6

Nuovo valore myvar : 6

Nuovo valore myvar : 1

Python: myvar is: 5

>>>

Python: myvar is: 10

Python: myvar is: 2

Python: myvar is: 8

Python: myvar is: 3

Python: myvar is: 5

>>>

Python: myvar is: 3

Python: myvar is: 1

Python: myvar is: 10

Python: myvar is: 2

>>>

Python: myvar is: 10

Python: myvar is: 3

Python: myvar is: 10

Python: myvar is: 7

>>>

Python: myvar is: 10

Python: myvar is: 8

Python: myvar is: 1

Python: myvar is: 6

Table 7: Client-Server communication with sampling interval = 5s

It is important to notice from Table 7 that even if the server publication time is 1s

and the client’s sample interval is 5 seconds, not all the publication grouped are

composed by 5 samples (highlighted in green). There are some cases (highlighted in

red) where the samples reposted are only 4. This is because we need consider the

network in between the two entities. There can be some packets lost that need to be

150

retransmitted or maybe some packets follow different routes which translates in

different RTTs.

7.4 OPC-UA GUI

There is also the possibility to use a graphical user interface. This GUI is available

for client and there is also a Modeler version that allow to create a custom namespace

without the need to write python code. It can be installed on Windows or Linux. Here

I report how to install and use the GUI only in Linux OS.

7.4.1 Client GUI

Is written using freeopcua python api and pyqt [51]. This GUI can implement the

most needed functionalities including subscribing for data changes and events, write

variable values listing attributes and references, and call methods.

It can be easily installed and launched with the following commands (Python 3.6+

and python-pip are required):

1. pip3 install opcua-client

2. pip3 install --user pyqt5

3. apt-get install python3-pyqt5

4. apt-get install pyqt5-dev-tools

5. opcua-client #Run the GUI

As example an OPA UA server generates random number with a periodicity of 1

second, is running on address 10.0.2.15. The service is exposed on port 5555.

Once the GUI is launched, is necessary to insert the ip address and the port of the

server where the service is running as shown in Figure 7.21 with the red line.

151

Figure 7.21: FreeOpcUa Client connection with the Server

Once the connection is established, on the Client GUI are shown all the variables

and objects which populate the namespace of the server, as shown in Figure 7.22.

It is possible to see that all the objects and variables which populate the

namespace of the server match perfectly with their definition.

All the objects and variable are defined inside a Json file that is accessed by the

Server to properly build its namespace.

{

 "opcua": [

 {

 "port": "5555",

 "uri": "http://examples.freeopcua.github.io",

 "objects": [

 {

 "object_name": "LISTE_ABC1",

 "variables": [

 "LUCE1",

 "ACQUA1",

 "GAS1"

]

 },

 {

 "object_name": "LISTE_ABC2",

 "variables": [

 "LUCE2",

 "ACQUA2",

 "GAS2",

 "TERRA2"

152

]

 },

 {

 "object_name": "LISTE_ABC3",

 "variables": [

 "LUCE3",

 "ACQUA3",

 "GAS3",

 "TERRA3",

]

 },

 {

 "object_name": "LISTE_ABC4",

 "variables": [

 "LUCE4",

 "ACQUA4",

 "GAS34",

 "TERRA4",

]

 }

]

 }

]

}

Figure 7.22: FreeOpcUa: connection with the server established

Now is possible to ask the subscription to a certain variable to see all the changes

of that variable. The server is publishing numbers over the variable “LUCE1”.

153

Figure 7.23: FreeOpcUa: subscription to a variable

From Figure 7.23, it is possible to see that every time a new number is published

by the server, is seen also in the Client’s GUI with the correspondent timestamp of

that value.

7.4.2 Modeler GUI

Free OPC UA Modeler [52] is a tool for the creation of a custom OPC UA address

spaces using a simple GUI without the need to write Python code. It uses OPC UA

specified XML format which allows the produced XML to be imported into any OPC

UA SDK.

It can be easily installed and launched with the following commands (Python 3.6+

and python-pip are required):

1. pip3 install opcua-modeler

2. pip3 install --user pyqt5

3. apt-get install python3-pyqt5

4. apt-get install pyqt5-dev-tools

154

5. opcua-modeler #Run the GUI

The modeler is basically an OPC UA Server (either python-opcua (default) or the

C based open65421) that is running in background.

Figure 7.24: FreeOpcUa Modelet GUI

This server is connected to the modeler and is customizable using action over the

GUI as shown in Figure 7.24.

1. Create a new namespace (Only ONE namespace is required, namespace one

will be used)

2. create a new data type under DataType / Structure

3. Populate data type with new variables using correct data type

4. Save

155

Capitolo 8

CHAPTER 8:

ORCHESTRATION OF AN IOTAAS

ENVIRONMENT

In the previous chapter I have described all the theoretical concepts that stand

behind this thesis.

This chapter is focused on the description of the activity that was undertaken for

the orchestration of an IIoTaaS scenario.

An initial version of this job was already presented during the 11th OSM Hackfest

[53] “NF Onboarding Challenge” organized by the ETSI OSM group, and it was

awarded with the “Best Use Case” award.

This work was further developed and incorporated inside another project that will

be presented to be selected in an international conference. Which conference has yet

to be decided. Inside this project, my work is mainly focused on the OPC UA side

part.

This new implementation mixes all the theoretical concepts of NFV, OPC UA and

MQTT that I have introduced and described so far.

The outcome of this study is to manage a possible IoT scenario, where a multitude

of IoT sensors need to coexist, using their own communication protocol (in this case

OPC UA or MQTT).

In this environment, all clients are not aware how to reach sensors in the network.

The solution described in this chapter shows how is possible to register all services

offered by all the servers/publisher in a sort of catalogue.

The MEC Platform (described in Chapter 4) is the software entity in charge of

“helping” running applications by exposing a set of different APIs. Using MEC 011

APIs, all MEC applications can register the services they are exposing to the Service

156

Registry maintained by the MEC Platform. In this way other applications can

discover these services and consume them by querying the registry.

An example of how the service discovery mechanism enabled by MEC 011 can be

used for Industrial IoT applications can be found in [55].

In this way clients can know what are the endpoints to reach the desired service.

To do that, some software entities are required:

• Open Source MANO is the software entity that act as management and

orchestration platform for all the NFV entities.

• The MEC Platform is used as “catalogue” where all services register the

endpoints

• Kubernetes cluster to deploy all workloads for the MEC Platform and all the

MEC Applications

• OpenStack for the management of the Kubernetes’s cluster.

Figure 8.1: System overview

157

8.1 Description of the testbed

The testbed used for the development of the project is composed by two bare-

metal servers hosted by the CloudLab [56] facilities. The first has installed OSM

platform with the possibility of development all the functionalities described in

Chapter 3.

The second server instead is dedicated to the handlining of all the virtualization

functionalities. In particular, it hosts OpenStack Wallaby release, on top of that, three

virtual machines host a Kubernetes cluster (one control node and two nodes for the

workloads), each of them equipped with 8 Gb of RAM, 4 VCPUs and 80 Gb of disk.

All the pods managed by K8s are supported by some services directly offered by the

platform:

- ClusterIP: Is the service used for the communication between pods (without

the need to pass from an external network).

- NodePort: Is used when is required to expose a port of a container with an

external network.

- LoadBalancer: Has the role to assign the IP address of a certain pod on an

external network

This cluster is used to deploy all workloads for the MEC Platform and all the

MEC Applications used for this project. All of these are custom made python

applications packed inside Helm chart packages that will be described soon.

All the deployment is not hardware dependent. It can be replicated on whatever

type of hardware. The only requirement is that hardware resources must be sufficient

to handle all software and VMs that are used.

A single tenant is used for OSM and OpenStack.

The creation of a VIM account in the OSM dashboard is necessary. In particular,

the VIM account is identified by the following parameters:

- Name: Identify the VIM inside the OSM platform

158

- VIM URL: http://10.15.3.1:5000/v3 (is the address and port to get access to

the service)

- VIM Username and password

- Tenant name:

- Type: OpenStack (is the infrastructure)

In this way in OSM is possible to upload all the packages for the deployment of

NSs.

OpenStack is used for the deployment of VMs. The VM from which I get access

to the testbed can be access through username and password credentials and is

running on Ubuntu 20.04.2 LTS.

8.2 Description of the code

The code is organized in three sections: Docker images, Helm Charts and OSM

Descriptors.

The code related to the OPC UA part is described in this section. The full code

can be found at [57].

8.2.1 Docker images

For each entity involved in the testbed, was necessary to build an ad-hoc Docker

image. In this way was possible to run containers that are specialized in all the tasks

required by the entity.

All the Dockerfile can be found in Appendix A. The entities involved are the

following:

- client-mec-docker → Client that contains all the OPC UA and MQTT

functionalities.

- docker-img-mec → Is the MEC Platform

- mqtt-pub-docker → MQTT Publisher

- server-mec-docker → Is the OPC UA Server with all the functionalities

described in section 7.2.

159

8.2.2 Helm Charts

The deployment of the environment is made through OSM Descriptors and Helm

Charts. They can be seen as a sort of packages that contains all command executed

by K8s for the deployment of different containers.

All the Helm Charts descriptors are contained in Appendix B.

- mec-iot-client

- mqtt-pub-docker

- mec-opcua_server

- mec-platform

Here I report only a quick description about the Helm Chart descriptor of the OPC

UA Server. All the other Charts are based on the same concepts.

mec-opcua_server

{{ $randNum := randNumeric 3 }}

apiVersion: v1

kind: Pod

metadata:

 name: opcua-server-{{$randNum}}

 labels:

 app: opcua-server-{{$randNum}}

spec:

 #hostNetwork: true

 #dnsPolicy: ClusterFirstWithHostNet

 containers:

 - name: opcua-server-1

 image: lorenzobassi/opcua_server_mec-cnsm

 env:

 # MEC Platform endpoint

 - name: MEC_BASE

 value: "http://mec-platform"

 - name: INFRA

 value: "k8s"

 - name: MY_POD_NAME

 value: "opcua-server-{{$randNum}}"

 - name: MY_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 ports:

 - containerPort: 4840

 imagePullPolicy: Always

160

apiVersion: v1

kind: Service

metadata:

 name: opcua-server-{{$randNum}}

spec:

 type: LoadBalancer

 selector:

 app: opcua-server-{{$randNum}}

 ports:

 - port: 4840

 targetPort: 4840

The role of this Helm Chart is to launch a new pod based on the Docker image

lorenzobassi/opcua_server_mec-cnsm, which contains all the code for the

deployment of the wanted service, as reported in section 8.2.1. The image is pulled

from the Docker repository and extracted. This operation requires a different amount

of time depending by the hardware over that the system is running.

Every time a new service is created, a new entry is created inside the DNS domain

of K8s that correspond to the name of that service.

This operation is done inside the Helm Chart descriptor of all the services

involved through the following code:

kind: Service

metadata:

 name: opcua-server-{{$randNum}}

8.2.3 OSM Descriptors

All the descriptors are reported in Appendix C.

As I did in the previous section I report here the description of only the OPC UA

Server. All the other descriptor’s entities are based on the same concepts.

VNFD Descriptor OPC UA Server

vnfd:

 description: KNF for deploying an OPC UA Server

 df:

161

 - id: default-df

. . .

Most of the fields of this first part of the descriptors are reference names used

chosen arbitrary. Through them is possible to reference to this descriptor inside other

descriptors.

. . .

 ext-cpd:

 - id: mgmt-ext

 k8s-cluster-net: mgmtnet

 id: mec-opcua-server_knf

 k8s-cluster:

 nets:

 - id: mgmtnet

. . .

 All the external connection points information and the network to reach K8s are

defined

Because we want to deploy a K8s application is necessary to define the KDU:

. . .

kdu:

 - helm-chart: chartmuseum/mec-opcua-server

 name: mec-opcua-server

 mgmt-cp: mgmt-ext

 product-name: mec-opcua-server_knf

 provider: Unibo

 version: '1.0'

As described in section 8.2.2, we are using Helm Charts. Inside the KDU is

necessary to reference to the correspondent Helm Chart: “chartmuseum/mec-

opcua-server”.

162

NSD Descriptor OPC UA Server

nsd:

 nsd:

 - description: NS consisting of a single KNF mec-opcua-server_knf connected to mgmt network

 designer: OSM

 id: mec-opcua-server_ns

 name: mec-opcua-server_ns

 version: '1.0'

. . .

In the first part of the NSD are specified all the information about it.

. . .

df:

 - id: default-df

 vnf-profile:

 - id: mec-opcua-server

 virtual-link-connectivity:

 - constituent-cpd-id:

 - constituent-base-element-id: mec-opcua-server

 constituent-cpd-id: mgmt-ext

 virtual-link-profile-id: mgmtnet

 vnfd-id: mec-opcua-server_knf

 virtual-link-desc:

 - id: mgmtnet

 mgmt-network: 'true'

 vim-network-name: mgmt

 vnfd-id:

 - mec-opcua-server_knf

Then are defined all the information about connectivity: virtual link and connection

points.

163

8.2.4 OPC UA Server code

The server used in this project has functionalities that can be overlapped to those

ones described in 7.3. In this case the subscription is not implemented, simply

because the aim of this project is not strictly related to the OPC UA functionalities

but instead focused on the registration of this service in a multi-vendor scenario. The

python code that implements the server is the following:

if __name__ == "__main__":

 # optional: setup logging

 logging.basicConfig(level=logging.WARN)

 # now setup our server

 server = Server()

 hostname = str(sys.argv[1])

 port = str(sys.argv[2])

 domain = "opc.tcp://"

 ddd = ":"

 final_address = (domain+hostname+ddd+port)

 server.set_endpoint(final_address)

 server.set_server_name("FreeOpcUa Example Server")

 uri = str(sys.argv[3])

 idx = server.register_namespace(uri)

 # create a new node type we can instantiate in our address space

 dev = server.nodes.base_object_type.add_object_type(idx, "MyDevice")

 dev.add_variable(idx, "sensor1", 1.0).set_modelling_rule(True)

 dev.add_property(idx, "device_id", "0340").set_modelling_rule(True)

 ctrl = dev.add_object(idx, "controller")

 ctrl.set_modelling_rule(True)

 ctrl.add_property(idx, "state", "Idle").set_modelling_rule(True)

 # create directly some objects and variables

 # READ OBJECTS AND VARIABLE FORM THE JSON FILE

 with open('opcua_fields.json') as file:

 data = json.load(file)

164

 dim_obj_list = len(data["opcua"][0]["objects"])

 for i in range(0, dim_obj_list):

 dim_var_list = len(data["opcua"][0]["objects"][i]["variables"])

 globals()[f"obj_{i}"] = data["opcua"][0]["objects"][i]["object_name"]

 globals()[f"myobj_{i}"] = server.nodes.objects.add_object(idx, globals()[f"obj_{i}"])

 for j in range(0, dim_var_list):

 globals()[f"variable_{i}_{j}"] = data["opcua"][0]["objects"][i]["variables"][j]

 globals()[f"myvar_{i}_{j}"].set_writable()

 server.start()

 print("Available loggers are: ", logging.Logger.manager.loggerDict.keys())

 vup = VarUpdater(mysin) # just a stupide class update a variable

 vup.start()

 try:

 if sys.argv[4] == 'default_value':

 sleep = 1

 else:

 sleep = int(sys.argv[4])

 print("sleep in input: ",sleep)

 while 15 == 15:

 for k in range(0, dim_obj_list):

 num_variables = len(data["opcua"][0]["objects"][k]["variables"])

 for p in range(0, num_variables):

 temp = random.randint(1,10000)

 server.set_attribute_value(globals()[f"myvar_{k}_{p}"].nodeid, ua.DataValue(temp))

 print(" ")

 print("Nuovo valore myvar_",k,"_",p,":", temp)

 print("--")

 time.sleep(sleep)

 embed()

 finally:

 vup.stop()

 server.stop()

165

The code requires 4 parameters (defined arbitrary by the user) to function properly:

- The ip addres where the server is executed

hostname = str(sys.argv[1])

- The port where the service is exposed

port = str(sys.argv[2])

- The uri to be set in the namespace containing the variables of the server.

uri = str(sys.argv[3])

- The periodicity between a publication and the following ones

sleep = int(sys.argv[4])

To guarantee the vendor independent property of the protocol, the user have to

define its own information model. This can be done modifying a json file (Reported

in Table 8) inside a GitHub repository [58] before launching the server.

{

 "opcua": [

 {

 "port": "4840",

 "uri": "http://examples.freeopcua.github.io",

 "objects": [

 {

 "object_name": "Device1",

 "variables": [

 "Light",

 "Water",

 "Gas"

]

 },

 {

 "object_name": "Device2",

 "variables": [

 "Temperature"

]

 }

]

 }

]

}

Table 8: Json list for the definition of the namespace of the server

166

Every time the OPC UA server is launched the json list of Table 8 is downloaded

from the GitHub repository. In this way the server can get access to it:

with open('opcua_fields.json') as file:

 data = json.load(file)

Once the list is open, using a for cycle that spans through all the objects and

variables is possible to store all of them inside the namespace of the server.

dim_obj_list = len(data["opcua"][0]["objects"])

 for i in range(0, dim_obj_list):

 dim_var_list = len(data["opcua"][0]["objects"][i]["variables"])

 globals()[f"obj_{i}"] = data["opcua"][0]["objects"][i]["object_name"]

 globals()[f"myobj_{i}"] = server.nodes.objects.add_object(idx, globals()[f"obj_{i}"])

 for j in range(0, dim_var_list):

 globals()[f"variable_{i}_{j}"] = data["opcua"][0]["objects"][i]["variables"][j]

 globals()[f"myvar_{i}_{j}"].set_writable()

At this point the server is ready to be started:

server.start()

A random number is assigned to all the variables. This happened with a periodicity

defined by the user through the sleep parameter.

while 15 == 15:

 for k in range(0, dim_obj_list):

 num_variables = len(data["opcua"][0]["objects"][k]["variables"])

 for p in range(0, num_variables):

 temp = random.randint(1,10000)

 server.set_attribute_value(globals()[f"myvar_{k}_{p}"].nodeid, ua.DataValue(temp))

 print(" ")

 print("Nuovo valore myvar_",k,"_",p,":", temp)

 print("--")

 time.sleep(sleep)

167

8.2.5 OPC UA Client code

The client of the project is a single entity which include both MQTT and OPC UA

functionalities. I’ll explain more in detail in section 8.4.

Here I report the code related to the OPC UA part:

if __name__ == "__main__":

 logging.basicConfig(level=logging.WARN)

 hostname = str(sys.argv[1])

 port = str(sys.argv[2])

 domain = "opc.tcp://"

 ddd = ":"

 final_address = (domain+hostname+ddd+port)

 client = Client(final_address)

 try:

 client.connect()

 client.load_type_definitions()

 root = client.get_root_node()

 objects = client.get_objects_node()

 # getting our namespace idx

 uri = str(sys.argv[3])

 idx = server.register_namespace(uri)

 myvar00 = root.get_child(["0:Objects", "{}:Device1".format(idx), "{}:Light".format(idx)])

 obj0 = root.get_child(["0:Objects", "{}:Device1".format(idx)])

 sensor_msg00 = myvar00.get_value()

 print("Device1_Light : ", sensor_msg00)

 myvar01 = root.get_child(["0:Objects", "{}:Device1".format(idx), "{}:Water".format(idx)])

 sensor_msg01 = myvar01.get_value()

 print("Device1_Water : ",sensor_msg01)

 myvar02 = root.get_child(["0:Objects", "{}:Device1".format(idx), "{}:Gas".format(idx)])

 sensor_msg02 = myvar02.get_value()

 print("Device1_Gas : ",sensor_msg02)

168

 myvar10 = root.get_child(["0:Objects", "{}:Device2".format(idx), "{}:Temperature".format(idx)])

 obj1 = root.get_child(["0:Objects", "{}:Device2".format(idx)])

 sensor_msg10 = myvar10.get_value()

 print("Device2_Temperature : ",sensor_msg10)

 embed()

 finally:

 client.disconnect()

As before, 3 parameters are to function properly:

- The ip addres where the server is executed

hostname = str(sys.argv[1])

- The port where the service is exposed

port = str(sys.argv[2])

- The uri to identity the namespace of the server.

uri = str(sys.argv[3])

These parameters need to match those defined by the user during the server start-

up.

After that the connection is established, all the variables can be saved in a variable

and printed out.

myvar00 = root.get_child(["0:Objects", "{}:Device1".format(idx), "{}:Light".format(idx)])

obj0 = root.get_child(["0:Objects", "{}:Device1".format(idx)])

sensor_msg00 = myvar00.get_value()

print("Device1_Light : ", sensor_msg00)

To get access to a variable, are required the object name and the name of the variable

defined inside the Json list of Table 8.

169

8.3 Registration of services inside the MEC Platform

As mentioned before, in this implementation can coexist at the same time entities

that are using OPC UA or MQTT as transport protocol. In this case all the OPC UA

Servers and MQTT publishers that are part of the network need to register their

service endpoints inside the MEC platform.

Figure 8.2: MEC Platform

As shown in Figure 8.2 the MEC Platform act as Broker MQTT for what concerns

MQTT case. For the OPC UA protocol, instead, the platform act as Discovery server

(located inside the Service Registry in Figure 8.2).

In this way, is possible to benefit of the standardized ETSI MEC framework

functionalities. All the functionalities of the Discovery Server and the Broker MQTT

are covered by the platform without the need to implement these two software

entities.

By properly defining all the services following MEC 011 [59] standard to further

describe what a specific IoT device is providing, an IoT client can discover the

different available services of all the sensors in the network. In this way the client

170

can know the type of data they are offering, and which type of transport protocol

they are using.

MEC 011 standard defines the type “EndPointInfo” for the definition of transport

endpoint. In particular, the flag “alternative” allow the definition a custom definition

of it.

As result, this solution allows to coexist at the same time multiple services that are

implemented with different technologies.

The IOT client in Figure 8.2 contains inside all the software to be able to interact

with IoT sensors that are using both OPC UA and MQTT transport protocols.

8.3.1 Registration of OPC UA Server service on the MEC Platform

As already explained in Chapter 6, the OPC UA Server needs to specify some

parameters and endpoints for the setup of the service.

As explained in section 8.2.4, in this project, the OPC UA Server acts as a sensor

that outputs random numbers.

To register this kind of service some endpoints and parameters that are required:

- Ip address of the Server

- Port number where the service can be assessed

- URI of the namespace inside the server

- Object name

- Variable name

The IP address of the server is fixed and depends by the VM that is running the

service.

Their registration on the MEC Platform is made through a JSON file (see Table

8). All these endpoints of the service are placed inside the field “alternative” of the

MEC standard.

171

Here down below, is reported the entire standardized MEC 011 format for the

OPC UA server:

{

 "serInstanceId": "OPC_UA_SERVER",

 "serName": "OPC_UA_SERVER-service",

 "serCategory": {

 "href": "/example/catalogue1",

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "OPC_UA_SERVER---1",

 "name": "OPC_UA_SERVER",

 "description": "OPC_UA_SERVER",

 "type": "MB_TOPIC_BASED",

 "protocol": "OPCUA",

 "version": "2.0",

 "endpoint": {

 "alternative": {

 "opcua": [

 {

 "port": "4840",

 "uri": "http://examples.freeopcua.github.io",

 "objects": [

 {

 "object_name": "Device1",

 "variables": [

 "Light",

 "Water",

 "Gas"

]

 },

 {

 "object_name": "Device2",

 "variables": [

 "Temperature"

]

 }

],

 "host": "opcua-server-865.6c391cef-2235-4589-8be7-0764e185f9e7.mec.host"

Table 9: OPC UA Server registration on the MEC Platform

172

Because of OPC UA is a vendor-independent platform. As explained in section

8.24, all these parameters are defined by the user during the Server start-up (using

the JSON list of Table 8). The JSON list is downloaded from a project on GitHub

and automatically registered on the MEC Platform. In this way is possible to easily

create a namespace populated with all the fields defined by the user.

From Table 9 it is possible to see that the IP address of the OPC UA Server is not

included in the list. That information is necessary to correctly reach the service but is

not obtained directly from the JSON list of the service but instead using one of the

K8s functionalities when a new pod is launched.

As reported in section 8.2.2, for each service that is created, is associated to a

DNS name that can be resolved internally by K8s.

In this case is also created a subdomain DNS:

hostname = "{}.{}.mec.host".format(pod_name, pod_namespace)

This DNS subdomain is created using the service CoreDNS that is already included

in the K8s software.

Figure 8.3: CoreDNS configuration

173

As shown highlighted with a red line in Figure 8.3, all the services which terminate

with mec.host are resolved with the external addresses of K8s (k8s_externals).

In this way is possible to associate a DNS name to every service created (the OPC

UA Server in this case). As example, a possible DNS name for the OPC UA Server

could be: “opcua-server-123.pod_name.pod_namespcae.mec.host”

After having defined all these parameters, the registration of the service inside the

MEC Platform is made through a request.post:

r = requests.post(query_base, data=json.dumps(service_data), headers=headers)

Another important fact that I want to point out, is the type of transport used for the

OPC UA case. In the filed “type” is reported MB_TOPIC_BASED.

The definition of this field can be found at [59]: “Topic-based message bus which

routes messages to receivers based on subscriptions, if a pattern passed on

subscription matches the topic of the message.”

This description matches perfectly the MQTT protocol. Even if is not totally true

in the OPC UA case, is the one that best approximate the type of transport.

The list of transport type can be extensible. A future development of this study

could be the definition of a new transport standard type that matches perfectly the

OPC UA protocol.

8.3.2 Registration of MQTT Broker service on the MEC Platform

Like the case of the OPC UA Server, the MQTT broker register it service using

the following JSON list that contains all the endpoints to reach that service.

174

"serInstanceId": "Mec-MQTT-Broker-1",

 "serName": "Mec-MQTT-Broker-Service",

 "serCategory": {

 "href": "/example/catalogue1",

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "MqttBrokerId01",

 "name": "MQTT BROKER",

 "description": "MQTT BROKER",

 "type": "MB_TOPIC_BASED",

 "protocol": "MQTT",

 "version": "2.0",

 "endpoint": {

 "alternative":{

 "mqtt-topics":{

 "host" : "mqtt-broker",

 "port" : "1883",

 "topics" : []

 }

 }

 },

 "security": {

 "oAuth2Info": {

 "grantTypes": [

 "OAUTH2_CLIENT_CREDENTIALS"

],

 "tokenEndpoint": "/mecSerMgmtApi/security/TokenEndPoint"

 }

 },

 "implSpecificInfo": {}

 },

 "serializer": "JSON",

 "scopeOfLocality": "MEC_SYSTEM",

 "consumedLocalOnly": False,

 "isLocal": True

}

Table 10: MQTT Broker Registration on the MEC Platform

175

8.4 The Client

This software entity provides a frontend and a backend part. I mainly worked on

the OPC UA backend implementation.

There are not two different clients for the MQTT and the OPC UA protocols.

There is a hybrid client that contains which can handle the two transport protocols.

Its role is to search inside the list of services that are registered the MEC platform the

name of the sensors that it is interested in. Once found it, can recover all the

endpoints stored inside the “alternative” filed and use them to get access to that

sensor no matter which protocol is required, because the client is capable of both.

At the end of the day, the final user does not know anything about the sensor that

it is interested in. The only information that the user must be aware of, is the name of

that sensor.

The MEC Platform respond sending the endpoints to reach it. This means that the

client does not know in advance if the sensor it is looking for is running OPC UA or

MQTT.

In Table 11, is reported the part of the code where the client understands which

protocol to use to get the data from sensors. This is done through the function

“get_sensor_data” which requires in input the name of the wanted variable

“sensorName”. The function search inside the list of services registered if that

variable is associated to the OPCUA or MQTT protocol. This can be done through

the filed “protocol” of the “transportInfo” section as shown in Tables 9 and 10.

@app.route("/get_sensor_data/<sensorName>")

def get_sensor_data(sensorName):

 srvs = get_all_services()

 for s in srvs:

 if s['transportInfo']['protocol'] == 'MQTT':

 if sensorName in s['transportInfo']["endpoint"]['alternative']['mqtt-topics']['topics']:

 #TODO START MQTT SENSING

 address = s['transportInfo']["endpoint"]['alternative']['mqtt-topics']['host']

 port = s['transportInfo']["endpoint"]['alternative']['mqtt-topics']['port']

 topic = sensorName

 mqtt_get_data(address, port, topic)

 print

 if s['transportInfo']['protocol'] == 'OPCUA':

 for opcua_server in s['transportInfo']["endpoint"]['alternative']['opcua']:

176

 for object in opcua_server['objects']:

 if object['object_name'] == sensorName.split("/")[0] and sensorName.split("/")[1] in object['variables']:

 #TODO START OPCUA SENSING

 opcua_get_data(opcua_server['host'], opcua_server['port'], opcua_server['uri'], sensorName.split("/")[0], sensorName.split("/")[1])

 print

 return

Table 11: Client code for the selection of the protocol to use

In Table 12 are reported the differences between the registration of the two

services.

OPC UA MQTT

"endpoint": {

 "alternative": {

 "opcua": [

 {

 "port": "4840",

 "uri": "http://examples.freeopcua.github.io",

 "objects": [

 {

 "object_name": "Device1",

 "variables": [

 "Light",

 "Water",

 "Gas"

]

 },

 {

 "object_name": "Device2",

 "variables": [

 "Temperature"

]

 }

],

"endpoint": {

 "alternative":{

 "mqtt-topics":{

 "host" : "mqtt-broker",

 "port" : "1883",

 "topics" : []

 }

 }

 },

Table 12: Definition of sensors in the MEC Platform OPC UA vs MQTT

Once the client has understood which protocol to use, calls the correspondent

function:

- “mqtt_get_data(address, port, topic)” → For the MQTT case.

- “opcua_get_data(host,port,uri,objectName,sensorName)” → For OPC UA case.

All the input arguments of these two functions are those parameters registered on the

MEC Platform, related to that “sensorName”.

177

8.5 Deployment of the IIoTaaS environment

For the management of the Hem Charts is used ChartMuseum [60]. It is an open-

source Helm Chart repository server written in Go (Golang), with support for cloud

storage backends. The local repository that can be accessed through:

root@k8s-contr:~# curl http://localhost:18082/index.yaml

apiVersion: v1

entries:

 mec-iot-client:

 - apiVersion: v1

 appVersion: 1.16.0

 created: "2021-07-29T14:38:48.556006654Z"

 description: A Helm chart for Kubernetes

 digest: b70670647fae708621b12be356034a81dbb1e2b93e942e34d64fb2dad09a6875

 name: mec-iot-client

 type: application

 urls:

 - charts/mec-iot-client-0.1.0.tgz

 version: 0.1.0

 mec-opcua-server:

 - apiVersion: v1

 appVersion: 1.16.0

 created: "2021-07-29T14:39:09.20855309Z"

 description: A Helm chart for Kubernetes

 digest: 3cfc440b8d5c5a27ea94c2ae3eb1041878cc16d371cdf3948be570a00078c9eb

 name: mec-opcua-server

 type: application

 urls:

 - charts/mec-opcua-server-0.1.0.tgz

 version: 0.1.0

 mec-platform:

178

 - apiVersion: v1

 appVersion: 1.16.0

 created: "2021-07-29T14:39:20.37284848Z"

 description: A Helm chart for Kubernetes

 digest: 1b02ca98ec700e7c3420ff7247092a620005534e8546b04baae034a2ddc0720d

 name: mec-platform

 type: application

 urls:

 - charts/mec-platform-0.1.0.tgz

 version: 0.1.0

 mqtt-pub-docker:

 - apiVersion: v1

 appVersion: 1.16.0

 created: "2021-07-29T14:39:33.369192344Z"

 description: A Helm chart for Kubernetes

 digest: 3e984a60737ef7a8b689d0ea505e656357089b5267d96bb03c3ed54f5ea6f58f

 name: mqtt-pub-docker

 type: application

 urls:

 - charts/mqtt-pub-docker-0.1.0.tgz

 version: 0.1.0

generated: "2021-07-29T14:46:37Z"

serverInfo: {}

The output of the command reports that the 4 charts (highlighted in yellow)

described in section 8.2.2 are uploaded.

After that, all the NS and KNF packages can be uploaded on OSM Platform (see

Appendix C).

179

Then the 4 NSs can be launched through the commands:

osm ns-create --wait --ns_name mep --nsd_name mec-platform_ns --vim_account openstack3

osm ns-create --wait --ns_name mqtt --nsd_name mec-mqtt-pub_ns --vim_account openstack3

osm ns-create --wait --ns_name opcua --nsd_name mec-opcua-server_ns --vim_account openstack3

osm ns-create --wait --ns_name iot --nsd_name mec-iot-client_ns --vim_account openstack3

To see that all the services are correctly launched:

Figure 8.4: OSM NS launched

In this way all the entities are deployed as K8s applications.

To see that everything is correctly up and running, is necessary to see all the pods

running in the K8s namespace.

kubectl get all -n 6c391cef-2235-4589-8be7-0764e185f9e7

Figure 8.5: PODs inside the namespace

It is possible to get access to the MEC Platform service, by using the external ip

address of the MEC platform (10.15.253.14 as shown in Figure 8.5).

180

To see all the services that are registered in the service registry of the MEC

Framework by the OPC UA Server and the Broker MQTT:

curl 10.15.253.14/mec_service_mgmt/v1/services | python3 -m json.tool

ubuntu@k8s-contr:~$ curl 10.15.253.14/mec_service_mgmt/v1/services | python3 -m json.tool

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 2449 100 2449 0 0 265k 0 --:--:-- --:--:-- --:--:-- 265k

[

 {

 "serInstanceId": "ServiceInstance123",

 "serName": "ExampleService",

 "serCategory": {

 "href": "/example/catalogue1",

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "TransId12345",

 "name": "REST",

 "description": "REST API",

 "type": "REST_HTTP",

 "protocol": "HTTP",

 "version": "2.0",

 "endpoint": {},

 "security": {

 "oAuth2Info": {

 "grantTypes": [

 "OAUTH2_CLIENT_CREDENTIALS"

],

 "tokenEndpoint": "/mecSerMgmtApi/security/TokenEndPoint"

 }

 },

 "implSpecificInfo": {}

 },

 "serializer": "JSON",

 "scopeOfLocality": "MEC_SYSTEM",

 "consumedLocalOnly": false,

 "isLocal": true

 },

 {

 "serInstanceId": "Mec-MQTT-Broker-1",

 "serName": "Mec-MQTT-Broker-Service",

181

 "serCategory": {

 "href": "/example/catalogue1",

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "MqttBrokerId01",

 "name": "MQTT BROKER",

 "description": "MQTT BROKER",

 "type": "MB_TOPIC_BASED",

 "protocol": "MQTT",

 "version": "2.0",

 "endpoint": {

 "alternative": {

 "mqtt-topics": {

 "host": "mep-mqtt-broker-870.6c391cef-2235-4589-8be7-0764e185f9e7.mec.host",

 "port": "1883",

 "topics": [

 "dev423/temperature",

 "dev423/air_quality"

]

 }

 }

 },

 "security": {

 "oAuth2Info": {

 "grantTypes": [

 "OAUTH2_CLIENT_CREDENTIALS"

],

 "tokenEndpoint": "/mecSerMgmtApi/security/TokenEndPoint"

 }

 },

 "implSpecificInfo": {}

 },

 "serializer": "JSON",

 "scopeOfLocality": "MEC_SYSTEM",

 "consumedLocalOnly": false,

 "isLocal": true

 },

 {

 "serInstanceId": "OPC_UA_SERVER",

 "serName": "OPC_UA_SERVER-service",

 "serCategory": {

 "href": "/example/catalogue1",

182

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "OPC_UA_SERVER---1",

 "name": "OPC_UA_SERVER",

 "description": "OPC_UA_SERVER",

 "type": "MB_TOPIC_BASED",

 "protocol": "OPCUA",

 "version": "2.0",

 "endpoint": {

 "alternative": {

 "opcua": [

 {

 "port": "4840",

 "uri": "http://examples.freeopcua.github.io",

 "objects": [

 {

 "object_name": "Device1",

 "variables": [

 "Light",

 "Water",

 "Gas"

]

 },

 {

 "object_name": "Device2",

 "variables": [

 "Temperature"

]

 }

],

 "host": "opcua-server-865.6c391cef-2235-4589-8be7-0764e185f9e7.mec.host"

 }

]

 },

 "security": {

 "oAuth2Info": {

 "grantTypes": [

 "OAUTH2_CLIENT_CREDENTIALS"

],

 "tokenEndpoint": "/mecSerMgmtApi/security/TokenEndPoint"

 }

 },

183

 "implSpecificInfo": {}

 },

 "serializer": "JSON",

 "scopeOfLocality": "NFVI_NODE",

 "consumedLocalOnly": false,

 "isLocal": true

 }

 }

]

Table 13: Services registered inside the MEC Platform

From Table 13 is possible to see that both the MQTT and OPC UA services are

correctly registered following exactly the JSON format definition of the two services

as reported in Table 12.

Now all the services are correctly registered over the MEC Platform following

MEC 011 standard. The client can get access to it to understand what are the services

registered and to the get the endpoints to reach them.

The front-end part of this implementation provides a simple GUI (reported in

Figure 8.6) composed by several buttons which shows on screen all the variables that

are registered on the MEC Platform. The user, just by selecting one of these buttons,

can see their corresponding value on that moment. This means that the user is totally

unaware of which protocols is used to see that value.

Figure 8.6: GUI IoT Client

184

8.6 Measurements

For the evaluation of the performance of the solution proposed in this thesis, were

evaluated the deployment time of all the entities involved:

- client-mec-docker

- docker-img-mec

- mqtt-pub-docker

- server-mec-docker

During the deployment of the service, all the Helm Charts described in section 8.2.2

contain all the steps to be followed. As already explained, all the software entities

require the correspondent Docker images that need to be pulled from the Docker Hub

during the launch of the KNFs. This means that during the time required for the setup

of the service is included the time required to download and extract the file of the

image.

These time intervals depend by several factors:

- The image size, which varies from an image to another:

o IoT Client → 206 Mb

o MEC Platform → 21 Mb

o MQTT Publisher → 23 Mb

o OPC UA Server→ 448Mb

- The download bandwidth available:

root@k8s-contr: # speedtest

Retrieving speedtest.net configuration...

Testing from University of Utah (128.110.218.53)...

Retrieving speedtest.net server list...

Selecting best server based on ping...

Hosted by XMission (Salt Lake City, UT) [1254.30 km]: 3.941 ms

Testing download speed..

Download: 1603.65 Mbit/s

Testing upload speed..

Upload: 1357.73 Mbit/s

185

- Bandwidth offered by the Docker server where the image is pulled.

- Hardware capabilities: depending by the number of virtual cores available

and the memory technology used (HDD, SSD, M2 MVME) there can be big

differences.

For what concerns the resources at disposal for each pod deployed at the

Cloud Lab, hardware characteristics are reported below:

root@opcua-server-984:/# lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

Address sizes: 40 bits physical, 48 bits virtual

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 4

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 61

Model name: Intel Core Processor (Broadwell, IBRS)

Stepping: 2

CPU MHz: 2394.454

BogoMIPS: 4788.90

Virtualization: VT-x

Hypervisor vendor: KVM

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 4096K

L3 cache: 16384K

186

To test the system, the following procedure was followed: all software entities are

deployed consecutively 10 times, with the only exception of the MEC Platform

which is deployed only once. This because the MEC Platform is a single entity that

cannot be deployed more than one time. As results, 31 pods were running

simultaneously: 10 OPC UA Servers, 10 MQTT Publishers, 10 IoT Clients, 1 MEC

Platform.

The deployment of all the services must follow some steps:

1) Creation of the NSs

2) Creation of the pod

3) Pull of the Docker image

4) Creation and start the container

Deployment times are reported from Figure 8.7 to 8.10.

- Blue bars refer to the times required for the creation of the NSs. All the OSM

packages were previously created and already uploaded on the OMS

platform.

- Red bars refer to the time required for the pull of the Docker images. It is

possible to see that that time increases according to the image size, but this is

true only at the first pull of each service. Once the docker image is pulled,

does not need to be pulled again, and all the successive deployment can

benefit. That’s why the pulls of the image after the first one, take less than 1s.

- Green bars represent the time required for the creation of the container and

the launch of the service.

It is important to notice that even if the time required for the pull of the Docker

image changes according to the image size (always related to the 1st deployment of

each service), the total amount of time for the creation of the NS remains constant in

all the 4 cases (between 21 and 23 seconds). This is probably due to a software

threshold imposed by the OSM software.

187

Figure 8.7: MEC Platform deployment time

Figure 8.8: Client deployment time

188

Figure 8.9: MQTT Publisher deployment time

Figure 8.10: OPC UA Server deployment time

189

OPC UA Server MEC Platform

NS creation (average): 22.585858 s

Pull image (1St Pull): 18.377131 s

Pull image (average): 0.986 s

Service start (average): 6.4 s

Total Average: 29.966 s

NS creation: 21.432464

Pull image: 5.556657

Service start (average): 4.5 s

Total Average: 31.48 s

Client MQTT Publisher

NS creation (average): 21.856711

Pull image (1St Pull): 12.546575

Pull image (average): 0.986 s

Service start (average): 4.9 s

Total Average: 27.736 s

NS creation (average): 21.586174

Pull image (1St Pull): 4.054524

Pull image (average): 0.986 s

Service start (average): 3.7 s

Total Average: 25.38 s

Table 14: Average deployment times

In Table 14 are reported the deployment times. All the averages are calculated

excluding the first deployment.

8.6.1 PoC Implementation

For a real-world implementation of this scenario is required first the creation of

the NS of the MEC Platform before that all the other services. This can be achieved

launching the creation of the MEC Platform few seconds before the others. Once the

that is done, all the other services can be created and registered over the Service

Registry of it.

The registration procedure is not immediate but requires few seconds to be

accomplished.

190

Figure 8.11: MQTT NS creation

As shown in Figure 8.11, the creation of the MQTT NS is completed at the time

08.37.26.

172.16.0.8 - - [12/Sep/2021 08:37:31] "POST //mec_service_mgmt/v1/devices//ab523071-13a4-11ec-ae20-

0ee2717b4a8a/

172.16.0.8 - - [12/Sep/2021 08:37:31] "POST /mec_service_mgmt/v1/devices/ab523071-13a4-11ec-ae20-

0ee2717b4a8a/

172.16.0.8 - - [12/Sep/2021 08:37:31] "GET /mec_service_mgmt/v1/services

Figure 8.12: MEC Platform logs

In Figure 8.12 are reported the logs of the MEC Platform related to the registration of

that service. It is possible to see that the POST of the service inside the service

registry happened 5 seconds later the creation of the service (08:37:31)

The IoT (once launched) can get access to the dashboard for gathering the data of

all the sensors registered (GET), without the awareness of the type of transport

protocol used or the endpoint information of that service. Everything is transparent

from the Client point of view. In case of Figure 8.12 the client is already launched,

and the GET of the service happens immediately after the POST of it.

Creation of the service → 08.37.26

POST of the service on the MEC Platform → 08:37:31

GET of the service by the Client → 08:37:31

191

Figure 8.13: Possible deployment example

In Figure 8.13 is reported a scheme with all the deployment times in a possible

real case scenario. In this case is considered that all the Docker images were already

pulled (except for the MEC Platform). This means that at the start of the NSs no pulls

do not need to be done, and the setup of the service can take less time.

It is possible to see that all the system is up and running (starting from scratch) in

less than 60 seconds.

The deployment time can be further reduced in a system where the MEC Platform

is already executed and only services and clients need to be deployed.

192

CONCLUSIONS

The trend in industries, cars, buildings and all the other fields where

communications play an important role is by now evident. The number of IoT

devices that require to be connected to the network is increasing day by day. Some

solutions need to be evaluated to handle all these devices and guarantee to them

connectivity.

This thesis has proposed and developed a MEC-based solution to support

application management and fruition in a reference scenario of Industrial IoT as a

Service. Thanks to the definition of a standardized environment for the deployment

of IoT services and integrating a set of standardized APIs that can simplify the

interaction between these services, even in a multi-vendor case, an Industry 4.0

scenario can be easily configured with a high degree of adaptability and flexibility.

In the purposed scenario, a multitude of IoT sensors that are running their own

communication protocol (MQTT or OPC UA) can coexist without any problem.

Sensing and data gathering service can be deployed on demand in a multi-vendor

scenario in a very easy way using standardized APIs and in a matter of tens of

seconds.

193

APPENDIX

All the code of used can be found at [57], including also all the bash and Python

scripts used.

Here I report only Dockerfiles, Helm Charts and OSM Descriptors.

194

Appendix A: Dockerfiles

docker-img-mec

FROM alpine

RUN apk update

RUN apk add python3

RUN apk add py3-flask

RUN apk add py3-requests

COPY app.py /usr/local/bin/app.py

COPY app_site /var/www/

RUN chmod +x /usr/local/bin/app.py

EXPOSE 80

CMD /usr/local/bin/app.py

CMD /usr/local/bin/app.py

mqtt-pub-docker

FROM alpine

RUN apk update

RUN apk add python3

RUN apk add py3-flask

RUN apk add py3-requests

RUN apk add py3-paho-mqtt

ENV MY_POD_NAMESPACE=mec

ENV MEC_BASE=mec

ENV MY_POD_NAME=mec

COPY app.py /usr/local/bin/app.py

RUN chmod +x /usr/local/bin/app.py

EXPOSE 80

CMD /usr/local/bin/app.py

195

client-mec-docker

FROM ubuntu

 RUN apt-get update

RUN apt-get install -y software-properties-common

RUN apt-get update

RUN apt install -y git

RUN apt-get install -y python3

RUN apt-get install -y python3-pip

RUN pip3 install flask

RUN pip3 install requests

RUN pip3 install paho-mqtt

RUN pip3 install opcua

ENV MY_POD_NAMESPACE=mec

ENV MEC_BASE=mec

ENV MY_POD_NAME=mec

COPY app.py /usr/local/bin/app.py

COPY app_site /var/www/

#Aggiunta di ulteriori files

COPY node.py /usr/local/bin/node.py

RUN chmod +x /usr/local/bin/node.py

COPY NodeBrowser.py /usr/local/bin/NodeBrowser.py

RUN chmod +x /usr/local/bin/NodeBrowser.py

COPY change_parameter_namespace.py /usr/local/bin/change_parameter_namespace.py

RUN chmod +x /usr/local/bin/change_parameter_namespace.py

COPY show_namespace_variable.py /usr/local/bin/show_namespace_variable.py

RUN chmod +x /usr/local/bin/show_namespace_variable.py

RUN chmod +x /usr/local/bin/app.py

EXPOSE 80

CMD /usr/local/bin/app.py

196

server-mec-docker

FROM lorenzobassi/opcua-base-python

#INSTALLAZIONE LIBRERIE ---------------------------

#RUN apt-get update

#RUN apt-get install -y software-properties-common

#RUN apt-get update

#RUN apt install -y git

#RUN apt-get install -y python3

#RUN apt-get install -y python3-pip

#RUN apt-get install -y cmake

#RUN apt install net-tools

#RUN apt-get install -y mysql-server

RUN pip3 install requests

ENV MY_POD_NAMESPACE=mec

ENV MEC_BASE=mec

ENV MY_POD_NAME=mec

ARG time=default_value

ENV time=${time}

COPY opc-ua-server-stuartup.py /usr/local/bin/opc-ua-server-stuartup.py

RUN chmod +x /usr/local/bin/opc-ua-server-stuartup.py

COPY run-mec-opcua-server.sh /home/run-mec-opcua-server.sh

RUN chmod +x /home/run-mec-opcua-server.sh

EXPOSE 4840

CMD /home/run-mec-opcua-server.sh $time

197

Appendix B: Helm Charts

mec-opcua_server

{{ $randNum := randNumeric 3 }}

apiVersion: v1

kind: Pod

metadata:

 name: opcua-server-{{$randNum}}

 labels:

 app: opcua-server-{{$randNum}}

spec:

 #hostNetwork: true

 #dnsPolicy: ClusterFirstWithHostNet

 containers:

 - name: opcua-server-1

 image: lorenzobassi/opcua_server_mec-cnsm

 env:

 # MEC Platform endpoint

 - name: MEC_BASE

 value: "http://mec-platform"

 - name: INFRA

 value: "k8s"

 - name: MY_POD_NAME

 value: "opcua-server-{{$randNum}}"

 - name: MY_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 ports:

 - containerPort: 4840

 imagePullPolicy: Always

apiVersion: v1

kind: Service

metadata:

 name: opcua-server-{{$randNum}}

spec:

 type: LoadBalancer

 selector:

 app: opcua-server-{{$randNum}}

 ports:

 - port: 4840

 targetPort: 4840

198

mec-iot-client

{{ $randNum := randNumeric 3 }}

apiVersion: v1

kind: Pod

metadata:

 name: mec-iot-client-{{$randNum}}

 labels:

 app: mec-iot-client-{{$randNum}}

spec:

 #hostNetwork: true

 #dnsPolicy: ClusterFirstWithHostNet

 containers:

 - name: mec-iot-client-1

 image: davideborsatti/cnsm-iot-client

 env:

 # MEC Platform endpoint

 - name: MEC_BASE

 value: "http://mec-platform"

 - name: INFRA

 value: "k8s"

 - name: MY_POD_NAME

 value: "mec-iot-client-{{$randNum}}"

 - name: MY_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 imagePullPolicy: Always

 #nodeSelector:

 # project: mec

apiVersion: v1

kind: Service

metadata:

 name: mec-iot-client-{{$randNum}}

spec:

 type: LoadBalancer

 selector:

 app: mec-iot-client-{{$randNum}}

 ports:

 - port: 80

 targetPort: 80

199

mec-platform

apiVersion: v1

kind: Pod

metadata:

 name: mec-platform

 labels:

 app: mec-platform

spec:

 containers:

 - name: mec-platform-1

 image: davideborsatti/cnsm-mep-iot

 ports:

 - containerPort: 80

 env:

 # Application instance identifier

 - name: APP_INSTANCE_ID

 value: "997fc80a-cfc1-498a-b77f-608f09506e88"

 - name: MY_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: MY_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 imagePullPolicy: Always

nodeSelector:

project: mec

apiVersion: v1

kind: Service

metadata:

 name: mec-platform

spec:

 #type: NodePort

 type: LoadBalancer

 selector:

 app: mec-platform

 ports:

 - port: 80

 targetPort: 80

 nodePort: 30080

200

mqtt-pub-docker

{{ $randNum := randNumeric 3 }}

apiVersion: v1

kind: Pod

metadata:

 name: mqtt-pub-mec-{{$randNum}}

 labels:

 app: mqtt-pub-mec-{{$randNum}}

spec:

 #hostNetwork: true

 #dnsPolicy: ClusterFirstWithHostNet

 containers:

 - name: mqtt-pub-mec-1

 image: davideborsatti/cnsm-mqtt-pub

 env:

 # MEC Platform endpoint

 - name: MEC_BASE

 value: "http://mec-platform"

 - name: INFRA

 value: "k8s"

 - name: MY_POD_NAME

 value: "mqtt-pub-mec-{{$randNum}}"

 - name: MY_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 imagePullPolicy: Always

 volumeMounts:

 - name: config-volume

 mountPath: /etc/mqtt

 volumes:

 - name: config-volume

 configMap:

 name: topic-configmap-{{$randNum}}

 #nodeSelector:

 # project: mec

apiVersion: v1

kind: Service

metadata:

 name: mqtt-pub-mec-{{$randNum}}

spec:

 type: LoadBalancer

 selector:

 app: mqtt-pub-mec-{{$randNum}}

201

 ports:

 - port: 80

 targetPort: 80

apiVersion: v1

kind: ConfigMap

metadata:

 name: topic-configmap-{{$randNum}}

data:

 topics.json: |

 {"topics": ["dev{{$randNum}}/temperature","dev{{$randNum}}/air_quality"]}

202

Appendix C: OSM Descriptors

mec-iot-client_vnfd

vnfd:

 description: KNF for deploying a MEC IoT Client

 df:

 - id: default-df

 ext-cpd:

 - id: mgmt-ext

 k8s-cluster-net: os

 id: mec-iot-client_knf

 k8s-cluster:

 nets:

 - id: mgmtnet

 kdu:

 - helm-chart: chartmuseum/mec-iot-client

 name: mec-iot-client

 mgmt-cp: mgmt-ext

 product-name: mec-iot-client_knf

 provider: Unibo

 version: '1.0'

mec-iot-client_nsd

nsd:

 nsd:

 - description: NS consisting of a single KNF mec-mqtt-

pub_knf connected to mgmt

 network

 designer: Unibo

 df:

 - id: default-df

 vnf-profile:

 - id: mec-iot-client

 virtual-link-connectivity:

 - constituent-cpd-id:

 - constituent-base-element-id: mec-iot-client

 constituent-cpd-id: mgmt-ext

 virtual-link-profile-id: mgmtnet

 vnfd-id: mec-iot-client_knf

 id: mec-iot-client_ns

 name: mec-iot-client_ns

 version: '1.0'

 virtual-link-desc:

 - id: mgmtnet

 mgmt-network: 'true'

 vim-network-name: mgmt

 vnfd-id:

 - mec-iot-client_knf

203

mec-mqtt-pub_vnfd

vnfd:

 description: KNF for deploying a MEC MQTT Publisher

 df:

 - id: default-df

 ext-cpd:

 - id: mgmt-ext

 k8s-cluster-net: os

 id: mec-mqtt-pub_knf

 k8s-cluster:

 nets:

 - id: mgmtnet

 kdu:

 - helm-chart: chartmuseum/mqtt-pub-docker

 name: mec-mqtt-pub

 mgmt-cp: mgmt-ext

 product-name: mec-mqtt-pub_knf

 provider: Unibo

 version: '1.0'

mec-mqtt-pub_nsd

nsd:

 nsd:

 - description: NS consisting of a single KNF mec-mqtt-

pub_knf connected to mgmt

 network

 designer: Unibo

 df:

 - id: default-df

 vnf-profile:

 - id: mec-mqtt-pub

 virtual-link-connectivity:

 - constituent-cpd-id:

 - constituent-base-element-id: mec-mqtt-pub

 constituent-cpd-id: mgmt-ext

 virtual-link-profile-id: mgmtnet

 vnfd-id: mec-mqtt-pub_knf

 id: mec-mqtt-pub_ns

 name: mec-mqtt-pub_ns

 version: '1.0'

 virtual-link-desc:

 - id: mgmtnet

 mgmt-network: 'true'

 vim-network-name: mgmt

 vnfd-id:

 - mec-mqtt-pub_knf

204

mec-opcua_server_vnfd

vnfd:

 description: KNF for deploying an OPC UA Server

 df:

 - id: default-df

 ext-cpd:

 - id: mgmt-ext

 k8s-cluster-net: mgmtnet

 id: mec-opcua-server_knf

 k8s-cluster:

 nets:

 - id: mgmtnet

 kdu:

 - helm-chart: chartmuseum/mec-opcua-server

 name: mec-opcua-server

 mgmt-cp: mgmt-ext

 product-name: mec-opcua-server_knf

 provider: Unibo

 version: '1.0'

mec-opcua_server_nsd

nsd:

 nsd:

 - description: NS consisting of a single KNF mec-opcua-

server_knf connected to mgmt

 network

 designer: OSM

 df:

 - id: default-df

 vnf-profile:

 - id: mec-opcua-server

 virtual-link-connectivity:

 - constituent-cpd-id:

 - constituent-base-element-id: mec-opcua-server

 constituent-cpd-id: mgmt-ext

 virtual-link-profile-id: mgmtnet

 vnfd-id: mec-opcua-server_knf

 id: mec-opcua-server_ns

 name: mec-opcua-server_ns

 version: '1.0'

 virtual-link-desc:

 - id: mgmtnet

 mgmt-network: 'true'

 vim-network-name: mgmt

 vnfd-id:

 - mec-opcua-server_knf

205

mec-platform_vnfd

vnfd:

 description: KNF for deploying a MEC Platform

 df:

 - id: default-df

 ext-cpd:

 - id: mgmt-ext

 k8s-cluster-net: os

 id: mec-platform_knf

 k8s-cluster:

 nets:

 - id: mgmtnet

 kdu:

 - helm-chart: chartmuseum/mec-platform

 name: mec-platform

 mgmt-cp: mgmt-ext

 product-name: mec-platform_knf

 provider: Unibo

 version: '1.0'

mec-platform_nsd

sd:

 nsd:

 - description: NS consisting of a single KNF mec-

platform_knf connected to mgmt

 network

 designer: Unibo

 df:

 - id: default-df

 vnf-profile:

 - id: mec-platform

 virtual-link-connectivity:

 - constituent-cpd-id:

 - constituent-base-element-id: mec-platform

 constituent-cpd-id: mgmt-ext

 virtual-link-profile-id: mgmtnet

 vnfd-id: mec-platform_knf

 id: mec-platform_ns

 name: mec-platform_ns

 version: '1.0'

 virtual-link-desc:

 - id: mgmtnet

 mgmt-network: 'true'

 vim-network-name: mgmt

 vnfd-id:

 - mec-platform_knf

206

Appendix D: Python Scripts

opc-ua-server-stuartup.py

#!/usr/bin/env python3

#!/usr/bin/env python3

import os

import json

import requests

import uuid

import socket

import sys

GET OPCUA DATA

with open('/usr/local/bin/opcua_fields.json') as file:

 data = json.load(file)

#ipadd = socket.gethostname()

#valore_ip = socket.gethostbyname(ipadd)

#valore_porta = data["opcua"][0]["port"]

#valore_uri = data["opcua"][0]["uri"]

#valore_object_name = data["opcua"][1]["objects"][0]["object_name"]

#valore_sensor1 = data["opcua"][1]["objects"][0]["variables"][0]

#valore_sensor2 = data["opcua"][1]["objects"][0]["variables"][1]

MEC Service endpoint

MEC_SERVICE_MGMT="mec_service_mgmt/v1"

#mec_base = 'http://{}'.format(sys.argv[1])

mec_base = os.environ['MEC_BASE']

pod_namespace = os.environ['MY_POD_NAMESPACE']

pod_name = os.environ['MY_POD_NAME']

service_data = {

 "serInstanceId": "OPC_UA_SERVER",

 "serName": "OPC_UA_SERVER-service",

 "serCategory": {

 "href": "/example/catalogue1",

 "id": "id12345",

 "name": "RNI",

 "version": "version1"

 },

207

 "version": "ServiceVersion1",

 "state": "ACTIVE",

 "transportInfo": {

 "id": "OPC_UA_SERVER---1",

 "name": "OPC_UA_SERVER",

 "description": "OPC_UA_SERVER",

 "type": "MB_TOPIC_BASED",

 "protocol": "OPCUA",

 "version": "2.0",

 "endpoint": {

 "alternative": {

 "opcua":[]

 },

 "security": {

 "oAuth2Info": {

 "grantTypes": [

 "OAUTH2_CLIENT_CREDENTIALS"

],

 "tokenEndpoint": "/mecSerMgmtApi/security/TokenEndPoint"

 }

 },

 "implSpecificInfo": {}

 },

 "serializer": "JSON",

 "scopeOfLocality": "NFVI_NODE",

 "consumedLocalOnly": False,

 "isLocal": True

}

}

service_data["transportInfo"]["endpoint"]["alternative"]["opcua"] = data["opcu

a"]

app_instance_id = uuid.uuid1()

#hostname = "{}.{}.mec.host".format(pod_name, pod_namespace)

hostname = "{}.{}.mec.host".format(pod_name, pod_namespace)

service_data['transportInfo']['endpoint']['alternative']['opcua'][0]['host'] =

 hostname

query_base = "{}/{}/applications/{}/services".format(

 mec_base,

 MEC_SERVICE_MGMT,

 app_instance_id

)

headers = {"content-type": "application/json"}

r = requests.post(query_base, data=json.dumps(service_data), headers=headers)

208

server-example.py

import uuid

from threading import Thread

import copy

import logging

from datetime import datetime

import time

from math import sin

import sys

import random

import json

from opcua.ua import NodeId, NodeIdType

sys.path.insert(0, "..")

try:

 from IPython import embed

except ImportError:

 import code

 def embed():

 myvars = globals()

 myvars.update(locals())

 shell = code.InteractiveConsole(myvars)

 shell.interact()

from opcua import ua, uamethod, Server

class SubHandler(object):

 """

 Subscription Handler. To receive events from server for a subscription

 """

 def datachange_notification(self, node, val, data):

 print("Python: New data change event", node, val)

 def event_notification(self, event):

 print("Python: New event", event)

method to be exposed through server

def func(parent, variant):

 ret = False

209

 if variant.Value % 2 == 0:

 ret = True

 return [ua.Variant(ret, ua.VariantType.Boolean)]

method to be exposed through server

uses a decorator to automatically convert to and from variants

@uamethod

def multiply(parent, x, y):

 print("multiply method call with parameters: ", x, y)

 return x * y

class VarUpdater(Thread):

 def __init__(self, var):

 Thread.__init__(self)

 self._stopev = False

 self.var = var

 def stop(self):

 self._stopev = True

 def run(self):

 while not self._stopev:

 v = sin(time.time() / 10)

 self.var.set_value(v)

 time.sleep(0.1)

if __name__ == "__main__":

 # optional: setup logging

 logging.basicConfig(level=logging.WARN)

 #logger = logging.getLogger("opcua.address_space")

 # logger.setLevel(logging.DEBUG)

 #logger = logging.getLogger("opcua.internal_server")

 # logger.setLevel(logging.DEBUG)

 #logger = logging.getLogger("opcua.binary_server_asyncio")

 # logger.setLevel(logging.DEBUG)

 #logger = logging.getLogger("opcua.uaprocessor")

 # logger.setLevel(logging.DEBUG)

 # now setup our server

 server = Server()

 #server.disable_clock()

 #server.set_endpoint("opc.tcp://localhost:4840/freeopcua/server/")

210

 hostname = str(sys.argv[1])

 port = str(sys.argv[2])

 print("hostname in input: ",hostname)

 print("port in input: ",port)

 domain = "opc.tcp://"

 ddd = ":"

 final_address = (domain+hostname+ddd+port)

 server.set_endpoint(final_address)

 server.set_server_name("FreeOpcUa Example Server")

 # set all possible endpoint policies for clients to connect through

 server.set_security_policy([

 ua.SecurityPolicyType.NoSecurity,

 ua.SecurityPolicyType.Basic256Sha256_SignAndEncrypt,

 ua.SecurityPolicyType.Basic256Sha256_Sign])

 # setup our own namespace

 #uri = "http://examples.freeopcua.github.io"

 #uri = str(sys.argv[3]) ******************************

 uri = str(sys.argv[4])

 print("uri in input: ",uri)

 idx = server.register_namespace(uri)

 # create a new node type we can instantiate in our address space

 dev = server.nodes.base_object_type.add_object_type(idx, "MyDevice")

 dev.add_variable(idx, "sensor1", 1.0).set_modelling_rule(True)

 dev.add_property(idx, "device_id", "0340").set_modelling_rule(True)

 ctrl = dev.add_object(idx, "controller")

 ctrl.set_modelling_rule(True)

 ctrl.add_property(idx, "state", "Idle").set_modelling_rule(True)

 # populating our address space

 # First a folder to organise our nodes

 myfolder = server.nodes.objects.add_folder(idx, "myEmptyFolder")

 # instanciate one instance of our device

 mydevice = server.nodes.objects.add_object(idx, "Device0001", dev)

 mydevice_var = mydevice.get_child(["{}:controller".format(idx),

"{}:state".format(idx)]) # get proxy to our device state variable

 # create directly some objects and variables

 # READ OBJECTS AND VARIABLE FORM THE JSON FILE

211

 with open('opcua_fields.json') as file:

 data = json.load(file)

 dim_obj_list = len(data["opcua"][0]["objects"])

 for i in range(0, dim_obj_list):

 dim_var_list = len(data["opcua"][0]["objects"][i]["variables"])

 globals()[f"obj_{i}"] = data["opcua"][0]["objects"][i]["object_name"]

#cration of: obj_0, obj_1

 globals()[f"myobj_{i}"] = server.nodes.objects.add_object(idx,

globals()[f"obj_{i}"]) #creation of: myobj_0, myobj_1

 #print("---")

 #print("i:", i)

 #print(data["opcua"][0]["objects"][i]["object_name"])

 for j in range(0, dim_var_list):

 globals()[f"variable_{i}_{j}"] =

data["opcua"][0]["objects"][i]["variables"][j] #creation of: variable_0_0,

variable_0_1

 globals()[f"myvar_{i}_{j}"] =

globals()[f"myobj_{i}"].add_variable(idx, globals()[f"variable_{i}_{j}"], 6.7)

#creation of: myvar_0_0, myvar_0_1

 globals()[f"myvar_{i}_{j}"].set_writable()

 #print(variable_{i}_{j})

 #print(i,j)

 #print(data["opcua"][0]["objects"][i]["variables"][j])

 # create directly some objects and variables

 myobj = server.nodes.objects.add_object(idx, "MyObject")

 myvar = myobj.add_variable(idx, "MyVariable", 6.7)

 mysin = myobj.add_variable(idx, "MySin", 0, ua.VariantType.Float)

 myvar.set_writable() # Set MyVariable to be writable by clients

 mystringvar = myobj.add_variable(idx, "MyStringVariable", "Really nice

string")

 mystringvar.set_writable() # Set MyVariable to be writable by clients

 myguidvar = myobj.add_variable(NodeId(uuid.UUID('1be5ba38-d004-46bd-aa3a-

b5b87940c698'), idx, NodeIdType.Guid),

 'MyStringVariableWithGUID', 'NodeId type is

guid')

 mydtvar = myobj.add_variable(idx, "MyDateTimeVar", datetime.utcnow())

 mydtvar.set_writable() # Set MyVariable to be writable by clients

 myarrayvar = myobj.add_variable(idx, "myarrayvar", [6.7, 7.9])

 myarrayvar = myobj.add_variable(idx, "myStronglytTypedVariable",

ua.Variant([], ua.VariantType.UInt32))

 myprop = myobj.add_property(idx, "myproperty", "I am a property")

 mymethod = myobj.add_method(idx, "mymethod", func, [ua.VariantType.Int64],

212

[ua.VariantType.Boolean])

 multiply_node = myobj.add_method(idx, "multiply", multiply,

[ua.VariantType.Int64, ua.VariantType.Int64], [ua.VariantType.Int64])

 # import some nodes from xml

 server.import_xml("custom_nodes.xml")

 # creating a default event object

 # The event object automatically will have members for all events

properties

 # you probably want to create a custom event type, see other examples

 myevgen = server.get_event_generator()

 myevgen.event.Severity = 300

 # starting!

 server.start()

 print("Available loggers are: ", logging.Logger.manager.loggerDict.keys())

 vup = VarUpdater(mysin) # just a stupide class update a variable

 vup.start()

 try:

 # enable following if you want to subscribe to nodes on server side

 #handler = SubHandler()

 #sub = server.create_subscription(500, handler)

 #handle = sub.subscribe_data_change(myvar)

 # trigger event, all subscribed clients wil receive it

 var = myarrayvar.get_value() # return a ref to value in db server

side! not a copy!

 var = copy.copy(var) # WARNING: we need to copy before writting again

otherwise no data change event will be generated

 var.append(9.3)

 myarrayvar.set_value(var)

 mydevice_var.set_value("Running")

 myevgen.trigger(message="This is BaseEvent")

 #server.set_attribute_value(myvar.nodeid, ua.DataValue(9.9)) # Server

side write method which is a but faster than using set_value

 server.set_attribute_value(myvar_0_0.nodeid, ua.DataValue(9.9)) #

Server side write method which is a but faster than using set_value

 #sleep = sys.argv[3] if len(sys.argv) >= 5 else '1'

 #sleep = int(sys.argv[3])

 #if type(int(sys.argv[4])) == int:

 # sleep = int(sys.argv[4])

 #else:

 # sleep = 1

213

 #sleepstr = sys.argv[4] if len(sys.argv) >= 5 else 1

 #print(sleepstr)

 #sleep = int(sleepstr)

 #if sys.argv[4] == 'default_value':

 #if sys.argv[4] == 'http://examples.freeopcua.github.io':

 # sleep = 1

 #else:

 # sleep = int(sys.argv[4])

 if sys.argv[3] == 'default_value':

 sleep = 1

 else:

 sleep = int(sys.argv[3])

 print("sleep in input: ",sleep)

 while 15 == 15:

 temp = random.randint(1,10)

 server.set_attribute_value(myvar_0_0.nodeid, ua.DataValue(temp))

 print("Nuovo valore myvar_0_0 : ", temp)

 time.sleep(sleep)

 embed()

 finally:

 vup.stop()

 server.stop()

get_all_sensors.py

import json

with open('opcua_fields.json') as file:

 data = json.load(file)

dimensione_lista = len(data["opcua"][0]["objects"][0]["variables"])

i=0

while (i<dimensione_lista):

 valore_var = data["opcua"][0]["objects"][0]["variables"][i]

 print(valore_var)

 i=i+1

214

Capitolo 9BIBLIOGRAPHY

[1] M. P. A. R. a. J. S. Fredrik Dahlqvist, «McKinsey & Company,» [Online].

Available: https://www.mckinsey.com/industries/private-equity-and-

principal-investors/our-insights/growing-opportunities-in-the-internet-of-

things.

[2] I. Z. R. Laboratory, «Request for Comments: 3234,» [Online].

Available: https://tools.ietf.org/html/rfc3234.

[3] ETSI, «ETSI,» ETSI, [Online].

Available: https://www.etsi.org/technologies/nfv.

[4] Kubernetes, [Online].

Available: https://kubernetes.io/.

[5] ETSI, ETSI, [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-

INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf.

[6] Wikipedia, «Wikipedia,» [Online].

Available: https://en.wikipedia.org/wiki/FCAPS#Accounting_management.

[7] ETSI, «ETSI GS NFV-MAN 001 V1.1.1,» ETSI, [Online].

Available: https://www.etsi.org/deliver/etsi_gs/nfv-

man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf.

[8] «Open Baton,» Open Baton, [Online].

215

Available: https://openbaton.github.io/documentation/ns-descriptor/.

[9] O. O. 2017, «OASIS,» OASIS , 2017. [Online].

Available: http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-

v1.0-csd03_files/image004.png.

[10] ETIS, «ETSI,» ETSI, [Online].

Available: https://www.etsi.org/technologies/open-source-mano.

[11] ETSI, «ETSI,» ETSI, [Online].

Available:

https://osm.etsi.org/wikipub/index.php/RO_Northbound_Interface.

[12] ETSI, «ETSI,» [Online].

Available:

https://osm.etsi.org/wikipub/images/2/OSM(16)000020_MWC_demo_com

ponents_-_OpenMANO.pdf.

[13] ETSI, «ETSI OSM,» 2019. [Online].

Available: https://osm.etsi.org/docs/vnf-onboarding-guidelines/00-

introduction.html.

[14] C. Ltd., «JAAS,» Canonical Ltd., 2021. [Online].

Available: https://jaas.ai/how-it-works.

[15] C. Ltd, «Canonical Ltd,» [Online].

Available: https://cloud-init.io/.

[16] C. Ltd, «Canonical Ltd,» Canonical Ltd, 2021. [Online].

Available: https://juju.is/docs/concepts-and-terms.

[17] ETSI, «ETSI SOM,» [Online].

Available:

https://osm.etsi.org/wikipub/index.php/Creating_your_VNF_Charm.

216

[18] ETSI, «ETSI OSM,» ETSI, [Online].

Available: https://osm.etsi.org/wikipub/index.php/Creating_your_VNF_Charm.

[19] C. Ltd, «Canonical Ltd,» Canonical Ltd, 2021. [Online].

Available: https://jaas.ai/how-it-works.

[20] E. OSM, «ETSI,» ETSI OSM, [Online].

Available:

https://osm.etsi.org/wikipub/index.php/Creating_your_VNF_Charm.

[21] E. OSM, «ETSI,» [Online].

Available: http://osm-download.etsi.org/ftp/osm-6.0-six/8th-

hackfest/presentations/8th%20OSM%20Hackfest%20-

%20Session%207.1%20-

%20Introduction%20to%20Proxy%20Charms.pdf.

[22] M. Farina, «Helm Blog,» Cloud Native Computing Foundation graduated

project., [Online].

Available: https://helm.sh/blog/new-location-stable-incubator-charts/.

[23] E. OSM, 2019. [Online].

Available:

https://www.etsi.org/deliver/etsi_gs/mec/001_099/003/02.01.01_60/gs_mec

003v020101p.pdf.

[24] E. OSM, «RGS/MEC-0003v211Arch,» [Online].

Available:

https://www.etsi.org/deliver/etsi_gs/mec/001_099/003/02.01.01_60/gs_mec

003v020101p.pdf.

[25] «OpenStack main page,» OpenStack, [Online].

Available: https://www.openstack.org/software/.

217

[26] G. L. (Whitestack), «ETSI OSM,» 2019. [Online].

Available: http://osm-download.etsi.org/ftp/osm-6.0-six/8th-

hackfest/presentations/8th%20OSM%20Hackfest%20-

%20Session%207.1%20-

%20Introduction%20to%20Proxy%20Charms.pdf.

[27] «OpenStack,» 2021. [Online].

Available: https://docs.openstack.org/install-guide/get-started-logical-

architecture.html.

[28] «OpenStack Install Guide,» [Online].

Available: https://docs.openstack.org//install-guide/InstallGuide.pdf.

[29] «OpenStack Compute,» OpenStack, [Online].

Available: https://docs.openstack.org/nova/latest/.

[30] «OpenStack Nova Architecture,» [Online].

Available: https://docs.openstack.org/nova/latest/user/architecture.html.

[31] «OpenStack project,» OpenStack, [Online].

Available: https://docs.openstack.org/cinder/ussuri/index.html. [Consultato il

giorno 08 2021].

[32] «OpenStack project,» OpenStack, [Online].

Available: https://docs.openstack.org/neutron/pike/install/common/get-

started-networking.html.

[33] «OpenStack,» [Online].

Available: https://wiki.openstack.org/wiki/Neutron.

[34] «Cloudflare, Inc.,» Cloudflare., [Online].

Available: https://www.cloudflare.com/it-it/learning/cloud/what-is-

multitenancy/.

218

[35] «OpenStack project,» OpenStack , 08 2021. [Online].

Available: https://docs.openstack.org/heat/pike/.

[36] «OpenStack project,» OpenStack , 08 2021. [Online].

Available: https://docs.openstack.org/tacker/latest/user/introduction.html.

[37] «OpenStack project,» OpenStack , 08 2021. [Online].

Available: https://docs.openstack.org/tacker/latest/_images/tacker-design-

etsi.png.

[38] «OpenStack project,» 05 2018. [Online].

Available: https://docs.openstack.org/glance/victoria/install/get-started.html.

[39] «OpenStack projec,» 11 2018. [Online].

Available: https://docs.openstack.org/openstack-ansible-

os_swift/latest/configure-swift.html#overview.

[40] «OpenStack projec,» 04 2021. [Online].

Available:

https://docs.openstack.org/kayobe/latest/configuration/reference/ironic-

python-agent.html.

[41] M. Tesch, «LeanBI,» leanbi.ch, [Online].

Available: https://leanbi.ch/en/blog/iot-and-predictive-analytics-fog-and-

edge-computing-for-industries-versus-cloud-19-1-2018/.

[42] «OPC Foundation, The Industrial Interoperability Standard,» OPC Foundation,

04 2015. [Online]. Available: https://opcfoundation.org/news/opc-

foundation-news/update-iec-62541-opc-ua-published/.

[43] «OPC Foundation,» [Online].

Available: https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-

Interoperability-For-Industrie4-and-IoT-EN-v5.pdf.

219

[44] «Unified Automation,» [Online].

Available: https://documentation.unified-

automation.com/uasdkdotnet/3.0.2/html/L2UaAddressSpaceConcepts.htm

l.

[45] «Unified Automation,» [Online].

Available: https://documentation.unified-

automation.com/uasdkdotnet/3.0.2/html/L2UaNodeClasses.html.

[46] «Unified Automation GmbH,» [Online].

Available: https://documentation.unified-

automation.com/uasdkhp/1.1.1/html/_l2_ua_discovery_connect.htm.

[47] «Open62541 official page,» Open62541, [Online].

Available: https://open62541.org/.

[48] «GitHub,» [Online].

Available: https://github.com/FreeOpcUa/python-opcua.

[49] «OPC UA Online Reference,» 2021 OPC Foundation, [Online].

Available: https://reference.opcfoundation.org/v104/Core/docs/Part6/7.1.2/.

[50] «OPC UA Online Reference,» [Online].

Available: https://reference.opcfoundation.org/v104/Core/docs/Part4/5.12.1/.

[51] «GitHub,» [Online].

Available: https://github.com/FreeOpcUa/opcua-client-gui.

[52] «GitHub,» [Online].

Available: https://github.com/FreeOpcUa/opcua-modeler.

[53] «OSM,» ETSI, [Online].

Available: https://osm.etsi.org/wikipub/index.php/OSM11_Hackfest.

220

[54] «CNSM - 17th International Conference on Network and Service

Management,» [Online].

Available: http://www.cnsm-conf.org/2021/cfd.html.

[55] D. Borsatti, G. Davoli, W. Cerroni e C. Raffaelli, «IEEE Communications

Magazine, vol 59,» 08 2021. [Online].

Available: https://ieeexplore.ieee.org/document/9530503.

[56] D. Borsatti e L. Bassi, «GitHub,» 08 2021. [Online].

Available: https://github.com/DavideBorsatti/CNSM2021-MEC-IIoT.

[57] L. Bassi, «GitHub,» 08 2021. [Online].

Available:

https://github.com/lorenzobassi96/opcua_server_CNSM/blob/main/get_js

on_data/opcua_fields.json.

[58] «Chart Museum,» Kubernetes, [Online].

Available: https://chartmuseum.com/docs/#.

221

FIGURES INDEX

Figure 1.1 : Example architecture VNF ... 16

Figure 1.2 : SDN/NFV/Cloud paradigm in comparison .. 17

Figure 1.3: Kubernetes architecture: Control Plane + Nodes 23

Figure 1.4: VNF Architecture [5] .. 25

Figure 1.5: NFVI Infrastructure ... 27

Figure 2.1: NFV-MANO Architecture .. 37

Figure 2.2: Example of a Forwarding Graph [9] ... 39

Figure 2.3: Network Service Descriptor elements ... 40

Figure 3.1: ETSI Architecture Services and Vendors .. 41

Figure 3.3: YANG model .. 43

Figure 3.4: VNF Lifecycle ... 45

Figure 3.5: VNF Configuration [13] .. 45

Figure 3.6: Collection of Charms .. 48

Figure 3.7: Differences between Proxy Charms and Native Charms 49

Figure 3.8: Example of layers contained in a Charm [18]. 50

Figure 3.9: Interconnection between Charms .. 51

Figure 3.10: Juju architecture .. 52

Figure 3.11: Example Juju ... 53

Figure 3.12: Deployment of a VNF through Juju and Proxy Charms 54

Figure 3.13: Implementation using Proxy and Native Charms 55

Figure 3.14: OSM workflow for the deployment of a VNF [20] 56

Figure 3.15: VNFD Structure .. 57

Figure 3.16: VNF steps .. 58

Figure 3.17: VNF Requirements .. 59

Figure 3.18: Example MySQL Day-1 and Day-2 [21] .. 62

Figure 3.19: K8s APIs ... 66

Figure 3.20: K8s cluster inside the VIM .. 68

222

Figure 3.21: K8s cluster outside the VIM.. 68

Figure 3.22: Helm chart file structure .. 69

Figure 3.23: OSM packages ... 70

Figure 3.24: OSM actions and procedures ... 71

Figure 3.25: Example modelling a NF through a NF package 72

Figure 4.1: MEC system reference architecture .. 76

Figure 4.2 : MEC reference architecture ... 79

Figure 5.1: ETSI Architecture Services and Vendors .. 80

Figure 5.2: OpenStack as VIM inside the MANO architecture [26] 81

Figure 5.3: OpenStack logical architecture .. 84

Figure 5.4: OpenStack architecture [28] .. 85

Figure 5.5: Nova architecture [30] ... 86

Figure 5.6: Multitenant vs Single Tenant [34] ... 89

Figure 5.7: Tacker architecture [37] .. 90

Figure 6.1: IIoTaaS example approach [41] .. 94

Figure 6.2: OPC UA Stack Architecture ... 98

Figure 6.3: OPU UA Objects [44] ... 99

Figure 6.4: OPC UA Nodes, Attributes and References 101

Figure 6.5: OPC UA Node Classes .. 102

Figure 6.6: Attributes of OPC UA NodeClasses ... 103

Figure 6.7: Namespace Server and NodeID .. 105

Figure 6.8: Identifier Types ... 106

Figure 6.9: Examples of possible NodeIDs representation 106

Figure 6.10: Nodes with the same identifier in different namespaces 107

Figure 6.11 Read the namespace of the Server .. 108

Figure 6.12: Subscription Process ... 110

Figure 6.13: Subscription process and Secure Channel 110

Figure 6.14: Subscription Process ... 113

Figure 6.15: Multicast Subnet Discovery .. 115

Figure 6.16: Global Discovery + Client and Server are in the same Subnet 115

Figure 6.17: Global Discovery + Client and Server are into two different subnets 115

Figure 6.18: Registration of applications ... 116

223

Figure 6.19: Server Configuration ... 117

Figure 6.20: Client configuration ... 117

Figure 6.21: Exchange of data during the configuration between Client and Server ... 118

Figure 6.22: Adding the Client to the trusted list at the Server side. 118

Figure 6.23: Bidirectional channel established between Client and Server 119

Figure 6.24: MQTT entities ... 120

Figure 7.1: OPC UA Server and Client VMs .. 122

Figure 7.2: OPC UA Server random number generation 122

Figure 7.3: OPC UA Client.. 123

Figure 7.4: OPC UA Server channel established message 123

Figure 7.5: Traffic captured between Client and Server 124

Figure 7.6: OPC UA Session creation ... 124

Figure 7.7 : UASC Message Structure ... 127

Figure 7.8 : Initiation of the TransportConnection by the Client 129

Figure 7.9 : Initiation of the TransportConncetion by the Server 129

Figure 7.10 : Capture of the traffic related to creation of the secure channel. 129

Figure 7.11 : Steps for the creation of a WebSocket ... 130

Figure 7.12 : Monitored Item block diagram ... 132

Figure 7.13 : Handling of the queue saturation ... 133

Figure 7.14 : Traffic before the creation of the subscription 134

Figure 7.15 : (Server publication time = 1s) (Sampling interval = 1s) 135

Figure 7.16 : (Server publication time = 1s) (Sampling interval = 5s) 135

Figure 7.17 : (Server publication time = 1s) (Sampling interval = 10s) 135

Figure 7.18 : (Server publication time = 10s) (Sampling interval = 2s) 135

Figure 7.19 : Data saving with (Server publication time = 1s) (Sampling interval = 10s) 136

Figure 7.20 : Traffic packets between client and server 137

Figure 7.21: FreeOpcUa Client connection with the Server 151

Figure 7.22: FreeOpcUa: connection with the server established 152

Figure 7.23: FreeOpcUa: subscription to a variable .. 153

Figure 7.24: FreeOpcUa Modelet GUI .. 154

Figure 8.1: System overview ... 156

Figure 8.2: MEC Platform ... 169

224

Figure 8.3: CoreDNS configuration ... 172

Figure 8.4: OSM NS launched ... 179

Figure 8.5: PODs inside the namespace .. 179

Figure 8.6: GUI IoT Client .. 183

Figure 8.7: MEC Platform deployment time ... 187

Figure 8.8: Client deployment time ... 187

Figure 8.9: MQTT Publisher deployment time ... 188

Figure 8.10: OPC UA Server deployment time ... 188

Figure 8.11: MQTT NS creation .. 190

Figure 8.12: MEC Platform logs.. 190

Figure 8.13: Possible deployment example ... 191

225

TABLES INDEX

Table 1: Virtualization Technologies .. 21

Table 2 : Translation OSM primitives ... 68

Table 3 : Traffic referred to a Server publication time = 1s 136

Table 4: OPC UA Server bash ... 147

Table 5: OPC UA Client bash .. 147

Table 6: Client-Server communication with sampling interval = 1s 148

Table 7: Client-Server communication with sampling interval = 5s 149

Table 8: Json list for the definition of the namespace of the server 165

Table 9: OPC UA Server registration on the MEC Platform 171

Table 10: MQTT Broker Registration on the MEC Platform 174

Table 11: Client code for the selection of the protocol to use 176

Table 12: Definition of sensors in the MEC Platform OPC UA vs MQTT 176

Table 13: Services registered inside the MEC Platform 183

Table 14: Average deployment times .. 189

