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Abstract

Every marketer, at one time or another, has wondered when the perfect

time to send emails is. Are recipients more likely to open messages in the

morning or late at night? What about on Tuesdays at the lunchtime hour?

This problem is called Time Sent Optimization (TSO). Why is it so im-

portant? Because it allows marketers to send emails at the optimal time for

each contact. Also, it helps marketers engage more effectively with contacts,

gaining contacts’ attention when they are historically most attentive to their

emails. Moreover, suppose that you want to start an advertising campaign.

The more emails will be opened, the more the company will gain in terms of

money and it will be easier for them to advertise some product. Not only,

we do not want just to increase the open ratio, we also make sure that the

user reads it. This translates is clicking the email, like scrolling it or clicking

on links present in it.

Most of the medium and big companies already use Time Sent Optimiza-

tion for the reasons explained before. However, they do not publish how

they did that because of business reasons. If someone would publish a way of

doing this, then everyone will copy it and then the purpose of doing this will

be useless because it is likely that at a certain time, each user, will receive a

lot of emails from several companies and this would lead ruin the benefit of

TSO.

In this thesis, we take into account the case of a company called Dien-

nea which gave us their data to improve their open and click ratio on the

communications they send to their users. At the end, through online A/B

test results, we show the effectiveness of our proposed approach and how to

further improve it.
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Business understanding

The most important part of a project is to understand, from a business

perspective, what a customer really wants to accomplish. This is essential

to analyze because this business understanding will let us to understand

which will be our profit and the impact of our product. The objective of this

thesis project is to understand, for each client, which is the right moment

to send him an email such that he will open and read it. What would be

the advantages for a company that sends emails from a business perspective?

The advantages are related to marketing and advertising products. The

more users open and read emails, the better the marketing campaign for

that company will be, and this translates almost automatically in gaining

more money.

So, we need to improve the open rate of the sent emails. Of course, the

more I can improve this open rate, the better. But what happens if this open

rate is already high? Maybe it will be useless to spend time and money to

build such tool, just because we will have a negligible impact. In our case,

the company that asked us for such tool, had a pretty low open rate and

click rate. So there is margin for improvement.

The resources that we start from are the data the company gave us.

Before starting the project, we need to understand whether these data are

good or bad. This is essential to do in order to compute the risks of failure.

We can model a perfect algorithm, but if the data are not good, there is

a probability that we will fail and therefore we would have spent a lot of

time and money just for nothing. Fortunately, after some data analysis, we

concluded that the data the company gave us where well structured and

therefore we assumed that there were margin of improvement.

After analysed that the project is feasible, we structured the following

pipeline:

• data analysis: in this phase we need to perform several statistics on

the data in order to understand patterns and insight useful for the

next phases.

• feature engineering: once understood our data, we need to create the
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dataset that will be fed to our model. In particular, we will adopt a

classic machine learning pipeline where we manually create the feature

of our interest based on what we discovered in the data analysis phase.

• Time Sent Optimization algorithm: in this phase we will create several

models that given in input a contact, they will return which is the best

time to send to the user the email such that he will open it.

• testing: the testing phase is composed of two parts, the model eval-

uation through ad hoc metric and an A/B test. These two parts are

crucial because they will tell us whether we are actually improved the

open rate and click rate or not.
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1 Exploratory data analysis

Exploratory Data Analysis refers to the critical process of performing

initial investigations on data so as to discover patterns,to spot anomalies,to

test hypothesis and to check assumptions with the help of summary statistics

and graphical representations.

In particular, in this chapter, we will see how the dataset we have is

structured and we will perform several statistics that will help us in the next

phases.

1.1 Dataset

The raw dataset is composed is this way: each row of the dataset represents

an event. The event can be of several types:

• sent : a row in the dataset that has the type sent means that the

company sent an email to a specific user.

• open: a row in the dataset that has the type open means that a user

has opened that specific email.

• unsubscribed : a row in the dataset that has the type unsubscribed

means that a user unsubscribed from the email campaign.

• complaint : a row in the dataset that has the type complaint means that

a user sent an email to the company writing them about the issues the

user experienced.

• bounced : a row in the dataset that has the type bounced means that an

email that has been sent to the user, has not arrived for some technical

issues.

Each row is accompanied by other columns. Here we are going to outline

the most important ones:

• Event date: indicates when the event has occurred.
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• HashMessaggio: indicates a user unique identifier .

• HashContatto: indicates a email unique identifier.

• Campaign name: indicates the name for that email campaign.

• Communication name: indicates the communication name for a specific

email.

• Communication subject : indicates the email subject.

The dataset is composed by 120k events and 2942 distinct users. Each

user has received roughly 550 emails.

1.2 Statistics

In this section, we are going to collect some statistics on our data in order

to get to better know them. This section is important because it will de-

fine which will be the features of our dataset. Moreover, we need to make

statistics keeping in mind our goal: improve the open rate and click rate.

1.2.1 Current open rate and click rate

First of all, let us check which is the current open rate and click rate of our

data. This is the main step to do before starting the project because if this

rate is already high enough, maybe there is no need to apply any Time Sent

Optimization technique on it. Otherwise, if it is low, we can estimate just

by looking at the number how much we can improve it (namely, if it is very

low, we can assume that the margin of improvement could be high).
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Figure 1: Percentage of open rate and click rate.

From the bar chart, it can be noticed that we have two percentages that

are pretty low, in particular the percentage of click rate. So we can assume

that we can build a model that can significantly improve both the open and

click rate.

1.2.2 Communications open and click ratio

We know that each email is related to a specific communication. Here we

want to check if some communication has a higher or lower open and click

rate. If so, we can conclude that the type of communication would be a

feature that can influence significantly the performance of our feature pre-

dictions. The following chart represents the percentage of opened emails

among all the sent emails for each distinct communication.
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(a) Open rate per communication. (b) Click rate per communication.

From the left-most chart, it can be seen that most of the open ratio per

communication is the same on average but the first and last communication

which have respectively a percentage of ∼ 15% and ∼ 5%. Also, it can be

seen that the fourth communication has a peak of ∼ 35%. But, overall, the

general trend of the data is similar.

On the other hand, the click rate per communication is very different. There

is not any trend to notice. They are quite ”random”.

Since there are so many different fluctuations, specifically in the click rate per

communication, we can conclude that the communication is directly depend

on the fact that the user opens or clicks the email. So, we are going to

consider the types of communications in the next phase when we will do

feature engineering.
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1.2.3 Average temporal distance between Sent and Open - Open

and Click

We want our users to open and click the emails as soon as possible. If we have

a high open and click rate but these emails are opened, say, one month later,

maybe this is not so useful for us. Maybe the communication is outdated.

So we need to check the average temporal distance between the sent and

open email and between open and click. The values are computed following

the format days hours:min:sec, and they are:

• Distance between Sent and Open: 1 days 00:13:54.

• Distance between Open and Click : 0 days 14:40:25.

The elapsed time between both is very small. This is a good news since

we are already satisfied with these values so we do not have to optimize them.

1.2.4 Distribution of time slots of open messages

In this section we want to check how many emails are opened for each time

slot among all the emails sent at a specific hour. This should give us a hint

about which are the best time to send an email.

Subsequently, you can find the distributions of the time slots of the opened

emails when the emails are sent in a specific time slot.

(c) Time slots of opened emails of emails sent

from 5 to 8.

(d) Time slots of opened emails of emails sent

from 8 to 11.
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(e) Time slots of opened emails of emails sent

from 11 to 14.

(f) Time slots of opened emails of emails sent

from 14 to 17.

Looking at the charts, a significant pattern emerges. The pattern is that,

if an email is sent in a specific time slot (like from 5 to 8), the majority of

opened emails are right after the sent.

Furthermore, we can see that from 23pm to 7am, very few emails are opened.

So we can deduct that this time slot is not a good one to send the emails.

We are going to consider these patters too in the feature engineering phase.

1.2.5 Users’ lifetime

Another important aspect to observe is how our users behave. There could

be users that ”are interested” in every communication of the company and

therefore they will open the emails every time, regardless the time at which

the emails have been sent.

On the other hand, there could be users that open the communications only

if they are sent at a specific time or users that do never open the communi-

cations, regardless the time at which the emails have been sent.

So it could make sense to look at the users’ lifetime which in this context

is defined as ”the elapsed time between the first email opened by a user and

the last one”.

In the histogram below, we are going to plot the users’ lifetime taking into

account that each bin represents 10 days.
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Figure 2: Users’ lifetime.

From the above chart we can notice mainly two patters:

• the first one is that roughly ∼ 360 users have a lifetime between 0 and

10 days. This means that a lot of users have opened the last email a

lot of time ago and they did not open any email recently because they

are not interested in them.

• the second one is that roughly ∼ 300 users still open the emails since

they subscribed, so this means that this slice of users is interested in

the email’s content.

and in between we have several users with different lifetime. Since there is

a significant behaviour between users, this is something we will need to take

into account. In particular, this information will be useful in the evaluation

part which we will see in the next chapters.

1.2.6 How many communications are opened and clicked in the

first hours

Now we are going to analyze how good is the sent time that the company

currently uses for their users. How to do that?

One thing we can do is to check the open ratio and click ratio that we already

did before. Also, we can plot a chart that says how many emails, from those
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sent, are opened in the first hour, how many are opened in the second hour

until 48 hours.

We do this both for the opened emails and clicked ones using a bin of 1 hour.

(a) How many email are opened per hour. (b) How many email are clicked per hour.

We can observe that the vast majority of the emails are both opened and

clicked in the first hours and some of them are opened over 48 hours.

Also, we can notice that the histograms follows a decreasing exponential

function.

This trend will be useful in the feature engineering phase where we will create

feature based on that trend.

1.2.7 Open rate based on the day of the week

Here we want to check how good is the day of the week that the company

has chosen to send the emails.

The day of the week could be crucial and it could influence a lot the fact

that the user opens or not the email.

One way to check that is to draw a plot that indicates among the sent emails

on the day of the week x, how many of them in percentage are opened in the

future?. We do this in the subsequent chart.
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Figure 3: How many emails in percentage are opened in the future based on

the day of the week.

At first glance, we can directly observe that the email sent on Friday,

Saturday and Sunday will never be opened in the future.

Actually, this is not true. Those percentage are zero simply because the

company never sends emails on these days.

Another thing to notice instead is that if we send the emails on Tuesday,

there are less chances that the emails will be opened in the future compared

to the emails that are sent on Monday, Wednesday and Thursday which have

roughly the same percentage.

1.2.7.1 Open rate based on the day of the week for each campaign

Each email belongs to a specific campaign. Here we want to understand

whether the emails sent within a specific campaign can affect the open rate.

To verify whether this is true, we are going to make the same plots as before

but subdividing them by each campaign.

So, among the sent emails on the day of the week x, how many of them in

percentage are opened in the future for each campaign?

We have three distinct campaigns, so we are going to make three plots.
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(a) How many emails in percentage are

opened in the future based on the day

of the week and the campaign tbd.

(b) How many emails in percentage are

opened in the future based on the day

of the week and the campaign Diennea.

(c) How many emails in percentage are

opened in the future based on the day

of the week and the campaignMagNews

Comunicazioni 2021.

As already discussed before, we have 0 % in correspondence of the days

of the week Friday, Saturday and Sunday because the company did not send

any emails on those days. Also, the company decided to not send emails on

Monday for the campaign ”MagNews Comunicazioni 2021”, this is why we

have a 0 % there.

No significant differences emerge between the three campaigns, a part for the

campaign ”Diennea” on the day Tuesday which has an open rate halved with
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respect to the other days and campaigns.

We have gone deeper in order to understand why the day Tuesday on the

campaign Diennea and we discovered that on that day and that campaign,

all the emails are sent at the exact hour for the all the users. While, on

Monday, Wednesday and Thursday, the variance of the hours at which the

emails has been sent is high, this means that the emails one these day are

not sent at the same hour, unlike the emails sent on Tuesday.

In particular, on Tuesday, all the emails are sent at the hour 10:31. Since

the open rate is very low, we can assume that sending the emails to all the

users at that hour is not a good choice.
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2 Feature engineering

Feature engineering is the process of transforming raw data into features

that better represent the underlying problem to the predictive models, re-

sulting in improved model accuracy on unseen data.

Machine learning algorithms learn a solution to a problem from sample data.

In this context, feature engineering asks: what is the best representation of

the sample data to learn a solution to your problem?

It is deep. Doing well in machine learning, even in artificial intelligence in

general comes back to representation problems. It is hard stuff, perhaps un-

knowable (or at best intractable) to know the best representation to use, a

priori.

The features in your data will directly influence the predictive models

you use and the results you can achieve. You can say that: the better the

features that you prepare and choose, the better the results you will achieve.

It is true, but it also misleading. The results you achieve are a factor of the

model you choose, the data you have available and the features you prepared.

Even your framing of the problem and objective measures you are using to

estimate accuracy play a part. Your results are dependent on many inter-

dependent properties. You need great features that describe the structures

inherent in your data.

So, in this chapter, we are going to discuss which are the features that we

have chosen among the possible set of features that we experimented along

with the choice of the label.

2.1 Contact open and click rate

Probably, the most important feature, is the open and click rate for each

contact. Since we want to predict which is the best time to send the com-

munication, we need to have the information of when the users mostly open

and click the emails.

In particular, this feature is not ”just a column in the dataset” but multiple

columns that says, for each hour, the open and click rate for every user. So,
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since the hours are 24 and we need to encode both the open rate and click

rate, we end up with 48 columns that encode this features (24 columns for

the open rate + 24 columns for the click rate).

2.2 Communication open and click rate

In the exploratory data analysis conducted in the first chapter, we have dis-

covered that the type of communication influences the opening and click of

the email. So we want to add this feature to our dataset.

As in the previous feature, here we do not have just a single column, but we

have a column for each time slot, so 24 columns.

Each time slot represents which is the open and click rate for that commu-

nication in that specific time slot. As before, since we are encoding both the

open rate and click rate, we will end up in having 48 columns for this feature.

2.3 Fitness Send-Open

This feature, differently from the previous ones, is just a single number and

with this feature we want to encode how good or bad was the real sent time

that the company used to send a specific email to a specific user. In particular,

the idea is that: if the difference between the time at which the email has

been sent and the time at which the user opened the email is small, then

the sent time adopted is good. Otherwise, if it is large, then the sent time

adopted is not a good one. So, the model needs to learn to optimize upon

this feature if the time adopted is not a good one.

How to represent this into numbers? Well, we just compute the differ-

ence in minutes that elapses between the send time and open time and we

pass this number to a decreasing exponential function that squashes the ob-

tained number into a number into the range 0 and 1. The used decreasing

exponential function is represented below.
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Figure 4: Fitness Send-Open.

We have shaped this function such that in correspondence of 0 on the x

axis, it gives us the maximum, namely 1. This means that, if the email has

been opened within a minute after its send, we have a 0 as elapsed time,

so we want the maximum fitness for that email. Otherwise, if the email has

been opened one minute later, then the exponential decreasing function gives

us the relative value on the y axis. We have encoded also that, if the email

is not opened within 36 hours, then we assign directly 0 as fitness. Also,

this function has another hyperparameter which is the slope of the decrease.

We have tested a range of slopes, even a slope which is approximated to a

straight line, and we come up with the one shown in the above figure because,

at the end, gave us the best results.

Everything seems fine, however there is a hidden problem with this fea-

ture. The problem is that, when we run a model on this dataset, this feature

is overwhelmed by the other 96 features and it gives us a very few contribu-

tion. To solve that problem, we just need to give more weight to this feature

and tune that parameter accordingly. Unfortunately, not all the already ex-

isting models allow to do that, but luckily enough the models that allow that

worked pretty fine. If someone wants to use a specific model that allows to
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specify a weight for the features, he/she needs to build the model on his/her

own.

2.4 Fitness Open-Click

This feature is exactly the same as the previous one, with the difference that

the minutes we use to compute it are the minutes that elapse between the

open time and click time of the email. As before, if this number is low, we will

have a high number returned from the exponential decreasing function. If it

is high, the function will return a low value. The chosen hyperparameters

are the same as before but the slope decrease. In this case, we want a higher

slope because the clicks are far rare compared to the openings, so whenever

we have one, we want to give them a higher contribution. Otherwise, this

feature would end up in having mostly zeros or very low numbers. The

exponential decreasing function we used for this feature is depicted in the

following chart. Note the difference of this slope with respect to the slope of

the previous function.

Figure 5: Fitness Open-Click.

Moreover, the hyperparameter that controls how much this feature con-
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tributes with respect the other features is tuned accordingly.

2.5 Building the dataset

Now that we have engineered the features, we can proceed to build the

dataset. This dataset that we are going to build is not structured as the

dataset we had at the beginning where each row represented an event. Here,

each row contains for each contact and each message, what are the values of

the all the previous features computed before.

We did several experiments and we come up actually with two different

types of dataset where each one is applied to a specific algorithm we will

describe in the next chapters.

2.5.1 Dataset 1 and label choice

The first dataset we used is just a stack of the engineered features. What

really changes is the choice of the label to attach (supposing we will use a

supervised learning approach). In particular, with this dataset, we can have

three types of labels:

• the first thing that comes in mind is to use as label the opening time

of the email. Actually this is a good idea, but there is a problem, a big

one actually. The problem is that in the dataset, each row represent

the email sent to a specific user and the info about the opening and

click about that email. But we have several emails that are sent to

the same user, so we will have several opening times and therefore

we cannot assign a specific label to every user. Remember that our

goal is to learn, for each user, which is the best time to send him the

communications. We do not want our model to output several times

for a specific user. So this label cannot be used.

• the second label that can be used is the time slot of the sent time. this

means that if the email has been sent at 11:30, then we assign as label

11. If the email has been sent at 13:01, we assign as label 13. Also here,

the hour at which the emails are sent to a specific user are different, but

here there are less problems because we take into account the values
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of the fitness Send-Open and Open-Click that suggest us how good or

bad the attached label is. However, this is not what we used because

the performance where not so good.

• the third label we tried, that we also used, consists in attaching the

exact sent hour as label. So if the email has been sent at 11:30, we

assign as label exactly 11:30. But how to attach a specific hour a

minute? We computed the time elapsed in minutes from midnight and

squashed the resulted number into the range 0 and 1. This solution

turns out to work much better with respect to the second label choice.

2.5.2 Dataset 2 and label choice

Here we talk about the second dataset we created which is actually that one

that gave the best results. We have introduced previously also the dataset 1

because it makes sense to give it a try since depending on the type of data

one could have, it could work better compared to this one. This dataset is

composed by the only features contact open and click rate and communication

open and click rate. Here we removed both fitness. What really changes is

the label. Instead of having one number in the label, we have all the possible

time slots from 00:00 to 00:00 of the next day, which are 24 time slots.

Not only, we take each time slot and divide it further into a properly tuned

hyperparameter, which is 4 in our case. So we will end up in having time slots

where each one represents a quarter of an hour. What values each quarter

of an hour has? To understand it, let us make an example: if the email

is opened at 11:30, we start by computing how many minutes are elapsed

between the first quarter which is 00:00. Supposing these minutes are x. We

take this x and pass it to a decreasing exponential function (as before with

the fitnesses) that gives us a number. This number is that goes into the

quarter 00:00. The we proceed doing the same for the next quarter, which is

00:15. And so on and so forth. In this way, we are giving as label a histogram

which indicates which is the users’ fitness for all the possible hours. We are

kind of taking the previous fitnesses and injecting them into the label and

therefore the goal now translates into learn this fitness distribution. Let us

plot how one of the label look like:
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Figure 6: Label of dataset 2.

As it can be seen, the function that is drawn is what we expect, namely

and exponential because the function we used to encode the label’s numbers

is a decreasing exponential. The more we get close to the open quarter hour,

the more the fitness is high. Note that after the open quarter hour, we have

zero everywhere because we want to minimize only in one direction. This

means that we want our send prediction to be before the real open, not

after because if, for instance, our real open is at 12:00 and our prediction

for sending the email is at 13:00, then our error is no by 1 hour, but is by

23 hours. Therefore, to avoid this, we just set our fitness to zero on all the

quarters after the open quarter hour.

It could also make sense to plot the mean of all the labels we have in our

dataset to get an insight about which are the quarters where the emails are

mostly opened.

Figure 7: Mean of the labels of dataset 2.

From the above chart we can directly notice that there are two hours

that are particularly preferred to open the emails. They are: 11:30 and

15:00. They could also be interpreted: 11:30 is a hour before lunch break,

while 15:00 is a hour after lunch break. So we do expect that hour model
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will, on average, suggests hours that are close to those two. On the other

hand we can see that from 00:00 to roughly 06:00 the users almost never

open the emails.
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3 Time Sent Optimization algorithm

In this section we are going to describe the algorithms that we imple-

mented and tested. We start by showing the least performing algorithm till

the most performing one.

3.1 Unsupervised learning

The first attempt to solve this problem is by using an unsupervised algo-

rithm. But what is unsupervised learning? Unsupervised learning uses ma-

chine learning algorithms to analyze and cluster unlabeled datasets. These

algorithms discover hidden patterns or data groupings without the need for

human intervention. Its ability to discover similarities and differences in

information make it the ideal solution for exploratory data analysis, cross-

selling strategies, customer segmentation, and image recognition.

Unsupervised learning models are utilized for three main tasks: cluster-

ing, association, and dimensionality reduction. Below we will define each

learning method and highlight common algorithms and approaches to con-

duct them effectively.

3.1.1 Clustering

Clustering is a data mining technique which groups unlabeled data based on

their similarities or differences. Clustering algorithms are used to process

raw, unclassified data objects into groups represented by structures or pat-

terns in the information. Clustering algorithms can be categorized into a few

types, specifically exclusive, overlapping, hierarchical, and probabilistic.

3.1.2 Exclusive and overlapping clustering

Exclusive clustering is a form of grouping that stipulates a data point can

exist only in one cluster. This can also be referred to as “hard” clustering.

The K-means clustering algorithm is an example of exclusive clustering.
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3.1.2.1 K-means K-means [19] clustering is a common example of an

exclusive clustering method where data points are assigned into K groups,

where K represents the number of clusters based on the distance from each

group’s centroid. The data points closest to a given centroid will be clustered

under the same category. A larger K value will be indicative of smaller

groupings with more granularity whereas a smaller K value will have larger

groupings and less granularity. K-means clustering is commonly used in

market segmentation, document clustering, image segmentation, and image

compression. Overlapping clusters differs from exclusive clustering in that

it allows data points to belong to multiple clusters with separate degrees of

membership. “Soft” or fuzzy K-means clustering is an example of overlapping

clustering.

3.1.3 Hierarchical clustering

Hierarchical clustering [7], also known as hierarchical cluster analysis (HCA),

is an unsupervised clustering algorithm that can be categorized in two ways;

they can be agglomerative or divisive. Agglomerative clustering is considered

a “bottoms-up approach.” Its data points are isolated as separate groupings

initially, and then they are merged together iteratively on the basis of similar-

ity until one cluster has been achieved. Four different methods are commonly

used to measure similarity:

• ward’s linkage: this method states that the distance between two clus-

ters is defined by the increase in the sum of squared after the clusters

are merged.

• average linkage: this method is defined by the mean distance between

two points in each cluster.

• complete (or maximum) linkage: this method is defined by the maxi-

mum distance between two points in each cluster.

• single (or minimum) linkage: this method is defined by the minimum

distance between two points in each cluster.
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Euclidean distance is the most common metric used to calculate these

distances; however, other metrics, such as Manhattan distance, are also cited

in clustering literature.

Divisive clustering can be defined as the opposite of agglomerative cluster-

ing; instead it takes a “top-down” approach. In this case, a single data cluster

is divided based on the differences between data points. Divisive clustering

is not commonly used, but it is still worth noting in the context of hierar-

chical clustering. These clustering processes are usually visualized using a

dendrogram, a tree-like diagram that documents the merging or splitting of

data points at each iteration.

Figure 8: Hierarchical clustering.

3.1.4 Probabilistic clustering

A probabilistic model [4] is an unsupervised technique that helps us solve

density estimation or “soft” clustering problems. In probabilistic clustering,

data points are clustered based on the likelihood that they belong to a par-

ticular distribution. The Gaussian Mixture Model (GMM) is the one of the

most commonly used probabilistic clustering methods.

Gaussian Mixture Models are classified as mixture models, which means

that they are made up of an unspecified number of probability distribution

functions. GMMs are primarily leveraged to determine which Gaussian, or
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normal, probability distribution a given data point belongs to. If the mean or

variance are known, then we can determine which distribution a given data

point belongs to. However, in GMMs, these variables are not known, so we

assume that a latent, or hidden, variable exists to cluster data points appro-

priately. While it is not required to use the Expectation-Maximization (EM)

algorithm, it is a commonly used to estimate the assignment probabilities for

a given data point to a particular data cluster.

Figure 9: Gaussian mixture models (GMMs).

3.1.5 Association rules

An association rule [14] is a rule-based method for finding relationships be-

tween variables in a given dataset. These methods are frequently used for

market basket analysis, allowing companies to better understand relation-

ships between different products. Understanding consumption habits of cus-

tomers enables businesses to develop better cross-selling strategies and rec-

ommendation engines. Examples of this can be seen in Amazon’s “Customers

who bought this item also bought” or Spotify’s ”Discover Weekly” playlist.

While there are a few different algorithms used to generate association rules,

such as Apriori, Eclat, and FP-Growth, the Apriori algorithm is most widely

used.
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3.1.6 Principal component analysis

Principal component analysis (PCA) [3] is a type of dimensionality reduc-

tion algorithm which is used to reduce redundancies and to compress datasets

through feature extraction. This method uses a linear transformation to cre-

ate a new data representation, yielding a set of ”principal components.” The

first principal component is the direction which maximizes the variance of

the dataset. While the second principal component also finds the maximum

variance in the data, it is completely uncorrelated to the first principal com-

ponent, yielding a direction that is perpendicular, or orthogonal, to the first

component. This process repeats based on the number of dimensions, where

a next principal component is the direction orthogonal to the prior compo-

nents with the most variance.

3.1.7 TSO Algorithm 1

The first Time Sent Optimization algorithm attempted is based on unsuper-

vised learning. The motivation for doing that is the following: users that

have similar features (based on our previous engineered features) should re-

ceive the email at the same time. So, if we use some unsupervised learning

algorithm and find some distinct clusters, we can set up an algorithm do to

so. The general algorithm is depicted in the next figure.
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Figure 10: TSO algorithm 1.

It works in this way: we pass our dataset X to a clustering algorithm and

for each contact C we want to output the optimal time to send the email H.

Post clustering, we have three possible types of clusters the can be formed:

• the orange cluster: in this cluster are present some users that opened

the majority of the emails and some that did not.

• the green cluster: in this cluster there are users that opened all the

emails that have been sent to them.

• the red cluster: in this cluster there are users that did not open any

email.

The idea of the algorithm is the following: for each type of cluster, we do

an action:
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• case orange cluster: here we compute the mean of the sent hour for all

the users of this cluster that opened the vast majority of the emails and

assign the mean hour (called mean H in the above diagram), which will

correspond to the sending time of the emails to all those users belonging

to this cluster that did not opened the emails.

• case green cluster: here, since all the users are already opening all the

emails, it means that the time to send the email for this type of users

is already good enough, so we will continue to use the same identical

sending time.

• the red cluster: the problem arrives here: which sending time should I

use for these users? First, we need to analyse what are the sending time

of these users and conclude that that sending time is not a good one.

Then, one possible thing to do, is to compute the Euclidean distance

between this cluster and all the other clusters and take the into account

the minimum distance of the first cluster that is not as the same type

of this one (namely not a cluster that have all the users that did not

open the emails). Here we have two cases:

– we encounter a orange cluster: then we assign to the red cluster

the mean H of the orange cluster.

– we encounter a green cluster: then we assign one random sending

hour among the sending hour of the users belonging to the green

cluster.

This type of algorithm is very simple and is based on rules. There is no

learning. We decided to start with the simplest algorithm that came into

our mind because it can give us a baseline. Moreover, starting with simple

algorithms is always better because in the worst case it would not work and

then we can move to more complex algorithms. But if it works, we spent

very few time and we have a baseline in our hands that we can improve.

Unfortunately, this algorithm did not work well in our case. We tested

it with all the aforementioned algorithms but no one gave us decent results.

The problem is due to the dataset that is very scattered, so we cannot find
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good clusters. More precisely, we are finding a lot of scattered clusters each

one composed by few users.

We decided anyway to describe this simple algorithm because is easy to

implement and maybe for someone could work better. It is worth to give it

a try at least.

3.2 Supervised learning

Since the unsupervised learning algorithms proved not be effective for our

type of problem and dataset, we decided to switch to the supervised learning

world.

Supervised learning, is a subcategory of machine learning and artificial

intelligence. It is defined by its use of labeled datasets to train algorithms that

to classify data or predict outcomes accurately. As input data is fed into the

model, it adjusts its weights until the model has been fitted appropriately,

which occurs as part of the cross validation process. Supervised learning

helps organizations solve for a variety of real-world problems at scale, such

as classifying spam in a separate folder from your inbox.

Supervised learning uses a training set to teach models to yield the de-

sired output. This training dataset includes inputs and correct outputs,

which allow the model to learn over time. The algorithm measures its accu-

racy through the loss function, adjusting until the error has been sufficiently

minimized.

Supervised learning can be separated into two types of problems when

data mining: classification and regression:

3.2.1 Classification

Classification uses an algorithm to accurately assign test data into specific

categories. It recognizes specific entities within the dataset and attempts to

draw some conclusions on how those entities should be labeled or defined.

Common classification algorithms are linear classifiers, support vector ma-

chines (SVM), decision trees, k-nearest neighbor, and random forest, which

are described in more detail below. If we want to approach our problem using

a classificator, we need to convert our previous labels into classes. In this

33



case, we can just assign as class the time slot at witch the email has been sent

(so we would end up in having 24 classes). The problem with this approach

is that, after this conversion, the classes are completely uncorrelated each

other. But, we want them to be correlated. Suppose that the classification

decision boundary lays between the classes 12:00 and 04:00. It could happen

that, due some noise, the datapoint belonging to the class 12:00 fall down

into the adjacent class which is the 04:00 class. It means that could happen

that the model can suggest hours that are completely uncorrelated. What

we want is that if our class is 12:00 and there is some noise, the algorithm

suggest something close to it, like 11:00. So, due to this problem, classifi-

cation is not the right approach for our type of problem. So we moved to

regression.

3.2.2 Regression

Regression is used to understand the relationship between dependent and

independent variables and therefore allows us to train models that keep the

correlation between the send time. It is commonly used to make projections,

such as for sales revenue for a given business. Linear regression, logistical re-

gression, and polynomial regression are popular regression algorithms. Now,

we are going to describe the different regression algorithm we tried and then

we describe the second TSO algorithm we implemented.

3.2.2.1 Random forest Random forest [2], like its name implies, con-

sists of a large number of individual decision trees that operate as an ensem-

ble. Each individual tree in the random forest spits out a class prediction

and the class with the most votes becomes our model’s prediction, see the

figure below.
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Figure 11: Random forest.

Random forest is a supervised learning algorithm. The ”forest” it builds,

is an ensemble of decision trees, usually trained with the “bagging” method.

The general idea of the bagging method is that a combination of learning

models increases the overall result.

Put simply: random forest builds multiple decision trees and merges them

together to get a more accurate and stable prediction.

One big advantage of random forest is that it can be used for both classi-

fication and regression problems, which form the majority of current machine

learning systems.

Random forest has nearly the same hyperparameters as a decision tree

or a bagging classifier. Fortunately, there is no need to combine a decision

tree with a bagging classifier because you can easily use the classifier-class of

random forest. With random forest, you can also deal with regression tasks

by using the algorithm’s regressor.

Random forest adds additional randomness to the model, while growing

the trees. Instead of searching for the most important feature while splitting

a node, it searches for the best feature among a random subset of features.

This results in a wide diversity that generally results in a better model.

Therefore, in random forest, only a random subset of the features is taken
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into consideration by the algorithm for splitting a node. You can even make

trees more random by additionally using random thresholds for each feature

rather than searching for the best possible thresholds (like a normal decision

tree does).

3.2.2.2 Linear regression Linear regression [18] analysis is used to pre-

dict the value of a variable based on the value of another variable. The

variable you want to predict is called the dependent variable. The variable

you are using to predict the other variable’s value is called the independent

variable.

This form of analysis estimates the coefficients of the linear equation, in-

volving one or more independent variables that best predict the value of the

dependent variable. Linear regression fits a straight line or surface that min-

imizes the discrepancies between predicted and actual output values. There

are simple linear regression calculators that use a “least squares” method to

discover the best-fit line for a set of paired data. You then estimate the value

of X (dependent variable) from Y (independent variable).

The objective of linear regression is to minimize the loss function:

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2

where the hypothesis hθ is given by the linear model:

hθ = θTx = θ0 + θ1x1

The model’s parameters are the θj values. These are the values that need

to be adjusted to minimize cost J(θ). One way to do this is to use the

batch gradient descent algorithm. In batch gradient descent, each iteration

performs the update:

θj := θj −
α

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j

(simultaneously update θj for all j ). With each step of gradient descent,

the parameters θj come closer to the optimal values that will achieve the

lowest cost J(θ).
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3.2.2.3 Bayesian linear regression Bayesian linear regression [17] is

an approach to linear regression in which the statistical analysis is under-

taken within the context of Bayesian inference. When the regression model

has errors that have a normal distribution, and if a particular form of prior

distribution is assumed, explicit results are available for the posterior prob-

ability distributions of the model’s parameters.

3.2.2.4 Least angle regression Least-angle regression (LARS) [13] is

an algorithm for fitting linear regression models to high-dimensional data.

Suppose we expect a response variable to be determined by a linear combi-

nation of a subset of potential covariates. Then the LARS algorithm provides

a means of producing an estimate of which variables to include, as well as

their coefficients.

Instead of giving a vector result, the LARS solution consists of a curve

denoting the solution for each value of the L1 norm of the parameter vec-

tor. The algorithm is similar to forward stepwise regression, but instead of

including variables at each step, the estimated parameters are increased in a

direction equiangular to each one’s correlations with the residual.

The basic steps of the Least-angle regression algorithm are:

• start with all coefficients β equal to zero.

• find the predictor xj most correlated with y.

• increase the coefficient βj in the direction of the sign of its correlation

with y. Take residuals r = y− ŷ along the way. Stop when some other

predictor xk has as much correlation with r as xj has.

• increase (βj, βk) in their joint least squares direction, until some other

predictor xm has as much correlation with the residual r.

• increase (βj, βk, βm) in their joint least squares direction, until some

other predictor xn has as much correlation with the residual r.

• continue until: all predictors are in the model.
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3.2.2.5 Neural networks Neural networks [9], also known as artificial

neural networks (ANNs) or simulated neural networks (SNNs), are a subset

of machine learning and are at the heart of deep learning algorithms. Their

name and structure are inspired by the human brain, mimicking the way that

biological neurons signal to one another.

Artificial neural networks (ANNs) are comprised of a node layers, con-

taining an input layer, one or more hidden layers, and an output layer. Each

node, or artificial neuron, connects to another and has an associated weight

and threshold. If the output of any individual node is above the specified

threshold value, that node is activated, sending data to the next layer of the

network. Otherwise, no data is passed along to the next layer of the network.

Figure 12: General representation of a neural network.

Neural networks rely on training data to learn and improve their accu-

racy over time. However, once these learning algorithms are fine-tuned for

accuracy, they are powerful tools in computer science and artificial intelli-

gence, allowing us to classify and cluster data at a high velocity. Tasks in

speech recognition or image recognition can take minutes versus hours when

compared to the manual identification by human experts.
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The architecture of the neural network used in our case in the following:

Figure 13: Our neural network architecture.

It is composed by 5 dense layers. The dense layer is a neural network layer

that is connected deeply, which means each neuron in the dense layer receives

input from all neurons of its previous layer. The activation functions used

in all the layers but the last one is relu, while in the last layer, to perform a

regression, we use a linear activation function. The loss function to minimize

is the mean absolute error and the optimizer used is Adam.

3.2.2.6 Convolutional Neural Networks A Convolutional Neural Net-

work (ConvNet/CNN) [8] is a Deep Learning algorithm which can take in

an input image, assign importance (learnable weights and biases) to various

aspects/objects in the image and be able to differentiate one from the other.

The pre-processing required in a ConvNet is much lower as compared to

other classification algorithms. While in primitive methods filters are hand-

engineered, with enough training, ConvNets have the ability to learn these

filters/characteristics. The architecture of a ConvNet is analogous to that of

the connectivity pattern of neurons in the human brain and was inspired by

the organization of the visual cortex. Individual neurons respond to stimuli

only in a restricted region of the visual field known as the receptive field. A

collection of such fields overlap to cover the entire visual area.
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Figure 14: A CNN model to classify handwritten digits.

However, we do not have images, we have tabular data. How to use

therefore a CNN? It simple, we just need to take the rows of our dataset and

reshape them into a n×n matrix. However, length of our dataset are 1× 98

so we cannot directly create a n× n matrix. We can proceed in two ways:

• we can perform feature importance on our dataset (for instance, random

forests allow us to do so) and then take the first number that has as

a squared root an integer. In this case this number is 81, since its

squared root is 9. Then, this 9 will become the width and height of our

row data converted into a grayscale image. However, doing so, we will

discard 98− 81 = 17 features, and we do not want to remove features,

we prefer to retain them.

• the second way to do so, and the way that we actually used, is to

increase the columns of our dataset by copying already existing features

until we arrive at a number that has as a squared root an integer. In

this case, we just need to add two features and we obtain 100 columns

and therefore the reshaped rows will became of size 10×10. In this way

we are adding redundant information but this is better than removing

17 features.
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The architecture of the our convolutional neural network is the following:

Figure 15: Our CNN architecture.

In the architecture we can see that there are some layers called batch

normalization [12], what is that layer? It is a layer that tries to solve the

internal covariance shift. To understand the internal covariate shift let us

make an example: say that I have a 2 layer neural network and we want
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to learn representations. So, when we train, imagine we are looking at the

second layer, this layer is learning taking in input a representation r which

is not fixed/completely learnt, this r is changing while training. This means

that is like we have layers that are training together, but in reality what we

would like to do is to come up with the best representation for the first layer

and then train the second one on this best representation, not together.

Think about that a layer learns to capture edges, then we can give this

representation to the next layer that from the edges extract the corners. This

is what we are hoping to do, however is practice this does not happen. What

happens is that the layers are learned together so the second layer receives

in input edges that are not stable because the first layer has not finished to

learn them. So this problem is actually very bad, because when we want to

train something, we want the training set to be fixed, we do not want our

distribution to change. But as it is not like that, here each layer sees the

input distribution of the things it has to work on that changes.

Batch normalization idea is to counter the previous problem in this way:

since the distribution r is changing, I will try to normalize the output of the

first layer such that the distribution r does not change too much. We are

still learning, but we are constraining what the distribution of r may look

like. In particular we will make r to follow a Gaussian distribution, so zero

mean and unit variance.

Batch normalization behaves differently at test time: at test time, we

do not want to stochastically depend on the other items in the mini-batch,

namely we want our output to depend only on the input deterministically. So

to counter this problem at test time, I kind of arbitrarily say that the mean

and variance will be constants and their value will be a running average of

the values seen during the training time. So during the training I will keep

a running average of the mean and variance and when training ends I will

freeze the values obtained and I use them to compute the test predictions.

The pros of batch normalization are:

• it allows the use of higher learning rates.

• the careful initialization of the weight is less important.
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• training is not deterministic, and this is good because it acts as regu-

larization.

While the cons are:

• it is not clear why is so beneficial.

• more complex implementation since need to distinguish between train-

ing and testing time.

Another layer we can see in the CNN architecture on the dropout layer

[6], what is this layer? The idea of dropout is that whenever we have a mini-

batch and we forward it to the network, we do not use the full network but we

use a random subset of it. In particular, according to a random probability

p (hyperparameter), some activations are set to zero, so in the end we end

up with a very sparse subset of the initial network. Why is this a good idea

since we are dropping away a lot of informations? Because dropout prevents

feature detectors to co-adapt. Let us make an example to understand it

better: say we want to detect a face, in general the faces do not always have

all the face attributes like nose, eyes, mouth, etc.. In general something could

be missing. So, for example, I would like to train my network also for faces

with an occluded eye. So it is a good idea to not having all the features

that co-adapt but randomly learn a subset of these features to be able to

generalize better on unseen data, so to force my face detector to work also

when only some of the attributes are present.

3.3 Metrics

Before building and running our models, a question arises. When we have

trained our model, how do I know how good my model is? We need a metric

to compare the different models we are going to test. Not only, this metric

need to reflect the reality. When we will put this model in production, if our

metric say that we will improve the open ratio by, say, 15% and the click rate

by 5%, this need to be as close as possible to what will happen in the future

when the model will work in practice. If we do not build a metric, the basic

solution is to train a model, put it in production and wait for n month to
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collect the new data. And only after the n month we can see how our model

performed. This is time-consuming and unfeasible.

In literature, there is not a standard metric to use for this type of problem,

so we need to invent one. The idea is the following: if my model predicts a

hour to send the email which is closer to the hour at which the user opened

the email with respect to the true sent hour, then we have done a good job.

If the hour is the same, then we are not improving anything. While, if the

predicted hour is before with respect the true sent hour, then we are not

doing a good job. So we can create a metric that can tell us on how many

samples we are improving, being equal or getting worse. Moreover, we would

like to know how much in terms of minutes we are doing better or worse.

Because, for instance, we can improve the sent time by 80%, but if we are

improving each sending time by 1 minute, we are actually not doing a good

job. Also, we added other metrics that facilitates us to compare the models,

and they are:

• when I am not doing a good job with the sent prediction, what is the

percentage of predictions that are worse by at least 10 minutes with

respect the true sending time?

• percentage of prediction when I am doing a good job.

• which is the average improvement in minutes.

• which is the average worsening in minutes.

Another aspect need to be taken: on what set of users do we need to

compute this metric? On all users? Maybe there are users that always open

the emails, regardless at which time the email has been sent. So maybe it

does not make sense to include these users in the test set because I do not

care if I improved the sending time for these users since they will always open

the emails. So, in the test set, I need to exclude these users. In particular

these users are chosen following these constraints. A user will be contained

in this category if:

• this user opened all the emails that have been sent to him.
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• the 80% of the emails sent to this users have been opened within 15

minutes.

If a user respect these two conditions, then it will be removed from the test

set. The numbers you read before (80% and 15 minutes) are hyperparameters

that have been properly tuned.

3.4 TSO Algorithm 2 applied on dataset 1

In this section we are going to describe the Time Sent Optimization algorithm

2 solved as a regression problem applied to the dataset 1.

The algorithm follows the following steps:

• choose one regression model and train it on the training set.

• take the trained model and assign 1 (the maximum value) to both

features Fitness Send-Open and Fitness Open-Click for all the rows of

the test set. This is the key-point. Doing so, we are constraining the

model to return us the sending time where these features are at their

maximum value, namely the best sending time the model can output.

• get the prediction of the test set after have removed the users that

respected the conditions explained before.

When the model will be in production, what will happen when a new user

subscribes to the newsletters? We need to send to the user a pre-specified

number of emails and then retrain the model again. The same applies for new

communication types. Since our dataset is composed by features regarding

the communication type, if we have a new communication, how do we need to

handle this? Since we have already learn a lot from the users and considering

that the communication is not so crucial, the first step is to take the mean of

the features of all the other communication types and assign the values we

obtain for the new communication type. And, as before, after have sent a pre-

specified number of emails for each user for the new communication, we can

remove the average computed before and substitute with the communication

open and click rate for that communication (like the engineered feature of

the second chapter).
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3.4.1 Results

In this section we are going to show the results of the TSO Algorithm 2

applied on dataset 1 of the models we have cited before taking into account

the metric described before. The results on the test set of the dataset 1 are

the following:

Model % Worse ≥ 10’ % Better Avg worse (min) Avg better (min)

Random Forest 0.005 0.180 3.030 348.24

Linear Regression 0.004 0.191 3.098 324.12

LARS 0.004 0.220 3.122 322.09

Neural Networks 0.004 0.231 3.287 312.11

CNN 0.003 0.274 4.010 322.98

We need to look at these results in this way: we want % Worse ≥ 10’ to

be small, % Better to be high, Avg worse to be small and Avg better to be

high. Among the model tested, two models shines particularly, the Random

forest and the CNN. Also, there is a general trend: if Avg worse gets higher,

then Avg better gets lower. Moreover, if % Worse ≥ 10’ gets lower, then %

Better gets higher.

Even though the CNN has not the best results on all the metrics, what

really interests us is the % Better. The CNN has a very high percentage and

this should reflect into an improvement of open rate in the future by that

value. Remember also that we used a test set excluding the users that open

always the emails regardless the time at which they have been sent. So the

% Better is a lower bound.

Noteworthy is that the Avg worse is very low, this means that when we

are doing worse. We are just anticipating the sent time by a couple of minutes

and this if fine for us. What should be very low is the metric % Worse ≥
10’, which is so in all our cases. Also, we can notice that we have a very high

Avg better. This means that we are taking a big percentage of sending time

and moving them by a lot. So, for instance, if the previous sending time was

10:00, now we are moving it by several hours getting closer to a time where

is more likely that the user will open the email.
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However, this is only our guess. We need to employ a test A/B to see

which are the real results.

3.5 TSO Algorithm 3 applied on dataset 2

Here instead, we are going to describe the Time Sent Optimization algorithm

3 solved as a regression problem applied to the dataset 2.

The algorithm follows the following steps:

• choose one regression model and train it on the training set.

• get the prediction of the test set after have removed the users that

respected the conditions explained before.

This algorithm is similar to the previous one. What changes here is that

we do not need to set the features Fitness Send-Open and Fitness Open-Click

to 1 since we do not have them anymore as input, but we are predicting them.

This algorithm turns out to work much better than the previous one and is

the one we will use in production.

3.5.1 Results

In this section we are going to show the result of the TSO Algorithm 3

applied on dataset 2 of the models we have cited before taking into account

the metric described before. The results on the test set of the dataset 2 are

the following:

Model % Worse ≥ 10’ % Better Avg worse (min) Avg better (min)

Random Forest 0.004 0.192 2.652 327.13

Linear Regression 0.004 0.201 2.777 319.22

LARS 0.004 0.257 2.765 355.05

Neural Networks 0.003 0.271 3.002 342.27

CNN 0.003 0.310 3.010 334.52

Looking at the results, compared to the previous ones, we can notice that

we have the same patters as before so the same considerations made before
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applies here too. Also, it can be noticed that almost all the models performed

better with this algorithm with respect the previous model. Thus, the final

model that we will choose will be this one. In particular we are going to

choose the CNN model because has a very high percentage of the Better

metric.

3.6 Training and testing

As already said, the final model we have chosen is the CNN trained with

the TSO Algorithm 3 applied on dataset 2. To obtain its results, we have

accordingly used a training set, validation set and a test set. We have tested

several split of these three sets, like: 60 train / 20 validation / 20 test, 60

train / 10 validation / 30 test, 70 train / 15 validation / 15 test. Also, we

have experimented with k-fold cross validation [1] with k equals to 3 and 5.

At the end, we have chosen as result the split the gave us the worst result to

have a realistic measure (a lower bound). We have trained the CNN for 30

epochs using Adam optimizer with β1 equals to 0.9 and β2 as 0.999, we used

the mean squared error loss and we applied also learning rate schedule with

step decay of 10. Also, we added into the network some layers to counter

overfitting, in particular: batch normalization and dropout layers.

3.6.1 Regularization

Moreover, we applied some advanced regularization techniques to improve

our results as much as we can.

3.6.1.1 Ensembles At test time, more often than not, one is used to

just take the trained model and run in on the test set and get an accuracy.

This is the standard way to test your model. However, we can do better

squeezing out the last drop of juice from our trained model using ensembles

[11]. Ensembles follow the following pipeline:

• train multiple (randomly initialized) models on the same dataset.

• run each model over a test image.
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• average the results (eg. take average of softmax outputs, then take the

argmax).

This usually increases the overall performance by 1-2%. Why this should

be a good idea? Because if networks have similar error rates, different net-

works tend to make different mistakes.

3.6.1.2 Snapshot ensembling The previous method works well. How-

ever we have to train a lot of networks and this could take a lot of time.

To counteract this issue, snapshot ensembling [15] comes to aid. By using a

cyclic learning rate schedule, we can simulate M trainings in the time span of

one by taking snapshots of the parameters reached at the end of each cycle.

We can use a cyclic cosine learning rate which will look like this:

Figure 16: Cyclic cosine learning rate.

So, whenever the cyclic cosine learning rate is decreased, we take a snap-

shots of the parameters of the model and we save them. Then proceed in

doing this until the training has finished. At the end we will end up with M
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models. By ensembling those models at test time to get the predictions, we

usually gain better performance that just doing one cycle of training.

3.6.1.3 Polyak average If we do not want to pay the price of the en-

semble at test time (because at runtime we would need to run M models),

we would want to get the benefit of ensemble without running ensembles.

How to do so? One thing we can do is Polyak average [10] which is basically

the idea of updating the parameters in the same way we are doing so far but

then we keep another copy of them (θ(test)) where we accumulate every new

version of our parameters which we have in a running average fashion. So

actually the parameters used at test time will be a running average of the

parameters we have seen at training time. Why this is a good idea? Because

we will see that the loss will be super noisy. It will bumps a lot between

different minibatches. So this Polyak average of the parameters is actually

taking the mean of the crazy movements of the loss and on average will give

us better performance. The update and the copy of the parameters θ(test) are

shown below:

θ(i+1) = θ(i) − lr∇θL(θ;D(train))

θ(test) = (1− ρ)θ(i+1) + ρθ(test)

ρ is an hyperparameter which represents to who give more weight. Being

ρ usually very high, we give more weight to the past. D(train) represents the

training set, L is the loss, ∇θ is the gradient and lr is the learning rate.

3.6.1.4 Stochastic Weight Averaging A variation of Polyak average

is the so called Stochastic Weight Averaging [16]. Its idea is to combine the

multiple annealing, namely the downside curve of the cyclical learning rate.

We take only the snapshots when the learning rate in the downside and small

and, instead of doing an ensemble of that, we average these weights like we did

in Polyak average, but instead of doing it for all the parameters as Polyak

does, we average only the good ones (the ones where the learning rate is

already decreased and so it could have reached a good minima or something

like a minima). This has shown to generalize well. The parameters are
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calculated in this way:

θ(test) =
θ(cycle) + ncyclesθ

(test)

ncycles + 1
, ncycles+ = 1
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4 Test A/B

We have already have a metric that tell us how well our model perform.

However, to have a concrete result, we need to deploy the model and collect

the results and compute the new open rate and click rate. A way of doing

this is through a A/B test [5].

A/B test consists of testing two different strategies to target a group.

For example, suppose you have a newsletter subscription button - it’s

called control (the existing element) - and you want to know if something

can be improved by changing your newsletters to get more subscribers.

Then, you create another newsletter with a different subscription button:

the positioning, the color, the copy of the call to action, the shape, etc. This

new element is called a variant.

Now, you show them both to a 50/50 split of your entire audience.

This way you will collect analytic data from both the control and the

variant you use as a deciding factor. Which of the two versions attracts the

most new subscribers? The most successful version of the newsletter should

be your choice.

Figure 17: Users’ subdivision for A/B test.

4.1 Why A/B testing is important

In short, doing A/B testing will serve as a method of solving problems based

on data and statistical measurement. This will allow companies to be better
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informed and make decisions about their marketing strategies, websites, apps,

and so on in a more analytical way.

There are many areas that businesses and marketers can solve and im-

prove by conducting A/B testing. Keep in mind that you have to match the

right element that has the greatest impact on each statistic. These areas are

as follows.

• conversion rate: doing A/B testing will allow you to see if the alterna-

tive converts more visitors into buyers than the original method.

• bounce Rate: with an A/B test you can try out changes like page

navigation to see if your visitors stay longer or shorter.

• click-through rate: after making some changes to your site, you can

measure whether your visitors are more likely to click on certain links.

4.2 Real results

We created two groups of people. To one group we suggest the sending time

suggested by our model, to the other group we send the emails at the hours

that the company was used to.

Importantly, we need to keep in mind that we discovered that not all the

users are the same. Some of them will open the emails always regardless

the time at which the emails have been sent and some of them will open the

emails only if sent to a specific hour. So the groups need to contain the same

percentage of these users. The chosen split is 50/50.

The A/B test has last three months and the company sent, for each user,

one email per day. After the testing, we obtained the following results where

the group A represents the group of users to which the model has not been

applied where the group B is the group of users to which we applied Time

Sent Optimization:
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Figure 18: Open and click rate after test A/B.

In blue are shown the open rate and click rate of the group A of users to

which the model has not been applied. The percentage are similar to those

we computed on the full dataset. Previoulsy, we had 23.72 % as open rate

and 2.38 % as click rate. Now, we have slighly less percentage, in particular

we have 21.87 % as open rate and 2.12 % ad click rate. The comparison

between the results of group A and those of the initial analysis, serve only

as a verification that the conditions have not changed from the first data

collection to the A / B test, it does not matter so much whether the values

are higher or lower, what matters is that the difference is in the area of

statistical fluctuations.

On the other hand, the green bars represent the open and click rate of

the users of group B which are the users to which we applied Time Sent

Optimization. We can directly notice the effectiveness of our model: we

improved the open rate by roughly ∼ 16 % and the click rate by roughly

∼2 % (we almost doubled the percentage of group A’s click rate). This is

a very good result. The interesting point though is not this one, but is the

metric we used. Our best model has predicted that we could have increased

the open rate from ∼ 23 % to ∼ 31 %, but we did better! This is because,

in every process of the evaluation, we have chosen to take the results in the

worst cases. So that ∼ 31 % was a lower bound. This is very useful because

if someone wants to try different approaches of this problem, he/she do not
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need to run the test A/B every time wasting a ton of time. You can just run

this metric and obtain a lower bound of what will be the open rate of the

model you want to deploy.
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5 Conclusions

In this thesis we have shown some possible ways of solving Time Sent

Optimization problem. From the business point of view, having this kind

of a tool for a company is important because the companies can make their

marketing campaigns more effectively since more users open and click the

company’s communications.

This task is not particularly difficult in itself. However, unlike the other

domain, this task has no literature. So we need to invent the algorithm

completely from scratch. In particular we have to understand how to create

the dataset and which set of features to employ, how the label is structured

and which metric for the evaluation need to be used.

Our first attempt was to solve this problem into the unsupervised learning

domain. However, our dataset was too scattered to perform operations like

clustering. So we moved the world of supervised learning. However, moving

to supervised learning is not a straight step because we need to understand

how our label will be structured since there could be many options. After

several attempts, we decided to opt for a label which represents a histogram

that indicated which is the users’ fintness for all the possible hours. Then,

we tried to solve the problem as classification. However this turns out to not

be effective because in the classification world, the labels are uncorrelated

each other, but for our problem we want them to be correlated. Therefore

we switched to solve a regression problem. We build two different algorithms

and tested several regression model but the best one was the model based on

Convolutional Neural Networks with, what we called, dataset 2. However,

this worked for our case. The variance of the distribution of the data is huge

for for this specific problem, so maybe for someone this method could not

work. Therefore, we suggest to test all the models we presented in this thesis.

5.1 Future works

This type of problem is really data-dependent. In particular, the more data

we have the better. So, as a primary future work, is necessary to continue to

collect new data from the users and retrain the model again and test it with
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the metric proposed in this thesis.

In spite of we reached a higher open rate compared to the based one, we

improved by a little the click rate. This is because we concentrated mainly on

improving the open rate assuming that if I increase the open rate, then the

click rate will increase accordingly. This is true in part but not in general.

So, as a future work, it could make sense to work directly also on increasing

the click rate. This could be done by creating a model that writes emails’

subjects and email content that are attractive to the user. This is a Natural

Language Problem which is not related with Time Sent Optimization, but

we think that combining these solution could lead into even better results,

mostly on the click rate.

Another interesting aspect that one can explore is to solve this problem

as a classification problem. We said that classification is not suited for this

kind of problem because the labels must be correlated each other and in

classification the labels are not correlated. But classification has a lot of pros

and we think that it could work better than regression. The thing that one

may explore is how to make the labels correlated each other.
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