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Chapter 1

Introduction

1.1 Summary

Over the past decade, there has been a wide-scale increase in intelligent elec-

tronic devices such as smartphones, smart-watches, and other devices, which

created a broad range of new services, including indoor localization. In scien-

tific terms, the process of acquiring the location or position of a user or device

in an indoor environment or setting is known as indoor localization or indoor

positioning systems (IPS). The efficacy of satellite technologies (radio waves)

in complex infrastructures such as multi-story buildings and roofs is limited

due to obstructions [66]. Indoor localization uses other novel technologies like

Bluetooth beacons, WiFi, etc., to incorporate wearable signal sensors, acous-

tic, optical, radio waves, and behavioral analysis from intelligent devices.

Indoor localization is an area of research that is extensively investigated,

mainly in logistics and industrial settings by the scientific community over

the last decade. The universal proliferation of smartphones and wearable

smart devices with networking and communication potentials increased cu-

riosity. Tracking such intelligent devices is synonymous with tracking and
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localization of respective users enabling a wide range of applications and ser-

vices. Indoor positioning systems have various applications in navigation sys-

tems citemulloni2009indoor, industries, disaster management [7, 11, 97], aug-

mented reality [37], health sector [18, 88], indoor robotics [77], surveillance,

building management, and other various sectors. It can also positively influ-

ence other novel systems such as intelligent buildings [], smart cities [30],

smart grids [75], the Internet of Things (IoT) [8], and Machine Type Commu-

nication (MTC) [79].

Global Positioning System (GPS) does not performwell in complex indoor

environments, thus, creating a void filled by WiFi Positioning System (WPS).

WiFi is widely used for networking, communication, and internet connectiv-

ity in various private, public, and commercial infrastructures such as airports,

hospitals, offices, universities, homes, community centers, industries, nursing

homes, and many more. This proliferation makes WiFi an ideal candidate for

indoor positioning systems. Many techniques are explored to enrich indoor lo-

calization usingWiFi, andRSSI is commonly used due to its cost-effectiveness

and simplicity. The hindrance with using WiFi RSSI data directly with trilat-

eration methodology is highly constrained by multipath propagation, signal

interference, free-space loss, reflection, and refraction [73].

In common practice, four main methods are used to acquire the estimated

position of the user’s device using the signal parameters and wireless con-

cepts of WiFi access points in WPS: fingerprinting based, RSSI based, time-

of-arrival based, and angle-of-arrival based approaches. Among these, finger-

printing technology provides better reliability and accuracy [42] hencemaking

it more suitable. Fingerprinting process is made up of two phases. The first

is an offline phase in which the intensity of Received Signal Strength (RSSI)

values is measured from known Access Points (AP) to create a virtual indoor

map stored as a fingerprint database. The second one is an online phase in

which the real-time RSSI values are collected from a user to interpolate the

ground truth location with the previously stored fingerprinting database [94]
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and estimate the user’s position using trilateration.

A recent scientific study [56] explored two main factors that hinder the

accuracy of using fingerprinting. 1)The difference between RSSI values in

the offline and online phase due to changes in the external environment. 2)

Multiple locations with similar signals due to fluctuations in RSSI signals.

This reasoning indicates that the limitation is because of both the fingerprint

database and the computational memory and power required for database cre-

ation whenever the external environment changes and information updates.

The novel research in artificial intelligence and machine learning methods

extends a way to resolve this fingerprinting issue [57]. The multivariate re-

gression is the closest approach to predicting x and y coordinates of the user’s

location in the conventional fingerprinting method. On the other hand, classi-

fication treats this problem as a discrete one, predicting a grid-based system-

defined space section for the user’s location. The overall structure should be

divided into multiple grids, and the system should label all the grids. In in-

door localization with classification, the model will predict the discrete la-

belled value of location [10]. This study highlights the importance of indoor

positioning as a grid-based problem. It is essentially applicable for guiding

personnel in a complex area and locating patients in the nursing home.

1.2 Thesis Contribution

In this thesis, we explored the scientific process of indoor localization sys-

tems in depth. We investigated indoor localization techniques such as RSSI,

channel state information, fingerprint analysis, angle of arrival, time of flight,

and time difference of arrival. We also examined various technologies such as

WiFi, Bluetooth, Zigbee, acoustics, optical, and RFID applied in indoor po-

sitioning systems. We also researched real-life applications of IPS in public,

private and commercial sectors to signify the importance of this process in the

contemporary world.
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We studied the requisites of the data features in an indoor positioning sys-

tem. We examined several datasets publicly available and selected three from

them to perform our experiments. The primary dataset is the most widely used

public dataset collected in Jaume I University, Spain. This dataset is based on

RSSI values collected from 520 WiFi access points, along with information

on users’ location in three predefined buildings in the university.

We applied various state of the art machine learning methodologies and

techniques to this well-developed UJI Indoor fingerprinting database. We in-

vestigated the problem from three perspectives. Initially, we used a grid-based

approach to classify the location of the user using predefined labels. In these

experiments, we developed a pipeline of feature preprocessing, feature engi-

neering, and machine learning models to predict the user’s location in three

buildings both separately and as one complete dataset. We used eight differ-

ent classifiers for model selection and tuned hyperparameters to create a new

benchmark against the existing literature. The researchers at the School of

Computer Science and Engineering Nanyang Technological University, Sin-

gapore benchmarked 86.34% on the UJI Indoor dataset [93], whereas our ex-

periments have achieved an accuracy of 88.82%.

Moreover, we took the approach of regression to refine the results achieved

through the fingerprinting process. We applied principal component analy-

sis and other feature engineering steps to refine our dataset. We developed a

multivariate regression model pipeline to predict the latitude and longitude of

the user’s device. After performing a model selection on over seven regres-

sion models, we tuned a K-Nearest Neighbour regression model to achieve an

RMSE error of 3.637 meters.

To further investigate the expressiveness of artificial intelligence in this

domain, we developed a three-stage cascaded machine learning model to es-

timate the user’s location. The first stage is comprised of a Random Forest

classifier to predict the building of the user. The second stage used the output
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of the first stage to make a local prediction on the floor of the user’s posi-

tion. Finally, a global regression model predicts the coordinates of the user’s

location.

The dataset does not contain information about the location of the WiFi

access points (WAPs). We studied and applied trilateration to estimate the

position of WAPs based on the RSSI signal strength for users. We examined

the optimization of access points location for better reach to the audience.



Chapter 2

Literature Review

2.1 Indoor Localization

2.1.1 Techniques for Indoor Localization

In this section, we shall discuss various techniques that we can employ in the

field of indoor localization [95]. In general, we have three types of localiza-

tion:

• Device-based localization (DBL): In this process, a user device esti-

mates its relative position concerning some Reference Nodes (RN). Its

main application is in navigation, where it assists users in locating itself

around indoor and outdoor spaces

• Monitor based localization (MBL): In this process, a set of reference

nodes acquires the user’s or devices‘ location connected to the anchor

node passively. This process, generally, remains in continuous opera-

tion and is mainly used for tracking purposes to apply various applica-

tions.

• Proximity Detection: This methodology refers to proximate the dis-

tance between a Point of Interest (PoI) and the user’s location. This
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type is mainly used in context-aware services where it provides cost-

effective and reliable operations.

Received Signal Strength Indicator (RSSI)

The received signal strength is the actual strength of the signal that is per-

ceived by the receiver. It is usually measured in milliWatts (mW) or decibel-

milliwatts (dBm). The value of RSS varies inversely with the distance be-

tween a receiver device and a transmitter (Tx). It is usually measured on a

negative scale, so the higher the value of RSS, the less will be the distance

between the source and the receiver. This technique is one of the simplest and

universally used techniques for indoor positioning systems [55, 52, 29, 16,

92].

Once the absolute position of one of the two devices is known, we can esti-

mate the distance between them using various signal propagation techniques.

RSSI, which differs from RSS, is just the indicator for signal strength with

arbitrary units. For example, Cisco defines its range in between 0 and 100,

whereas Atheros WiFi chipset uses a range of 0-60 to determine its RSSI val-

ues. Although RSSI based indoor localization is cost-efficient and straightfor-

ward, it is prone to poor localization accuracy, particularly when there is no

clear Line of Sight as walls and other significant obstructions cause fluctuation

in RSS signals because of additional multipath interference and fading. [89,

92]

In the device-based localization (DBL) process, the RSS-based technique

requires an application of trilateration methodology. In the pure trilateration

procedure, we use the location of at least three devices and the signal strength

from these devices to the signal user device. We apply the geometric and

trigonometric formulas on the three spheres created by the propagating signal

to find the absolute distance between the user’s device and the sources, as

depicted in figure 2.1. In monitoring-based localization, a similar process is

used, and the user’s information is continuouslymonitored and transmitted to a
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server-based data storage device for further applications. However, in the case

of proximity-based localization, we create geofencing using only one device

and detect whenever the user’s device enters the signal propagation sphere of

our source. We can use this application for marketing purposes where we, a

retailer or a franchisee, detect whenever a user enters its outlet to target its

marketing alerts more purposefully.

Figure 2.1: User device localization based on RSSI

Channel State Information (CSI)

In wireless signal propagation, phase behaviour and amplitude vary for dif-

ferent frequencies. The signal’s bandwidth that makes the wireless channel

frequency-selective is usually greater than the channel’s coherence bandwidth

in UWB, IEEE802.11 and other wireless systems. Furthermore, based on the

signal’s wavelength and antennae distance, there exists a significant variation

in channel frequency responses in multiple antennae transceivers. RSS only

provides us an approximation of the average amplitude over the accumulated

signal overall antennae and the entire signal’s bandwidth. Although RSS is

generally used because of its minimal hardware requirements and simplicity,

this phenomenon makes it prone to interference and high variability. On the

other hand, Channel Frequency Response (CSR) considers the amplitude and
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phase responses of the signal between separate receiver-transmitter pairs of

antennae. CSR captures responses for various signal frequencies, making its

resolution more granular and leading to better accuracy.

Fingerprint Analysis

This analysis constitutes creating a virtual map by performing an environ-

mental survey to acquire features or fingerprints of the target location. This

process is also called scene analysis as we recreate the environment where our

localization system will be installed. It consists of an offline phase for collect-

ing the fingerprints and creating a virtual map and an online phase where we

predict the user’s location in real-time [94, 96]. Both RSSI and CSI methods

are used to capture the fingerprints in this process.

As explained above, this methodology utilizes the offline phase to develop

a grid-based virtual map where each grid can be associated with specific val-

ues of the RSSI or CSI signal strengths. After this creation, we can deploy

various probabilistic and artificial intelligence-based techniques to estimate

the user’s location based on the virtual map created before. All the grids are

associated with specific RSSI or CSI values; this method provides a discrete

estimation of the user rather than the continuous one. Therefore, the granular-

ity and resolution of our approach depending upon the size of these grids.

In theory, if we increase the grid density by reducing the distance between

grids, the granularity of the user’s location estimation should increase to the

extent that we can make it continuous. However, this can only be achieved to

a limit as reducing the size between grids would induce more noise and inter-

ference between the signals in the nearby grid, hence sabotaging the accuracy

of the prediction in a specific grid. This effect would also depend upon the

type of signal used as RSSI’s would be much more prone to this effect than

CSI as the difference in the signal strength between neighbouring cells dimin-

ishes. This phenomenon marks an essential trade-off between the probability

of correct location prediction and the granularity of the fingerprinting position
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that must be considered while choosing the parameters and location for this

localization process. It is noteworthy to mention that as this process includes

an offline and online phase, it is highly prone to change in the structure of the

location over time. Whenever there is a change in design or the signal trans-

mitters on the site, we would have to repeat the whole process of developing

fingerprints.

Angle of Arrival (AoA)

One of the distinguishing features of signal theory is that we can use its var-

ious components in real-life applications. In our use case of indoor localiza-

tion, we can estimate the user device’s location by calculation the angle at

which it receives the signal from the estimator. This approach requires anten-

nae arrays [90] on the receiver end to estimate the signal angle at which the

receiver receives the signals from known transmitters. We also consider the

time difference at which the different antennae in the array receive the signal.

Figure 2.2 illustrates the angle of arrival that we can use to estimate the user’s

location.

Figure 2.2: User device localization with AoA

AoA is more accurate than RSS techniques, but it requires more sophisti-

cated hardware with complex and careful calibrations. This approach works

best when the distance between transmitter and receiver is small. It is prone to
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high error [53] as this distance increases because a small error in angle calcu-

lation amplifies into a big error in location estimation. Furthermore, various

effects in indoor environments deteriorate the angle of arrival in terms of the

line of sight, so it is better used for small distances in outdoor environments.

Time of Flight (ToF)

Like Angle of Arrival, Time of Flight (ToF) estimates the distance between

the receiver and transmitter [23] using the signal propagation time. It is also

known as the Time of Arrival. As we know, that the electromagnetic signal

propagates with the speed of light, so by taking the product of the constant

of light c = 3x108m/sec by the time difference in between propagation of a

signal from the transmitter and the time at which it reached the receiver, we

can estimate the distance between them.

Figure 2.3: User device localization with ToF

As similar to received signal strength (RSS), this phenomenon can also

be used in distance-based and monitor-based localizations. In figure 2.3, we

can see time-stamped packets from three different sources can help localize

the user’s device. Here, similar to trilateration, basic geometry can be used

to estimate the user’s position. Sampling rate and signal bandwidth directly
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influence the accuracy of this process. Moreover, ToF requires transmitters,

receivers and time-stamped data packets to be synchronized concerning the

transmission protocol used.

Time Difference of Arrival (TDoA)

This process is different from ToA because it utilizes the difference measured

in signal propagation times on reception from varied transmitters. The ToF

uses the absolute time of signal propagation, whereas this process creates a

hyperboloid for various transmitters by converting the time difference to phys-

ical distance, as shown in figure 2.4. We can estimate the user’s location by

determining the resultant of these hyperboloids [57]. Here, again, at least three

transmitters are required to calculate the user’s location.

Figure 2.4: User device localization with TDoA

The presence of a direct Line of Sight (LoS) directly affects the perfor-

mance of TDoA. It also depends upon the signal sampling rate at the received

and signal’s bandwidth. In TDoA, there is the necessity of synchronization be-

tween the transmitters, whereas, in ToA, synchronization is required between

the receiver and the transmitter.
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2.1.2 Technologies for Indoor localization

Various existing technologies applied for indoor localization will be discussed

in this section. We will elaborate on radio communication technologies like

WiFi, ZigBee, Bluetooth, and RFID. We would also take into account several

new emerging acoustic and light-based technologies. Although computer vi-

sion can also be used for this purpose, this is beyond the scope of the thesis,

so it would not be discussed here.

WiFi

The majority of the current laptops, smart-phones, smart-watches, and other

portable user devices use WiFi for internet connectivity. WiFi operates typ-

ically in the Industrial, Scientific, and Medical (ISM) band, based on IEEE

802.11 standard. Its primary use is networking and internet connectivity for

various electronic user devices in commercial, public, corporate, and private

environments.

Initially, the range for regular operations ofWiFiwas about 100meters [57],

but with the advancement in technology, its capacity and range have increased

to about 1 kilometer [17, 1] in IEEE 802.11ah standard, which is mainly used

for IoT purposes. WiFi is an ideal contender for indoor positioning systems

and is one of the most widely researched technology in the scientific litera-

ture [84, 53, 90, 50, 89, 68, 44, 87, 19, 56, 58, 25, 22, 100, 20, 33, 46]. As

the existing infrastructure of WiFi access points already has several Reference

Nodes (RN), we can use it for basic localization systems with good accuracy

without additional hardware installation [53].

We should consider that the primary purpose of WiFi technology is for

data transfer, networking, and communication. It is not optimized for local-

ization; therefore, artificial intelligence and other novel algorithms should be

incorporated on top of the technology to achieve high accuracy. WiFi is also

prone to uncontrolled signal interference as it operates in the ISM band, hence
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deteriorating its accuracy. WiFi can use various techniques discussed in the

previous section, such as CSI, RSSI, AoA, ToF, and their hybrid combinations

for its application in positioning systems.

Bluetooth

IEEE 802.15.1 standard, commonly known as Bluetooth, refers to a technol-

ogy primarily used in personal spaces to connect different moving or fixed de-

vices. It comprised of the physical and MAC layers specification and worked

in the range of 20 meters initially. Recent improvements in the technology

have led to a new version [96], Bluetooth Low Energy (BLE), that has an

improved range of 70-100 meters and a better capacity of 24 Mbps for data

transfer.

BLE, generally known as Bluetooth Smart, can be integrated with various

aforementioned techniques like RSSI, ToF, and AoA for localization. How-

ever, RSSI is mainly used in BLE due to its simplicity and sophistication.

RSSI, due to its proneness to various interference effects, limits the accuracy

for BLE localization systems. Although BLE in its original form has appli-

cations for localization, two BLE-based protocols Eddystone and iBeacons,

have been proposed by Google Inc. and Apple Inc., respectively.

IBeacons protocol is mainly designed for proximity-based services. In

2013, Apple announced this product at theWorldWide Developer Conference

(WWDC) [39]. BLE-enabled devices use this protocol to transmit periodic

low-energy signals. The principal operation of this technology is illustrated

in figure 2.5, where UUID refers to the Universally Unique Identifier (UUID)

of the device. Any BLE enabled the device in its proximity to pick up these

signals or beacons and uses RSSI to estimate the proximity between the user

and the iBeacon.
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Figure 2.5: iBeacon operational architecture

ZigBee

IEEE 802.15.4 standard developed with the MAC and physical layers for low

data rate, cost-effectiveness, and energy-efficient personal area networks lay

the foundation of ZigBee technology [9]. Zigbee is primarily used in wireless

sensor networks with higher levels of the protocol stack. Zigbee consists of a

layer and an application layer. The application layer is responsible for devel-

oping applications and communication distribution, whereas the networking

layer deals with network organization and multihop routing. Zigbee is still

not readily available on most portable networking devices; therefore, it is not

appropriate for indoor localization.

Radio Frequency Identification Device (RFID)

This technology mainly works on electromagnetic transmission from a trans-

mitter to any Radio Frequency (RF) enabled circuit [34]. Its primary purpose

is the storage and transmission of data. RFID systems consist of a tag and a

reader, which communicate with each other. A predefined RF and protocol

enable RFID readers to read data emitted from RFID tags. There are two types

of RFID systems.
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• Passive RFID: This type can work without batteries but has a lim-

ited communication range (1-2m). They can work in low, high, mi-

crowave, and UHF frequency ranges and are generally cheaper, smaller,

and lighter than active RFIDs. They can work in place of bar codes, es-

pecially when concealed, as they do not require Line of Sight (LoS) to

operate. However, they are not good candidates for indoor localization

due to their minimal range.

• Active RFID: They operate in microwave and UHF (ultra-high fre-

quency) range. They require batteries or a power source to operate.

They can transmit their ID periodically over a range of hundreds of me-

ters from the RFID reader. They have low cost, good range, and flexi-

bility to be embedded in tracking objects, making them a suitable candi-

date for indoor localization. This technology still has not achieved very

high accuracy, limiting its use primarily to proximity-based devices.

Visible Light

The technology that uses visible light between 400-800 THz modulated and

emitted mainly by Light Emitting Diodes (LEDs) is known as visible light

communication (VLC). Localization techniques based on VLC primarily use

light sensors to estimate the direction and position of the LED emitters. This

technology is an emerging technology for high speed data transfer [54], and

its use for localization in the commercial sector has increased over the past

few years.

Visible light communication used LEDs similar to iBeacons to transmit the

signals that the sensor/receiver detects for localization. The Angle of Arrival

(AoA) is considered as the most accurate localization technique [54, 6] for

this technology. The main advantage for VLC based localization is scalability

which is even greater than WiFi. Nevertheless, a fundamental limitation is

that light travels in straight lines; hence constraints in the Line of Sight (LoS)
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between the sensor and LED lead to inaccurate localization.

Acoustic Signal

In this technology, the receiver nodes act as sound sources emitting acous-

tic signals detected by a microphone in intelligent devices to proximate the

user‘s location concerning the source. Acoustic signals primarily use the Time

of Flight (ToF) technique for localization [59]. The acoustic signal that the

source emits contains timestamps which enable microphone sensors to local-

ize themselves. This technology also enables us to estimate the velocity [36]

and relative position of the user‘s device by detecting frequency and phase

shifts in received signals using Doppler effects.

This technology has a significant concern of noise pollution as smart-

phone microphone limitations such as anti-aliasing filter, and sampling rate

limits the high accuracy for only audible band acoustic signals (<20KHZ).

Therefore, for the appropriate application, the transmission power should be

low enough to be perceivable by the human ear, and it should be improved at

the receiver‘s end using advanced signal processing algorithms. Furthermore,

the need for a high update rate impacting the device‘s battery and additional

infrastructure of source nodes make acoustic signal not a suitable candidate

for localization.

2.1.3 Applications of Indoor Localization

Indoor localization provides us information about the position of objects and

personnel in indoor environments. In this section, we would look into the

real-life implemented application of indoor localization.

Factories

In factories, indoor localization can be used in various ways to locate ma-

chines, objects, goods, vehicles, and employees. We can quantify some of the
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applications of indoor positioning systems in industries.

Asset Tracking: Object and asset tracking is essential to industries and

logistics in cost-effectiveness, theft protection, time savings, lean manage-

ment, and process optimization. With the help of the localization of goods

and vehicles, we can also use external sensors and actuators to control various

environmental factors in industry such as humidity, pressure, and temperature.

A usual warehouse contains thousands of goods waiting to be delivered or

processed. It is essential to locate them in time for the smooth functioning of

the supply chain. Integrated digital display with indoor localization solutions

could help locate these goods and provide necessary instructions to the work-

force. In addition to goods, pallet trucks, forklifts, and tugger trains can also

be tracked, ensuring lean and optimized process management.

Localization of Employees: Efficient workflowmanagement and process

optimization can be achieved through integrated tracking of employees on site.

In addition, this process could also ensure the security and safety of employees

and assets.

With the advancement of technology, working conditions in industries

have become critically hazardous. Process safety management principles al-

low only trained employees to work in danger zones that this process could be

ensured. On top of the day-to-day operations, geo-based localization can assist

in emergencies like a fire, chemical spill out, etc. It is necessary to evacuate

users to the assembly points in case an emergency breaks out. This solution

can be integrated into the name tags and ensure the safety of employees.

Moreover, we can monitor environmental conditions like temperature, air

quality, humidity, and light to ensure safe and healthy working conditions for

the users. This technology can also ensure industries‘ compliance with ISO

45000 (occupational health and safety) and ISO 14000 (environmental man-

agement systems).
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Airports and Railway Stations

Indoor positioning systems (IPS) can ensure smooth and painless travel by

assisting passengers, employees, airways, railway companies, and associated

businesses. IPS can provide indoor navigation, real-time asset tracking, track-

ing solutions and analyses, parking management. It can increase the overall

comfort and efficiency of travelling solutions.

In terms of user, IPS can be used as a way-finder to find a way through

complex airports and railway infrastructure to reach their desired gate. It can

also provide information about available food and shopping options in com-

plex arenas. It can also assist users with parking management and reducing

waiting time through optimization of queue management.

For airport authorities and retailers, IPS can revolutionize their work ef-

ficiency and revenue generation. IPS can allow companies to send targeted

discount coupons and advertisements to users based on their interests and loca-

tion. Airport authorities can optimize security guards’ location, staff, passen-

ger and inventory management, track expensive goods, and airport employees

to assign geo-based tasks, hence, improving the efficiency of the workflow.

Moreover, this collected data can be used for real-time monitoring of passen-

ger flow and data analytics for schedule management and process optimiza-

tion.

Market Research

In recent years, digital marketing has shaped up merchandising by compa-

nies. Neuroscience knowledge and tools are used to study the behavior of

consumers using the data collected through various digital applications. This

scientific field is known as neuromarketing, which also involves processing

information, determining users’ meaning and emotional value, and then ap-

plying analysis on the findings to target advertisements.

IPS can track users’ location in various sections of the shopping malls to



2.1 Indoor Localization 20

analyze customers’ paths and time of stay. This information can be integrated

with various neuromarketing techniques [26] like EEG [91], BVP [72], eye

tracking [83], and GSR [21]. This integration can register the users’ emotions

while passing throughout the route, which can help retailers send improve their

products, optimize floor plans, and target marketing campaigns.

Supermarkets and Shops

Indoor localization can improve the shopping experience of users in extensive

and complex supermarkets. They can assist users to navigate through sections

of the mart and go to their desired products. They can also help locate the dis-

counted products. It can also help users in selecting those outlets for shopping

that satisfy all their shopping need cost-efficiently.

IPS can assist retailers in stock, asset, and inventory management. They

can use IPS and market basket analysis to optimize the floor, and product

placement plans to increase sales and revenues. RFID-based IPS can also

improve the security situation of supermarkets by ensuring theft control.

Hospitals and Nursing Homes

In line with the aforementioned applications, IPS can be used in nursing homes

and hospitals to navigate patients and employees. It is also valuable for pro-

cesses, goods, and tools management. They can be critical in improving the

workflow in hospitals and old care homes as they could locate emergencies

to doctors and health care workers. Patients who have dementia, Alzheimer’s

disease, and other neurological disorders can stray in complex buildings. They

can be located and provided with the necessary help with IPS. Furthermore,

the equipment in hospitals is costly with limited supply mostly, so it is neces-

sary to locate them for protection and necessary use optimization.



Chapter 3

DataSet

3.1 UjiIndoor Loc Dataset

[80]

3.1.1 Description of elements stored

1) RSSI Levels

The WAPs identified and their RSSI level values are the utmost essential

knowledge for WLAN fingerprinting differentiation. This information con-

stitutes 98% of the statistics in every record, which is 520 vector positions

out of 529, denoting 520 element vectors of integers in the dataset. These

statistics denote the RSSI levels, while WAP identifiers are associated with

vector positions. Presentation in this way has been acquired due to the numer-

ous contrasting WAPs identified in the three buildings, i.e., 520 and Android

application, which gives RSSI levels in integer numbers.

The technique getScanResults() [5] which is a part of WifiManager [4] of

Android class, is adopted to acquire records for identified WAPs for all the

devices. The MAC addresses are encrypted as strings, and the RSSI levels

coincide with negative values taken in dBm, while 0dBM denotes that the

identified WAP‘s signal has an excellent strength and as the value decreases,
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the strength of the signals weakens. The 520WAPs have their associatedMAC

addresses, which are a part of the database. These MAC addresses have been

arranged alphabetically and retitled to WAPnnnn in an orderly manner. These

new identifiers are acknowledged as a replacement toMAC addressed for data

privacy and governance.

The database contains a sum of 520 WAPs. The 520-dimensional vec-

tor for each observation has the primary intensity RSSI magnitude from the

identified WAPs in one wifi screening; all WAPs are not identified in one

screening. e.g., one of the scans detected only 14 WAP identifiers. The de-

tected WAPs RSSI levels stay unchanged, and the database uses the artificial

value +100dBm by default for the particular WAPs that the device could not

identify.

2) Real-world coordinates

There are three features in every observation (521 to 523 vector position) by

which the real world coordinates are depicted; the floor of the building and the

longitude and latitude coordinates (in meters with UTM from WGS84 [43])

3) Space identifiers

BuildingID denoted by vector position 524 is represented by integers (0-2);

this correlates with the building in which the observation was taken. The three

buildings of the School of Technology and Experimental Sciences (center im-

age) of UJI University campus (left); hereafter ESTCE; and zoom inside the

third floor of the TI building (right) has been shown in figure 3.1. Table 3.1

exhibits the BuildingID associated with each building of the ESTCE.

Real Building Building ID
ESTCE - TI 0
ESTCE - TD 1
ESTCE - TC 2

Table 3.1: Relation between real building and BuildingID.
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Figure 3.1: Pink refers to the ESTCE - Tx building on the UJI Campus map
(left). On the Tx building zoom (right): red refers to TI building, green corre-
sponds to TD building and blue stands for TC building. On the interior of TI
building, the blue point is the reference point.

The 525th position of a vector that is a representation of every reading is

named as spaceID. It has one integer value, which for any particular example

is taken to detect the specific space where the capture was observed; this could

be an office, a lab, etc. The 526th place provides its location corresponding to

the spaceID. It represents the inside (value 1) or outside (value 2) space where

the user captured the reading. Outside denotes the space in front of the door

in the corridor. As an illustration, the calculations on the 7754th data point

of these fields are manifested in table 3.2. As per this table, the capture was

taken in a reference space located outside office 111 at ESTCE -TI building

(TI).

Floor BuildingID SpaceID Rel.Pos.
3 0 1111 2

Table 3.2: Reference point where the 7754th record was taken.

There are two database variants; one is called the training subset, and the

other is the validation subset. The training subset has properly defined ref-

erence points that at least two different users caught. The values are taken

randomly; just like the real-time localization system, the point of reference

(determined by space ID and relative position) are not placed in the validation

records. This information is represented by the number 0 for these two fields

in the validation dataset.
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4) User Identifier

The 527th dimension of vector places userID as integer numbers from 1 to 18.

These digits represent eighteen users who took part in the procedure and pro-

duced the training subset. This field is not recorded in the validation dataset,

so 0 represents it. Every individual’s height is also given [80]. This identi-

fier is helpful because of the effect the spatial site has on the calculated RSSI

measurements [45].

5) Phone Identifier

In the same manner (location 528) has an integer value representing Android

phones used in the process. Table reftable3.3 exhibits the correspondence

between every PhoneID and its corresponding device (model and version).

Aforesaid users from USER0001 to USER0018 took part in the generation

of the training set. However, USER0000 represents that the phone is utilized

to create the validation dataset. Total twenty phones are used (twenty-five in

the case of the Android version). In some instances, few users have similar

smartphone models. Nexus 4, in particular, is used by three different users.

They also took part in developing the validation dataset. Similarly, an LT22i

mobile set is used by two different users to create training samples.

6) Timestamp

The 529th location in the vector has a timestamp register in the dataset [80].

This feature constitutes the time in Unix time format at which the user took

the observation. A centralized server was taken into consideration to prevent

outliers. Each smartphone could have particular timings settings, so the users

did not rely on these measurements. These insights could have caused prob-

lems in the record; for example, if we took capture in the morning, it could

have been considered taken in the evening.
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PhoneID Android Device Android Ver. UserID
0 Celkon A27 4.0.4(6577) 0
1 GT-I8160 2.3.6 8
2 GT-I8160 4.1.2 0
3 GT-I9100 4.0.4 5
4 GT-I9300 4.1.2 0
5 GT-I9505 4.2.2 0
6 GT-S5360 2.3.6 7
7 GT-S6500 2.3.6 14
8 Galaxy Nexus 4.2.2 10
9 Galaxy Nexus 4.3 0
10 HTC Desire HD 2.3.5 18
11 HTC One 4.1.2 15
12 HTC One 4.2.2 0
13 HTC Wildfire S 2.3.5 0,11
14 LT22i 4.0.4 0,1,9,16
15 LT22i 4.1.2 0
16 LT26i 4.0.4 3
17 M1005D 4.0.4 13
18 MT11i 2.3.4 4
19 Nexus 4 4.2.2 6
20 Nexus 4 4.3 0
21 Nexus S 4.1.2 0
22 Orange Monte Carlo 2.3.5 17
23 Transformer TF101 4.0.3 2
24 bq Curie 4.1.1 12

Table 3.3: Model description, android version and device‘s user information
is also provided

3.2 Other Datasets

3.2.1 BLE Fingerprinting Dataset

This dataset [65] was taken to inspect the significance of good quality data

accretion on the performance of the machine learning models. 13 iBeacons

of the RSSI readings are used to form the dataset on the first floor of Waldo

Library, Western Michigan University. iPhone 6S smartphone model is used

to collect data. Data is collected during business hours. In order to produce a

labelled dataset, the input data has the position (label column), a timestamp,

and the RSSI readings of 13 iBeacons. RSSI calculation is taken in negative
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numbers. Greater RSSI values denote accessibility to a specific iBeacon for

example, RSSI of -65 represents a more relative engagement extent to the

specific iBeacon than RSSI of -85). The iBeacons not accessible to the RSSI

area are denoted by -200. The sites corresponding to RSSI readings aremerged

in a single row, consisting of one letter for the column and one number for the

location row. The figure 3.2 describes the design for iBeacons, along with the

positioning of sites.

Figure 3.2: Floor Layout for BLE dataset

Attribute Information

• date: Datetime in the format of ‘dd-mm-yyyy hh:mm:ss’

• b3001 - b3013: RSSI numerical readings corresponding to the respec-

tive iBeacons.

• location:The sites of acquiring RSSIs from iBeacons b3001 to b3013;

representative numbers show the row and column of the site on the map

(e.g., A03 stands for column A, row 3)
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3.2.2 Lab Dataset - Kaggle

One of the main challenges while deploying artificial intelligence for indoor

localization is data acquisition. We found few excellent datasets to perform

our experiments. We will use another dataset available on Kaggle, which cor-

responds to a lab in a university in India. It contains only the information about

the userID, the location of the user, and the RSSI values of the corresponding

seven WAPs.

Attribute Information

• WAP001 – WAP 007: RSSI readings the corresponds to the respective

WAPs; numeric.

• location: The location of receiving RSSIs from WAPs. There are four

unique locations in total
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Methodology

4.1 Exploratory Data Analysis

Exploratory data analysis is a necessary part of the artificial intelligence sci-

entific process. Engrossing visualizations assist scientists in comprehending

their data and communicate their insights to their peers. [82]. Tools can fur-

ther progress these insights by specifying graphs that provide an appropriate

balance between flexibility and efficacy. The matplotlib [38] project devel-

oped in python is highly flexible, offering fine-grained control over the explo-

ration of various features of the dataset. Moreover, the seaborn [85] library

offers an interface to matplotlib that permits prototyping of visualizations and

rapid data exploration while retaining much of the flexibility and stability nec-

essary to produce publication-quality graphics.

We have utilized the expressiveness of these libraries to explore the rich-

ness of various features of our primary dataset. We created various plots and a

storyboard to see how these features can be utilized in different applications.

The location of various users while collecting the data corresponds directly to

the shape of the building, as depicted in figure 4.1

Initially, we observed the number of users used in the collection of data

over four months. We see in figure 4.2 that, in total, 18 users collected the

data during the training phase, while identification of users was kept hidden
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Figure 4.1: Location of users while taking the observations

during the validation phase. The number of observations varied amongst the

users with an average of 1107.6 observations, while the most readings taken

by a user were 4516.

Figure 4.2: Number of observations by each user

As evident in figure 4.3, twenty five different android phones were used

to collect the data during the training phase to make a diversified dataset. Two

phones HTC Wildfire and LT22i [80], took the most readings with over 4500

observations. We also observed whether each user used a single phone or

multiple phones and as it turned out that phone id 14 (LT22i) was used by

three different users 1, 9, and 16.
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Figure 4.3: Number of observations by each phone

There are three buildings in Universitat Jaume I (UJI) where these ob-

servations were taken. Each of these buildings had multiple floors, and on

analyzing the observations, we found that building 2 had the most number of

observations during the training phase. In the figure 4.4, we can get insights

about the distribution of observations among these floors and see that building

2 has five floors while the other two buildings have only four floors.

Figure 4.4: Number of observations taken on each floor of buildings

Next, we looked into the distribution of the availability of WiFi access

points (WAPs). There were 520 WAPs in total in these buildings. As depicted

in the figure 4.5, the access distribution of these WAPs is right-skewed, where
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the peak is around 15-18 WAPs. This insight is significant to consider opti-

mizing the access of WAPs for the users in indoor spaces.

Figure 4.5: Number of WAPs detected by each user reading

Looking into these insights from a different perspective, we also tried to

analyze the distribution of strength of the RSSI signals to different users, and

it was found that similar to the access distribution ofWAPs, this is also a right-

skewed distribution. As visible in the figure 4.6, 71.12% of non-null detection

are in range [-95, -73] dB, which could also assist in the optimization of the

distribution of WAPs.

Figure 4.6: Strength of WAPs signals detected by each user reading

One of the most exciting applications of indoor localization is its utility

in indoor marketing. In shopping malls and other indoor complexes, it is vi-

tal to count the footfall of customers in different parts of the building. The

SPACEID in our data refers to the type of room in the building, for example,
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classroom, toilet, office, etc. We investigated the data from two perspectives to

get insights. We investigated the number of unique visitors visiting a specific

SPACEID and tried to follow the user’s trajectory. In the figure 4.7, we can

observe the mean and standard deviation of unique visits to each SPACEID,

and this information could be utilized in the real estate sector, marketing and

sales reference. For instance, when a brand wants to buy a shop in a shopping

complex, these insights can be used to witness the footfall of the customers

and select the most appropriate place for an outlet.

Figure 4.7: Number of Unique visits to a specific SPACEID

Analyzing customers’ behaviours using various methodologies of analysis

with the secured data and providing them what they want, timely, would allow

efficient operation of shopping malls [48]. In this regard, keeping the animos-

ity of the user, we can follow his trajectory. This tracking could assist in the

optimization of the products and shops. In the figure 4.8, we investigated

the trajectory of User 11, who visited different floors of all three buildings.

Here, we can see the trend of his visit and observe the amount of time he has

spent on any floor. This information could also be used together with mar-

ket basket analysis which revolutionized the sales for different retailers like

Merkur [78] uses market basket analysis throughout the promotion campaign
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process. When a sales promotion is prepared, market basket analysis and user

visit information can be used to define the right products and the right price

for the campaign, increasing sales.

Figure 4.8: Trajectory of a Specific User
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4.2 Modelling as a Classification Problem

While exploring the dataset, we have observed that there could be multiple

ways of localizing the personnel in the building. We can use the coordinates

values to locate the floor id, building id, and space id to predict location using

this WiFi fingerprinting. We would explore all these various approaches and

study the behavior of different machine learning modeling techniques. Ini-

tially, we will treat this problem as a classification problem and try to classify

the building, floor, and room in which a user is present at that particular time.

We should respect that the validation dataset does not contain the SPACEID,

so we would only look into the training dataset and formulate a predictive

model. We already have some state-of-the-art results that we tried to beat

successfully.

Our goal is to develop a system to help people navigate a complex, unfa-

miliar interior space on a college campus. We want to investigate the feasi-

bility of using WiFi fingerprinting to determine a person’s indoor location. If

a model meets or exceeds minimum specifications, it could be incorporated

into a smartphone app for indoor localization on a college campus. The indoor

location must be as precise as predicting within 10-15 feet of the indoor room,

also defined as SpaceID within source data. Relative position, or whether an

individual is outside or inside of the room, is unnecessary.

Ideal performance metrics to achieve:

• Accuracy scores on test data reaches 85% or higher

• Precision (accuracy ofminority class) on test data reaches 85%or higher

• Recall (coverage of minority class) on test data is 85% or higher

• F1 Score for multi-class problem achieves 85% or higher
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4.2.1 Feature Engineering

There are three features of importance which are BUILDINGID, FLOOR, and

SPACEID. We approach the problem in 2 different ways: the overall location

classification and the classification in individual buildings. We created a com-

bination of all these three features and treated them with a single label. We

observed that there are 735 different classes, or room locations, to predict. The

WiFi Access Points will serve as the independent variables during algorithm

training. In this problem, we have ignored the other features like LATITUDE,

LONGITUDE, SPACEID, PHONEID, and USERID.

We also used an RMSE metric to assess the performance of our models.

For this metric, we created a reference dataset assigning specific coordinates

to each location (SPACEID). In this, we merged the relative position of the

observation and treated each SPACEID as a single location. We created an

xy-coordinate reference by rescaling the latitude and longitude using their dif-

ference from the respective minimum values.

4.2.2 Data Preprocessing

Data Processing is one of the essential steps in our model formulation. We

have observed a significant loophole in the dataset, which could be improved

to increase the efficiency of our models. In the dataset, there are 520 WAPs,

but we observed that only 465 amongst them are those which a user at least

once detects. Similarly, out of 19937 observations, 19861 observations detect

at least one WAP. So, we remove the unnecessary features and data points to

have better-preprocessed data for our model.

Moreover, as discussed in the dataset description chapter, the RSSI value

of undetected WAP in the original dataset was denoted as 100; we changed it

to -105 to better align with the data. This conversion is done because all the

RSSI values were negative, and it made more sense to have the undetected

WAPs at the same end of the scale. After replacing these values, we rescaled
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all the RSSI values to a positive scale to improve their interpretability, and

models like Multinomial Naïve Bayes deal only with positive numbers.

Another improvement that we made in the raw data is removing the noise

using the z-score outlier detectionmethodologyc̃iteeidleman1995z. The anoma-

lies in the normally distributed data can be quantified using the statistical mea-

surement of z-score. It calculates the number of standard deviations of each

data point with respect to the mean of data. We took all the features indepen-

dently and removed the outliers by taking three standard deviations criteria for

detecting outliers.

4.2.3 Feature Selection and Sampling

Redundant, irrelevant, and noisy features can be removed from the data with

the help of feature selection techniques. It works as a dimensionality reduction

technique and produces a subset of more relevant features from the raw data.

This process can improve the quality of the data leading to improved learning

performance, lower computational cost, higher learning accuracy, and better

model interpretability. Feature selection is based on the terms of feature rele-

vance and redundancy concerning the goal of the machine learning process.

For our use case, we created eight sub-datasets to access the performance

of various machine learning models on them. We created unprocessed and

preprocessed datasets for each building as well as the whole dataset. There

was a high number of redundant features in these subsets. For example, there

are variables with only a single value of 0, aka zero variance variables. The

data description tells us a value of 0 indicates no WiFi signal detection; there-

fore, columns with a single observation or value (0=no signal detection) are

most likely useless for modeling. We observe a significant dimensionality

reduction while creating building-wise datasets. After this feature selection,

for instance, we observed that building 0 dataset has only 5249-row observa-

tions with 200 WAP columns (Independent Variables) and 1 Location column
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(Dependent Variable).

4.2.4 Classification Model Selection

The procedure of selecting one ultimate machine research model from sev-

eral candidates to achieve a training dataset is called model selection. This

procedure may be tried with several models, for example, logistic regression,

SVM, KNN, etc.) also similar kind models organized with dissimilar model

hyperparameters, for example, different kernels in an SVM.We might want to

augment a categorization or predictive regression model, and we can have a

dataset for this purpose. We have no idea the model which will be best suited

to address this problem. So we try to discern between different models on this

issue.

The top method to model selection calls for adequate data, which might be

almost limitless depending upon the issue’s complications. In these hypothet-

ical circumstances, we can break the data training, validation, and test sets, fit

candidate models on the training set, assess and choose them on the validation

set, and account for the functioning of the ultimate model on the test set. This

approach will be inappropriate on the most likely occurring modeling issues;

we seldom have adequate data or can even determine what might be adequate.

Alternatively, there are two main ways to approach the hypothetical situation

of choosing a model, they are :

• Probabilistic Measures: Choosing the model taking into consideration

sample error and complications

• Resampling Methods: Choosing the model taking into consideration

calculated out-of-sample inaccuracy

Probabilistic measures include systematically gaining a candidate model

by considering the complication of the model and conduct on the training

dataset. The training inaccuracy is overestimated. Hence it cannot be used
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to select a model. The performance may be handicapped depending on how

much optimistic the training error is. This methodology is commonly attained

by utilizing algorithm-specific techniques, often linear, which will disrupt the

result depending on the complication of the model.

Resampling methods are used to calculate the conduct of a prototype (or,

more accurately, the developingmodel procedure) on out-of-sample data. This

method is carried out by breaking the guidance dataset into sub train and test

sets, fitting a model on the sub train set, and calculating it on the test set. The

specific technique can be carried out several times, and the average conduct

for every test is revealed. It will be a kind of Monte Carlo approximation of

exemplary conduct on out of sample data; Even though every test in not solely

independent, some data might reappear again and again in diverse training

datasets or test datasets.

Three standard resampling model selection methods include:

1. Bootstrap [49].

2. Cross-Validation (k-fold, LOOCV, etc.) [13].

3. Random train/test splits.

A research method to assess model training prototypes on a finite data

sample is referred to as Cross-validation. This process will have one param-

eter referred to as k that refers to the different types of subsets in which one

specified data sample is broken. The specific process is referred to as k-fold

cross-validation. When one precise evaluation for k is considered, it can be

used instead of full training set for the model; for instance, k=10 becomes

10-fold cross-validation which involves both training and holdout datasets. .

For our use case, we perform the model selection by training eight dif-

ferent machine learning models using sklearn [14] on all the unprocessed and

preprocessed datasets. Moreover, we have used cross-validation as a criterion

for choosing the best two models based on accuracy as a selection metric. The

machine learning models that we assessed are as follows:



4.2 Modelling as a Classification Problem 39

1. Decision Tree [70, 71]

2. Random Forest [12, 61, 62]

3. Support Vector Machines RBF [76, 31, 15, 60]

4. K Nearest Neighbors [28, 51, 99]

5. Multinomial NB [63, 47]

6. MLP Classifier [32]

7. LGBMClassifier [3]

8. LogisticRegression [24]

4.2.5 Classification Model Tuning

The points of options or layouts that will enable a machine learning model

made for a particular task or dataset are called hyperparameters. Machine

learning models will have specifications that will be enhancing the model on

an experimental dataset or the internal values adjusted by training. Parame-

ters and hyperparameters are two different terms. Parameters will be acquired

instinctively; hyperparameters are placed physically to assist in steering the

research procedure.

Typically there will be a considerable consequence on a model of hyper-

parameter in the broader sense; however, it is unclear how to position a hyper-

parameter for a particular dataset. A significant number of machine learning

models will have a set of hyperparameters that will interrelate in nonlinear

methods. It is often essential to look for a set of hyperparameters that will

lead to the optimum working of a model on a dataset. This process is referred

to as hyperparameter optimization, hyperparameter tuning, or hyperparameter

search.

A definite exploration room is needed for the optimization process. Search

space is defined as volume to be searched in which every dimension denotes
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a hyperparameter, and every point represents one model configuration. This

procedure geometrically can be defined as an n dimension volume, in which

each hyperparameter holds for a separate dimension. The magnitude of the

dimension is the rate that the hyperparameter will take. It can bewhole-valued,

categorical, or real-valued. The exploration room will have a vector with an

individual value for every hyperparameter. This process aims to find the vector

that will bring about the optimum conduct of the model after learning, like the

highest accuracy or lowest error.

The various optimization algorithm can be taken; the most straightforward

out of these are two :

• Random Search: Allocate an exploration room as an enclosed realm of

hyperparameter evaluations and arbitrarily sample points in that area.

• Grid Search: Define a search space as a grid of hyperparameter values

and evaluate every position in the grid.

Grid search is optimum for evaluating spot combinations that are investi-

gated to conduct better. Random search is excellent for finding new hyperpa-

rameter combinations which cannot be figured out instinctively. However, the

time needed for it to execute is longer than for grid search. For our specific

use case, we have used both hyperparameter optimization algorithms. For

Random Forest, we used random search optimization, and for support vector

machines, we used the grid search cross-validation optimization. We have de-

ployed these optimization algorithms on the processed data for the entire data

set and each building separately.

4.2.6 Metrics for Evaluation of Results

Model selection is choosing one of themodels as the final model that addresses

the problem. Model selection is different from model assessment. For exam-

ple, we evaluate or assess candidate models to choose the best one, which is
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model selection. Once a model is chosen, it can be evaluated to communicate

how well it is expected to perform in general; this is model assessment.

The metrics that we choose to evaluate our machine learning algorithms

are essential. Choice of metrics influences how the performance of machine

learning algorithms is measured and compared. They influence howweweigh

the importance of different characteristics in the results and our ultimate choice

of which algorithm to choose. For our use case, we decided to evaluate the per-

formance of our hyperparameter optimized models against six different eval-

uation metrics.

• Accuracy: accuracy = true positives+true negatives
true positives+false positives+true negatives+false negatives

• Precision: precision = true positives
true positives+false positives

• Recall: recall = true positives
true positives+false negatives

• F1 Score: F1 = 2×precision×recall
precision+recall

• MSE: mean_square_error =
∑

(true_value−predicted_value)2

N

• MSE (Incorrect Predictions Only)

MSE is the distance between the real SPACEID and predicted SPACEID.

We have used the latitude and longitude associated with each SPACEID to

create this custom evaluation metric.

4.2.7 Evaluation of PCA on full data

Reducing the number of input variables for a predictive model is referred to

as dimensionality reduction. Fewer input variables can result in a simpler

predictive model with better performance when making predictions on new

data [35]. Perhaps the most popular technique for dimensionality reduction

in machine learning is Principal Component Analysis, or PCA for short. This

technique comes from the field of linear algebra and can be used as a data
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preparation technique to create a dataset projection before fitting a model. It

can be thought of as a projection method where data with m-columns (fea-

tures) is projected into a subspace with m or fewer columns whilst retaining

the essence of the original data.

The PCAmethod can be described and implemented using the tools of lin-

ear algebra, specifically a matrix decomposition like an Eigendecomposition

or SVD. We have applied PCA on our full dataset and evaluated the perfor-

mance of the Random Forest model on 20%, 40%, 60%, 80%, and 100% of

the data to observe how the curse of dimensionality affects our model.
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4.3 Modelling as a Regression Problem

4.3.1 Feature Engineering

Feature engineering is the process of transforming raw data into features that

better represent the underlying problem to the predictive models, resulting in

improved model accuracy on unseen data. As in the previous case of mod-

elling as a classification problem, we would remove the redundant observa-

tions where the user detected no WAPs. We would also remove the features

which a user did not detect during the training phase. We must note that here,

the validation data set also contains information about the latitude and longi-

tude of the user, so we will use complete training data for training and then

test it on the validation data.

The latitude and longitude in our problem are given as UTM coordinates.

UTM stands for “Universal Transverse Mercator”. It is a geographic coordi-

nate system used to identify locations on earth in meters, as measured in the

Northern Hemisphere going North and East from the intersection of the equa-

tor and a central meridian assigned to each of 60 longitudinal zones around the

earth. We would rescale these latitude and longitude values to xy-coordinates,

where we take the difference of each value with the minimum of its respective

latitude and longitude in our data set.

RSSI Signal Strength to Distance

To treat this as a regression problem, we need to transform our features from

the RSSI dB scale to the Linear scale. In our raw dataset, all the WAPs values

are in the RSSI scale. RSSI stands for Received Signal Strength Indicator,

which is the strength of the access point‘s signal seen on the receiving device,

e.g. a smartphone. The signal strength depends on distance and Broadcasting

Power value. At maximum Broadcasting Power (+4 dBm), the RSSI ranges

from -26 (a few inches) to -100 (40-50 m distance).
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RSSI is used to approximate the distance between the device and the ac-

cess point using measured power defined by the WAPs standard. Measured

power is a factory-calibrated, read-only constant that indicates the expected

RSSI at a distance of 1 meter to the access point. Combined with RSSI, it

allows estimating the distance between the device and the access point. While

defining the conversion formula, we also need to consider a constant N that

depends on the environmental factor (range 2-4).

Distance = 10
(MeasuredP ower−RSSI)

10N

Measured power is also known as the 1 Meter RSSI. For our use case, we

took the value of measure power as -60 and considered N as 3. This power

means that when our value of RSSI is -60, the distance between the user and

access point is 1 meter and it increases as the signal strength (RSSI) decreases

according to the formula given above.

4.3.2 Feature Selection and PCA

As explained earlier, PCA is a simple dimensionality reduction technique that

applies linear transformations to the original space. Among all the orthogonal

linear projections, PCA minimizes the reconstruction error [41], the distance

between the instance and its reconstruction from the lower-dimensional space.

That is the sum of the distances between points in the original space and the

corresponding points in lower-dimensional space. A critical point to mention

is that PCA is an unsupervised form of dimensionality reduction. This form

means the response variables are not taken into consideration at any point of

the transformation.

Principal component analysis [86] of a data matrix extracts the dominant

patterns in the matrix in terms of a complementary set of score and loading

plots. For plotting purposes, two or three principal components are usually

sufficient, but for modelling purposes, the number of significant components
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should be adequately determined, e.g., by cross-validation. As shown in fig-

ure 4.9(a), the first 150 eigenvectors explain Roughly 95% of the variance.

Before we perform the dimensionality reduction on our data, we also analyzed

the reconstruction error as a function of the dimensions.

As the number of principal components used for the reconstruction in-

creases, the reconstruction error expectedly decreases. This figure 4.9(b) is

a mirror image of the previously explained variance ratio figure. As 95% of

the variance is explained by the top 150 components, we reduced our training

and test data to 150 dimensions.

(a) Explained Variance Ratio (b) Reconstruction Error

Figure 4.9: PCA of training data set

In figure 4.10, we illustrated how the BuildingID are distributed across

the top two PCA dimensions. It is significantly visible that these top two PCA

components depict a stratification amongst the three buildings. Remember

PCA is an unsupervised learning technique for dimensionality reduction. So,

it is quite possible the two top PCA components might not have explained our

response variable well.

4.3.3 Regression Model Selection

Multivariate regression [2, 40] is used to measure howmore than one indepen-

dent variable (predictors) and more than one dependent variable (responses)

are linearly related. The method is broadly used to predict the behavior of the

response variables associated with changes in the predictor variables once a
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Figure 4.10: Distribution of PCA components

desired degree of relation has been established. As our model should predict

both latitude and longitude of the user, we will train a multivariate regression

model. As discussed in the modelling of classifiers, we will use the nested

cross-validation method to assess the performance of our models for model

selection. We performed nested cross-validation on the different model fami-

lies. In nested cross-validation, the inner fold performs the parameter tuning,

and the outer fold is used for validation. We used linear regression models,

polynomial regression models, and some other non-linear regression models

for selection.

The fundamental concepts of building the regression framework include:

• MultiOutputRegressor: We have the model response as a vector of 2-

dimensions (Latitude and Longitude). Not every regression method in

scikit-learn can handle this sort of problem. Most linear models provide

this capability, but a new class MultiOutputRegressor is available for

parallelization of regressors for multivariate output for those that do not.

• Linear Regression Models: First, we focussed on Linear regression

and its variants, including Lasso [98], Ridge Kernels [64].

• Polynomial Features: Considered Polynomial Features including quadratic [67]
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and cubic for addressing non-linearities.

• Other Regression Models: K-Nearest Neighbour [28, 51, 99], Extra-

TreesRegressor [27], and RandomForestRegressor [74].

We will train and perform machine learning model selection for the whole

dataset as well as for each floor-building dataset individually as well.

4.3.4 Regression Model Tuning

Tuning is the process of maximizing a model’s performance without over-

fitting or creating too high of a variance. As explained earlier, in machine

learning, this is accomplished by selecting appropriate ”hyperparameters.”We

considered the best-performing model from the model selection process and

then used the grid search cross-validation process to find the best hyperparam-

eters for our model. While tuning, we also took insights on how an increase in

the training data corresponds to the training and validation loss. We gradually

increased the size of the training and evaluated its performance, as shown in

the figure 4.11.

Figure 4.11: Learning curve for optimized regressor
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4.4 Modelling as a Multi Cascaded Classification

and Regression Problem

4.4.1 Three Stage Cascaded Machine Learning Model

In these experiments, we will make use of the models explained in the prior

sections. We developed a three-stage multi-cascaded machine learning model

to predict user location based on the dataset’s building, floor, latitude, and

longitude information.

Classifier For Building Prediction

In the first stage of the cascaded model, we integrated a classifier that pre-

dicts the BuildingID of the user. We used the best model according to the

assessment done in the modelling of the classification model section.

Classifier For Floor Prediction

In the second stage of the cascaded model, we will utilize the information in

the dataset, and the BuildingID predicted in stage one to predict the user’s

floor. Initially, we developed a global floor classifier, but its performance

was evaluated to be less accurate. However, adding the information of the

BuildingID, the performance of the model significantly increases.

Regressor For final Prediction

After stacking two classifiers, we integrated a multivariate regressor into the

cascaded model to finalize it. Again, we tested both the global regression

models and the per floor per building regression problems, and we found that

the performance of the global regression model is significantly better, so we

proceeded with that.
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4.4.2 Metric for Evaluation of Results

The mean positioning error is expressed as the mean Euclidean distance be-

tween the actual and estimated locations. However, in multi-building, multi-

floor environments, as in our problem, just the positioning error due to Eu-

clidean distance is not enough. Wrong floor and wrong building classification

are not desirable as the actual movement from the predicted location to the

actual location might involve significant displacement.

Therefore, we include penalty terms to the mean error equation to penalize

floor and building classification failures. This penalty term was introduced in

the 2015 EvAAL-ETRI competition [81]. The cost function can be expressed

as follows:

positioning_error(actual, predicted) = euclidean_distance(actual, predicted)

+penaltyfloorfailfloor + penaltybuildingfailbuilding
(4.1)

where failfloor and failbuilding indicate if the floor and building are incor-

rectly identified, penaltyfloor and penaltybuilding are the penalty values applied

for wrongful classification of floor and building, respectively.

The penalty values were set to 4 and 50 respectively in the third track of the

competition [69]. Expectedly, the penalty for building classification failure is

higher than that of floor classification failure.
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4.5 Trilateration Methodology for localization of

Access Points

The process of determining the relative or absolute location of points using ge-

ometrical measurement of distances is known as trilateration. In trilateration,

we analyze the geometry of triangles, circles, hyperboloids, or spheres to esti-

mate our target’s location. Mathematically, this technique can be interpreted

in terms of calculating the position of a point in space using the distances from

the location of known geometrical entities.

4.5.1 Geometrical Interpretation

We can state the formulation in terms of a geometrical problem. Let us con-

sider a location of a point P in space, which would be a WiFi access point. We

can use the coordinates of a known location L of a user when he takes the RSSI

reading for that specific WAP. These locations, L and P, can be states in terms

of latitude and longitude coordinates. As explained in techniques for indoor

localization, one source can only be used for proximate-based localization.

We can only estimate the proximity of access point P relative to the user’s

location L but not the exact distance in between them. As shown in figure 4.12,

the user’s device L creates a virtual circle around it regarding signal reception.

In 3D terms, it is a sphere, but we consider it a circle for our derivation. All

the points on the circumference are potential candidates for the position of the

WAP.

We can improve the situation by inducing two users, L1 and L2, as shown

in figure 4.13. Now, our access point P should be at the circumference of the

green and red circles that originate from these two different users. We can

solve this in terms of the point of intersections of both these circles, which

leads us to only two options, as shown in grey.
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Figure 4.12: Trilateration using one points

Figure 4.13: Trilateration using two points

To further improve the interpretation and move from proximity-based lo-

calization to distance-based localization, we introduce a third user, L3, in our

frame of reference. As shown in figure 4.14, we have three circles whose in-

terference should contain the access point’s location. As interference of three

circles is a single point in space, we can solve these circles to estimate the

location P of WAP.

Figure 4.14: Trilateration using three point
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4.5.2 Mathematical Interpretation

We can solve these three circles in terms of mathematical equations. The equa-

tion of circle provides us the position coordinates (cx, cy) of the point (x, y)

present on the circumference of circle with diameter d1.

(x − cx)2 + (y − cy)2 = d1
2

This reasoning can be extended to the circles of signal reception created by

all three users considered before. Latitude and longitude coordinates, (ϕ1, λ1),

(ϕ2, λ2) and (ϕ3, λ3), are used to express location of the three users respec-

tively. This leads us to the following resultant locations.

(ϕ − ϕ1)2 + (λ − λ1)2 = d1
2

(ϕ − ϕ2)2 + (λ − λ2)2 = d2
2

(ϕ − ϕ3)2 + (λ − λ3)2 = d3
2

This problem is now translated into the mathematical equation that can be

simultaneously solved to provide the resultant interference point P=(ϕ, λ) for

the three circles.

4.5.3 Optimzation Algorithm

Ideally, the trilateration problem should be seen and solved in geometrical

equations, but in reality, this does not always lead to practical solutions. These

three circles are not very precise in the real world, which could lead to a null

solution if three circles do not intersect at a single point as mathematical mod-

elling involves significantly high accuracy on our measurements. Moreover,

if the number of points in space is increased to a very high number, solv-

ing them simultaneously becomes less efficient, which would hinder our ap-

proach’s scale. In real life, there could be tens of users connecting a single
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WAP, and they all would contribute to estimating the WAP’s location.

We can translate this mathematical problem to an optimization one. We

can ignore intersections and circles; focus on the point X=(ϕx, λx) that would

lead us to the optimized approximation of the location of the respective access

point.

Let us assume that we have a point X that can replace point P in space. We

can estimate its euclidean distance loss from point P by optimizing its distance

di from all the users Li under consideration. X is at the same position as P if

all the distances di precisely match with the distances of access points from

users available in the problem statement. The further point P moves from X,

the more is the deviation between actual and predicted distances.

We need to define a particular error function that should be minimized to

treat trilateration as an optimization problem. This error should be the differ-

ence between predicted and actual distances for all three users, which can be

calculated using these three equations.

e1 = d1 − dist (X, L1)

e2 = d2 − dist (X, L2)

e3 = d3 − dist (X, L3)

We can solve these errors in terms of mean squared error (MSE). MSE is

calculated by taking an average of the squares of all the distance differences.

As squares are always positive, this approach reduces the error induced by

the negative and positive distance differences. We can sum up our work by

defining the following formula optimized to estimate our target location.

∑ [di − dist (X, Li, )]2

N
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4.5.4 Implementation

We made use of the available information and this methodology to specify

the location of the WAP. We take the following steps to apply the trilateration

process:

1. We converted the signal strength from the RSSI dB scale to the linear

distance scale while formulating a regression model. The figure 4.15

shows the relationship between the signal strength and distance between

a user and the access point.

2. While treating it as an optimization problem, we need an initial guess

for which we took the mean of the location of all the users that detected

a specific WAP as this initial guess.

3. We treated WAPs individually, and for each WAP, we considered only

the users that detected that specific WAP. Then, we optimized the po-

sition of the WAP by taking a mean squared error loss concerning the

distance from the user.

4. Finally, we converted the location coordinates from the UTM scale to

GPS for better visualization.

Figure 4.15: Relation between RSSI signal strength and distance



Chapter 5

Results

5.1 Modelling as a Classification Problem

The first step of modelling a classifier was model selection. As explained in

themethodology, we deployed eight different classificationmodels on datasets

and evaluated their performance using five-fold cross-validation. Here, our

models were trained on a combination of building, floor, and space infor-

mation as a label. In figure 5.1, we can see the comparison between these

different machine learning models for both the unprocessed and preprocessed

data. We can see that the Random Forest model performs best for both the

unprocessed and preprocess complete datasets. The second best in Support

Vector Machine model with RBF kernel. We have selected these two models

and proceed with the model tuning process. Here, we have used accuracy as

a metric of assessment for the performance of models.

After the model selection for the whole dataset, we applied the same pro-

cess of all three buildings individually and assessed the performance of eight

non-linear machine learning classifiers. In figure 5.2, we can see the results

for Building 0. Here, we can see that the performance of all the models is

generally worse for Building 0 data compared to the entire dataset for both

the processed and unprocessed cases. This observation could be related to the

fact that we have the least number of user observations in Building 0 amongst
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(a) Unprocessed full data (b) Preprocessed full data

Figure 5.1: Model selection for full data

all three buildings. However, here again, Random Forest performs the best

among all the classifiers.

(a) Unprocessed building 0 data (b) Preprocessed building 0 data

Figure 5.2: Model selection for building 0 data

In figure 5.3, we can visualize the model selection process for Building

1. We see an improvement in the model’s overall performance compared to

Building 0 and the entire dataset. This insight corresponds to the fact that

there are more data points for Building 1 than Building 0. As visualized in
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figure 5.17, the architecture of Building 1 is as such that there is greater segre-

gation among the sectors of the building, and the area of Building 1 is signif-

icantly higher as well, which tends to lead to a better distribution of the data

points.

(a) Unprocessed building 1 data (b) Preprocessed building 1 data

Figure 5.3: Model selection for building 1 data

Finally, for the UJI Indoor dataset, figure 5.4 illustrates the performance

of various machine learning algorithms for Building 2 datasets. It can be seen

that the performance here is also less as compared to the entire dataset for

both unprocessed and preprocessed datasets. This reduction in performance is

highly due to a single floor of Building 2. As illustrated in figure 4.4, building

2 has five floors while the other two buildings have four floors each. The

5th floor of the building had the least number of observations amongst all the

floors, and on analysis of individual floors, it was found that the classifier’s

performance on this specific floor is worse than the rest. Hence, this floor

reduces the overall performance of the models on Building 2. It must also be

observed that the Multinomial NB does not work for unprocessed data as it

requires positive values for independent variables, whereas our unprocessed

data contains negative RSSI values.

In order to generalize our study of machine learning techniques, we also
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(a) Unprocessed building 2 data (b) Preprocessed building 2 data

Figure 5.4: Model selection for building 2 data

performed a model selection of two other independent datasets. In figure 5.5,

we can see the performance of machine learning models on the BLE data set,

which was collected in Waldo Library, Western Michigan University. The

performance of our machine learning models is abysmal on this dataset. It

ranges around 0.35 for the best performing Random Forest model. This ac-

curacy score can be explained by taking insights from the layout of the floor

library, as illustrated in figure 3.2.

The data is collected iBeacons whose range is significantly less than the

WiFi access points, so they do not cover a large area, and the particular im-

portance of an iBeacon reduces in context to the whole floor. Moreover, the

locations are taken from the grid presented in the layout. Each location is a

cartesian product of row and column, and as can be seen, there is no clear

separation between the locations, and they are mostly intermingled, so the

prediction for the artificial intelligence system gets worse in this case.

Finally, to establish our point that better segregation of locations leads to

better performance of the AI system, we performed the model assessment of

another lab data. Here, we only have 4 locations and 1500 readings for seven

different access points. Here in figure 5.6, we see that the performance is
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(a) Unprocessed full data (b) Preprocessed full data

Figure 5.5: Model selection for BLE data

very high for both the unprocessed and preprocess datasets. This insight again

lays down the importance of the excellent quality data acquisition process for

indoor localization.

(a) Unprocessed full data (b) Preprocessed full data

Figure 5.6: Model selection for lab data

After passing through the model selection phase, we tuned two models

Random Forest and support vector machines, to classify the preprocessed

datasets. As explained in the methodology section, we used six different met-

rics to evaluate the performance of the UJI Indoor dataset. In figure 5.7, we
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can visualize the performance of these two models again the six predefined

metrics for the complete Uji Indoor dataset and each building dataset individ-

ually. We see that Random Forest tends to perform generally better than the

support vector machines for all the metrics.

The performance of Random Forest for all four datasets is comparable in

terms of accuracy, precision, recall, and F1 score. However, we can see that

mean squared error loss for Random Forest amongst the datasets vary where

the loss is maximum for building 1 and least for building 0. This phenomenon

is fascinating as the accuracy is inverse to MSE; it is best for building 1 and

worst for building 0. This development can be explained since the area of

building 0 is significantly less than building 1; hence when a prediction gets

wrong in building 1, it generally is at a greater distance.

We also used recall metrics in-depth to analyze the performance of these

two models. The comparison analysis by recall quartiles reveals a total of

549 rooms fall within the high recall range of 80-100% in the entire dataset,

whereas 551 rooms fall within the high recall range of 80-100% when adding

up individual building algorithms. The performance here is also comparable,

so we selected all the whole dataset and individual building datasets.

Similarly, we also passed Random Forest and Support Vector Machine

through hyperparameter tuning process for the BLE and Lab dataset. In fig-

ure 5.8, we can see the performance of these tuned models. We see that the

performance gets better for all metrics as compared to untuned models. How-

ever, still, we can see that the BLE model performs worse as compared to Lab

dataset. The low performance also points to the reason that there are 1420

observations for 135 locations in the BLE dataset, whereas 4 locations in the

Lab dataset consist of 1500 user readings. The enrichment of the dataset sig-

nificantly improves the performance of the localization process.

Finally, we evaluated the performance of the Principal Component Analy-

sis of our full primary dataset. We can visualize the strength of this dimension

reduction technique in figure 5.9. We assessed the performance at 20%, 40%,
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(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

(e) MSE (f) MSE (Incorrect Predictions Only

Figure 5.7: Model Assessment for Ujiindoor dataset

60%, 80%, and 100% of the dataset. We visualize the performance trend of

the random model in terms of accuracy as the size of the dataset increases.

Fascinatingly there is not much variation in the performance, which seems to

be saturated at around 40% dataset mark. This evaluation is practical when

we would preprocess the dataset for the regression problem.
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(a) BLE data (b) Lab data

Figure 5.8: Model Assessment for other datasets

Figure 5.9: Performance Comparison using PCA

The researchers at the School of Computer Science and EngineeringNanyang

Technological University, Singapore benchmarked 86.34% on the UJI Indoor

dataset, whereas our experiments have achieved an accuracy of 88.82%, We

have selected the random former as the most optimal classifier in our experi-

mentation for further cascaded model analysis.
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5.2 Modelling as a Regression Problem

We analyzed our full dataset using the multi-variable multi-variate regression

analysis. We analyzed principal component analysis (PCA) effectiveness on

our dataset and selected the first 150 dimensions to perform our regression

analysis. We used xy-coordinates based on latitude and longitude as labels

and deployed the model selection process on our transformed dataset. Using

nested cross-validation, we trained eight different multi-variate regressors and

assessed their performance based on root mean squared (RMSE) value. In

figure 5.10, we can visualize the performance of variousmodels on our dataset.

Among all the variants, K-Nearest Neighbour and Random Forest perform

the best. We can also see that there is not much variation among the cross-

validation folds. Hence, we select KNN as our global regressor.

Figure 5.10: Nested cross validation results for regression

We passed KNN through the model tuning phase after its selection in the

previous phase. The performance of the model improves after its optimal hy-

perparameters are defined. We also analyzed the performance of the model

on per building per floor regression. As depicted in figure 5.11, the model’s

performance on a per-floor basis is better than the overall dataset. Among the

three buildings, the performance is Building 0, which could be correlated to
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the fact that its size is the smallest among the three buildings, and its structure

is relatively compact.

We also detected a specific anomaly on floor 4 of Building 2, showing the

maximum loss on training and validation datasets. This detection refers to the

fact that the number of observations on this floor is pretty low as compared to

other floors of this building, and the size of this building is more significant

than Building 0, which in turn emphasizes the importance of the number of

readings and the optimization of user locations while taking the observations.

Figure 5.11: Performance evaluation of per building per floor regression mod-
els

We have selected the K-Nearest Neighbour as the most optimal regressor

in our experimentation for further analysis.

5.3 Modelling as a Multi Cascaded Classification

and Regression Problem

Wedeveloped an integrated three-stagemulti cascadedmachine learningmodel

for predicting user location in our primary dataset. We predicted the user’s

building with a tuned Random Forest model on the full dataset in the first
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stage. As depicted in figure 5.12, the performance of our model is nearly per-

fect as the dataset is of outstanding quality concerning buildings.

Figure 5.12: Performance evaluation of building classifier

The second stage of the cascaded model involves the prediction of the

floor. We took two approaches to predict the floor of the user while taking the

reading. Initially, we trained the model to predict the floor without using the

information of the predicted building. The results were not so good as we only

reached a maximum of 68% on the test dataset, as elucidated in figure 5.13.

Figure 5.13: Performance evaluation of global floor classifier

In order to improve the performance of our floor prediction model, we
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used the information of predicted building from stage one of the cascaded

classifiers. As illustrated in figure 5.14, the performance of the hyperparam-

eter optimized Random Forest model improves significantly on both training

and hold out datasets when we use building information in addition to signal

strength variables.

Figure 5.14: Performance of floor per building classification models

Stage three of the classifier integrates a K-Nearest Neighbour regression

model. We trained and analyzed both the global regressionmodel and per floor

per building regressor. The performance of the global regressor is notably

better than the per floor per building regressor. We used the custom evalua-

tion metric to analyze our overall cascaded model. This metric involves both

penalties for floor and building, and the root mean square error of the regres-

sor. The results as shown in figure 5.15, shows excellent performance of both

training and test dataset. Again, the performance of floors with less data is

worse than the floors with more data, which emphasizes a need for optimized

data acquisition for indoor localization.
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(a) Penalty on training dataset (b) Penalty on test dataset

Figure 5.15: Model Assessment for cascaded models

5.4 Trilateration Methodology for localization of

Access Points

Trilateration methodology is used to determine the location of all WAPs. Ini-

tially, we visualized the location of all the users while taking the observations

using their position coordinates. The coordinates given in the UTM scale were

converted to latitude and longitude on the GPS scale. In figure 5.16, we plot-

ted the location of all these users on google maps. It can be seen that the image

refers ideally to the three buildings presented in the dataset description.

After performing the trilateration process, we extracted the coordinates for

all the WAPs detected at least once by the user. We did not consider WAPs

outside the scope of these buildings, which were not detected even once by any

user. This consideration was because our methodology depends upon mean

squared error for distances between users and the respective WAP. We can use

this methodology to detect the location ofWAPs using coordinates but without

any information to the floor of the access point. In figure 5.17, we represented

these WAPs on google maps, depicting a uniform distribution of these access

points. This information could be utilized to optimize the location of access

points in these buildings by detecting the low coverage areas.
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Figure 5.16: Location of users on google maps

Figure 5.17: Location of WAPs on google maps



Chapter 6

Conclusions

6.1 Final Remarks

In this thesis, we have discussed a detailed description of various indoor tech-

niques (RSSI, channel state information, fingerprint analysis, angle of arrival,

time of flight, and time difference of arrival) and technologies (as WiFi, Blue-

tooth, Zigbee, acoustics, optical, and RFID). We also presented several use

cases for the application of indoor positioning systems (IPS) to emphasize

their importance, especially after the proliferation of intelligent devices.

This thesis presented a thorough application of various machine learning

techniques for indoor localization on RSSI-based fingerprinting methodol-

ogy. We evaluated the problem statement from three different approaches.

In the first approach, we developed a grid-based approach to train and evalu-

ate variousmachine learning classificationmodels with an end-to-end pipeline

with feature engineering, model selection, model hyperparameter tuning, and

model training. We applied and evaluated our approach with three indepen-

dent datasets. We evaluated and critically analyzed the results obtained from

these different datasets. Moreover, an essential contribution of this thesis is

to provide a new state-of-the-art against space labelling on the UJI Indoor

dataset. The existing benchmark of 86.34% on the UJI Indoor dataset was
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achieved by the researchers at the School of Computer Science and Engineer-

ing Nanyang Technological University [93], Singapore, whereas our experi-

ments have achieved an accuracy of 88.82% using Random Forest classifier.

Moreover, the second machine learning approach that this thesis applied

was to treat indoor localization as a multivariate regression one. We applied

dimension reduction techniques and feature engineered our dataset from a log-

arithmic to a linear scale. We trained and tuned hyperparameters with nested

cross-validation of various regression models on the UJI Indoor dataset. Our

best trained K-Nearest Neighbour regression model achieved an RMSE error

of 3.637 meters.

Furthermore, the third approach we developed in this thesis was cascaded

machine learning models. We stacked two classifiers with one’s output feed-

ing the other to predict the user’s building and floor (per building) location

on the UJI Indoor dataset. We stacked a global multivariate regressor to pre-

dict the user’s location using latitude and longitude coordinates with these two

classifiers. We also studied and applied a novel evaluation metric to analyze

the results of our cascaded model.

Finally, we developed and discussed the application of trilaterationmethod-

ology in this thesis. We converted trilateration from a geometrical domain to

an optimization one. We applied this optimization approach on our primary

dataset to locate the positions of WiFi access points using the RSSI signal

strength of users present in its range.

6.2 Future Work

The primary constraint we faced while conducting this study was the avail-

ability of good-quality public datasets. There is a void of a proper framework

to standardize the data acquisition process. At present, no standard is gov-

erning the process of data acquisition in indoor localization. There should be

a development of a proper framework for this process to scale its usability.
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While developing the framework, we would also have to consider the aspect

of GDPR, data privacy, and governance.

Standardizing datasets would provide the artificial intelligence scientist

community with good quality publicly available resources for further research

into the domain. Along with the machine learning techniques used in this the-

sis, the novel techniques of deep neural networks and natural language pro-

cessing can also be applied and studied on indoor positioning systems to de-

velop state-of-the-art benchmarking of results.

One main trade-off that we studied and analyzed in this thesis is grid inten-

sity and discreteness of the results while treating indoor localization as a grid-

based fingerprinting problem. As evaluated in the case of the BLE dataset, the

accuracy was low due to the high intensity of the grids. This problem could be

an area of research that needs further attention to optimize the compensation

between accuracy and resolution of the indoor positioning systems.

Finally, one of the research-area this thesis leads to is optimizing area cov-

erage of the WiFi access points. The planning and installation of WiFi access

points in complex multi-building infrastructures could be aided with the help

of the trilateration methodology studied in this thesis. In the field of ICT, the

impact of trilateration methodology and machine learning techniques in opti-

mizing various signal propagation technologies like WiFi, Bluetooth, RFIDs,

etc., needs further research.
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