
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Deep Learning

DEEP GENERATIVE MODELS

WITH

PROBABILISTIC LOGIC PRIORS

CANDIDATE

Eleonora Misino

SUPERVISOR

Prof. Claudio Sartori

CO­SUPERVISORS

Prof. Luc De Raedt

Giuseppe Marra, PhD.

Emanuele Sansone, PhD.

Academic year 2020/21

Session 2nd

Abstract

Many different extensions of the VAE framework have been introduced in the past. How­

ever, the vast majority of them focused on pure sub­symbolic approaches that are not sufficient

for solving generative tasks that require a form of reasoning. In this thesis, we propose the

probabilistic logic VAE (PLVAE), a neuro­symbolic deep generative model that combines the

representational power of VAEs with the reasoning ability of probabilistic­logic programming.

The strength of PLVAE resides in its probabilistic­logic prior, which provides an interpretable

structure to the latent space that can be easily changed in order to apply the model to different

scenarios. We provide empirical results of our approach by training PLVAE on a base task and

then using the same model to generalize to novel tasks that involve reasoning with the same

set of symbols.

i

Contents

Abstract i

Introduction 1

1 Background 3

1.1 Probabilistic Graphical Models . 3

1.2 Variational Inference . 4

1.3 Deep Generative Models . 6

1.3.1 Variational Autoencoders . 7

1.4 Logic Programming . 10

1.5 ProbLog . 13

1.5.1 DeepProbLog . 18

1.5.2 Gradient­based learning in ProbLog 20

2 Model 24

2.1 Graphical Model . 24

2.2 The prior: ProbLog . 26

2.3 Objective Function . 29

2.4 Learning . 31

3 Related Work 33

4 Results 37

4.1 Base Task: Two Digits Addition . 37

4.2 Evaluation . 39

4.3 Experiment 1: Generation . 40

4.4 Experiment 2: Conditional Generation . 41

ii

CONTENTS iii

4.5 Experiment 3: Task Generalization . 45

4.6 Experiment 4: Data Efficiency . 49

5 Conclusions 51

Bibliography 53

Appendix 58

A 58

A.1 PLVAE Architecture . 58

A.2 Baseline: Modified CCVAE . 58

A.3 MNIST Classifier . 59

Introduction

Deep generative modeling aims at learning an unknown density function from a set of i.i.d

samples. Computing the mapping function may be really challenging, and even infeasible for

high­dimensional input spaces. Thus, this task is usually solved by relying on deep neural

networks (DNNs), that have the ability to learn and model non­linear mappings with high­

dimensional domains. Although DNNs excel at solving many different tasks, they are not yet

sufficient for solving reasoning tasks. Moreover, due to their pure sub­symbolic nature, DNNs

lack of interpretability, which is a key feature in all those settings that require to understand and

control the output of the model. Consequently, deep generative models inherit the weaknesses

of DNNs.

We can identify five main classes of deep generative models: Generative Adversarial Network

(GAN) [1], Variational Autoencoder (VAE) [2], Autoregressive models [3] [4] [5], Flow­based

models [6] [7] [8] and Energy­based models like Boltzmann Machines [9].

Although there exist several deep generative models, in this thesis we exploit the representa­

tional power of VAEs, which are Bayesian latent variable models based on DNNs to perform

inference in high­dimensional domains. In particular, VAEs assume a generative process in

which the observations are generated from unobserved latent variables.

The majority of the research efforts on improving the VAE framework is limited on exploring

pure sub­symbolic approaches. Several works focused on reducing the gap between approxi­

mate and true posterior distributions [10–13], others on defining more flexible prior distribu­

tions [14–17] or on structuring the latent representation [18].

Although these works represent remarkable advances and achieve state­of­the­art results, they

are still not sufficient for solving generative tasks that require a form of reasoning. For exam­

ple, let’s suppose to train a VAE model on a supervised dataset composed of pairs of digits

labeled with their sum (Figure 1). In this setting, generating two numbers that sum up to 3

can be easily solved by the existing models [19]. However, none of them would be able to

1

INTRODUCTION 2

answer questions like “Generate two numbers that multiply to 6.” or “Generate two numbers

that differ by 1”.

Figure 1: Example of task generalization in the generative framework.

To achieve this kind of task generalization, we need to go beyond the pure sub­symbolic

representation of a scene and introduce a form of reasoning to define the desired relationship

between generated images and labels. The two most prominent frameworks for reasoning are

logic and probability theory, whose integration is an open research direction with remarkable

results in the areas of statistical relational artificial intelligence [20] and probabilistic­logic pro­

gramming [21].

In this thesis, we propose the probabilistic logic VAE (PLVAE), a neuro­symbolic deep gen­

erative model that combines the representational power of VAEs with the reasoning ability

of ProbLog [22], a probabilistic­logic programming language. By virtue of the integration be­

tween the two approaches, PLVAE is able to generate new images starting from a logic formula,

while preserving the predictive ability of VAEs. Moreover, since the probabilistic framework

provides real­valued probabilistic quantities instead of discrete logic quantities, we are able to

define an end­to­end trainable framework based on gradient training procedures to train PLVAE

on examples. In contrast to other works on neuro­symbolic generativemodels [23, 24], we fully

exploit the expressiveness of both neural and symbolic methods without limiting the symbolic

engine to a structuring tool. PLVAE uses the reasoning capabilities of the probabilistic­logic

framework to solve previously unseen generative tasks, such as the generalization to different

arithmetic operations from a training task focused only on the addition. Moreover, the results

show that the use of a logic­based prior helps the learning in contexts characterized by data

scarcity.

Chapter 1

Background

1.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are graph­based representations of complex distri­

butions. They provide a simple way to visualize the structure of a probabilistic model and offer

insights into model properties, such as conditional independencies among variables.

In a PGM, nodes correspond to variables, and edges correspond to direct probabilistic inter­

actions between them. There is a dual perspective from which to interpret the structure of a

PGM. On one hand, the graph is a compact representation of a set of independencies that hold

in the distribution. On the other hand, the graph defines a skeleton for factorizing the full joint

distribution as the product of local conditional distributions.

These two perspectives are equivalent: the independence properties of the distribution allow it

to be represented compactly in a factorized form. Conversely, a particular factorization of the

distribution guarantees that certain independencies hold.

There exist twomain families of PGMs: the Bayesian networks, that use directed graphs, where

each edge has a source and a target, and the Markov networks, that rely on undirected graphs.

Both these graphical representations provide the duality of independencies and factorization,

but they differ in the set of independencies they can encode and in the factorization of the dis­

tribution that they induce.

For our formulation, we are interested in Bayesian networks, where each node is conditionally

independent of its non­descendants given its parents, and the joint distribution can be factorized

as

P (X1, X2, ...Xn) =
n∏
i=i

P (Xi|parents(Xi)) (1.1)

3

1.2. VARIATIONAL INFERENCE 4

To better understand this class of PGMs, let’s consider the well­known burglary alarm example,

represented in Figure 1.1. By looking at the graph structure, we see that the independencies

encoded by the graph structure are

B ⊥ E, B ⊥M |A, E ⊥M |A

B ⊥ J |A, E ⊥ J |A, M ⊥ J |A

and by applying equation 1.1, we can factorize the overall joint distribution as

P (B,E,A,M, J) = P (J |A)P (M |A)P (A|B,E)P (B)P (E)

Figure 1.1: PGM of the burglary alarm example (due to J. Pearl).

1.2 Variational Inference

Variational inference [25] provides an analytical approximation of intractable probability

distributions. If we consider a probability distribution p that we cannot infer using sampling­

based methods, the variational approach transforms the inference into an optimization problem

over a class of tractable distributions Q. The goal is to find q ∈ Q that is the most similar to p,

in order to query q, rather than p, and get an approximate solution to the inference problem.

In order to estimate the information lost in approximating p with the tractable distribution q,

variational inference usually relies on theKullback­Leibler (KL) divergence [26], that measures

differences in information contained within the two distributions. The KL divergence over a

1.2. VARIATIONAL INFERENCE 5

continuous domain X is defined as follows

DKL(q∥p) =
∫
X

q(x) log q(x)

p(x)
dx (1.2)

and it is asymmetric (DKL(q∥p) ̸= DKL(p∥q)), non­negative, and null when q(·) ≡ p(·).

The Variational Lower Bound

Let’s now consider a latent variable model p(x, z) = p(x|z)p(z), where x ∈ X is the

observed variable and z ∈ Z is the latent (never observed) variable (Figure 1.2).

Figure 1.2: PGM of the latent variable model.

Let’s suppose we are interested in inferring the posterior distribution of the latent variable

given the observation, that is

p(z|x) = p(x, z)

p(x)
=

p(x|z)p(z)∫
Z
p(x, z)dz

(1.3)

For many models, computing the marginal likelihood of an observation p(x) =
∫
Z
p(x, z)dz

is infeasible. Thus, it is common to rely on variational inference to approximate p(z|x) with a

tractable distribution q(z|x).

Given this formulation, the inference now amounts to solving the following optimization prob­

lem

q∗ = arg min
q∈Q

{DKL(q(z|x)∥p(z|x)}

= arg min
q∈Q

{Eq[log(q(z|x)]−Eq[log(p(z|x))]}

= arg min
q∈Q

{Eq[log(q(z|x)]−Eq[log(p(z, x))] + log(p(x))} (1.4)

However, directly computingDKL(q(z|x)∥p(z|x) is not possible, because it needs to evaluate

p.

1.3. DEEP GENERATIVE MODELS 6

Thus, let’s consider an alternative objective that has the same form as the KL divergence, but

does not involve the intractable p(x)

J(q) = Eq[log q(z|x)]− Eq[log p(x, z)] (1.5)

By looking at 1.4, we can see that J is not only tractable, but is also equivalent to DKL up to

an added constant w.r.t. q, that is

J(q) = DKL(q(z|x)||p(z|x))− log p(x). (1.6)

Since DKL is non­negative, then

log p(x) = DKL(q(z|x)||p(z|x))− J(q) ≥ −J(q). (1.7)

Because of this property, −J(q) is usually referred to as the evidence lower bound (a.k.a.

ELBO) to emphasize that it is a lower bound on the evidence of the observations.

1.3 Deep Generative Models

Generative modeling aims at learning a representation of an intractable probability distribu­

tionX overRn, where n is typically very large. To this end, generative models learn a function

g that maps samples from a tractable distribution Z supported in Rq ,with q < n, to points in

Rn that resemble the original data.

In other words, in the generative approach we assume that for each vector x ∼ X , there is at

least one latent vector z ∼ Z such that g(z) ≈ x. Once learned, the mapping function g can

be used to generate samples from the intractable distribution X by sampling from the latent

distribution Z .

The task of deriving the mapping function g may be really challenging, and even infeasible for

very high­dimensional input spaces. Therefore, since the early 2000s, deep neural networks

have been largely used in generative approaches to effectively approximate the mapping func­

tion.

There exist four main classes of deep generative models: Generative Adversarial Network

(GAN) [1], Variational Autoencoder (VAE) [2], Autoregressive models [3] [4] [5] and Flow­

1.3. DEEP GENERATIVE MODELS 7

based models [6] [7] [8], and Enegry­based models like Boltzmann Machines [9].

GAN is inspired by game theory: two models, a generator G and a discriminator D, play an­

tagonistic roles and are trained simultaneously through aMinimax strategy. The discriminative

model estimates the probability that a given sample comes from the real dataset. It works as

a critic and is optimized to discriminate between real and synthetic samples. The generative

model captures the real data distribution and is trained to generate samples as more realistic as

possible to fool the discriminator.

On the other hand, VAE models the distribution of observations x using a stochastic latent vec­

tor z ∼ p(z) along with a likelihood p(x|z) that connects z with the observation. In this frame­

work, learning a representation of data consists of learning the posterior distribution p(z|x) that

constructs the distribution of latent values. VAE relies on variational inference (Section 1.2) to

approximate the intractable posterior p(z|x), and jointly trains an inference network (encoder)

and a generative network (decoder) to model p(x|z) and q(z|x) respectively.

Neither GAN nor VAE explicitly learn the probability density function of real data p(x), since

it is usually infeasible. However, flow­based models are able to learn a good estimation of

it by relying on Normalizing Flow methods [27], which transform simple distributions into

complex ones by applying a sequence of invertible transformation functions. Flow­based gen­

erative models consist of a sequence of invertible transformations, and are trained to directly

minimize the negative log­likelihood over the training set.

Finally, Autoregressive models are based on the chain rule of probability p(x1, ..., xn) =∏n
i=1 p(xi|x1, ..., xi−1) to generate new data samples. The term autoregressive originates from

the literature on time­series models where observations from the previous time­steps are used

to predict the value at the current time step. Autoregressive generative models fix a precise

order in the variable decomposition x = x1, ..., xn, and directly maximise the likelihood of the

data p(x) by training a recurrent neural network to model p(xi|x1, ..., xi−1).

1.3.1 Variational Autoencoders

VAEs are Bayesian latent variable models that assume a generative process in which the

observations x are generated from unobserved latent variables z through a likelihood pθ(x|z)

(Figure 1.3).

The target likelihood pθ(x|z) is parameterized by a deep neural network (the encoder) trained

on the observed data. Since the exact inference on the posterior pθ(z|x) is intractable, as de­

1.3. DEEP GENERATIVE MODELS 8

scribed in Section 1.2, VAE approximates it with a tractable posterior qϕ(z|x), which is also

parameterized by a deep neural network (the decoder).

Typically, the likelihood, the prior and the approximate posterior are chosen to be Gaussian

pθ(x|z) = N (x; θ)

p(z) = N (z; 0, I)

qϕ(z|x) = N (z;ϕ).

Figure 1.3: Graphical model of the VAE latent variable model.
Solid lines denote the generative model pθ(x|z)p(z), dashed lines denote the inference process
where the intractable posterior p(z|x) is approximate through qϕ(z|x).

The encoder and the decoder are jointly trained by optimizing the ELBO

L(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)). (1.8)

Thus, the training process involves a back­propagation w.r.t the generative and the variational

parameters θ and ϕ.

However, estimating 1.8, requires to sample z from the posterior qθ(z|x), and this sampling

operation prevents back­propagation – and thus training. To solve this problem, Kingma et al.

[28] proposed the so called Reparametrization Trick. This method consists in decomposing the

latent variable z into a deterministic and a stochastic part to safely back­propagate through it

(Figure 1.4). More precisely, z is decomposed as

z = µ+ σ ⊙ ϵ (1.9)

where ϵ ∼ N (0, I), and µ and σ are the mean and the standard deviation of qϕ(z|x) =

N (z;ϕ).

1.3. DEEP GENERATIVE MODELS 9

Figure 1.4: The reparametrization trick allows to back­propagate through the normally dis­
tributed variable z.

The reparametrization trick described above deals with normally distributed variables only,

but our model involves also categorical latent variables. Therefore, let’s briefly introduce the

Categorical Reparametrization with Gumbel­Softmax [29], which allows to efficiently train

a generative model with discrete latent variables by using the softmax function to provide a

continuous, differentiable approximation of the Gumbel­Max trick [30].

Let’s consider a categorical variable z with class probabilities π1, π2, ...πJ , and let’s assume

that each categorical sample to be encoded as a k­dimensional one­hot vector lying on one

corner of the (k−1)­dimensional simplex ∆k−1. By sampling from Gumbel(0, 1) distribution,

we can generate k­dimensional sample vectors y ∈ ∆k−1 defined as

ŷi = τyi(ĝi, ϵ̂;ϕ) :=
exp((log(πi) + ĝi)/τ)∑J
j=1 exp((log(πj) + ĝj)/τ)

, with ĝi ∼ Gumbel(0, 1) (1.10)

These samples are identical to samples from a categorical distribution as τ → 0, and are dif­

ferentiable for τ > 0. Thus, by replacing categorical samples with Gumbel­Softmax samples,

we can safely back­propagate to compute gradients and train the model.

1.4. LOGIC PROGRAMMING 10

1.4 Logic Programming

Logic Programming refers to a style of programming paradigm which is largely based on

formal logic. One of the most widely used logic programming languages is Prolog. In this

section, we briefly summarize some basic concepts of Prolog, necessary to understand its prob­

abilistic extension: ProbLog [22].

In Prolog:

• atoms are expressions of the form q(t1, ..., tn) where q is a predicate (of arity n) and ti

are terms;

• a term t can be either a constant c, a variable V , or a structured term of the form

f(u1, ..., uk) where f is a functor. According to Prolog convention, constants start with

a lower case character and variables with an upper case;

• literals are atoms or the negation (¬) of atoms;

• a rule is an expression of the form q : −l1, ..., ln where q is an atom, li are literals, : −

represents logical implication (⇐=), and commas (,) represents logical conjunctions

(∧). Therefore, the meaning of q : −l1, ..., ln is that its head (q) holds whenever its tail

(i.e. the conjunction of the li) holds;

• facts are rules with an empty body;

• a clause can be either a fact or a rule;

• a substitution θ = {V1 = t1, ..., Vn = tn} is an assignment of terms ti to variables

Vi. When applying a substitution θ to an expression e, we simultaneously replace any

occurrence of Vi by ti and denote the resulting expression as eθ.

The execution of a Prolog program is initiated by the definition of a goal, called query. Prolog

engine tries to logically find a resolution refutation of the negated query by applying the Selec­

tive Linear Definite clause resolution (SLD resolution). The SLD resolution implicitly defines

a search tree of alternative computations, in which the initial goal clause is associated with the

root of the tree. Every path from the query root to the empty clause corresponds to a proof

tree (i.e. a successful refutation proof). Thus, if the negated query can be refuted, it follows

that the query, with the appropriate variable bindings in place, is a logical consequence of the

1.4. LOGIC PROGRAMMING 11

program.

Here is a toy example of a Prolog program that models the addition of two digits:

digit(img1, 0). % Fact 1

digit(img1, 1). % Fact 2

digit(img2, 0). % Fact 3

% Rule 1

add(img1, img2, N):- digit(img1,N1), digit(img2,N2), N is N1 + N2.

and three different queries:

?-add(img1, img2, 1). % Query A

Yes

?-add(img1, img2, 3). % Query B

No

?-add(img1, img2, X). % Query C

Yes

X = 0

Let’s have a look at the SLD tree of Query A (Figure 1.5) to better understand Prolog

resolution. Since there are two facts that unifies with the clause digit(img1,N1), namelyFact

1 and Fact 2, the tree has 2 branches. The righ sub­tree is a successful refutation proof, i.e. it

leads to an empty clause. Conversely, the left sub­tree is a failed branch since 1 ̸= 0. However,

since there exists at least one successful refutation proof, Query A is a logical consequence of

the program.

The SLD resolution tree of Query B (Figure 1.6) has the same structure of the one of Query A,

but both the sub­trees lead to a failure since 3 is neither equal to 0 nor to 1. Thus, Query B is

not a logical consequence of the program.

RegardingQuery C, both the sub­trees lead to an empty clause: in the left oneX is unified with

the numerical constant 0, while in the right sub­tree it is unified with 1. Since Prolog traverse

the SLD tree depth­first left­most, the answer to Query C is X = 0.

1.4. LOGIC PROGRAMMING 12

Figure 1.5: SLD resolution tree of Query A.

Figure 1.6: SLD resolution tree of Query B.

1.5. PROBLOG 13

Figure 1.7: SLD resolution tree of Query C.

1.5 ProbLog

ProbLog [22] is a probabilistic extension of Prolog that allows to express complex, proba­

bilistic models by assigning a probability to each clause.

A ProbLog program consists of

• a set of ground probabilistic facts F of the form p :: f , where p is a probability and

f a ground atom. Each probabilistic facts represents an independent Boolean random

variable with probability p of being true and (1− p) of being false;

• a set of rulesR.

Every subset F ⊆ F allows to define a possible world defined as the union between F and the

set of ground atoms that are logically entailed by F and by the set of rulesR, namely

wF := F ∪ {fθ|R ∪ F |= fθ, and fθ is ground}.

1.5. PROBLOG 14

The probability P (wF) of a possible world is given by the product of the probabilities of the

truth values of the probabilistic facts, that is

P (wF) =
∏
fi∈F

pi
∏

fi∈F\F

(1−pi). (1.11)

The probability of a ground fact q, (i.e. the success probability of q), is defined as the sum of

the probabilities of all worlds containing q

P (q) =
∑

F :wF |=q

P (wF). (1.12)

The entity q for which we want to compute the probability is called the query, and in a ProbLog

program queries are specified by adding a fact query(Query).

ProbLog also allows us to specify evidences, i.e. any observations on which we want

to condition the probability of the query. The syntax to specify an evidence is the fact

evidence(Literal), which conditions parts of the program to be true or false.

Let’s now briefly describe the four steps of ProbLog inference [31]:

1. Grounding step. The logic program is grounded with respect to the query via backward

reasoning that allows to determine which ground rules are relevant to derive the truth

value of the query, and may perform additional logical simplifications that do not affect

the query’s probability.

2. In the second step the ground logic program is transformed into a propositional logic

formula that defines the truth value of the query in terms of the truth values of proba­

bilistic facts. We can calculate the query success probability by performing weighted

model counting (WMC, [31]) on this logic formula.

3. Knowledge Compilation [32]. Since performing WMC directly on the logical formula

defined in the previous step is not efficient, ProbLog rewrites it into a form that allows

for efficient WMC. ProbLog system uses Sentential Decision Diagrams (SDDs, [33]),

which are a subset of deterministic decomposable negational normal forms (d­DNNFs,

[34]) and allow for polytime model counting [32].

4. The final step transforms the SDD into an arithmetic circuit (AC, [35]), that is a repre­

1.5. PROBLOG 15

sentation of a Bayesian network capable of answering arbitrary marginal and conditional

queries, with the property that the cost of inference is linear in the size of the circuit.

Starting from the SDD, the corresponding AC is built by putting the probabilities of the

probabilistic facts or their negations on the leaves, replacing the OR and AND nodes

with addition and multiplication respectively. Then, the weighted model counting is

calculated with an evaluation of the AC.

If we add an evidence to a ProbLog program, the knowledge compilation is performed on the

conjuction between the propositional logic formula of the ground program and the evidence

itself; then, the inference proceeds as usual with the final step.

Therefore, a ProbLog program with an evidence e can be defined as the distribution on the

possible worlds ω given e, with the probability of the probabilistic facts p :: f as parameters,

namely

P (ω | e; p).

Let’s now consider the example introduced in Section 1.4, where we define the addition of

two digits. ProbLog allows us to specify the probability of each digit: for example, we can say

that the second digit is a 0 or a 1 with probability 0.8 and 0.1 respectively. Such a disjunction

of probabilistic facts can be expressed via an annotated disjunction (AD), that is nothing else

than syntactic sugar. An AD is an expression of the form p1 :: f1; ...; pn :: fn : −b1, ..., bm,

where the pi are probabilities that sum to at most 1, the fi are atoms, and the bj are literals. The

meaning of an AD is that whenever all bj hold, one of the heads fi will be true with probability

pi, or none of them with probability 1 −
∑

i pi. Note that several of the fi may be true at the

same time if they also appear as heads of other rules or ADs.

Thus, the addition program can be written in its probabilistic form as

% Set of ground probabilistic facts

0.2::digit(img1, 0); 0.4::digit(img1, 1). % AD 1

0.8::digit(img2, 0); 0.1::digit(img2, 1). % AD 2

% Rule

add(img1, img2, N):- digit(img1,N1), digit(img2,N2), N is N1 + N2.

% Query

1.5. PROBLOG 16

query(add(img1, img2, 1)).

The SDD of this program and the corresponding AC are shown in Figure 1.8, where the query

root is coloured in red and the probabilistic facts in grey. The white rectangles correspond to

logical operators applied to their children, and the dotted squares next to the nodes show the

intermediate results.

Recalling 1.11 and 1.12, the probability of the query add(img1, img2, 1) is given by

P (add(img1, img2, 1)) = P (w{digit(img1,0),digit(img2,1)}) + P (w{digit(img1,1),digit(img2,0)})

= 0.2× 0.1 + 0.4× 0.8 = 0.34.

If we now add the evidence digit(img1,1) to the program, the probability of the query be­

comes

P (add(img1, img2, 1) | digit(img1,1)) = P (w{digit(img1,1),digit(img2,0)})

= 1× 0.8 = 0.8

1.5. PROBLOG 17

(a) Sentential Decision Diagram.

(b) Arithmetic circuit.

Figure 1.8: The SDD and the corresponding AC for query add(img1,img2,1).

1.5. PROBLOG 18

1.5.1 DeepProbLog

DeepProbLog [36] is a neural probabilistic logic programming language that incorporates

deep learning by means of neural predicates.

Let’s consider the addition example of the previous section, and let img1 and img2 to be two

images of handwritten digits from the MNIST dataset [37], and N the natural number corre­

sponding to the sum of these digits. Once trained, DeepProbLog allows us to make a proba­

bilistic estimate on the validity of predicates like add(, ,1). Although such a predicate

can be learned directly by a standard neural classifier, this approach cannot incorporate back­

ground knowledge like the definition of the addition of two natural numbers. By combining

probabilistic­logical programming and neural network, DeepProbLog is able to encode back­

ground knowledge in rules, like the one of our example:

add(img1, img2, N):- digit(img1,N1), digit(img2,N2), N is N1 + N2.

Therefore, the MNIST addition program can be written as

% Set of ground probabilistic facts

p_10::digit(img1, 0); p_11::digit(img1, 1). % AD 1

p_20::digit(img2, 0); p_21::digit(img2, 1). % AD 2

% Rule

add(img1, img2, N):- digit(img1,N1), digit(img2,N2), N is N1 + N2.

where the probabilities p_ij are going to be grounded with the output of the neural network

evaluated on the images specified in the query.

Therefore, by adding query(add(, ,1)) to the program, the evaluation of it leads to

the AC shown in Figure 1.9, where the query root is coloured in red and the probabilistic facts

in grey. The probability p_ij of each probabilistic fact in the leaves is grounded with the

corresponding output of the neural network with input img1 ≡ or img2 ≡ , and the

inference proceeds as in ProbLog.

To jointly train both the neural networks and the Problog model, DeepProbLog relies on

the learning from entailment [38] and aProbLog [39] to compute the gradients and optimize

the parameters in order to have an end­to­end trainable framework based on examples.

1.5. PROBLOG 19

Figure 1.9: The arithmetic circuit for query add(, ,1)

1.5. PROBLOG 20

Learning from entailment is a discriminative training setting in which the examples correspond

to facts for a specific target predicate with the evidence residing in the background theory. In

particular, given a DeepProbLog program with parameters Θ, a set Q of tuples (q,X, p) with

q a query, X the neural input for this query and p its desired success probability, and a loss

function L, learning from entailment consists of computing

arg min
Θ

1

Q

∑
(q,X,p)∈Q

L(P (q|X,Θ), p). (1.13)

To get a seamless integration between ProbLog and neural network training, DeepProbLog

relies gradient­based learning, since the same AC that ProbLog uses for inference can be used

for gradient computations as well. In fact, an AC is a differentiable structure, as it is composed

of addition and multiplication operations.

The generalization of the ProbLog language and inference calledAlgebraic ProbLog (aProbLog,

[39])) provides an extension to arbitrary commutative semirings, including the gradient semir­

ing [40]. Whereas ProbLog is confined to only calculating probabilities, the use of this gradient

semiring allows aProbLog to calculate the gradient alongside the probabilities, and thus to per­

form gradient­based learning by deriving the gradient with respect to ProbLog parameters.

In the next section we briefly describe aProbLog and the gradient semiring to introduce

the gradient­based learning in ProbLog.

1.5.2 Gradient­based learning in ProbLog

As mentioned in section 1.5, ProbLog annotates each probabilistic fact f with the proba­

bility p that f is true (i.e. p :: f), which implicitly also defines the probability 1−p that the

negated fact ¬f is true. Thus, the labeling function L used by ProbLog is defined as

L(f) = p for p :: f

L(¬f) = 1− p with L(f) = p

To compute the probability of a query, ProbLog uses the probability semiring with regular ad­

dition and multiplication as ⊕ and ⊗ operators on the corresponding AC. ProbLog probability

1.5. PROBLOG 21

semiring is given by

a⊕ b = a+ b

a⊗ b = a× b

e⊕ = 0

e⊗ = 1

where e⊕ and e⊗ refer to the identity element of the binary operation ⊕ and ⊗ respectively.

aProbLog generalized this idea to any arbitrary commutative semirings. Therefore, instead of

probability labels on facts, aProbLog uses a labeling function that explicitly associates values

from the chosen semiring with both facts f and their negations ¬f , and combines these using

semiring addition and multiplication on the AC.

If we consider the gradient semiring, its elements can be described as tuples (p, δp
δθ
), where p

is a probability, as in ProbLog, and δp
δθ

is the partial derivative of that probability with respect

to a parameter θ. More precisely, the parameter θ is the learnable probability pi of a proba­

bilistic fact written as t(pi) :: fi. This framework is easily extended to a vector of parameters

θ = [θ1, ..., θN]
T , that can be the concatenation of allN probabilistic parameters in the ground

program.

Thus, gradient semiring is defined as follows:

(a1,a2)⊕ (b1, b2) = (a1 + b1,a2 + b2)

(a1,a2)⊗ (b1, b2) = (a1b1, b1a2 + a1b2)

e⊕ = (0, 0⃗)

e⊗ = (1, 1⃗)

where the first element of the tuple mimics ProbLog’s probability computation, and the second

simply computes gradients of these probabilities using derivative rules.

To use the gradient semiring for gradient­based learning in ProbLog, we need to transform the

ProbLog program into an aProbLog program by extending the label of each probabilistic fact

p :: f with the gradient vector of p with respect to the probabilities of all probabilistic facts

1.5. PROBLOG 22

and ADs present in the program, that is

L(f) = (p, 0⃗) for p :: f with p fixed,

L(fi) = (pi, ei) for t(pi) :: fi with pi learnable,

L(¬f) = (1− p,−∇p) with L(f) = (p,∇p).

where the N ­dimensional vector ei has a 1 in the i­th position and 0 otherwise.

For fixed probabilities, the gradient does not depend on any parameters and thus is 0⃗, while

for the other cases, we use the semiring labels as introduced above.

As we are going to see more in detail in the next chapter, PLVAE is similar to DeepProbLog

in the way it connects the AC with the differentiable structure of the neural networks: both of

the models uses the outputs of the neural networks as probabilistic facts in the logic program.

Thus, their AC is connected with the neural network at the leaves, creating a single differen­

tiable structure through which the gradients can flow.

However, whereas DeepProbLog has been used on MNIST images with one single digit only

for classification tasks (Figure 1.9), PLVAE solves conditional generative tasks by exploiting

the object detection ability of neural networks to identify multiple digits inside a unique input

image. Moreover, differently from DeepProbLog, PLVAE does not apply the neural predicates

directly on the input images, but on the latent vector sampled by the inference model (Figure

1.10).

1.5. PROBLOG 23

Figure 1.10: The AC of PLVAE for query add(img,1) with 2 binary digits.

Chapter 2

Model

2.1 Graphical Model

The core of PLVAE is in its graphical model (Figure 2.1), which allows us to combine the

symbolic and sub­symbolic approaches.

(a) Generative model.
(b) Inference Model.

Figure 2.1: Graphical model of PLVAE.

The generative process of PLVAE (Figure 2.1a) is based on two latent variables zsym ∈ Rn

and z ∈ Rm that are used to generate new images x as well as to predict their labels y. Both

zsym and z have a Gaussian distribution, but they differ in their purpose: whereas zsym is

designed to capture information on the probabilities of ProbLog facts, z is intended to capture

any other information in the scene. For example, in theMNIST addition program, zsym contains

information on the probability of a digit to have a certain value, while z is the sub­symbolical

representation of features like the pen width, the spatial orientation of the digit and so on.

In the generative process, z and zsym are unconditionally independent , while x and y are

24

2.1. GRAPHICAL MODEL 25

conditionally independent given zsym, namely

z ⊥⊥ zsym,

x ⊥⊥ y | zsym.

This set of independences allows us to factorize the joint distribution of PLVAE generative

model as:

pθ(x, y|z) = pθ1(x|z, zsym)pθ2(y|zsym)p(z)p(zsym) (2.1)

where z = {zsym, z}, and the posterior distributions of x and y are parameterized by neural

networks with parameters θ = {θ1, θ2}.

The posterior distribution of the latent variable z given the observation x is given by

p(z|x) = p(x, z)
p(x)

=
p(x|z)p(z)

p(x)
(2.2)

Since p(x) is not known, the equation (2.2) cannot be solved, thus we cannot directly compute

the posterior p(z|x), but we have to infer it by relying on an inference model.

The inference model of PLVAE (Figure 2.1b) is very close to the one of a VAE [41]: both

the latent variables zsym and z are inferred from the observations x. Since the exact posterior

distribution pθ(z|x) is intractable, we define a variational distribution qϕ(z|x) to approximate

the true posterior distribution as closely as possible (see Section 1.3.1). Since z and zsym are

conditionally independent given x, we can write the inference network as

qϕ(z|x) = qϕ1(z|x)qϕ2(zsym|x). (2.3)

The prior of the latent variables z are chosen to be a standard Gaussian, while its variational

posterior is a Gaussian distribution with mean and diagonal covariance parameterized by neural

networks ϕ = {ϕ1, ϕ2}.

p(z) = N (0, 1)

p(z|x) = N (µ(x),σ2(x))

2.2. THE PRIOR: PROBLOG 26

2.2 The prior: ProbLog

A ProbLog program with an evidence e can be defined as a distribution on the possible

worlds ω given e. This probability distribution is parametrized by the probability p on the

probabilistic facts in the program, namely

P (ω | e; p)

As described in the previous section, the latent space of PLVAE is split into two components,

z = {z, zsym}, so that zsym captures information on the probabilities of ProbLog facts, and z

any other information in the scene. The Gaussian variable zsym is mapped to the multinomial

probability distribution p, so that

p = f(zsym)

where the mapping function f in parametrized by the decoder network. Thus, differently from

DeepProbLog [36], the neural predicates are not directly applied on the input images, but on

the latent vector zsym sampled by the inference model.

PLVAE relies on ProbLog inference for two different tasks, represented as ProbLog blocks

in PLVAE generative model (Figure 2.1a): (i) the computation of the query probability P (q | e)

through marginalization; (ii) the sampling of one possible world from the worlds distribution

P (ω | e) defined by the model.

To allow for gradient­based learning, both the inference tasks must be differentiable. Whereas

the first task can be easily made differentiable by relying on aProbLog extension (see Section

2.4), the literature does not offer any method to perform differentiable sampling in ProbLog.

In this work, we developed a simple solution that replaces DNF sampling [42] with multiple

marginalization operations. We define a query for each world and we compute P (ω | e) by

relying on ProbLog marginalization. Then, we sample ω ∼ P (ω | e) method by relying on

Gumbel­Softmax Reparametrization Trick ([29], Section 1.3.1).

Unfortunately, the proposed solution strongly limits the model scalability. Thus, one of the

future research direction should be the development of new methods to effectively exploit

knowledge compilation principles to define differentiable sampling for ProbLog inference.

2.2. THE PRIOR: PROBLOG 27

Let’s see more in detail how PLVAE integrates ProbLog reasoning power into the genera­

tive model by considering the MNIST addition example introduced in section 1.5.1. Instead of

using raw MNIST images, we now consider input images with more than one digit to simulate

a scene with multiple objects (e.g.). The high­level diagram of PLVAE working on this

example is shown in Figure 2.2.

As described in the previous section, the encoder of PLVAE provides the latent representation

z = {z, zsym} of the input image, and the decoder uses the information contained in zsym

as prior for the probabilistic facts. More precisely, zsym is mapped to the probability pij of

ProbLog facts, that in our example corresponds to the probability that the i­th digit in the image

has value j.

By doing so, we force the model to provide a disentangled representation of the scene, where

zsym contains the information regarding objects entity, and z represents any other feature that

is not encoded in the probabilitic­logic program.

Once the probabilities have been grounded, PLVAE predicts the labels y of the input and the

probability distribution over all the possible worlds by relying on ProbLog inference, as previ­

ously described. In the MNIST addition example, y corresponds to the sum of the two digits

in the image and the possible worlds are all the possible pairs of values taken by the digits.

Finally, PLVAE samples one possible world according to the worlds distribution, and gives it

as input to the decoder, along with the latent variable z, to reconstruct the original image.

To effectively exploits PLVAE in the MNIST addition example, we need to slightly mod­

ify the ProbLog program to consider one single image with multiple digits and retrieve the

probability distribution of all the possible pairs of digits. Thus, the ProbLog program used by

PLVAE becomes

p_10::digit(img, 1, 0); p_11::digit(img, 1, 1). % AD 1

p_20::digit(img, 2, 0); p_21::digit(img, 2, 1). % AD 2

add(img, N):- digit(img, 1, N1), digit(img, 2, N2), N is N1 + N2. % R1

digits(X1,X2):- digit(img, 1, X1), digit(img, 2, X2). % R2

query(add(img, 1)). % Query A

2.2. THE PRIOR: PROBLOG 28

query(digits(X1,X2)). % Query B

Once evaluated, Query A gives us the probability that the digits in the images sum up to 1,

while with Query B we retrieve the categorical distribution of the 4 possible pairs of binary

digits.

Figure 2.2: High­level diagram of PLVAE working on MNIST addition example. The encoder
network θ represents the input image with the low­dimensional vector z = {zsym, z}. Then,
by using the information contained in zsym, ProbLog provides the label y of the input image
(i.e. the sum of the two digits) and the probability distribution over the possible worlds (i.e. all
the possible the pairs of digits). According to this distribution, the model extracts one single
world ω (e.g. the first digit is a 0 and the second one a 3), and passes it as input to the decoder
ϕ along with z. Finally, the decoder network reconstructs the input image by combining the
information contained in z with the world ω.

2.3. OBJECTIVE FUNCTION 29

2.3 Objective Function

The objective function of PLVAE is given by the following evidence lower bound

L(θ, ϕ) = LREC(θ, ϕ) + LQ(θ, ϕ)−DKL[qϕ(z|x)||p(z)]] (2.4)

where

LREC(θ, ϕ) = Ez∼qϕ(z|x)[log(pθ(x|z)], (2.5)

LQ(θ, ϕ) = Ezsym∼qϕ(zsym|x)[log(pθ(y|zsym)]]. (2.6)

Derivation. To derive the ELBO defined in (4.1) we start from the maximization of the

log­likelihood of the input image x and the class y, namely

log(p(x, y)) = log
(∫

p(x, y|z)dz
)
. (2.7)

Recalling the generative network factorization (2.1), we can write

log(p(x, y)) = log
(∫

pθ(x|z, zsym)pθ(y|zsym)p(z)p(zsym)dzdzsym
)

(2.8)

Then, by introducing the variational approximation qϕ(z|x) to the intractable posterior pθ(z|x)

and applying the factorization (2.3), we get

log(p(x, y)) = log
(∫

qϕ(z|x)qϕ(zsym|x)
qϕ(z|x)qϕ(zsym|x)

pθ(x|z, zsym)pθ(y|zsym)p(z)p(zsym)dzdzsym
)
.

(2.9)

We now apply the Jensen’s inequality [43] to equation (2.9) and we obtain the lower bound for

the log­likelihood of x and y given by

∫
qϕ(z|x)qϕ(zsym|x) log

(
pθ(x|z, zsym)pθ(y|zsym)

p(z)p(zsym)

qϕ(z|x)qϕ(zsym|x)
dzdzsym

)
. (2.10)

Finally, by relying on the linearity of expectation and on logarithm properties, we can rewrite

2.3. OBJECTIVE FUNCTION 30

equation (2.10) as

Ez∼qϕ(z|x) [log(pθ(x|z))] + Ezsym∼qϕ(zsym|x) [log(pθ(y|zsym))] + Ez∼qϕ(z|x)

[
log

(
p(z)

qϕ(z|x)

)]
.

The last term is the negative Kullback­Leibler divergence between the variational approxima­

tion qϕ(z|x) and the prior p(z). This leads us to the ELBO of equation (4.1), that is

log(p(x, y)) ≥ Ez∼qϕ(z|x) [log(pθ(x|z))] + Ezsym∼qϕ(zsym|x) [log(pθ(y|zsym))]−DKL[qϕ(z|x)||p(z)]

:= L(θ, ϕ).

Estimation. To estimate the ELBO and its gradients w.r.t. the model parameters, we rely

on the Monte Carlo estimates of expectations [41]. Since both qϕ(z|x) and p(z) are chosen to

be Gaussian distributions, the Kullback­Leibler divergence in (4.1) can be integrated analyti­

cally by relying on its closed form. Thus, only the expected reconstruction and query errors

LREC(θ, ϕ) and LQ(θ, ϕ) require estimation by sampling.

We can therefore define the ELBO estimator as

L(θ, ϕ) ≈ L̃(θ, ϕ; ϵ) = L̃REC(θ, ϕ; ϵ) + L̃Q(θ, ϕ; ϵ)−DKL[qϕ(z|x)||p(z)]. (2.11)

The estimators of LREC and LQ can be write as

L̃REC(θ, ϕ; ϵ) =
1

N

N∑
n=1

(log(pθ(x|ẑ(n)))) (2.12)

L̃Q(θ, ϕ; ϵ) =
1

N

N∑
n=1

(log(pθ(y|ẑ(n)sym))) (2.13)

where

ẑ(n) = {ẑ(n), ẑ(n)sym} := µ(x) + σ(x)ϵ(n),

ϵ(n) ∼ N (0, 1).

In Algorithm 1 we summarize the training steps of PLVAE.

2.4. LEARNING 31

Algorithm 1: PLVAE Training.
Data: Set of images X
θ, ϕ← Initialization of paramters
repeat

Forward Phase
XN ← Random minibatch of N images
ϵ← Random samples from N (0, 1)
ω ← ProbLog Inference (possible world)
y ← ProbLog Inference (image label)
X̃N ← Reconstruction of XN

Backward Phase
g← ∇θ,ϕL̃(θ, ϕ; ϵ) (gradients estimator (2.11))
θ, ϕ← Update parameters using gradients g

until convergence of parameters (θ, ϕ);

2.4 Learning

During the training, we aim at maximizing L(θ, ϕ) with respect to both the encoder and

the decoder parameters, we therefore need to compute the gradient w.r.t. θ and ϕ. Since any

sampling operation prevents back­propagation, we need to reparametrize the two sampled vari­

ables z and ω. Due to their nature, we use the well­known Reparametrization Trick [28] for the

Gaussian z, while we exploit the Categorical Reparametrization with Gumbel­Softmax [29]

for the discrete variable ω corresponding to the sampled possible world.

In particular, by defining ω as the one­hot encoding of the possible worlds, we have

ω̂i =
exp((log πi + ĝi)/λ∑J

j=1 exp((log πj + ĝj)/λ)
, with ĝi ∼ Gumbel(0, 1) (2.14)

where J is the number of possible worlds (e.g. all the possible pairs of digits), and πi depends

on zisym, which is reparametrized with the Gaussian Reparametrization Trick.

Training PLVAE consists of jointly learning not only the neural networks parameters,

but also the probabilistic ones. We therefore rely on the learning from entailment [38] and

aProbLog [39] to have an end­to­end trainable framework based on examples, as in Deep­

ProbLog ([36], Sections 1.5.1).

As mentioned in Section 1.5.2, the learnable probability pi of a probabilistic fact can be opti­

mized by using the gradient semiring. This semiring allows us to calculate the gradient of the

2.4. LEARNING 32

probability of the query w.r.t. pi, namely δP (q)
δpi

. Then, we can directly update pi by performing

gradient­based learning performed along the arithmetic circuit of the program.

Since the outputs of the neural networks are used as probabilistic facts in the logic program,

the AC is connected with the differentiable structure of the neural network at the leaves. Thus,

we have a single differentiable structure through which the gradients can flow.

In Figure 2.3 we represent the AC for the addition example evaluated using the gradient semir­

ing. The gradient vectors with respect to the probabilities of all the probabilistic facts in the

program are annotated in green, and the query root in red. Differently from DeepProbLog

(Figure 1.9), we have one single image with multiple digits and the neural predicates are not

applied directly on the images, but on the latent vector sampled through the reparametrization

trick.

Figure 2.3: The arithmetic circuit of PLVAE for query add(img,1) with two binary digits
evaluated using the gradient semiring.

Chapter 3

Related Work

Kingma et al. [19] introduced a supervision in the VAE framework by defining the M2

model, where data is generated by a latent class variable y in addition to a continuous latent

variable z. This model allows for the conditional generation of new samples with a clear sepa­

ration between the supervised content and the remaining elements, by fixing the class label y,

and then sampling different values of the latent variables z.

Maaløe et al. [10] extended the basic M2 model with an auxiliary latent variable that increases

the flexibility of the variational posterior and allows to model more complex latent distribu­

tions.

Another extension of the M2 model is represented by the works of Sønderby et al. [11] and

Maaløe et al. [12], in which they introduce hierarchical structures in the prior to achieve better

generative performance. A recent work [13] focused on designing neural architectures for

hierarchical VAEs achieves state­of­the­art results on large high­quality images by exploiting

novel network architecture modules and parameterization of approximate posteriors.

Recent works extend the VAE framework with new types of prior, such as a mixture distribu­

tion with components given by variational posteriors [15] or a learnable hierarchical prior [14];

others use rejection sampling with a learned acceptance function [16] or combine VAEs with

autoregressive models [17]. Differently from PLVAE, where we have the fixed structure given

by the logic probabilistic program, these models introduce a more flexible prior definition to

learn complex functions. However, the structure of PLVAE is interpretable and can be easily

changed in order to apply the model to different scenarios. Moreover, the logic probabilistic

program allows to directly interpret the encoder output without the need of a manual supervi­

sion, that is often demanding.

33

34

Another research direction is represented by the work of Tom Joy et al. [18], who proposed

a model to capture label characteristics in VAEs avoiding any direct correspondence with the

label itself. Their idea is to learn representations by capturing label characteristics explicitly.

Although they perform variational inference by treating the label y as a partially observed

auxiliary variable, CCVAE is not a hierarchical VAE.

All of these models represent remarkable advances in the VAE framework achieving state­

of­the­art results, but they are not able to generalize to novel tasks. For example, let’s suppose

to train a VAEmodel on a supervised dataset composed by pairs of digits labeled with their sum.

In this setting, generating two numbers that sum up to 3 is an easy task even for the original M2

model, but none of the previously mentioned models would be able to answer questions like

“Generate two numbers that multiply to 5.” or “Generate two numbers that differ by 1.”. The

reason is that VAEs rely only on sub­symbolic representations of the scene, without including

symbolic reasoning on its content. Conversely, PLVAE exploits the structuring and reasoning

power of probabilistic­logic programming to learn symbolic relationships in the latent space

which allow for a high degree of generalization.

Recently, Jiang at al. [23] proposed a neuro­symbolic generative model, called GNM, that

combines the benefits of sub­symbolic and symbolic representations. Their model is based on

a two­layer latent hierarchy, where the top layer provides a global sub­symbolic latent vari­

able for flexible density modeling and the bottom layer a symbolic latent map for structured

representation. This dual representation allows to generate novel scenes by controlling the

structured representation of an object, such as its position, colour, etc. However, although

GNM generates a symbolic representation of the scene, it is still not able to manipulate this

knowledge in order to answer new generative questions. This is because GNM uses the sym­

bolic engine only to give a structure to the latent representation, and does not fully exploit its

power as a reasoning tool, as in PLVAE.

In their work [24], R. Feinman and B. M. Lake combine neural networks and symbolic prob­

abilistic programs to learn a generative model. They propose a generative model of novel

handwritten characters, called Full NS, that represents a character as a sequence of strokes,

with each stroke decomposed into a starting location and a stroke trajectory. However, Full NS

does not use logic and relies on a probabilistic program only to render each stroke to an image

35

canvas and not as a reasoning tool, as in PLVAE. Moreover, the partitioning of characters in

strokes prevents to tackle any generative tasks that involve reasoning upon the semantics of a

character.

As described in Section 1.5.1, PLVAE is similar toDeepProblog [36] in the use of aProbLog

[39] to compute the gradients and optimize the parameters. However, differently from Deep­

ProbLog, PLVAE does not apply the neural predicates directly on the input images, but on the

latent vector sampled by the inference model. Furthermore, whereas DeepProbLog has been

used only for discriminative tasks, PLVAE solves conditional generative tasks by exploiting

the object detection ability of neural networks to identify multiple objects inside a scene.

In Table 3.1 we compare the generative models mentioned above in terms of their prior.

On one hand, we have VAE frameworks with structured priors that model statistical relation­

ships in the latent space (Structured Sub­symbolic). However, despite their flexibility in learn­

ing complex priors, these models are not able to generalize to novel tasks, since their latent

structure is still pure sub­symbolical and does not allow any form of reasoning.

On the other hand, we have generative models with priors that allow for a symbolic structure

in the latent space, but this structure cannot be used to solve reasoning tasks (Structured Sym­

bolic). Furthermore, the dependencies among the variables are not interpretable and we cannot

extract rules as in PLVAE.

Conversely, PLVAE prior gives a structure to the latent space that can be easily used by a

probabilistic­logic programming to generalize to previously unseen tasks that require to reason

upon the content of a scene (Logic­based Symbolic).

36

Structured
Sub­symbolic

Structured
Symbolic

Logic­based
Symbolic

M2[19] Yes No No
AVAE [10] Yes No No
LVAE [11] Yes No No
BIVA [12] Yes No No
NVAE [13] Yes No No
VampVAE [15] Yes No No
VHP [14] Yes No No
LARS [16] Yes No No
VLAE [17] Yes No No
CCVAE [18] No Yes No
GNM [23] No Yes No
FullNS [24] No Yes No
PLVAE No No Yes

Table 3.1: Models comparison.

Chapter 4

Results

By virtue of the integration of probabilistic­logic programming into the VAE framework,

PLVAE is able to generate new images starting from a logic formula. For example, we can ask

the model to generate two numbers that sum up to 3. Moreover, once trained on a base task,

PLVAE can generalize to any other task involving reasoning with the same symbols, since the

logic program allows us to define the relationship between images and labels. Furthermore,

thanks to the structure of its graphical model, PLVAE also preserves the predictive ability of

VAEs in the supervised setting.

In the following sections, we describe the experiments we performed to evaluate our approach.

Whenever possible, we compare PLVAE against CCVAE [18] (see Appendix A.2 for the im­

plementation details).

4.1 Base Task: Two Digits Addition

To validate our approach, we created a supervised dataset of 28, 000 images of two digits

taken from the MNIST dataset [37]. Each image has dimension 28 × 56 and is labelled with

the sum of its digits (Figure 4.1). Since our purpose is to give a proof­of­concept, we focused

on a simplified, but still interesting task by considering digits with values from 0 to 2. Whereas

the number of digits in each image is known, their spatial position is not specified and needs

to be learnt by the model. By doing so, we can easily extend the framework to images with

several objects in different positions.

37

4.1. BASE TASK: TWO DIGITS ADDITION 38

Figure 4.1: Example of data from the two MNIST digits addition dataset.

The ProbLog program used to train PLVAE for the base tasks is the MNIST addition pro­

gram introduced in Section 2.2, namely

% ADs

p_10::digit(img, 1, 0); p_11::digit(img, 1, 1); p_12::digit(img, 1, 2).

p_20::digit(img, 2, 0); p_21::digit(img, 2, 1); p_22::digit(img, 2, 2).

add(img, N):- digit(img, 1, N1), digit(img, 2, N2), N is N1 + N2. % R1

digits(X1,X2):- digit(img, 1, X1), digit(img, 2, X2). % R2

According to the specific task, we define the corresponding queries and evidences. For exam­

ple, in the two digits addition example we have:

query(add(img, 3)). % Query A

query(digits(X1,X2)). % Query B

where the second term of Query A changes according to the label of the input image in order

to use only positive examples for training (Figure 4.2).

Figure 4.2: During the training of PLVAE we only use positive examples (i.e. query with
desired success probability p = 1), and we change Query A accordingly.

4.2. EVALUATION 39

4.2 Evaluation

We evaluate our approach on three aspects: (i) reconstruction ability, (ii) predictive ability

and (iii) generative ability.

We use binary cross entropy for the reconstruction ability (mREC), while for the predictive abil­

ity we rely on classification accuracy on the true labels (mCLASS). To measure the generative

ability (mGEN), we trained an independent classifier on MNIST dataset (see Appendix A.3 for

the implementation details), and we used it to evaluate conditionally generated samples.

The evaluation process for generative ability (Figure 4.3) can be summarized as: (i) generate

an image with conditioning label y; (ii) split the image in two sub­images1; (iii) then, sum to­

gether the outputs of the pre­trained classifier evaluated on the sub­images; (iv) compare the

resulting label ỹ with y.

Figure 4.3: Process to assess generative accuracy.

1We want to stress that the split of the image is only used for evaluation purposes and it is never used during
training.

4.3. EXPERIMENT 1: GENERATION 40

4.3 Experiment 1: Generation

In the generative model of PLVAE (Figure 2.1a) both the image x and the label y are leaf

nodes. Thus, differently from other VAE frameworks [10, 18, 19], where the label y is at the

top of the generative process, PLVAE jointly generates a new image and the corresponding

label directly from the latent vector z ∼ p(z).

We can summarize the generative process of PLVAE as follows:

1. sampling ẑ = {ẑsym, ẑ} from the prior distribution N (0, 1);

2. given ẑsym, inferring the distribution over the possible worlds through ProbLog;

3. sampling a world ω according to the distribution over the possible worlds;

4. given the world ω, inferring the distribution p(y|ω) over the labels through ProbLog;

5. sampling the label y according to p(y|ω);

6. generating a new image from ω and ẑ.

The process described above is different from the one performed during the training, where y

is obtained from zsym through an expectation. The reason is that currently there are no meth­

ods to perform differentiable sampling in ProbLog, and therefore we replace the sampling

with multiple marginalization operations to allow for an efficient gradient­based learning (see

Section 2.2). However, by doing so the generation of ω and y are made independent, and thus

they may not be consistent with each other.

In Figure 4.4 we provide an example of generation with PLVAE and CCVAE. PLVAE gen­

erates both the image and the label ỹ starting from the sampled latent vector z ∼ N (0, 1).

Conversely, CCVAE generative process starts by sampling the label y from its prior, then pro­

ceeds by sampling the latent vector from p(z|y), and finally generates the new image.

4.4. EXPERIMENT 2: CONDITIONAL GENERATION 41

(a) PLVAE. (b) CCVAE.

Figure 4.4: Generation for PLVAE and CCVAE. Differently from CCVAE, PLVAE jointly
generates both the image and the corresponding label ỹ (red box) from the latent vector.

4.4 Experiment 2: Conditional Generation

As described in Section 1.5, ProbLog allows us to specify evidences in a program, that are

observations on which we want to condition the probability of the query. Thus, to generate a

new pair of digits that sum up to a desired number, we simply replace Query A with the corre­

sponding evidence e. For example, by replacing Query A with evidence(add(img,2)), the

evaluation of Query B results in the probability distribution of the possible worlds given this

evidence, namely P (digits(X, Y) | add(img,2)). The resulting distribution will assign

zero probability to those pairs of digits that do not sum to 2, and therefore the sampled worlds

ω is guaranteed to be compatible with the desired evidence.

The process of generating a new image according to a given evidence e can be summarized as

follows: (1) sampling ẑ = {ẑsym, ẑ} from the prior distributionN (0, 1); (2) given ẑsym and the

evidence e, inferring the distribution over the possible worlds through ProbLog; (3) sampling

a world ω according to the distribution over the possible worlds; (4) passing ω and ẑ as input

to the decoder to generate the image.

We provide qualitative results of conditional generation for PLVAE in Figure 4.5, in which we

4.4. EXPERIMENT 2: CONDITIONAL GENERATION 42

can see that the model is able to generate pairs consistent with the evidence and with a variety

of styles and combinations of digits.

On the contrary, although CCVAE achieves higher classification accuracy (Table 4.1), it is not

completely able to conditionally generate new images (Figure 4.6), since part of the informa­

tion on the image content is also contained in z\c.

Intervention. The clear separation between the symbolic and sub­symbolic engines allows

us to perform interventions by changing the value of one or more digits in an image. To this

end, instead of sampling ẑ from its prior, we use the latent representation of a target image,

and we proceed with steps (2) to (4) as for the conditional generation.

The examples shown in Figure 4.7 confirm that PLVAE is able to keep the style of an image

while changing its content according to the provided evidence. Moreover, since the latent

representation z of the original image is held constant along each row, the new pairs of digits

reflect the information on the probabilistic facts contained in zsym. For example, by looking at

the first row, we can notice that, whenever it is consistent with the evidence, PLVAE generates

pairs of digits with a 1 in the first position, as in the original image (e.g. columns corresponding

to evidences 1 and 2).

Conversely, we cannot safely perform interventions with CCVAE, since part of the information

on the image content is also contained in z\c, preventing the model from correctly generating

new pairs of numbers starting from the style of another image (Figure 4.8).

Classification. Along with conditional generation and intervention, one of the most preva­

lent tasks that VAEs are required to solve in a supervised setting is the prediction of image

labels. The graphical model of PLVAE allows us to preserve the predictive ability of VAEs

by relying on ProbLog inference. During the training, the term LQ(θ, ϕ) of the loss function

(1.8) forces PLVAE to adjust its weights to maximize the probability ofQuery A for all training

examples. The classification accuracy is reported in Table 4.1.

Model mREC(↓) mCLASS(↑) mGEN(↑)
Base Task PLVAE 0.1289± 0.0808 0.8773± 0.0718 0.6867± 0.2024
(addition) CCVAE 0.1001± 0.0668 0.9510± 0.0153 0.6139± 0.0748

Table 4.1: Reconstruction, predictive and generative ability of PLVAE and the modified CC­
VAE trained on the base task.

4.4. EXPERIMENT 2: CONDITIONAL GENERATION 43

Figure 4.5: Conditional generation for PLVAE. Each column refers to a different evidence,
from add(img,0) to add(img,4); the latent vector z is held constant along each row.

Figure 4.6: Conditional generation for CCVAE. Each column refers to a different sum, from 0
to 4; the latent vector zc is held constant along each row.

4.4. EXPERIMENT 2: CONDITIONAL GENERATION 44

Figure 4.7: Intervention for PLVAE. The original images are displayed in the first column (red),
and their latent representation z is held constant in the other columns obtained with evidences
from add(img,0) to add(img,4).

Figure 4.8: Intervention for CCVAE. The original images are displayed in the first column (red),
and their latent representation z\c is held constant in the other columns obtained by conditioning
on different values of sum evidences from 0 to 4.

4.5. EXPERIMENT 3: TASK GENERALIZATION 45

4.5 Experiment 3: Task Generalization

Dici il perche’: questo e’ dovuto al fatto che il prior permette di esprire un task generativo

a partire da due immagini mentre il link con la label e’ gestito da un programma logico. Fintan­

toche’ puoi definire un programma logico che mappa il tuo task iniziale come la generazione

di una coppia di immagini allora generalizza.

As we have seen, PLVAE is able to generate new images starting from a logic formula, like

the addition of two numbers in the previous example. By virtue of its probabilistic­logic prior,

PLVAE can also generalize to previously unseen tasks. In particular, once trained on a specific

symbolic task, PLVAE is able to generalize to any novel task that involves reasoning with the

same set of symbols. For example, by training PLVAE on the addition task, we can easily

use the same model to generate pairs of digits that multiply to a given value. The reason is

that PLVAE factorizes the generation task into two steps: (i) generation of the digits labels; (ii)

generation of the image given the labels. Whereas the second step requires to be parameterized

by a black­box model (e.g. a convolutional neural network), which is hard to explicitly define,

the labels generation can be easily handled by an explicit generative process. The symbolic

nature of the labels generation allows its substitution with any arbitrary probabilistic logic

program that maps to the same set of integer labels.

Therefore, to generate two numbers that multiply to a given value, we need to slightly modify

the ProbLog program by substituting the addition rule (R1) with the multiplication rule, and

using the evidence accordingly:

% New Rule

mul(img, N):- digit(img, 1, N1), digit(img, 2, N2), N is N1 * N2.

% New Evidence

evidence(mul(img,0)).

The same process can be extended to any task involving two integer numbers that can be

expressed in the logic program, regarding its complexity.

As best of our knowledge, such a level of task generalization cannot be achieved by any other

VAE frameworks. Moreover, since PLVAE allows us to jointly generate new images and the

corresponding labels (Section 4.3), we can use a model trained on a base task to generate new

supervised datasets in which the desired relationships among objects in the scene are expressed

4.5. EXPERIMENT 3: TASK GENERALIZATION 46

by the ProbLog program.

We provide examples of the generalization ability of PLVAE by working with tasks like

the multiplication (Figures 4.9), the subtraction (Figure 4.10) or the power (Figure 4.11) be­

tween two digits. In all the three tasks, PLVAE generates pairs of numbers consistent with the

evidence, and it also shows a variety of combinations by relying on the probabilistic engine of

ProbLog.

As we can see in Table 4.2, the generative accuracy of PLVAE decreases in those tasks where

the digits order is relevant (i.e. subtraction and power). The reason is that the model may

learn a mapping between symbol and meaning that is logically correct, but different from the

desired one. For example, during the training on the base task, PLVAE may switch the pairs

(2, 1) and (1, 2), since they both sum up to 3. This would prevent PLVAE from generalizing to

tasks involving non­commutative operations.

A possible solution to solve this issue is to introduce an additional supervision on very few dig­

its to guide the model toward the desired symbols interpretation. As described in Section 2.2,

by virtue of ProbLog inference we can easily retrieve the predicted label of the digits in an im­

age by relying on the query over the digits values, namely query(digits(X1,X2)) (Query B).

Thus, to effectively introduce the additional supervision in our training procedure, we simply

add a regularizer term to the objective function L(θ, ϕ) defined in (4.1),

LSUP(θ, ϕ) := L(θ, ϕ) + Ldigits(θ, ϕ) (4.1)

where

Ldigits(θ, ϕ) = Ezsym∼qϕ(zsym|x)[log(pθ(ydigits|zsym)]]. (4.2)

In equation (4.2), ydigits refers to the digits label (e.g. for we have ydigits = [0, 1]).

In Table 4.2 we report the generative accuracy of PLVAE trained on a dataset with 10 out

of 28800 fully supervised images.

4.5. EXPERIMENT 3: TASK GENERALIZATION 47

Model mGEN(↑)
PLVAE 0.7280± 0.1567

Task Generalization
(multiplication)

PLVAE
(with supervision) 0.7314± 0.1952

CCVAE Not possible
PLVAE 0.3797± 0.1920

Task Generalization
(subtraction)

PLVAE
(with supervision) 0.6201± 0.2755

CCVAE Not possible
PLVAE 0.4908± 0.2261

Task Generalization
(power)

PLVAE
(with supervision) 0.6546± 0.2675

CCVAE Not possible

Table 4.2: Generative accuracies for task generalization experiments.

Figure 4.9: Novel task: multiplication between two numbers.
Each column refers to a different evidence, from add(img,0) to add(img,4); the latent vector
z is held constant along each row.

4.5. EXPERIMENT 3: TASK GENERALIZATION 48

Figure 4.10: Novel task: subtraction between the first and the second digits.
Each column refers to a different evidence, from add(img,0) to add(img,-1); the latent
vector z is held constant along each row.

Figure 4.11: Novel task: first digit to the power of the second one.
Each column refers to a different evidence, from add(img,0) to add(img,4); the latent vector
z is held constant along each row.

4.6. EXPERIMENT 4: DATA EFFICIENCY 49

4.6 Experiment 4: Data Efficiency

To verify whether the use of a logic­based prior helps the learning in contexts characterized

by data scarcity, we trained both PLVAE and the baseline with training sets of increasing size.

In particular, we defined 7 levels of data availability for the base task:

• 50 images per digits pair (i.e. 450 examples);

• 10 images per digits pair (i.e. 90 examples);

• 5 images per digits pair (i.e. 45 examples);

• 4 images per digits pair (i.e. 36 examples);

• 3 images per digits pair (i.e. 27 examples);

• 2 images per digits pair (i.e. 18 examples);

• 1 image per digits pair (i.e. 9 examples).

In Figure 4.12 we compare PLVAE with the baseline in terms of reconstructive, predictive and

generative ability in the 7 levels of data availability. Whereas the difference in the reconstruc­

tion loss of the two models is not significant, PLVAE outperforms the baseline in terms of

predictive and generative ability. In particular, PLVAE achieves a generative accuracy greater

than 60% even when trained on the smallest dataset.

In Figure 4.13 we report some examples of conditional generation for PLVAE and CCVAE

trained with 90 examples. As we can see, whereas the baseline cannot generate sample­like

images, our model is able to generate pairs of digits consistent with the condition. Moreover,

the generated images shows a variety of digits combinations thanks to the probabilistic engine

of ProbLog. The reason behind this disparity is that the logic­based prior helps the neural

model in properly structuring the latent representation, so that one part can easily focus on rec­

ognizing individual digits and the other on capturing the remaining information in the scene.

Conversely, the baseline needs to learn how to correctly model very different pairs that sum

up to the same value.

4.6. EXPERIMENT 4: DATA EFFICIENCY 50

(a) Reconstruction loss.

(b) Classification accuracy. (c) Generative accuracy.

Figure 4.12: The graphs compare the performance of PLVAE and CCVAE on the test set for
different training set sizes.

(a) PLVAE. (b) CCVAE.

Figure 4.13: Conditional generation for PLVAE and CCVAE trained with 10 images per pair
of digits.

Chapter 5

Conclusions

In this thesis, we propose the probabilistic logic VAE (PLVAE), a neuro­symbolic deep

generative model that combines the representational power of VAEs with the reasoning ability

of probabilistic­logic programming. The strength of PLVAE resides in its probabilistic­logic

prior which provides an interpretable structure to the latent space that can be easily changed in

order to apply the model to different scenarios. Thus, PLVAE fully exploits the expressiveness

of both neural and symbolic method to solve previously unseen generative tasks in an end­to­

end trainable framework.

As described in Chapter 4, we validated our approach by training PLVAE on the two digits

addition task. Then, we used the same model to generalize to new generative tasks involving

different arithmetic operations. In all the experiments, PLVAE was able to generate pairs of

numbers that are logically consistent with the condition and that show a variety of combina­

tions thanks to the probabilistic engine of ProbLog.

Moreover, we defined different levels of data availability to verify whether the use of a logic­

based prior helps the learning in contexts characterized by data scarcity. The results show that

our model outperformed the baseline in all the datasets. PLVAE was able to generate pairs of

digits consistent with the condition even if trained with very few examples.

One of the current limitations of PLVAE is related to model scalability. As described in

Section 2.2, PLVAE relies on ProbLog inference for two different tasks that involve marginal­

ization and sampling. Whereas the marginalization can be easily made differentiable by relying

on aProbLog, there are currently no methods to perform differentiable sampling in ProbLog.

51

52

In this thesis, we solve the problem by replacing sampling with multiple marginalization oper­

ations. However, the proposed solution may become prohibitively expensive as the size of the

program grows. Thus, one of the future research directions is the development of new methods

to effectively exploit knowledge compilation principles to define differentiable sampling for

ProbLog inference.

Another issue of PLVAE is that the model may learn a mapping between symbol and meaning

that is logically correct, but different from the desired one. For example, in the two digits

addition problem, PLVAE may switch the pairs (2, 1) and (1, 2), since they both sum up

to 3. This would prevent from generalizing to tasks where the digits order is relevant (e.g.

non­commutative operations). In the two digits addition example, we solve this issue by in­

troducing an additional supervision on very few digits to guide the model toward the desired

symbols interpretation. Although we have shown preliminary result of the effectiveness of

this solution, future work could look into this more extensively.

Finally, as other models, PLVAE suffers from instability due to the high number of model

hyper­parameters. Thus, another research direction would be the exploration of different defi­

nitions of the reconstruction loss, to achieve both model stability and higher image quality.

In the future, we would also like to extend PLVAE to more complex settings, using datasets

like CLEVR [44] that allow for more composite tasks.

Bibliography

[1] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Infor­

mation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates,

Inc., 2014. URL: https : / / proceedings . neurips . cc / paper / 2014 / file /

5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[2] Diederik P Kingma and Max Welling. Auto­Encoding Variational Bayes. 2014. arXiv:

1312.6114 [stat.ML].

[3] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn. Res.

3.null (Mar. 2003), pp. 1137–1155. ISSN: 1532­4435.

[4] Benigno Uria et al. Neural Autoregressive Distribution Estimation. 2016. arXiv: 1605.

02226 [cs.LG].

[5] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neu­

ral Networks. 2016. arXiv: 1601.06759 [cs.CV].

[6] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non­linear Independent Com­

ponents Estimation. 2015. arXiv: 1410.8516 [cs.LG].

[7] Laurent Dinh, Jascha Sohl­Dickstein, and Samy Bengio. Density estimation using Real

NVP. 2017. arXiv: 1605.08803 [cs.LG].

[8] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1

Convolutions. 2018. arXiv: 1807.03039 [stat.ML].

[9] Geoffrey Hinton. “Boltzmann Machines”. In: Encyclopedia of Machine Learning. Ed.

by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 132–

136. ISBN: 978­0­387­30164­8. DOI: 10.1007/978- 0- 387- 30164- 8_83. URL:

https://doi.org/10.1007/978-0-387-30164-8_83.

53

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1605.02226
https://arxiv.org/abs/1605.02226
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://doi.org/10.1007/978-0-387-30164-8_83
https://doi.org/10.1007/978-0-387-30164-8_83

BIBLIOGRAPHY 54

[10] Lars Maaløe et al. Auxiliary Deep Generative Models. 2016. arXiv: 1602 . 05473

[stat.ML].

[11] Casper Kaae Sønderby et al. Ladder Variational Autoencoders. 2016. arXiv: 1602 .

02282 [stat.ML].

[12] Lars Maaløe et al. BIVA: A Very Deep Hierarchy of Latent Variables for Generative

Modeling. 2019. arXiv: 1902.02102 [stat.ML].

[13] Arash Vahdat and Jan Kautz. NVAE: A Deep Hierarchical Variational Autoencoder.

2021. arXiv: 2007.03898 [stat.ML].

[14] Alexej Klushyn et al. Learning Hierarchical Priors in VAEs. 2019. arXiv: 1905.04982

[stat.ML].

[15] JakubM. Tomczak andMaxWelling. VAE with a VampPrior. 2018. arXiv: 1705.07120

[cs.LG].

[16] Matthias Bauer andAndriyMnih.Resampled Priors for Variational Autoencoders. 2019.

arXiv: 1810.11428 [stat.ML].

[17] Xi Chen et al. Variational Lossy Autoencoder. 2017. arXiv: 1611.02731 [cs.LG].

[18] Tom Joy et al. Capturing Label Characteristics in VAEs. 2021. arXiv: 2006.10102

[cs.LG].

[19] Diederik P. Kingma et al. Semi­Supervised Learning with Deep Generative Models.

2014. arXiv: 1406.5298 [cs.LG].

[20] Luc De Raedt et al. 2016.

[21] Luc De Raedt and Angelika Kimmig. “Probabilistic (Logic) Programming Concepts”.

In: Mach. Learn. 100.1 (July 2015), pp. 5–47. ISSN: 0885­6125. DOI: 10 . 1007 /

s10994-015-5494-z. URL: https://doi.org/10.1007/s10994-015-5494-z.

[22] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: A probabilistic Pro­

log and its application in link discovery”. eng. In: Veloso, M. IJCAI­INT JOINT CONF

ARTIF INTELL, 2007, pp. 2462–2467.

[23] Jindong Jiang and Sungjin Ahn. Generative Neurosymbolic Machines. 2021. arXiv:

2010.12152 [cs.LG].

[24] Reuben Feinman and Brenden M. Lake. Generating new concepts with hybrid neuro­

symbolic models. 2020. arXiv: 2003.08978 [cs.LG].

https://arxiv.org/abs/1602.05473
https://arxiv.org/abs/1602.05473
https://arxiv.org/abs/1602.02282
https://arxiv.org/abs/1602.02282
https://arxiv.org/abs/1902.02102
https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1905.04982
https://arxiv.org/abs/1905.04982
https://arxiv.org/abs/1705.07120
https://arxiv.org/abs/1705.07120
https://arxiv.org/abs/1810.11428
https://arxiv.org/abs/1611.02731
https://arxiv.org/abs/2006.10102
https://arxiv.org/abs/2006.10102
https://arxiv.org/abs/1406.5298
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z
https://arxiv.org/abs/2010.12152
https://arxiv.org/abs/2003.08978

BIBLIOGRAPHY 55

[25] M.I. Jordan et al. “An Introduction to Variational Methods for Graphical Models”. In:

Machine Learning 37 (Nov. 1999), pp. 183–233. URL: https://doi.org/10.1023/A:

1007665907178.

[26] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of

Mathematical Statistics 22.1 (1951), pp. 79–86. DOI: 10.1214/aoms/1177729694.

URL: https://doi.org/10.1214/aoms/1177729694.

[27] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing

Flows. 2016. arXiv: 1505.05770 [stat.ML].

[28] Diederik P. Kingma, TimSalimans, andMaxWelling.Variational Dropout and the Local

Reparameterization Trick. 2015. arXiv: 1506.02557 [stat.ML].

[29] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel­

Softmax. 2017. arXiv: 1611.01144 [stat.ML].

[30] Chris J. Maddison, Andriy Mnih, and YeeWhye Teh. The Concrete Distribution: A Con­

tinuous Relaxation of Discrete Random Variables. 2017. arXiv: 1611.00712 [cs.LG].

[31] Daan Fierens et al. “Inference and learning in probabilistic logic programs using

weighted Boolean formulas”. In: Theory and Practice of Logic Programming 15.3

(Apr. 2014), pp. 358–401. ISSN: 1475­3081. DOI: 10 . 1017 / s1471068414000076.

URL: http://dx.doi.org/10.1017/S1471068414000076.

[32] A. Darwiche and P.Marquis. “A Knowledge CompilationMap”. In: Journal of Artificial

Intelligence Research 17 (Sept. 2002), pp. 229–264. ISSN: 1076­9757. DOI: 10.1613/

jair.989. URL: http://dx.doi.org/10.1613/jair.989.

[33] Adnan Darwiche. “SDD: A New Canonical Representation of Propositional Knowledge

Bases”. In: Proceedings of the Twenty­Second International Joint Conference on Artifi­

cial Intelligence ­ Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain: AAAI

Press, 2011, pp. 819–826. ISBN: 9781577355144.

[34] Adnan Darwiche. “On the Tractable Counting of Theory Models and its Application to

Truth Maintenance and Belief Revision”. In: Journal of Applied Non­Classical Logics

11.1­2 (2001), pp. 11–34. DOI: 10.3166/jancl.11.11-34. eprint: https://doi.

org/10.3166/jancl.11.11-34. URL: https://doi.org/10.3166/jancl.11.11-

34.

https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1506.02557
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.00712
https://doi.org/10.1017/s1471068414000076
http://dx.doi.org/10.1017/S1471068414000076
https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
http://dx.doi.org/10.1613/jair.989
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34

BIBLIOGRAPHY 56

[35] Adnan Darwiche. A Differential Approach to Inference in Bayesian Networks. 2013.

arXiv: 1301.3847 [cs.AI].

[36] Robin Manhaeve et al. DeepProbLog: Neural Probabilistic Logic Programming. 2018.

arXiv: 1805.10872 [cs.AI].

[37] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In: (2010). URL:

http://yann.lecun.com/exdb/mnist/.

[38] Michael Frazier and Leonard Pitt. “Learning From Entailment: An Application to Propo­

sitional Horn Sentences”. In:Machine Learning Proceedings 1993. San Francisco (CA):

Morgan Kaufmann, 1993, pp. 120–127. ISBN: 978­1­55860­307­3. DOI: https://

doi . org / 10 . 1016 / B978 - 1 - 55860 - 307 - 3 . 50022 - 8. URL: https : / / www .

sciencedirect.com/science/article/pii/B9781558603073500228.

[39] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. “An Algebraic Prolog for

Reasoning about Possible Worlds”. In: Proceedings of the Twenty­Fifth AAAI Confer­

ence on Artificial Intelligence. AAAI’11. San Francisco, California: AAAI Press, 2011,

pp. 209–214.

[40] Jason Eisner. “Parameter Estimation for Probabilistic Finite­State Transducers”. In: Pro­

ceedings of the 40th Annual Meeting of the Association for Computational Linguistics.

Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, July 2002,

pp. 1–8. DOI: 10.3115/1073083.1073085. URL: https://aclanthology.org/

P02-1001.

[41] Diederik P Kingma and Max Welling. Auto­Encoding Variational Bayes. 2013. arXiv:

1312.6114 [stat.ML].

[42] Dimitar Sht. Shterionov et al.DNF Sampling for ProbLog Inference. 2010. arXiv: 1009.

3798 [cs.LO].

[43] J. L. W. V. Jensen. Sur les fonctions convexes et les inégualités entre les valeurs

Moyennes. Nov. 1906. DOI: 10.1007/bf02418571. URL: https://doi.org/10.

1007/bf02418571.

[44] Justin Johnson et al. CLEVR: A Diagnostic Dataset for Compositional Language and

Elementary Visual Reasoning. 2016. arXiv: 1612.06890 [cs.CV].

https://arxiv.org/abs/1301.3847
https://arxiv.org/abs/1805.10872
http://yann.lecun.com/exdb/mnist/
https://doi.org/https://doi.org/10.1016/B978-1-55860-307-3.50022-8
https://doi.org/https://doi.org/10.1016/B978-1-55860-307-3.50022-8
https://www.sciencedirect.com/science/article/pii/B9781558603073500228
https://www.sciencedirect.com/science/article/pii/B9781558603073500228
https://doi.org/10.3115/1073083.1073085
https://aclanthology.org/P02-1001
https://aclanthology.org/P02-1001
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1009.3798
https://arxiv.org/abs/1009.3798
https://doi.org/10.1007/bf02418571
https://doi.org/10.1007/bf02418571
https://doi.org/10.1007/bf02418571
https://arxiv.org/abs/1612.06890

BIBLIOGRAPHY 57

[45] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.

arXiv: 1412.6980 [cs.LG].

https://arxiv.org/abs/1412.6980

Appendix A

A.1 PLVAE Architecture

In Table A.1 and A.2 we report the architecture of PLVAE. In all the experiments we trained

the model with with Adam [45] with a learning rate of 1× 10−3.

PLVAE Encoder
Input 28× 56× 1
Conv layer 4× 4× 32 & ReLU
Conv layer 4× 4× 64 & ReLU
Conv layer 4× 4× 128 & ReLU
Linear layer 1792× 14

Table A.1

PLVAE Decoder
Linear layer 5× 10 & ReLU
Linear layer 5× 6
ProbLog (IN dim: 6, OUT dim: 9)
Linear layer 1792× 7
Conv layer 5× 4× 128 & ReLU
Conv layer 4× 4× 64 & ReLU
Conv layer 4× 4× 32 & Sigmoid

Table A.2

A.2 Baseline: Modified CCVAE

In the original paper [18], there was a direct supervision on each single element of the

latent space. To preserve the same type of supervision in our two digits addition task, where

the supervision is on the sum and not directly on the single digits, we slightly modify the

encoder and decoder mapping functions of CCVAE. By doing so, we ensure the correctness of

the approach without changing the graphical model.

The original encoder function learns from the input both the mean µ and the variance σ of the

latent space distribution, while the decoder gets in input the latent representation z = {zc, z\c}

(please refer to the orginal paper for more details [18]).

58

A.3. MNIST CLASSIFIER 59

In our modified version, the encoder only learns the variance, while the mean is set to be equal

to the image label µ = y, and the decoder gets in input the label directly z∗ := {y, z\c}. The

encoder and decoder architecture are reported in Table A.3 and A.4.

CCVAE Encoder
Input 28× 56× 1
Conv layer 4× 4× 32 & ReLU
Conv layer 4× 4× 64 & ReLU
Conv layer 4× 4× 128 & ReLU
Linear layer 1792× 16

Table A.3

CCVAE Decoder
Linear layer 1792× 8
Conv layer 5× 4× 128 & ReLU
Conv layer 4× 4× 64 & ReLU
Conv layer 4× 4× 32 & Sigmoid

Table A.4

A.3 MNIST Classifier

In Table A.5 we report the architecture of the MNIST classifier used to measure the gener­

ative ability of PLVAE and the baseline. We trained the classifier on 60, 000 MNIST images

[37] for 15 epochs with SGDwith a learning rate of 1×10−2 and a momentum of 0.5, achieving

0.97 accuracy on the test set.

MNIST classifier
Input 28× 28× 1 channel image
784× 128 Linear layer & ReLU
128× 64 Linear layer & ReLU
64× 10 Linear layer & LogSoftmax

Table A.5

	Abstract
	Introduction
	Background
	Probabilistic Graphical Models
	Variational Inference
	Deep Generative Models
	Variational Autoencoders

	Logic Programming
	ProbLog
	DeepProbLog
	Gradient-based learning in ProbLog

	Model
	Graphical Model
	The prior: ProbLog
	Objective Function
	Learning

	Related Work
	Results
	Base Task: Two Digits Addition
	Evaluation
	Experiment 1: Generation
	Experiment 2: Conditional Generation
	Experiment 3: Task Generalization
	Experiment 4: Data Efficiency

	Conclusions
	Bibliography
	Appendix
	
	PLVAE Architecture
	Baseline: Modified CCVAE
	MNIST Classifier

