
Alma Mater Studiorum · Università di Bologna
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Abstract

Many neurodegenerative diseases -including the Amyotrophic Lateral Sclerosis (ALS)-

are associated with the presence of protein aggregates. Over 97% of ALS cases feature

pathological inclusions that are mainly composed by the human TAR DNA-binding Pro-

tein 43 (TDP-43) and affect the cortical and spinal neurons. This thesis studies the aggre-

gation process of the two types of TDP-43 C-terminal fragments (CTFs) -corresponding

to different cleavages of the full protein- that can be found in the former. This is in-

teresting not only for the possible implications on the ALS disease, but also because

TDP-43 fragments are a useful system model for protein aggregation. The interaction

model proposed in this work starts from a cross-β spine model, which hypothesizes that

the CTFs’ RRM2 fragment is at the core of the aggregation, thanks to the exposition

of the aggregation prone β-strands following the proteolysis. By designing specific in-

terfering aptamers which can bind to the RRM2 binding regions, we should be able to

prevent another CTF to bind to that site. Still, the structures of these fragments have

not been deeply studied yet and their conformations are not available, since their high

aggregation propensity makes it difficult to perform an experimental investigation. To

propose some possible binding regions, we analyze the RRM2 fragments trajectories re-

sulting from Molecular Dynamics (MD) simulations. By applying a cluster analysis on

the two-principal components projections of these trajectories, we find the fragments’

equilibrium conformations. Next, we verify the shape complementarity between the 3D

molecular surfaces of these equilibrium configurations by means of the 2D Zernike

polynomial expansion. Among these Zernike selected binding regions, we select the

ones that would be able to bind an aptamer, i.e. the ones with a positive surface charge.

Proposing these binding regions is the final step of this thesis, but not of our work. Start-
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ii ABSTRACT

ing from these results, we plan to perform additional studies. For example, we will verify

our conclusions with Brillouin microscopy: if the suggested binding regions are really at

the core of the aggregation, following the insertion of expressively designed aptamers in

CTFs-expressing cells, the number and dimension of aggregates will decrease.
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Chapter 1

Introduction

Many of the molecular mechanisms underlying the pathological aggregation of pro-

teins observed in neurodegenerative diseases are still not fully understood. Among the

diseases associated with protein aggregates, the Amyotrophic Lateral Sclerosis (ALS) is

of relevant importance. ALS, introduced in the biological overview of Section 2, is a neu-

rodegenerative disease specifically affecting cortical and spinal motor neurons. Although

understanding the primary causes of the disease is still an open challenge, its relation-

ship with protein aggregation is widely known. The human TAR DNA-binding Protein

43 (TDP-43), a RNA/DNA binding protein involved in RNA-related metabolism, is a

major component of these pathological inclusions [1, 2].

While the deposition of the phosphorylated full-length TDP-43 in spinal-cord cells has

been widely studied, it has been shown that the brain cortex presents accumulation of

phosphorylated C-terminal fragments (CTFs) [3–7]. The two kind of CTFs that we study

correspond to a portion of the full protein including only the last 195 or 206 residues

respectively. In this thesis, we want to investigate the CTFs aggregation process. Even

if it is debated whether CTFs represent a primary cause of ALS, they are a hallmark

of TDP-43 related neurodegeneration in the brain [8]. The analysis of the CTFs could

have important implications not only because of their biological role in the cell, but also

in relation to the study of the interaction between proteins: a fragment of TDP-43 is a

useful system model for protein aggregation, since its small dimension allows us explore

the conformational space with high efficiency and non prohibitive computational times.

1



2 1 Introduction

Here we provide a possible computational model for the molecular interactions, based on

extensive Molecular Dynamics (MD) simulations performed with GROMACS [9] to ex-

plore the conformational space, and on the evaluation of shape complementarity between

the exposed regions of the different sampled conformations. We start our project from

what is known in literature to date: CTFs are composed by the disordered C-terminal

domain (CTD) and a fragment of RRM2, a folded domain of known structure. The

latter could be of fundamental importance for the protein’s aggregation, since after the

TDP-43 proteolysis it partially misfolds and exposes the aggregation prone β-strands.

These β-strands could be at the core of the aggregation, since they are able to give rise

to amyloid structures [5, 10]. Since the RRM2 domain is ordered and structured, it is

possible to investigate the shape of its molecular surface, and consequently the comple-

mentarity between the shapes of different fragments’ surfaces.

Aim of this work is to suggest some possible binding regions on the RRM2 fragments that

in the future could be taken as starting point for designing specific interfering molecules.

This is achieved in three steps:

1. Molecular Dynamic (MD) simulations for the two RRM2 fragments (corre-

sponding to a cleavage at two different sites) that can be found in CTFs, with the

aim of exploring their equilibrium conformations. To perform a complete study

of these regions of TDP-43, we employ MD simulations to study the evolution of

the whole RRM2 as well. All simulations are carried on for 10 µs. A theoretical

introduction to these topics is given in Sections 3 and 4, whereas in Section 5 we

discuss the application of these methods in our case. In Section 7 we present the

results of the MD simulations we performed, and in Appendix A we analyse in

more details these simulations (in particular their minimization and equilibration

phases). To obtain the fragments’ equilibrium conformations, we firstly apply a

Principal Component Analysis (PCA) on the trajectory resulting from each MD

simulation. In this way, we get an essential representation of the dynamics. Then,

we implement a cluster analysis on the projection of each trajectory on its first two

principal components. Our aim is to find the most representative conformations for

each one of the possible conformations that the fragment can take at equilibrium.

We are assuming that each cluster’s center (or centroid) is a good representative
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of that cluster: the structures corresponding to these centroids are the equilib-

rium conformations. In Appendix B we discuss in more details how the Principal

Component (PC) and K-means clustering analyses are implemented.

2. We then sample the set of exposed portions of the 3D molecular surface of these

equilibrium conformations to find complementary regions between the molecular

surfaces. With this aim, we adopt a newly developed approach based on Zernike

polynomials and presented in Section 6. The 2D Zernike polynomial expan-

sion is a new method [11] (developed at the Center for Life Nano-science & Neuro-

Science, Fondazione Istituto Italiano di Tecnologia1 in 2020) for assessing whether

and where two proteins can interact with each other to form a complex. In our

case we are going to apply it, in Section 7, to the 3D structures obtained with the

MD simulations of the two fragments of RRM2.

3. Among these Zernike-selected regions, we identify the ones that could be at the

core of the CTFs aggregation, and propose them as candidate binding regions.

We propose as well a set of binding regions that could be able to bind to specifi-

cally designed aptamers. Aptamers are short oligonucleotide or peptide molecules

selected via in vitro evolution to bind, with high affinity and selectivity, to a target

molecule of interest, including proteins, peptides, and carbohydrates. They can be

potentially used in diagnostic and therapeutic applications or as molecular sensors.

Aptamer-binding regions are proposed since in the future we will test our results by

inserting these aptamers in cells expressing CTFs aggregates: if our predictions are

correct, after the aptamers insertion the number and dimension of the aggregates will

diminish.

In the future, we plan to test this variation with experimental measurements on cells

in vitro, employing Brillouin microscopy [12]. Brillouin microscopy can probe the

viscoelastic properties of biological samples: since the aggregates are characterised by a

more solid consistency compared to the surrounding cytoplasm, they are clearly visible

with such a tool. In Section 8 we discuss the design of these aptamers and the Brillouin

measurements, together with all the other studies that we would like to implement in

1Viale Regina Elena 291, 00161 Rome, Italy.
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the future. As an additional future study, we will deepen the analyses of the MD sim-

ulations trajectories with our newly developed computational method for the minimal

representation of a surface [13], that will allow us to analyze a higher number of MD

simulations’ frames.



Chapter 2

Biological overview

2.1 TDP-43 in relation to the ALS

The Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder that

is typically adult-onset, and is characterized by progressive loss of upper motor neurons

in the motor cortex and corticospinal tract, and lower motor neurons in the spinal cord

[14]. This leads to denervation and rapid atrophy of specific muscle groups, which usually

eventuates in death by respiratory failure [15].

Over 97% of ALS cases, both sporadic and familial, feature TDP-43-positive inclusions

in the cytoplasm of affected neurons [6, 7, 16].

TAR DNA-binding protein 43 (TDP-43) is a nuclear factor that regulates transcription,

pre-mRNA splicing and processing, regulation of translation, and RNA stability [3]. It

consists of 414 amino acid residues, divided in 4 domains:

• The N-terminal domain (NTD). It has a well-defined fold, and has been shown

to form dimer or oligomer in physiological conditions. It contains the Nuclear

Localization Signal1 (NLS).

• The RNA recognition domain 1 (RRM1), spanning residues 106-176. It is a

folded RNA recognition motif.

• The RNA recognition domain 2 (RRM2). It stabilizes RRM1 and works

1Amino acid sequence that tags a protein for import into the cell nucleus by nuclear transport.

5



6 2 Biological overview

together with it as a RNA recognition motif [17, 18]. Its structure is stable and

comprises two α-helices and five β strands assembled in a β sheet, according to a

β1-α1-β2-β3-α2-β4-β5 topology [18].

The RRM2 contains the Nuclear Export Signal2 (NES).

• The C-terminal domain (CTD). It is unstructured and contains a glycine-rich

region. The CTD is involved in protein-protein interactions, is aggregation prone

and harbors most of the mutations associated with familial ALS. It also possesses

high propensity to phase separate [4].

The human TDP-43 is localized in healthy cells mainly in the nucleus [3, 7], where it

forms dimer or oligomer via its NTD [3, 5]. These head-to-tail TDP-43 oligomers repre-

sent the functional form of the protein in vivo, and their destabilization results in loss

of alternative splicing regulation of known neuronal RNA targets [4].

During neurodegenerative disease, TDP-43 undergoes a vast array of post-translational

modifications, including phosphorylation, acetylation, and cleavage [5, 7]. The deposi-

tion of the phosphorylated full-length TDP-43 is primarily located in the spinal-cord

cells [7].

Nevertheless, the inclusions can be formed not only by the full-length TDP-43, but by

the C-terminal fragments (CTFs) that results from its cleavage as well [2–7].

The CTFs aggregates can be mainly found in the brain cortex [6, 7] and are rarely ob-

served in the spinal cord, even if ALS involves dramatic degeneration of spinal motor

neurons. Moreover, despite forming disease reminiscent inclusions, TDP-43 CTFs typi-

cally do not confer a toxic gain of function, leaving markers of cytotoxicity and apoptosis

unaltered. Therefore, they are described as a neuropathological signature of these dis-

eases [8]. However, there is some evidence that they disrupt RNA splicing by TDP-43,

because of the loss of the NTD [3, 4, 8].

The aggregation of the CTFs would seem to start from the disruption of the physiological

oligomerization of TDP-43 [5]. The NTD-driven head-to-tail oligomerization indeed spa-

tially separates the highly aggregation prone CTDs of consecutive TDP-43 monomers,

antagonizing cytoplasmic aggregation [3, 4, 7]. But if a preoteolytic cleavage releases the

2Amino acid sequence that tags a protein for export from the cell nucleus to the cytoplasm by nuclear

transport.
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CTD, together with a truncated RRM2 fragment, these free portions of the protein are

free to aggregate [3, 5].

In addition to this, the removal of the NTD increases the cytoplasmic localization, since

it deprives the resulting CTF of the NLS.

2.2 C-terminal fragments

The CTFs of TDP-43 correspond to only the last 194 or 206 residues [5] of the full

protein and can be obtained from two different cleavages, at site 219 or 208 respectively

[19].

In normal conditions, TDP-43 may be cleaved into smaller fragments before being enzy-

matically degraded to maintain physiological levels [20, 21]. TDP-43 is processed by a

range of cysteine proteases, including caspases and calpains. To explain the generation of

CTFs in TDP-43 proteinopathies, it has been hypothesised that disease-related factors

such as cell stress and genetic mutations may modulate the activity of these enzymes

[7, 8]. A second hypothesis is that CTFs may also arise from alterations at the tran-

scriptional level [8].

2.3 CTFs aggregation model

While it is already known that the CTD is aggregation-prone, the RRM2 fragment

of the CTFs could be of fundamental importance for the aggregation [22, 23] as well.

The truncated RRM2 fragments are prone to aggregation because of the absence of the

RRM1 domain, to which RRM2 is connected in the full TDP-43 protein. This absence

causes the loss of the stabilizing interaction between the two, together with the expo-

sition of the RRM2 normally buried β-strands [5, 17, 22] after the TDP-43 proteolysis

and the consequent RRM2 partial unfolding.

These β-strands have been found to form fibrils in vitro [6]. This means that they could

be at the core of the aggregation, because they are able to form steric zippers between

different CTFs that then, following a typical atomic model for amyloid fibril structure
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[10] formation, give rise to amyloid structures [5].

Amyloid fibrils consist of packed β-sheets that run parallel to the fibril axes. Each β-sheet

adheres to its neighboring sheet through the side chains that project roughly perpendic-

ular to the fibril axis, toward the neighboring sheet. This interdigitation between the

side chains of mating sheets is the so-called steric zipper.

In support of this hypothesised aggregation model, it has been confirmed that some re-

gions of RRM2 can form different classes of steric zipper structures [7, 19].

This model has already been introduced in [5], but we are going to deepen the investiga-

tion of its structure via computational tools. Figure 2.1 shows a schematic representation

of the proposed process at the base of the TDP-43 CTFs aggregation. It depicts the cleav-

age that disrupts the physiological TDP-43 oligomerization and the subsequent aggrega-

tion of the resulting fragments, composed by the CTD and a RRM2 fragment. Figure

Figure 2.1: Hypothesised model for the TDP-43 CTFs aggregation.

A) TDP-43 in physiological conditions forms dimers. B) After the cleavage the CTF is split from the whole protein. C)

The RRM2 fragment resulting from the cleavage exposes its β-strands. D) The β-strands from different CTFs allow the

formation of aggregates to happen.

2.1 shows the β strands within RRM2 prone to fibril formation forming two-dimensional

sheet-like fibrils. But the truncated RRM2 are packed into long three-dimensional fibril

bundles, indicating that not only the aggregation-prone segments are important, but



2.3 CTFs aggregation model 9

also the overall three-dimensional structure of RRM2 may be critical for the formation

of large filaments [5].

The importance of the 3D structure plays a key role both in the MD simulation approach

and in the Zernike polynomials based method for analysing the shape complementarity

(for more details see Sections 7.1 and 7.2 respectively).

2.3.1 The RRM2 fragment’s role in aggregation

In physiological conditions RRM2 is a really stable domain, thanks to a cluster of

twelve connected hydrophobic residues in its core [6]. It plays a role in aggregation after

its cleavage and separation from the RRM1 domain, which result in the misfolding of

RRM2 and, as a second step, in its aggregation.

Indeed, in a study of the RRM2 unfolding model [17], it has been found that the mu-

tually stabilizing interaction between RRM1 and RRM2 reduces the population of an

intermediate state of RRM2 linked with pathological misfolding. This intermediate state

may enhance the access to the NES contained within its sequence and serve as a molec-

ular hazard linking physiological folding with pathological misfolding and aggregation.

Consequently, isolating or fragmenting the RRM2 removes this stabilizing contribution

from RRM1 and allows this region of TDP-43 to sample a potentially pathogenic folded

state that increases the transport to the cytoplasm and exposes the hydrophobic residues

and aggregation prone peptides of RRM2.

This is in accordance with the conformational selection model [24]: a protein is a col-

lection of coexisting conformation with different population distributions. Each one of

these conformations can selectively bind the most suitable partners. However, according

to this model the bound conformations are sampled by the protein even when it is not

bounded to a partner. In other words, the conformational change of a protein can occur

before a binding event, rather than being induced by the event itself [25]. The assump-

tion of the validity of this model is at the core of our study of the CTFs aggregation, since

we are indeed looking at the conformations sampled by each single and free fragment.

This model also suggest that the right partner might act as a ”molecular chaperon”

by stabilizing a non-pathological state: among the conformations of the dynamically

fluctuating protein, this partner selects the one compatible with binding, and shifts the
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conformational ensemble towards this state [26].

2.4 Unveiling the self-assembly of the C-terminal

fragments

The aggregation of TDP-43 is strongly influenced by the interaction with DNA and

RNA: RNA aptamers are able to interfere with the aggregation kinetic, as a function of

their nucleotides composition, binding affinity and length [24].

Assuming the validity of the cross-β spine model for the CTFs aggregation, by binding

an aptamer to the RRM2 site that forms the ”spine” of the fibril, we should be able to

prevent another CTF to bind to that site. This is indeed an almost mandatory choice

since the RRM2 fragment is the only part of the CTFs that we can control (with both

MD simulations and the Zernike method) because of the CTD disordered structure:

such a disordered structure does not have an equilibrium conformation that can be se-

lected as the most representative one for the study of the binding.

The designing of this interfering molecule should obviously consider the binding compat-

ibility to the misfolded conformation of the RRM2 fragments, which is not available yet

in literature.

Because of this, we use MD simulations to study the conformations of the fragments

after the cut.



Chapter 3

General Molecular Dynamics

approach

Molecular Dynamics (MD) simulations are a technique for computing the equilib-

rium and transport properties, that can be applied to classical many-body system to

perform measurements of their physical observables. For a basic implementation of MD

simulations, we have to select a model system consisting of N particles, set the initial

conditions at a time t0 and then we integrate the Newton’s equations of motion for this

system. These equations are give by

mi
d2ri(t)

dt2
= Fi, i = 1, ..., N, (3.1)

where mi and ri are the ith particle mass and position respectively. Fi is the force

experienced by the ith particle, and its expression is fixed by the assumption of a force

field Vi(r1, ..., rN) acting on the ith particle and calculated by its classical expression:

Fi = −∂Vi(r1, ..., rN)

∂ri
(3.2)

MD simulations solve these equations simultaneously in small time steps: the system is

followed in this way for some time, and the coordinates are written to an output file at

regular intervals, so that we are able to know dynamical variables such as the position

and the velocity coordinates for each particle at each step of the integration. These

variables are necessary to measure an observable, which to be calculated must first be

11
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expresses as a function of them. As an example we can look at the operative definition

of temperature. Assuming that the equipartition theorem for the average kinetic energy

per degree of freedom for a system in equilibrium at temperature T holds, we can write

<
1

2
miv

2
i >=

1

2
kBT, (3.3)

from which

T (t) =
N∑
i=1

< miv
2
i (t) >

kBN
. (3.4)

The brackets <> indicate a statistical ensemble average of quantities.

Despite the complexity of solving 6N non linear differential equations, thanks to this

technique we can achieve a precision when determining positions and velocities that is

not accessible in real experiments.

Despite being a successful and commonly used technique, the MD simulation may fail

if a starting conformation is very far from the equilibrium state in typical experimental

conditions, since in this case the forces may be excessively large. In such a situation,

a robust energy minimization (for more details see Section 4.1.2) is required. Another

reason to perform an energy minimization is the removal of all the kinetic energy from

the system: if several snapshots from dynamic simulations must be compared, energy

minimization reduces the thermal noise in the structures and potential energies so that

they can be compared better.

In addition to the energy minimization, there is a set of necessary conditions for the

implementation of this method:

• The initial conditions on positions and velocities must be given.

• The expression of the Hamiltonian H describing the system whose potential is used

to calculate forces must be known as well.

• The particles positions and momenta at each time step have to be integrated and

updated.

To choose the best algorithm to integrate Newton’s equation of motion, we must take

into account some considerations:
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• Its speed is not fundamental, because the fraction of time spent on integrating the

equations of motion is small compared to the computation of the interactions.

• We must give a bigger importance to the large time step accuracy, because the

longer the time step that we can use, the fewer evaluations of the forces are needed.

Algorithms that allow the use of a large time step are based on the storing of

information on increasingly higher-order derivatives of the particles coordinates.

• Another important criterion is energy conservation, that we can divide in two kind:

short time and long time energy conservation. The higher-order algorithms allow

bigger time steps, while on the other hand tend to have a good energy conservation

for short time but overall energy drifts for long times.

On the contrary, Verlet-style algorithms tend to have moderate short-term energy

conservation but little long-term drift.

• None of these algorithms can predict accurately particles’ trajectories for both long

and short times. This is because, usually, the systems studied with MD simulations

are in a regime whose trajectory thorough the phase space depends strongly on the

initial conditions: two trajectories that are initially close will diverge exponentially

as time progresses. The integration error of the algorithm causes the initial small

difference between the true trajectory and the one generated by the simulation, and

as a consequence an exponential divergence between them. This is the so-called

Lyapunov instability.

Nevertheless, these inaccurate trajectories can be used because considerable numer-

ical evidence [27] suggests the existence of the so-called shadow-orbits. A shadow

orbit is a true trajectory of a many-bodies system that closely follows the numerical

trajectory for a time that is long compared to the time it takes the Lyapunov in-

stability to develop. In other words, the results of the simulation are representative

of a true trajectory in the phase space, even though we cannot tell a priori which.

• Another requirement we must check for when choosing an integration algorithm, is

time reversibility: since Newton’s equations of motion are time reversible, so should

be the algorithm. However, even when considering a time-reversible algorithm,
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the numerical implementation will not be truly time-reversible, because of the

computer’s finite machine precision.

• Many numerical schemes, especially the ones that are not time reversible, differ

in another crucial aspect from Hamilton’s equation of motion: the area-preserving

property, in that they define a dynamic that changes the magnitude of any volume

element in the phase space. The expansion of the system in the phase space is not

compatible with energy conservation: non-reversible algorithms will have long-term

energy drift problems.

With respect to these considerations, the most simple and best performing algorithms

used to integrate the equation of motions are the Verlet-like ones. Verlet-like algorithms

are a good choice for most MD applications, because higher-order schemes require more

storage and are often neither reversible nor area preserving.

In particular the Leap-Frog algorithm is the default integration algorithm for GROMACS

[9] MD simulations (as discussed in Section 4.1).

Verlet

The Verlet algorithm is fast and requires little memory but, since it is not particularly

accurate for long time steps, needs to compute frequently the forces. On the other hand,

it has a fair short-term energy conservation and a little long-term energy drift: this is

related to the fact that the Verlet algorithm is time-reversible and area preserving. It

does not conserve the precise total energy of the system, but it does conserve a pseudo-

Hamiltonian approaching the true Hamiltonian, in the limit of infinitely short steps. It

does not generate really accurate trajectories , but no algorithm is good enough to keep

the trajectories close to the true ones for a time comparable to the duration of a typical

MD simulation: a better algorithm would at best postpone the unavoidable exponential

growth of the trajectories’ errors by a few hundred time steps.

The derivation of the Verlet algorithm start from a Taylor expansion of the coordinate
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of a particle r(t) around time t, for a subsequent and a preceding interval:

r(t+ ∆t) = r(t) + v(t)∆t+
F (t)

2m
∆t2 +

∆t3

3!

...
r +O(∆t4)

r(t−∆t) = r(t)− v(t)∆t+
F (t)

2m
∆t2 − ∆t3

3!

...
r +O(∆t4).

(3.5)

The sum of these two equations yields:

r(t+ ∆t) + r(t−∆t) = 2r(t) +
F (t)

m
∆t2 +O(∆t4). (3.6)

This Equation leads to the Verlet position integrator:

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F (t)

m
∆t2 +O(∆t4). (3.7)

We can see how the Verlet algorithm does not use the velocity to compute new positions.

Nevertheless, their knowledge is essential in order to perform measurements on macro-

scopic quantities.

The velocity can be derived from the knowledge of the trajectory, by performing the

same Taylor expansion for r(t + ∆t) and r(t − ∆t), only up to the second order, and

subtracting them:

r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3), (3.8)

so that

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2). (3.9)

Equation 3.9 is accurate only to the order of ∆t2; in our simulation we will use the

Leap-Frog integrator, which is an extension of the Verlet algorithm that performs more

accurate estimates.

Leapfrog

Several algorithms are equivalent to the Verlet scheme, and the Leap-Frog algorithm

is the simplest one.

To obtain the Leapfrog velocity integrator we rewrite Equation 3.7 as

r(t+ ∆t)− r(t) = r(t)− r(t−∆t) +
F (t)

m
∆t2 +O(∆t4). (3.10)
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Then we divide by ∆t so as to obtain the Leapfrog velocity integrator

v(t+
∆t

2
) = v(t− ∆t

2
) + ∆t

F (t)

m
+O(∆t3), (3.11)

where we have defined v(t + ∆t
2

) = r(t+∆t)−r(t)
∆t

and v(t − ∆t
2

) = r(t)−r(t−∆t)
∆t

to represent

the half time step velocities.

It is now clear how the integration of the half time step is accurate to the order O(∆t3),

whereas the full time step velocities integration of Verlet results in a worse precision

(that goes as O(∆t2)).

To obtain the Leapfrog position integrator we rewrite Equation 3.10 as

r(t+ ∆t) = r(t) +
[
r(t)− r(t−∆t)

]
+
F (t)

m
∆t2 +O(∆t4)

= r(t) +
[
v(t− ∆t

2
) +

F (t)

m
∆t
]
∆t+O(∆t4).

(3.12)

Using Equation 3.11 we finally obtain the Leapfrog position integrator

r(t+ ∆t) = r(t) + ∆tv(t+
∆t

2
) +O(∆t4), (3.13)

which has the same precision as the Verlet position integrator from which it derives.

3.1 Molecular dynamics in the canonical ensemble

The MD simulation technique discussed up to know, is a scheme for studying the

natural time evolution of a classical system of N particles in a volume V , where the total

energy E is a constant of motion. If we assume the validity of the ergodic hypothesis, the

averages obtained from a conventional MD simulation correspond to ensemble averages

in the microcanonical NVE ensemble. In conventional MD the microcanonical ensemble

NVE is indeed generated due to the conservation laws of Hamilton’s equations. However,

this ensemble is not the best choice in our case. Andersen was the first, in 1980 [28], to

suggest that ensembles other than the microcanonical one could be generated in a MD

run in order to better mimic some experimental conditions.

The first reason is that we want to simulate biological macromolecules (in particular pro-

teins) in the cellular environment. This is reproduced more accurately by a system with
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constant number of particle, volume and temperature (NVT ensemble), or constant num-

ber of particles, pressure and temperature (NPT ensemble), than by a NVE ensemble.

The second reason is that the microcanonical ensemble does not allow thermodynamics

fluctuations of quantities. Thus the solutions of Newton’s equations of motions can not

be used to study a dissipative non-equilibrium system, which means they can not be used

to obtain transport properties. In addition to this, the fluctuations of some quantities

are necessary to keep some other constant. For example, fluctuations in temperature

are needed to maintain a constant pressure constant; moreover, they give a more likely

representation of a real physical system.

Both this remarks lead us to conclude that the canonical ensemble is a better choice over

the microcanonical one.

In particular, due to its greater likelihood with the physical cellular system, we will per-

form all simulations in the canonical isothermal-isobaric ensemble NPT. The Boltzmann

distribution for the canonical ensemble is given by

< ... >=
1

ZN

∫
(...)e−βHdrNdpN , (3.14)

where ZN is the partition function of the system:

ZN =

∫
e−βHdrNdpN . (3.15)

From now on, all the ensemble averages will be defined with the density of phase space

described by Equation 3.14.
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3.1.1 Temperature coupling

From a statistical point of view, we can impose a specific temperature on a system

by bringing it into thermal contact with a large heath bath at the desired temperature

T0. In the standard MD simulations to calculate the instantaneous temperature we can

measure the mean kinetic energy, as showed by Equation 3.4.

The condition of constant T is not equivalent to the condition that the kinetic energy

per particle is constant: indeed in a system that is in thermal equilibrium with a bath

the relative variance in the kinetic energy of each particle is related to the second and

fourth moments of the Maxwell-Boltzmann distribution.

Consequently, by using the kinetic energy per particle as a measure of the instantaneous

temperature, we can see how the instantaneous kinetic temperature T in a canonical

ensemble fluctuates.

This is the reason why the so-called isokinetic MD schemes [29] or the velocity-scaling

schemes, which keep the average kinetic energy per particle constant and do not allow

fluctuations of T , do not correctly simulate the true constant-temperature ensemble.

These schemes give incorrect results especially in the case where the measured equilib-

rium averages are sensitive to fluctuations, since they do not allow them. Moreover, they

are not time reversible.

Fortunately, there are several techniques usually implemented with success in MD to

realize an ensemble with constant (in the just discussed sense) temperature. The most

common ones are:

• The Andersen thermostat.

• The Berendsen thermostat.

• The modified Berendsen thermostat, or velocity rescaling temperature coupling.

The Andersen thermostat

This method, introduced by Andersen [30], employs an NVE integrator and period-

ically re-selects each component α of the velocities of each particle i from a Maxwell-
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Boltzmann distribution at the desired temperature:

P (vα,i) =

(
mi

2πkBT0

) 1
2

e
−
miv

2
α,i

2kBT0 . (3.16)

As the system evolves, the distribution of the velocities will depart from this distribution:

in order to control the temperature, we can ”refresh” the velocities so as to go back to

the Maxwell-Boltzmann distribution at the desires temperature.

This is intended to mimic collisions with the particles in a heath bath at a specified T0.

The strength of the coupling to the heath bath is specified by a collision frequency ν.

The stochastic collisions can be considered as Monte Carlo moves that transport the sys-

tem from one constant-energy shell to another, accordingly to their Boltzmann weight;

between them the system evolves according to the normal Newtonian laws.

Thus this MD scheme is turned into a Markov process [31]. Because of its stochastic

nature this method does not yield good result for dynamic properties: the stochastic

collisions disturb the dynamic in an unphysical way and lead to sudden random decorre-

lation of the particles’ velocities. Moreover, by randomizing correlated motions it slows

down the kinetics of system.

Berendsen thermostat

The Berendsen thermostat (or proportional thermostat) was introduced in 1984 [32]

and reproduces a weak coupling to an external bath using the principle of least local

perturbation. It is based on supplementing the Hamilton’s equations by a first-order

equation for the kinetic energy, whose driving force is the difference between the instan-

taneous kinetic energy and its target value [33]. In this way it allows the temperature

fluctuations that are present in the canonical ensemble.

This thermostat tries to correct the deviations of the actual (or instantaneous) temper-

ature T (t) from the prescribed one T0 by multiplying the velocities by a certain factor

λ, defined as

λ = 1 + γ∆t

(
T0

T
− 1

)
, (3.17)

where γ is a dumping constant related to the strength of the coupling to the bath. In

practice, the velocities are scaled at each time step so that the rate of temperature change
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is proportional to the difference in temperature. This operation is usually performed at

a predetermined frequency during equilibration, or when the kinetic energy exceeds the

limits of an interval centered around the target value.

This method of coupling has the advantage that the strength of the coupling can be

varied and adapted to the user requirement. However, this method suffers from the

same problem as the velocity rescaling scheme, in that the energy fluctuations are not

captured correctly and a correct canonical ensemble is not generated.

As a consequence, for small systems or when the observables of interest are dependent

on the fluctuations rather than on the averages, this method cannot be used.

Because of this, the modified Berendsen velocity-rescaling thermostat is introduced.

Modified Berendsen thermostat

In the modified Berendsen thermostat, the rescaling factor λ is calculated so as to

enforce a canonical distribution for the kinetic energy thanks to an additional stochastic

term. Instead of forcing the kinetic energy to be equal to a chosen value, we select its

target value K0 with a stochastic procedure aimed at obtaining the desired ensemble (in

our case the canonical one); this means that K0 is drawn from the canonical equilibrium

distribution for the kinetic energy.

Nevertheless, this procedure disturbs the particles’ velocities: each time the rescaling

is applied, the modulus of the velocities will exhibit a fast fluctuation. To obtain a

more smoother result, we can distribute among a number of time steps the rescaling

procedure instead of extracting a K0 at each time step [34]. This can be done because

our only requirement is that the random changes in the kinetic energy leave a canonical

distribution unaltered. Moreover, we can base the choice of K0 on its previous value, so

as to obtain a smoother evolution.

To obtain this result this method follows these steps:

1. It evolves the system for a single time step according to the Hamilton’s equations,

using a time-reversible area-preserving integrator.

2. Then it calculates the kinetic energy and evolves it for a time corresponding to

a single time step using an auxiliary continuous stochastic dynamics (that must
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preserve the canonical distribution).

3. Finally it rescales the velocities so as to enforce this new value of the kinetic energy.

This leads to a new equation in which the addition of a stochastic term ensures a correct

kinetic energy distribution, resulting in a correct canonical ensemble.

3.1.2 Pressure coupling

In the same spirit as temperature coupling, we can couple the system to a pressure

bath to achieve a constant pressure. There are several techniques to realize a coupling,

the most common ones including:

• The Berendsen pressure weak coupling scheme.

• The Parrinello-Rahman pressure coupling.

Berendsen pressure coupling

The Berendsen representation for a pressure bath follows the same idea of the Berend-

sen thermostat introduced in Section 3.1.1: it is based on the weakly coupling with a

large system at constant pressure.

The Berendsen algorithm rescales the coordinates and box1 vectors by adding an extra

term to the equation of motion that has the effect of a first-order kinetic relaxation of

the pressure towards a given reference pressure P0. Since the equations of motion are

modified by pressure coupling, the conserved energy quantity also needs to be modified.

For first order pressure coupling, the work the barostat applies to the system every step

needs to be subtracted from the total energy to obtain the conserved energy quantity.

As for the Berendsen temperature coupling, this approximation does not yield to the

NPT ensemble that we need, despite producing a simulation with the correct average

pressure. This is a problem especially in those cases in which we are interested in calcu-

lating the fluctuations in pressure or volume (for example to calculate thermodynamic

properties).

1This box refers to what is usually done in MD simulations: a cellular environment is performed by

defining a box and by filling it with a solvent.
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Because of this, we chose to perform all the simulations using the Parrinello-Rahman

thermostat, which has a true correspondence to the NPT canonical ensemble.

Parrinello-Rahman pressure coupling

The representation of constant pressure by the Parrinello-Rahman pressure coupling

is obtained by introducing friction terms in the equation of motions that are linked with

a changing of the box coordinates. The box is defined by a matrix b̂ with three vectors,

and deforms accordingly to

db̂2

dt2
= V Ŵ−1b̂′

−1
(P̂ − P̂ref), (3.18)

where V is the volume of the box, Ŵ is a matrix determining the strength of the coupling,

P̂ is the current pressure and P̂ref is the reference pressure.

The equation of motion is then given by

r̈i(t) =
Fi

mi

− M̂ ṙi(t), (3.19)

where

M̂ = b̂−1

[
b̂
db̂′

dt
+
db̂

dt
b̂′
]
b̂′
−1
. (3.20)

In the GROMACS molecular dynamics package implementation of this algorithm, the

coupling strength is given by

W−1
ij =

aπ2χij|T
3τ 2
PL

, (3.21)

where L is the largest box element, χ|T is a tensor corresponding to the isothermal

compressibility of the system and τP is the time constant of coupling between the system

and the barostat.

If the pressure is very far from equilibrium, the Parrinello-Rahman coupling may result

in very large box oscillations that could even crash the run. In that case we would have to

increase τP , or use the Berendsen pressure coupling scheme to reach the target pressure,

and then switch to Parrinello-Rahman coupling once the system is in equilibrium.

As discussed in Section 5.2, we choose to implement the modified Berendsen thermostat

and the Parrinello-Rahman pressure coupling for the simulations on which our study is

based.



Chapter 4

Implementation and analysis of MD

simulations

All kind of MD program follow the same draft:

1. Initial conditions: the starting point of the MD is the initial conformation of the

system, which must be provided by the user and includes:

• The initial structure, usually in the form of a file with the coordinates of all

the atoms in the system.

• The initial velocities of all the atoms. These values can be generated from the

Maxwell-Boltzmann distribution of velocities for a canonical ensemble, given

by:

Pv(vi, T ) =

(
mi

2πkBT

) 3
2

e
−miv

2
i

2kBT . (4.1)

Since the resulting total energy will not correspond exactly to the required

temperature T , we have to apply a correction. As a first step, the center-of-

mass motion is removed (as it should remain constantly zero, since there are

no external force acting on the system), and then all velocities are scaled so

that the total energy corresponds exactly to T .

• The definition of the potential that appears in the Hamiltonian.

• The box size, which is determined by three vectors b1, b2 and b3 that represent

the three basis vectors of the periodic box.

23
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The system topology, including the description of the force field, is a static infor-

mation, in the sense that it will never be modified during the run.

2. Forces computation: the forces have to be calculated starting from the given

potential, according to Equation 3.2. These forces can be divided in

• Forces acting between non bonded pairs.

• Forces due to bonded interactions. These can depend from up to four atoms.

• Restraining and external forces.

After the forces have been calculated, we can also compute the potential and kinetic

energies, as well as the pressure tensor.

3. Update of the conformation: this is done by integrating the equations of mo-

tion, after having taken into account the pressure and temperature coupling. In

practice, updating the conformation can be divided in three main passages:

(a) Computing the velocities and box coordinates scaling factors due to the tem-

perature and pressure coupling.

(b) Integrating the scaled equations of motion.

(c) Scaling the velocities and box coordinates values.

4. Output: in this final step the program writes down the positions, the velocities

and the requested thermodynamic quantities (like energy, pressure, temperature,

ecc). This values are recorded according to a saving step which is much larger than

the integration step, in order to have a not-too-big final file.

The last three steps are executed for each step of the total time of integration.

4.1 The GROMACS engine

These four steps are at the core of GROningen MAchine for Chemical Sim-

ulations (GROMACS) [9]. GROMACS is an engine to perform molecular dynamics
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simulations and energy minimization, originally developed in 1991 in the Biophysical

Chemistry department of University of Groningen.

The GROMACS procedure can be divided into this four parts:

• Topology generation and solvatation (Section 4.1.1).

• Energy minimization (Section 4.1.2).

• Equilibration (Section 4.1.3).

• Dynamic simulations (Section 4.1.4).

4.1.1 Topology generation and solvatation

This initial part is divided in three steps.

• To start, the user has to give in input a structure file (of the type of the Protein

Data Bank PDB structure files [35]) with the initial conformations of all the atoms

of the macromolecule.

A force field has to be selected as well taking into account all the several con-

tributions to the potential. GROMACS already provides the implementation of

different force fields.

• Once the structure file with the potential constants of interaction between atoms is

generated, the system is inserted in a box defined by the minimum distance d that

all the atoms must have from the box surface. Typically d ∼ 1 nm. The box is

filled with pure water molecules. This system is simulated with periodic boundary

conditions and the distance to the box surface has to be chosen in order to avoid

that a certain part of the solute reaches its counterpart on the other side of the

box.

• Some water solvent molecules are replaced with ions, in order to obtain an electri-

cally neutral system and avoid divergences during the force calculations. Na+ and

Cl− are the ions used to add a positive and a negative charge respectively.

At the end of these steps, we obtain the initial topology file.
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4.1.2 Energy minimization

The minimization of the potential energy is necessary, not only because of the already

discussed divergences during the integration of the equation of motion, but also because

of the how the positions of the constituent atoms of a macromolecular structure are usu-

ally determined. Larger structures are obtained through X-ray crystallography, while for

the smaller molecules through nuclear magnetic resonance (NMR). In both cases, the

structure may not be in a relaxed state (in terms of the force field) and the constituent

atoms may be distorted from their natural positions. Consequently, bond lengths and

bond angles may be distorted and steric clashes in between atoms may occur. Distances

between atoms little shorter than the equilibrium positions give rise to high energetic

contributions in terms of Van der Waals interactions: the minimization of the potential

energy of the macromolecular structure brings them back to the equilibrium values. The

resulting structure is more similar to the one observable in physiological conditions, in

the typical solvated form.

Generally speaking, the potential energy function of a molecular system is a very complex

hypersurface; it has one deepest point, the global minimum, and a very large number of

local minima.

Knowledge of all minima and of all saddle points would enable us to describe the relevant

structures and conformations and their free energies, as well as the dynamics of struc-

tural transitions. Unfortunately, the dimensionality of the conformational space and the

number of local minima is so high that it is impossible to sample the space at a sufficient

number of points to obtain a complete survey. In particular, no minimization method

exists that guarantees the determination of the global minimum in any practical amount

of time. However, given a starting conformation, it is possible to find the nearest local

minimum moving down the steepest local gradient of the potential energy function.

Aim of GROMACS is indeed to find this nearest minimum with this energy minimiza-

tion steepest descent method based on the derivative information: GROMACS simply

takes a step in the direction of the negative gradient (hence in the direction of the force),

without any consideration of the history built up in previous steps. The step size is

adjusted such that the search is fast, but the motion is always downhill.
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Steepest descent method: Despite not being the most efficient algorithm, the steep-

est descent method is robust and easy to implement.

We define r as the vector of all 3N coordinates. As a first step the forces F end the

potential energy V are calculated. Next, the new positions are calculated as

rn+1 = rn +
Fn

max(|Fn|)
hn, (4.2)

where max(|Fn|) is the largest scalar force on any atom and hn is the length of the step

n. An initial h0 must be given.

The forces and energy are again computed for the new positions:

If (Vn+1 < Vn) the new positions are accepted and hn+1 = 1.2hn.

If (Vn+1 ≤ Vn) the new positions are rejected and hn+1 = 0.2hn.

The algorithm stops when either a user-specified number of force evaluations has been

performed, or when the maximum of the absolute values of the force components is

smaller than a specified value. Since force truncation produces some noise in the energy

evaluation, the stopping criterion should not be made too tight to avoid endless iterations.

A reasonable value for can be estimated from the root mean square force a harmonic

oscillator would exhibit at a temperature T . This value is

f = 2πν
√

2mkT , (4.3)

where ν is the oscillator frequency, m the mass, and k the Boltzmannâs constant.

4.1.3 Equilibration

Energy minimization ensures that we have a reasonable starting structure in terms

of geometry and solvent orientation. To begin real dynamics, we must equilibrate the

solvent and ions around the protein. If we were to attempt unrestrained dynamics at

this point, the system may collapse because the solvent is optimized within itself and

not necessarily with the solute. Equilibration is conducted in two phases.

1. Thermalization: the first phase is conducted under an NVT canonical ensemble,

thus not turning on the pressure coupling. The system needs to be brought to the

temperature we wish to simulate.
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2. Pressurization: after the correct temperature is obtained, we can apply the equi-

libration of pressure. In this case we are going to work under a canonical NPT

ensemble.

At the end of these two procedures the system is stable and the simulation can be run.

4.1.4 Dynamic simulations

At this point, the system is ready to run the simulation. One of the most important

action performed by GROMACS is neighbours searching, which is fundamental for the

computation of the forces.

Internal forces are either generated from fixed (static) lists, or from dynamic lists. The

latter consist of non-bonded interactions between any pair of particles.

The non-bonded pair forces need to be calculated for those pairs i, j for which the

distance rij between i and the nearest image of j is less than a given cut-off radius Rc

(beyond which particle interactions are considered close enough to zero to be ignored).

GROMACS employ the Verlet list to efficiently maintain a list of all particles within a

given cut-off distance of each other.

For each particle, it constructs a Verlet list that lists all other particles within Rc, plus

some extra distance so that the list needs to be updated only every nstlist integration

steps: these results in the buffered Verlet lists.

This searching, usually called neighbor search (NS) or pair search, involves periodic

boundary conditions and determining the image.

Periodic boundary conditions: Periodic boundary conditions are used to minimize

edge effects in a finite system. The atoms of the system to be simulated are put into

a space-filling box, which is surrounded by translated copies of itself; in this way the

artifact caused by unwanted boundaries in an isolated cluster is replaced by the artifact

of periodic conditions. The periodicity still causes errors in non-periodic systems, but

these errors are less severe than the ones resulting from an unnatural boundary with

vacuum.

GROMACS uses periodic boundary conditions combined with the minimum image con-
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vention: only the nearest image of each particle is considered for short-range non-bonded

interaction terms.

4.2 Classical MD analysis

After the protein has been simulated, several analyses can be performed on the result-

ing trajectory. For this study, we compute in particular the Root Mean Square Deviation

(described in Section 4.2.1) and the radius of gyration (described in Section 4.2.2).

4.2.1 Root Mean Square Deviation:

In MD the Root Mean Square Deviation (RMSD) is the measure of the mass weighted

average distance between certain atoms of a molecule with respect to a reference struc-

ture, and is defined as:

RMSD(tref , t) =

[
1

M

N∑
i=1

||ri(tref )− ri(t)||2
] 1

2

. (4.4)

Where N is the number of considered atoms (usually the backbone of the protein),

M =
∑N

i=1 mi and ri(t) is the position of atom i at time t.

The molecule is fitted to the reference structure in order to not take into account the

translational motion.

4.2.2 Radius of gyration:

The radius of gyration of a body about the axis of rotation is defined as the radial

distance to a point which would have a moment of inertia the same as the body’s actual

distribution of mass, if the total mass of the body were concentrated there.

It is defined as the root mean square distance of the object’s parts from either its center

of mass or a given axis:

Rg(t) =

(∑
i ||ri(t)||2mi∑

imi

) 1
2

. (4.5)
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The Rg of a protein is a measure of its compactness. If a protein is stably folded, it will

likely maintain a relatively steady value of Rg, whereas if it unfolds, its Rg will change

over time. As a consequence, the Rg value is related to the shape of a protein: a change

of the latter can be identified by a change on Rg. For example, a globular protein can

be characterized by a certain Rg value, but if it ”opens-up” and takes a more elongated

structure the Rg will increase.
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4.3 Post-simulation analysis

Once the MD simulations have been performed, we have to analyze the resulting

trajectories in order to find which are the structures chosen at equilibrium by the RRM2

fragments.

With this objective, we perform the following procedure:

1. As a first step, we apply on the trajectory of each fragment a Principal Component

Analysis (PCA), described in Section 4.3.1, to study its essential motion.

2. As a second step, we apply a K-means clustering algorithm (described in Section

4.3.2) on the trajectories resulting from this dimensionality reduction technique,

in order to identify the classes of possible structures at equilibrium.

3. Finally, we take each centroid as the structure representative of the correspond-

ing class. In this way, we obtain for each fragment a certain number of possible

equilibrium conformations.

These are the conformations that we will study with a recently developed method based

on the Zernike formalism [11] (see Section 6). This method allows us to describe

compactly the shape of molecular surfaces’ portions.

4.3.1 Principal component analysis

PCA is a multivariate statistics technique that reduces the high number of degrees

of freedom in a dataset. It transforms the input data by projecting them into a lower

number of dimensions, called components.

Collective variable descriptions are particularly adapt for describing internal protein

dynamics because of the way proteins are constructed [48]: rigid secondary and super-

secondary structures and compact domains are often connected together by flexible loops

that allow them to move as quasi-rigid bodies. Consequently, to characterize the large-

scale motion of such molecules, one needs only to determine the variables that describe

the relative coordinates of these quasi-rigid elements. Indeed studies of molecular dy-

namics simulations focusing on the motions of individual atoms have found evidence for
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collective motions [48].

This gives a considerable reduction in the number of degree of freedom in comparison

to that required to describe the dynamics in atomic detail. It is this reduction that

leads to the prediction of a low-dimensional subspace in which essential protein motion

is expected to take place.

This reduction is achieved starting from a transformation of the basis vectors describing

the data (in our case the atoms positions) into an the orthogonal basis composed by the

eigenvectors of the covariance matrix Ĉ for the set of observables. The components of

such a basis, called Principal Components (PCs), are linearly uncorrelated in spite of

the possible correlation present in the ”natural” basis of data. The PCs are then sorted

in order of decreasing values of the corresponding eigenvalues. In other words, they are

ordered according to how much information about the variability of the data they con-

tain, so that the first d ones describes most of the positional deviations (where d is small

compared to 3N). The reduction of degrees of freedom is then obtained by projecting

the coordinates into a subset of this basis defined by its first d PCs and generating the

so-called d-dimensional essential space. In this way we can reduce the information loss,

where by saying ”information” we are referring to the eigenvalues of the covariance ma-

trix.

To implement PCA on the dynamics of a molecular structure in equilibrium in a given

environment, we start by eliminating the overall transitional and rotational motion (since

we are interested in the internal motion).

For each tk time frame of a simulation we can then define the coordinate vector X as

X(tk) =

(
x1(tk) y1(tk) zi(tk) ... xN(tk) yN(tk) zN(tk)

)
. (4.6)

The we define the 3N ·M -dimensional matrix X̂ whose rows are the vectors X at each

time frame (M is the number of time frames):

X̂ =


x1(t1) y1(t1) z1(t1) ... xN(t1) yN(t1) zN(t1)

...
...

...
...

...
...

...

x1(tM) y1(tk) z1(tM) ... xN(tM) yN(tM) zN(tM)

 (4.7)
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We can now define the time-covariance matrix Ĉ, whose elements are defined as:

Cij = σ2
x̃i,x̃j

=
1

M − 1

M∑
k=1

(
x̃i(tk)− < x̃i >

)(
x̃j(tk)− < x̃j >

)
,

(4.8)

where x̃i and x̃j could be any cartesian components of the coordinates vectors of the

data set objects i and j respectively. < > denotes the time average. By definition Ĉ

is a squared symmetric matrix composed by real values: therefore it is hermitian and

according to the spectral theorem, diagonalizable.

The diagonalized matrix Ĉdiag has 3N eigenvectors; to obtain a sorted progress of in-

formation through these basis components we sort them by decreasing eigenvalues and

define in this way the matrix ĈPCA.

By taking the first d columns of ĈPCA we finally obtain the projection in the d-dimensional

essential space for each time step.

A quantitative estimate of the information collected by each infect corresponding to an

eigenvalue λi, is given by the Explained Variance Ratio (EVR):

EV R(λi) =
λi∑3N
j λj

. (4.9)

4.3.2 Cluster analysis

Cluster analysis refers to several machine learning algorithms that group similar ob-

jects into groups called clusters. There are several clustering algorithms, including the

the K-means clustering, which is a partitional technique based on unsupervised machine

learning. It can be summarized as follows:

1. The user has to specify a required number K of clusters.

2. The algorithm starts with initial estimates for the K centroids, which can be either

randomly generated or randomly selected from the data set.

3. Then, the cluster centroids (or means) are computed, and objects are allocated

to the cluster corresponding to the closest (according to the Euclidean distance)
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centroid.

Each centroid is a vector with length defined by the number of variables (in our

case, the number d of principal components) containing the means of all variables

for the observation in that cluster.

4. Each cluster centroid is updated by calculating the new mean values of all the data

points in the cluster.

5. These last two steps are iteratively repeated to minimize the total within Sum

of Squared Error (SSE) (i.e., the sum of squared Euclidean distances between

items and the corresponding centroid), until the cluster assignment stop changing

significantly or the maximum number of steps is reached.

To evaluate the appropriate number of clusters (i.e. the value of K) we want to max-

imize the Silhouette Coefficient (SC), a measure of cluster cohesion and separation. It

quantifies how well a data point fits into its assigned cluster based on two factors: how

close the data point is to other points in its cluster, and how far away the data point is

from points in other clusters. The first quantity is called similarity, and for a point xi

belonging to a cluster Ci is defined as:

a(i) =
1

|Ci| − 1

∑
j∈Ci
i 6=j

d(i, j), (4.10)

where d(i, j) is the distance between data points xi and xj in the cluster Ci. For clusters

with size= 1 we set a(i) = 0.

The second quantity is called dissimilarity and is defined as:

b(i) = min
k 6=i

∑
j∈Ck

d(i, j). (4.11)

From them we can define the silhouette value for a data point xi as

s(i) =


b(i)−a(i)

max
(
a(i),b(i)

) , if |Ci| > 1

0, if |Ci| = 1

(4.12)
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The silhouette coefficient ranges between -1 and 1; larger numbers indicate that xi is

closer to its clusters than to other clusters, and consequently it has been clustered ap-

propriately. Values near 0 denote overlapping clusters.

The mean s(i) over all points of a cluster is a measure of how tightly grouped all the

points in the cluster are. Thus the mean s(i) over all data of the entire dataset is a

measure of how appropriately the data have been clustered. From the thickness of the

silhouette plot the cluster size can be visualized: if there are too many or too few clusters

the silhouette plots of the clusters will have very different widths.

The maximum value of the mean s(i) over all data of the entire dataset is called silhouette

coefficient:

SC = max
k

s̃(k), (4.13)

where s̃(k) represents the mean s(i) over all data of the entire dataset for a specific

number of clusters k.
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Chapter 5

CTFs simulations

5.1 Starting structures

The study of CTFs is a complicated matter in terms of MD simulations. The reason

for this is the presence of the disordered CTD, which can not be well controlled with

neither MD simulations nor the Zernike method. Unlike folded proteins, disordered

proteins have native states that lack a well-defined tertiary structure: because of this, it

has been unclear whether the physical models (i.e. the force fields) used in simulations

are sufficiently accurate and if the MD simulation results (that are strongly dependent

on the accuracy of the physical model used) is of good quality [49]. For what concerns

the Zernike method, disordered proteins do not have an equilibrium conformation that

can be selected as the most representative one for the application of this method.

To overcome this problems we consider only the RRM2 contribution to the CTF, the

evolution of which can be followed with standard MD simulations. This approximation is

justified by our hypothesis that the RRM2 structure is independent from the rest of the

protein, so that during the MD simulation we can neglect the CTD effect on this ordered

domain. To better understand the RRM2 role, we start by simulating its whole isolated

domain, and as a second step the two possible fragments resulting from the cleavages at

residue 208 and 219.

To obtain the respective initial starting structures, we begin from the PDB file of the

Nuclear Magnetic Resonance (NMR) structure of the TDP-43 tandem RRMs in complex

37



38 5 CTFs simulations

with UG-rich RNA (PDB id: 4BS2) and perform three cuts:

• With the first one we isolate the whole RRM2, corresponding to the residues 192-

269 of TDP-43.

• With the second one we select from this domain only the residues 209-269; this is

what we call Fragment A.

• With the last cut we delete all the residues except the range 220-269; this is what

we identify as Fragment B.

Figure 5.1 shows the three resulting structures: However, the resulting dynamic is prob-

Figure 5.1: Starting structures for the MD simulations.

A) Starting structure of the whole RRM2. B) Starting structure of Fragment A. C) Starting structure of Fragment B.

ably much different from the one of the RRM2 fragments in the CTFs in vivo, for two

reasons:

1. We are neglecting the presence of the CTD, which constitute the bigger portion of

the CTFs.

2. The misfolded conformations of the RRM2 fragments (that is, the conformation

that are chosen by the fragments after the two possible cleavages) are not available

jet in literature. Our simulations simply started from the structure obtained after

a cut of a structure formed by RRM1 and RRM2 alone.
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In order to observe the evolution of the protein towards these misfolded conforma-

tions (as well as to find the equilibrium conformations with a lower uncertainty)

we perform extensive simulations (each of 10 µs).

To verify if our simulations’ results are correct, as a continuation of this thesis work, we

will carry out experimental measures on cells in vitro, as described in Section 8.

5.2 Settings of the MD simulations

Generation of the system topology and definition of box and solvate

To simulate the evolution of each of these fragments, we generate the system topol-

ogy using the CHARMM-27 force field [50], the standard force field for proteins, and the

Verlet cutoff-scheme.

Each fragment is placed in a rhombic dodecahedron simulative box, with periodic bound-

ary conditions, filled with TIP3P water molecules [51]. The system of the whole RRM2

includes 5269 water molecules, Fragment A 4607 and Fragment B 4658. The rhombic

dodecahedron box is built so that each atom of each fragment is at least at a distance

of 11 Å from the box borders. Its volume is 71% of the one of a cubic box of the same

periodic distance: fewer water molecules have to be added to solvate the protein. For

a protein to have the correct behavior there need to be at least two or three layers of

water around it: with 11 Å there is space for approximately five layers.

Minimization and equilibration

After the topologies of the systems are built , the final system of the whole RRM2,

consisting of 17038 atoms, is first minimized with 371 steps of steepest descent. In the

same way, the system of Fragment A, consisting of 14777 atoms, is minimized with 102

steps, whereas the system of Fragment B, consisting of 14759 atoms, is minimized with

346 steps. Each step has a size of 0.01, while the force limit value is set to max(|Fn|) <
103 kJmol−1nm−2.

The thermalization and pressurization of the systems in NVT and NPT environments

are run each for 0.1 ns at 2 fs time-step (for a total duration of 100 ps each), with
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a saving step for coordinates, velocities and energies of 1 ps. The temperature is kept

constant at 300 K with a Modified Berendsen thermostat and the final pressure is fixed

at 1 bar with the Parrinello-Rahman algorithm [52] (with a time constant of coupling

between the system and the barostat of τP = 2 ps), which guarantees a water density

close to the experimental value of the SPC/E model of water1 of 1008 kg/m3.

The LINCS algorithm [53] is used to constraint h-bonds.

For all the three simulations, we can perform a first initial control on the correctness

of the minimization and equilibration phases by looking at the evolution in time of the

related quantities:

1. During the energy minimization, the average potential energy should be minimized

by the steepest descent method.

2. During the temperature equilibration, the temperature of the system should reach

quickly the desired plateau (in our case, 300 K) and then remain stable during the

rest of the equilibration.

3. During the pressure equilibration, we impose a stabilization of the system pressure

around a final value of 1 bar, which guarantees a water density close to the exper-

imental value of the SPC/E model of water of 1008 kg/m3.

Actually, pressure is a quantity that fluctuates widely over the course of a MD

simulation: what we have to check is that the average value computed for each

simulation is not, statistically speaking, distinguishable from this reference value.

4. To have an ulterior control on the stabilization of the pressure, we can look at the

evolution of the density, which should be indeed similar to the one of water. In

addition to this, we expect the density values to be very stable over time, indicating

that the system is well-equilibrated.

All these requests are respected in our simulations, as discussed in Appendix A.

1The Extended Simple Point Charge model (SPC/E) is a slight reparameterisation of the Simple

Point Charge (SPC) model of water.
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MD production

Once the minimization and equilibration processes have been performed and checked,

the simulation can begin.

The systems are simulated with a 2 fs time-step for 10 µs in periodic boundary condi-

tions, using a Verlet cutoff-scheme of 12 Å for the evaluation of short-range non-bonded

interactions and the Particle Mesh Ewald method [54] for the long-range electrostatic

interactions. For the MD production the saving step for coordinates, velocities and en-

ergies is 10 ps.

For all these steps the Leap-Frog integrator and the Verlet cut-off scheme are used.

The resulting trajectory needs to be corrected for periodicity: since during the simulation

the protein will diffuse through the unit cell, we need to recenter it to avoid ”jumps”

across to the other side of the box.

5.3 Parameters choice

In Section 7 we present the results of the CTFs simulations and their analysis. Here, in

Table 5.1 we summarize the values of the parameters (already presented in the preceding

Sections) chosen for these simulations.
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Topology generation and definition of the box and solvate

Force field CHARMM 27

Cutoff-scheme Verlet

Unit cell Rhombic dodecahedron box

Solvent Water (TIP3P geometry)

Energy minimization

Force limit value max(|Fn|) < 103 kJmol−1nm−2

Minimization step size 0.01

Maximum number of minimization steps 5 · 104

Thermalization

Integrator Leap-Frog

Maximum number of steps 5 · 104

Integration step 2 fs

Temperature coupling Modified Berendsen thermostat

Reference temperature T = 300 K

Saving step (for coordinates, velocities and energies) 1 ps

Pressurization

Integrator Leap-Frog

Maximum number of steps 5 · 104

Integration step 2 fs

Pressure coupling Parrinello-Rahman

Time constant of coupling
between the system and the barostat

τP = 2 ps

Reference pressure p = 1 bar

Saving step (for coordinates, velocities and energies) 1 ps

MD production

Integrator Leap-Frog

Maximum number of steps 5 · 109

Integration step 2 fs

Saving step (for coordinates, velocities and energies) 10 ps

Cutoff-scheme Verlet

Table 5.1: Parameters values chosen for the CTFs MD simulations.
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Zernike polynomial expansion

Recently, in the year 2020, a new method based on the Zernike 2D polynomial

expansion has been developed [11], with the aim of evaluating whether and where two

proteins can efficiently interact with each other to form a complex. This new method,

that we are going to call 2D Zernike , is an unsupervised computational approach that

looks at the shape complementarity between molecular surfaces. Indeed a key aspect for

the evaluation of interactions is the identification of the binding interfaces (or hot-spots)

[36–40].

Even if much of the information about the interaction is encoded in the chemical and ge-

ometric features of the structures (interactions between proteins sum up a very complex

interplay between electrostatic, hydrophobic, and geometrical requirements), the set of

possible contact patches and of their relative orientations are too large to be computa-

tionally affordable in a reasonable time, thus preventing the compilation of a reliable

interactome.

Fortunately, the shape of local surface regions has a key role as well in predicting protein

ability to bind its molecular partner [41]. This is because at shorter distances, the shape

complementarity between the interacting portions dictates the stabilizing role exerted

by van der Waals interactions. Biological complexes typically exhibit intermolecular in-

terfaces of high shape complementarity.

Indeed, by expanding the well-exposed molecular surface patches in term of 2D Zernike

polynomials, the Zernike method is able to rapidly and quantitatively measure the

43
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geometrical complementarity between interacting proteins by comparing their molecular

surfaces.

Compared to 3D Zernike [42–47], this method is much faster. Both evaluate the shape

complementarity of protein-protein interfaces with the Zernike expansion, which asso-

ciates each portion of molecular surfaces with an ordered set of numerical descriptors.

These descriptors are invariant under rotation, allowing easy metric comparison between

the shape of different protein regions without the considerable computational cost that

would be required to consider all possible relative angles between the surfaces. But 2D

Zernike , while preserving all the salient traits of the 3D description, decreases the com-

putational cost, since an expansion at the same order has far less coefficient in 2D. The

gained velocity allows for the exploration of a very high number of protein regions, which

is an important advantage for the application of the method to MD simulation data.

6.1 Computational protocol

The first step of this algorithm is to select from the molecule a patch Σ, defined as the

set of surface points constituting the region of interest. Σ was chosen to be defined from

a spherical region having radius Rzernike and centered in one point of the surface. The

points contained in this sphere are divided, with a clustering from a random point that

includes only the points closer than a distance Dp, in points belonging to the surface and

points not directly connected to it (for example coming from a protuberance included in

the sphere). Only the former will constitute the patch.

Once the patch has been selected, a plane passing through Σ is built, and the coordinates

are oriented so that the z-axis has the same direction as the mean of the normal vectors

of Σ. Thus, given a point C on the z-axis, the angle θ is defined as the largest angle

between the z-axis and a secant connecting C to any point of the surface Σ. C is then

set so that θ = 45◦ and each surface point is labeled with its distance r from C. As a

next step, a square grid that associates each pixel with the mean r value calculated on

the points inside it is built. This grid will present some pixels where no point of the

surface has been projected, as well as some discontinuities on the border corresponding

to the regions where the surface has a deep saddle point that can not be captured by
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the plane of projection. Since in this situation the Zernike method would specialize in

distinguishing only where there is or there is not the surface and would not be able to

describe it, we have to fill this gaps by using the average value of the surrounding pixels.

Using too many pixels for this grid would results in too many of this empty pixels; on the

other hand, the Zernike polynomials become increasingly complex, so that the higher

order one would not be distinguishable with too few pixels. Because of this, each pixel

in the grid is divided in many pixels with that same value.

Such a 2D function can now be expanded on the basis of the Zernike polynomials.

Indeed, each function of two variables f(r, ψ) defined in polar coordinates inside the

region of the unitary circle (r < 1) can be decomposed in the Zernike basis as

f(r, ψ) =
∞∑
n′=0

n′∑
m=0

cn′mZn′m(r, ψ), (6.1)

with

cn′m =
n′ + 1

π

∫ 1

0

dr r

∫ 2π

0

dψZ∗n′m(r, ψ)f(r, ψ) (6.2)

and

Zn′m = Rn′m(r)eimψ. (6.3)

cn′m are the expansion coefficients, while the complex functions Zn′m(r, ψ) are the Zernike

polynomials. The radial part Rn′m is given by

Rn′m(r) =

n′−m
2∑

k=0

(−1)k(n′ − k)!

k!
(
n′+m

2
− k
)
!
(
n′−m

2
− k
)
!
. (6.4)

Since for each couple of polynomials it is true that

Zn′m|Zn′′m′ =
π

n′ + 1
δn′n′′δmm′ , (6.5)

the complete sets of polynomials forms a basis, and knowing the set of complex coeffi-

cients cn′m allows for a univocal reconstruction of the original patch.

The norm of each coefficient zn′m = |cn′m| constitutes one of the Zernike invariant de-

scriptors.

Figure 6.1 shows a schematic representation of the steps implemented for the Zernike

method. Once a patch is represented in terms of its Zernike descriptors, the shape
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Figure 6.1: Schematic representation of the steps of the Zernike method.

a) Molecular representation of a protein surface. The red region highlights a possible patch. b) Each patch is firstly

oriented along the z-axis, then a cone is build so that all surface points are contained inside of it. c) 2D projection of

the patch. The origin of the cone is used to assign the color in the plane, as the distance between the origin and each

point of the surface. d) Zernike invariant associated to the selected patch. Each invariant is defined as the modulus of

the coefficients obtained projecting the patch against the Zernike basis. e) Surface reconstruction at different maximum

expansion orders. Figure taken from [11].

relation between that patch and another one can be simply measured as the Euclidean

distance between the invariant vectors. The relative orientation of the patches before

the projection in the unitary circle must be considered. In fact, if we search for similar

regions we must compare patches that have the same orientation once projected in the

2D plane, i.e. the solvent-exposed part of the surface must be oriented in the same di-

rection for both patches, for example as the positive z-axis. If instead, we want to assess

the complementarity between two patches, we must orient the patches contrariwise, i.e.

one patch with the solvent-exposed part toward the positive z-axis (’up’) and the other

toward the negative z-axis (’down’). Figure 6.2 shows an example of what we mean by

’up’ or ’down’ orientation. In the former (depicted in Figure 6.2 B), the cone is built

inside the molecular surface, whereas in the latter (depicted in Figure 6.2 C) the cone is

built outside of it.

What is in practice done to understand if two surfaces have some complementary

patches is described in the following:
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Figure 6.2: Different orientation of the cone employed by the Zernike algorithm with respect to the consid-

ered patch.

A) Molecular representation of a protein surface. The red region highlights a possible patch. B) The patch can be oriented

towards the positive z-axis and then a cone is built so that all the patch points are contained in it. C) The same patch

can be oriented towards the positive z-axis, depending on the situation, and then again a cone is build so that all the

patch points are contained in it.

1. For both surfaces we compute the Zernike descriptors of the patches centered in

all the points of the two surfaces up to the selected maximum expansion order n.

2. For each point i of the surface 1, we compute the distance between the Zernike

descriptors of its patch and all the patches built on the points of the surface 2.

The minimum of these values is selected, and after all the points have been studied

these minimum values are mapped in [0, 1] and inverted. In this way, low values

of the distance are associated to high values of complementarity: at the end of the

process, the points whose corresponding patches have a high complementarity with

the other surface are associated to a value near one.

3. After all surface points are associated with these binding propensities, we perform

a smoothing process.

In this process each point is associated with a novel binding propensity (BP) com-

puted as the mean value of the points in its neighborhood, defined as all the points

having a spatial distance from it smaller than 6 Å.
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The interacting regions should be made up mostly of elements with high comple-

mentarity and therefore a high average value of BP values.

6.2 Classification efficacy

The precision that this method can achieve in determining if the so-found value of

complementary can be associated to a stable binding is related to the radius Rzernike of

the sphere which defines the patch and the Zernike maximum expansion order n.

Increasingly higher n can capture more and more details. Nevertheless, an excessively

accurate level of description of the molecular surface, corresponding to a too large order

of expansion, would model molecular details unnecessary for the study of binding. More-

over, with a too large order of expansion we would not be able to represent the higher

order Zernike polynomials with the necessary precision: with increasing values of n,

the description of the noise increases as well. Here, with the term ”noise” we mean the

peculiarity of the regions of interaction that have not evolved to maximize the comple-

mentarity with the partner. Figure 6.3 shows as example of how when we increase the

order too much (high order in the Figure), the description departs more from the real

situation than the case with a medium value of n (medium order in the Figure). This is

indeed because of the increased noise description.

For what concerns Rzernike instead, when too small patches are considered the details

necessary to distinguish compatibility between interacting regions are lacking, whereas

too large patches will include non-interacting zones that will have per se a low comple-

mentarity.

It can be seen from Figure 6.4 that an optimum in the complementarity is obtained

when considering patches of 6 − 8 Å of radius: at this distance the interaction regions

have a specific, more than random complementarity. For what concerns the value of n,

an equilibrium must be found between a not too low nor too high value, so as to well

capture the overall shape without too much noise.
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Figure 6.3: Sketch of three possible representation of the binding region obtained by the Zernike expansion,

depending on the expansion order n.

A) Sketch of a binding regions between two surfaces (one in blue and one in orange). B) Sketch of the three possible

representation of the binding region in A obtained by the Zernike expansion with different expansion order n. Figure

taken from [11].

6.3 Parameters choice

In Section 7.2 we discuss the application of the 2D Zernike method on the 3D molec-

ular surfaces of the CTFs equilibrium conformations resulting from the MD simulations.

For that case study, we choose the parameters values, for the implementation of the

Zernike expansion, shown in Table 6.1.
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Figure 6.4: Classification efficacy of the Zernike method.

Performance, measured by the AUC of the ROC curve, in discriminating the real binding region against a set of random

patches from the Protein Dataset, upon varying the patch radius Rzernike (Rs in the Figure) and the expansion order n

of the Zernike basis. Figure taken from [11].

Radius of the sphere Rs =6 Å

Maximum distance between neighbouring points Dp =1 Å

Zernike maximum order of expansion n =20

Square grid (initial dimension) 25× 25 pixels

Square grid (increased dimension) 300× 300 pixels

Table 6.1: Parameters selected for the implementation of the Zernike method.



Chapter 7

Results

7.1 CTFs simulations and equilibrium configurations

7.1.1 Analyses of the trajectories

Finally, we can analyze these corrected trajectories to study how each fragments

evolves in time and how it reaches its equilibrium conformations. We can derive a first

impression of how the conformation of each fragment changes in time by looking at the

evolution of the RMSD and the radius of gyration Rg.

Then, to identify the equilibrium conformations we firstly apply a PCA on the trajectory

resulting from the MD simulation, after the subtraction of the rotational and transla-

tional motions. In this way we obtain an essential representation of the molecule’s

motion.

Then, we implement a clustering analysis to find the more representative conformations

for each one of the possible conformations that the molecule can take at equilibrium: we

are assuming that each cluster’s center is a good representative of that cluster.

The choice of the number of PCs and clusters is justified in Appendix B.

51
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7.1.2 Equilibrium conformations of the whole isolated RRM2

domain

Once the MD simulation for the whole RRM2 has been performed and corrected, the

RMSD and the Rg defined in Equations 4.4 and 4.5 respectively have been calculated.

The results are shown in Figure 7.1, together with the distribution of the former with

respect to its starting minimized and equilibrated structure (tref = t∗): Figure 7.1 A

Figure 7.1: Evolution of RMSD and Rg during the whole RRM2 MD simulation.

A) Time evolution of the RMSD of the evolving system respect to the equilibrated system (blue line) and the crystal

system (red line). A segment of the two functions is zoomed in so as to give a better visualization of their small separation.

B) Distribution of the RMSD of RRM2 with respect to its starting equilibrated structure. C) Evolution of the radius of

gyration for the whole RRM2.

shows the RMSD of the corrected trajectory respect to both the structure present in the
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minimized, equilibrated system and the crystal structure (i.e., before the minimization,

at tref = 0). Subtle differences between the two lines in this plot indicate that the equi-

librated structure is slightly different from the crystal structure. This is to be expected,

since it has been energy-minimized. The RMSD and Rg mean values are respectively

0.481±0.141 nm and 1.225±0.030 nm, but what really is interesting is their behaviour:

Figure 7.1 suggests that the system during its evolution stops in certain conformations,

each one characterized by a range of RMSD and Rg values.

To find these conformations, we study the essential motion of the system: at first we

look at the projection of the trajectory on its first two Principal Components (PCs), and

as a second step we identify the centroids of this projection, as shown by Figure 7.2. The

four so-found equilibrium conformations are shown in Figure 7.2 C.

7.1.3 Equilibrium conformations of Fragment A

The same analysis can be done for the corrected trajectory of Fragment A, and Figure

7.3 shows the results. The RMSD and Rg mean values are respectively 0.598±0.065 nm

and 1.209±0.053 nm, but again we are interested in their trend, which suggests that the

system during its evolution stops in certain conformations, each one characterized by a

certain range of RMSD and Rg values. To find them we look again at the centroids of

the two-dimensional projection of the trajectory, as shown by Figure 7.4. The find five

equilibrium conformations, shown in Figure 7.4 C.

7.1.4 Equilibrium conformations of Fragment B

Finally, Figure 7.5 shows the results for Fragment B. The RMSD and Rg mean values

are respectively 0.759 ± 0.260 nm and 1.135 ± 0.068 nm and their trend suggests that

the system during its evolution stops in certain conformations, each one characterized

by a certain range of RMSD and Rg values.

To find them we look again at the centroids of the two-dimensional projection of the

trajectory, as shown by Figure 7.6. In this case we find two equilibrium conformations,

reported in Figure 7.6 C.

Going back to Figure 7.5, it is interesting to note that in this case the RMSD has a peak
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Figure 7.2: Representative equilibrium conformations of the whole RRM2.

A) Two-dimensional projection of the sampled conformations in the subspace spanned by the first two PCs during the

simulation. Each point corresponds to the whole RRM2 domain conformation after a number of steps indicated by the

color-bar; each step corresponds to an increase of 10 ps. B) Clustering of the scatter plot of the two-dimensional projection

of the sampled conformations. Four clusters and their centers (labeled by the numbered white circle) are depicted. C)

Visualization of the found four equilibrium conformations of the whole RRM2.

between 5.5 · 102 ns and 6.5 · 102 ns: there is a clear change between two equilibrium

conformations. This transition goes through a completely unfolded structure, as shown

in Figure 7.7, which depicts the conformation of fragment B at ∼ 6201 ns, corresponding

to the maximum RMSD value. This conformation has a fast dynamic (≈ 500 ns), but

could be a recurrent conformation adopted by the fragment in a longer period of time.

Because of this, in Section 7.1.4 we will analyse separately this part of the trajectory,

going from 5500 to 6500 ns.
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Figure 7.3: Evolution of RMSD and Rg during the Fragment A MD simulation.

A) Time evolution of the RMSD of the evolving system respect to the equilibrated system (blue line) and the crystal

system (red line). A segment of the two functions is zoomed in so as to give a better visualization of their small separation.

B) Distribution of the RMSD with respect to the starting equilibrated structure. C) Evolution of the radius of gyration.

For the same reason, it could be interesting in the future to further lengthen the MD

simulation of this fragment. With a longer dynamics, we will for example be able to

see it the conformational change between folded and unfolded is repeated in time: this

observation will allow us to elaborate a new series of considerations on the stability of

this structure. As another example, we will be able to verify if there is a particular

unfolded state that the fragment assumes for a longer time.
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Figure 7.4: Representative equilibrium conformations of Fragment A.

A) Two-dimensional projection of the sampled conformations in the subspace spanned by the first two PCs during the

simulation. Each point corresponds to Fragment A conformation after a number of steps indicated by the color-bar; each

step corresponds to an increase of 10 ps. B) Clustering of the scatter plot of the two-dimensional projection of the sampled

conformations. Five clusters and their centers (labeled by the numbered white circle) are depicted. C) Visualization of

the five equilibrium conformations.

Unfolding of Fragment B

In the following, we are going to take a closer look to the portion of the trajectory

corresponding to the unfolding of Fragment B and shown in Figure 7.8. To find the

representative conformations of this unfolding we follow the same steps as before, as

shown in Figure 7.9. Figure 7.9 C shows the three conformations found for the unfolding

of Fragment B.
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Figure 7.5: Evolution of RMSD and Rg during the Fragment B MD simulation.

A) Time evolution of the RMSD of the evolving system respect to the equilibrated system (blue line) and the crystal

system (red line). A segment of the two functions is zoomed in so as to give a better visualization of their small separation.

B) Distribution of the RMSD with respect to the starting equilibrated structure. C) Evolution of the radius of gyration.

7.2 Zernike method to identify the candidate bind-

ing regions

7.2.1 Analysis of the representative conformations

We compute for each one of the conformations found for Fragment A and B the cor-

responding 3D molecular surface. In particular, all the presented surfaces are obtained

starting from the PDB files describing these conformations. To compute for this struc-

tures the solvent-accessible surface, we use DMS [55], with a density of 5 points per Å2
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Figure 7.6: Representative equilibrium conformations of Fragment B.

A) Two-dimensional projection of the sampled conformations in the subspace spanned by the first two PCs during the

simulation. Each point corresponds to Fragment B conformation after a number of steps indicated by the color-bar; each

step corresponds to an increase of 10 ps. B) Clustering of the scatter plot of the two-dimensional projection of the sampled

conformations. Two clusters and their centers (labeled by the numbered white circle) are depicted. C) Visualization of

the two equilibrium conformations.

and a water probe radius of 1.4 Å. For each surface point, we also calculate the unit

normal vector with the flag −n.

The shape complementarity between these molecular surfaces can now be studied with

the Zernike polynomial expansion: we apply it to all the possible pairs between the 3D

surfaces of the two CTFs RRM2 fragments to find the binding regions on each surface.

We consider the binding both between two fragments of the same kind and between two

different CTFs: since both can be present inside a cell, there is no reason to rule out a
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Figure 7.7: Maximum unfolded conformation of Fragment B.

Conformation of fragment B when the RMSD has the maximum value (at 6201540 ps).

Figure 7.8: Peak in the RMSD evolution of Fragment B and portion of its trajectories corresponding to an

unfolding.

The time interval of the unfolding of the fragment is delimited by the vertical bars.

priori the interaction between the fragments resulting from the two different cuts. We

verify the shape complementarity, with the procedure described in Section 6, between

all the possible pairs of conformations. The five conformations of Fragment A are called

A1, A2, A3, A4 and A5. The two conformations of Fragment B found from the analysis

of the whole trajectories are called B1 and B2, whereas the three identified by looking

at the unfolding are called B3, B4 and B5. For more details see Appendix C.
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Figure 7.9: Representative equilibrium conformations of the unfolding of Fragment B.

A) Two-dimensional projection of the sampled conformations in the subspace spanned by the first two PCs during the

unfolding portion of the simulation. Each point corresponds to Fragment B conformation after a number of steps indicated

by the color-bar; each step corresponds to an increase of 10 ps, in the interval from 5500 to 6500 ns. B) Clustering of the

scatter plot of the two-dimensional projection of the sampled conformations. Two clusters and their centers (labeled by

the numbered white circle) are depicted. C) Visualization of the three equilibrium conformations.

7.2.2 Identification of the β-strands residues prone to aggrega-

tion

To identify the most promising regions of interaction between the two fragments (i.e.,

the regions that we expect to be at the core of the CTFs aggregation), we select, for each

conformation, the pairing, for each fragment, that results in the highest mean BP of the

residues corresponding to β-strands in the conformation sequence. In this way, we are

selecting the pairings that are more prone to bind through β-strands.
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Figure 7.10 shows, as an example, the result of this procedure for the first conformation

of Fragment A (that we are going to call A1). After computing the binding propensity

between each residue of A1 and all the equilibrium conformations’ surfaces of Fragment

A, we obtain for each pairing a binding propensity profile (as the one reported in Fig-

ure 7.10 in blue) and the corresponding mean BP of the β-strand residues. We select

between these pairings the one that maximizes this value (in this specific case, the fifth

conformation of Fragment A, that we are going to identify as A5). We apply the same

procedure between A1 and all the equilibrium conformations of Fragment B. This pro-

Figure 7.10: Binding propensity profile of the first equilibrium conformation of Fragment A (that we call

A1) with the conformation of Fragment A itself that corresponds to the highest mean BP of the residues

associated to β-strands.

On the y-axis, the binding propensities scores for the first conformation of Fragment A when compared the equilibrium

conformation of the same fragment that results in the highest mean BP of the β-strand residues (that is, the fifth

conformation, that we call A5). On the x-axis the residues composing Fragment A (one residue every ten is labeled for

clarity). In the legend, the mean value of the binding propensity profile of the residues associated to β-strands is reported.

cess is repeated for each one of the five equilibrium conformations of both Fragment A

and Fragment B.

Figure 7.11 shows the results for each of these ten conformations. The pairings found in

the this way should be the more interesting ones for the CTFs aggregation process.

In agreement with previous studies, new RNA aptamers could be in the future proposed

as candidates for the interruption of the molecular interaction between the CTFs of the

TDP43 protein: to propose some binding regions suited for testing with aptamers we

follow a second approach.
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Figure 7.11: Binding propensity profiles for the highest mean BP of the residues corresponding to β-strands.

Binding propensities scores for the conformations where the mean BP of the β-strand residues in the starting conformation

has the highest value. Each row corresponds to one of the ten conformations: for each row i, the plot on the left corresponds

to the BP of the residues of conformation i respect to the conformation of Fragment B that results in the highest mean

BP for the β-strands residues. The plot on the right instead shows the same results, but with the best pairing with a

conformation of Fragment B. The row corresponding to B2 is empty because this conformation has no β-strand residues

on its surface.

7.2.3 Proposal of new binding regions for the insertion of ap-

tamers

In this second approach, for each conformation we sum the BPs obtained for all

of its possible pairings with the other conformation. In this way, we obtain a clear

representation of the residues in each conformation that are in general more involved in

the interaction with other surfaces.

As a second step, we have to consider the fact that the Zernike method looks only

at the shape complementarity between surfaces, which is a necessary but not sufficient

condition for the interaction to take place. We also have to remember that our objective

is to determine the structures of the specific aptamers able to prevent the aggregation

between fragments, by interacting only with the binding regions and preventing their

interactions with other fragments.
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Consequently, to select among the residues found with Zernike the ones corresponding

to the binding regions that can be bind by an aptamer, we apply a chemical-based

constraint.

In particular, we consider the Coulombic interaction: since aptamers are characterized

by a negative charge, we select among the Zernike-selected residues the ones associated

with a positive charge.

These are the only Zernike-selected residues on which an aptamer should be able to

bind.

To select these regions we use UCSF Chimera [56] to visualize the Coulombic surface

colouring of each conformation: negative regions are red-coloured, positive ones are blue-

colored. Then we analyze the Coulomb colouring of the surface regions corresponding

to our Zernike-selected residues, and select only the residues corresponding to non-

negative regions.

Figure 7.12 shows an example of how a binding region is selected: That said, we are

Figure 7.12: Example of binding region selection.

A) Coulomb surface colouring of the binding region of the first binding region of the first equilibrium conformation of

Fragment A. B) Selection of the binding region sequence.

interested in studying the aggregation of these fragments as hypothesised by a model

according to which their interaction is mediated by the β-strands. To better understand

the importance of these β-strands we select, among the Zernike-found residues, the

ones corresponding to β-strand fragments as well.
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The results of these two selections for Fragment A are shown in Table 7.1. Table 7.2

Conformation A1

I binding region PHE221, PRO223, PHE229, PHE231

II binding region GLN213, TYR214, ILE250, LYS251

I β-strand region PHE221

II β-strand region PHE231

Conformation A2

I binding region SER212, GLN213, TYR214

I β-strand region GLN213, TYR214, GLY215, ASP216, VAL217,
MET218, ASP219, VAL220, ILE222

Conformation A3

I binding region PRO223, ARG227, PHE229, PHE231

I β-strand region SER254, VAL255, IHS256

Conformation A4

I binding region PHE221, PHE226, ARG227, ALA228, PHE229, PHE231

II binding region VAL255, HIS256, ILE257, SER258

I β-strand region PHE221, ALA228, PHE229, PHE231, THR233

II β-strand region SER254, VAL255, HIS256, ILE257, SER258

Conformation A5

I binding region PHE221, ILE222

I β-strand region VAL217, MET218, ASP219, VAL220, PHE221, ILE222

II β-strand region THR233, PHE234

III β-strand region ILE257

Table 7.1: Binding and β-strands regions found for each conformation of Fragment A.

shows instead the results for Fragment B.
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Conformation B1

I binding region VAL220, ILE222, LEU248, ILE250

II binding region ARG227, ALA228, PHE229

I β-strand region PHE229

II β-strand region IHS256, ILE257, SER258

Conformation B2

I binding region LYS224, PRO225, PHE226, ARG227, ALA228, PHE231,
VAL232, THR233, PHE234, ALA235, ILE239

II binding region HIS256, ILE257

Conformation B3

I binding region VAL220, ILE222, LYS224, LEU248, ILE250

II binding region ARG227, PHE229

III binding region ILE253

I β-strand region PHE229

II β-strand region HIS256, ILE257

Conformation B4

I binding region VAL220, PHE221, ILE222, PHE229, PHE231, ILE249,
ILE250, GLY252, ILE253, HIS256, ASN267, ARG268

I β-strand region PHE229, PHE231

II β-strand region HIS256, ILE257, SER258

Conformation B5

I binding region VAL220, PHE221, ILE222, ARG227, PHE229, PHE231,
THR233, PHE234, ILE250, GLY252

I β-strand region PHE229, PHE231

Table 7.2: Binding and β-strands regions found for each conformation of Fragment B.
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Chapter 8

Future developments

Finding the set of residues corresponding to possible regions of interaction, underlined

in Tables 7.1 and 7.2, is the end point of this thesis. That said, there is still much work

to do to understand the mechanisms underlying the TDP-43 CTFs aggregation: in the

future we are going to further develop the here presented study.

Our future work will be articulated in three main steps:

1. We will examine more in depth the fragments’ trajectories and the corresponding

equilibrium conformations. In preparation of this more extensive analysis we de-

veloped a new computational strategy for defining the minimal protein molecular

surface representation. Thanks to this novel method, briefly introduced in Section

8.1, we will be able to reduce the computational time needed to study the shape

complementarity or similarity between surfaces. This will allow us to apply the

Zernike method to a high number of fragments’ conformations and verify, for

example, how much the surface of a fragment changes during a simulation.

2. As a next step, we will test if our proposed binding-regions are indeed at the core

of the CTFs aggregation, by verifying if after their obstruction from an aptamer

the aggregation is hindered.

We already sent our proposed binding regions to the Department of Neuroscience

and Brain Technologies, Istituto Italiano di Tecnologia1, and the designing of

1Via Morego 30, 16163 Genoa, Italy

67
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region-specific aptamers, introduced in Section 8.2, is already under way.

3. Finally, by means of the Brillouin microscopy, briefly described in Section 8.3,

we will verify if after the insertion of the aptamers in CTFs expressing cells, the

number and dimension of aggregates is reduced.

8.1 New minimal molecular surface representation

Predictive methods, like the complementarity search we perform with the Zernike

formalism, often rely on extensive samplings of molecular patches with the aim to identify

hot spots on the surface. Intuitively, the more the surface is sampled the more the

reaching for hot-spot is accurate. Similarly, the higher the number of different points used

to represent the surface the higher the level of detail of the molecular shape. However,

time and computational costs limit both the resolution of the surface and the number of

patches that can be sampled, especially for large protein complexes and/or in analyses

that involve a big set of surfaces, like, as in what will be our case, many molecular

dynamics frames.

Thus we want to find an optimal way to reduce the number of points to be sampled

maintaining the biological information carried by the molecular surface: we define a new

theoretical and computational algorithm [13] with the aim of defining a set of molecular

surfaces composed of points not uniformly distributed in space, in such a way as to

maximize the information of the overall shape of the molecule by minimizing the number

of total points.

The basic idea of the proposed new algorithm is the selection of molecular surface points

according to the local roughness (that is, the degree of complexity of shape of each

surface region): increasing the sampling in high roughness and decreasing the sampling

in the more flat regions. In particular, we define a sampling probability that depends on

the local roughness of the surface.

To begin with, we numerically represent the molecular surface with a set of N points

in the 3D space (the discretization of the surface). For each point i, we evaluate the

exiting normal vector, v̄i, to the surface, originating from i. Next, we evaluate the local

roughness of the molecular surface by looking at the relative orientation of the normal
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vectors with respect to each point i. To do so, starting from each point i, we define a

patch including all the surface points within with a sphere of radius Rpatch centered on

the point i. We calculate the roughness of each patch as the mean of the cosines of the

angles formed by the normal vectors associated to each of the np points of the patch and

the average normal vector:

Ri =
1

np

np∑
j=1

cos(θij) (8.1)

with cos(θij) =
v̄i·v̄j
|v̄i||v̄j | and v̄i = 1

np

∑
j v̄j. Figure 8.1 A shows for example the molecular

surface for conformation A1 colored according to the local roughness. Being a mean of

cosines, the roughness ranges from zero to one (see Figure 8.1 B). When the considered

patch is plane, the mean value of the cosine between the normal vectors of each point i

of the surface and the mean normal vector of that patch, Ri, is close to one, while lower

values of Ri indicate rougher patches. Then, we associate to each point j in the patch

Figure 8.1: Local roughness of the patches.

A) Discretized representation of a molecular surface of conformation A1. Each point of the surface is coloured according

to the local roughness value, Ri.
B) Distribution of the roughness Ri found for each point i of the considered surface.
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centered on a point i, the probability to be accepted for the sampling, defined as:

p(j) = α(1−Ri)
β

(
ri,j
Rpatch

)γ(1+Ri)+δ

, (8.2)

where ri,j is the distance of the point j from the center i, and α, β, γ and δ are param-

eters that can be optimized to yield different sampling scenarios. For the specific case

of the CTFs aggregation, we are interested in selecting the absolute best combination

of parameters, but we designed this method with the aim of it being as user-friendly as

possible: if desired, the parameters optimization can start from a pre-determined maxi-

mum number of selected surface points or with constrictions on the shape of p(j).

In general, when a patch i has a high roughness, more points are needed to describe

it. On the other hand when it is more plane we need fewer points, and indeed (1−Ri)

becomes smaller. Finally, the center of a patch is always selected, but then to capture the

surface’s irregularities we can use as centers for the Zernike patches the points further

away from it, i.e. the ones with a high value of ri,j. By elevating this term to the (1+Ri)

we are changing the distribution of sampled points in each patch as a function of that

patch roughness.

By means of Zernike , we verified if the patches centered around the sampled points

are indeed the most representative of the surface: in order to evaluate the ability of the

reduced molecular surface to capture the information of the complete surface, we defined

a descriptor based on the local characterization of the molecular surface patch shape.

To evaluate the resulting representation of the surface, we compared the shape similar-

ity between a portion of the surface obtained from the complete surface of the protein

and the same portion of the surface obtained via our algorithm. In order to study the

gain of the proposed algorithm in terms of information preserved in the reduced version

of the molecular surface, we compare the description of the complete surface also with

random sampling, which represents the approach of trivial reduction of each molecular

surface by decreasing, without criteria, the density of the number of points in space. The

parameters optimization can be so summarized:

1. For each combination of the four parameters, we sample from the original total

surface a number nS of points and we define a new surface determined by these nS
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points. Then, we extract from the original total surface again nS points, but this

time with a uniform distribution (or random extraction).

2. We select from the total surface ntest points, and define around each of them a

region with radius R = 6 Å.

3. Next, we associate to each one of these points, j, three vectors: ztot(j), zS(j) and

zR(j). ztot(j) contains the Zernike descriptors that describe that patch as defined

by all the total points included in it, zS(j) describes the patch as defined by the

sampled points included in it and zR(j) describes the patch as defined by the

included randomly extracted points.

4. For each of the ntest patches we compute the distances Zt−S(j) = ztot(j) − zS(j)

and Zt−R(j) = ztot(j) − zR(J). We average all the obtained Zt−S(j) and Zt−R(j),

and obtain respectively the values Zt−S and Zt−R. Since we are considering the

description given by all the original points as our ”ideal”, for a good sampling we

expect the value of Zt−S to be small, and in particular smaller than Zt−R.

5. Finally, we compute the difference d = Zt−R − Zt−S. The best sampling for a

surface should result in the maximization of d.

When there is no restriction on the number of sampled points or on the parameters’

values, we can fix α = 1, since it is a multiplicative parameter that causes no variation

of the distribution of sampled points between patches with different roughness values.

Consequently, we are interested in finding the combination of β, γ, and δ that results in

the highest d. While it is true that a good sampling should result in a high d combined

with a low nS, the weights that these two components should have in an optimization

function will change according to the application and cannot be generalized.

We showed that our proposed sampling reduces the number of considered points, min-

imizing the loss of information about the protein surface shape. Figure 8.2 shows an

example of how the surface of conformation A1 is described when all its points are

considered versus when only some subsets -including increasing number of points- are

selected, with the sampling or randomly. When a small subset of points is used to re-

construct the surface, the difference between the sampling or a random extraction of the
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same number of points is clearly distinguishable. The more points are considered, the

more the two selections become similar.
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Figure 8.2: Visualization of the 3D surfaces reconstruction of conformation A1.

A) 3D reconstruction of the A1 surface from all its surface points.

B) The three columns depict the reconstruction of the same surface, with an increasing sampling density. In each column,

the first row shows the reconstruction with a subset of the original points selected with the sampling, whereas the second

row shows the reconstruction with a subset that counts the same number of points selected with the sampling, but in this

case randomly extracted.

8.2 Aptamer design

The binding regions found in Section 7.2.3 are relevant to describe the CTFs aggre-

gation process.

Artificial molecules, such as RNA aptamers or peptides, could be in the future proposed

as candidates for the interruption of the molecular interaction between the CTFs of the

TDP43 protein: these artificial molecules should be able to obstruct these CTF binding

regions and prevent the binding of other ones. For the aptamer identification we will

employ catRAPID [57] and STRIDE [58].
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catRAPID is an algorithm to estimate the binding propensity of protein-RNA pairs.

By combining secondary structure, hydrogen bonding and van der Waals contributions,

this software predicts protein-RNA associations with great accuracy.

STRIDE is a software tool for secondary structure assignment from atomic resolution

protein structures. It extracts information about the secondary structure and the acces-

sible surface of a protein from its PDB file, in our case the PDB file of the ten equilibrium

conformations found with the MD simulations. To be precise, α-helical, β-strand and

turn contributions are extracted directly from the PDB. Polarity and hydrophobicity are

derived from the accessible surface area by normalizing the values in the range [0, 1].

Getting the PDB description of these conformations is indeed the first important result

of the here presented work, since usually these kind of information have to be predicted

and are not known like in our case.

For the testing of aptamers, we will use as input for catRAPID some conformers

composed by ten nucleotides identified in a preceding experiments (with experimental

measures) as the most prone to bind the whole TDP-43. Starting from these sequences

we will modify one nucleotide at a time to identify the sequences most likely to bind

each of the ten proposed conformations of the two RRM2 fragments.

As a next step, we need to identify the specific regions in which the binding between

a RRM2 fragment and an aptamer happens: we expect some of these regions to match

to the ones proposed in this thesis. To do this, we will cancel the contribution of each

amino acid, one at a time, and evaluate the difference in the catRAPID computed

binding propensity.

8.3 Brillouin microscopy

Once the aptamers able to bind to our proposed binding regions will be identified, we

will test the relation of our binding regions with the CTFs aggregation with experimental

measures. These measures will employ Brillouin microscopy to verify if after the insertion

of the aptamers in CTFs expressing cells, the number and dimension of aggregates is

reduced.
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Brillouin microscopy is a type of optical elastography that has recently [12] emerged

as a non-destructive, label- and contact-free method that can probe the viscoelastic

properties of biological samples with diffraction-limited resolution in 3D. Obtaining an

image whose resolution is limited by the unit diffraction spot, rather than by scattered

light or lens aberrations, is what is meant by the term diffraction limited. Brillouin

microscopy is based on Brillouin scattering. Analysis of the Brillouin spectrum can

provide, for a known material density and refractive index, a unique characterization of

the materialâs mechanical properties, because the sound wave properties (such as their

velocity or attenuation) exhibit an intrinsic dependence on the viscoelastic properties of

the material.

Since aggregates have an higher viscosity compared to the rest of the cell, this method

will allow us to verify the effect of the aptamers insertion in the cells.

8.3.1 Brillouin scattering

When photons hit a sample, a small fraction of them (∼ 10−12) interacts with the

medium by exchanging (either releasing or absorbing) energy and momentum, and we

can observe Stokes or anti-Stokes frequency shift. The former corresponds to a scatter-

ing at lower frequencies (ω0 − Ω) corresponding to phonons annihilation, the latter to a

scattering at higher frequencies (ω0 + Ω) corresponding to phonons generation.

If the photons are exchanging energy and being scattered with acoustic phonons, the

process is called Brillouin scattering [59].

Acoustic photons can be seen as a population of microscopic acoustic waves (with wave-

length Λ and period T , related by Λ = V T , where V is the medium’s sound velocity)

that describe spontaneous, thermally induced density fluctuations.

Since phonons can be interpreted as density (acoustic) waves, their interaction with pho-

tons can be interpreted as an effective grating that diffracts the light; as the grating is

travelling with velocity V , the scattered light experiences a frequency shift due to the

Doppler effect [60]. The gain or loss of energy of the scattering field depends on the

propagation direction of phonons with respect to the incident photons. This is a second

interpretation that we can give to the rise to the two peaks in the scattered light spec-

trum, that we already introduced as Stokes and Anti-Stokes Brillouin peaks.
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The Brillouin frequency shift is given by:

νB =
2n

λi
V sin

θ

2
, (8.3)

where νB is the frequency that characterize the acoustic photons (typically on the order

of 1-20 GHz), λi is the wavelength of the incident light and θ is the scattering angle.

Since the medium’s acoustic velocity is given by V =
√

M ′

ρ
, where ρ is the density, from

Equation 8.3 we can see that the Brillouin frequency shift is related to the the stiffness

of a material. Indeed M ′ is the real part of the longitudinal modulus M , which recapitu-

lates the viscoelastic properties of a material. M ′, also called storage modulus, provides

information about the elastic properties of a material. Its relation to the frequency shift

highlights the fact that, during the fast timescale of the materialâs deformation, some

of the slower molecular relaxation processes cannot follow the perturbation. Because of

this they behave like an effective ”stiffer” material [60].

Equation 8.3 implies that the greater the frequency shift of the Brillouin peak, the stiffer

the material.

It is now clear why the combination of Brillouin scattering with scanning confocal mi-

croscopy gives a clear access to the mechanical properties of cells and tissues, which

are of fundamental importance since they play intricate roles in determining biological

function.





Conclusions

The investigation of the molecular mechanisms that lead to the accumulations of

aggregated proteins is crucial for understanding the pathophysiology of many neurode-

generative diseases. The accumulation of aggregates containing TDP-43 in the central

nervous system is a common feature in diseases such as ALS. However, the mechanisms

of aggregation are not yet fully understood and various aggregation models have been

proposed. In this scenario, the fundamental role of the C-terminal fragments of TDP-43

in the formation of aggregates has already been widely confirmed. Main objective of this

work was indeed to propose some regions on the TDP-43 CTFs (in particular on their

RRM2 fragment) as candidate cores of their aggregation.

The structures of these fragments have not been deeply studied yet and their conforma-

tions are not yet available, since their high aggregation propensity makes them difficult

to be investigated experimentally. Within this framework, we began our project by

studying the time evolution of the two possible RRM2 fragments constituting the CTFs,

i.e. Fragment A and B, with MD simulations of 10 µs; we studied the whole RRM2 as

well.

From the analysis of the trajectories, we found four equilibrium conformations for the

whole RRM2 (shown in Figure 7.2 C), five for Fragment A (shown in Figure 7.4 C)),

and two for Fragment B (shown in Figure 7.6 C). Since the plot of the RMSD evolution

presented a clear peak for the trajectory of Fragment B, which should correspond to the

fragment unfolding, we implemented the same analysis specifically for that time inter-

val. We found as the most representative conformations for the unfolding of Fragment B

three conformations, as depicted in Figure 7.9 C. These are the possible conformations

that should be observable in a cell, as well as the ones that the fragments assume while
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interacting with each other. The definition of these equilibrium conformations is our first

result.

As a next step, we searched on the surfaces of these conformations all the possible re-

gions of interaction, by verifying their shape complementarity by means of a Zernike

polynomials based characterization. Bringing further this research will include the veri-

fication in vitro of our results: following the insertion of expressively designed aptamers

(starting from our suggested binding regions’ residues) in CTFs-expressing cells, if our

results are correct, the aggregates number and dimension should decrease. With this

aim, we identified among the Zernike selected binding regions, the ones that would be

able to bind an aptamer, i.e. the ones with a positive surface charge. Complementarity

and positivity are necessary but not sufficient conditions for interaction. Even though

having narrowed the possible region of interaction to a limited set of residues (listed

in Tables 7.1 and 7.2) is already an interesting result, we would like to further develop

this study in the future, for example by applying additional constraints on the region

selection and a more extensive use of the Zernike method, which we will apply on all

the MD simulations’ frames.

Since the model that we have chosen as a starting point (shown in Figure 2.1) states that

the β-strands are at the core of the CTFs aggregation, we selected among these proposed

binding residues the ones located on β-strands. These residues, collected in Table 8.1,

should correspond, according to our model, to the regions where the interaction between

different fragments happens.
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Conformation Proposed β-strands binding residues

A1 PHE221, PHE231

A2 GLN213, TYR214

A4 PHE221, ALA228, PHE229, PHE231,
VAL255, HIS256, ILE257, SER258

A5 PHE221, ILE222

B1 PHE229

B3 PHE229

B4 PHE229, PHE231, HIS256

B5 PHE229, PHE231

Table 8.1: Proposed binding β-strands residues found for each conformation of Fragment A and B.
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Appendix A

Minimization and equilibration

phases

A.1 Whole RRM2

As shown by the plots depicted in Figure A.1, the simulation of the whole RRM2

starts from a regular minimization and equilibration, which respect the behaviours de-

scribed in Section 5.1. In particular, we can point out that Fragment B quickly reaches

the target value of T = 300 K and after this has a stable temperature with an average

value 300.0 ± 2.5 K. The average value of the pressure is −2.1 ± 222.5 bar, while the

reference pressure was set to 1 bar: as anticipated, statistically speaking, one cannot

distinguish them.

Moreover, the average value of the density is 1012± 4 kg/m3, which is compatible with

the expected value of 1008 kg/m3.

A.2 Fragment A

The simulation of Fragment A starts as well from a regular (as defined in Section 5.1)

minimization and equilibration, as shown by Figure A.2. Fragment A quickly reaches

the target value of T = 300 K and is characterized by a stable temperature for the rest

of the equilibration, with an average value 299.7±2.7 K. Importantly, the average value
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Figure A.1: Evolution in time of the whole RRM2 system variables during the minimization and equilibra-

tion phases.

A) Time evolution of the potential energy during the energy minimization. B) Time evolution of the temperature during

the thermalization (NVT ensemble). C) Time evolution of the pressure during the pressurization (NPT ensemble). D)

Time evolution of the density during the pressurization.

of the pressure is −59.5 ± 205.2 bar, which is again statistically indistinguishable from

the reference value. Moreover, the average value of the density is 1006± 5 kg/m3, which

is compatible with the expected value of 1008 kg/m3.
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Figure A.2: Evolution in time of the Fragment A system variables during the minimization and equilibration

phases.

A) Time evolution of the potential energy during the energy minimization. B) Time evolution of the temperature during

the thermalization (NVT ensemble). C) Time evolution of the pressure during the pressurization (NPT ensemble). D)

Time evolution of the density during the pressurization.

A.3 Fragment B

Figure A.3 leads to the same conclusions for what concerns Fragment B. Fragment B

quickly reaches the target value of T = 300 K and is characterized by a stable tempera-

ture for the rest of the equilibration, with an average value 299.8± 2.4 K. The average

value of the pressure is 13.7 ± 223.7 bar and the one of the water is 1002 ± 4 kg/m3,

which are again statistically indistinguishable from the respective reference values.
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Figure A.3: Evolution in time of the Fragment B system variables during the minimization and equilibration

phases.

A) Time evolution of the potential energy during the energy minimization. B) Time evolution of the temperature during

the thermalization (NVT ensemble). C) Time evolution of the pressure during the pressurization (NPT ensemble). D)

Time evolution of the density during the pressurization.



Appendix B

Choice of the number of PCs and

clusters

B.1 Principal Components

Figure B.1 shows why only the first two PCs are considered for the projection of all

the considered trajectories: their EVRs, as defined in Equation 4.9, are much higher

compared to the ones of the other eigenvectors.

B.2 K-means clustering analysis

Table B.1 shows the average silhouette coefficient s̃(k) for different k number of

clusters, for each of the considered trajectories. In each case, we divide the trajectory’s

points in the number of clusters that maximizes s̃(k). Figure B.2 shows the silhouette

plots for each of these selected number of clusters. The size of each cluster can be

visualized from the thickness of each plot.
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Figure B.1: EVRs for the eigenvectors describing each of the considered trajectories.

A) EVRs of the eigenvectors of the whole RRM2 trajectory. B) EVRs of the eigenvectors of Fragment A trajectory.

C) EVRs of the eigenvectors of Fragment B trajectory. D) EVRs of the eigenvectors of the Fragment B trajectory

corresponding to its unfolding.

Whole RRM2 Fragment A Fragment B Fragment B unfolding

s̃(k = 2) 0.5410 0.4489 0.7095 0.4566

s̃(k = 3) 0.5626 0.4568 0.7066 0.5355

s̃(k = 4) 0.5996 0.5023 0.6795 0.5241

s̃(k = 5) 0.5447 0.5148 0.6393 0.4768

s̃(k = 6) 0.5245 0.4833 0.6735 0.4660

Table B.1: s̃(k) for different k number of clusters, for each of the considered trajectories.

For each trajectory in red the highest s̃(k), that corresponds to the best number of clusters.
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Figure B.2: Silhouette plots for the selected number of clusters for each trajectory.

A) Silhouette plot for the four clusters of the whole RRM2 trajectory. B) Silhouette plot for the five clusters of Fragment

A trajectory. C) Silhouette plot for the two clusters of Fragment B trajectory. D) Silhouette plot for the three clusters

of the Fragment B trajectory corresponding to its unfolding.
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Appendix C

Identification of regions able to bind

aptamers

Figure C.1 shows the ten conformations found for Fragment A and B. Then we

Figure C.1: Conformations of RMM2 fragments proposed to be in CTFs aggregates.

Plots from A) to E): conformations A1, A2, A3, A4 and A5, representative of the clusters from the one labeled as 0○ to

the one labeled as 4○ in Figure 7.4. F) and G): conformations B1 and B2, representative of the clusters labeled as 0○
and 1○ respectively in Figure 7.6. Plots from H) to L): conformations B3, B4 and B5, representative of the clusters from

the one labeled as 0○ to the one labeled as 2○ in Figure 7.9.

compute the molecular surface of each of these ten conformations and use Zernike to

compute the shape complementarity between each one of its residue and all the other

surfaces, one at a time. For each residue of each conformation, we sum the BPs obtained

for all the pairings with the other surfaces. The results are shown in Figure C.2. The
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residues associated to a non-null value in these plots are the ones that we searched for

on each molecular surfaces with Chimera .



C Identification of regions able to bind aptamers 91

Figure C.2: Sum of the BPs for the residues for each of the RRM2 equilibrium conformations.

Plots from A) to E): Sum of the BPs calculated from the comparison with all the other surfaces of each residue of

conformations from A1 to A5 respectively. Plots from F) to L): Sum of the BPs calculated from the comparison with all

the other surfaces of each residue of conformations from B1 to B5 respectively.
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