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Abstract

Many-body physics studies the collective behavior of systems with a large number of
microscopic constituents. The interaction between the fundamental particles creates a
common behavior within the system with emergent excitations exhibiting uncommon
characteristics. In three spatial dimensions it has recently been found that a new kind
of particles can exist characterized by a fractionalized mobility, being either immobile or
mobile only along sub-dimensional spaces: fractons.
In this thesis I explore fracton phases focusing on their topological and thermal prop-
erties. Fractons can be explained as a generalization of usual topological particles with
some fundamental differences, which make fracton order a new field on its own. Fracton
models are studied first from the point of view of exactly solvable lattice spin models,
focusing on the similarities and differences with usual topological models. Fracton phases
are also described through the use of symmetric tensor gauge theory. This gives a the-
oretical background which is used to explore some possible phases at finite densities of
fractons, like Fermi liquids and quantum Hall states.
The thermal properties of such systems are studied in detail through the use of numeri-
cal simulations relying on exact-diagonalization. Various correspondences with systems
featuring quantum many-body scars are found, in particular with the PXP model. The
non-thermal behavior of the models under study is justified by the fragmentation of
the Hilbert space in a large number of separated sub-sectors, not related to symmetries
of the model. Further, the range of the local Hamiltonian operators is found to be of
fundamental relevance in the thermal properties of the system. For certain ranges it is
observed that the models are not able to reach the thermal state at long times. Instead,
increasing the length of interactions the system becomes ergodic, with the exception of
a small number of special eigenstates which remain non-thermal.
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Sommario

La fisica a molti corpi studia il comportamento collettivo di sistemi con un grande numero
di componenti microscopici. L’interazione fra queste particelle dà luogo a un comporta-
mento comune all’interno del sistema con eccitazioni emergenti dotate di caratteristiche
non comuni. In tre dimensioni spaziali è stato scoperto recentemente che può esistere un
nuovo tipo di particelle caratterizzate da una mobilità frazionata, in modo tale che esse
siano o immobili o mobili solo all’interno di sottospazi sottodimensionali del sistema: i
fractoni.
In questa tesi esploro le fasi fractoniche focalizzandomi sulle loro proprietà topologiche e
termiche. I fractoni possono essere interpretati come una generalizzazione delle conosciute
particelle topologiche ma con alcune differenze fondamentali, che fanno dell’ordine frac-
tonico un nuovo campo di studio. I modelli fractonici vengono studiati prima dal punto di
vista di modelli di spin su reticolo esattamente risolvibili, focalizzandosi su somiglianze
e differenze con i noti modelli topologici. Le fasi fractoniche vengono anche descritte
tramite l’uso della teoria di gauge con tensori simmetrici. Questo studio fornisce un
background teorico che viene poi utilizzato per esplorare alcune possibili fasi a densità
finita di fractoni, come i liquidi di Fermi e gli stati di Hall quantistico.
Le proprietà termiche di questi sistemi sono studiate in dettaglio tramite l’uso di simu-
lazioni numeriche basate sulla diagonalizzazione esatta. Vengono trovate varie corrispon-
denze con sistemi dotati di “quantum many-body scars”, in particolare con il modello
PXP. Il comportamento non termico dei modelli studiati viene giustificato con la fram-
mentazione dello stato di Hilbert in un gran numero di sottosettori separati e non asso-
ciati con le simmetrie del modello. Inoltre, viene trovato che il raggio di interazione degli
operatori Hamiltoniani locali è di importanza fondamentale per le proprietà termiche dei
sistemi. Per alcuni raggi viene osservato che i modelli non sono in grado di raggiungere
lo stato termico a tempi lunghi. Invece, aumentando il raggio delle interazioni il sistema
diventa ergodico, ad eccezione di un piccolo numero di autostati speciali che rimangono
non termici.
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Introduction

Strongly interacting quantum states of matter have recently been subject of great inter-
est since they exhibit novel and exciting characteristics which could lead the way to new
applications of condensed matter systems. An interesting example is that of Quantum
Spin Liquids (QSL) [1], a class of models consisting of highly-interacting spin systems
which exhibit long-range entanglement in the ground state and an exotic excitation spec-
trum not smoothly connected to the non-interacting limit. The most famous example is
Kitaev’s Toric Code (TC) model [2], which has gapped electric and magnetic excitations
which cannot be created locally and which are mutual semions, i.e. they exhibit anyonic
statistic. The TC is the canonical example of a topological phase, in fact it has a 4-fold
ground state degeneracy which cannot be lifted by any local operator.
Anyons in the TC are an example of emergent quasiparticles, excitations formed as a
collective behavior of many-body systems. These quasi-particles can have many different
properties not proper of any fundamental particle, such as anyonic statistical properties
different both from fermions and bosons. Another example of quasi-particle is that of
Laughlin excitations in Fractional Quantum Hall systems [3], which are characterized by
carrying only a fraction of the elementary electric charge.
A new kind of quasi-particle was found recently in looking for constrained spin models.
This excitation has the characteristic of having a fractionalized mobility, being either
immobile or able to move only on sub-dimensional spaces. This new kind of excitation
was named fracton. The subject of this thesis are indeed fracton phases [4, 5]. These
where first found [6] by looking for solvable examples of many-body Hamiltonians of
systems that, as the environment temperature decreases to absolute zero, are unable to
reach their ground states. Later on they were found again by Haah [7] in looking for
quantum stabilizer codes without string logical operators, i.e. solvable lattice models
with fundamental excitations unable to move freely around the lattice. The purpose of
this investigation was the research of quantum systems which could serve as recipients
for quantum memories. Since the discovery of fracton phases it has been their major
hypothesized application. But it was just with the work of Vijay, Haah and Fu [8] that
these peculiar phases were identified as a new class of topological order, fracton order.
Fracton topological order exhibits novel properties not shared with usual topological
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order: a sub-extensive ground state degeneracy∗, a particle content characterized by ki-
netic restrictions, featuring immobile or sub-dimensional excitations, and a duality to
spin systems with sub-system symmetries [8, 9].
A breakthrough came with the work of Pretko [10] who recognized how to describe frac-
ton phases through the use of gauge theory. Usually the gauge field degrees of freedom
are taken to be the components of a vector field, like the usual vector potential of elec-
tromagnetism. Actually, there is no reason why the emergent gauge variable should not
be a more complicated object like a generic rank-k tensor. However, it has been shown
[11] that higher-form (antisymmetric tensors) gauge fields do not describe any new QSL
in 3+1 dimensions. Interestingly, it has been found that in the case of symmetric tensor
gauge theories the panorama of possible stable theories in 3D is much richer. These
symmetric gauge fields describe new stable gapless QSL in three dimensions. The new
phases are similar to vector gauge theories regarding the gapless gauge modes but are
significantly different in the particle structure, hosting excitations that are either immo-
bile (the fractons) or mobile only along lower-dimensional subspaces. In this case the
restrictions in the motion of fundamental particles emerge as generalized Gauss’ laws
imposing the conservation not just of charge but also of higher moments (like dipole
moment).
The generalization of fracton phases to the framework of gauge theory has lead to many
interesting phenomena involving fractons [12] and has pointed out the connection of
these exotic particles to other fields of physics, like gravitation and elasticity [13, 14].
Nevertheless, the most active field of study involving these particles is centered around
the thermal properties of these systems. The kinetic restrictions naturally lead to a
slow relaxation process [15] which is characteristic of quantum glasses [16]. Because of
these hints about the possible breaking of ergodicity in fracton models, the problem
has been analyzed in deep. In particular, the thermal behavior of 1D spin chains re-
specting higher momentum conservation laws has been studied [17]. This is found to
be in great analogy with recent experiments on Rydberg atoms [18]. The results are
obtained through numerical simulations involving the dynamical evolution of the system
and exact-diagonalization.
Let us go through the content of the chapters. First, in chapter 1 some exactly solvable
models featuring topological order are analyzed. The TC is used as the prototypical ex-
ample to show differences and similarities between systems with usual topological order
and fracton order. In particular, we analyze in detail the X-Cube model in its particle
sector to show the kinetic restrictions which make fracton models so peculiar. In chapter
2 we move on to the description of fracton phases through the use of symmetric tensor
gauge theory, introducing a generalized theory of electromagnetism in analogy to usual
vector U(1) gauge theory. The issues on the stability of such theories are also taken
in consideration. With the full set of generalized Maxwell equations we then mention

∗In usual topological order the ground state degeneracy is a constant, which depends on topology.
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some possible different phases at finite densities of fractons and fractonic dipoles that
can appear. In particular, we analyze: (i) the microemulsion behavior of a finite density
of fractons in 3D, (ii) a finite density of fermionic dipoles in 3D exhibiting the character-
istics of a Fermi liquid and (iii) the phase relative to a finite density of fermionic dipoles
in 2D leading to a generalized quantum Hall effect on the boundaries.
In the second part of the thesis we change paradigm and, starting from the kinetic re-
strictions characteristic of fractonic particles, we study the dynamical behavior of such
phases and their approach to equilibrium. In particular, in chapter 3 we review the
Eigenstate Thermalization Hypothesis with its main consequences for thermal systems.
Also, in this chapter the PXP model is introduced and studied in order to have a basis
for comparison to refer to in the numerical simulations of the last chapter. The PXP
model has been considered since it also features kinetic constraints and it has been found
to host quantum many-body scars, which imply a difficulty of the system in reaching the
thermal state. Finally, in chapter 4 the behavior of 1D spin chains featuring fractonic
behavior through Hamiltonians conserving both charge and dipole moment has been
studied in deep. Through numerical simulations, it is possible to observe that in some
cases the system fails in thermalizing, thus showing non-ergodic behavior. This trend
is observed to be strongly related to the range of interactions in the local Hamiltonian,
with longer range systems showing a behavior reminiscent of many-body scars’ systems,
with a small number of non-thermal eigenstates violating the eigenstate thermalization
hypothesis.
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Chapter 1

Fracton spin models

Fracton models are a generalization of usual topological spin models, with the character-
istic of having kinetic restrictions which limit the mobility of elementary charges. These
models where first studied in [6] by looking at solvable models which fail in reaching
the ground state when lowering the temperature to absolute zero. The same kind of
excitations were found later [7] in looking for exactly solvable spin models without string
logical operators which could move the particles around the lattice. Finally, these models
have been categorized as a new state of matter [8] and dubbed fractons because of their
intrinsic fractionalized mobility. Fracton models defined in exactly solvable lattice spin
systems constitute the so-called gapped fracton phases. It has been just later with [10]
that it was found these models could be described through the use of symmetric tensor
gauge theory. These theories admit a gapless gauge field and thus are called gapless
fracton phases. This field theoretic description gives a meaningful insight into fracton
models and has lead to a deeper understanding of these exotic phases of matter. Let us
mention that a way has been found [19, 20] to pass from a gapless to a gapped fracton
theory through the breaking of the continuous symmetry of the former down to a discrete
subgroup (Higgs mechanism), but it will not be considered in this thesis.
In this chapter we focus on gapped fracton phases and on their relationship with usual
topological spin models. In particular, in Sec. 1.1 we will describe the Toric Code (TC)
model as the prototypical example of topological spin system, emphasizing its gauge
description and the topological properties. We will then use the TC to introduce the
prototypical example of exactly solvable fracton spin model, the X-Cube model, in Sec.
1.2. We will see how the X-Cube model exhibits fundamentally different characteristics
from usual topological systems, in particular in the particle content of the theory.
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1.1 Toric Code

Topological Order is a new concept that describes quantum entanglement in many-body
systems. To have an intuition about it we can use the description given in [21] using
dancing rules. In symmetry breaking orders every elementary particle dances by itself,
and they all dance in the same way (implying a long range order). A topological order
instead is characterized by a global dance, where every particle is dancing with every
other particle in a very organized way. In fact, all particles dance following a set of local
rules trying to lower the energy of a local Hamiltonian and if all the particles follow these
rules then they will form a global dancing pattern which correspond to the topological
order.
In particular, quantum phases of matter are said to have topological order when they
have (i) an excitation gap, (ii) exhibit degenerate ground states on topologically non-
trivial manifolds (like the torus) that cannot be distinguished by any local measurement
and (iii) support excitations that can be localized in space but cannot be created by
local processes.
Let us focus on two dimensions and consider a square lattice which can possibly be
embedded in an arbitrary 2-D surface. The simplest example consists in an N × N
square lattice on which we can impose periodic boundary conditions (PBC) by wrapping
it around the two-torus (T 2). Then let us denote the set of links in the lattice L and
define on each link a bi-dimensional Hilbert space Hi so that the model’s Hilbert space
will be H =

⊗
i∈L Hi. For clarity, in this lattice there are 2N2 links, N2 vertices and

N2 plaquettes.

l1
l2

l3l4

l5

l6

l7

l8

Figure 1.1: Stabilizer operators of the Toric Code. Vertex operators (red links) consist in the
four spins on the links touching the vertex. Plaquettes operators (blue links) instead involve the
four spins on the links surrounding a plaquette.

Consider now the operators in Fig. 1.1, the vertex one

Av =
∏

l∈star(v)

σxl = σxl1 ⊗ σ
x
l2
⊗ σxl3 ⊗ σ

x
l4

(1.1)

5



and the plaquette one

Bp =
∏
l∈∂p

σzl = σzl5 ⊗ σ
z
l6
⊗ σzl7 ⊗ σ

z
l8

(1.2)

where σl’s are the usual Pauli operators acting on the link l. Operators Av act non-
trivially on the four spins around the vertex v, forming a star. Instead, the operators Bp

act on the spins surrounding the plaquette p, i.e. the links defined on the boundary ∂p of
the plaquette. They are both local operators in the sense that they act non-trivially only
on a small number of spins of the lattice. Pauli operators acting on different sites always
commute while they respect their commutation relations when acting on the same link,
i.e.

{σxl , σzl } = 0 (1.3)

From these relations we see that the operators Av and Bp always commute (both among
themselves and between each other). This is clear since an Av and a Bp always share
either 0 or 2 links, as in Fig. 1.2.

v
p

v
p

Figure 1.2: Vertex (red links) and plaquette (blue links) operators always share either 0 (on
the left) or 2 (on the right) links, thus they always commute.

Also, since they are made of Pauli operators, they satisfy the relation A2
v = B2

p = 1. So,
if we impose PBC on the lattice, by applying Av, Bp on the whole lattice we see that∏

v∈L

Av = 1 =
∏
p∈L

Bp (1.4)

Let us specify that L will denote the set of links, vertices or plaquettes of the lattice
depending on the case, which will be clear from the context.
These are the only two non-trivial relations we can write for these operators, so the code
will have dimension

22N2−(2N2−2) = 22 (1.5)

which means that it encodes two logical qubits into 2N2 physical qubits. This is at the
basis of the so-called error correcting codes [22], of which the TC is the prototypical
example.
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1.1.1 Ground State

Let us define now the Hamiltonian of our model as

HTC = −Je
∑
v∈L

Av − Jm
∑
p∈L

Bp (1.6)

Since we saw that all terms commute, this Hamiltonian can be diagonalized in the basis
of the eigenstates of the Av, Bp operators, therefore it can be exactly solved (i.e. we can
find the ground state (GS) and the excitations). To obtain the GS we need to maximize
the eigenvalues of Av, Bp (which can be ±1 since the operators are nilpotent). Thus, we
look for states such that

Av |ψ0〉 = |ψ0〉 ∀v ∈ L (1.7a)

Bp |ψ0〉 = |ψ0〉 ∀p ∈ L (1.7b)

In this way the GS will have an energy E0 = −N2(Je + Jm). Equation (1.7b) is called
vortex free condition and it means that the links of a generic plaquette are in one of the
eight possible configurations reported in Fig. 1.3 where there are an even number of |1〉

Figure 1.3: The possible configurations of a single plaquette in the ground state are those
involving an even number of |0〉 and |1〉 states. Black (blue) links represent the |0〉 (|1〉) states.

(and |0〉) states. This because, by considering to work in the z-basis, Bp is made of σzl
and so the eigenvalues can be only ±1. Then, we know that σxl swaps the states, which
means that Av will swap all the links connected to that vertex. In this sense Av can

,

,

Figure 1.4: Gauge equivalent configurations obtained by applying the vertex operator Av.

be understood as a local gauge transformation and states connected by Av are gauge
equivalent. Some examples are shown in Fig. 1.4.
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Following these considerations we can find the exact form of the GS. From the vortex
free condition

|ψ0〉 =
∑

|s〉 s.t. Bp|s〉=|s〉∀p

ts |s〉 (1.8)

(s is one of the eight possible configurations considered above), and from the condition
(1.7a) we see that two configurations related by Av have the same weight, so all ts’s are
equal. Finally, we found that a GS of the Toric Code is an equal weight superposition
of vortex free configurations.
More explicitly we can write the GS as

|ψ0〉 =
∏
v∈L

1√
2

(1 + Av)⊗l∈L |0〉l (1.9)

By using the property Av(1 + Av) = 1 + Av, it is easy to check that condition (1.7a) is
satisfied. Also the flux free condition is respected since [Av, Bp] = 0 and σz |0〉 = |0〉.
Let us now see how different local operators affect this GS. We can create local operators

p p p

p
v

v v

c′1

c′2

c1

c2

Figure 1.5: Possible loop operators in the Toric Code. Contractible loops can be written as
products of vertex/plaquette operators. Non-contractible loops distinguish the degenerate ground
states.

by taking products of σ
z/x
l over closed paths in the direct/dual lattice as in Fig. 1.5.

Indeed, the same Av and Bp operators can be seen as loop operators of this kind over the
simplest loops. It is easy to observe that such loop operators, if defined over contractible
loops, are equivalent to products of Av/Bp operators over the vertices/plaquettes con-
tained in the loop, and so they do not modify the GS. We can thus consider the GS |ψ0〉
as a Loop Gas, i.e. a state containing all possible combinations of loops in the lattice.
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However, if we consider operators defined over non contractible loops (imposing PBC)
of the torus, this identification no longer holds so in principle they can modify the GS.
In fact, let us consider the two possible non contractible loops on the torus in the direct
lattice (c1 and c2) and in the dual lattice (c′1 and c′2), as reported in Fig. 1.5. The
corresponding loop operators (called Wilson loops) are

Z(c1,2) =
∏
l∈c1,2

σzl (1.10a)

X(c′1,2) =
∏
l∈c′1,2

σxl (1.10b)

It is easy to check that [X(c′1,2), Av] = 0 and holds as well that [Z(c1,2), Av] = 0, since
any Av intersects the loops c1,2 in either 0 or 2 sites. Consider now the action of X(c′1)
on the GS |ψ0〉

X(c′1) |ψ0〉 =
∏
v∈L

1√
2

(1 + Av)⊗l /∈c′1 |0〉 ⊗l∈c′1 |1〉 = |ψ1〉 (1.11)

This is indeed still a GS because it is invariant under the action of Av and of Bp (the
latter coming from the fact that Bp acts trivially on plaquettes not crossed by c′1 and
for those crossed, since c′1 is a loop in the dual lattice it will necessarily cross exactly
2 edges). Note that also |ψ1〉 is a Loop Gas. We can proceed in the same manner for
|ψ2〉 = X(c′2) |ψ0〉 and |ψ1,2〉 = X(c′1)X(c′2) |ψ0〉. Finally, we have in total 4 degenerate
GS, which cannot be distinguished by any local parameter∗. In general, the number
of homotopically inequivalent non-contractible loops is what gives the so-called ground
state degeneracy (GSD), which is GSD=4g for a genus g surface [2].

1.1.2 Excitations

To talk about the excitations of the TC we need to brake some of the constraints (1.7)
of the GS. Elementary excitations in fact consist of eigenstates of the Hamiltonian such
that some Av/Bp have changed their eigenvalue from +1 to −1. Consider for example
the state in which a σzl acts on the GS, as in Fig. 1.6,

|ψzl 〉 = 1⊗ · · · ⊗ σzl ⊗ 1 . . . 1 |ψ0〉 (1.12)

The eigenvalue of Av1 and of Av2 (where v1 and v2 are the vertices touching l) is now
−1, in fact

Av1/2 |ψ
z
l 〉 = Av1/2σ

z
l |ψ0〉 = −σzl Av1/2 |ψ0〉 = − |ψzl 〉 (1.13)

∗In fact operators over non-contractible loops are non-local.
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Av1 Av2l

Bp1 Bp2

Figure 1.6: Excitations in the TC. Above: two vertex excitations (charges) are created by
the application of a σz on the link connecting them. Below: two plaquette excitations (fluxes)
created by the application of two σx’s on the dual-lattice path connecting the plaquettes.

This means that the Pauli operator σzl creates two excitations at the vertices v1 and v2.
We can generalize this effect for a string operator of σzl ’s along an open path in the direct
lattice (called Wilson line): this will create two excitations, called charges, at the ends
of the string. Charges will be denoted with e.
It is straightforward to generalize this procedure for σxl ’s. By applying a string operator
of σxl ’s, taken over an open path on the dual lattice, results in a change of the eigenvalue
of Bp1 and Bp2 on the two plaquettes at the end of the path, as shown in Fig. 1.6. These
excitations are called fluxes and will be denoted with m.
In both cases the relevant part of the string operators creating the excitations are just the
ends, not the “bulk”. Let us now study deeper the excitations by finding their statistical
properties and their fusion rules. It is easy to see that both charges and fluxes behave
as Z2 charges: in fact by connecting the ends of two paths (and thus fusing excitations)
of the same type they annihilate, i.e.

e× e = 1 m×m = 1 (1.14)

There is also the possibility that a charge and a flux are created in the same place (the
end points of the two string operators creating them are on the same link). This kind of
excitation is called a dyon, denoted with ε

m× e = e×m = ε (1.15)

We can thus deduce the other non trivial fusion rules

ε× e = m ε×m = e (1.16)

To see the statistical behavior of these excitations let us try to braid them. It is easy
to see that by exchanging the positions of two e or two m the state remains the same

10



since we create a (contractible) loop (see Fig. 1.7), and as we know a loop leaves the
state invariant because can be written in terms of Av’s or Bp’s. In this way we see that

Figure 1.7: Braiding of elementary excitations. Above: braiding of two charges. Below:
braiding of a flux around a charge.

e and m have a bosonic nature. Let us now try to take an m excitation around an e
one and going back to the initial position. What we obtain is an additional minus sign
to the final state coming from the fact that in one link the encircling path will have to
cross the path of the e particle. We can thus conclude that e and m have non-trivial
mutual statistics (called semionic mutual statistic) and behave as Abelian anyons, i.e.
neither bosons nor fermions. Knowing this it is also possible to derive that dyons exhibit
fermionic statistic [2].
Anyons are manifestations of the underlying topological order of the model. In fact, we
can deduce that the GS is degenerate just by knowing that there are two particle types
with −1 mutual statistics. Consider the operator Z winding an e particle around a non-
contractible loop of the torus and annihilating it, and the operator X doing the same
for an m particle on the other non-trivial loop. Simply by looking at the combination
Z−1X−1ZX = −1 we see that there are two non commuting operators acting on the GS
space, which means that it must have dimension bigger that one. Since there are four
such operators (two particles over 2 non-contractible loops), we find again that GSD= 4.

1.1.3 Lattice gauge theory

The TC can be included into the more general framework of lattice gauge theory. This
identification also explains the names assigned to the elementary excitations. A gauge
theory implies a gauge symmetry which cannot be removed by any external perturba-
tions, but we saw that the TC is stable to arbitrary local perturbations. To give a field
theoretic interpretation we can consider the link labels zl (= ±1) to correspond to a Z2

vector potential, whereas σxl corresponds to the electric field. Operators Av, as mentioned
before, are local gauge transformations while Bp is the magnetic flux across a plaquette
p. The constraints (1.7a) mean that the state |ψ〉 is gauge invariant. It is possible to
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violate the gauge invariance but it is energetically penalized. The Hamiltonian, which
includes also the external perturbation, H = HTC +V (defined below), need not to obey
the gauge symmetry. The constraints (1.7b) mean that the gauge field corresponds to a
flat connection. Also these constraints can be broken with an energy cost. So, despite
the absence of symmetry in H, the system exhibits two conservation laws: electric and
magnetic charges (fluxes), both modulo 2. By analogy with electromagnetism where
the U(1) gauge invariance yields the electric charge conservation, there should be a Z2

symmetry for electric charges and another Z2 symmetry for magnetic fluxes.
In order to see this symmetry we have to use redundancy, i.e. add unphysical degrees of
freedom. First, let us consider the Hamiltonian

H = HTC + V = −Je
∑
v∈L

Av − Jm
∑
p∈L

Bp − hz
∑
l∈L

σzl − hx
∑
l∈L

σxl (1.17)

where the last two terms are couplings with external fields. Now we add some new
variables: τxv = ±1 on each vertex and µzp = ±1 on the plaquettes. In this way we define
a bigger Hilbert space given by Hbig = H0 ⊗Hτ ⊗Hµ. We want to map uniquely the
physical states |ψ〉 into the enlarged space, and we do it by taking, for physical states,
τxv = Av and µxp = Bp, so that |ψ〉 ↔ |Ψ(ψ)〉. Now, let us rewrite the Hamiltonian in the
enlarged space in such a way that the action on physical states remains the same, i.e.
such that 〈Ψ(ψ)| H̃ |Ψ(ψ)〉 = 〈ψ|H |ψ〉,

H̃ = HTC − hz
∑
〈uv〉

τ zuσ
z
uvτ

z
v − hx

∑
〈pq〉

µzpσ
x
pqµ

z
q (1.18)

where σuv is the Pauli operator acting on the link between the nearby vertices u and v
and σpq acts on the link between the two touching plaquettes p and q.
Finally, by using the constraints for the physical space (τxv = Av and µxp = Bp) we can
rewrite

HTC = −Je
∑
v∈L

τxv − Jm
∑
p∈L

µxp (1.19)

In this way we have that H̃ is gauge invariant and the generators of the local symmetry
are µxpBp and τxvAv. In fact, σzuv changes the values of Au and Av, so in H̃ we use the term
τ zuσ

z
uvτ

z
v so that the symmetry under τxvAv is respected. A minus sign at each vertex is

given by the action of σzuv and another instead arrives from the anti-commutation between
τxv and τ zv . The same holds for the second term.
The ground state for small hz and hx has an emergent symmetry. When hx = hz = 0
both Av and Bp (or equivalently τxv and µxp) separately commute with H̃. Since the GS

for ~h = (hx, hz) = 0 is unique up to global degeneracies which depend upon the geometry,
and is separated by a gap from the excited states, it retains this structure to all orders
in perturbation theory.
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Viewed as a standard Z2 gauge theory, the protected topological degeneracy of the GS
is physically familiar as the protected degeneracy associated with the choice of flux
threading the 2g holes of a genus g surface.

1.2 X-Cube model

Let us now pass to the prototypical example of fracton phases: the X-Cube model [8].
The defining characteristic of fracton phases is that the elementary excitations exhibit
restricted mobility, i.e. they are either immobile or can move only in certain directions
(sub-dimensional particles). Instead, composites of elementary excitations are mobile
particles so that the former can be viewed as having fractionalized mobility (from this
their name). There are two types of fracton topological orders:

• Type I fracton phases have fracton excitations appearing at corners of membrane
operators† and composites of fractons are only mobile along sub-dimensional sub-
systems. An example is the X-Cube model;

• Type II fracton phases have fracton excitations that appear at corners of fractal
operators‡, all excitations are localized and there are no mobile topological quasi-
particles. An example is the Haah cubic model [7].

µ

Figure 1.8: Stabilizer operators of the X-Cube model. The red (blue) dots on the links represent
the σx (σz) Pauli operators.

We will analyze in particular the X-Cube model underlying its connections with the TC
and its excitations.
The X-Cube model is a 3-D lattice spin model: take the cubic lattice (C ) and put spins

†Membrane operators consist of σx,z operators acting on the links of rectangular shaped regions. See
Fig. 1.9 for an example.
‡Fractal operators are equivalent to membrane operators with the only difference being that they

have support on a fractal region of space. See Fig. 5 in Ref. [4] for an example.
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on the links. Consider the following local operators represented in Fig. 1.8

Bc =
∏
l∈∂c

σxl (1.20a)

Aµv =
∏

l∈star(v),l⊥µ

σzl , µ = x, y, z (1.20b)

where in Bc the product is taken over the (twelve) links surrounding the cube c, while
in Aµv over the (four) links touching the vertex v and lying on the plane orthogonal to
the direction µ, as shown in Fig. 1.8. The Hamiltonian is then defined as

HXC = −Km

∑
c∈C

Bc −Ke

∑
v∈C ,µ=x,y,z

Aµv (1.21)

It is easy to see that Bc/A
µ
v always commute (both among themselves and between each

other). It is clear since an Aµv and a Bc always share either 0 or 2 links. Also, since they
are made of Pauli operators, they also satisfy (Aµv )2 = B2

c = 1. This means that, as for
the TC, the model is exactly solvable and the Hamiltonian can be diagonalized in the
basis of the eigenstates of these (local) operators. The GS will be the state where all the
eigenvalues are +1.

Figure 1.9: Membrane operators of σz’s create fracton excitations (blue cubes) at the corners
of the membrane (highlighted in faint orange).

Further, it is possible to show (and we will see it later) that in this model, for an
L × L × L cubic lattice with PBC on the three-torus T 3, the ground state degeneracy
(GSD) is exponential in linear system size and in particular log2(GSD) = 6L− 3. These
degenerate GS cannot be distinguished by any local measurements, so the model is
topologically ordered.
The X-Cube model has two types of elementary excitations. The first are the immobile
fracton excitations, which resides on the cubes with Bc = −1. Note that acting on a link
with a σzl creates four fracton excitations on the cubes touching the link. This means
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that four separated fractons can be created at the corners of a membrane operator, as in
Fig. 1.9, which is a product of σzl ’s over a rectangular region. This explains why these
excitations are immobile: in order to move one of them, two additional fractons must be
created.
The second kind of excitations are 1-D particles residing on vertices where Axv = Ayv = −1
and Azv = 1, for example, as in Fig. 1.10. In this case these excitations are created by
acting with a string of σxl ’s and reside at the ends of this string. They can move only in
one direction (parallel to x,y or z, in this example z), since in order to make a corner
they should emit two other particles, which cost energy.
An important characteristic of TC’s excitations was that an anyon of type “a” can be
detected remotely by acting with an encircling loop of “b”-type string operator. There
exist an analogous process in the X-Cube model and to see it clearly we have to look at
the connection with the TC.

Figure 1.10: Line of σz operators (blue line) creating two excitations (red crosses) on the
vertices at their ends. Note that in these vertices the value of the vertex operator parallel to the
line (Azv in this case) will be +1. Instead, the other two vertex operators, Ayv and Axv , will have
one link with a σz acted upon, thus an eigenvalue −1.

1.2.1 X-Cube from stacks of Toric Codes

The X-Cube model can be obtained by the strong coupling limit of three intersecting
stacks of 2-D Toric Codes [23]. To see how, let us consider three stacks of TCs in the
three spatial directions. This results in having two spins on each link of the cubic lattice,
participating each to the TC of one plane (the two planes containing the link). For
example a link in the x direction is contained both in a xy and in a xz plane.
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For a plane P the TC Hamiltonian is

HTC
P = −

∑
v∈P

Ao(P)
v −

∑
p∈P

Bp (1.22)

where we have the usual vertex and plaquette operators of the TC. This time however
we change the role of σxl and σzl , in order to maintain the general conventions, and call
σxl = Xl and σzl = Zl

Ao(P)
v =

∏
l∈star(v),l∈P

Zl (1.23a)

Bp =
∏
l∈∂p

X
o(P)
l (1.23b)

Then, we couple together the spins residing on the same link and this results in the
Hamiltonian

H =
∑
P∈C

HTC
P − Jz

∑
l

Zµ1
l Z

µ2
l (1.24)

We chose a ZZ coupling with Jz > 0, where µ1,2 are the two orthogonal directions to
the link. We see that for Jz = 0 the various TCs are decoupled. The X-Cube model is
obtained by taking the limit Jz →∞ and treating

∑
P∈C HTC

P as a perturbation. Using
Brillouin-Wigner perturbation theory, it is possible to obtain the X-Cube Hamiltonian
at sixth order [23]

HXC = −Km

∑
c∈C

B̃c −Ke

∑
v∈C ,µ=x,y,z

Ãµv (1.25)

where

Ãµv =
∏

l∈star(v),l⊥µ

Z̃l (1.26a)

B̃c =
∏
l∈∂c

X̃l (1.26b)

Z̃l and X̃l are obtained by considering the GS without perturbation, i.e. any spin con-
figuration, in z-basis, satisfying the constraint Zµ1

l = Zµ2
l , which means that

Z̃l = Zµ1
l = Zµ2

l (1.27a)

X̃l = Xµ1
l X

µ2
l (1.27b)

The vertex term of HTC
P contributes at first order ad gives the vertex term in the X-Cube

Hamiltonian (in fact the projection to the GS simply replaces Zµ
l with Z̃l). Instead, the

cube term in HXC is a product of six Bp’s where each such operator (made of Xl’s)
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anticommutes with the coupling term on the four links of the perimeter of p. To get a
non trivial operator we have to get a product of Bp’s over plaquettes forming a closed
surface and the simplest such structure is a cube with six faces (this is why we have to
arrive to sixth order in perturbation theory). It is also possible to prove that no other
terms arise between first and sixth order.

1.2.2 Excitations and fusion rules

We can recover the properties of the excitations of the X-Cube model from the decoupled
TCs by the condensation of extended 1-D objects called p-strings.
As we saw above, the Jz term does not commute with Bp, and acting with it on the GS
creates TC’s mP-particles. In fact, acting with Zµ1

l Z
µ2
l creates four mP particles (two

pairs) in the plaquettes surrounding l. Considering mP as fluxes, let us represent them as
line segments, at the center of plaquettes, normal to the plane where they reside. Joining
the four segments of these excitations we form a so-called (closed) p-string, as shown in
Fig. 1.11. It is immediate to see that it can be bigger by considering an operator made

Figure 1.11: Representation of a closed p-string (green). This is obtained connecting the
axes orthogonal to the plaquettes touched by the link on which the term Zµ1l Zµ2l acts upon, as
explained in the text.

of a collection of Zµ1
l Z

µ2
l on links orthogonal to a rectangular membrane. Increasing Jz

from 0, at some point we expect to induce a condensation§ of the p-strings created by the
interaction. This condensation can be proved to confine individual eP excitations, while
bound pairs of eP particles on intersecting planes survive this process. This phenomenon
is given by the fact that isolated excitations have non-trivial braiding phase with p-
strings, while coupled pairs ePveQv = ẽvµ do. P and Q represent the planes on which

§By condensation is meant that the great number of p-strings created by the interaction will inevitably
come close to each other thus forming larger strings, eventually containing all the lattice.
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the TC charges reside, and v is the specific vertex of the plane. These excitations can
move in 1-D in the direction of the intersection of the two planes (µ). These are the 1-D
particles we found before and are called, in similarity with the TC, electric excitations.
Using the well known fusion rules of TC’s eP (see (1.14)), we can find the analogs for ẽ

ẽvµ × ẽvν =

{
ẽvo(µ,ν) µ 6= ν

1 µ = ν
(1.28)

Also, recall that mP particles in TC are created at the ends of m-string operators,
Sm(γ) =

∏
l∈γ Z

z
l , with γ path (dual) on xy plane, in this example. Take now a stack of

mP particles in the z direction, they form an open p-string. The coupling term Zµ1
l Z

µ2
l

on the string moves it around but does not change the endpoints. This because the
coupling creates loops of p-strings, which means that it cannot change the flux through
any given cube. Upon condensation (Jz → ∞) the bulk disappears but the endpoints
remain: these are the 0-dimensional (immobile) magnetic excitations found in the X-
Cube model, which reside in the cubes, and we will call them m̃c. From the fusion rules
for the TC (1.14) we see that also m̃c behave in the same way, i.e.

m̃c × m̃c = 1 (1.29)

The operator Mσ =
∏

l∈σ Z
z
l , where σ is a rectangular membrane and the links l cut

it transversely, can be viewed as a stack of m-strings with each string creating two mP
particles on opposite sites of the membrane. Mσ creates four fracton excitations at its
corners, in fact for Jz →∞ we have Mσ → M̃σ =

∏
l∈σ Z̃l.

It is instructive to look at the case where there is a single layer, so that Mσ = Sm(γ). In
this case we can define an m-string operator in the X-Cube model by S̃m(γ) =

∏
l∈γ Z̃l,

where γ lies in one plane, and it creates two m̃c fracton excitations at each end. This
means that TC mP particles survive in the X-Cube model as bound states of two m̃c

fractons.
Since we derived ẽvµ and m̃c from the TC’s e and m, it is clear that any statistical process
involving only one of the two types will be trivial. Taking a rectangular prism with faces
σ1, σ2, σ3 and σ4 (excluding the faces say in the xy plane) the membrane operator
M̃prism = M̃σ1 . . . M̃σ4 does not create any excitation since it is possible to see that they
cancel out. Instead, what it does is to count the number of total ẽx and ẽy excitations
inside the prism (modulo 2). We can see this by the fact that

M̃prism =
∏

v∈prism

Azv (1.30)

and Azv = −1 on states with ẽx or ẽy excitations. In this way we see that we have an
analogous process for remote detection of defects as we had in the TC, but this time
instead of loop operators we have to consider membrane operators over closed surfaces.
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1.2.3 Ground state degeneracy

To evaluate the GSD we will consider the X-Cube model on an L× L× L cubic lattice
wrapped around the 3-torus T 3. This is the same as considering that each TC (each
plane) in the model has T 2 topology. To evaluate the GSD we will follow a non rigorous
approach relating this GS with the single GS’s of the TC, but turns out that also in this
way the result obtained is exact.
To find the GSD we have to count the number of independent logical operators in our
theory: in the TC we are on T 2 so, considering for example m particles, there are two
non-contractible loops (c′1 and c′2 in Fig. 1.5) and so two string operators (X(c′1) and
X(c′2)) threading m particles around the torus. Further they are linearly independent,
which means that they form a complete set of independent, commuting logical operators
and their eigenvalues completely label the GS, which has degeneracy (GSD)TC = 22 = 4.
In the X-Cube model on T 3 analogously we count the number of distinct ways we can
thread the magnetic membranes M̃σ through non contractible loops. A generic M̃σ can
be constructed from a stack of S̃m(γ) with γ a non-contractible loop in one plane, so
in a T 2 torus. Each plane has two such paths so they all contribute as 22 to the GSD.
Since there are L planes in each of the three directions we count 6L logical operators.
However these are not all linearly independent, as can be seen by considering that, for
all µ 6= ν ∏

0≤n<L

S̃m(γνo(µ,n)) =
∏

0≤n<L

S̃m(γµo(ν,n)) = Mµν (1.31)

where γνo(µ,n) is a path on the plane (µ, n) (plane orthogonal to µ with µ-component

equal to n) passing around a non contractible loop in the ν 6= µ direction. So, Mµν is a
membrane operator where σ covers the hole µν plane. Since this equality holds ∀µ 6= ν we
have three such relations in the X-Cube model, which means that log2(GSDXC) = 6L−3.
This result has been proven exactly fo L even [8]. In principle we could have missed
additional logical operators independent from the ones listed above, but it turns out this
is not the case. The exponential growth of the GSD is a defining characteristic of fracton
models and distinguishes them from usual topological models, like the TC, where instead
the GSD is constant in system size.

1.2.4 Lattice gauge theory

As for the TC, also the X-Cube model can be included into the broader class of lattice
gauge theories, but this time in a peculiar way. That is why we call it a generalized
lattice gauge theory. This generalization is useful in order to find new fracton models.
Fracton models can be obtained as quantum dual of d-dimensional systems that possess
subsystem symmetries. This refers to a symmetry over a subspace of the system with
dimension 0 < ds < d, where d is the system’s dimension. A subsystem symmetry is
something between a local and a global symmetry, a mid-step that yields new intriguing
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features.
In particular, to obtain the X-Cube model let us consider a cubic lattice with spins
(denoted by τ) on the vertices and Hamiltonian given by the sum of the products of the
four spins around each plaquette

Hspin =
∑
p

T zp (1.32)

where T zp = τ z1 τ
z
2 τ

z
3 τ

z
4 . This model has a subsystem symmetry in the sense that it is

invariant under a spin flip τ → −τ over any plane of the lattice. It is called the plaquette
Ising model.
We have now to promote this sub-system symmetry to a local (gauge) symmetry and
to do it we turn again to redundancy (as for the TC in Sec. 1.1.3). Let us first add
a transverse field to allow the spins (τ) to have quantum fluctuations. Then we add
additional Ising spins σ at the center of each multi-spin interaction, in this case in the
faces’ centers. Finally, we introduce a minimal coupling between σ and τ spins, so that
we arrive to

H = −t
∑
p

σzpT
z
p − h

∑
v

τxv (1.33)

We call σ the nexus field and it is a natural generalization of a gauge field in a conven-
tional lattice gauge theory. Applying the standard gauging procedure by introducing a
gauge field on the links would have resulted into a Hamiltonian with conventional Z2

topological order.
Now the subsystem symmetry of the spin system has been promoted to a local spin-flip
symmetry. In fact, τxv anti-commutes with the first term of H, so we can compensate by
acting with the nexus field σxp on the twelve faces which have v as a vertex. In this way
the operator

Gv = τxvBv (1.34)

where
Bv =

∏
p s.t. v touch p

σxp (1.35)

is a local symmetry of the Hamiltonian, i.e. [Gv,H] = 0. Note that in the dual lattice,
nexus fields reside on the links and the operators appearing in Bv are the links of the cube
centered in v. Finally, we include also the transverse field for the nexus field, −J

∑
p σ

x
p .

The condition Gv |ψ〉 = |ψ〉 on the Hilbert space amounts to a generalized Gauss’ law.
Bv is called nexus charge operator. We can now chose a particular gauge in order to
eliminate the fields τ

τxv |ψ〉 = Bv |ψ〉 (1.36)
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Further, since each τ zv operator now commutes with H we can just focus on the sector
where τ zv = 1. Thus, we obtain

H = −t
∑
p

σzp − h
∑
v

Bv − J
∑
p

σxp = −t
∑
l̃

σz
l̃
− h

∑
c̃

Bc̃ − J
∑
l̃

σx
l̃

(1.37)

where the ∼ indicates the dual lattice.
Finally, for t/h� 0 we can identify an effective Hamiltonian [8]

Heff = −t
∑
ṽ,µ

A
(µ)
ṽ − h

∑
c̃

Bc̃ − J
∑
l̃

σx
l̃

(1.38)

where the operators A
(µ)
ṽ are determined in perturbation theory as the simplest product of

σz’s near a (dual) lattice vertex that commute with the nexus charge, i.e. [A
(µ)
ṽ , Bc̃] = 0.

In this way we obtain the standard star operators of the X-Cube model. A
(µ)
ṽ operators

provide the natural generalization of the flux in a lattice gauge theory.
This shows how the X-Cube model can be obtained as the dual of a spin-system with
subsystem symmetry. This property is a general feature of fracton phases, holding also
for type-II models [9] where the subsystem symmetries have fractal support.

21



Chapter 2

Tensor gauge theory and fractons

Let us now move on to the description of fracton phases using tensor gauge theory.
First, in Sec. 2.1 we review the description of usual vector U(1) gauge theory. Then,
in Sec. 2.2 we study the case of symmetric rank-2 U(1) tensor gauge theory, which
effectively describes gapless fracton models. Of the various possible theories, the case of
scalar elementary particles is analyzed, dubbed Scalar Charge Theory (SCT). Particular
emphasis is given to the stability of SCT (Sec. 2.2.4) and to the interactions mediated
by the gauge field (Sec. 2.2.3).
In the second part of the chapter, Sec. 2.3, we review the theoretical progress achieved
through the tensor gauge theory description of fracton phases. In particular, we analyze
some possible phases of matter which can arise when considering a finite density of
fractons and/or of other non-trivial excitations, like the dipolar bound states.

2.1 Vector U(1) gauge theory

Let us start by considering the quantized lattice version of electromagnetism [1, 10],
which represents an example of U(1) vector gauge theory. This theory on a three dimen-
sional lattice hosts a Coulomb phase with a gapless photon mode with two polarizations
as in Maxwell theory and gapped electric and magnetic excitations, where magnetic
monopoles arise as a consequence of the compactness of the gauge field. Note that in
order to have just the two ±1 polarizations of the photon, it is necessary that the gauge
field A is compact and that the theory is defined on a lattice [24]. As in the TC, excita-
tions are non local, signaling the presence of highly entangled states.
We take the degrees of freedom to be those of a vector field Ai(x, y, z), where to keep
track of all degrees of freedom and avoid confusion, we denote with i = x, y, z the spa-
tial directions, and with (x, y, z) the coordinates of a site in the lattice of spacing a.
Considering the theory to be compact (U(1)) this field will satisfy Ai ∼ Ai + 2π. The
only gauge transformation possible for a vector field is that of adding the derivative of a
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scalar function
Ai → Ai + ∂iα (2.1)

where ∂i is the lattice derivative, like for example

∂xAx(x, y, z) =
1

a
(Ax(x+ a, y, z)− Ax(x, y, z)) (2.2)

with a the length of a link in the lattice.
Since the field is compact each component of the gauge field is a O(2) quantum rotor [25],
and its canonical conjugate Ei will be the corresponding angular momentum, quantized
to take integer values. The gauge transformation is better understood in terms of the
electric field, which yields the so-called Gauss’ law

∂iE
i = 0 (2.3)

In a concrete lattice model, let us consider for simplicity the cubic lattice, both Ai and
Ei are taken to live on the links. The corresponding Hamiltonian of the system will be
given by

H =
1

2
g
∑
links

E2 −
∑

plaquettes

cos
(
B2
)

(2.4)

where Bi = εijk∂
jAk is the magnetic field and the cosine is taken in order to respect the

compactness of the gauge field. The magnetic field is defined in this way since it is the
simplest combination of derivatives of the gauge field which commutes with the gauge
transformation. Also, since it is formed by mixed derivatives∗ of the gauge field, the
magnetic field is naturally taken to live on the plaquettes of the lattice.
Let us now consider the different possible values of g in (2.4). This parameter represents
the energy content of the theory. In particular, for small g, i.e. at low energies, the
cosine can be expanded around its minimum yielding

H ∼
∫

1

2
gE2 +

1

2
B2 (2.5)

which is the usual Hamiltonian for electromagnetism. Here the Gauss’ law is taken to
be automatically satisfied, but if we consider not just the low energy sector we have also
to include terms which impose the Gauss’ law as an energy constraint. In particular,
violations of the Gauss’ law will be interpreted as particle states of the theory, or charges.
These charges will exist as gapped excitations of the system and will have an energy
penalty in the Hamiltonian

H =
1

2
g
∑
links

E2 −
∑

plaquettes

cos
(
B2
)

+ U
∑

vertices

(∂iE
i)2 + · · · (2.6)

∗The terms in the magnetic field will be of the kind ∂iAj with i 6= j.
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Note that charges naturally live on vertices of the lattice as they correspond to first
derivatives of the electric field. The · · · terms represent the part which do not commute
with the gauge constraint and whose role is that of dictating the dynamics of the charges.
The effect of breaking the gauge invariance in the pure gauge theory is simply to introduce
excitations above a gap in the theory, but the stability is unaffected.
This theory possesses a gapless photon mode with linear dispersion relation and two
polarizations. If we consider the large g limit, we see that the electric term dominates,
effectively disordering the magnetic cosine term, and the system picks up a gap of order
g. This corresponds to the so called confined phase [1].
There is an inherent self-duality in this theory, manifested in the fact that we can describe
it both with electric charges or magnetic monopoles. This duality helps us establish that
the theory is stable against instanton proliferation [26], since magnetic monopoles behave
exactly as their electric counterparts. However, this is the case only in three dimensions
since in 2D the magnetic monopoles are instantons, not excitations with a well defined
energy. This tells us that in 2D the U(1) gauge theory is totally destroyed and is not
stable against confinement.

2.2 Tensor U(1) gauge theory

Let us now pass to the main topic of this chapter, which is Tensor Gauge Theory (TGT).
In the continuum, the idea is that there is no actual reason to restrict ourself to only
vector gauge fields and that growing with the rank of the field new phases could be
possible. The first step could be that of considering higher differential forms. However,
antisymmetric tensor theories do not lead to new stable phases in 3+1 dimensions and in
the discrete case they turn out to be simply dual descriptions of usual one-forms. Thus,
in order to find new stable phases we restrict our-self to symmetric tensors, in particular
of rank-2 [10]. Symmetric gauge fields are reminiscent of gravity and in fact they were
first studied in this field [27, 28]. What has been found is that these symmetric gauge
fields lead to a new class of stable gapless spin liquids. Further, these are effectively
distinct theories since, while the gauge modes are similar to the rank-1 case, the particle
content is completely different, hosting excitations with kinetic restrictions.
Increasing the rank of the gauge field raises also the number of admitted gauge transfor-
mations [27]. Let us take the gauge field to be a symmetric U(1)-valued rank-2 tensor
Aij, i, j = x, y, z, with canonical conjugate Eij representing a generalized electric field,
such that

[Aij(~r), Ekl(~s)] =
i

2
δ~r,~s(δikδjl + δilδjk) (2.7)

where ~r, ~s represent positions in the (continuous) space.
As in Sec. 2.1, each component of the gauge field is a O(2) quantum rotor (the field
is compact) with the corresponding electric field tensor component which serves as the
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angular momentum, and so is quantized to integer values.
There are three possible kinds of transformations for a symmetric rank 2 gauge field [27]

Aij → Aij + ∂i∂jα (2.8a)

Aij → Aij + ∂iαj + ∂jαi (2.8b)

Aij → Aij + δijα (2.8c)

which can be imposed also one on top of the other. Here we will focus on the first one
(2.8a), which implies, in terms of the electric field, the generalized Gauss’ law

∂i∂jE
ij = 0 (2.9)

This holds for the low energy sector. Considering the possibility of charges in our theory
we see that these will be scalars, defined by ∂i∂jE

ij = ρ and this gives the name to the
theory: Scalar Charge Theory (SCT) [10].
This theory can be proven to be stable in 3D as the magnetic monopoles are gapped
excitations while it is confined in 2D because of instantons proliferation as in classical
electromagnetic theory. We will discuss this issue in sec. 2.2.4.
SCT posses a gapless gauge mode with five polarizations which propagate normally.
This can be seen by the fact that the gauge field has 6 degrees of freedom, and one of
these is removed by the Gauss’ law, remaining with five independent polarizations of the
gauge mode. The linear dispersion relation comes from the number of derivatives in the
magnetic field, which in this theory reads

Bij = εilm∂
lAmj (2.10)

This in the equations of motion yields a linear dispersion. Note that it would be possible
to define a symmetrized version of the magnetic field, but this would end up to be fine
tuned as one of the gauge modes is tuned to have exactly flat dispersion. This non-
symmetric field describes the point at which all gauge modes have the same velocity.
The main difference from the vector gauge theory seen in the section above lies in the
particle content. In fact, this Gauss’ law implies higher momentum conservation laws
which restrict the mobility of single charges. In particular, we have as before the local
conservation of charge ∫

ρ =

∫
∂i∂jE

ij =

∮
∂jE

ij = const. (2.11)

where in the last step we used the fact that it is an integration over the boundary.
Further, Gauss’ law also enforces the conservation of dipole moment, since∫

~xρ =

∫
xk∂i∂jE

ij =

∮ [
xk∂jE

ij − Eki
]

= const. (2.12)
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where we integrated by parts and then considered the second term as a total derivative
in order to evaluate it at the boundary.
Note that for a closed manifold we need to introduce a branch-cut for ~x away from the
charges of the theory. Instead for an open manifold this simply implies the conservation
of dipole moment in the bulk.
This additional conservation law forbids elementary charges from moving at all, since
any single charge changes the dipole moment by moving. These immobile excitations are
dubbed fractons. Further, we see that dipole bound states of fractons can move freely
without breaking any conservation law.
In the following we will study in deep SCT. First of all we will see in Sec. 2.2.1 how to
concretely define it on the lattice. Then, we will see how the emergent gauge structure
can arise by imposing the gauge principle starting from global conservation of charge
and dipole moment (Sec. 2.2.2). This approach will give us an explicit coupling to
matter. Following, in Sec. 2.2.3 the emergent generalized electromagnetism of fractons
and dipoles of the theory is studied, exploiting its generalized Maxwell’s laws. Finally,
the matter of stability of the theory against confinement is considered in Sec. 2.2.4,
pointing out the phenomenon of electrostatic confinement.

2.2.1 Lattice model

Scalar charge theory can be put on the lattice as follows [13, 28]. The natural place

Axz

Axy

Ayz

Axx, Ayy, Azz

Figure 2.1: Positions of the gauge fields in Scalar Charge Theory.

to put the six gauge degrees of freedom is to split them in diagonal and non-diagonal
components. The diagonal ones naturally live on the vertices of the cubic lattice, while
the non-diagonal ones on the faces of the corresponding plane: Axx, Ayy and Azz on each
vertex and Axy on the faces of the xy plane and so on, as in Fig. 2.1. This is clear
if we think about the most simple rank-two object: a second derivative ∂i∂jλ. With λ
placed on the vertices of the lattice, the first derivatives ∂iλ will naturally live on the
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links in the i-th direction. Thus, diagonal second derivatives will reside on vertices while
mixed second derivatives will lie on the faces of the corresponding plane. The same
argument holds also for the components of the electromagnetic field Eij. Finally, the
resulting lattice model has three rotors on each site and one on each face of the cubic
lattice. The rotors at sites are not all identical since at the level of the Hamiltonian the
Axx component will have interaction prevalently in the x direction and so on, in a quite
similar way to p orbitals on atoms in a cubic lattice environment†.
Now, let us construct the Hamiltonian of the model. First of all, this Hamiltonian will
contain an energetic penalty term for the violation of the Gauss’ law, which we can write
as

HU = U(∂i∂jE
ij)2 (2.13)

where all the derivatives are intended as lattice derivatives. Let us see an example for
clarity

∂x∂xE
xx(x, y, z) =

1

a2
(Exx(x+ a, y, z) + Exx(x− a, y, z)− 2Exx(x, y, z)) (2.14)

For the other terms we have to consider the mostly relevant gauge invariant terms. The
lowest energy term for the electric field is

HE =
J

2
EijE

ij (2.15)

As in electromagnetism we have to find some magnetic field which has to be gauge
invariant and with the lowest number of derivatives. In the case of SCT it is given by
(2.10), thus we can include in the Hamiltonian a term of the form

HB ∝ −
∑
ij

cos(Bij) ≈ −1 +
1

2
BijB

ij (2.16)

The cosine is needed in order to respect the compactness of the gauge field. The full
Hamiltonian thus reads

H =
J

2
EijE

ij +
K

2
BijB

ij + U(∂i∂jE
ij)2 + · · · (2.17)

Here the · · · terms represent the part that do not commute with the gauge constraint
and so is irrelevant to the low energy theory. Nevertheless, they represent the piece of
Hamiltonian governing the dynamics of the massive charges. Consider for example the
operator exp(iAyz) which is a raising operator increasing Eyz by one. This operator is not

†This gives a hint that p-orbitals may be central in looking for experimental realizations of fractonic
phases.
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y

z

eiAyz

−1

+1

+1

−1

eiAyy

+2−1 −1

Figure 2.2: Admissible configurations in SCT. They are both quadrupolar configurations. The
one above acts as a hopping parameter for a dipole in a direction orthogonal to the dipole’s one.
The configuration below instead acts as a longitudinal hopping operator, making the dipole a
fully mobile particle.

gauge invariant and takes us out of the pure gauge sector, in fact it creates additional
particles. The same holds for the diagonal components. These charge configurations
must nevertheless respect the Gauss’ constraint, so they have to be quadrupolar con-
figurations of charges, as reported in Fig. 2.2. These operators show that indeed the
elementary particles are fractons, while dipolar bound states, which are still non-trivial
configurations of charges since no local operator can create them without energy cost,
are fully mobile.
Let us rename the charge at site ~r as n~r so that

∂i∂jE
ij(~r) = n~r (2.18)

We can describe matter degrees of freedom by defining on each lattice site an O(2)-
quantum rotor variables θ with number n, satisfying the relation[

θ(~r), n(~r′)
]

= iδ~r,~r′ (2.19)

These will couple to the gauge field, resulting in an Hamiltonian of the form

H =
∑
~r

[
J

2
EijE

ij +
K

2
BijB

ij + Un2
~r − V

∑
i≤j

cos(∂i∂jθ − Aij)

]
(2.20)

The form of the coupling between the gauge field and the matter field depends on the
gauge structure of the theory and the requirement of gauge invariance of the Hamiltonian
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[19, 20]. In this case we have the gauge transformations

Aij → Aij + ∂i∂jα (2.21a)

θ → θ + α (2.21b)

The representation of gauge and matter fields in terms of quantum rotors helps in the
characterization of the different phases in the theory [25]. It is known that quantum
rotors have a paramagnetic phase when the kinetic term is prevalent and a ferromagnetic
phase when the coupling between the rotor is more relevant. In the paramagnetic phase
there are N = 2 different excitations while in the ferromagnetic phase the O(2) symmetry
is broken and remains just N−1 = 1 gapless mode. In this case we already took the limit
for the ordered phase when asking to work in the low energy sector and expanding the
cos(Bij)-term in the Hamiltonian. This has lead us to a theory with a gapless, linearly
dispersing photon mode with five polarizations and a gapped charge sector.

2.2.2 Gauge principle

A way to find the gauge symmetry of the SCT is that of starting from a theory of
ungauged fractons which respects global conservation of charge and dipole moment.
Then, by requiring that this symmetry holds locally, i.e. it is a gauge symmetry, it is
possible to see that this requires the coupling to a symmetric tensor gauge field [29].
The first step is that of writing a theory for ungauged U(1) fractons. Let us consider a
matter field Φ and the corresponding charge density ρ = Φ†Φ. In order for the charge to
be conserved globally we need the action to be invariant under a global phase rotation

Φ→ exp(iα)Φ (2.22)

with α constant. Further, in order for the theory to globally conserve dipole moment we
also need to ask that the action be invariant under a linearly varying phase rotation

Φ→ exp
(
i~λ · ~x

)
Φ (2.23)

with ~λ constant. Overall, we are asking the theory to be invariant under a phase rotation
α(x) at most linear in x. We need to look for operators which transform in a nice way
under this rotation, like O → einαO for integer n. While the field Φ is transforms in
this way and so is covariant, its derivatives are not. In fact, the lowest order covariant
operator is given by two fields, explicitly

Φ∂i∂jΦ− ∂iΦ∂jΦ (2.24)

Using this, we can construct the Lagrangian for our theory, which reads

L =|∂tΦ|2 −m2|Φ|2 − k (Φ∂i∂jΦ− ∂iΦ∂jΦ)
(
Φ∗∂i∂jΦ∗ − ∂iΦ∗∂jΦ∗

)
−

− k′
[
Φ∗2(Φ∂2Φ− ∂iΦ∂iΦ) + c.c.

] (2.25)
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where ∂2 = ∂i∂
i and summation over same indexes is implied. Here we also added a

term with a time derivative and a mass term, which have no interplay with the spatially
dependent phase rotation. Rotational invariance has been assumed throughout.
Before gauging the theory let us note its shape: in fact, it is already not Gaussian, since
it contains fourth powers of Φ in its action. This non-Gaussian behavior reflects the fact
that fractons have an intrinsic ability to interact with each other, also in the absence of
a mediating gauge field, as we will see in Sec. 2.3.1.
Let us now apply the gauge principle and try to pass from global to local conservation
laws. The action will have to be invariant under a generic phase rotation α(x) with
arbitrary dependence. We have to construct covariant objects, and this can be achieved
by the coupling with a gauge field transforming in an adequate way. In particular, we
can construct a covariant derivative

DijΦ
2 = Φ∂i∂jΦ− ∂iΦ∂jΦ− iAijΦ2 (2.26)

where the gauge field A transforms as Aij → Aij + ∂i∂jα. Further, if we allow α to also
have arbitrary time dependence we need to include another gauge field in order to define
a covariant time derivative

DtΦ = (∂t − iψ)Φ (2.27)

with the field ψ transforming as ψ → ψ+∂tα. Before putting all this inside the new action
of the theory, we need to look at which gauge invariant objects we can construct starting
just from the gauge fields, like electric and magnetic field in usual electromagnetism. In
this case the electric field tensor takes the form Eij = ∂tAij − ∂i∂jψ and the magnetic
field tensor Bij = εikl∂

kAlj. Finally, the Lagrangian of the gauged theory reads

L = |DtΦ|2 −m2|Φ|2 − k|DijΦ
2|2 − k′(Φ∗2Di

iΦ
2 + c.c.) + EijE

ij −BijB
ij (2.28)

The k and k′ terms represent the interaction of the matter field with the gauge field, while
the last two terms represent the gauge field sector of the theory. In this way we obtained
also an explicit coupling to matter. This route of developing gauge invariant theories
may lead the way for defining generalization also to non-Abelian fracton theories.

2.2.3 Generalized Electromagnetism

As we have seen, SCT in some ways remains very similar to vector gauge theory but the
principal differences arise in the particle content of the theory. In order to study systems
at a finite density of fractons and/or of dipole moments it is necessary to develop an
analogue of Maxwell laws for this higher rank gauge theory. In fact, also this theory
exhibits an emergent electromagnetism, but of a more exotic form [30].
Let us first see the form that the electrostatic field must take. Consider an isolated
charge q at position r. The Gauss’ law will have the form

∂i∂jE
ij = qδ(3)(r) (2.29)
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Let us start by the assumption that the electric field i) has to be symmetric, ii) depends
only on rotationally invariant objects and iii) scales as q/r. The last point can be
justified by Fourier transforming the Gauss’ law (2.29)

Ẽ ∼ q

k2
(2.30)

and then transforming back to obtain the electric field

E ∼
∫
d3k exp

(
i~k · ~r

)
Ẽ ∼ q

∫
dk

∫
dθ sin(θ) exp(ikr cos(θ))

∼ q

∫
dk

sin(kr)

kr
∼ q

r

(2.31)

With these assumptions, the most general form of the electric field is

Eij = q

(
α
δij

r
+ β

rirj

r3

)
(2.32)

Imposing that it has to satisfy the Gauss’ law we obtain the constraint β − α = 1/4π.
Differently from standard electromagnetism, the electric field is not completely fixed by
Gauss’ law and rotational invariance. In order to completely specify it we need to take
into account the magnetic field Bij = εikl∂kA

j
l . The equation governing its evolution is

∂tB
ij = εikl∂k∂tA

j
l = εikl∂kE

j
l (2.33)

By asking for a magnetostatic solution ∂tB
ij = 0 we obtain the constraint α = −β and

the static electric field generated by a point charge in the origin can be written as

Eij
mono =

q

8π

(
rirj

r3
− δij

r

)
(2.34)

In order to obtain the electric field generated by a more complicated set of charges we
can just invoke the superposition principle. In particular, a configuration which will be
very useful is that of a dipole moment pk centered at the origin, which will generate an
electric field −pk∂kEij

q=1 explicitly given by

Eij
dip = − 1

8π

(
δij(p · r)

r3
+
pirj + ripj

r3
− 3

rirj(p · r)
r5

)
(2.35)

Let us now pass to a potential formulation. From the magnetostatic condition we see
that we can write the electric field as ∂iλj, but for its symmetry this also means that
εijk∂jλk = 0. So, we can in turn write λ as the derivative of a scalar potential φ, resulting
in

Eij = ∂i∂jφ (2.36)
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Gauss’ law assumes the form
(∂2)2φ = qδ(3)(r) (2.37)

By dimensional analysis we see that the potential field φ scales as r, so the only possi-
bility is φ = Cr. By imposing Gauss’ law we find that C = −q/8π. Using again the
superposition principle we can also obtain the potential for a dipole configuration

φmono = − qr
8π

(2.38a)

φdip =
p · r
8πr

(2.38b)

As in electromagnetism this potential can be used to evaluate the energy stored in the
electric field of a static charge configuration

ε =
1

2

∫
EijEij =

1

2

∫
ρφ (2.39)

Thus, the potential represents the energy associated with a particle at a particular lo-
cation. Even if fractons do not posses a conventional sense of forces (because of the
restricted mobility), they admit a potential energy. Importantly, since φ grows linearly,
separating a group of fractons requires an energy linear in the separation, but their re-
stricted mobility stabilizes them against collapsing and thus being confined, as we will
see in Sec. 2.2.4.
We now want to introduce a concept of force in order to see how charges behave in the
presence of an electric field. We know that fundamental charges (fractons) are strictly
immobile, so they do not respond at all to electromagnetic fields. Nevertheless there are
still dipoles, which are fully mobile nontrivial excitations. This tells us that dipoles will
serve as test particles for this treatment, and we ask what are the effects of the fields on
this effective particle. Drawing intuition from the lattice model seen above (Sec. 2.2.1)
we see that a dipole pi responds to a magnetic field as a conventional charged particle
responds to an ordinary electromagnetic field, with an effective vector potential given by
Ajeff = −p̂iAij and an effective magnetic field‡ Bi

eff = −Bij p̂j. The corresponding effective
electric field is Ei

eff = −p̂iEij, and the generalized Lorentz force on a dipole pi moving at
velocity vi is given by

F j = −pi(Eij + εjlkvlB
i
k ) (2.40)

From this, we can evaluate for example the work to move a dipole and this would lead
us to the potential energy of a dipole derived above. Another interesting thing to do
is to evaluate the force applied by a dipole on another one with same magnitude and
direction. Using (2.35) and assuming a static electric charge distribution, the force on a
dipole at location ri due to an identical dipole at the origin is given by

F j =
1

8π

(
2pj(p · r)

r3
+
p2rj

r3
− 3

(p · r)2rj

r5

)
(2.41)

‡Note that Bij is non-symmetric, so it is important to keep track of which index is contracted.
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Let us consider the radial component of this force

F j r̂j =
1

8π

(
−(p · r)2

r4
+
p2

r2

)
=
p2 sin2(θ)

8πr2
(2.42)

where θ is the angle between the dipoles’ directions and their relative position.
From this expression we can deduce that for like dipoles (dipoles with the same direction)
the radial force is always repulsive while for oppositely directed dipoles there will be an
additional minus sign and so an always attractive force. Further, this force vanishes when
dipoles line-up along a line (θ = 0). This corresponds to a minimum for like dipoles and a
maximum for opposite dipoles, meaning that like dipoles will tend to arrange themselves
end to end while opposite dipoles prefer to lie side by side.
It remains to talk about steady current flows. Since fundamental charges are fractons,
they have no sense of current. We need to define an object which describes the motion
of dipoles. This work is done naturally by a symmetric tensor Jij since microscopically
the motion of an i directed dipole in the j direction has to be the same as a j directed
dipole in the i direction (see Fig. 2.3 for an example). We can see this also by the fact

Figure 2.3: Current of dipoles has to be described by a symmetric tensor since stacked config-
urations of charges like the one in the figure can be interpreted in different ways. For example
here it could be both a current of x or y-oriented dipoles.

that in the action of SCT a source term enters, as in the one-form theory, coupled to
the gauge field as AijJ

ij and would not be sensitive to any anti-symmetric components.
The Hamiltonian reads

H ∝
∫

1

2
EijE

ij +
1

2
BijB

ij + AijJ
ij (2.43)

and the equations of motion for Eij yield the generalized Ampere equation

1

2

(
εimn∂mB

j
n + εjmn∂mB

i
n

)
= −J ij − ∂tEij (2.44)

This can be seen as a fundamental definition of the currents J ij: as the charge density
ρ represented a violation of Gauss’ law and so a deviation from the pure gauge theory,
here J ij represents a deviation of Ampere’s law from pure gauge theory. From Ampere’s
law we can derive the generalized continuity equation

∂tρ+ ∂i∂jJ
ij = 0 (2.45)
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J ij represents the rate of multi-body hopping processes, instead of the single body ana-
logue for usual continuity equations. It is possible to derive an analog of Biot-Savart law
where a steady current produces a magnetic field [30]

Bij = − 1

6π

∫
dr′J ik(r

′)εikl
(r − r′)l
|r − r′|3

(2.46)

The scaling of this law is the same as for electromagnetism, where the magnetic field
produced by a current in a wire decays as 1/r away from it. So, while electric fields of
static charges are hugely energetically costly, magnetic fields of steady currents are in
line with standard electromagnetism.
It is possible to go on and describe also all the magnetic sector of this theory, which will
be different from the electric sector because of the lack of electromagnetic duality of the
theory [30]. All together we can summarize the Maxwell laws for SCT as

∂i∂jE
ij = ρ (2.47a)

1

2

(
εimn∂mB

j
n + εjmn∂mB

i
n

)
= −J ij − ∂tEij (2.47b)

∂iB
ij = ρ̃j (2.47c)

εimn∂mE
j
n = ∂tB

ij + J̃ ij (2.47d)

2.2.4 Electromagnetic duality and stability

Usual compact rank-1 U(1) gauge theory exhibits a duality between electric and magnetic
charges. Magnetic monopoles arise from the compactness of the gauge field. In fact, the
form of the magnetic field Bi = εijk∂

jAk seems to automatically obey ∂iB
i = 0. But

since Ai is only defined modulo 2π, in general there can be

∂iB
i = 2πn (2.48)

for integer n. Such defects correspond to magnetic charges of strength n. The properties
of these charges are the same as for the electric charges, in a manifestation of electro-
magnetic duality. In fact, it is possible to construct the theory by changing the role of
electric and magnetic sectors. By means of the Gauss’ law ∂iE

i = 0 we can write the
electric field as the rotor of a compact dual vector gauge field Ãi as

Ei = εijk∂
jÃk (2.49)

In terms of this variable the electric and magnetic field have simply exchanged places,
giving a dual formulation of the theory. This also tells us that magnetic defects are
excitations and not instantons, thus the theory is stable. In general, a theory with such
electromagnetic duality will not suffer from confinement due to proliferation of instantons

34



[26]. However, this is not the case for SCT. In fact, in this theory the magnetic field
has the non-symmetric form given by (2.10). Despite the lack of self-duality, due to the
compactness of the gauge field Aij, the theory has magnetic charges, denoted by fi, given
by

∂iB
ij = 2πf j (2.50)

It is possible to show that these are two-dimensional vector particles which can move
only in directions orthogonal to their charge vector. This can be easily seen by observing
that ∫

~x · ~f =

∫
1

2π
xi∂jB

ji =
1

2π

∮
xiB

i − 1

2π

∫
Bi

i = const. (2.51)

due to the tracelessness of B. Thus, since magnetic defects are point like excitations
with well defined energy and structure, SCT is stable against confinement by instanton
proliferation.
Nevertheless, the form of the electrostatic energy of fractons (2.38a), which grows with
the separation between fractons, is not ideal since it implies that the energy stored in the
electric field of an isolated fracton is actually infinite. Also, a linear potential between
two fractons implies that there is an attractive force independent of the distance always
seeking to recombine the particles into the vacuum, meaning that they never become
independent and are thus confined. However, in this case fractons have an electric field
which dies as 1/r and so at large distances they do not feel each other. This means that
the large energy associated with separating particles does not arise by the interaction
with the electric field of the other particle, but from the energy needed to create their
individual electrostatic fields. These two concepts usually coincide but here instead the
immobility of fractons makes the notion of force not well defined, since there is no sense
in which one fracton can do work to move a particle against the field.
Thus, fractons experience this milder form of confinement, dubbed electrostatic confine-
ment, which is only felt in the large energy cost needed to create well separated fractons.
In fact, the gauge field does not acquire a gap like in traditional Polyakov confinement
[26] and after creating the particle there will be no restoring force seeking to recombine
it into the vacuum. The only effect will be that of inhibiting fractons from being created
by thermal fluctuations, since they are too energetically costly.
In concluding the description of SCT let us note that in our construction of Sec. 2.2.1
electric dipoles are bosonic particles. In fact, we can exchange two dipoles without hav-
ing any sign popping out. The same holds for the magnetic monopoles, which are given
by (2.50). Despite all these trivial statistics, a magnetic vector charge and a parallel
coplanar electric dipole have mutual π statistics. To show this it is easier to wind the
dipole around the monopole, as in Fig. 2.4. The effective magnetic field felt by the dipole
pi will be Bi

eff = −pjBij. By the definition of magnetic monopole, the effective magnetic
field seen by the dipole will respect ∂iB

i
eff = −2π (p · f). Let us take the dipole and the

monopole to have the same unit strength. When they are parallel ∂iB
i
eff = −2π, so the
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pi
f i

Figure 2.4: Braiding of an electric dipole around a coplanar magnetic monopole in Scalar
Charge Theory.

dipole sees the magnetic vector as a unit monopole of its effective magnetic field. This
means that a surface enclosing the magnetic vector will see a −2π flux of the effective
magnetic field for the dipole. When the dipole is wound around the vector in their plane
of mutual motion, we can conclude by symmetry that the enclosed flux is precisely half
of the total, i.e. −π. Thus, when an electric dipole is wound around a magnetic vec-
tor charge within their mutual plane of motion, the wave-function of the system picks
up a factor e−iπ = −1. Concluding, an electric dipole moment and a coplanar paral-
lel magnetic vector are mutual semions (anyons) and together they form a fermion. It
looks strange to find particles having non-standard statistical properties in more than 2
dimensions, but in this case it happens because of the kinetic restrictions.

2.3 Finite densities of fractons

Let us move on to a review of the progress in the field of fracton phases at finite densities.
First of all, the mechanism by which fractons move in the vicinity of other fractons by the
emission of a “virtual” dipole is analyzed in Sec. 2.3.1. This mechanism is shown to lead
to a microemulsion behavior when in the presence of a finite density of fractons. Then,
in Sec. 2.3.2 the behavior of a finite density of fermionic dipoles in 3D is studied which
exhibit characteristics of usual Fermi-Landau liquid theory but with some interesting
developments. Further, the problem of stability in 2D is tackled in order to study the
presence of quantum Hall states of dipoles. In Sec. 2.3.3 the stability of 2D fracton
phases with the addition of a generalized Chern-Simons term is studied while in Sec.
2.3.4 the phase obtained by considering a 2D gas of fermionic dipoles is analyzed. This
latter is shown to yield a generalized form of the usual quantum Hall effect.

2.3.1 Self-interaction between fractons

In the presence of finite densities of fractons, new possibilities for the interactions emerge.
In fact, even though fractons are immobile excitations, they can move by exchanging a
dipole moment virtual particle with another fracton nearby. This exchange mechanism
makes them mobile only when in vicinity of other fractons. In particular, the propagation
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Figure 2.5: Dipole exchange interaction between fractons. This interaction does not involve
the gauge field.

speed drops as the separation increases, making this interaction an effective attraction
(see Fig. 2.5). The normal logic of attraction is in some way changed in this context. In
fact, here the motion is not intrinsic to the body which feels some sort of forces by other
particles. In this case motion is inherently a cooperative effect: as fractons approach
each other they do not increase their velocity because of the effect of a force per se,
rather they are increasing each other’s mobility through a more rapid exchange of dipole
particles. This is a phenomenon reminiscent of gravity [13] since the mobility of the
charges depends by the configuration of matter in the system. Also, the exchange of a
dipole amounts to the exchange of a center of mass information, since in gravitational
systems the center of mass is always conserved.
The characteristic interaction between fractons will thus be proportional to their density
and it is possible to show that it is short ranged, in general of the form [13]

V (r) ∼ −V0e
−Mr (2.52)

where M is the energy gap of the dipoles which permit this interaction. In the case
where dipoles are gapless, this interaction falls off as a power law, becoming long ranged.
The case where dipoles are massless can occur in a complex theory of gravity where non-
linearity and gauge invariance can combine to guarantee the existence of such gapless
dipoles, but this issue goes beyond the scope of this thesis [28, 31].
Note that while like-charged fractons effectively attract each other, oppositely charged
fractons do not repulse. In fact, always by conservation of dipole moment, they simply
have to move in the same direction upon exchange of a dipole. Thus, oppositely charged
dipoles cannot attract or repel each other, just maintain a fixed distance.
Let us now consider the case of a finite density of fractons in 3D [12]. As we have seen
these excitations exhibit a short-ranged attraction through the exchange of a virtual
dipole moment. The form of this interaction is given by (2.52). Further, depending on
the theory under consideration, they will have another form of interaction mediated by
the gauge mode. In the case of SCT this is given by (2.38a) but in general the potential
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could be given by a long-range repulsion of the form

Vlr(r) = V1r
n (2.53)

The competition of these two interactions leads to the phenomenon of microemulsion
[32]. At short scales the attraction will dominate forming clusters of fractons which
will behave as droplets in a phase dominated by long-range repulsion forming a Wigner
crystal [33] of such fracton clusters. If the repulsion is increased than the clusters will
become smaller till the point of being formed by just one fracton each and the system
becomes a Wigner crystal of individual fractons. Instead, if the attraction is increased
the clusters will collapse into a single big cluster.
It is possible to show that microemulsion physics, with finite size clusters emulsed in a
Wigner crystal of clusters, is obtained only for repulsive potentials whit 0 > n > −3 [12].
In the case of SCT the form of the interaction has n = 1 meaning that the repulsion
dominates and the resulting phase will feature fractons which are spaced apart as much
as possible.

2.3.2 Dipolar Fermi liquids

Let us now consider the case of a finite density only of dipolar bound states, remaining
in 3 dimensions. As we saw above, dipoles in SCT are freely moving excitations which
interact between each other according to (2.38b). In the following discussion we will
assume dipoles to have a minimal size, i.e. that dipole moment is quantized, and also that
dipoles are fermions. This last assumption is in contrast to the lattice model described
before, where dipoles were bosons. However, in principle nothing prevents dipoles from
exhibiting fermionic statistic. At the moment there is no lattice model which describes
such excitations, but there are several arguments which indicate that fermionic dipoles
should be realizable. For example, we will show in Sec. 2.3.3 that θ-terms can be added
to SCT and have the effect of attaching dipole moments to the magnetic monopoles
of the theory. This phenomenon of flux attachment can produce the same effect as in
Maxwell theory, where magnetic monopoles become fermions. In this way, by adding an
appropriate θ term, it should be possible to convert dipoles into fermions.
Fermionic dipoles have phases of matter directly analogous to conventional electronic
phases. The simplest configuration of the system is that where dipoles form a Fermi
surface [3]. Here dipoles are interacting, so in order to justify the existence of a stable
Fermi liquid it is necessary to look in detail at the interaction between dipoles. The
easiest system to consider is that where are present only dipoles oriented in a certain
direction. By the conservation of dipole moment we know that these dipoles cannot
change their direction and their interaction has the form

V (r) =
p2 sin2(θ)

8πr
(2.54)
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As we saw above, this interaction for like dipoles is always repulsive and vanishes when
dipoles are disposed along a line. The scaling of this interaction is exactly that of a
Coulomb interaction between electrons, so we can treat it as an anisotropic Coulomb
force. This suggests that as in usual Fermi liquid theory, dipoles will be able to screen
each other.
This screening can be seen through an electrostatic calculation [34]. We consider a
Fermi surface of dipoles all oriented in the same direction and then add a test dipole.
The potential energy felt by a dipole will be pi∂iφ, with φ being the perturbing potential.
The induced dipole moment density will be −pj(gpi∂iφ) with g the density of states of
dipoles at the Fermi surface. Then we can write a self consistency equation for the
potential

φ(r) = φbare(r)−
∫
dr′(gpi∂iφ(r′))

pj(rj − r′j)
8π|r − r′|

(2.55)

Integrating by parts and taking the Fourier transform we can solve for the potential φ(k)
which results

φ(k) = −i pkp
k4
⊥ + gp2k2

p

(2.56)

where kp is the component of ki in the pi direction and k⊥ the orthogonal projection.
We can then derive the inter-particle potential energy between dipoles V = pi∂iφ which
has the form the form

V (k) =
(pkp)

2

k4
⊥ + gp2k2

p

(2.57)

Thus, we see that the effect of the screening is that of reducing the interaction to a
short-ranged repulsion between dipoles. Then, the usual aspects of Fermi liquid theory
will carry over unaffected. There will be a discontinuity in the occupation number at
a Fermi surface in momentum space. The dipole moment is now serving simply as an
additional quantum number. Nevertheless, the anisotropy of the dipoles’ interaction has
the result of modifying the shape of the Fermi surface since equal dipoles will tend to
arrange themselves more densely in the direction of their dipole moment.
In such Fermi liquid of dipoles it is interesting to study what happens to fractons. Even
though they are no longer at finite density, they can still appear as excitations of the
system. As we saw above, bare fractons have an interaction potential energy which scales
linearly in the distance. In the case of a finite density of dipoles something interesting
happens, namely that this interaction gets screened by the dipoles and becomes loga-
rithmic in the distance.
The way to see this screening behavior is similar to the procedure employed in the pre-
vious electrostatic calculation. We take a Fermi surface of dipoles, put a perturbing
fracton and see how things change. The potential energy of a fracton is given by (2.38a)
and the dipoles will still have an induced dipole moment density given by −pj(gpi∂iφ).
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So, the self consistency equation (2.55) is modified into

φ(r) = − qr
8π
− gpipj

8π

∫
dr′φ(r′)

(
δij
|r − r′|

−
(ri − r′i)(rj − r′j)
|r − r′|3

)
(2.58)

Now the procedure is the same as before: by Fourier transforming we obtain φ(k), we
solve the equation to find it and then we Fourier transform back to coordinate space.
The result is [12]

φ(r) =

∫
dkpd

2k⊥
(2π)3

q

k4
⊥ + gp2k2

p

ei(kprp+k⊥·r⊥) (2.59)

We can evaluate it in the two directions orthogonal and longitudinal to the dipole moment
direction. First, putting rp = 0 we get

φ(r⊥) =
q

4π
√
gp2

log(r⊥) (2.60)

Taking instead r⊥ = 0 yields

φ(rp) =
q

16
√
gp2

log(rp) (2.61)

Thus, the presence on a dipolar Fermi surface can eliminate the issues of electrostatic
confinement and allows fractons to be separated more easily. Still, the energy cost
to create an isolated fracton scales as log(L), where L is the system size, and this is
reminiscent of vortexes in two-dimensional superfluids [35]. Similarly to superfluids it is
natural to expect that fractons will proliferate above a certain critical temperature. The
free energy associated with a fracton will take the form

F ∼
(

1
√
g
− T

)
log(L) (2.62)

and so fractons will proliferate when this becomes negative, i.e. above the critical tem-
perature

Tc ∼
1
√
g

(2.63)

Below this temperature fractons will exist mostly in bound states, like dipoles. Above the
transition they will be able to unbind and behave independently like in a BKT transition.
This transition destroys the Fermi surface and, since the temperature is finite, fractons
lose their immobility becoming able to move around the system, even if very slowly, thus
resulting in a trivial phase.
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2.3.3 Generalized Chern-Simons theory

Let us now change the dimensionality and consider a 2D system with a finite density of
dipoles [12, 36]. Since dipoles are taken to be fermions, we expect to see a phenomenon
reminiscent of quantum Hall states, with chiral edge states. First of all, we ask weather
or not our fractonic tensor gauge theories can be stable in 2 spatial dimensions, since
as we saw above in Sec. 2.2.4 instanton proliferation is expected to destroy the phase.
Nevertheless, as in usual electromagnetism, the theory can be made stable by the addition
of a suitable Chern-Simons term which prevents the gapless gauge modes to be confined
in 2D.
First of all we need a Lagrangian formulation of the theory. This can be obtained starting
from the low energy Hamiltonian. The partition function of the system can be written
as

Z ∝
∫
DADEδ(∂i∂jEij)ei

∫
(EijȦ

ij−H) (2.64)

We can introduce one Lagrange multiplier φ in order to enforce Gauss’ law as δ(∂i∂jE
ij) ∼∫

Dφe−i
∫
φ∂i∂jE

ij
. Then, integrating by parts two times this term, we can integrate out

the field Eij resulting into

Z ∝
∫
DADφei

∫ (
1
2(Ȧij−∂i∂jφ)

2
− 1

2
BijB

ij
)

(2.65)

Coupling the field also with charges results into the Lagrangian

L [Aij, φ] =
1

2

(
Ȧij − ∂i∂jφ

)2

− 1

2
BijB

ij − φρ− AijJ ij (2.66)

for charge density ρ and current density J ij.
Now we can introduce a so-called θ-term as in usual electromagnetic theory, where it
takes the form ~E · ~B. This term has to be gauge invariant and will turn out to be a
solely boundary term, since it can be written as a total derivative. Further, it will have
the effect of attaching charge to fluxes. For SCT, charges are scalars while magnetic
excitations are vectors. So, the most natural form of combining charges in this theory is
attaching an electric dipole moment to a magnetic vector. This additional term assumes
a similar form to electromagnetism as

Sθ =
θ

4π2

∫ (
Ȧij − ∂i∂jφ

)
εiab∂aA

j
b

=
θ

4π2

∫
∂a

(
1

2
εiabȦijA

j
b + ∂jφε

iab∂iA
j
b

)
− 1

2
∂t
(
εiab∂aAijA

j
b

) (2.67)

Introducing this term, the total action of the system becomes

S =

∫ (
Eij +

θ

4π2
Bij

)(
Ȧij − ∂i∂jφ

)
− 1

2
E2 − 1

2
B2 (2.68)

41



Since it can be written as a total derivative it will not have any effect on the low energy
gauge mode in the bulk, but instead it leads to a Chern-Simons term on a boundary
between the system and an external region with θ = 0. Integrating by parts the φ term
two times and integrating out φ, which is a Lagrange multiplier, from the path integral
yields the gauge constraint given by

∂i∂jE
ij = − θ

4π2
∂i∂jB

ij (2.69)

This can be re-written in terms of the charges ∂i∂jE
ij = ρ and ∂iB

ij = 2πf j as

ρ = − θ

2π
∂if

i + n (2.70)

The above relation shows that the effect of this θ-term is that of attaching fractonic
electric charges to the endpoints of the magnetic charge vectors. It is like a dipole is
attached to each magnetic vector, as anticipated above. Since electric charges are costly
to create, this term will favor configurations where groups of magnetic vectors line up in
string arrangements.
Let us now look at the periodicity of θ. It seems that at θ = 2π we have returned to
the starting point, but we have to consider also the statistic of particles. In this case, by
noting that two parallel vector and dipole moments have mutual π statistic (see the end
of Sec. 2.2.4), together they will form a fermion. This means that θ will be 4π periodic.
Let us now study the boundary terms which arise as a consequence of the Chern-Simons
action. Consider a spatial boundary with normal oriented in the z-direction. The action
(2.67) will take the form

S∂ =
θ

4π2

∫
∂

(
1

2
εbiȦijA

j
b + ∂jφε

bi∂iA
j
b

)
(2.71)

where εij is the 2-dimensional Levi-Civita symbol. Let us note that the Azz component
of the gauge field is no more present in the boundary theory, but there are still terms
∝ ∂z. It is thus useful to introduce the decomposition{

Aij = aij for i, j = x, y

Aiz = λi for i = x, y
(2.72)

In the action (2.71) φ and ∂zφ can be varied independently so they act as Lagrange
multipliers from which we can deduce the equations of motion

δS

δφ
= 0 =⇒ − θ

4π2
εbi∂i∂ja

j
b = 0 (2.73a)

δS

δ∂zφ
= 0 =⇒ θ

4π2
εbi∂iλb = 0 (2.73b)
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The remaining dynamical term instead reads

Sdyn =
θ

4π2

∫
∂

1

2
εbi
(
ȧija

j
b + λ̇iλb

)
(2.74)

We note that it is convenient to separate the gauge field into a trace and a traceless
symmetric part as aij = ãij + γδij. In this way the trace disappears from (2.74) and the
constraints (2.73a). The remaining theory is now decoupled in λi and ãij.
The λ part is a standard Chern-Simons theory where charges have no restriction in
motion. Instead, the ã theory is more subtle: it is a chiral generalized Chern-Simons
theory described by the action

Sdyn =
θ

8π2

∫
εbi ˙̃aij ã

j
b (2.75)

leading to the equations of motion

− θ

4π2
εbi∂i∂j ã

j
b = 0 (2.76)

The two components of ã form a conjugate pair. This implies that the one constraint we
have, (2.76), is enough to fix the theory, thus not leaving any local degree of freedom.
Allowing for the appropriate gauge charges coupled to the field, the conserved charge
ρ = εbi∂i∂j ã

j
b has conserved dipole moment, thus yielding a chiral 2-dimensional stable

fracton phase.
Finally, we can verify the presence of an energy gap, and thus the stability of the theory,
by considering the regularized theory in 2-dimensions. In this case, since we are looking
at the theory for ãij, which is traceless, we need to include a Maxwell term appropriate
to traceless scalar charge theory [10]

S =

∫
1

2e2

((
˙̃aij −

(
∂i∂j −

1

2
δij∂

2

)
φ

)2

−
(
εij∂j∂

kãik
)2

)
+

+
θ

8π2

(
εbi ˙̃aij ã

j
b − 2φεbi∂i∂j ã

j
b

) (2.77)

The Euler-Lagrange equations of motion for this action yield 1
e2
Ė ∝ θE and so an energy

gap scaling as ∆ ∼ θe2. This means that at low energy the theory is gapped, so the
Chern-Simons term is capable of fully gaping the traceless scalar charge theory, yielding
a stable 2-dimensional phase of matter.

2.3.4 Quantum Hall states of dipoles

Summarizing, in Sec. 2.3.3 we found that the Chern-Simons term can stabilize SCT in
2D, and results in a completely gapped phase, with the low energy physics of this phase
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described by a traceless symmetric rank-2 field ãij (2.77). This is a generalized version of
Chern-Simons theory, which usually contains vector gauge fields. As in the more usual
theory also in this generalized version the coefficient θ is quantized in units of 2π

θ = 2πk, k ∈ Z (2.78)

Let us now look at the particle content of the theory. The φ constraint imposes in the
low energy sector

− k

2π
εbi∂i∂j ã

j
b = 0 (2.79)

or in general, allowing for charges, − k
2π
εbi∂i∂j ã

j
b = ρ. From this we can establish the

conservation laws ∫
ρ = const. (2.80a)∫
~xρ = const. (2.80b)∫
x2ρ = const. (2.80c)

We see that there is an additional conservation law with respect to usual SCT. This is
due to the fact that the gauge field now is traceless. Dipoles are no longer completely
mobile particles, but are restricted to move only in the direction orthogonal to their
dipole moment. This restriction in motion arises naturally also due to the fact that
there has been a flux attachment caused by the Chern-Simons term, in fact

ρ =
k

2π
∂iB̃

j (2.81)

Remembering now that magnetic vectors are restricted to move orthogonally to their
direction, dipoles simply inherit this restriction since to each of them is attached a
magnetic flux 2π/k.
By coupling this theory with a current J ij the Hall response of the system will be [12]

〈J ij〉 = − δS

δãij
=

k

8π2

(
εib ˙̃a jb ε

jb ˙̃a ib
)

=
θ

8π2

(
εibE j

b + εjbE i
b

)
(2.82)

So, the conductivity tensor will be given by

σijkl =
θ

8π2

(
εikδjl + εjkδil

)
(2.83)

Differently from the Hall effect of a state of electrons, where the current is due to the
response to an externally applied electromagnetic field, here there is no such external
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field. In fact, here the conductivity is due to the response of the system to the internal
emergent tensor electric field Eij.
The integer k has the natural interpretation as the number of filled Landau levels oc-
cupied by the mobile dipoles. Hence, this phase corresponds to an emergent integer
quantum Hall phase of dipoles. Differently from Chern-Simons theory, here there is no
fractionalization of charge or change in the statistics. Instead, dipoles undergo a frac-
tionalization of motion, being allowed to move only in 1D orthogonally to their dipole
vector.
The description of the case where in (2.78) k takes non-integer values, thus the frac-
tional quantum Hall effect analogue for fractons, has been developed in [12] along with
the description of the resulting edge modes.
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Chapter 3

Ergodicity-breaking and scar states

The restricted mobility of fractonic excitations naturally points to the subject of the
thermalization of such phases. This is also the most interesting and important applica-
tion of these exotic particles, and the first reason they have been studied so much. It is
known that topological phases in two dimensions possess a logical subspace into which
information may be encoded and that this subspace is immune to local perturbations.
Nevertheless, this is possible only exactly at zero temperature, since thermal fluctuations
destroy the state. Fracton phases are much more robust from this point of view because
of the kinetic restrictions.
In order to study the thermal properties of fracton models, in Sec. 3.1 we describe the
behavior of quantum ergodic systems through the eigenstate thermalization hypothesis,
focusing of the observable quantities which characterize these systems such as entan-
glement entropy and level spacing statistics. Then, systems exhibiting a weak breaking
of ergodicity, dubbed quantum many-body scars, are introduced and studied in deep in
Sec. 3.2. Finally, in Sec. 3.3 we study the thermalization behavior of the X-Cube model
in contact with a thermal bath to show that it exhibits a slow relaxation to a thermal
state, in a way analogue to quantum glasses.

3.1 Eigenstate Thermalization Hypothesis

Thermalization and dynamical properties of quantum systems are topics which have at-
tracted a wider attention in recent years due to the novel possible experimental verifica-
tions. It has recently become possible to simulate quantum systems (almost) completely
decoupled from the environment and to observe their long-time behavior. We know that
in classical systems the ergodic hypothesis assures us of the destiny of every chaotic
model: it will thermalize and become independent of the initial conditions. In quantum
systems the matter of thermalization and ergodicity is a bit more subtle. In fact, the
ergodic hypothesis relies on the phase space description of a classical system: over a long
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period of time the trajectory of an ergodic model will access all the phase space and the
time spent in each region will be proportional to its volume. Time averages can then be
taken to be equal to ensemble averages. In the quantum case there is not such a thing as
the phase space trajectory, so the definition of an ergodic system needs to be formulated
in a different manner.
It is believed that quantum thermalization is controlled by the properties of the sys-
tem’s many-body eigenstates, which evaluated on physical observables result in thermal
expectation values. The Eigenstate Thermalization Hypothesis (ETH) [37–39] explains
the microscopic mechanism of thermalization in isolated quantum systems considering
the properties of the system’s eigenstates. First we need to define what we mean by ther-
malization. A generic initial non-equilibrium state |ψ(ti)〉 can in general be expanded
over a basis of many-body eigenstates {|s〉} as

|ψ(ti)〉 =
∑
s

As |s〉 (3.1)

with the probability to find the state in an eigenstate |s〉 being ps = |As|2. An intuitive
definition of thermalization is that at long times, independently from the initial state, the
system’s observables reach values given by the Gibbs’ micro-canonical ensemble. Thus,
the infinite-time expectation value of any physical observable Ô will be given by

〈Ô〉∞ = lim
T→∞

1

T

∫ T

0

〈ψ(t)| Ô |ψ(t)〉 dt =
∑
s

ps 〈s| Ô |s〉 (3.2)

where only diagonal terms appear, since off-diagonal ones oscillate and therefore average
out. Since the terms ps are fixed by initial conditions, a natural way to assure this
behavior at long times is to assume that the individual expectation values 〈s| Ô |s〉 behave
micro-canonically. This is the core of ETH: in ergodic systems individual many-body
eigenstates have thermal observables, identical to micro-canonical ensemble values. This
means that for an ergodic system, even if the initial state is an eigenstate, the subsystems
will behave as if the rest of the system is a heat bath, and will explore all possible
configurations (as classical ergodic systems). In this sense thermalization and ergodicity
coincide, thus we will use them interchangeably. Also, asking that eigenstates follow the
thermal expectation values of physical observables means that if we consider a set of
eigenstates {|εk〉} and an observable Ô then

• The diagonal elements Ok = 〈εk| Ô |εk〉 will vary slowly. In particular,

∆k = Ok+1 −Ok (3.3)

will be exponentially small in system size.

• The off diagonal elements instead will simply be exponentially small, because of
the loss of correlation in the thermal state.

47



ETH thus implies that the time average of a physical observable is a function of energy
only and that it is independent of initial conditions, in agreement with the microcanon-
ical ensemble.
ETH has many implications on the structure of the eigenstates and on the behavior
of some observables. In particular, let us consider the entanglement properties of the
thermal eigenstates. Considering a small subsystem ω the expectation values of all ob-
servables will be thermal. This implies that the reduced density matrix ρω = TrΩ\ω |s〉 〈s|
is also thermal. This leads us to the conclusion that the entanglement entropy of ω in
state |s〉 will be given by the von Neumann (thermal) entropy [40]

Sω = −Tr ρω log ρω = Sth (3.4)

Finally, highly excited eigenstates will have entanglement entropy following a volume-
law, i.e. scaling proportionally to the volume of the subsystem ω.
Another characteristic is the strong sensitivity of ergodic eigenstates to external pertur-
bations of the Hamiltonian. This can be observed from the effect it has on the level
spacing distribution of the energy spectrum. Consider a set of ordered eigenvalues εi
such that εi ≤ εi+1 for i = 1, . . . n. Then the level spacings are defined as

si = (εi+1 − εi)/〈s〉 (3.5)

where 〈s〉 is the mean spacing value.
It is known that systems which thermalize follow a Wigner-Dyson distribution of level
spacings, characteristic of random matrix ensembles [41]. This is a consequence of the
strong sensitivity to external perturbations which causes level repulsion.

Figure 3.1: Left panel: Probability distributions characterizing level spacing statistics in quan-
tum systems. Right panel: Same probability distributions for consecutive spacing ratios.

The Wigner-Dyson distribution is obtained through random matrix theory, by consider-
ing orthogonal (Gaussian Orthogonal Ensemble) or unitary (Gaussian Unitary Ensemble)
matrices with entries which are Gaussian distributed with mean 0 and variance σ. It
is used the GOE or the GUE if the systems respects or not time reversal symmetry
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respectively. The probability distribution of spacings does not have a closed form but is
very similar to the Wigner Surmise [41]

P (s) = Aβs
β exp

(
−Bβs

2
)

(3.6)

where β = 1, 2 refers to GOE and GUE respectively. The coefficients Aβ and Bβ are
obtained by normalizing the distribution. The level repulsion can be seen by observing
that the probability of having energy separation ω goes to zero for ω → 0. Also, at large
energy separations the distribution decays in a Gaussian manner.
Differently, non-ergodic systems like integrable systems and many-body localized (MBL)
phases, have been shown to follow a Poisson distribution of level spacings [39]. This
was first conjectured by Berry and Tabor [42] for quantum systems with an integrable
classical counterpart but holds for any non-ergodic system, like MBL. The distribution
of level spacings in this case takes the form

P (s) = exp(−s) (3.7)

This is very different from Wigner-Dyson distribution in that there is no level repulsion
in this case.
Another case to take into consideration is a middle step between Wigner-Dyson and
Poisson, the so called Semi-Poisson distribution [43], which is likely to appear in systems
exhibiting a milder form of ergodicity breaking, as in many body-scars that we will see
below. The form of the distribution is given by

P (s) = 4s exp(−2s) (3.8)

and is reported in Fig. 3.1 along with the others.
A quantity which is usually considered instead of the level spacings are the level ratios

rn =
min(sn, sn−1)

max(sn, sn−1)
(3.9)

and their mean value

〈r〉 =
1

N
∑
n

rn (3.10)

since spacing ratios have the advantage of not requiring unfolding [44] since they are
independent of the local density of states [41]. These mean values are characteristic of
the single distributions and are

〈r〉WD = 0.536 (3.11)

for the WD,
〈r〉P = 0.386 (3.12)

for Poisson and
〈r〉SP = 0.5 (3.13)

for the Semi-Poisson [44].
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3.2 Quantum many-body scars

As anticipated above, two main examples where the ETH does not hold are integrable
systems and many-body localized phases (MBL). These non-ergodic systems are said to
break ETH strongly, since all eigenstates have expectation values of physical operators
not following the micro-canonical ensemble. What has been found recently is that there
are systems which behave in an intermediate manner.
In a recent experiment on quantum simulators based on Rydberg atoms [18] it has been
observed a peculiar dynamical behavior of the system which in a quench experiment, de-
pending on the initial conditions, has been shown to fail in thermalizing. This anomalous
behavior has been referred to as a weak breaking of ergodicity, since the initial states
leading to a non thermal behavior represent a small fraction of all the states. These have
been named quantum many body scars (QMBS)[45] in analogy to the weak breaking of
ergodicity of a classical single particle inside a stadium billiard [46]. These scars are
eigenstates which are present also in the highly excited energy spectrum of the system.
Here ETH is said to be violated weakly since the anomalous eigenstates constitute a
vanishing fraction of the Hilbert space and they are immersed in a sea of thermalizing
eigenstates.
Let us first examine the model describing the Rydberg chain in Sec. 3.2.1. Following, we
will see that many systems exhibiting QMBS have been found with a common charac-
teristic being the presence of a subspace which is decoupled from the rest of the energy
spectrum and which is not attributed to a symmetry of the system. We review the known
mechanisms leading to weak ergodicity breaking in Sec. 3.2.2. Finally, in Sec. 3.2.3 we
will see how to obtain scar states from modifications of ”every-day” familiar models.

3.2.1 PXP model

The chain of Rydberg atoms can be effectively characterized as a PXP model [47]: each
atom of the chain can be either in the ground state or in an excited state and, when
subject to a microwave field, each atom can oscillate between the two configurations,
but not freely. In fact, there is a constraint due to the fact that two excited atoms
repel each other: this repulsion can be tuned to affect only nearest neighboring sites
implementing the so-called Rydberg blockade [48]. This kinetic restriction implies that
only atoms neighboring with ground state ones can flip to the excited state. Let us define
the excited states to be |•〉 and the ground states |◦〉. In the exact limit, this system is
described by the following spin-1/2 Hamiltonian

HPXP =
∑
i

Pi−1XiPi+1 (3.14)

where the Xi operator flips the i-th spin only if the two projectors are satisfied. These
can be written as Pi = |◦〉i 〈◦|i = (1− Zi) /2. Due to the presence of projectors the
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Figure 3.2: Upper panel: Half-chain entanglement entropy evolution in time starting from
different initial states. In particular are considered the state |0〉, |Z2〉, |Z3〉 and |Z4〉. We
can see that the slope of the curve depends strongly on the initial conditions. Lower panel: by
removing the linearly growing part from the |Z2〉-slope it is possible to observe periodic revivals
persisting at long times.

Hilbert space of the model acquires a non-trivial local constraint: configurations with two
consecutive excited atoms are prohibited. It is possible to show [47] that the constrained
Hilbert space of this model grows as the Fibonacci sequence. In particular, for a chain
of length L with open boundary conditions the Hilbert space dimension will scale as
d ∼ FL+2, with Fn the nth Fibonacci number. For this reason the PXP model is often
referred to also as the Fibonacci model.
The system described by (3.14) possess a particle-hole symmetry. The operator P =∏

i Zi anticommutes with the Hamiltonian, so every eigenstate |ψ〉 with energy E has
symmetric partner P |ψ〉 of energy −E. Also, the system has spatial inversion symmetry
mapping i→ L− i+ 1.
What has been observed in the experiment on Rydberg atoms is that the relaxation under
unitary dynamics strongly depends on the initial configuration of the system: for almost
all initial sates the system ends up thermalizing at long times, while for some particular
states this behavior is lost. One of the non-thermalizing initial states that have been
found is the Néel state |Z2〉 = |◦ • ◦ • ◦ • . . .〉 and its partner |Z′2〉 = |• ◦ • ◦ • ◦ . . .〉.
It is possible to numerically simulate the system using exact diagonalization. In Fig. 3.2
we show the time evolution of the half-chain entanglement entropy for different initial
states. To obtain these data was used the library QuSpin [49] with a chain of length
L = 19 and open boundary conditions. It is possible to observe that the entanglement
entropy grows linearly in time, as expected for ergodic systems. Nevertheless, the slope
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of the curve depends on the initial states∗ and for Néel initial state it undergoes periodic
oscillations. Special states like |Z2〉 can be distinguished through their entanglement
properties as can be observed from Fig. 3.3. In fact, entanglement entropy should follow

Figure 3.3: Upper panel: Half-chain entanglement entropy evaluated for all eigenstates of an
L = 18 PXP chain with open boundary conditions. The colors indicate the number of states
lying in every singular bin, with the legend given by the lateral color-bar. Lower panel: overlap
of eigenstates with the Néel state |Z2〉, with overlap defined by log10 | 〈Z2|ψ〉 |2. States with
high overlap with the Néel state form towers which coincide with low entanglement states in
the upper panel.

a volume law for thermal eigenstates while special states exhibit a sub-thermal amount of
entanglement. We can also see that these states define bands of non-thermal eigenstates,
characterized by having large overlap with the Néel state, also plotted in 3.3.
Finally, it is possible to show that the model is non-integrable by calculating the level
spacing distribution. In order to do so we compute the energy level spacings and the
ratios over consecutive spacings. These are plotted in Fig. 3.4 which shows also the

∗With |Zk〉 we refer to states with period k: | . . . • ◦ ◦ · · · ◦︸ ︷︷ ︸
k

. . . 〉.
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Figure 3.4: Upper left panel: energy level spacing distribution. Upper right panel: ratio of
consecutive spacings distribution. Bottom panel: Consecutive levels’ ratios r plotted in function
of the normalized energy ε with 20 steps. In all graphs was considered the central part of the
spectrum ε ∈ [0.3, 0.7] and are also shown the values expected from WD, SP and P distributions.

ratios plotted as a function of the normalized spectrum [50]

εn =
En − Emin
Emax − Emin

(3.15)

The statistic of the energy levels is approximately distributed close to the Semi-Poisson
prediction, which is expected for systems weakly violating ETH.
The energy levels statistics together with the linear growth of entanglement rule out the
integrability-based explanation of the non-ergodic dynamics of the system. In fact, for
an integrable system we would expect a Poisson distribution of level spacings.

3.2.2 Mechanisms of weak ergodicity breaking

The mechanisms by which weak breaking of ergodicity may arise have in common the
fact that the Hilbert space factors into two almost separated subspaces not related to
any global symmetry of the full Hamiltonian

H ≈ Hscar

⊕
Hthermal (3.16)

Here Hscar contains all eigenstates violating ETH and is decoupled from the thermalizing
subspace.
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There are three mechanisms found so far [45] that explain this decoupled subspace:
spectrum generating algebra, Krylov restricted thermalization and projector embedding.

• The first mechanism is the so-called spectrum generating algebra. The family of
excited non thermalizing eigenstates is constructed by means of a local operator and
allows to exactly construct scar eigenstates, which can physically be interpreted as
quasi-particle condensates built on top of the system’s ground state. The spectrum
generating algebra is defined by a local operator Q̂ satisfying the relation([

H, Q̂†
]
− ωQ̂†

)
W = 0 (3.17)

where W is a linear subspace of the full Hilbert space left invariant under the action
of Q̂† and ω is an energy scale characterizing the operator Q̂ and the corresponding
subspace W . In QMBS W is not the full Hilbert space and Q̂† is not associated to
any symmetry. Then, starting from an eigenstate |ψ0〉 with energy E we can build

a tower of states
(
Q̂†
)n
|ψ0〉 which are all eigenstates with energy E + nω. These

are candidates for QMBS.

• The spectrum generating algebra relies on the notion of the operator Q̂ which is
usually difficult to find, thus we can rely on another mechanism to realize exactly
embedded subspaces, which is the Krylov restricted thermalization construction.
For arbitrary Hamiltonian H and state of the Hilbert space |ψ0〉, the Krylov sub-
space is defined as

K = span
{
|ψ0〉 , H |ψ0〉 , H2 |ψ0〉 , . . .

}
(3.18)

A case of particular interest is when K is finite, i.e. for some n, Hn |ψ0〉 = 0.
This causes a dynamical fracture of the Hilbert space since the Schrodinger dy-
namics realized starting from a state |ψ〉 ∈ K remains in that subspace at any later
time. Krylov subspaces occur in models of the fractional quantum Hall effect in a
quasi-one dimensional limit and in models of bosons with constrained hopping on
optical lattices. More generally Krylov fracture is present in models which feature
a conservation of dipole moment, like fracton models [17], as we will show in the
next Chapter.

• At last, there is the mechanism of projector embedding, which consists in incor-
porating an arbitrary subspace into the spectrum of a thermalizing system. This
can be achieved via the projection embedding procedure: starting from a set of
non-thermalizing states |ψ〉 it is assumed that these are annihilated by some local
projectors Pi |ψ〉 = 0. Next, by considering a lattice Hamiltonian of the form

H =
∑

PihiPi +H ′ (3.19)
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where hi are arbitrary operators with support on a finite number of sites around
i and [H ′, Pi] = 0. Then, it is straightforward to show that [H,

∑
i Pi] = 0 and

so that H takes the block diagonal form of eq. (3.16). Physical mechanisms
such as geometrical frustration in correlated materials can implement the projector
embedding. Also, it is particularly useful for various topologically ordered lattice
models, which are themselves defined in terms of projectors [51]. Deformations
of such models, including the toric code and X-Cube, can be used to embed scar
states, as will be done in the next section.

3.2.3 More on topological scar states

Violation of ETH can be detected from some indicators: (i) sub-volume law scaling of
for the entanglement entropy of eigenstates, (ii) emergent local integrals of motion in
non-integrable systems and (iii) oscillations in the expectation value of suitably chosen
local observables under the unitary time evolution. Analytical progress in quantum many
body scars is difficult because of the non-integrability of the models. On the other hand,
numerical techniques to obtain highly excited states rely mostly on exact-diagonalization.
Thus, these are limited by the reachable system sizes, which are often too small to have
an extrapolation of the thermodynamic limit. This is why studies on ETH-violating
systems are mostly focused on 1D models.
In this section we will derive scar states by suitably modifying exactly solvable models.
First of all consider a general local Hamiltonian [51]

H(β) =
∑
s

αsQs(β) (3.20)

where the operators Qs are Hermitian, positive semi-definite and local. Let us consider
these operators to be parameterized by a parameter β. The index s labels a bounded
region of space the operator acts non-trivially on (it could be for example the plaquettes
of a square lattice). These operators are built so as to share a common null state |Ψ(β)〉,
i.e. such that

Qs(β) |Ψ(β)〉 = 0, ∀s (3.21)

If all couplings αs are positive, then |Ψ(β)〉 is the ground state of the Hamiltonian
since the Qs operators are positive-semidefinite. In contrast, if the couplings take both
positive and negative values, this is not guaranteed. |Ψ(β)〉 is still an eigenstate with
energy 0 and even when it is a highly energy eigenstate it is atypical since it displays an
area entanglement entropy law, being a ground state for a different local Hamiltonian,
namely H̃(β) =

∑
s |αs|Qs(β). This tells us that |Ψ(β)〉 is a scar state, if H(β) is non-

integrable.
To obtain scar states the underlying idea is that of deforming exactly solvable spin models
in order to break integrability while retaining the E = 0 scar state. In this way it is
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Figure 3.5: Consecutive level spacings for the 1D Hamiltonian defined in (3.22). Figure taken
from [51].

possible to construct scar states in any dimension.
Let us start with the topologically trivial example of a 1D spin-1/2 chain on a ring of
length L. The local Hamiltonian under consideration has the form (3.20) with

αs = (α + (−1)s), Qs(β) = e−β(Zs−1Zs+ZsZs+1) +Xs (3.22)

where β ≥ 0 and 0 < |α| < 1. Here s labels the sites of the chain.
For β = 0 this reduces to a paramagnetic chain in a Zeeman field, which is integrable.
However, for β 6= 0 the operators on nearest-neighbor sites no longer commute, indicating
that the Hamiltonian is no longer integrable. This can be confirmed by numerically [51]
studying the distribution of consecutive energy level spacings which turn out to match
the Wigner-Dyson distribution, thus supporting this claim. The spacings are plotted in
Fig. 3.5.
One can then verify that the state

|scar(β)〉 = G(β)
⊗
i

|+〉xi (3.23)

where |+〉xi is the state such that Xi |+〉xi = +1 |+〉xi and G(β) = exp
(
β
2

∑
s ZsZs+1

)
is

annihilated by Qs for all s. So, as seen above, |scar(β)〉 is the ground state of the local
Hamiltonian H̃(β) =

∑
s |αs|Qs(β).

This kind of construction can be used to obtain scar states in many other non-trivial
models. An interesting example is that of scar states arising in a deformation of the SPT
cluster model in 1D (see App. A). Let us consider a spin-1/2 ring of 2L sites described
by the Hamiltonian H1D = H1 +H2 where

Ha =
∑

j∈sublattice a

αj,aQj,a, a = 1, 2 (3.24)
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and

αj,a = α + (−1)
j−a
2 (3.25a)

Qj,a = exp(−βa (Xj−1 +Xj+1))− Zj−1XjZj + 1 (3.25b)

The ring is divided into even and odd sites. For any value of βa ≥ 0 it holds that
[H1, H2] = 0. The special case for β1 = β2 = 0 is an exactly solvable model whose
ground state is exactly the gapped symmetry protected topological cluster state. This
model has topological properties originated from the zero energy modes localized at the
ends of an open chain when open boundary conditions are considered. The symmetry
protecting these edge states is a Z2×Z2 symmetry. The ground state is gapped, so even
for small values of β1, β2 it remains so. The zero energy state at non-vanishing β’s is
given by

|scar〉1D = G1D
1 G1D

2 |+, . . . ,+〉 (3.26)

where the state of all +’s is the ground state at βa = 0 and the operators G1D
a are defined

in analogy to the previous example

G1D
a = exp

(
βa
2

∑
j∈sublattice a

Xj−1

)
(3.27)

In order to establish that these are actually scar states, we need to show that the model
now is non-integrable. It is possible to do so by mapping the model to the topologically
trivial one introduced above [51]. Thus, the 1D symmetry protected topological scar
state defined in eq. (3.26) is an exceptional state in the spectrum of a non-integrable
Hamiltonian H1 +H2.
Let us pass to 2D and consider a modification of the Toric Code (TC) model seen
in Sec. 1.1. The Hamiltonian we consider is given by two separate commuting parts
H̃TC = H1 +H2 where

H1 =
∑
v

αv

[
exp

(
−β1

∑
s∈v∩P1

Zs

)
− Av

]
(3.28a)

H2 =
∑
p

αp

[
exp

(
−β2

∑
s∈p∩P2

Xs

)
−Bp

]
(3.28b)

With v we refer to vertices and with p to plaquettes in the square lattice, while Av and
Bp are defined as in equation (1.1) and (1.2) respectively. For β = 0 we recover the
usual Toric Code model described in section 1.1. At β 6= 0 the model is a bit more
complicated. In order to understand the form of the Hamiltonian we need to split the
square lattice into two sub-lattices defined by the vertices and plaquettes respectively,
as in Fig. 3.6. Then, the paths P1 and P2 are non-crossing paths defined on the two
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Figure 3.6: Example of non-intersecting paths covering the square lattice. Periodic boundary
conditions are assumed. The red path crosses all plaquettes’ centers (P2 in eq. (3.28b)) while
the blue path crosses all the vertices (P1 in eq. (3.28a)).

different sub-lattices, such that together they cover all the spins on the links of the
lattice. There are many possible such paths, an example is reported in Fig. 3.6.
The above construction guarantees that the two Hamiltonian terms commute with each
other. Finally, it is possible to show that the spectrum of H1 is the same as that of
(3.24) for a path P1 of length L [51]. Thus, the level statistics will also be the same,
and the numerical evidences of non-integrability carry over. We can now proceed to look
for the exact form of the scar states. To do so we can introduce an orthogonal basis
|λ〉 labeled by the 22NxNy−2-dimensional vector λ taking the eigenvalues of the distinct
vertex and plaquette operators. The factor of 22 left out is due to the ground state
degeneracy of the TC, thus we can complete the basis of the Hilbert space by using the
eigenstates |ω〉 with additional eigenvalues ωx and ωy labeling the the non-local operators
distinguishing between the degenerate ground states†. The scar states will be four, one
for each topological sector, and will all have energy E = 0∣∣scar2D;ω

〉
= G2D

1 G2D
2 |+, . . . ,+;ω〉 (3.29)

where again

G2D
a = exp

(
βa
2

∑
i∈Pa

Zi(Xi)

)
(3.30)

Until now we have seen how to construct scar state in 1 and 2 dimensions. It is possible
to extend this construction also to three dimensions by following the same steps. In
particular, let us see how to do so for the X-Cube model introduced in Sec. 1.2. In
fracton phases the ground state degeneracy scales exponentially in linear system size,
thus we will have a set of 3D scar states with the same exponential degeneracy. Again,
we define the Hamiltonian as the sum of two terms H̃TC = H1 +H2 where the terms are

†These are the operators defined in Sec. 1.1.1
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given by

H1 =
∑
v

αv

[
exp

(
−β1

∑
i∈v∪P1

Zi

)
− As

]
(3.31a)

H2 =
∑
c

αc

[
exp

(
−β2

∑
i∈c∪P2

Xi

)
−Bc

]
(3.31b)

Here, v labels the vertices and c the cubes of the simple cubic lattice. The operators Av
and Bc are the vertex and cubic operators of the X-Cube model as defined in eqs. (1.20).
For β1 = β2 = 0 the model reduces to the usual X-Cube model up to a constant. The
coefficients α are defined as αv(c) = α+(−1)ρv(c) where, similarly to the TC construction,
ρv(c) is equal to 0 on one sub-lattice and 1 on the other one. The two sub-lattices are
the ones defined by the sites of the cubic lattice (the vertices) and by the cube centers
(the dual lattice). Again, the paths P1 and P2 are defined on the respective sub-lattices
in order to not cross each other and cover all the links of the cubic lattice (on which
are defined the spins). These conditions again guarantee that [H1, H2] = 0 for any β1(2).
As above, we can construct a basis in order to build the scar states of this model. The
Hilbert space has overall dimension 23L3

for a cubic lattice of linear size L. We can store
the eigenvalues of the independent star and cube operators in a vector λ which will have
dimension 3L3− 6L+ 3, because of the extensive degeneracy of ground states studied in
Sec. 1.2.3. Then, we can complete this basis by adding the topological quantum numbers
ζ. This means that the number of scar states that are eigenstates of H̃XC with energy
E = 0 grows sub-extensively in system size, and are given by∣∣scar3D; ζ

〉
= G3D

1 G3D
2 |+, . . . ,+; ζ〉 (3.32)

where

G3D
a = exp

(
βa
2

∑
i∈Pa

Zi(Xi)

)
. (3.33)

3.3 Glassy behavior of fracton models

In this section we look at the thermal behavior of fracton models in 3D [15] and we will
see that these models naturally exhibit problems in thermalizing. In fact, the lack of
line-like operators inevitably imposes kinetic restrictions on the excitations, resulting in
a long thermalization process. Let us use as example the X-Cube model treated in Sec.
1.2. First, recall that fracton phases arise in exactly solvable lattice spin models in three
spatial dimensions and exhibit a sub-leading topological ground state degeneracy when
considering periodic boundary conditions. The key concept is that there does not exist
a local line-like operator that can create a pair of fractons and thus move them around
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the system without energy cost, differently from the Toric Code. The operators in the
X-Cube model instead create the excitations at the corners of membrane-like operators
(see Fig. 1.9). Let us rewrite the Hamiltonian of the X-Cube for convenience as

HXC = −
∑
c

∏
l∈∂c

σxl −
∑
v,µ

∏
l∈star(v),l⊥µ

σzl (3.34)

Let us define the different possible kinds of excitations in this model. First of all there
are fractons, excitations created at the corners of membrane like operators (made of
σz’s), where the eigenvalue of cubic operators is flipped from +1 to −1. These are im-
mobile particles, since in order to move them two additional charges must be created.
Let us denote fractons e(0) because of the 0-dimensional mobility. If instead we consider
a bound pair of fractons we obtain a so-called dipole. This is free to move by the re-
peated application of local membrane-like operators. In fact, a straight Wilson line of
σz’s creates a pair of fractons at each end of the line. With this operator it is possible to
move these bound pairs in the 2 directions orthogonal to their orientation, so we will call
them e(2). Finally, there are additional dimension-1 excitations created on the vertices
at the end of a Wilson line of σx’s, which we will refer to as m(1). Also, we will refer to
the four fracton composites created by the application of a single σz, as the topologically
neutral sector since these can be created and annihilated simply by the application of
Pauli operators. Since this composite is fully mobile without any restriction in motion
we will call it e(3). Consequently, e(1) and e(2) will be the topologically charged sector.
Let us consider the X-Cube model in the presence of external transversal Λ and longi-
tudinal λ fields

H = −J
∑
c

Bc −
∑
v,µ

Aµv + Λ
∑
l

σz,i + λ
∑
l

σx,i (3.35)

Since the operators Aµv and Bc are commuting projectors, the coefficient J only sets
the energy scale between the e and m excitations (created respectively by B and A
operators). Let us take J = 1 and the transverse field Λ � 1 in order to stay into the

Figure 3.7: A fracton can be transformed into a configuration of fracton + dipole by the
application of a σz.

fracton phase. Also we take λ = 0. Thus, we will consider the third term of eq. (3.35)
as a small perturbation. In this way the m particles are not allowed to hop and we can
focus on the dynamics of the other excitations.
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Each fracton (e(1)) hop is accompanied by the creation of two additional fractons, thus
has an energy cost (gap) of W = 4. In this way, a fracton can move by the creation of
an e(2) (Fig. 3.7) which then can move to infinity without energy cost, thus changing
the particle content. To understand the relaxation of the fracton sector we have to
consider e(2)’s and e(3)’s as thermal baths for the fractons since rearrangements within
these sectors allow the system to come back on energy shell after each hop.
Let us consider first the system at equilibrium at some temperature T . The energy scale
in the topological sector is the energy W associated to the cost of a fracton hop. Each
of the three species is gapped, with the gap given by W/2, W and 2W for creating
a single e(1), e(2) and e(3) respectively. Further, e(3) and e(2) are topologically neutral,
with fractons carrying a Z2 charge. This implies that the species cannot be tuned
independently, rather the equilibrium temperature uniquely determines their density to‡

nf ∼ e−
W
2T (3.36a)

nb ∼ e−
W
T (3.36b)

nc ∼ e−
2W
T (3.36c)

We can see by the form of the perturbation σz that the only processes exchanging energy
between the different sectors are those with conserved total Z2 charge on each row and
column of the cubic lattice. Each process will be suppressed with increasing number of Λ
perturbations, thus only processes with low number of interactions will be relevant. The
maximum energy the bath can provide is Λ̃ = min(Λ, T ) so the bath must be probed
n ∼ W/Λ̃ times for the fractons to borrow enough energy to perform a single hop. Thus,
the relaxation rate in the charge sector will be given by

Γ ∼ nfe
−n ∼ nfe

−W/Λ̃ (3.37)

which is exponentially slow in n. We need to take in consideration also the hopping
mechanism analyzed in Sec. 2.3.1, where a fracton can move mediated by the presence
of a nearby dipole, or e(2) in this case. This process will depend on the density of these
excitations, so the rate will be given by

Γ ∼ nfnb ∼ nfe
−W/T (3.38)

The faster process will dominate the relaxation, so it will be the rate (3.38). If we
analyze this behavior, we see that it is in contrast with typical gapped phases, where the
relaxation displays Arrhenius law ΓA ∼ n ∼ e−∆/T with n the density of charge carriers

‡We will refer to e(2)’s as bosons (b), in distinction with e(1)’s which are fractons (f). e(3)’s are still
bosons but are of no use now because of their big energy cost, as explained in the text. When needed,
we will refer to them as composites (c).
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and ∆ the energy gap. In our case, in addition to the exponential suppression due to the
fracton density, we have an additional slowing term related to the restricted mobility of
the excitations.
Let us now consider the non-equilibrium dynamics of our model prepared in the ground
state and in contact with a (low) finite temperature bath composed of e(2)’s and e(3)’s.
The initial temperatures of the various sectors are taken such that T 0

i � Λ for i = f, b, c.
Also, let us assume that the temperatures of e(2)’s and e(3)’s coincide so that we can
study the equilibration of fractons with the bath. Fractons are initially prepared at low
temperature T

(0)
f � T

(0)
b,c , since we care about fractons prepared in their ground state.

Let us consider only the most relevant processes, i.e. those involving only two-body
on-shell interactions between the fracton sector and boson sector. In fact, e(3)’s are not
relevant because they are at the same temperature of the bosons and cost more energy.
The dominant processes will be: (i) boson + boson � 4 fractons, (ii) boson + boson �
boson + 2 fractons and (iii) boson + fracton � 3 fractons. The processes are shown in
Fig. 3.8. All these channels occur at second order in Λ and their rates are controlled by

(a) First

(b) Second

(c) Third

Figure 3.8: Most relevant mechanisms for exchange of energy between fracton and boson
sectors. They are all at second order in perturbations Λ since two applications of σz are needed.

the densities of the excitations involved. We can thus establish a balance between the
thermal and charged sectors as§

dEf
dt

= Λ2(3n2
b + nbnf − nbn2

f − n3
f − 2n4

f ) = −dEb
dt

(3.39)

§For example, the rate of the first channel is Γ ∼ Λ2

W n2
b and since the bath lends an energy of 2W for

this process, dEb/dt ∼ −2WΓ = −2Λ2nb.
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We need now to determine the heat capacities which will be exponentially small due to
the gappness of the various species, Ci ∼ ni, i = f, b, c. In particular, we expect that

Ef ∼
W

2
nf −→ Cf ∼

W 2

4T 2
f

e
− W

2Tf (3.40a)

Eb ∼ Wnb −→ Cb ∼
W 2

T 2
b

e
−W

Tb (3.40b)

The balance between fracton and boson sector then leads to the rate equations

dTb
dt

= −Λ2T 2
b

W 2

(
3nb + nf − n2

f − n3
f/nb − 2n4

f/nb
)

(3.41a)

dTf
dt

=
4Λ2T 2

f

W 2

(
3n2

b/nf + nb − nbnf − n2
f − 2n3

f

)
(3.41b)

These relations can be studied analytically [15]. In particular, in the regime for Tf ∼ 0,
when fractons are initially in the ground space at vanishing energy density, we have that
T

(0)
f � T

(0)
b . Thus

Tf (t) = − W/2

log
(

6Λ2

W
t+ k

)
− 2W

T
(0)
b

(3.42)

with k = exp

(
2W

T
(0)
b

− W

2T
(0)
f

)
, and

Tb(t) =
W

log
(

3Λ2

W
t+ eW/T

(0)
b

) (3.43)

These results imply that the fractons heat logarithmically slow and the bath inversely
cools logarithmically. An important characteristic is that this behavior persists until
fractons are close to equilibration, which takes an exponentially long time

0 ≤ t . t∗ =
W

6Λ2
exp

(
W

T
(0)
b

)
(3.44)

This is because up to this time scale the dominant processes are (i) and (ii), while at
higher temperatures the process (iii) gets activated and leads to a faster equilibration.
We have found that placing a type-I fracton model prepared in its ground state in
contact with a finite-temperature heat bath leads to an exponential in time long equi-
libration process, typical of quantum glasses [16]. Glasses are characterized by a log(t)
approach to equilibrium, and is exactly what happens to our kinetically constrained
three-dimensional, translation invariant model. At long times, the system eventually
equilibrates and Tf = Tb. This shows that fracton models naturally exhibit a different
kind of equilibration dynamics, being unusually robust to thermalization.

63



Chapter 4

Ergodicity breaking in 1D fracton
models

Weather or not the kinetic restrictions inherent of fracton models lead to the breaking
of ergodicity is a question which naturally comes to mind. In fact, fracton models where
first introduced as stabilizer codes without string logical operators with the purpose
of looking for systems stable against perturbations which could serve as recipients for
quantum memories. Due to the high dimensionality of the systems where fractons nat-
urally appear, they are numerically difficult to simulate. Another possibility is that of
externally induce fractonic behavior in lower-dimensional systems. This is done by con-
sidering spin chains with local Hamiltonians featuring both charge and higher moment
conservation laws. In this way it is possible to numerically time evolve these systems in
order to study the dynamical behavior of single charges (fractons) and dipoles, to see
whether the predictions of glassy behavior/non-ergodicity are respected.
This chapter is mostly centered around the numerical simulations implemented on these
particular spin systems and the study of their thermal behavior. The simulations rely
mostly on exact-diagonalization. In particular, it has been used the “QuSpin” library
[49], which is an open source Python package particularly useful for exact-diagonalization
and dynamical evolution of many-body systems. This technique has the advantage of
being exact also for system with high entanglement, where for example the matrix prod-
uct state representation of wave-functions fails.
As seen in the previous chapter (Sec. 3.2.2), breaking of ergodicity is usually accompa-
nied by the separation of the Hilbert space into many sub-sectors not associated to any
symmetry. This phenomenon is usually dubbed fragmentation of the Hilbert space. Let
us now see how this happens in a system with fractonic behavior. The restriction in mo-
bility of fracton phases can be traced to the super-selection structure of the underlying
theories, like for the X-Cube model of Sec. 1.2. What we observe in this chapter is that
in 1D spin systems, conservation of charge and dipole moment is enough for the system
to undergo an extensive fragmentation of the Hilbert space. In some circumstances that

64



we will see below, in turn this can lead to breakdown of thermalization [17]. It is found
that the thermal behavior strongly depends on the range of the local terms in the model.
The chapter is organized as follows. First, in section 4.1 we introduce the two models
under study and their symmetries: we consider two dipole conserving Hamiltonians with
different range of interactions. Then, in section 4.2 we study the Hilbert space of these
models in order to see whether or not fragmentation appears and in which amount. Fol-
lowing, in section 4.3 time evolution is performed to evaluate the long-time expectation
values of some characteristic quantities in order to see whether the systems thermalize or
not. Further, the Hamiltonians are exactly diagonalized in section 4.4 in order to study
the eigenstates of the models and compare them with the predictions of the eigenstate
thermalization hypothesis. In section 4.5 we study a possible connection with the PXP
model and we identify the equivalent of the Néel state for our dipole-conserving model.
In Sec. 4.6 we conclude the discussion with some simulations of the transition between
of the two models.

4.1 Dipole-conserving Hamiltonians

Let us introduce the models under study. First, remind that for exact-diagonalization
to work for significant system sizes we have to restrict our-self to one-dimensional spin
chains. In order for our model to exhibit “fractonic” behavior, we want it to locally
conserve both charge and dipole moment, thus it is convenient to consider spin-1 chains
where the local Hilbert space has dimension 3: each spin can be either in the state +, 0
or −.
The operators implementing charge and dipole conservation can be written as

Q =
∑
i

Szi (4.1a)

Pi0 =
∑
i

(i− i0)Szi (4.1b)

Here i0 is a reference point which we take to be i0 = 0 for the 2m + 1-long chain going
from i = −m to i = m. The eigenvalues (q, p) of these operators will define separated
sub-sectors of the Hilbert space. A (q, p) symmetry sector is a subspace of the Hilbert
space characterized by states having charge q and dipole moment p. Since the models we
consider conserve the total charge and dipole moment, these sectors will be completely
decoupled from each other. Sometimes we will undergo simulations within a particular
symmetry sector in order to reduce the basis dimension. The distribution of sub-sectors’
dimensions is reported in Fig. 4.1. As it is possible to note, the largest sector is the one
with quantum numbers (q, p) = (0, 0). Now we can consider the possible Hamiltonians
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Figure 4.1: Distribution of sub-sectors’ dimensions for the three-term Hamiltonian (4.2)
at L = 13. The continuous lines are artificial since each sub-sector has a finite dimension.
However the distribution fits along the plotted lines.

which respect these constraints and which will be the focus of our following study

H3 =
∑
i

S+
i (S−i+1)2S+

i+2 + h.c. (4.2)

H34 = H3 +
∑
i

S+
i S
−
i+1S

−
i+2S

+
i+3 + h.c. (4.3)

where S+,− are the usual spin raising/lowering operators.
The first is a Hamiltonian where the local terms have maximum range of three sites,
thus we will refer to it as three-term model. Instead, the second contains (4.2) and has
also terms with range of four sites, thus we will call it four-term model. As we will see,
this difference in the range of the Hamiltonian leads to great differences in the thermal
behavior of the models.
Let us look at the symmetries of these two systems. First of all we can readily see
that both models display a “parity” symmetry under exchange of the spins (+ ↔ −).
Further, the three-term model possesses some additional symmetries. The first one we
see is a sub-lattice parity symmetry

Pzodd = exp

(
iπ
∑
n odd

Szn

)
(4.4)

This symmetry is readily seen to be fixed by the dipole moment since∗ exp (iπ
∑

n odd S
z
n) =

exp (iπ
∑

n nS
z
n) = exp (iπP ). This sub-lattice symmetry is emblematic since we can see

that the total parity can be obtained through Pz = PzoddP
z
even and will be related to the

∗We use here a property of spin-1 systems, namely that a 2π rotation equals to the identity.
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total charge through Pz = exp (iπQ).
Another important quantity is the operator

C =
∏
n

eiπ(S
z
4n+Sz

4n+1) (4.5)

This is readily shown to commute with the charge and dipole operators as defined in
Eqs. (4.1). Also, it anti-commutes with H3, thus making its spectrum symmetric around
zero in every (q, p) sector.
Instead in the four-term model, the range four terms in the Hamiltonian commute with
(4.5) so the spectrum will not be symmetric.

4.2 Fragmentation of the Hilbert space

Let us consider first the three-term Hamiltonian. A chain evolving under this Hamil-
tonian will have some “frozen” states which are annihilated by all the terms in (4.2)
and so which do not evolve at all under Hamiltonian dynamics. These can be explicitly
constructed and are reported in Tab. 4.1.
As a first check we can count how many these frozen states are, since this will give us a
lower bound on the number of sectors the Hilbert space is fragmented in. Actually, this
is an easy calculation since we can reduce it to the problem of diagonalizing a matrix.
This can be seen by considering that for each frozen state in a chain of length n it is

Sites Operators Frozen states

3-terms S−(S+)2S−

S+(S−)2S+

000, 00+, 00−, +00, +0+, +0−, −00,
−0+, −0−, +++, ++0, ++−, 0++,
−++, −−−, −−+, −−0, +−−, 0−−

Table 4.1: List of frozen states for the three-term Hamiltonian of Eq. (4.2).

enough to look at the last two sites of the chain to know which frozen states of length
n + 1 we can construct. Let us see this with an example: a chain of length 3 has 19
frozen states, the ones reported in Tab. 4.1. If we consider for example the state 000, it
is easy to see that we can attach a spin with arbitrary value to its the end and obtain a
length-4 chain which will still be a frozen state (000+, 0000 and 000−). In turn, starting
from the state +0+ we can only go to one frozen state: +0 + +. We can define a set of
rules to go from one frozen state to another with a length higher by one, as reported in
Tab. 4.2. We can now observe that this construction can be equivalently written as a
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Last 2 sites Possible added site

+ + +,0,−
+ − +,0,−
+ 0 −
0 + +
0 0 +,0,−
0 − −
− + +
− 0 +,0,−
− − +,0,−

Table 4.2: Rules for going from a length n frozen state to another of length n+ 1.

recursive operation [52]

++
+0
+−
0+
00
0−
−+
−0
−−


L+1

=



1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1





++
+0
+−
0+
00
0−
−+
−0
−−


L

(4.6)

where the signs in the two column vectors refer to the last two sites of the chain. Finally,
we can evaluate the scaling of these frozen states by diagonalizing this matrix and keeping
only the largest eigenvalue which in our case is λ ∼ 2.2. This means that the number of
frozen states will scale as 2.2L in growing system size, which is exponentially large†.
Frozen states are just the lowest dimensional sub-sectors (dimension 1) of the Hilbert
space, bigger ones can be obtained with a bit more work. Intuitively, there will be states

Frozen Wall Active Wall Frozen

Figure 4.2: Higher dimensional subspaces can be found by considering an active region bounded
by two walls of inert states separating the active region from the frozen one.

restricted to a sub-sector of the Hilbert space because of the constrained dynamics. As

†Keep in mind that the full Hilbert space for a spin-1 chain scales as 3L.
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Figure 4.3: Representation of the fragmentation of the Hilbert space for the three-term Hamil-
tonian (4.2). Note the great number of low dimensional subspaces, which increases when going
up in system size.

an example, one could think of domain walls of same charge sites, like + + · · ·+ or
− − · · ·−, surrounding an active region like in Fig. 4.2. The embedded active region
will be completely isolated from the rest of chain and so will be constrained to a higher
dimensional sub-sector of the Hilbert space. In order to calculate the exact number of
separated sectors and their dimension, was used a C++ code exploring all possible states
of the Hilbert space and separating them in groups of states which can be obtained by
applications of the operators in the Hamiltonian. Since the Hilbert space dimension
grows as 3L the calculation becomes rapidly inaccessible, so we will restrict to small
system sizes. We can see from Fig. 4.3 the distribution of sub-sectors with their relative
dimension. We can observe that for the three-term model the fragmentation is very
extended, with many sectors of small dimension. Fragmentation also happens when

Figure 4.4: Number of sectors over sectors’ dimensions for three (red dots) and four (blue
stars) -term Hamiltonians at L = 11.
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Figure 4.5: Weights (4.7) for three-term Hamiltonian at different system sizes. The vertical
line represents the mean of the distribution, and it is possible to see that it is located closer to
the lower dimensional sub-spaces.

considering the four-term Hamiltonian (blue stars in Fig. 4.4) but in a fundamentally
different way. The Hilbert space gets still fragmented in an exponentially large number of
subspaces, but much less than in the previous case. In fact, if we confront the subspaces
in the two models we consider, we see that for H34 there are many more sub-sectors of
high dimensions.
In order to distinguish better the two cases it is useful to define a weight for each sub-
sector’s dimension D

WD =
∑
Di=D

tr(Z2
i )

tr [(Sz0)2]
(4.7)

Here Zn ≡ PnSz0Pn = PnSz0 is the projection of Sz0 in the sub-sector Hn. This weight
essentially assigns a value to each dimension depending on how many sub-sectors fall in
that category. For a highly fragmented space the weights’ mean will point towards lower
dimensions, while for the weakly fragmented case it will be larger. Its value for the three-
term Hamiltonian at different system sizes is reported in Fig. 4.5 while the comparison
with the H34 case is reported in Fig. 4.6. The high number of sub-sectors seen in the
three-term model is referred to as strong fragmentation. In the case of the four-term
Hamiltonian there are still an exponentially large number of sectors but still much less
than for H3 and so is called weak fragmentation. As we will see below analyzing the
dynamical behavior and the properties of the spectrum of these models, this difference
plays a central role in their thermal behavior. In fact, strong fragmentation will lead
to a strong violation of the ETH, with all eigenstates being non thermal, while in the
weak case the system will violate ETH only in a weaker form, with a vanishing fraction
of eigenstates failing in thermalizing.
Let us end the section by noticing that additional terms in the Hamiltonian that are
diagonal in the z basis do not alter the fragmentation of the Hilbert space but only lift
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Figure 4.6: Weights (4.7) for three and four -term Hamiltonians at L = 11. The mean of the
three-term Hamiltonian is clearly displaced towards lower dimensions, while for the four-term
model the mean is towards the higher dimensions.

the energy of the eigenstates. However, in the presence of such terms the spectrum of
H3 would no-longer be symmetric around 0 since they do not anti-commute with (4.5).

4.3 Time evolution

There are many observables which can be used to determine whether the system ther-
malizes at long times or not. In this section we analyze the dynamical properties of the
systems under study. We adopt open boundary conditions throughout all the simula-
tions.
A particularly useful observable is the so-called auto-correlator [17]

C0(t) = 〈Sz0(t)Sz0(0)〉 (4.8)

where the subscript 0 indicates we are considering operators acting on the central cite
of the chain and Sz represent the usual spin operator

Sz =

1 0 0
0 0 0
0 0 −1

 (4.9)

We evaluate this quantity at infinite temperature, meaning that the expectation value
of an observable Ô is evaluated using an identity Boltzmann factor ρ = e−βH . So,‡

〈Ô〉 = Tr ρÔ = Tr exp(−βH)Ô ' Tr Ô (4.10)

‡This actually means that all the states in the Hilbert space have the same importance.
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Figure 4.7: Auto-correlator (4.8) for L = 13 in the sector (q, p) = (0, 0). We observe a long
time saturation value different from the expected thermal one for the three-term Hamiltonian.

The initial state is taken randomly from the Hilbert space. We can do this because of
“quantum typicality” [53]. This means that for a macroscopic and isolated quantum
system in an unknown pure state the expectation value of any observable is close to the
ensemble average. The initial state thus has the form

|ψ〉 = N
L∑
l=1

cl |l〉 (4.11)

with {|l〉} an orthonormal basis, the coefficients cl ∈ C taken randomly and N a nor-
malization factor. The basis is taken to be the one along the z axis, with states made of
+, 0 and −.
The initial value of the auto-correlator will be C0(0) = 2/3§ and for a thermalizing
systems we expect at long times to see the system distribute homogeneously over the
whole chain and thus that the auto-correlator saturates to 2/(3L) for a length L chain.
What we observe for the three-term Hamiltonian is instead pretty different, with the
long time value of the auto-correlator saturating to a constant value, as shown in Fig.
4.7. Instead, for the four-term Hamiltonian the expectation value decreases like for a
thermalizing system, but with a saturation value still different from 0. This offset can be
observed to be a finite size effect. In fact, from Fig. 4.9 the long-time expectation values
of the auto-correlator are plotted as a function of the system size and we can see how for
the three-term model it tends to a constant while for the four-term model it decreases
to small values close to 0 in the thermodynamic limit.

§This can be seen by noticing that for the site l = 0 in the |+〉 or |−〉 state it takes the value +1
while if it is in the state |0〉 it takes value 0. Thus, for a random state the expectation value will be 2/3.
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(a) (b)

Figure 4.8: Spatially-resolved auto-correlator (4.12) for an L = 13 chain in the sector (q, p) =
(0, 0). Panel (a): in the case of the three-term Hamiltonian it shows a long-time localized
behavior. Panel (b) for the H34 model it saturates to a thermal value.

Another observable which is useful to show this behavior is the spatially-resolved auto-
correlator, plotted in Fig. 4.8

Ci(t) = 〈Szi (t)Sz0(0)〉 (4.12)

This observable shows how for the three-term model the state remains localized at long
times while for the four-term Hamiltonian it distributes over the chain with no memory
of the initial state.
The long-time saturation value of the auto-correlator can be explained through the pre-
viously studied (Sec. 4.2) fragmentation of the Hilbert space. Let us consider Pn the
projectors into the connected Hilbert subspaces Hn of dimensions Dn. The projectors
form an orthogonal set of conserved quantities PnPm = δnmPn. We can use Mazur’s in-
equality [54] to get a lower bound on the value of the auto-correlator. Mazur’s inequality
states that in the presence of a set of constants of motion (in our case the projectors),
the long-time average correlation of an operator is lower bounded by the projection of
the operator on the single charges¶. Thus, we can write

lim
T→∞

1

T

∫ T

0

dt〈Sz0(t)Sz0(0)〉 ≥
∑
n

[tr(Zn)]2

3LDn
≡ Cz

0 (∞) (4.13)

with Zn defined as in (4.7). This lower bound is calculated through the fragmentation of
the Hilbert space and is in great agreement with the long-time value of the auto-correlator
evaluated dynamically evolving the state. As can be seen from Fig. 4.9, Cz

0 (∞) acts as a
lower bound for the auto-correlator, indicating that the main cause of the non-ergodicity
is indeed the fragmentation of the Hilbert space.

¶An operator thus is ergodic if it is orthogonal to all the conserved charges.
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Figure 4.9: Scaling in system size of long-time averages of the auto-correlator. The fits are
power laws with parameters reported in the legend. We can see how the values obtained from
the Mazur’s inequality are a lower bound for the systems under consideration.

4.4 Other observables

Let us pass now to the study of the spectrum and of the eigenfunctions of the systems
by considering different observables.

Expectation value of (Sz0)2

An observable which is useful in the characterization of the thermal properties of a
system is the expectation value of an operator on all the eigenstates. From ETH these
expectation values should be close to the canonical ones, with a distribution becoming
narrower increasing the system size. In particular, here we consider the operator (Sz0)2,
evaluated on all energy eigenstates and plotted in Fig. 4.10 as a function of energy. We
see that for the three-term model (Fig. 4.10a) the distribution of expectation values is
extremely wide and does not broaden increasing the system size, thus implying a strong
violation of ETH. Instead, in the four-term model, plotted in Fig. 4.10b, we recover the
expected thermal behavior, seen also by the fact that the computed expectation values
are interpolated by the canonical ones. The canonical prediction is calculated from the
Gibbs’ states defined by the density matrix

ρcan ∝ exp(−βH) (4.14)

with β ∈ (−∞,∞) [47].
From Fig. 4.10b we also see that there is a small number of states with expectation
values lying far from the canonical prediction. This agrees with the situation of a system
exhibiting a weak violation of ETH, with a small number of non-thermal eigenstates.
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(a) (b)

Figure 4.10: Expectation value of the operator (Sz0)2 evaluated over all eigenstates in the
(q, p) = (0, 0) sector for different system’s size. In (a) we consider the three-term model and
we note a wide distribution of expectation values which remains wide increasing the length of
the chain. In (b) instead we consider the four-term model and the situation is quite different.
First we note that, as expected, the spectrum is not symmetric around 0. Second, we see that
the points are distributed around the canonical expectation values (black line) with a width of
the distribution that decreases increasing the system’s size.

Inverse Participation Ratio
Another quantity often used in the study of the thermal properties of a system is the
so-called Inverse Participation Ratio (IPR). This gives information on the localization
properties of the states [55]. In order to define it let us recall that we can expand each
(energy) eigenstate in a set of basis states |l〉 as

|εi〉 =
∑
l

cl,i |l〉 (4.15)

where as basis states we use the same as in eq. (4.11). Then, we can define the probability
of finding an eigenstate of energy εi in a particular basis element |l〉 through pl(εk) =
|cl,k|2. Finally, the IPR is defined as

IPR(εk) =
∑
l

pl(εk)
2 (4.16)

The IPR will be large (close to 1) for localized states and small (∼ 1/N where N is the
Hilbert space dimension) for states equally distributed on all sites. The results for our
model Hamiltonians are reported in Fig. 4.11 for the (q, p) = (0, 0) sector. As we can
see, for the three-term model the values of the IPR are not all close to 0, indicating a
strong fragmentation of the Hilbert space with a large number of states which are not
thermal. Instead, for H34 almost all IPR values are concentrated close to 0, with a small
number of states whose IPR lies above this value. Notice that such states tend to have
an energy close to zero.

75



(a) (b)

Figure 4.11: IPR value for eigenstates in (q, p) = (0, 0) sector for L = 13. The color-bars
indicate the number of states in the bin. In (a) we see that it distributes over many values while
in (b) it concentrates around 0 with a small number of outlying states. These latter states show
peculiar thermalizing behavior, and are the same found in Fig. 4.10.

Entanglement entropy
An additional observable is the entanglement entropy (EE). For a system in the state |ψ〉,
we can define the density matrix ρ = |ψ〉 〈ψ|. Then, by considering a sub-system A and
its complementary B we can define the reduced density matrix ρA = TrB ρ by tracing
out the degrees of freedom of B. Finally, the entanglement entropy of the sub-system A
is defined as

SA = −Tr ρA ln(ρA) (4.17)

(a) (b)

Figure 4.12: Half-chain entanglement entropy of H3 (a) and H34 (b) eigenstates in the (0, 0)-
sector as a function of energy for L = 13. For the three-term model we observe low and spread
values of entanglement entropy while for the four-term model these values follow the ETH
predictions except for a few states at low entanglement.

We evaluate the entanglement entropy taking as subsystem A half of the chain for all the
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energy eigenstates of the two models. This is plotted in Fig. 4.12. To obtain the plots of
EE, both here and in the plots below, we forced QuSpin to use an orthonormal basis of
eigenvectors without imposing parity symmetry, so that the obtained set of eigenvectors
contains both a state |e〉 and its symmetric |e′〉 obtained by changing all +’s in − and
vice-versa‖. The half-chain entanglement entropy for a thermalizing system is expected

(a) (b)

(c) (d)

Figure 4.13: Panel (a): IPR values for all eigenstates of an L = 13 chain in the (0, 0)-
sector where the more localized IPR > 0.05 states are highlighted by a red star. Panel (b):
Expectation values of the operator 〈(Sz0)2〉 with the same states highlighted by a red star. Panel
(c): Half-chain entanglement entropy with special states marked by a red star. In the various
observables the the states exhibiting the non-thermal behavior are always the same. Panel
(d): Auto-correlator evaluated on these special states. These states are either frozen and thus
constant or oscillate without reaching a thermal value at long times.

to have “high” values for all eigenstates [45], as for the PXP model in Fig. 3.3. What we
observe for the three-term model are instead “low” values of EE, in great disagreement
with ETH. Differently, in the four-term case we observe a situation quite analogue to
the PXP model, with a small number of states exhibiting low entanglement.
By studying the states with IPR different from 0 it is possible to show that these are

‖If we impose the symmetry restricted basis, the two degenerate eigenstates are taken as a linear
superposition of the symmetric partners. This alters the actual final value of EE, but we verified that
the shape of the distribution is nevertheless the same.
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the same found having a different behavior both in the expectation values of S2
z and

also in the half-chain entanglement entropy. Here were consider the states having an
IPR≥ 0.05, so only the most localized states clearly visible in Fig. 4.11b∗∗. Then,
we evaluate the entanglement entropy and the expectation value of (Sz0)2 on these same
states, highlighting the results in panels (a), (b) and (c) of Fig. 4.13. Finally, we compute
the expectation value of the auto-correlator on these special states and we show in Fig.
4.13d that these states do not relax to thermal values of the auto-correlator even at long
times.

Level statistic
Finally, as we did for the PXP model in Sec. 3.2.1 we can study the statistical properties
of the spectrum of the models under consideration. Since we are not able to simulate
systems with a high number of sites, our data might be strongly affected by finite size
effects and therefore we might only give qualitative results. What we observe in this case
is reported in Fig. 4.14. We consider here both the energy level spacing distribution as

(a)

(b)

Figure 4.14: Panel (a): energy level spacings for three (left) and four (right) -term models.
Panel (b): ratio of consecutive spacings statistic for for three (left) and four (right) -term
models. In all graphs are shown the values expected from WD, SP and P distributions.

∗∗These are about 35 states for an L = 13 chain.
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defined in (3.5) and the consecutive spacings’ ratio (3.9). We can observe that for the
three-term model the level statistics is close to the Poisson distribution. However, the
high degeneracy encountered in this model makes it difficult to evaluate the statistical
behavior of its levels as can be seen from the highly nonuniform behavior of the levels.
Instead, for the four-term model the distribution of spacings and ratios follows a behavior
which seems to be intermediate between the Poisson and Semi-Poisson behaviors. This
can be seen better by looking at Fig. 4.15. Here the ratios mean is evaluated for values
of the normalized spectrum (3.15) ε ∈ [0.3, 0.7] with 20 steps in order to not consider
local fluctuations. For the four-term model we observe a behavior intermediate between
the P and the SP distributions. Instead, for the three-term model the mean value of
spacings indicates a Poisson statistics.

Figure 4.15: Ratios of consecutive level spacings for three (upper panel) and four (lower
panel) -term models. The ratios are plotted in function of the normalized spectrum ε in the
range ε ∈ [0.3, 0.7] with 20 steps. We can see that for the four-term model the ratios fall in
the mid region between the Poisson and Semi-Poisson distribution. Instead, for the three-term
model it seems that the level statistics follows a Poisson behavior.
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4.5 Relation with PXP model

There is an interesting connection between the PXP model encountered in the context
of many-body scars and the dipole-conserving three-term Hamiltonian H3. Let us recall
that the PXP model describes a chain of spin-1/2s with the characteristic that an excited
state can exist only if its neighbors are in the ground state, and is described by the
Hamiltonian

HPXP =
∑
n

Pn−1σ
x
nPn+1 (4.18)

with Pn = (1 − σzn)/2 the projectors imposing the Rydberg blockade. In finding an
analog in the context of dipole-conserving Hamiltonians, let us focus on the form of the
Néel states |Z2〉 and |Z′2〉 which we know exhibit the strange behavior of QMBS.
Now, we will show that some sub-sectors of the Hilbert space of the H3 model are
governed by the PXP Hamiltonian. These will constitute the analogue of the Néel state
in the fracton language. There is no known analytical way of finding these states, just a
good guessing which can be verified a posteriori. Our guess is the state

|F2〉 = |· · · −+−−−+−−−+−−−+− . . .〉 (4.19)

with a + state every 4 sites and all − background. This chain can be divided into blocks
of −+− separated by a single −. Let us consider a multiple of 4 length chain in order to
have an integer number of blocks. In this kind of state the dipole moment will be given
by P (n+) = L/2(1 − L/2 + n+) with n+ the location of the first + in the chain (from
the left). Because of the periodicity, there will be 4 different dipole moments with this
pattern. Let us now recall the form of the local terms of H3 (4.2): the only non-trivial
action of such operators on our chain will be on the blocks −+−, since consecutive −−
are always annihilated. By applying the operator S+S−

2
S+ on two consecutive blocks,

the result will be

|F2〉 →
∣∣∣F̃2

〉
= |· · · −+−−0− 0− 0− 0−−+− . . .〉 (4.20)

This transforms the state in a form such that it is no more trivial to apply an operator on
the central site (applying S−S+2

S− on the same sites just takes us back to the original
state). In particular by applying S−S+2

S− on the three central spins results in the state∣∣∣F̃2

〉
→
∣∣∣F̂2

〉
= |· · · −+−−0−−+−− 0−−+− . . .〉 (4.21)

That behavior is reminiscent of the PXP model. What we have found is that the action
of a local operator of H3 is non-trivial when centered on even sites depending on the
states on odd near sites. We can thus restrict the Hamiltonian to a subspace made of
the possible configurations of (4.19)

H3|PXP = 4

L/2∑
k=1

|−+2k −〉 〈0−2k 0|+ h.c. (4.22)
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This Hamiltonian effectively implements a Rydberg blockade since a configuration with
neighboring + states is prohibited by the dynamics. Also, we can identify a map trans-
lating from spin-1 configurations centered on even sites to spin-1/2 states centered on
even sites in the PXP model through

|0− 0〉 ↔ |↓↓↓〉 |−+−〉 ↔ |↓↑↓〉 |0−−〉 ↔ |↓↓↑〉
|− − 0〉 ↔ |↑↓↓〉 |− − −〉 ↔ |↑↓↑〉

(4.23)

With this map in mind we can rewrite (4.22) in a more PXP-explicit way

H3|PXP = 4

L/2∑
k=1

|↓↑↓〉 〈↓↓↓|+ h.c. =

= 4

L/2∑
k=1

|↓〉 〈↓|2(k−1) ⊗ |↑〉 〈↓|2k ⊗ |↓〉 〈↓|2(k+1) + h.c. = 4HPXP

(4.24)

Thus the restriction of H3 to this family of connected subspaces is equivalent to a PXP
model on a chain of length L/2 up to a factor of 4. By applying a parity transformation on
|F2〉 we obtain an analogue state with +↔ −, thus there are eight†† different symmetry
sectors governed by the PXP Hamiltonian. This is another hint that the special states
found in our dipole-conserving Hamiltonian could be scar states.

4.6 Final remarks

The comparison between the three and four -term models suggests that the dipole mo-
ment conservation in the latter is no-longer enough to strongly violate ergodicity even
though the model still exhibits many non-thermal eigenstates, disconnected from the
bulk of the spectrum and co-existing with thermal eigenstates at the same temperatures.
The strong fragmentation of the three-term model has been observed to impose a strong
violation of ETH and thus leads to non-ergodicity. On the other hand with the weak
fragmentation of the four-term model we saw that there still exist non-thermal eigen-
states but these are no more sufficient to avoid thermalization for typical initial states.
In conclusion, the range of the local terms seems to be of fundamental relevance in the
thermal behavior of dipole conserving Hamiltonians. A longer range furnishes more con-
nections through the various states of the Hilbert space, causing a smaller fragmentation.
A precise definition of the fragmentation strength needed to obtain a non-ergodic behav-
ior is still missing.
Another thing which can be analyzed is the kind of transition which happens passing

††There are 4 different |F2〉 states, which with the parity transformation become eight.
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from the three-term model to the four-term one slowly introducing the higher range local
terms. This can be done by considering an Hamiltonian

Htrans(λ4) = H3 + λ4H4 (4.25)

Figure 4.16: First 6 energy levels of Htrans at different values of λ4. Here was considered an
L = 13 chain in the (0, 0)-symmetry sector. For λ4 = 0 we recover the three-term model while
for λ4 = 1 we obtain the four-term Hamiltonian. We can observe that the gap with the ground
state remains open and also that the degeneracy of the three-term spectrum is lifted turning on
the longer-range term.

where H3 and H4 contain only the range three and four terms respectively. Evaluating
the lowest energy levels for Htrans at different values of λ4 we obtain the plots in Fig.
4.16. One thing that can be observed is that the ground state remains separated from
the first excited one. From this we can conclude that the two models belong to the same
universality class. Also, we can see how the effect of the range-four terms is that of
spreading the degenerate energy levels of the three-term model.
We also evaluated the various observables seen till now for intermediate values of λ4. In
particular, in Fig. 4.17a are plotted the IPR values for all eigenstates, in Fig. 4.17b the
time evolution of the auto-correlator and in Fig. 4.17c the values of the entanglement
entropy for all eigenstates. The general behavior we can observe is that by turning on
the interaction, the various observables rapidly tend to reach thermal values. This is
particularly clear in the entanglement entropy plots.
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(a)

(b)

(c)

Figure 4.17: Various observables evaluated at different values of λ4. In (a) the variation in
the IPR values of the eigenstates passing from H3 (leftmost panel) to H34 (rightmost panel)
is showed. In (b) the time evolution of the auto-correlator Cz0 (t) on random initial states is
considered. Finally, in (c) the entanglement entropies of the eigenstates for the various steps
are plotted.
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Chapter 5

Conclusions

In this thesis we introduced the vast field of fracton phases of matter. Fractons are
emergent quasi-particle excitations featuring a restriction in their motion. We found
and described these particles in exactly solvable quantum spin models and we showed
that fractonic order constitutes a new kind of ordering with substantial differences with
respect to usual topological order. We also described fracton phases from a more field-
theoretic point of view, that of gauge theory. It has been shown how such phases can
be obtained by considering rank-2 symmetric tensor gauge theories. The theory with
scalar charges was studied in deep showing that the constrictions in motion arise as a
consequence of a generalized Gauss’ law which imposes the conservation of higher order
momenta. Then, we showed that such theory constitutes a stable phase of matter in 3D
and that it features a set of generalized Maxwell’s equations as usual electromagnetism.
A review of some possible phases appearing considering finite densities of excitations
was then given, focusing on examples of particular interest from the theoretical point of
view: Fermi liquids in 3D and the quantum Hall effect in 2D.
The characteristic constraints in the motion of charges in fracton models has then led the
subject of this thesis towards the analysis of the thermalizing capabilities of such phases.
Many numerical simulations were performed to study the dynamical behavior of 1D
spin-1 chains featuring fractonic characteristics. In particular, local Hamiltonian models
respecting the conservation of charge and dipole moment (in analogy with scalar charge
theory of Sec. 2.2) were considered in order to impose “by hand” the kinetic constraints.
We found that these two conservation laws indeed restrict considerably the dynamics. For
dipole conserving Hamiltonians with a range of three sites was seen a clear non-ergodic
behavior. This is observed both from the non-thermal distribution of the expectation
values of physical observables in the energy eigenstates and also from the finite long-
time average value of the auto-correlator function. This thermal behavior is explained
in terms of the found strong fragmentation of the Hilbert space in an exponentially large
number of separated sectors. Instead, for dipole conserving Hamiltonians with a larger
range of the interactions a behavior more similar to systems weakly breaking ergodicity
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is observed, in a way analogue to the PXP model. In this case a thermal behavior for
almost all eigenstates in the system was observed, except for a small fraction of “special”
states. These are found to have strongly non-thermal characteristics, thus being very
similar to the scar states of the PXP model. Also in this case a fragmentation of the
Hilbert space is observed, but this time it seems to be not sufficient to prevent the system
from thermalizing from random initial states. Finally, the transition between the two
models was also analyzed and has been observed that there is no gap closure, thus ruling
out the possibility of a phase transition.
The open directions for future works are multiple. From a more theoretic point of view
it could be interesting to analyze the relation between the dipole-conserving systems
analyzed in this thesis and the type-I fracton models. Also, the role of the fragmentation
of the Hilbert space concerning the thermal properties of the system has to be clarified.
In particular, what kind of conserved operators can be defined to label the different
sectors is still unknown. Considering the scar states, there is still much to be unraveled
concerning their role in the thermalizing behavior of the systems they are part of. Finally,
a connection with many-body localized (MBL) systems is to be expected but is still
missing.
From the point of view of experimental applications we mention that recent point of views
on Bloch [55] and Stark [56] many-body localization could lead the way to a possible
verification of these dipole conserving systems. For what concerns the analysis performed
in this thesis, new calculations could be performed extending the system to a 2D layer in
order to verify if the thermal properties change increasing the spatial dimension, where
new routes to thermalization are possible.
Concluding, the field of fractons is rapidly growing in interest in the physics community
because of the various fields of applicability and the promising results obtained till now.
Of particular interest is the application of such phases of matter to the construction
of reliable quantum memories. There are still many open questions regarding fracton
phases and their description is just at the beginning, exciting developments are surely
to be expected.
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Appendix A

Cluster state as SPT phase

Cluster states [57–60] are a particular class of interacting spin states which are espe-
cially useful as sources of entanglement in the so-called Measurement Based Quantum
Computation [61]. In particular, a cluster state on the lattice is defined as the common
eigenstate of the stabilizers

Si = Xi

∏
j∈N (i)

Zj (A.1)

where N (i) represents the nearest neighbors to the spin on the i-th site. A cluster state
is the non-degenerate ground state of the Hamiltonian HC = −

∑
i Si. A cluster state

can be constructed via the application to the starting state |+〉⊗N of controlled-phase
gates. In one dimension the resulting cluster state can be written as

|φN〉 ∝
(
|0〉1 Z

(2) + |1〉1
) (
|0〉2 Z

(3) + |1〉2
)
. . . (|0〉N + |1〉N) (A.2)

In a more compact form we can write it as

|φN〉 =
1

2N/2

N⊗
a=1

(
|0〉a Z

(a+1) + |1〉a
)

(A.3)

with the convention that ZN+1 = 1.
Cluster states are different from other entangled states in that they are maximally en-
tangled. For N > 3 they are different from N -qubit GHZ states. It is harder to destroy
entanglement in cluster states than in GHZ ones by local operations [58]. In order to
classify different entangled states we can introduce the notion of maximum connectedness
and persistency. The former refers to the fact that any two qubits of the state can be
projected into a pure Bell state by local measurement on a subset of the other qubits.
The latter refers to the minimum number of local measurements to be performed such
that the final state is completely disentangled. In particular, cluster states are maximally
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connected and their persistency is P (|φN〉) = bN/2c∗.
It is possible to generalize the construction of cluster states to higher dimensions. A
cluster in a d-dimensional lattice is defined as a set of spins on a lattice which are all
connected to each other via other spins of the cluster. In this set of qubits the cluster
state can be written as

|Φ〉C =
⊗
c∈C

(
|0〉c

[
⊗γ∈ΓZ

(c+γ)
]

+ |1〉c
)

(A.4)

where Γ is the set of links connecting to nearest-neighboring sites. For a square lattice
in 2D it is Γ = {(1, 0), (0, 1)}. The state (A.3) is recovered for Γ = {1}.
Let us now pass to the classification of this model in terms of symmetries. In fact, sym-
metries are the usual way to look at phases in matter. Different phases exhibit different
symmetries and in the standard paradigm when there is a phase transition a symmetry
is broken. However, this is not always the case, in fact it has been found that different
phases with the same unbroken symmetries can exist. These new phases are known as
symmetry protected topological (SPT) phases of matter [62–64]. Such phases are charac-
terized by symmetry protected boundary gapless modes under open boundary conditions
whose existence is guaranteed as long as the symmetry is unbroken.
Symmetry protected topological phases (SPTs) are fundamentally different from usual
topological phases (Ts). SPTs are protected only from symmetry-preserving pertur-
bations, while Ts endure any perturbation since are protected by the topology of the
manifold. Further, Ts exhibit long range entanglement while SPTs only short range en-
tanglement. Finally, Ts are allowed to have fractional excitations, differently from SPTs.
Examples of Ts are fractional quantum hall states, quantum spin liquids, toric code and
Kitaev’s honeycomb model. Examples of SPTs instead are the Haldane chain, topologi-
cal insulators (quantum spin Hall effect) and topological superconductors.
Cluster states fit naturally into this context, in fact a 1D cluster chain is a Z2×Z2 SPT
phase. To see this let us consider a chain divided into two sub-lattices A and B with a
spin for each site. The 1D cluster Hamiltonian is given by

H1d = −
∑
i∈A

τ zi−1σ
x
i τ

z
i+1 −

∑
i∈B

σzi−1τ
x
i σ

z
i+1 (A.5)

This model posses a Z2 × Z2 global symmetry obtained by flipping all spins on one
sub-lattice, and is generated by the operators

∏
i∈A σ

x
i and

∏
i∈B τ

x
i . The ground state is

Z2×Z2 symmetric and, in the {σzi , τxi } basis, it is an equal weight superposition of of all
possible σzi with domain walls σzi−1σ

z
i+1 = −1 decorated by a τxi = −1, otherwise τxi = 1.

Let us first note that this system is in a topological phase, since introducing a boundary
would result in a twofold degeneracy which cannot be broken conserving the symmetry.
Here we also see a general property of SPTs, namely that the global symmetries realize

∗bxc denotes the integer part of a positive number x. It is also called floor function
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projective representations of the symmetry group at the boundary [62]. In particular,
consider an open chain of length L terminating with two σ spins as in Fig. (A.1). Let

τσ

Figure A.1: Lattice spin chain divided into two sub-lattices. The sub-lattice A (B) contains
the σ (τ) spins, denoted in green (blue).

us exclude from the Hamiltonian any term that is not fully contained in the system,
to ensure no symmetry is broken. In this case these terms will be the two exceeding
elements of the Hamiltonian (A.5): τ z−1σ

x
0τ

z
1 and τ zL−1σ

x
Lτ

z
L+1. Thus, the remaining terms

will be L−2, leaving a 22-fold degeneracy. We may now define two sets of Pauli matrices
located at the left and right edges

πzl = σz1, πx,yl = σx,y1 τ z2 (A.6a)

πzr = σzL, πx,yr = τ zL−1σ
x,y
L (A.6b)

These obey the Pauli algebra and satisfy the relation∏
i∈A

σxi = πxl π
x
r (A.7a)∏

i∈B

τxi = πzl π
z
r (A.7b)

on the ground state manifold. Thus, the action of symmetries can be factored into
operations acting on the left and right edges separately. When the global symmetry
factors in this way, the symmetry at the boundary can act projectively, so with phases
that are not present in the action of the global symmetry. For example consider to
change the action at the left boundary by a phase α (and at the right one by -α): this
factor tells nothing about the underlying physics. Instead, eqs. (A.7) exhibit a different
kind of phase, since the two operators at the edges anticommute. This anticommutation
indicates that the symmetry group is realized projectively at each edge.
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