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Abstract

The phenomenon of neural synchronisation, a simultaneous and repeated
�ring of clusters of neurons, underlies many physiological functions and patho-
logical manifestations in the brain of humans and animals, ranging from in-
formation encoding to epileptic seizures. Neural synchronisation, as a general
phenomenon, can be approached theoretically in the framework of Dynamical
Systems on Networks. In the present work, we do so by considering complex
networks of FitzHugh-Nagumo model neurons. In the �rst part we consider
the most understood models where each neuron treats its presynaptic neu-
rons all on an equal footing, normalising signals with its in-degree. We study
the stability of the synchronous state by devising an algorithm that destabilises
it by selecting and removing links from the network, so to obtain a bipartite
network. The selection is performed using a perturbative expression, which
can be regarded as a specialisation of a previously introduced Spectral Cen-
trality measure. The algorithm is tested on Erdős-Renyi, Watts-Strogatz and
Barabási-Albert networks, and its behaviour is assessed from a dynamical and
from a structural point of view. In the second part we consider the less studied
case in which each neuron divides equally its output among the postsynaptic
neurons, so to reproduce schematically the situation where a �xed quantity of
neurotransmitter is subdivided between several e�erent neurons. In this con-
text a self-consistent approach is formulated and its limitations are explored.
In order to extend its application to larger networks, a Mean Field Approxima-
tion is presented. The predictivity of the Mean Field Approach is then tested
on the di�erent random network models, and the results are discussed in terms
of the original network properties.



Contents

Introduction 3

1 Dynamical Model 8
1.1 Dynamical models on graphs . . . . . . . . . . . . . . . . . . 8
1.2 Basic concepts in Network Theory . . . . . . . . . . . . . . . 9
1.3 The FitzHugh-Nagumo model neuron . . . . . . . . . . . . . 14
1.4 Delay coupled Networks of model neurons . . . . . . . . . . . 23

2 In-degree normalised scheme 26
2.1 Single neuron dynamical phase plot . . . . . . . . . . . . . . 26
2.2 The Master Stability Function . . . . . . . . . . . . . . . . . 29
2.3 Destabilising synchrony . . . . . . . . . . . . . . . . . . . . . 33
2.4 Spectral Centrality . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Constrained Spectral Centrality . . . . . . . . . . . . . . . . . 37
2.6 Bipartitioning algorithm . . . . . . . . . . . . . . . . . . . . 39
2.7 Algorithm testing . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Robustness of the main random network architectures . . . . . 45
2.9 Chapter summary and concluding remarks . . . . . . . . . . . 52

3 Out-degree normalised scheme 54
3.1 Self-consistent approach . . . . . . . . . . . . . . . . . . . . 54
3.2 Example on a small graph . . . . . . . . . . . . . . . . . . . . 55
3.3 Mean Field Approximation . . . . . . . . . . . . . . . . . . . 59
3.4 Chapter summary and concluding remarks . . . . . . . . . . . 70

Conclusion 72

Appendices 75

A Physical interpretation of the Laplacian Matrix 76

B Properties of stochastic matrices 77

1



CONTENTS

C The RADAR 5 numerical integration algorithm 79

D Pseudocode for the Bipartition algorithm 81

E Estimates on the distribution of Fi 84

2



Introduction

The neuron doctrine, one of the founding elements of modern neuroscience,
can be considered to begin in the late 19th century, with the discovery by San-
tiago Ramón y Cajal, Figure 1, that the nervous tissue is not built as a single
reticulum, but rather as a network of elementary units, among which neurons
play themost prominent role. Indeed neurons are not the only cellular compo-
nent, possibly not even the most abundant [BBH16], within the nervous sys-
tem: glia cells, for example, play a relevant structural and protective role, and
some specialised ones, called astrocytes, are being investigated for their pos-
sible role in the formation of memory engrams. The peculiarity of neurons,
although, rests in their rich electrophysiological features, which make them ac-
tive electrical elements, capable of information processing and storage, when
combined in a network. These premises make the concept of network a fun-
damental model, when studying collective neural phenomena.

One could summarise the concept of network as that of a set of individ-
ual, elementary objects, called the nodes, together with the set of their pairwise
interactions or relationships, called edges or links [New18]. A great number
of tools, constituting the �eld of network theory has been developed to charac-
terise these objects from various standpoints, such as combinatorics, stochastic
processes or algebra. Although not having been formulated explicitly for the
study of neuroscienti�c phenomena, this framework is highly suited to their
understanding, and even if the identi�cation is often made between nodes and
neurons, in recent times network models have been applied successfully also at
a variety of larger and smaller scales, ranging from representations of interac-
tions at a cortical level to the modelling of exchanges at the intra-cellular scale
[BZG18]. Furthermore, the nature of the relationships represented by the links
can vary greatly: representing synapses, but also functional interdependence,
spatio-temporal correlation in data or physical proximity. In addition, a de-
gree of heterogeneity and dynamics can be inserted, considering multilayer or
time evolving links and nodes [Leh+14]. A review with examples for all these
types of models can be found in [BZG18], where an approach is proposed to
understand and appreciate their di�erences, which is based on three �gurative
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Introduction

Figure 1: One of the �rst microscope drawings by Ramón y Cajal, performed
with the Golgi silver staining method. Picture from Estructura de los centros
nervosos de las aves, Madrid 1905. The samples are from a cerebellum of Gallus
gallus domesticus (chicken).

cartesian axes.
The �rst one is the data representation vs �rst principles axis. On one end

we �nd detailed network representation of some experimentally obtained data,
whereas on the other we �nd theoretical networks of dynamical elements, at-
tempting to explain the mechanism behind some observed behaviours. The
drawbacks of the �rst approach are that data representations are not very suited
to predictions, while the �rst principles models tend to simplify many physio-
logical features.

Then, models can be cathegorised by the focus being on biophysical real-
ism vs functional phenomenology. This spans from the case where links represent
actual physical elements, such as axons, to the case where they represent func-
tional interdependence. The former have the advantage of incorporatingmany
physiological features, but can prove computationally very expensive, or dif-
�cult to interpret, due to the high number of parameters needed to describe
the network. Conversely the latter can be used to investigate the informational
nature of the brain processes, but are harder to map onto the actual structure
of the brain.

Finally, the third axis represents the elementary vs coarse grained nature of
the model. Indeed, the network approach is based on the identi�cation of well
de�ned discrete units, therefore the graining one chooses is a relevant feature
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of the model. Models where each node represents a single neuron are better
suited to studies on neural encoding or on cellular function on a small scale,
whereas by using a coarser graining larger brain models can be studied.

In the present work we will be considering on each network node a rea-
sonably realistic mesoscale dynamical model suited to represent a neuron, or
a small cluster of neurons, with its electrophysiological properties. From the
point of view of network structure, we will be considering arti�cial random net-
work architectures, with well understood properties, so to focus our attention
on the study of collective neuronal synchronisation phenomena.

In the Neurosciences, synchronisation phenomena are observed at a va-
riety of scales, ranging from single neurons, to small ensembles and even at
the scale of entire cortical regions. Synchronisation is believed to play a fun-
damental role both in physiological functions (sleep-wake cycle, information
encoding) [Sin99], and pathological conditions (Parkinson’s disease, epileptic
seizures [Ger+20]).

The �rst scienti�c approach to the study of the synchronisation phenomenon
dates back to the observation by Christiaan Huygens of the synchronised mo-
tion of two pendulum clocks, when both were hanging from the same wooden
beam, Figure 2. He observed that, after roughly thirty minutes from their
starting, the clocks started oscillating with equal frequency, but opposed phases.
Since at the time, the term "synchronisation" was not yet in use, he referred to
the phenomenon as to the development of a "sympathy" between the two pen-
dula. In a letter to his father, written in 1665 [Huy99], he was the �rst to
attribute the cause of synchronisation to the small interaction provided by the
wooden beam, having carefully ruled out experimentally his previous hypoth-
esis, that the synchronisation was due to air currents displaced by the oscillating
motions. The �rst theory for the synchronisation of nonlinear systems dates,
instead, to the third decade of the 20th century, and is due to Balthasar Van der
Pol. Due to their great relevance in the radio systems of the time, Van der Pol
was studying the synchronisation of some electrical oscillations that take place
in vacuum tubes, when they are subject to an external forcing [VV27]. The
study of the synchronisation of periodic oscillations for low dimensional sys-
tems, has then been brought forward by the russian school ofmathematics, with
contributions from authors such as Aleksandr Andronov [AW30], Vladimir
Arnol’d and Arkady Pikovsky [PRK01].

Oftentimes, although, inNature we observe the synchronisation of amacro-
scopic number of systems, displaying so called collective synchronisation. The
�rst approach to this problem has been provided by Arthur Winfree [Win67],
and Yoshiki Kuramoto [Kur75], who studied the syncronisation phase transi-
tion for networks of coupled phase oscillators, very simple systems with a single
periodic dynamical variable. Thanks to the simplicity of the elementary sys-
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Figure 2: Sketch by Christiaan Huygens representing the synchronisation
of two clocks, from the letter to his father where he �rst reported the phe-
nomenon. Two pendulum clocks can be seen suspended from a wooden beam,
which in turn is held above ground by two chairs.

tem, researchers have been able to characterise quite well the synchronisation
transition that appears in the Kuramoto model. For more complicated node
dynamics, the determinant contribution, which will be often used in the present
work, has been made in 1998 by Louis Pecora and Thomas Carroll [PC98],
with the introduction of the Master Stability Function. This framework allows
to simplify greatly the assessment of linear stability for synchronised solutions,
by decoupling the dynamical component from the network structure. The for-
malism was initially designed to study the stability of complete synchronisation
for networks of chaotic systems, but is very useful in general when considering
networks of nonlinear dynamical systems, such as those that try to replicate
the behaviour of neurons, and can be generalised to deal with delay-coupled
systems.

In this dissertation we will concern ourselves with the study of synchroni-
sation phenomena for a network of FitzHugh-Nagumo neurons, so to under-
stand their relationship with the network structure. In Chapter 1, we introduce
the concept of dynamical network model, along with some fundamental ele-
ments of network theory. We also look at the electrophysiology of the neuron,
so to introduce the neuronal model of choice. Finally we introduce the neu-
ronal networkmodel we shall consider, in the generic mathematical framework
of dynamical systems on graphs. In Chapter 2 we review the most studied cou-
pling scheme for FitzHugh-Nagumo neurons, and propose an algorithm that is
able to destabilise the completely synchronous state of a network, by introduc-
ing a bipartite stable state. This is achieved by selecting and cutting network
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links on the basis of the change they induce in spectral and structural prop-
erties of the network. A link is established between the expressions used to
predict the changes in the spectrum and the previously introduced concept of
k-spectral centrality. In Chapter 3, we consider a scheme less investigated in
previous literature, and a mean connectivity approach is proposed, to obtain
an upper bound on the minimal connection strength needed for the network to
synchronise. The approach is then shown, by simulation, to work best on ran-
dom networks with highly regular connectivity, such as Erdős-Renyi models,
and to fail when one considers networks with highly spread degree distribu-
tions, such as scale-free models.

In the Conclusion we summarise the original results obtained in the disser-
tation. In the context of the �rst normalisation scheme, we are able to devise
an algorithm that destabilises the completely synchronous state, by biparti-
tioning the network. The algorithm, although, tends to destroy the structural
properties on both small-world and scale-free architectures. Future develop-
ment in this area can be aimed at the overcoming of such problems, as it would
be desirable, of algorithms of this type, not to erase such relevant network
properties in the destabilisation process. As far as the second scheme is con-
cerned, we are able to prove that on the Erdős-Renyi architecture, the quality
of the Mean Field Approximation improves with the network size, by observ-
ing the onset of the Central Limit Theorem. Conversely, for the Barabási-
Albert model, we show that the Mean Field Approximation fails due to the
non-negligibility of connectivity �uctuations. Further development of this ap-
proach should focus both on the numerical simulation of larger systems, so to
study the actual behaviour in the limit of large networks, and on a theoreti-
cal development and contextualisation of these synchronisation transitions in
out-of-equilibrium Statistical Mechanics.

Acknowledgements
We would like to thank Professor Nicola Guglielmi for providing the origi-

nal FORTRAN 90 codebase for the DDE integration algorithm RADAR 5 (see Ap-
pendix C), which has proved fundamental in the development of the present
work.
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Chapter 1

Dynamical Model

In this Chapter we �rst review the concept of dynamical network model, and
introduce some Network theory elements, then we present the properties of
the neuronal model considered in this dissertation, with attention to their re-
lationship with the electrophysiological properties of real neurons. Finally, we
look at the coupling schemes that we will consider in the work.

1.1 Dynamical models on graphs
When considering systems where elementary units can be individuated, that
can interchange signals or information between one another, it is natural to
formulate the problem in terms of dynamical network models. In these mod-
els, the units, identi�ed with nodes of the network, are treated as dynami-
cal systems, endowed with a phase space and internal dynamics of their own.
This dynamics can take a host of forms, depending on the phenomenon under
study, and can be linear, non-linear, chaotic or even encompass some degree
of stochasticity, such as a random forcing. The interaction pattern of each unit
is speci�ed by the adjacency structure of the network, and the actual dynami-
cal form of the interaction will be speci�ed by a function, called the coupling
function, that can possibly include di�erent forms of delay to account for prop-
agation or processing times. The network structure, in some cases, can become
a dynamical entity in itself and change over time. This picture translates math-
ematically into the general dynamical equation

ẋi(t) = f (t,xi(t), ξi(t)) +
N∑
j=1

Aij(t)g (xi(t),xj(t− τ)) (1.1)

where i, j ∈ 1, . . . , N label the network nodes. Each node is endowed with a d-
dimensional state xi ∈ Rd, and the local dynamics is speci�ed by f , a function
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1.2. Basic concepts in Network Theory

of the current state, time t to account for possible external forcing and possibly
a stochastic variable ξi(t) implementing noise. The coupling function is given
by g. Notice how the possibility of A, the adjacency matrix of the underlying
network, being time dependent, is encompassed.

This kind of model has been successfully employed to understand many
di�erent phenomena, from ecological interactions between species [Sto+02],
to, more recently, epidemics spreading [Del+20]. A �eld where these models
have been quite successful is Neuroscience, where networks of model neurons
have been able to reproduce complex phenomena, such as epileptic seizures-
like manifestations [Ger+20], or unihemispheric sleep [Ram+19]. Both of
these are actually synchronisation-related phenomena, and the progress in un-
derstanding them via network models is an additional incentive to pursue such
research.

To adapt Equation (1.1) to the study of neural phenomena, it is necessary
to select some node dynamics and coupling function that depend on the scale
of the model, and kind of relationship highlighted by the network structure.
For example, at the microscale, each node could encompass a full Hodgkin-
Huxley dynamics [HH52], so to describe a single neuron. As one moves to-
wards single nodes representing small neuron ensembles or cortical patches,
the model of choice often becomes the FitzHugh-Nagumo [Fit61], [NAY62],
or Hindmarsh-Rose [Izh06] model. For even larger scales, acceptable results
have been obtained also with simple Kuramoto phase oscillators. As far as the
coupling functions are concerned, the choice at the microscale can be made
among various synapse models [Rot13]. At larger scales usually some form
of, possibly delayed, di�usive coupling is used, on grounds of mathematical
practicality and simplicity of treatment.

1.2 Basic concepts in Network Theory
In this section, we review some fundamental concepts in network theory, which
will be useful in the following. We start by de�ning a network, or graph, as
follows

De�nition 1.2.1 (Graph). We de�neGraph a pairG(V,E), where V andE are
sets, and where the elements of V are called nodes or vertices, and the elements
of E are pairs of vertices and are called edges or links.

In general we will be denoting by N the number of nodes in a graph, and
label without loss of generality the nodes with the integers from 1 to N . Two
nodes that are linked by an edge are termed adjacent. Additionally to this def-
inition, whenever a graph has at most one edge connecting any pair of nodes,
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1.2. Basic concepts in Network Theory

and has no self-edges, i.e. no edges that link a node to itself, we will refer to it
as a simple graph.

The Adjacency Matrix There are a number of ways to create a mathemati-
cal representation of a network, the �rst, and fundamental one, is the Adjacency
Matrix.

De�nition 1.2.2 (Adjacency matrix). Let G(V,E) be a graph. We call the
adjacency matrix of G the N ×N matrix built as follows

Aij =

{
1 if there is an edge connecting node j to node i
0 otherwise

(1.2)

notice that this de�nition allows us to introduce a concept of link direction-
ality, where j can be connected to i, but the opposite may not be true. Those
networks for which links have a directionality are called directed, whereas those
for which links are always bidirectional are called undirected networks. With
the present de�nitions in place, it becomes clear that undirected networks are
associated to symmetric adjacency matrices, while adjacency matrices associated
to directed networks lose this property. A very important property of a node
is its degree

De�nition 1.2.3 (Degree). Let G(V,E) be an undirected graph, and let vi ∈
V be a node belonging to it. The degree of node vi is the number of links
connected to it, and for an undirected graph it can be calculated as

d(vi) =
N∑
j=1

Aij =
N∑
j=1

Aji (1.3)

since for undirected networksAij = Aji. As a shorthand, on undirected graphs,
we will indicate d(vi) as di.
On directed networks, we distinguish the in-degree and the out-degree of node vi,
introducing them respectively as the number of links incoming and outgoing
on node vi. These quantities can be written as

din(vi) =
N∑
j=1

Aij dout(vi) =
N∑
j=1

Aji (1.4)

as the adjacency matrix is no longer symmetric. Of course for undirected
graphs, din = dout for all nodes.
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1.2. Basic concepts in Network Theory

For undirected networks we can build the so calledDegreeMatrix, a diagonal
matrix, which contains as the i-th element on the diagonal the degree of the
i-th node.

D = diag {d1, d2, . . . , dN} (1.5)

We now introduce some notions on sequences of nodes and edges, which in-
formally correspond to the possible ways to move on a graph.1

De�nition 1.2.4 (Walk). Let G(V,E) be a graph. We de�ne Walk an edge
sequence (e1, . . . , en) where ∀i ∈ {1, . . . , n− 1} we have ei = (vi, vi+1) ∈ E,
i.e. vi and vi+1 are adjacent. If vn = v1 the walk is called closed, otherwise it is
called open.

Notice that in the de�nition of walk we are being as general as possible, as
both the edges and the vertices can be repeated at any time along the walk. We
introduce some more speci�c de�nition in this regard.

De�nition 1.2.5 (Trail, Path, Cycle). We de�ne as a Trail, a Walk with no
repeated links. We de�ne as a Path, a Trail with no repeated nodes. We de�ne
a Cycle, as a closed Path.

We use the idea of Path to introduce a notion that will be useful in the
following, the one of connectedness, and of components of a network.

De�nition 1.2.6 (Connected Component). Let C ⊆ V be a subset of the set of
nodes V of G(V,E). If ∀c1 6= c2 ∈ C there exists a path connecting them, and
if no other nodes from V can be added to C, while preserving this property,
we call C a Connected Component of graph G.

If within a network there exists a single connected component, then the
whole network is called connected. Connectedness of the network is one of the
properties that can be veri�ed through the adjacency matrix. Indeed, for a
network with k components, there exists anN×N permutation matrix P such
that A is cast in a block-diagonal form

PAPT =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Ak

 (1.6)

1We introduce these concepts only for undirected graphs, with which we deal in this dis-
sertation. There exist similar concepts for directed graphs, with the necessary modi�cations
due to the directed nature of the links.
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1.2. Basic concepts in Network Theory

where each of the Al is the adjacency matrix relative to the l-th component.
Consequently, connected networks, are those for which no permutation matrix
P exists, that can cast the adjacency matrix in block diagonal form. Of course
this approach is not particularly performant algorithmically, as it would entail,
in the worst case, trying all permutation matrices ofN elements, but it is worth
mentioning as an example of the signi�cance of the adjacency matrix.

Another class of networks, which will play a very relevant role in this work,
contains those networks which allow connections only between two speci�c ver-
tex subsets.

De�nition 1.2.7 (Bipartite Graph). Let G(V,E) be a graph. Let P ⊂ V,Q =
V \ P ⊂ V be two subsets of nodes of the graph. We say that G is bipartite if
the edges of G connect only nodes belonging to di�erent classes, i.e. have the
form e = (p, q) with p ∈ P, q ∈ Q.

The adjacency matrix can tell us something also about the bipartition of
a graph, by a similar argument to the one just considered for connectedness.
Indeed if we consider an undirected bipartite network, there must exist a per-
mutation matrix P , such that

PAPT =

(
0 Ab
ATb 0

)
(1.7)

where Ab is an n×mmatrix, n is the number of nodes in the �rst component,
andm = N − n the number of nodes in the second one. This is true, since via
a permutation of the nodes we must be able to highlight the fact that the con-
nections take place only between the two di�erent subsets of nodes, while the
zeroes on the diagonal show that there are no connections within a single par-
tition. The adjacency matrix is a powerful tool in network theory, that can give
much more information than what we have summarised so far: for a deeper
presentation, the interested reader is invited to consult [New18], where these
topics are presented in full detail. Now we introduce a new type of matrix, to
be used in the characterisation of networks.

The Laplacian Matrix Let us consider an undirected network, with adja-
cency matrix A and degree matrix D. The Laplacian matrix is de�ned as

L = D − A (1.8)

it is so called due to its relationship to di�usion processes on networks (see
Appendix A for an example). Notice that the Laplacian is always a singular
matrix, as it accepts the eigenvector 1N in its kernel by construction. Moreover,
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1.2. Basic concepts in Network Theory

due to its symmetry, the spectrum is completely real and non-negative. The
Laplacian can be normalised, the most common ways to do so are

LRW = D−1 (D − A) = I −D−1A (1.9)

Lsymm = D−1/2 (D − A)D−1/2 = I −D−1/2AD−1/2 (1.10)

the �rst is generally referred to as the random-walk-normalised Laplacian, while
the second one is called the symmetrically normalised Laplacian. Notice that the
two are similar matrices, as

D−1/2LsymmD
1/2 = LRW (1.11)

and therefore they share the same spectrum. In the following, we will mostly
work with the random-walk-normalised Laplacian.

One of the reasons to introduce the Laplacian is the detailed characterisa-
tion of the graph that can be done through its spectrum. We will now state
some known theorems about the spectrum of the normalised Laplacian, in re-
lation to the network properties. The interested reader can �nd their proof and
an in-depth analysis of Spectral Graph Theory in [Chu97]. In the following
we shall denote as {λ1 = 0, λ2, . . . , λN} the sorted spectrum of the normalised
Laplacian.

Theorem 1.2.1 (Fiedler value). Let G(V,E) be a graph, and LRW its associ-
ated random-walk-normalised Laplacian, with spectrum {λ1 = 0, λ2, . . . , λN}.
ThenG is connected if and only if λ2 > 0. Moreover, if λ1 = λ2 = . . . = λi = 0
and λi+1 > 0, G has i connected components.

Due to its role in indicating connectedness or disconnectedness λ2 is gen-
erally referred to as algebraic connectivity or Fiedler value.

Theorem 1.2.2 (Bipartition). Let G(V,E) be a graph, and LRW its associ-
ated random-walk-normalised Laplacian, with spectrum {λ1 = 0, λ2, . . . , λN}.
Then λi ≤ 2 ∀i, and in particular λN = 2 if and only if a component of G is
bipartite and non trivial.

Therefore, the spectrum of the normalised Laplacian is informative also
with respect to bipartition. Moreover, bipartition entails another spectral prop-
erty

Theorem 1.2.3 (Bipartition↔ symmetrical spectrum). Let G(V,E) be a bi-
partite graph, andLRW its associated random-walk-normalised Laplacian, with
spectrum {λ1 = 0, λ2, . . . , λN = 2}. Then for each λi eigenvalue of LRW , also
2− λi is an eigenvalue of LRW .

So if the network is bipartite, we gain a further constraint on the spectrum,
which must be symmetric with respect to 1.
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1.3. The FitzHugh-Nagumo model neuron

Figure 1.3.1: Membrane potential time series for a mesencephalic neuron sub-
ject to noisy input. Image from [Izh06].

1.3 The FitzHugh-Nagumo model neuron
The most relevant electrophysiological feature of the neuron is its excitabil-
ity, i.e. its ability to quickly depolarise and repolarise with respect to its rest-
ing membrane potential, producing a sudden spike known as action potential,
Figure 1.3.1, in response to electrical and chemical changes in the surround-
ing extracellular medium. By membrane potential we intend the di�erence in
electric potential between the inside and the outside of the cell membrane, i.e.
the extra and intracellular medium. We summarise brie�y the electrophysi-
ological mechanisms behind such a phenomenon, following the presentation
of [Izh06], to which the interested reader is directed for a detailed explana-
tion of the dynamical aspects of Neurophysiology. The currents that arise in
the electrophysiology of the neuron are of ionic nature, the charge carriers
being mainly Na+, K+, Ca++and Cl−. The most present in the intra-cellular
medium are K+and some negatively charged macromolecules A−, while the
most concentrated out of the cell are Ca++, Na+, Cl−. The cellular membrane
that separates the intra-cellular from the extra-cellular medium is a double
layer of phospholipidic molecules that is impermeable to ions, but it presents
some proteic channels, that allow the passage of the mentioned ions, accord-
ing to their electrical potential and concentration gradients, except for the A−,
which are large molecules and cannot pass through. Thus, in principle, the ions
can redistribute themselves across the membrane to reduce the concentration
asymmetry between the intra-cellular and extra-cellular medium, in practice
this is not always true, and the only two currents that signi�catively �ow due
to this mechanism alone are those of K+and Cl−. Furthermore, even for these
two species, the concentration gradient current is not su�cient to remove the
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1.3. The FitzHugh-Nagumo model neuron

concentration asymmetry, due to several mechanisms that prevent this from
happening, among which we identify the most relevant:

• Passive redistribution: the A−, which are con�ned within the cell due to
their size, attract K+and repel Cl−, thus contributing to the preservation
of asymmetry.

• Active transport: across the cell membrane, active ion pumps are present,
such as the Na+-K+pump, that brings within the cell two K+for each
three Na+that it releases in the extracellular medium, thus maintaining
the concentration of K+higher inside the cell.

Were we to consider these mechanisms alone to maintain the concentration
gradient, the channel current caused by the concentration asymmetry would
keep �owing. On the other hand, we must take into account that the ions carry
electric charges, considering for example the species K+, this means that we
are slowly building up positive charge outside the channel, and negative charge
inside due to the unmatched A−, thus giving rise to a potential di�erence be-
tween the interior and the exterior of the cell. At some point an equilibrium is
achieved, and the concentration current is balanced out by the one caused by
the potential di�erence. The potential di�erence value for which this happens
is called the Nernst equilibrium potential, and depends on the ionic species under
consideration, and environmental variables such as the temperature. In this
picture, denoting ES the Nernst potential for a species S, the current of ion
species S caused by a total membrane potential di�erence V will be given by

IS = gS (V − ES) (1.12)

where gS is the conductance of the ion channel associated to species S. We
will comment soon more speci�cally on the form of this conductance. Now, if
we consider Equation (1.12), for the four major ion species mentioned before,
and treat the impermeable membrane as a capacitor of capacitance C 2 we are
able to formulate an equivalent circuit model for the membrane.

CV̇ = I−gNa(V −ENa)−gCa(V −ECa)−gCl(V −ECl)−gK(V −EK) (1.13)

where I is the total current across the membrane. Now, if all the channels were
Ohmic, i.e. if the conductances were all constants independent from the other
variables, for I = 0 the system would simply relax to a weighted average of the
Nernst potentials

Vrest =
gNaENa + gCaECa + gClECl + gKEK

gNa + gCa + gCl + gK
(1.14)

2An average value for the speci�c membrane capacitance per membrane surface unit is
given as 0.90± 0.03µF/cm2 for neurons in [GSC00].
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1.3. The FitzHugh-Nagumo model neuron

which for I 6= 0 is simply displaced

Vrest → Vrest +
I

gNa + gCa + gCl + gK
(1.15)

This behaviour is too simple, with respect to the phenomenology we observe in
neurons. Therefore, some key feature must be missing, to produce the typical
spiking of neural cells. This feature comes from the fact that, with the exception
of some K+or Cl−channels, the ion membrane channels are not Ohmic. The
channel conductances are in general nonlinear, and depend on a number of
other variables.

This phenomenon is called channel gating. The ionic channels are large
proteins, with acqueous pores that allow for the transit of ions. Attached to
these channels, although, there can be gating particles, that depending on some
conditions of the surroundingmedium, called gating variables, can open or close
the channel. The most common gating mechanisms are

• Voltage gating: the opening or closing of a gate depends on the mem-
brane potential→ K+, Na+channels

• Intracellular agent gating: the gating variable for a species can be the
concentration of another ionic species→ Ca++-gated K+channels

• Extracellular agent (neurotransmitter) gating: opening and closing can be
triggered by some neurotransmitter substance in the extracellularmedium
→ γ-Aminobutyric acid (GABA), N-Methyl-D-aspartic acid (NMDA)
gated channels

This being said, the study of the dynamics of gating is a very rich research �eld
in itself: generally the phenomenon is approached as probabilistic in nature,
with the activation and inactivation probabilities being made to evolve over
time in function of the relevant gating variables.

One of the most important models that takes into account gated channels to
reconstruct the electrophysiology of the neuron, is the Hodgkin-Huxley model
[HH52]. It has �rst been proposed as a model of the Squid Giant axon, but
it is widely considered representative of the general dynamics of neurons. Via
experimental observations Hodgkin and Huxley determined that the relevant
ionic channels and gating mechanisms for the system are

• A voltage-gated K+current IK , with four activation gates,
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1.3. The FitzHugh-Nagumo model neuron

• A voltage-gated Na+current INa, with three activation and one inactiva-
tion3 gate,

• An Ohmic leak current IL, mostly carried by Cl−ions.

from which the resulting dynamical equations are

CV̇ = I −
IK︷ ︸︸ ︷

ḡKn
4 (V − EK)−

INa︷ ︸︸ ︷
ḡNam

3h (V − ENa)−
IL︷ ︸︸ ︷

ḡL (V − EL)

ṅ = αn(V )(1− n) + βn(V )n

ṁ = αm(V )(1−m) + βm(V )m

ḣ = αh(V )(1− h) + βh(V )h

(1.16)

where the n,m and h variables are respectively the activation probability for the
K+channel, and the activation and inactivation probabilities for theNa+channel.
Many specimen of each of the three channel types are present in the mem-
brane, with a consequent high number of gates, so that the probabilities can be
interpreted in a frequentist sense, as fractions of activated or inactivated gates.
The α(V ) and β(V ) functions are respectively sigmoidal and exponential func-
tions that describe the transition rates, and contain numerical constants that
depend on the choice of the origin of potentials and on the physical properties
of the speci�c system under consideration.

Although being very sound from a physiological point of view, theHodgkin-
Huxley model has several practical drawbacks. Due to its highly nonlinear dy-
namics, it can exhibit many di�erent and possibly chaotic behaviours, which
are quite di�cult to study in four dimensions, without the help, for example, of
the phase plane methods that can be used for nonlinear two-dimensional sys-
tems. For these reasons, in the sixties, Richard FitzHugh and Jinichi Nagumo,
developed independently the so called FitzHugh-Nagumomodel [Fit61], [NAY62]
for neural excitability.

The FitzHugh-Nagumomodel can be regarded either as a 2D projection of
the Hodgkin-Huxley model, as recognised by the author in the original paper
[Fit61], or as a modi�ed version of the Van Der Pol oscillator, to account for
excitable behaviour. Its dynamics is speci�ed by a pair of nonlinear Ordinary
Di�erential Equations, characterised by the presence of two time scales. Many
formulations have been proposed, among which we choose, for simplicity

εu̇(t) = u(t)− u3(t)

3
− v(t) + Iext(t)

v̇(t) = u(t) + a
(1.17)

3A closed and an inactivated channel correspond to di�erent situations: in the �rst case,
an activation gate simply did not open, while in the second an inactivation gate has closed a
channel previously opened by an activation gate.
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1.3. The FitzHugh-Nagumo model neuron

Figure 1.3.2: Phase space plot for the FHN system in the tonic spiking phase
(a = 0.8, ε = 0.01).

Where u is the fast variable, presenting a quasi-threshold spiking dynamics,
akin to the membrane potential. Conversely, the slow variable v is a recovery
variable, representing the characteristic refractoriness of neurons after �ring.
The separation between the two time scales is dictated by the factor ε. Iext is
an external stimulus, possibly representing currents given by the interactions
with other neurons, or by external stimuli. Finally, a is a dynamical parameter
regulating the dynamical regime of the model. Indeed, the system possesses

a single �xed point (u∗, v∗)T =
(
−a,−a+ a3

3

)T
that is stable for |a| > 1 and

becomes unstable for |a| < 1, when the system undergoes a supercritical Hopf
Bifurcation and a stable limit cycle appears.

The �rst dynamical regime is termed excitable, and can be interpreted phys-
iologically as that of a standard neuron, whereas the second is called a tonic
spiking state, and can be ideally interpreted as a pacemaker neuron. To under-
stand the mechanisms of spike production in the FHN system we can analyse
its Phase Space (Figures 1.3.2, 1.3.3). We draw the nullclines, the curves along
which the time derivative of one of the variables is zero. The v-nullcline takes
the form of a vertical line at u = −a, while the u-nullcline is a cubic curve, in-
tersecting the u axis at−

√
3, 0 and

√
3, with a minimum at−1 and a maximum

18



1.3. The FitzHugh-Nagumo model neuron

Figure 1.3.3: Phase space plot for the FHN system in the excitable state (a =
1.3, ε = 0.01). The spike is initiated via a square pulse input.
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1.3. The FitzHugh-Nagumo model neuron

at 1. The right and leftmost branches of the nullcline are identi�ed respectively
with the physiological refractory and active phases of the neuron. In the tonic
spiking regime, the limit cycle can be described as composed of four stages:

1. slow upward motion, roughly along the right (active) branch

2. fast jump towards the left branch

3. slow downward motion, roughly along the left (refractory) branch

4. fast jump towards the right branch

In the tonic activity phase, these stages are inde�nitely repeated.
In the excitable phase, the �xed point becomes attractive, and the unper-

turbed system tends to reach it by moving along the cubic nullcline. If we con-
sider a positive a > 1, for example, the �xed point will lie on the left branch
of the cubic nullcline. If a quick positive shock is applied via the Iext variable,
the system is displaced towards the positive u’s, and depending on the entity of
the shock, two phenomena can take place. If the pulse is below-threshold, the
system is re-captured by the refractory branch and resumesmoving asymptoti-
cally towards the �xed point, whereas if the pulse is above threshold, the system
jumps towards the active branch, following it up until the maximum at u = 1,
then jumps back towards the refractory branch, resuming the asymptotic mo-
tion. This is known as a quasi-threshold e�ect, since the speci�c critical value of
the forcing magnitude for spike generation depends also on the duration and
shape of the pulse, therefore one cannot speak of a threshold in general, but
only for �xed duration and shape.

By looking at the Phase Plane and performing some numerical experi-
ments, although, we can say something more. Indeed, by evaluating the time
derivative of u between the cubic nullcline branches one can �nd that the cen-
tral branch is repulsive along the u axis. Moreover, performing simulations,
and changing the pulse amplitude while keeping its duration and shape �xed,
one �nds that for each time that an action potential is successfully generated,
the pulse has been such to displace the system across the central nullcline branch,
although some cases in which the system crosses the nullcline, do not produce
a spike. Therefore, at least approximately, the crossing of the nullcline can be
considered as a threshold for action potential production.

This behaviour in the excitable state can be explained also by exploiting
the explicit time-scale di�erence between the two variables. We proceed along
the lines of the original article [Fit61]. The motion along variable u is of time
scale ε, while that along variable v is of time scale 1. This allows us to consider,
approximately, the motions along the two variables separately: the one along u
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1.3. The FitzHugh-Nagumo model neuron

Figure 1.3.4: One-dimensional con�guration space for the u variable for dif-
ferent values of v. Blue line: |v| < 2

3
, two stable and one unstable �xed point.

Orange line: |v| > 2
3
, single stable �xed point.

can be considered to happen for constant v, the one along v can be considered
to happen for a value of u = u(v) that is a function of the coordinate v. Let’s
�rst consider the motion along u, which is governed by the equation

εu̇ = u− u3

3
− v̄ (1.18)

where v̄ is the value of v that we consider to be �xed for evolution times of
order ε. Equation (1.18) has three equilibria for |v̄| < 2

3
, one for |v̄| > 2

3

and two in the limiting cases |v̄| = ±2
3
. The type of equilibrium at the �xed

points depends on the u-nullcline branch on which they lay, Figure 1.3.4. For
|v̄| < 2

3
, the two outermost equilibria are attractive, while the one lying on the

central branch is repulsive, for |v̄| > 2
3
, the only equilibrium is attractive, and

in the limiting cases we have one attractive point and a saddle node. With these
considerations in mind we can explain the production of action-potential-like
spikes as follows. Consider a quiescent neuron, i.e. a FitzHugh-Nagumo sys-
tem lying close to the global dynamics equilibrium point (u∗, v∗). Since we
are considering the excitable regime, we can take this location to be on the left
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1.3. The FitzHugh-Nagumo model neuron

branch of the u-nullcline. The one-dimensional phase space of the ε time scale
dynamics is analogous to that individuated by the blue line in Figure 1.3.4, the
global �xed point corresponding to the left-most equilibrium in the reduced
dynamics. Let us now force the system in the direction of positive u via a Dirac
delta function pulse. Depending on the magnitude of such pulse, the system
can either stop before the unstable �xed point or jump across it. In the former
case the system is repelled back towards the initial equilibrium point, while in
the latter it is repelled towards the stable equilibrium point on the right branch
of the nullcline. Once the system has reached the right-most equibrium, the u
variable remains in its proximity, while v grows, as u+ a > 0 in the equation

v̇ = u+ a (1.19)

where since we are now considering the dynamics of time scale 1, we can take
u to approximately be given by the right-branch solution of equation

v = u− u3

3
(1.20)

therefore, as v grows, u approximately follows the right nullcline branch. As
v becomes larger and larger, we cross the value v = 2

3
, above which the time

scale ε dynamics along u suddenly remains with a single �xed point on the left
branch of the u-nullcline, with a phase space analogous to that individuated
by the orange line in Figure (1.3.4). In response to this change, the dynam-
ics of order ε, rapidly moves the system towards the left branch. Once the
nullcline has been reached, the motion of time scale 1 resumes, this time in
a downward direction, as u + a < 0. Moving along the left branch of the
nullcline, the system approaches the global dynamics �xed point, thus entering
once again a quiescent state, awaiting stimuli. If we look at a time series, in Fig-
ure 1.3.5, we observe that the value excursion of the u variable has produced
an action potential-like spike, followed by a refractory period during which it
slowly tends to the �xed point. We notice as well that the v time series has
maxima right after the action potential has fallen down, after which it slowly
decreases back to its �xed point value, pointing out its interpretation as a re-
covery variable associated to the refractoriness of the neuron, which is maximal
right after the action potential.

In the following we will consider only neurons in the excitable state, due to
their closer resemblance to physiological neurons in the brain.
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1.4. Delay coupled Networks of model neurons

Figure 1.3.5: Time series of the dynamical variables, u in blue and v in orange,
for an excitable FitzHugh-Nagumo system ε = 0.01, a = 1.3). The external
stimulus, the green line, is a square wave pulse of amplitude 2, and of duration
0.001 time units, applied periodically each 10 time units.

1.4 Delay coupled Networks of model neurons
We consider a network of N FitzHugh-Nagumo neurons, coupled as follows

εu̇i(t) = ui(t)−
u3i (t)

3
− vi(t) + C

N∑
j=1

Aij [uj (t− τ)− ui (t)]

v̇i(t) = ui(t) + a

(1.21)

where i ∈ {1, . . . , N} labels the single nodes, C is a coupling strength and A
is a connectivity matrix, with Aij representing the strength of the signal go-
ing from neuron j to neuron i. Finally, τ is a coupling delay, accounting for
the �nite propagation time of the action potential along the axon. The prop-
agation time of an action potential along an axon can vary greatly, depending
for example on the animal species, the type of neuron or on the axon diame-
tre, but for medium to long range human cortical axons, it has been measured
to be of order 1 − 5 ms [Wan+08], and thus of the same order of the typical
action potential duration, 1 − 5 ms, which in our model corresponds to the
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1.4. Delay coupled Networks of model neurons

slow dynamics, with characteristic time scale of order 1. This is the feature, to-
gether with the choice of the FitzHugh-Nagumo system, that makes our model
a mesoscopic scale one, as we can identify the nodes with small patches of cor-
tex, and links as connections, anatomical or functional, between them. In the
following, we consider two ways to construct A from the adjacency matrix of
the network A. We will work using the convention that Aij = 1 represents a
link going from j to i.

1. In-degree normalised: Aij =
Aij∑
j Aij

In this normalisation scheme, all inputs to a given node are rescaled with
the inverse of the node in-degree. In this sense, the higher the in-degree
of a given neuron is, the larger will the number of simultaneously �r-
ing, a�erent presynaptic neurons have to be, in order for it to �re. This
condition implies that A will be a row-stochastic matrix.

2. Out-degree normalised: Aij =
Aij∑
iAij

In this scheme, each node divides equally its output signal strength among
its e�erent postsynaptic neurons. Even though a realistic chemical synapse
model would entail amuchmore complicated coupling function [Rot13],
we can contextualise this normalisation scheme with a subdivision, be-
tween all postsynaptic neurons, of a roughly �xed amount of neuro-
transmitter released by the presynaptic neuron. This condition entails
a column-stochasticity condition on A.

In the following chapter, we consider the features of synchronisation phenom-
ena in the two aforementioned schemes. In both cases we will study synchro-
nisation within a self-consistent framework, and we will consider for simplicity
undirected architectures, but the properties of the connectivity matrix will play
a relevant role in the phenomenology we will observe, and in the approach we
will be able to put forward. In the following, we will consider a set of neurons to
be synchronised, when its belonging neurons �re simultaneuously, repeatedly and
self-sustainedly over time. By this we mean that, considering a synchronous set
of n neurons, we will hypothesize their trajectories to be all equal to a solution
(us(t), vs(t))

T , which we call the single-neuron synchronous solution(
u1(t)
v1(t)

)
=

(
u2(t)
v2(t)

)
= . . . =

(
un(t)
vn(t)

)
≡
(
us(t)
vs(t)

)
(1.22)

this satis�es the requirement of simultaneity in the previous de�nition. As far
as the two other requirements are concerned, they translate into conditions
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1.4. Delay coupled Networks of model neurons

on (us(t), vs(t))
T . The requisites that the neurons �re repeatedly and self-

sustainedly translates into asking that (us(t), vs(t))
T be characterised dynami-

cally as a limit cycle, possibly stabilised, in absence of external stimuli, by some
feedback mechanism.
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Chapter 2

Synchronisation phenomena in the
in-degree-normalised scheme

We approach equation (1.21) by hypothesizing that, when the system is fully
synchronised, all neurons follow the same trajectory.

u1(t) = u2(t) = . . . = uN(t) ≡ us(t), v1(t) = v2(t) = . . . = vN(t) ≡ vs(t)
(2.1)

By inserting these into (1.21) we obtain the following equation

εu̇s(t) = us(t)−
u3s(t)

3
− vs(t) + C [us (t− τ)− us (t)]

v̇s(t) = us(t) + a
(2.2)

We can see that in this scheme, the fully synchronised dynamics of the system
corresponds to that of a single neuron with feedback. This is due to the stochas-
ticity of A, which ensures A1N = 1N . Since we have enforced the system on a
synchronous trajectory by hypothesis, we must now check for the presence of
self-sustained oscillations in the synchronous dynamics. Indeed, as a matter of
principle, also a fully inactive network is completely synchronous in the sense
speci�ed by our self-consistent hypothesis, but does not meet the requirements
of the de�nition we chose in the beginning.

2.1 Single neuron dynamical phase plot
To ensure that the synchronous solution is a self-sustained �ring one, we can
inspect the dynamics of the single neuron with feedback. We hypothesize that,
depending on the values of τ and C, after an input spike, the system will either
settle back to the �xed point or evolve towards a limit cycle dynamics. To study
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2.1. Single neuron dynamical phase plot

this hypothesis, we simulate the evolution of the system given by Equation
(2.2) after a gaussian input spike, for a grid of (C, τ) values, recording Npoints

phase plane points evenly spaced of an interval of ≈ 10−4 time units one from
another, for each run. We calculate the level of activity A of the neuron via

A(C, τ) =
τ

Npoints

√√√√Npoints∑
n=1

(un − ū)2 + (vn − v̄)2 (2.3)

where

ū =

Npoints∑
n=1

un
Npoints

, v̄ =

Npoints∑
n=1

vn
Npoints

represent the averages of the dynamical variables for the run. Notice the τ
scaling of the enumerator of A, to account for the fact that larger values of τ
will lead to slower cycles, with a longer time spent in the proximity of the �xed
point, awaiting feedback.

The choice of this indicator can be understood by considering the two cases
we wish to distinguish, i.e. the phase point resting close to the �xed point, pos-
sibly after a small number of oscillations, and a state of self-sustained oscilla-
tions. Indeed, we are taking the time average of the modulus of displacement
with respect to the mean. In the �rst case, apart from initial oscillations, the
phase point will tend rapidly to the �xed point, and remain in its neighbour-
hood inde�nitely, so that the mean will rapidly tend to the �xed point as well,
thus yielding a value of A(C, τ) close to 0. Conversely, if we are in the self-
sustained region, the phase point will be travelling along the limit cycle indef-
initely, up to some resting periods near the �xed point for large τ , yielding a
non-negligible modulus for the displacement with respect to the mean.

The results of the simulations are presented in Figure 2.1.1. The plot shows
that for each �xed value of coupling strength, there exists a threshold value of
the delay τ , which presents a decreasing trend with respect to C, and below
which no self-sustained activity takes place, owing to the fact that for increasing
feedback strengths, a spike can be initiated earlier and earlier along the cycle.
This tendency, although, is reversed around values of C ≈ 3.5, possibly due
to the fact that for such feedback strengths, the nonlinearities in the system
dynamics are unable to win over the delayed feedback term, which penalises
any displacement from the �xed point. Analogously, for a �xed value of the
delay term τ , there is a minimal coupling strength in order to observe self-
sustained activity, which decreases, for growing τ . This can be related to the
fact that, as τ grows larger and larger, the system will be resting closer and
closer to the �xed point, and therefore will need smaller and smaller feedback
pulses to initiate a spike.
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2.1. Single neuron dynamical phase plot

Figure 2.1.1: Plot of the activity indicator A(C, τ) evaluated along the simu-
lated evolution of Equation (2.2), for a grid of parameter values (C, τ). We
observe that the critical value of τ follows a decreasing trend with respect to C,
pointing out that for larger coupling strenghts, a complete cycle can be initiated
by feedback earlier and earlier along the trajectory. After C ≈ 3.5, although,
the critical τ starts growing again, possibly because in this region the feedback
term overwhelms the nonlinearities, and thus keeps the system in the vicinity
of the �xed point regardless of the stimulus magnitude.
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2.2. The Master Stability Function

These hypotheses can be corroborated by approximating the nullcline jumps
as instantaneous, and therefore the feedback as a Dirac delta function, scaled
by C. In this picture, the threshold C for a given τ is the minimal value for
which the system is able to close the cycle in time τ . Proceeding in this way, a
curve can be obtained, that qualitatively reproduces the shape of the threshold
value, but gives di�erent numerical results.

2.2 The Master Stability Function
Once we have proved the existence of the collective synchronous state via
the described approach, we can set out to determine the stability of the syn-
chronous solution. The study of the linear stability of synchronised states has
been pioneered by Pecora and Carroll in 1998, with the introduction of the
Master Stability Function [PC98]. The approach had been introduced at �rst
for regular di�usive couplings without delay, but can be easily adapted to the
case of delayed couplings. To this end we introduce perturbations to the syn-
chronous dynamics of each node

ui(t) = us(t) + δui(t) vi(t) = vs(t) + δvi(t) (2.4)

These perturbations evolve according to the tangent dynamicswith respect to the
synchronous solution. Let us denote by ei the i-th element of theRN canonical
basis, and by IN the identity matrix operating on the same vector space. The
perturbations evolve according to∑

i

ei ⊗
(
εδu̇i(t)
δv̇i(t)

)
= IN ⊗

(
1− C − u2s(t) −1

1 0

)∑
i

ei ⊗
(
δui(t)
δvi(t)

)
+

+ (CA⊗H)
∑
i

ei ⊗
(
δui(t− τ)
δvi(t− τ)

)
(2.5)

where we introduced

H =

(
1 0
0 0

)
(2.6)

which is referred to as the output function (in this case a linear function, i.e. a
matrix), that speci�es how the coordinates of systems lying on adjacent nodes
are coupled. Now let B−1AB = S, with S = diag(σ1, . . . , σN). In our case,
the underlying network is undirected A is symmetrical and as such has a real
spectrum. Even though our normalisation choice breaks the explicit symmetry
ofA, as we pass toA, the spectrum remains real 1. Were we to consider directed

1Matrices such as A are often referred to as symmetrizable, as they can be cast to a sym-
metric form via multiplication by a diagonal matrix. In our case A = DA.
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2.2. The Master Stability Function

networks, and therefore "genuinely" non-symmetric matrices, we would need
to extend the domain of the eigenvalues to the complex plane. We canmultiply
(2.5) on the left by B−1 ⊗ I2, and by inserting (B−1 ⊗ I2) (B ⊗ I2) pairs in the
r.h.s. we get

∑
i

B−1ei ⊗
(
εδu̇i(t)
δv̇i(t)

)
=

=

(
B−1B ⊗

(
1− C − u2s(t) −1

1 0

))∑
i

B−1ei ⊗
(
δui(t)
δvi(t)

)
+

+
(
CB−1AB ⊗H

)∑
i

B−1ei ⊗
(
δui(t− τ)
δvi(t− τ)

)
(2.7)

Denoting ηi = B−1ei the new base vectors, we can write

∑
i

ηi ⊗
(
εδu̇i(t)
δv̇i(t)

)
=

(
IN ⊗

(
1− C − u2s(t) −1

1 0

))∑
i

ηi ⊗
(
δui(t)
δvi(t)

)
+

+ (CS ⊗H)
∑
i

ηi ⊗
(
δui(t− τ)
δvi(t− τ)

)
(2.8)

We observe that, due to the diagonal form of S we have e�ectively decoupled
the perturbations. In this sense we can drop the ηi and write the equation for
each mode as(

εδu̇i(t)
δv̇i(t)

)
=

(
1− C − u2s(t) −1

1 0

)(
δui(t)
δvi(t)

)
+ σiCH

(
δui(t− τ)
δvi(t− τ)

)
(2.9)

Notice that now i does not index localised perturbations any more, but rather
delocalised perturbation over the whole network. If we gather C and σi into
a single parameter ν, we obtain Equation (2.10), known as the Master Stability
Equation, which allows to simplify the study of the stability of a synchronous
solution.

(
εδu̇(t)
δv̇(t)

)
=

(
1− C − u2s(t) −1

1 0

)(
δu(t)
δv(t)

)
+ νH

(
δu(t− τ)
δv(t− τ)

)
(2.10)

In the tangent dynamics, perfect synchronisation corresponds to the zero
solution. Therefore, we assess the stability of synchronisation, by evaluating
numerically the maximal Lyapunov exponent for the zero solution as a function
of ν = σC. This function is called the Master Stability Function Λ(ν). A plot of
the MSF for the completely synchronous solution of the FitzHugh-Nagumo
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system is in Figure 2.2.1. The numerical calculation has been simpli�ed by
noticing that since the synchronous solution (us, vs) is periodic, with a period
Ts ≈ τ , the solution to the Master Stability Equation can be searched for in a
Floquet form (

δu(t)
δv(t)

)
= e(λ+iω)t

(
δũ(t)
δṽ(t)

)
(2.11)

where (
δũ(t)
δṽ(t)

)
=

(
δũ(t+ kτ)
δṽ(t+ kτ)

)
k ∈ Z (2.12)

is periodic with period τ . It can be proved [see e.g. Tur98] that the λ’s corre-
spond to the Lyapunov exponents for the Poincaré map, i.e. the map of the
solution over a period τ . This greatly lightens the simulations as it becomes
su�cient to �nd the evolution of an initial perturbation for multiples of τ , i.e.
to solve numerically for the Poincaré map, as it is the value of λ to determine
the shrinking or expanding properties of the solution to the Master Stability
Equation. We adopted this strategy, and obtained the values of Λ shown in the
plots by performing a linear regression in logarithmic scale over the trajectories
of the Poincaré map. The stability of the synchronous solution with respect to
perturbations is con�rmed if all rescaled eigenvalues of the connectivity matrix
fall within the negative domain of Λ(ν).

For the FitzHugh-Nagumo system, previous studies [Leh16], [Leh+11]
have derived a constraint for the boundary of the negative domain of Λ(ν).
The studies consider in principle a complex spectrum, and treat the stability
problem for the synchronous solution along the lines of Pyragas delayed feed-
back control for chaotic systems. The authors concern themselves with the
problem of determining the boundary of the negative domain, i.e. the curve
on which the Master Stability Function is zero. The constraint on the critical
eigenvalue νc is derived in the form

Re(νc)
2 + Im(νc)

2 = C2 +K (2.13)

where νc is the critical rescaled eigenvalue, for which Λ(νc) = 0, and K is
a positive constant, function of some dynamical properties of the synchronous
solution that in general cannot be calculated. Even without knowing the form
of K, the previous formula becomes useful as a lower bound, since whenever
a scaled eigenvalue falls within the circle of center ν = 0 and radius C, the
Master Stability Function is guaranteed to be negative, the sole exceptions are
allowed to happen on the boundary, where the Master Stability Function can
be negative.

In our speci�c case, we are considering a real spectrum matrixA, therefore
the lower bound is restricted to the real interval [−C,C]. Moreover, we observe

31



2.2. The Master Stability Function

Figure 2.2.1: The Master Stability Function for the FitzHugh-Nagumo sys-
tem. The delay has been set to τ = 1, the time-scale separation to ε = 0.01.

that in this coupling scheme, apart from the conditions for the existence of a
self-sustained solution in the �rst place, the coupling constant C does not play
a role in the stability analysis, since by a simple scaling we can rephrase the
bound on the eigenvalues independently of it

ν = σC ∈ [−C,C]↔ σ ∈ [−1, 1] (2.14)

Since for a stochastic matrix the spectrum is bound to lie in [−1, 1], and
since A is stochastic, we conclude that the only possible eigenspaces along
which non vanishing perturbations to the synchronous state can arise, are those
associated to the eigenvalues −1, and 1 corresponding to the boundary of the
negative region.

By construction, the eigenspace associated to 1 is spanned by 1N , and is
therefore associated to perturbations along the completely synchronous dy-
namics. Therefore, the only perturbations transversal to complete synchrony,
are those along the −1 eigenspace. With this analysis, therefore, we have as-
certained that if the connectivity matrix is row-stochastic, the completely syn-
chronous solution is always stable, except for perturbations along the eigenspace
associated to eigenvalue −1. In the following section, we will see under which
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2.3. Destabilising synchrony

conditions this eigenspace exists, and how we can introduce it by modifying
iteratively the network.

2.3 Destabilising synchrony

Since we are considering an undirected network, we can write di =
∑N

j=1Aij ,
as the in and out degree of each node coincide. We can also build D =
diag {d1, . . . , dN}, the so called degree matrix. With this notation introduced,
A can be written asA = D−1A. One notices immediately that de�ning LRW =
I−D−1A, the random-walk-normalised Laplacian, one has [A, LRW ] = 0, and
denoting the sorted spectrum ofA as {σi}1≤i≤N , and that of LRW as {λi}1≤i≤N ,
one has

σi = 1− λN−i+1 (2.15)

from which we deduce that σ1 = −1 ⇐⇒ λN = 2. As we stated previously,
in Theorem 1.2.2, λN = 2 if and only if the graph is bipartite.

This fact, together with the results from the previous section, guarantees
that the only networks on which a neutrally stable perturbation transversal to
complete synchrony can arise, are bipartite.

Let us consider a bipartite graph, composed of partitions P and Q. The
bipartition condition implies that there exist 1P and 1Q, such that

A1P = 1Q A1Q = 1P 1P + 1Q = 1N

1P =
1

2
(1N + a1) 1Q =

1

2
(1N − a1)

(2.16)

where by A we denote the unit-row sum connectivity matrix corresponding
to the bipartite structure, and with a1 its eigenvector associated to the smallest
eigenvalue, which in this case is −1. It can be seen in simulations that bipartite
architectures can support bipartite solutions, i.e. solutions where two partitions
�re in an alternating fashion. We can search for them by adapting the self-
consistent strategy. Up to a permutation of node labels these solutions can be
written as

u1(t) = . . . = un(t) = uP (t) un+1(t) = . . . = uN(t) = uQ(t)

v1(t) = . . . = vn(t) = uP (t) vn+1(t) = . . . = vN(t) = vQ(t)
(2.17)

if we take P and Q to contain n and N − n nodes each. Inserting these condi-
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tions in the dynamics we obtain

1P ⊗
(
εu̇P (t)
v̇P (t)

)
+ 1Q ⊗

(
εu̇Q(t)
v̇Q(t)

)
=

= 1P ⊗

uP (t)− u3P (t)

3
− vP (t)

uP (t) + a

+ 1Q ⊗

uQ(t)−
u3Q(t)

3
− vQ(t)

uQ(t) + a

+

+ C (A⊗H)

(
1P ⊗

(
uP (t− τ)
vP (t− τ)

)
+ 1Q ⊗

(
uQ(t− τ)
vQ(t− τ)

))
+

− C (IN ⊗H)

(
1P ⊗

(
uP (t)
vP (t)

)
+ 1Q ⊗

(
uQ(t)
vQ(t)

))
(2.18)

By using (2.16) we can remove A from the expression

1P ⊗
(
εu̇P (t)
v̇P (t)

)
+ 1Q ⊗

(
εu̇Q(t)
v̇Q(t)

)
=

= 1P ⊗

uP (t)− u3P (t)

3
− vP (t)

uP (t) + a

+ 1Q ⊗

uQ(t)−
u3Q(t)

3
− vQ(t)

uQ(t) + a

+

+ C (IN ⊗H)

(
1Q ⊗

(
uP (t− τ)− uQ(t)
vP (t− τ)− vQ(t)

)
+ 1P ⊗

(
uQ(t− τ)− uP (t)
vQ(t− τ)− vP (t)

))
(2.19)

and therefore, by using the structural properties of the network, we are again
able to reduce the dimensionality of the problem, this time to a 2 × 2 dimen-
sional problem, where each system acts as a forcing term upon the other.

εu̇P (t) = uP (t)− u3P (t)

3
− vP (t) + C (uQ(t− τ)− uP (t))

v̇P (t) = uP (t) + a

εu̇Q(t) = uQ(t)−
u3Q(t)

3
− vQ(t) + C (uP (t− τ)− uQ(t))

v̇Q(t) = uQ(t) + a

(2.20)

The stability analysis of a bipartite synchronous state can be performed as
well in the Master Stability Function framework. The adaptation of the Master
Stability Function approach to multipartite synchrony is presented in [Leh16],
to which the interested reader is invited to refer for full detail, and it exploits the
o�-diagonal block structure of multipartite architectures to �nd a basis change
that can cast the evolution equation for the perturbations in a diagonal form,
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2.3. Destabilising synchrony

Figure 2.3.1: Master Stability Function for the bipartite solution. The param-
eters used in the simulation were ε = 0.01, a = 1.3, τ = 1, C = 1.

so to obtain an analogous result to what we have shown for the simpler case
of complete synchronisation. The Master Stability Equation for the bipartite
stable state is 2× 2 dimensional, and reads

εδu̇P (t) =
(
1− u2P (t)

)
δuP (t)− δvP (t) + ν (δuQ(t− τ)− δuP (t))

δv̇P (t) = δuP (t)

εδu̇Q(t) =
(
1− u2Q(t)

)
δuQ(t)− δvQ(t) + ν (δuP (t− τ)− δuQ(t))

δv̇Q(t) = δuQ(t)

(2.21)

As in the previous case ν = Cσi takes in principle the value of the scaled
eigenvalues of A, but can be used to study the equation parametrically, so to
build a Master Stability Function. We proceed in analogy to the previous case,
and study the maximum Lyapunov exponent of the zero solution of Equation
(2.21), thus building another Master Stability Function, ΛB(ν) for the stability
of bipartite synchrony. The resulting function, obtained via numerical simula-
tion, with analogous methods to those employed for complete synchronisation,
is presented in Figure 2.3.1.
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2.4. Spectral Centrality

The simulation shows clearly that the Lyapunov exponent is negative within
the whole interval [−1, 1], within which the spectrum of the coupling matrix
must fall, on grounds of stochasticity. We can therefore state that the bipar-
tite state is always attractive on a bipartite network, within this normalisation
scheme. With these results in mind, it appears clear that within this scheme,
the only way to destabilise complete synchrony, without fully removing neural
activity, is to reroute the connections in such a way to move the architecture
towards a bipartite network.

To this end, we develop an algorithm, based on a slight adaptation of a
Spectral Centrality measure.

2.4 Spectral Centrality
In [PR12], the measure of k-spectral centrality is introduced. It aims to quan-
tify the impact that the removal of a graph subset B has on the k-th smallest
Laplacian eigenvalue. This is proposed as a centrality measure, due to the rel-
evant properties of the Laplacian in di�usion processes on networks, and to
the rich algebraic characterisation of the network that can be performed via its
spectrum. Let us denote A the adjacency matrix before removal, A′ the adja-
cency matrix after the removal of B, L the Laplacian before the removal of the
set under study, and L′ the Laplacian after removal. We also set ∆A = A′−A,
∆L = L′ − L.

Consider the network before removal, with adjacency matrix A, being de-
formed continuously on the set B, with the strength of the deformation being
controlled by the continuous parameter ε. Its Laplacian reads

L(ε) = εL′ + (1− ε)L = L+ ε∆L ε ∈ [0, 1] (2.22)

Let λk (ε) represent the k-th smallest Laplacian eigenvalue. The k-th spectral
centrality of the set B is de�ned as

skB =

∣∣∣∣∂λk(ε)∂ε

∣∣∣∣
ε=0

(2.23)

We show that we can link this expression to a perturbative correction to low-
est order. First we state a known fact about the derivative of an eigenvalue
w.r.t. a parameter [see e.g. Lax07, p. 134]. Consider a square matrix func-
tion M (ε), di�erentiable in ε. Let it admit an eigenvalue m(ε) associated to
the right eigenvector ~u(ε) and to the left eigenvector ~v(ε). Excluding cases
of eigenvalue coalescence or splitting, the derivative of m with respect to the
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parameter ε is given by

ṁ(ε) =
~v(ε) · Ṁ(ε)~u(ε)

~v(ε) · ~u(ε)
(2.24)

where we have denoted by the dot the derivative with respect to the parameter.
The k-Spectral Centrality being de�ned as |λ̇k(0)|, we can apply the previous
formula to the Laplacian to calculate it

λ̇(0) =
~vk(0) · L̇(0)~vk(0)

~vk(0) · ~vk(0)

=
1

|~vk|2
~vk ·

∂

∂ε
(εL′ + (1− ε)L)

∣∣
ε=0
~vk (2.25)

=
~vk · (L′ − L)~vk

|~vk|2
≡ ~vk ·∆L~vk

|~vk|2

where, in the second and third line, we call for brevity ~vk(0) = ~vk. By tak-
ing the absolute value one gets skB. In this sense, therefore, we can write the
expression for Spectral Centrality as we would write the lowest order pertur-
bative correction given by the operator ∆L, corresponding to the �nite change
underwent by the Laplacian because of the removal of the graph subset B from
the network.

2.5 Constrained Spectral Centrality
We want to use the notion of Spectral Centrality, albeit without taking the ab-
solute value, in order to algorithmically select which links to cut in the network,
so to move the structure the closest to a bipartite graph, possibly reaching ex-
actly one.
Therefore, we have to modify slightly the previous de�nition. Indeed, in order
to remain within the same normalisation scheme as the network is modi�ed, we
must take into account only network modi�cations that preserve the unit-row-
sum condition on A, and work with the random-walk normalised Laplacian.
Consider an undirected weighted graph of N nodes without self-loops, with
adjacency structure speci�ed by the N × N matrix A. Let us consider sepa-
rately the matrix W of weights associated to each edge, Wij = 1

di
if Aij = 1,

which full�lls a unit-row-sum constraint
∑

jWij = 1 by construction. The
normalised Laplacian can be written directly as

LRW = I −W ◦ A = I −D−1A = I −A (2.26)
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with ◦ denoting the Hadamard product. The separation of A = W ◦ A has
been made for ease of use in the calculations.

We consider the e�ect of the removal of edge (l,m) from the graph, on
the k-th eigenvalue. Since we want to preserve the unit-row-sum condition of
A, we need to choose a weight rerouting policy to apply when cutting an edge.
In the following we will consider an even redistribution among the remaining
links. This means that after cutting link (l,m) we set Alm = Aml = 0 in the
adjacency matrix and Wlm = Wml = 0 in the weight matrix, but we also add
a contribution Wlm

dl−1
to all remaining nonzero entries in row l of W , and anal-

ogously a contribution Wml

dm−1 to the nonzero entries in row m, where by di we
mean the degree of node i before the cut.
Therefore, the matrix elements after the cut and the weight rerouting read

A′ij = Aij (1− δilδjm − δimδjl) (2.27)

W ′
ij = Wij (1− δil − δim) + δil (1− δjm)

(
Wij +

Wim

di − 1

)
+ (2.28)

+ δim (1− δjl)
(
Wij +

Wil

di − 1

)
(2.29)

To calculate the constrained k-spectral centrality, we can just use the formula in
(2.25). We just have to consider the normalised Laplacian LRW instead of the
regular one, and notice that the variation in LRW amounts to ∆LRW = −∆A,
if we take care to re-normalise the weights after the cut. First we calculate A′,
after the cut

A′ij = [A′ ◦W ′]ij =

= AijWij (1− δil − δim) + Aij

(
Wij +

Wim

di − 1

)
(δil − δilδjm) (2.30)

+ Aij

(
Wij +

Wil

di − 1

)
(δim − δimδjl)

By subtracting A we readily obtain the �nite variation of the connectivity ma-
trix, which is equal to minus the variation of the normalised Laplacian.

∆A = A′ −A = −∆LRW (2.31)

∆Aij = − (δil + δim)AijWij + Aij

(
Wij +

Wim

di − 1

)
(δil − δilδjm) (2.32)

+ Aij

(
Wij +

Wil

di − 1

)
(δim − δimδjl)
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We have seen that the expression for k-spectral centrality can be led back to
the perturbative expression for the change to the k-th eigenvalue

λ̇k (0) = ∆λk =
~vk ·∆L~vk
|~vk|2

(2.33)

We set out to evaluate the adapted version of quantity, dropping the index k in
the following for ease of notation, and understanding that ~v, ~u and λ are respec-
tively the left eigenvector, the right eigenvector and their common eigenvalue2.

∆λ = −~v · A~u
~v · ~u

= (2.34)

=
Alm
~v · ~u

[
dl

dl − 1
Wlmvlum +

dm
dm − 1

Wmlvmul

]
+ (2.35)

−
∑
j

[
vlWlm

dl − 1
Alj +

vmWml

dm − 1
Amj

]
uj
~v · ~u

(2.36)

Now, substituting Wlm = 1
dl

and Wml = 1
dm

we obtain the expression for the
signed spectral centrality of edge (l,m).

λ̇(0) =
1

~v · ~u

[
(λ− 1) vlul + vlum

dl − 1
+

(λ− 1) vmum + vmul
dm − 1

]
(2.37)

an analogous expression to the one found in [He+19], in a slighty di�erent
context. This expression allows us to estimate, to lowest perturbative order,
the impact that removal of link (l,m), with a subsequent re-normalisation of
coupling strenghts, will have on the eigenvalue λ of the normalised Laplacian
spectrum.

2.6 Bipartitioning algorithm
The aim of our algorithm is to select and cut links progressively from a graph,
in order to obtain a bipartite network. In doing so, the weights are renormalised
so to maintain the unit-row-sum condition on A. An important caveat in this
operation, is to avoid disconnecting the graph. The algorithm proceeds itera-
tively. The evaluation of the most favourable links to cut is performed by using
the signed spectral centrality expression in (2.37). The expression is used to

2The random-walk normalisation breaks the explicit symmetry of the Laplacian, and there-
fore one must account for di�erent left and right eigenvectors, even if each right eigenvector
di�ers from its left counterpart only by a multiplication by D, the degree matrix, and the
spectrum remains real.
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select a list of links which would contribute by moving λN towards 2. This
list is then sorted, and starting from the largest contributing edge, the graph is
checked for connectedness upon removal of said edge. If the graph remains
connected, the removal is accepted, and a new iteration of perturbative calcu-
lations begins with the updated graph. Otherwise, the move is rejected, and
the candidate with the next largest contribution is considered. These steps are
repeated until λN is closer than a given tolerance tol, initialised by default to
10−6, to the value 2. This tolerance has been introduced to account for �nite
precision e�ects, but in general we observed that it was not necessary, as once
the network is bipartite, λN = 2 is correct to a very high precision. Errors are
raised if no link gives a positive contribution to λN or if no candidate link can
be removed without disconnecting the graph. A pseudocode describing the
algorithm in detail is given in Algorithm 1, in Appendix C.

The algorithm has been implemented in Python, using the networkxmod-
ule [HSS08] in order to handle networks. In particular, the connectedness
check has been implemented via the networkx.is_connected function, which
implements an optimised combinatorial algorithm, since during development,
the usage of an algebraic indicator, such as the Fiedler value, has proved hard
to balance correctly within a cost function.

2.7 Algorithm testing
To test the algorithm we generate networks according to three di�erent ran-
dom models, and verify that within the chosen normalisation scheme, they
all synchronise. Then we apply the bipartition algorithm, and check that, for
the same con�guration of initial stimuli, the network evolves instead towards
a bipartite stable state. The initial impulse is administered in one every four
neurons. The impulse has the shape of a sharp Gaussian, with σ = 0.025 and
amplitude A = 2. The dynamical parameters used in all simulations are τ = 1,
ε = 0.01, a = 1.3 and C = 0.6125. The value has been chosen to be close
to C∗(1) ≈ 0.6125, the critical point for τ = 1. The simulations have been
done using Python driver programs. All the numerical integrations have been
performed using the RADAR5 algorithm [GH05], about which some details be
found in Appendix C, via its Python interface pyradar5, and the network han-
dling has been performed using networkx. Due to the computational cost of
simulation, the size of the networks has been limited to 50 nodes in this phase.

Erdős-Renyi network An undirected Erdős-Renyi network [ER59] with 50
nodes has been generated, with linking probability p = 0.25, ending up with
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301 edges. The simulations respectively before and after applying the algo-
rithm are presented in Figures 2.7.1 and 2.7.2. The Figures show the time
series for the u variable for each of the neurons in the network. In Figure
2.7.1 the system evolves immediately towards complete synchrony, whereas
in Figure 2.37 the sytem evolves towards a bipartite stable state.

Watts-Strogatz network An undirectedWatts-Strogatz network [WS98] with
50 nodes has been generated, with k = 4 nearest neighbours per node, thus to-
talling 100 edges, and rewiring probability p = 0.25. The simulations respec-
tively before and after applying the algorithm are presented in Figures 2.7.3
and 2.7.4. In Figure 2.7.3 we see that the onset of complete synchrony is
somewhat slower than in the Erdős-Renyi case. After applying the algorithm
the system settles towards a bipartite stable state, but also in this case the phe-
nomenon is slower than what we saw in the E-R case, with the remains of some
completely synchronous activity still appearing as under-threshold oscillations
in some neurons, in the last 10 time units in Figure 2.7.4.

Barabási-Albert network An undirected Barabasi-Albert network [BA99] with
50 nodes has been generated, with attachment parameter m = 4. The simu-
lations respectively before and after applying the algorithm are presented in
Figures 2.7.5 and 2.7.6. In Figure 2.7.5 we see that the network quickly set-
tles towards a completely synchronous state. After applying the algorithm the
system tends towards bipartite synchrony, but similarly to what we observed
in the Watts-Strogatz case, there are some transient remains of complete syn-
chrony, in the trace of some neurons.
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Figure 2.7.1: Simulation on the Erdős-Renyi network, before applying the
Bipartition Algorithm: the system evolves towards complete synchrony.

Figure 2.7.2: Simulation on the Erdős-Renyi network, after applying the Bi-
partition Algorithm: the system evolves towards bipartite synchrony.
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Figure 2.7.3: Simulation on the Watts-Strogatz network, before applying the
Bipartition Algorithm: the system evolves towards complete synchrony.

Figure 2.7.4: Simulation on the Watts-Strogatz network, after applying the
Bipartition Algorithm: the system evolves towards bipartite synchrony.
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Figure 2.7.5: Simulation on the Barabasi-Albert network, before applying the
Bipartition Algorithm: the system evolves towards complete synchrony.

Figure 2.7.6: Simulation on the Barabasi-Albert network, after applying the
Bipartition Algorithm: the system evolves towards bipartite synchrony.
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2.8 Robustness of the main random network archi-
tectures

Having looked at the e�ects on the dynamics of our bipartition procedure, it
is useful and interesting to look at how the various network architectures are
modi�ed in themselves by algorithm. This consideration can be highly infor-
mative since it tells us, indirectly, which features of a network aremore sensitive
to bipartition using this algorithm. In other words, it tells us whether the algo-
rithm reasonably preserves the initial structure, or if it destroys it. To test how
much the e�ects on the observables are related to the aimed nature of the re-
movals operated by the algorithm, we compare their variation in the bipartition
process with the one observed for a randomised removal of the same amount
of edges. The randomised removal is performed taking care not to disconnect
the network in the process. A relevant observable in the following analysis will
be the Average Shortest Path Length (ASPL), that is the average of the lengths
of all the shortest paths connecting distinct pairs of nodes on the network.

Erdős-Renyi network We �rst test the algorithm on the simplest random
network architecture. We consider an instance of Erdős-Renyi network with
100 nodes, with attachment probability p = 0.25. We apply the algorithm,
which removes 458 links, out of the initial 1210. To assess the measure to
which the network structure has been a�ected, we look at the degree distribu-
tion before and after applying the algorithm, Figure 2.8.1. The distribution
appears peaked around a lower value, as is attested by the mean degree, that
decreases from 24.2 to 15.043. The sample standard deviation decreases as well
from 3.7 to 3.2, showing a closer spread of the degrees in the bipartite network.
The average shortest path length (ASPL) increases slightly, from 1.76 to 2.21, as
one would expect, since before bipartition, the network contains intra-partition
links that act as shortcuts, with respect to the bipartite con�guration, and that
are removed, by de�nition, by the bipartitition algorithm. To test how much
the aimed removal of the bipartition process a�ects these observables, we eval-
uate them for a randomised removal of the same number of edges as those
removed by the algorithm. We obtain a mean degree of 15.0 ± 3.43, and an
ASPL of 1.94. The evidence considered points to the fact that the Erdős-Renyi
network structure is modi�ed but not entirely destroyed by the bipartition pro-
cess.

3Both in the algorithmic and in the randomised removal, the decrease of the average degree
amounts to ≈ 38%, a value close to the percentage of removed links.
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Figure 2.8.1: Degree distribution before and after application of the biparti-
tion algorithm. The initial network is an Erdős-Renyi graph with 100 nodes
and 1210 edges, the �nal network having 752 remaining edges. The histogram
contains 20 bins from 0 to 40.
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Figure 2.8.2: Degree distribution before and after application of the biparti-
tion algorithm. The initial network is a Watts-Strogatz graph with 100 nodes
and 200 edges, the �nal network having 102 remaining edges. The histogram
contains 10 bins, from 0 to 10.

Watts-Strogatz network We test the algorithm on a Watts-Strogatz network
as well, to test the robustness of small-world property against the bipartition
algorithm. The sample network we consider has 100 nodes and 200 edges,
built with an initial nearest-neighbour coordination number of 4, and with a
rewiring probability of p = 0.25. The bipartition algorithm removes 98 edges.
By looking at the degree distributions before and after bipartition, Figure 2.8.2,
we notice here as well a diminished average degree connectivity, from 4 to 2.04,
and a sharper nature of the distribution peak, as noticeable from the sample
standard deviation, which changes from 0.99 to 0.40. The Average Shortest
Path length is a very relevant observable for this class of random graphs, since
a small average shortest path length is part of the de�nition of the small-world
property. In the numerical experiment,we observe a dramatic increase in the
average shortest path length, which amounts to 3.98 before bipartition, and to
32.35 after applying the algorithm. If we compare again these values with those
obtained by removing an equal number of edges at random, we observe that the
average degree 2.040±0.916 is analogous to that obtained via bipartition, albeit
with a larger spread of values, while the ASPL, evaluated to be 9.51, is larger
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2.8. Robustness of the main random network architectures

Figure 2.8.3: Visualisation of the bipartite graph obtained from the Watts-
Strogatz network. Notice the chain-like structure, with occasional branching
points, and small cycles of four nodes at the extremities.

than its initial value, but has not increased as dramatically. These numbers
hint to a destruction of the small world property as a result of the application
of the algorithm, and indeed, if we visualise the �nal graph bymeans of a force-
directed network visualisation algorithm [KK89], we obtain Figure 2.8.3.

The network structure appears to become chain-like, with a small number
of branching points. At some of the extremities of the structure, such as at the
inferior right and superior left corner of Figure 2.8.3, we observe the pres-
ence of closed cycles of length 4. This has been a common feature in all the
bipartition runs we have performed starting from Watts-Strogatz graphs. A
dynamical interpretation can be attempted for their appearance. Indeed these
structures are able to produce a self sustained bipartite oscillation pattern. A
single cycle of length four is in fact a bipartite structure: if we arrange the cycle
as a square we can consider as partitions the two pairs of opposing corners, the
self-sustained bipartite oscillation consists of an alternate �ring of these two
pairs. In the context of a chain, these structure play the role of pacemakers
and of self-sustained spike producers, that are able to send action potentials
inde�nitely and continuously along the chain.
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2.8. Robustness of the main random network architectures

Barabási-Albert network Finally, we test the algorithm on a Barabási-Albert
network. This network model has been designed to display the scale free prop-
erty, that corresponds to a power-law degree distribution. The Barabási-Albert
model attains this degree distribution as the result of a preferential attachment
growing process. The process begins from an undirected network ofm0 nodes.
For each step, a node is added to the network, and connected to m ≤ m0 pre-
existing nodes. Node i is selected to be one of the m nodes with a probability

P(i) =
di∑
j dj

so that nodes with high degree are more likely to increase their connectiv-
ity even more, while poorly connected nodes are unlikely to gain a signi�cant
amount of new connections. This is the preferential attachment building rule
which generates the scale-free behaviour. In particular for the Barabási-Albert
model, the degree distribution follows a power law with exponent −3.

P(d) ∼ d−3

For our numerical experiment we consider a Barabási-Albert network of
100 nodes, built with a value of m = 4. The network initially contains 384
edges, containing only 105 after bipartition. The degree distribution before and
after the algorithm application is presented in Figure 2.8.4. By looking at the
initial distribution, the blue histogram in Figure 2.8.4, we observe the typical
shape of a power-law, with a right tail that becomes thin but non-vanishing
for high degrees. Conversely, we observe that the degree distribution for the
resulting bipartite graph is sharply peaked on d = 2. Similarly to the previous
Watts-Strogatz case, the Average Shortest Path Length increases from 2.35 to
32.4 in the bipartition process, while, under random removal of edges, it only
grows as large as 6.87. These observations are su�cient to suppose that the
scale-free nature of the network is destroyed in the bipartition process. In fact,
if we visualise the bipartite network obtained from the Barabási-Albert model,
we obtain Figure 2.8.5 analogously to the Watts-Strogatz case, the original
scale-free structure has been completely destroyed. The graph looks like a
chain with some branching points. At the upper right corner of the image, we
can observe a cluster, of cycles of length 4. The cycles are intertwined so that
no cycle of odd length is created. This observation is in accord with previous
observations, such as in [Kan+11], that the only multipartite synchronies that
can arise on a network, are those which are made up of a number of clusters
equal to the Greatest Common Divisor of the length of the network loops.

We perform the mentioned tests on ten network instances for each of the
threemodels, so to reduce the impact of �uctuations in the previously discussed

49



2.8. Robustness of the main random network architectures

Figure 2.8.4: Degree distribution before and after application of the bipartition
algorithm. The initial network is a Barabási-Albert graph with 100 nodes and
384 edges, the �nal bipartite network has 105 edges. The histogram contains
30 bins from 0 to 30.
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2.8. Robustness of the main random network architectures

Figure 2.8.5: Force-directed visualisation of the bipartite graph obtained from
a Barabási-Albert graph. Similarly to the Watts-Strogatz case, the original
structure is largely destroyed, and the network structure can be described in
terms of a chain with branching points.
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Network type ninitial nbipartite ASPLinitial ASPLbipartite ASPLrandom

Erdős-Renyi 1232± 27 474± 24 1.752± 0.006 2.200± 0.013 1.932± 0.25
Watts-Strogatz 200 97.6± 1.2 3.929± 0.075 29.824± 2.255 10.472± 1.209
Barabási-Albert 384 280± 3.7 2.374± 0.017 32.431± 1.193 7.114± 1.578

Table 2.1: Statistics for the mentioned observables, over a sample of ten net-
works for each network type. Values are expressed as mean± sample standard
deviation. ASPLinitial, ASPLbipartite and ASPLrandom indicate respectively
the initial Average Shortest Path Length, its value after bipartition and its value
after randomised removals. ninitial and nbipartite represent the number of edges
before and after bipartition. Notice that ninitial has no uncertainty for theW-S
and B-A models, since the number of links is fully determined by the con-
structive properties.

observations. The results are presented in Table 2.1, and are in accord with the
evidence just presented for single network instances. The bipartition process
causes an increase of the Average Shortest Path Length, which for the Erdős-
Renyi network is comparable to the one caused by randomised removals, while
for the Watts-Strogatz and Barabási-Albert models it is considerably larger.

2.9 Chapter summary and concluding remarks
From the analysis presented in this chapter, we are able to conclude the fol-
lowing:

• In the in-degree-normalised scheme, the completely synchronous dy-
namics is always stable, unless the underlying network is bipartite.

• In such a case, the stable state for the collective dynamics is a bipartite
one, where two clusters �re in an alternating manner.

• If the network is bipartite, the partitions, i.e. the clusters of simultane-
ously �ring neurons, are those identi�ed by the vectors

1P =
1

2
(1N + a1) 1Q =

1

2
(1N − a1)

in the sense that node i belongs to partition P if the i-th entry of 1P is
non zero, to Q if the i-th entry of 1Q is non zero.

• Given an undirected network, we can make it bipartite by applying the
algorithm described in Section 2.6 and Appendix D, which acts by select-
ing edges via perturbative calculus and removing them until the network
becomes bipartite.
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2.9. Chapter summary and concluding remarks

• The algorithm tends to destroy the small-world and scale-free properties,
on the tested random models, while it does not a�ect much the structure
of Erdős-Renyi networks.

• The possibility of introducing multipartite states with more than two
components, e.g. by moving the second-largest Laplacian eigenvalue to-
wards 2 as well, while keeping the network connected is ruled out by The-
orem 1.2.3. Indeed, once the network is bipartite the Laplacian spectrum
is symmetrical w.r.t. 1, so any structural change that drives the second-
largest eigenvalue to 2, simultaneously has the Fiedler value collapse to
0, thus disconnecting the graph.

• Since the transition from a completely synchronous to a bipartite syn-
chronous state can be essentially regarded as a perioud-doubling dynam-
ical transition, the previous conclusion also rules out the possibility of a
period-doubling route to chaos being attained via network modi�cation.

A number of questions arise from what we have just presented. A natural one
would be, for example, to consider the optimality of the Bipartition algorithm,
investigating how the number of removed links scales with the size of the net-
work, and how it depends on the initial network structure. Does the algorithm
cut the minimal set of links that have to be removed in order to make the net-
work bipartite, or considering other strategies (e.g. considering the cutting of
several edges at a time) could it do better? As we have seen, moreover, the
algorithm tends to destroy the scale-free or small-world properties of a net-
work, another interesting continuation would be to look at speci�c strategies
that could preserve these network features. Finally, the application to directed
networks, with the necessary modi�cations to the algorithm is another topic
worthy of exploration.
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Chapter 3

Synchronisation phenomena in the
out-degree normalised scheme

The picture is quite di�erent when one considers the out-degree normalisa-
tion scheme. Indeed in this case A enjoys a unit-column-sum condition, and
therefore, does not admit 1N as a right eigenvector any longer. Nonetheless,
we still work self-consistently, even if it will become immediately evident that
this approach can only be an approximation.

3.1 Self-consistent approach
Let us recall the dynamical equations for the system.

εu̇i(t) = ui(t)−
u3i (t)

3
− vi(t) + C

N∑
j=1

Aij [uj (t− τ)− ui (t)]

v̇i(t) = ui(t) + a

(3.1)

where now A = AD−1 is normalised on the right, i.e. by columns. We pro-
ceed to insert the usual self-consistent hypothesis, that at synchrony all neurons
evolve along the same trajectory over time

u1(t) = u2(t) = . . . = uN(t) ≡ us(t), v1(t) = v2(t) = . . . = vN(t) ≡ vs(t)
(3.2)

into the equation, thus obtaining, for each node

εu̇s(t) = us(t)−
u3s(t)

3
− vs(t) + CFi [us (t− τ)− us (t)]

v̇s(t) = us(t) + a
(3.3)
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The approximate nature of this approach is immediately highlighted by an
absurd: the self-consistent hypothesis implies that the self-consistent solution
will be di�erent for each node. This is dictated by the presence of the Fi, which
we name the self-consistent factor, that taking into account the normalisation
scheme amounts to

Fi =
∑
j

Aij =
∑
j∼i

1

dj
(3.4)

where by j ∼ i we mean that j is running over the set of nodes which are
adjacent to node i. It is the sum of the weights of all the incoming links. From
an e�ective point of view, it determines a scaling of the coupling intensity felt
by node i. It is on this consideration that we base our approach.

The idea that justi�es this approach, is that considering neuronal synchrony,
we are interested only in the simultaneous �ring of the units, i.e. simultaneous
above-threshold activity, and not about the magnitude of such activity, as long
as it is above-threshold. Within this approximation, therefore, we expect that
the onset of the fully synchronised phase will be related to the number of nodes
for which FiC > C∗(τ). We will be able to consider this result as an upper
bound on the minimal coupling strength for synchronisation.

3.2 Example on a small graph
Let us consider, as an example, the small undirected network in Figure 3.2.1,
where the edge weights are understood to be those established by the out-
degree-normalisation scheme. Nodes 0 through 5 have degree 5, and nodes
6 through 11 have degree 3. This yields a self-consistent factor of

Fi =


17

15
if 0 ≤ i ≤ 5

13

15
if 6 ≤ i ≤ 11

(3.5)

Therefore the most connected nodes are favoured to sustain a synchronous so-
lution, as the e�ective value of the coupling constant they perceive is ampli�ed
by a 17

15
factor. In this sense, we expect the center ring to be able to support

self-sustained �ring around the value of 15
17
C∗(τ).

We simulate the system, with parameters τ = 1, ε = 0.01, a = 1.3, varying
C. To center our analysis around the value C∗(τ) we introduce the value

r =
C

C∗(τ)
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3.2. Example on a small graph

Figure 3.2.1: Small graph example.

so that the threshold value be �xed at r = 1. For r ≥ 15
17

we observe full
synchronisation throughout the network. As r is lowered, the completely syn-
chronous activity persists, down until r ≈ 0.635, below which self-sustained
activity ceases. These �ndings allow us to highlight another feature of the ap-
proach we have undertaken so far. Within this normalisation scheme the ef-
fects of redundancy provided by the graph structure, are more relevant than
in the previous case. Indeed, a possible explanation for this further lower-
ing of the full synchronisation threshold, could be that as synchronous, largely
self-sustained, clusters emerge within the network, they start exerting on more
peripheric nodes an e�ect more akin to an external forcing, rather than in-
teracting with them in a mutual manner. This hypothesis can be supported
by simulating a driver-peripheral con�guration, studying the peripheral activ-
ity versus the coupling strength. The results in Figure 3.2.2. show that the
one-way coupling threshold for triggering activity in a peripheral neuron is
much lower than the self-coupling value needed for self-sustained activity in
the feedback scheme of Figure 2.1.1. To illustrate the regimes observed on
this small network, we present the network time series for several values of r in
Figures 3.2.3, 3.2.4 and 3.2.5. The initial pulse has been administered on the
nodes with higher-than-average degree, which are the most favoured ones, as
we established with the previous analysis.
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Figure 3.2.2: Plot of peripheral neuron activity versus the driver-peripheral
coupling strength, activity is evaluated as in the case of Figure 2.1.1. In this
simulation, the driver is a FHN neuron with feedback, with parameters τ = 1,
ε = 0.01, a = 1.3, Cfeedback = 1.

Figure 3.2.3: Simulation with r = 0.5. After a very quick transient, all activity
vanishes from the network.
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Figure 3.2.4: Simulation with r = 0.6325. The transient with network activity
becomes longer, lesser connected neurons show bursting e�ects.

Figure 3.2.5: Simulation with r = 15
17
. The network synchronises fully.
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3.3. Mean Field Approximation

3.3 Mean Field Approximation
In random models Fi becomes a random variable, in principle with a compli-
cated distribution. We simplify the treatment of the problem by introducing
a Mean Field Approximation. This implies assuming that each node is con-
nected to a number of other nodes equal to the average degree 〈d〉, neglecting
the connectivity �uctuations that may be present. Due to this approximation,
each term of the sum in the de�nition (3.4), contributes with a �xed amount
1
〈d〉 , and we must consider on average 〈d〉 contributions, thus obtaining a Mean
Field Value for the self-consistent factor F̄ equal to one.

F̄ = 1

Notice that this approach is exact on regular graphs, and we expect it to
work best on models with small connectivity �uctuations, the result progres-
sively worsening as the �uctuations grow more relevant. We proceed to com-
pare the approach with simulations. The dynamical parameters of choice for
simulations will be the usual a = 1.3, ε = 0.01, τ = 1. The initial perturba-
tion provided to initiate activity will be given in the form of Gaussian pulses,
delivered on the nodes with higher than average connectivity.

Erdős-Renyi network We �rst reconstruct the probability distribution of the
Fi by a Monte Carlo approach, calculating it for an E-R network with p = 0.25
and 15000 nodes. We obtain Figure 3.3.1, which shows a peaked distribution
on the mean �eld value F̄ = 1, which, as it is shown in the picture, �ts well
with a Gaussian distribution, providing evidence for a central limit theorem
behaviour, reasonably due to the great average regularity of the Erdős-Renyi
model. We proceed to trace back the Central Limit Theorem behaviour to the
independence of degrees for di�erent nodes.

The degree of each node in an Erdős-Renyi network is independent from
that of other nodes, and by construction it is the result of a success-fail process,
where N − 1 attachment attempts are performed, one for each of the other
nodes. Each attempt succeeds with probability p, or fails with probability q ≡
1−p. As a result, the degree of each node is described by a binomial distribution
with average value (N − 1)p. When treating networks with a large number of
nodes, if the average degree (N − 1)p ≈ Np ≡ µ is kept �xed, the degree
distribution can be approximated in a Poisson form (3.6).

P(d) =
µd

d!
e−µ, d = 0, 1, 2, . . . (3.6)

With these de�nitions in place, the de�nition for the self-consistent factor (3.4),
contains, on average, a sum of µ independent, identically distributed random
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3.3. Mean Field Approximation

variables. By the central limit theorem we know that if each of these variables
has �nite variance, for a large enough number of them the distribution of their
sum is well approximated by a Gaussian. We reasonably expect that the order
of magnitude of the number of terms in the sum be proportional to the average
degree µ of the network, and so we expect this approximation to be better
for large µ. We set out to prove that 1

d
has a �nite mean and variance, when

one considers a large Erdős-Renyi network. In order to avoid divergences,
we restrict the domain of the probability mass function to positive d. Notice
that this restriction is implied by the de�nition (3.4), since no node can have
a neighbour with degree zero, i.e. which has no neighbours in turn.1 This is
equivalent to state that the distribution of 1

d
is conditioned by the event d ≥ 1,

so that we must normalise the previous expression with P(d ≥ 1), obtaining
expression (3.7)

Pc(d) ≡ P(d|d ≥ 1) =
P(d)

P(d ≥ 1)
=

1

1− e−µ
µd

d!
e−µ, d = 1, 2, 3, . . . (3.7)

where the c subscript stands for "connected", meaning that Pc is the probability
mass function for the node degree, provided that the node is connected, we
shall denote expectations taken using this probability mass function as 〈·〉c.

The expression for the mean value reads〈
1

d

〉
c

=
1

1− e−µ
∞∑
d=1

µd

d!

e−µ

d︸ ︷︷ ︸
T1,d

(3.8)

by introducing the ratios R1,d and taking the limit for d→∞

R1,d =

∣∣∣∣T1,d+1

T1,d

∣∣∣∣ =
µ

d

(
1 +

1

d

)−2
−−−→
d→∞

0 (3.9)

we are able to prove the absolute convergence of the series by the D’Alembert
ratio criterion, since the ratio tends to a value lower than 1. We have thus
proved that the average value

〈
1
d

〉
c
is �nite. We move on to the variance, and

observe that the usual relation holds also for the variance of the inverse, (3.10).

Var
[

1

d

]
=

〈(
1

d
−
〈

1

d

〉
c

)2
〉
c

=

〈
1

d2

〉
c

−
〈

1

d

〉2

c

(3.10)

1Erdős-Renyi networks are connected almost surely (with probability 1) if p > (1+ε) log(N)
N .

For �xed largeN , this corresponds to �xing µ > (1+ ε) log(N). For example, the condition is
veri�ed for the graph used to build Figure 3.3.1, since we have 0.25 > log

(
1.5× 104

)
/(1.5×

104) ≈ 6.4× 10−4.
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Since we have just ascertained the �niteness of the mean value of the inverse,
to prove that the variance is �nite we only need to consider the second negative
absolute moment. Its expression reads〈

1

d2

〉
c

=
1

1− e−µ
∞∑
d=1

µd

d!

e−µ

d2︸ ︷︷ ︸
T2,d

(3.11)

we analogously build the ratio, which in the limit yields

R2,d =

∣∣∣∣T2,d+1

T2,d

∣∣∣∣ =
µ

d

(
1 +

1

d

)−3
−−−→
d→∞

0 (3.12)

so that the variance converges as well, by theD’Alembert ratio criterion. There-

Figure 3.3.1: Self-consistent factor distribution for an E-R network with 15000
nodes, p = 0.25. The histogram contains 250 bins from 0.9 to 1.1. The orange
line shows a Gaussian �t.

fore, the Central Limit Theorem applies, and for large networks Fi is dis-
tributed around the Mean Field Value F̄ = 1 according to a Gaussian dis-
tribution. In Appendix E, we are able to obtain a leading order estimate in the
case of large N and large µ as

Fi ∼ F̄ +
G(0, 1)√
Np

= 1 +
G(0, 1)√
Np

(3.13)
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where G(0, 1) is the standard Gaussian random variable of zero mean and unit
variance. This approximation gives an explanation for the very small standard
deviation observed in the �t 2 in Figure 3.3.1. Therefore, for a large network,
the mean value dominates over the �uctuations, and the smaller the resulting
variance, the better the Mean Field Approximation will describe the network
synchronisation.

To test our �ndings we simulate the dynamics on an Erdős-Renyi random
network with N = 50 nodes, and attachment probability p = 0.25. The small
size of the simulated network, in comparison to the one considered in the
Monte Carlo experiment is due to computing power limitations. Nonetheless,
we expect the simulation results to reproduce our �ndings to some degree, even
if at this scale the connectivity �uctuations are still relevant and will alter the
results, with respect to the predictions for large N . What we observe from the
simulation, is that at low r values, Figure 3.3.2, the network does not support
self-sustained activity. As r is increased, a completely synchronised fraction of
nodes emerges, Figure 3.3.3, and by r = 1, the synchronisation is full, all over
the network, Figure 3.3.4. Therefore, for the E-R network, this Mean Field
approach appears to provide a reasonable upper bound for the minimal cou-
pling strength needed to observe synchronisation. Nonetheless, the network
is actually largely synchronised for values as low as r = 0.7, a fact that can
be interpreted as an e�ect of the �uctuations, that on a small network are still
relevant, but also with the observations made in Section 3.2, concerning the
transition from an interaction dynamics, to a driver-peripheral one, once large
enough clusters of the network have synchronised.

Watts-Strogatz network Next, we study the case of a Watts-Strogatz net-
work. As for the E-R case, we build the distribution of Fi numerically, from
a Watts-Strogatz network with 15000 nodes, with constructive parameters of
k = 4 initial nearest neighbours per node and p = 0.25 rewiring probabil-
ity. The distribution, Figure 3.3.5, is still peaked around 1, but has two larger
tails, compared to the previous case. These facts hint at a reasonably sound
prediction of the transition in terms of the Mean Field Approximation, albeit
probably worse than in the Erdős-Renyi case due to the larger spread of the
Fi distribution. As we did previously we simulate a network with the same
constructive parameters k = 4 and p = 0.25, but with a reduced number of
nodes N = 50 due to computing limitations. This time as well, we expect the
simulation to qualitatively reproduce the behaviour hinted at by the numeri-
cally reconstructed distribution, albeit su�ering from the drawbacks of a very

2For comparison
1√

15000 · 0.25
≈ 0.016, which is reasonably close to the observed 0.014.
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Figure 3.3.2: Activity plot for the E-R network at r = 0.5.

small system size. The simulations show a picture similar to the E-R one, but
with slight di�erences. For r as low as 0.5, no activity can sustain itself over
the network, Figure 3.3.6. As r grows, some portions of the network start to
synchronise, Figure 3.3.7, although at a smaller rate than in the Erdős-Renyi
case. As we reach r = 1, the synchrony is full, Figure 3.3.8.

Barabási-Albert network Finally, we consider a Barabási-Albert network. As
for the previous cases, we build the distribution of Fi numerically, from a
Barabási-Albert network with 15000 nodes, with attachment parameterm = 4.
This time, as we expect, the distribution, in Figure 3.3.9 is strikingly di�erent
from both of the previous cases. The histogram shows a peak below the mean
�eld value F̄ = 1, and a power-law tail, degrading above 1. This is not unex-
pected, as a favourable self-consistent factor (Fi < 1) arises for a high-degree
node, when it is connected to many lower-degree nodes, a condition that is
realised for only a few of the nodes in a B-A model, most of them being con-
nected to nodes with degrees higher than their own, due to the preferential at-
tachment dynamics present in themodel growth process. Moreover, we cannot
expect a Central Limit Theorem behaviour to set in, in this case, as the prefer-
ential attachment construction introduces correlation in the node degrees. In
addition to this, even if we were able to consider the degrees of neighbouring
nodes as independent, the power-law behaviour of the degree distribution pre-
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Figure 3.3.3: Activity plot for the E-R network at r = 0.7. Notice e.g. neurons
0 and 1, which are following a bipartite-like trajectory, even though most of the
network is synchronised.

vents the variance from being �nite, thus hindering the possibility of a Central
Limit Theorem approach. All these facts suggest a poor description of the tran-
sition, if it will be present, in terms of the Mean Field Approximation, which
we investigate with simulation on a smaller network. As for the previous cases
we simulate the neuronal dynamics on a network with N = 50 nodes and at-
tachment parameter m = 4. In analogy to the previously tested models, we
expect the smaller network simulation to bear at least some resemblance to the
behaviour we would observe on a larger one, of a size comparable to the one
used in the Monte Carlo reconstruction. The simulations, indeed, show a very
di�erent scenario with respect to the other cases. For r = 0.5 we have no self-
sustained activity, as in the previous cases, Figure 3.3.10. This time, though,
even if we raise r to the mean �eld value r = F̄ = 1 we cannot bring the
network to synchronise, Figure 3.3.11, but only obtain some scattered, non-
synchronised activity. If we try to increase r above the F̄ value, e.g. to r = 1.5,
activity ceases again, Figure 3.3.12. This could be understood in terms of the
phenomenon we observed also in the single neuron with feedback case, in Fig-
ure 2.1.1, where a too intense coupling makes the system almost insensitive to
external stimuli.
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Figure 3.3.4: Activity plot for the E-R network at r = 1.0. Synchronisation is
full, all over the network.
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Figure 3.3.5: Self-consistent factor distribution for a Watts-Strogatz network
with 15000 nodes, k = 4, p = 0.25. The histogram contains 50 bins from 0 to
3.

Figure 3.3.6: Activity plot for the Watts-Strogatz network at r = 0.5.
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Figure 3.3.7: Activity plot for the Watts-Strogatz network at r = 0.75. Com-
pared to the E-R case of similar value (Figure 3.3.3), we see that smaller por-
tions of the network have synchronised.

Figure 3.3.8: Activity plot for the Watts-Strogatz network at r = 1.0. The
network is fully synchronised.
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Figure 3.3.9: Self-consistent factor distribution for a Barabási-Albert network
with 15000 nodes, m = 4. The histogram contains 100 bins from 0 to 5. The
orange line is a power-law �t on the right tail.

Figure 3.3.10: Activity plot for the Barabási-Albert network at r = 0.5.
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Figure 3.3.11: Activity plot for the Barabási-Albert network at r = 1.

Figure 3.3.12: Activity plot for the Barabási-Albert network at r = 1.5.
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3.4 Chapter summary and concluding remarks
We can summarise the results for this chapter as follows:

• Within the out-degree normalised scheme, it is not possible anymore to
employ the simpler strategies used for the in-degree normalised scheme.

• To try and approach the problem of synchronisation, we work with a
self consistent hypothesis, which, as discussed in Section 3.1, has some
drawbacks, but allows for a �rst understanding of the synchronisation
mechanisms that take place within this normalisation scheme.

• The relevant quantity in this approach is the self consistent factor Fi,
which determines the propensity of node i to enter a possibly existing
synchronous state. In particular, it is observed that the relevant set of
nodes which must be stimulated in order to have activity on the network,
even if not synchronous, is that whose members have an higher than
average Fi.

• A Mean Field approximation can be employed, by hypothesising that
each node connects to 〈d〉 other nodes, thus yielding a self consistent
factor of 1 for each node.

• The quality of this approximation depends on the features of the statisti-
cal distribution of Fi, which can be obtained via a Monte Carlo approach.

• For the Erdős-Renyi model, the Fi distribution �ts well a Gaussian shape,
pointing out a Central Limit Theorem behaviour that can be veri�ed
by checking that the mean and variance of the inverse degree are �nite,
under the Erdős-Renyi hypotheses. To leading order, the distribution is
approximated by

Fi ∼ 1 +
G(0, 1)√
Np

The Mean Field Approximation works well on this architecture, reason-
ably due to the distribution of Fi, even though some threshold-lowering
e�ects can be present, as it is discussed in Section 3.3.

• On theWatts-Strogatz model, we observe a good behaviour of the Mean
Field Approximation, similarly to what is observed for the Erdős-Renyi
model, although with minor di�erences.

• As expected, for the Barabási-Albert model, the situation is largely dif-
ferent. The distribution of Fi has a power law tail, and is indeed peaked

70



3.4. Chapter summary and concluding remarks

below the Mean Field value of 1. In this setting the Mean Field Approxi-
mation fails, and even at large value of the coupling strength, the network
fails to synchronise, displaying only some scattered activity.

This second normalisation scheme presents several promising directions for
future development. A �rst one is the application of this Mean Field Approach
to more realistic networks, for example with a hyerarchical architecture. An-
other interesting feature to study would be to consider the attractivity of the
stable states, so to understand how the attraction basins of synchronised and
desynchronised phases behave for various parameter values. From a compu-
tational point of view, it would be very interesting to run larger size simulations,
so to observe the properties of our approximation in relation to system scaling,
and mitigate the e�ect of �nite size. Finally, from a theoretical standpoint, it
would be important to lay on more rigorous foundations this Mean Field Ap-
proach, and possibly link the study of neuronal synchronisation transitions to
the theory of Phase Transitions and eventually to Out-of-equilibrium Statisti-
cal Mechanics.
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In this dissertation we have analysed the phenomenon of neuronal synchroni-
sation on complex network architectures in two di�erent normalisation schemes.

In Chapter 2 we have dealt with the most studied case of in-degree nor-
malised connections, for which a theory to explain the stability of the syn-
chronous solution already exists, with the aim to understand the conditions
under which it is possible to destabilise a completely synchronous solution.
From previous results on the dynamics of such networks we have been able
to assess that the only self-sustaining alternative to complete synchronisation
is bipartite synchrony, a state where two network partitions �re in an alter-
nating fashion. Fundamental facts from Spectral Graph Theory allow us to
identify the network architectures on which such states can arise with bipartite
networks.

In light of these �ndings we devise an algorithm that by iteratively removing
links from a given network, reduces its structure to a bipartite network. The pe-
culiarity of the algorithm is its usage of matrix perturbation theory, akin to the
time independent perturbation theory of non-relativistic quantum mechanics,
in �nding out which link should be cut at each step, so to obtain a bipartite
network. Moreover, we present a link between this approach and a previously
introduced notion of Spectral Centrality. The algorithm is tested, and it is
shown to be able to destabilise the synchronous state in the three most com-
mon random network architectures. The robustness of the mentioned network
models with respect to the action of the algorithm is tested as well, �nding out
that only the Erdős-Renyi model appears to be able to partially retain its orig-
inal structure, while the Watts-Strogatz and Barabási-Albert models appear to
lose respectively all small-world and scale-free features in the process.

A continuation of this line of work can take di�erent directions. Focusing
on the dynamical aspects, multipartite states could be considered, working with
directed networks. In such a context, the algorithm would have to be adapted
so to deal with a complex spectrum. On the other hand, focusing on the net-
work science and neuroscienti�c contents, it would be interesting to consider
more realistic network architectures, possibly taken from data, so to drive the
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research towards data oriented modelling. Finally, from an algorithmic point
of view, it would be important to try and isolate precisely the network features
that our algorithm tends to destroy, so to understand how it could be improved.
From a physiological point of view, the in-degree normalised scheme corre-
sponds to neurons which assign the same relevance at each of their a�erent
synapses. This is not motivated in principle, and so we proceed to study a
di�erent scheme, where the output of neurons is normalised, so to reproduce
schematically an e�ect of subdivision among the e�erent postsynaptic neurons
of a �xed amount of neurotransmitter.

In Chapter 3 we deal with the less studied case of out-degree normalised
couplings. We put forward a self-consistent approach based on the role of a
self-consistent factor Fi for each node, function of the adjacent edge weights,
in changing the e�ective coupling strength felt by the neurons, and explore its
behaviour and its shortcomings. By analysing with it the synchronisation of a
small hand-built graph, we can state that it is reasonable to consider the thresh-
olds it allows us to �nd as upper bounds on the minimal coupling strength for
collective synchronisation to be able to take place.

Tomove towards larger complex network architectures we formulate aMean
Field Approximation, which approximates Fi with F̄ = 1, its average value.
We expect this approach to perform better on networks with a high degree of
regularity. Here as well we perform tests on the three main random network
architectures. For the Erdős-Renyi model, we �nd that the distribution of F
�ts well a Gaussian centered on F̄ , thus pointing out a Central Limit Theo-
rem behaviour, which can be traced back to the independence of the degrees
of di�erent nodes on an E-R network, and can be recovered analytically in a
leading order approximation. In fact, simulations show a reasonable accord
with the Mean Field Approximation, up to a general reduction of the thresh-
olds which we hypothesize to be due to a transition from amutual interaction to
a driver-peripheral dynamics once large enough synchronised clusters emerge
across the network and to small size e�ects. We �nd a similar accord with
the Mean Field Approximation in the case of the Watts-Strogatz model, as we
would expect due to the underlying lattice structure, albeit without �nding a
Gaussian distribution of the self-consistent factor. Conversely, on a Barabási-
Albert network, we observe a very di�erent scenario. The self-consistent factor
distribution is indeed highly skewed, peaked well-below F̄ , and with a power-
law decaying tail towards high values of Fi. Accordingly to these features, we
observe that the Mean Field Approximation fails, as we are not able to observe
any synchronisation, regardless of the coupling strengths considered.

The second approach presented in this dissertation is perhaps the most
promising for future ampliation. A continuation would entail �rst a solid un-
derstanding of the proposed Mean Field Approximation, especially in terms of
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the scaling properties of the distribution of Fi for the main random network
models. This aspect can be approached both theoretically and numerically, but
a theoretical foundation would prove very useful, possibly linking the proper-
ties of Fi directly to well-de�ned properties of the network (e.g. small-world,
scale-free), so to be able to provide useful results also in experimental settings,
where the generating algorithm behind a given structure is not known. Another
relevant contribution would surely come from the possible treatment of these
models within a Statistical Physics approach, in terms of the analogy between
Delayed Di�erential Equations and Ginzburg-Landau theories that has been
explored, for example, for some tra�c models.
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Physical interpretation of the
Laplacian Matrix

Let us consider a di�usion process taking place on an undirected network, let
Φi be a temperature, de�ned on each network site, and let heat di�use from a
site to the adjacent ones, according to the Newton law of cooling, the equations
for this di�usion process are given by

Φ̇i(t) = −k
N∑
j=1

Aij [Φi(t)− Φj(t)] (A.1)

with k being a constant proportional to the heat transfer coe�cient.

Φ̇i(t) = −k
∑
j

Aij (Φi(t)− Φj(t))

= −k
∑
j

(δijDii − Aij) Φj(t)

= −k
∑
j

LijΦj(t)

where L is the Laplacian matrix, as it has been de�ned in Equation (1.8). If we
write down, for comparison, the heat equation

∂Φ(t,x)

∂t
= ∇2Φ(t,x) (A.2)

we realise immediately that the matrix −L plays the role of the Laplacian on
the network structure, hence the name of Network Laplacian.
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Properties of stochastic matrices

We present here some useful facts about stochastic matrices for usage through-
out this work. We follow the presentation by Gantmacher [Gan59]. We begin
with the de�nition of stochastic matrix.

De�nition B.0.1 (Stochastic matrix). Let M be an n × n matrix with non-
negative real entries,Mij ≥ 0 ∀i, j. Such a matrix is called stochastic if and only
if

n∑
j=1

Mij = 1 ∀i ∈ {1, . . . , n} (B.1)

such a matrix can also be referred to as row-stochastic, so to stress that the
unit-sum condition is on the rows. In the following we shall also consider the
case where, under the same non-negativity constraints, such a condition is set
on the columns, i.e.

n∑
i=1

Mij = 1 ∀j ∈ {1, . . . , n} (B.2)

which will be referred to as a column-stochastic matrix.
First we state a property of row stochastic matrices, that is widely used in

Chapter 2, when the in-degree normalised scheme is studied.

Theorem B.0.1. Let M be an n × n matrix with non-negative entries. M is
row-stochastic if and only if

M1n = 1n 1n = (1, 1, . . . , 1︸ ︷︷ ︸
n times

) (B.3)

so anymatrix with non-negative entries is row-stochastic if and only if it ac-
cepts 1n as a right-eigenvector, with eigenvalue 1. The more relevant theorem,
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that allows us to discuss the stability in general terms whenever the connectivity
matrix is stochastic, is the following.

Theorem B.0.2 (Spectral bound for stochastic matrices). Let M be an n × n
row-stochastic matrix. Let {m1,m2, . . . ,mn = 1} be its spectrum. The follow-
ing holds

|mi| ≤ 1 ∀i ∈ {1, . . . , n} (B.4)

where by | · | we denote the complex modulus.

this theorem states that the whole spectrum of a row stochastic matrix is
contained within the unit circle in the complex plane. We use this fact in the
present work, to study the stability of the completely synchronous state, and
characterise the possible synchrony-breaking perturbations. Moreover, notice
that this result remains true for column-stochastic matrices, due to the fact
that for any square matrix, A and AT share the same spectrum, even though
the leading eigenvalue 1 will no longer be associated to eigenvector 1n.
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The RADAR 5 numerical integration
algorithm

All numerical simulations involvingDelayedDi�erential equations, in the present
work, have been performed using the RADAR 5 integration algorithm [GH05],
by Nicola Guglielmi and Ernst Hairer. The algorithm is designed for the so-
lution of initial value problems of the form

M ẏ(t) = f (t,y(t),y(α1(t,y(t)), . . . ,y(αm(t,y(t))))

y(t0) = y0, y(t) = g(t) for t < t0
(C.1)

where the real state variables y are arranged in a d dimensional vector, M is
a d × d dimensional real matrix, and the αi(t,y(t)) ≤ t are possibly time and
state dependent delayed times. Many di�erent kinds of problems can be cast in
this form. For example, the matrixM could arise from the discretisation of a
time-delayed Partial Di�erential Equation. The algorithm, in particular, does
not need to invertM , therefore avoiding the disruption of its sparsity pattern,
which can lead to problems due to small denominators or in general increase
the numerical overhead of the computation, in the case, for example, of very
large systems. M can also be singular, thus making the algorithm able to solve
also Di�erential-Algebraic problems. A very relevant class of equations, solv-
able by the algorithm, is that of singularly perturbed problems, i.e. those problems
where the mass matrix takes the form

M =

(
I 0
0 εI

)
(C.2)

with ε� 1, which is clearly the case for the FitzHugh-Nagumo system. More-
over, these equations form an important class of so called sti� problems.
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It is hard to give a precise and general de�nition of a sti� problem. In
general, a problem is referred to as sti�, if one or more algorithms yield nu-
merically unstable solutions to them, unless a very small integration step is set.
Singularly perturbed problems, in particular, are sti� with respect to explicit
integration algorithms. Numerical integration schemes can be cathegorised as
explicit or implicit, depending on how the calculation of the future state of the
system, most commonly at the next discrete integration time-step, is carried
out:

• In an explicit scheme, the state at a future time is calculated via a function
of the present state, and possibly of the system’s history, when DDEs are
considered. Schematically, and for a single delay τ

y(t+ ∆t) = F(y(t),y(t− τ)) (C.3)

The construction and choice of the form of F is an integral part of the
algorithm design process. In principle, these methods are not very com-
putationally expensive, as a step requires a single functional evaluation.

• In an implicit scheme, conversely, the state at a future time is found as the
solution to a, generally nonlinear, equation. For the same hypotheses of
the previous points, we will schematically have

G(y(t+ ∆t),y(t),y(t− τ)) = 0 (C.4)

As in the previous case, the choice and determination of G is a funda-
mental part of the algorithm design. A step of these types of algorithm
is more costly, in principle, as it requires the solution of equation (C.4),
which in general entails an iterative process in itself. Moreover, these
schemes are generally more complicated to implement.

Despite the general aspects just presented, the convenience and practicality
of one or the other type of scheme depends on the problem one is solving.
When one is confronting sti� problems, for example, implicit algorithms are
more useful than explicit ones, as the overhead given by the solution of the
nonlinear equation can often be computationally cheaper than the abnormally
small integration step that an explicit method would require.

RADAR 5 is an implicit scheme, making it suited to the solution of sti�
DDE problems, as those regularly encountered in the writing of the present
work. The algorithm itself is based on a 3 stage RADAU-II collocation method
[WH96]. The original codebase is written in FORTRAN 90, allowing for a highly
optimised performance also on large systems. In the present work, we have
accessed the integration routines via a Python binding available on GitHub,
which has partially been modi�ed by the author of this dissertation so to allow
the simulation of large systems.
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Appendix D

Pseudocode for the Bipartition
algorithm

Wepresent in this appendix the pseudocode, Algorithm 1, descring the biparti-
tion algorithm. The actual implementation has been performed in the Python
language, making use of the main modules for scienti�c computing such as
numpy and scipy. The management of network objects has been performed
using the networkx module. In particular, the connectedness check has been
performed using the networkx.is_connected method, which implements a
Breadth First Search [Lee61]. Its asymptotic order is of O(V + E), where E
is the number of edges, and V the number of nodes within the graph.

An alternative way of performing this check is via the algebraic connectivity,
or Fiedler value λ2, the second Laplacian eigenvalue, which collapses to zero
if and only if the graph is disconnected. In principle, we could have evaluated
the e�ect of the link removal on the Fiedler value via an analogous perturbative
expression to that used for λN , avoiding any moves for which the algebraic
connectivity would collapse to 0. Indeed, if we look at the algorithm as to a
gradient descent, we understand that the bipartition implies the minimisation of
a functional of the normalised Laplacian

L(LRW ) =
1

2
(λN(LRW )− 2)2

where the descent steps are performed discretely on the graph structure, by
removing links. In this context, the requirement that λ2 > 0, becomes a uni-
lateral constraint, which would entail the modi�cation of the aforementioned
functional. The form of the functional, via its gradient, dictates the weight
attributed to the variation of each of the two eigenvalues, when determining
the direction of steepest descent. During development, this balancing process
has proved to be challenging, the behaviour of the algorithm changing quite
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abruptly for slight changes in the functional. For these reasons we chose to
adopt a combinatorial solution, restrictedly to the connectedness check.
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Algorithm 1: Bipartition algorithm
Result: Bipartite graph Gb(V, Lb)
Input: Initial graph G(V, L), tolerance tol = 10−6

begin
Evaluate initial λN for graph G;
Initialise working edge list Lw = L;
while |λN − 2| > tol do

Initialise empty list lc;
/* It will store links candidate for removal. */

for (l,m) in Lw do
Evaluate λ̇N(0) for (l,m) using (2.37);
if λ̇N(0) > 0 then

Append (l,m) to lc;
end

end
if lc is empty then

return −1;
/* No candidate link removal can improve λN,

exit with error. */

else
Sort lc according to descending λ̇N(0) values

end
for (l,m) in lc do

Build subgraph Gw from links in Lw \ (l,m);
if Gw is connected then

Set Lw \ (l,m) as new Lw;
break;

else
if (l,m) is the last element in Lw then

return −1 ;
/* The removal of any candidate would

disconnect G, exit with error. */

end
end

end
end
Build Gb from the links in Lw;
Return Gb;

end
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Estimates on the distribution of Fi

We set out to show that under the hypotheses of Section 3.3, Fi is approxi-
mately distributed according to a Gaussian distribution with mean 1 and stan-
dard deviation scaling as ∼ 1√

N
with respect to the number of nodes. First we

need to estimate the mean and variance of 1
d
, when d is distributed according

to the zero-truncated Poisson distribution with parameter µ.
We can approximate the mean by introducing ∆d = d − µ and taking the

leading term in a binomial series expansion〈
1

d

〉
c

=
1

eµ − 1

∞∑
d=1

µd

d!

1

d

=
∞∑
d=1

µd

d!

1

µ+ ∆d
'

∞∑
d=1

µd

d!

1

µ

(
1− ∆d

µ

)
=

1

µ

(E.1)

And with the same procedure we can approximate the second inverse absolute
moment as 〈

1

d2

〉
c

' 1

µ2
+

3

µ3
(E.2)

so that in turn the variance is approximated by

Var
[

1

d

]
' 3µ−3 (E.3)

Using these estimates and considering a large enough di, the sum in the def-
inition of Fi, by virtue of the Central Limit Theorem, can be approximated
by

Fi '
di
µ

+

√
3di
µ3

G(0, 1) (E.4)
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where by G(0, 1) we denote the standard Gaussian distribution with mean 0
and unit variance. This expression gives an approximation for the �uctuations
of the self-consistent factor of node i caused by the degrees of its neighbours
when the degree of i is �xed, and most importantly tells us how they scale with
respect to µ. The degree di, although, is not �xed, and has �uctuations of its
own, which we now take into account. Recalling that di is distributed according
to a Poisson distribution with parameter µ, we can average both over di and the
Gaussian �uctuations in Expression (E.4) and recover the Mean Field Value
F̄ = 1

〈Fi〉 '
〈di〉
µ

+

〈√
3di
µ3

〉
〈G(0, 1)〉 = 1 (E.5)

where we have factorised the expectation in the second term owing to the fact
that di and G(0, 1) are independent random variables. Now we move on to
estimating the variance of Fi, so to understand which �uctuations are domi-
nant, and how they do scale with µ. First we approximate the term ∝

√
di in a

binomial series expansion centered in µ, obtaining Expression (E.6).

Fi '
di
µ

+

√
3

µ

(
1 +

∆di
2µ

)
G(0, 1) (E.6)

Now, reverting the de�nition ∆di = di − µ, we are able to obtain Expression
(E.7)for Fi

Fi '
di
µ

+

√
3

2µ2
diG(0, 1)−

√
3

2µ
G(0, 1) (E.7)

which we can use to calculate an approximation for the variance of Fi.
Indeed, we recall that forX, Y independent random variables the following

identity holds

Var [XY ] = E
[
X2
]
E
[
Y 2
]
− E [X]2 E [Y ]2

which we use for the second term in the sum on the r.h.s. of Equation (E.7),
obtaining

Var [Fi] '
1

µ
+

3

2µ2
+

3

4µ3
(E.8)

Equation (E.8) contains two important pieces of information. The �rst is that
the leading order in µ of the approximate variance is ∝ 1

µ
, and the second is

that this term stems from the �rst term in the r.h.s. of Equation (E.6), which
allows us to trace back the dominant �uctuations to the Poissonian �uctuations
in the degree of node i, and not in those of its neighbours. Furthermore, since
we are considering large values of µ, we expect the shape of the distribution of
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Figure E.0.1: Standard deviation values obtained from �tting on simulated
Erdős-Renyi networks compared with the estimate ∝ N−1/2. A power law
regression is shown in red, performed on the six largest values of N . N value
vary from 1000 to 16000.

Fi to be well approximated by a Gaussian, as it is expected of Poisson variables
in the limit of large parameter. Recalling the de�nition of µ = Np we �nd that
at leading order, the standard deviation of Fi scales as indicated in the following
Equation (E.9).

SD [Fi] ∝
1√
N

(E.9)

In conclusion, the �ndings just discussed allow us to state that for large N and
large enough µ, the distribution of the self-consistent factor Fi will be well
approximated by a Gaussian centered in F̄ = 1, with a variance scaling as
∝ 1

µ
= 1

Np
.

Fi ∼ 1 +
G(0, 1)√
Np

In Figure E.0.1 we show the results of a numerical experiment carried out to
compare the scaling of the standard deviation of Fi on simulated Erdős-Renyi
networks with our estimate. For large values of N , the power law regression
produces a value of −0.47 ± 0.01, which is close to the estimate, although not
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strictly compatible. Due to the asymptotic nature of the approximation, better
results could probably be obtained by considering larger networks, a possibility
that in the present work has been limited by the available computing power.
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