
Alma Mater Studiorum · Università di Bologna
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Abstract

The main motivation for my thesis is the belief that global properties of enzymes are
essential for a complete understanding of their behaviors. In my thesis, in particular,
I investigate qualitative properties of enzymes via spectral techniques associated to the
graph Laplacian. I try to apply visualization techniques to understand similarities and
dissimilarities among different enzymes’ structures, encoded in adjacency matrices re-
trieved from coordinate data in online available datasets. The purpose is to make an
exploration of features and see whether these techniques, that are used extensively in
literature for visual discrimination tasks, are also useful for these biological entities.

I have tried to design a size-independent analysis that would be able to differentiate
among different taxonomies, different catalytic properties and different environments
associated to enzymes. This attempt provided useful hints for the analysis of enzyme
properties, even if as a final remark the dependence from enzyme size is still found in
the Laplacian eigenvalue spectrum.



Chapter 1

Introduction

1.1 Complex systems

In the last decades there has been a significant rise in the collection of data describing
features of very complex systems, most of which have yet to be analyzed. Thanks to the
new technologies now available, it is possible now to approach them. A particular subset
of complex systems is without any doubt provided by proteins in biological systems.
There are many freely available datasets online related to proteins and their biochemical
interactions (Uniprot, Swissprot, Pdb, pdbe, Swissmodel, Mint, intact ecc.). The trend is
captured in fig.1.1 that shows just how PDB has increased its repositories in these years.
PDB is an international repository for structural 3D data of enzymes and nucleic acids.
In the analysis of these systems it has been seen a progressively increase in the use of
techniques borrowed from statistical physics as in [18] and information theory on graphs
as in [21] . These complex systems are suited for statistical inference, and interesting
results about correlation between qualitative labels and quantitative measures on graphs
are being discovered. In particular we will focus on the use of networks as suggested in
[22]. A network is a set of items, which we will call vertices or sometimes nodes, with
connections between them, called edges Figure 1.2.

Systems taking the form of networks (also called “graphs” in much of the mathe-
matical literature) abound in the world. Examples include the Internet, the World Wide
Web, social networks of acquaintance or other connections between individuals, organiza-
tional networks and networks of business relations between companies, neural networks,
metabolic networks, food webs, distribution networks such as blood vessels or postal
delivery routes, networks of citations between papers, and many others.The study of
networks, in the form of mathematical graph theory, is one of the fundamental pillars of
discrete mathematics. Euler’s celebrated 1735 solution of the Konigsberg bridge problem
is often cited as the first true proof in the theory of networks, and during the twentieth
century graph theory has developed into a substantial body of knowledge. Networks have
also been studied extensively in the social sciences. Typical network studies in sociology
involve the circulation of questionnaires, asking respondents to detail their interactions
with others. One can then use the responses to reconstruct a network in which vertices
represent individuals and edges the interactions between them. Typical social network
studies address issues of centrality (which individuals are best connected to others or
have most influence) and connectivity (whether and how individuals are connected to
one another through the network). In recent years it has been developed a line of research
that focus shifting away from the analysis of single small graphs and the properties of
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Figure 1.1: Number of new structures uploaded every year in PDB

individual vertices or edges within such graphs to consideration of large-scale statistical
properties of graphs. This new approach has been driven largely by the availability of
computers and communication networks that allow us to gather and analyze data on
a scale far larger than previously possible. Where studies used to look at networks of
maybe tens or in extreme cases hundreds of vertices, it is not uncommon now to see
networks with millions or even billions of vertices. This change of scale forces upon us a
corresponding change in our analytic approach. Many of the questions that might previ-
ously have been asked in studies of small networks are simply not useful in much larger
networks. A social network analyst might have asked, “Which vertex in this network
would prove most crucial to the network’s connectivity if it were removed?” But such
a question has little meaning in most networks of a million vertices—no single vertex
in such a network will have much effect at all when removed. On the other hand, one
could reasonably ask a question like, “What percentage of vertices need to be removed
to substantially affect network connectivity in some given way?” and this type of statis-
tical question has real meaning even in a very large network. However, there is another
reason why our approach to the study of networks has changed in recent years, a reason
whose importance should not be underestimated, although it often is. For networks of
tens or hundreds of vertices, it is a relatively straightforward matter to draw a picture
of the network with actual points and lines (Fig. 2) and to answer specific questions
about network structure by examining this picture. This has been one of the primary
methods of network analysts since the field began. The human eye is an analytic tool
of remarkable power, and eyeballing pictures of networks is an excellent way to gain
an understanding of their structure. With a network of a million or a billion vertices
however, this approach is less useful, particularly at small-scale detail

One simply cannot draw a meaningful picture of a million vertices, even with modern
3D computer rendering tools, and therefore direct analysis by eye is hopeless. The recent
development of statistical methods for quantifying large networks is to a large extent an
attempt to find something to play the part played by the eye in the network analysis of
the twentieth century. Statistical methods answer the question, “How can I tell what this
network looks like, when I can’t actually look at it?”. There exist as already said a big
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Figure 1.2: Graph associated to the contact map coming from the structure of 3YCA.
In here the colors represent the betweennes centrality of the node while the size is the
connectivity.

variety of different networks and I will describe them in the next sections, here, I want
to introduce something about biological complex network to introduce the framework
in which my study lies. A number of biological systems can be usefully represented as
networks. Perhaps the classic example of a biological network is the network of metabolic
pathways, which is a representation of metabolic substrates and products with directed
edges joining them if a known metabolic reaction exists that acts on a given substrate
and produces a given product. separate network is the network of mechanistic physical
interactions between proteins (as opposed to chemical reactions among metabolites),
which is usually referred to as a protein interaction network. Interaction networks have
been studied by a number of authors []. Another important class of biological network
is the genetic regulatory network. The expression of a gene, i.e., the production by
transcription and translation of the protein for which the gene codes, can be controlled
by the presence of other proteins, both activators and inhibitors, so that the genome
itself forms a switching network with vertices representing the proteins and directed
edges representing dependence of protein production on the proteins at other vertices.
Genetic regulatory networks were in fact one of the first networked dynamical systems
for which large-scale modeling attempts were made. Another much studied example
of a biological network is the food web, in which the vertices represent species in an
ecosystem and a directed edge from species A to species B indicates that A preys on
B. Construction of complete food webs is a laborious business, but a number of quite
extensive data sets have become available in recent years. Neural networks are another
class of biological networks of considerable importance. Measuring the topology of real
neural networks is extremely difficult, but has been done successfully in a few cases.
The best known example is the reconstruction of the 282-neuron neural network of the
nematode C. Elegans by White et al.. In this paper I will focus on the undirected graphs
that can be extracted from 3D structures of enzymes, which is a particular set of proteins
involved in catalytic activity of biochemical reactions.
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Figure 1.3: Here is represented the 3D structure coming from 3YCA. the enzyme is
present in the database I have considered and is taken just as an example.

1.2 Enzymes

An enzyme is a protein that has a specific function within the cell (and also outside),
formed by one or more chains of amino acids linked with peptide bonds in a special
location where usually are found carbon-alpha Cα. It must be folded in the correct way to
perform its function. Proteins in general are characterized by four levels of organization:
primary, secondary, tertiary and quaternary structures as one can see from figure 1.3.
Structures are differentiated in many ways. The first to be listed is the difference in
aminoacids that form them. Many differences arise in this respect, for example they
are differentiated by: polarity, charge, presence of hydroxyl group, presence of sulphur,
on the basis of aromatic ring structure, acidic, basic. Also on the basis of essential
amino acids and non-essential amino acids. In our work we study enzymes, that are very
efficient catalysts for biochemical reactions. They speed up reactions by providing an
alternative reaction pathway of lower activation energy as it is shown in figure 1.4. Like
all catalysts, enzymes take part in the reaction - that is how they provide an alternative
reaction pathway. But they do not undergo permanent changes and so remain unchanged
at the end of the reaction. They can only alter the rate of reaction, not the position of
the equilibrium. Most chemical catalysts catalyse a wide range of reactions. They are
not usually very selective. In contrast enzymes are usually highly selective, catalysing
specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins
in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins
in their secondary and tertiary structures are disrupted by changes in temperature and
pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature
sensitive. Cofactors may be:

• organic groups that are permanently bound to the enzyme (prosthetic groups)
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Figure 1.4: Alternative reaction pathway of lower activation energy. On the x-axis is
the time and on the y-axis the energy of the system of the two reactants. In blue is the
pathway that is allowed by the presence of the enzyme as a catalyst

• cations - positively charged metal ions (activators), which temporarily bind to the
active site of the enzyme, giving an intense positive charge to the enzyme’s protein

• organic molecules, usually vitamins or made from vitamins (coenzymes), which are
not permanently bound to the enzyme molecule, but combine with the enzyme-
substrate complex temporarily

1.2.1 How enzymes work

For two molecules to react they must collide with one another. They must collide in
the right direction (orientation) and with sufficient energy. Sufficient energy means that
between them they have enough energy to overcome the energy barrier to reaction.
This is called the activation energy. Enzymes have an active site. This is part of the
molecule that has just the right shape and functional groups to bind to one of the reacting
molecules. The reacting molecule that binds to the enzyme is called the substrate. An
enzyme-catalysed reaction takes a different ’route’. The enzyme and substrate form a
reaction intermediate. Its formation has a lower activation energy than the reaction
between reactants without a catalyst. A simplified picture:

RouteA : S1 + S2 −→ P (1.1)

RouteB : S1 + E + S2 −→ intermediate+ S2 −→ P + E (1.2)

So the enzyme is used to form a reaction intermediate, but when this reacts with another
reactant the enzyme reforms. In this model the enzyme molecule changes shape as the
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Figure 1.5: In this figure is represented the reaction profile of any two reactants in
general. In particular here it is shown what is tha activation energy. On the x-axis is
the time and on the y-axis the energy of the system of the two reactants
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(a) (b)

Figure 1.6: In these two figures are represented the dependence of the catalitic rate in
terms of temperature and pH of the environment

substrate molecules gets close. The change in shape is ’induced’ by the approaching
substrate molecule. This more sophisticated model relies on the fact that molecules
are flexible because single covalent bonds are free to rotate. As the temperature rises,
reacting molecules have more and more kinetic energy. This increases the chances of a
successful collision and so the rate increases. There is a certain temperature at which an
enzyme’s catalytic activity is at its greatest (see figure 1.6a). This optimal temperature
is usually around human body temperature (37.5 °C) for the enzymes in human cells.
Above this temperature the enzyme structure begins to break down (denature) since at
higher temperatures intra- and intermolecular bonds are broken as the enzyme molecules
gain even more kinetic energy. Each enzyme works within quite a small pH range. There
is a pH at which its activity is greatest (the optimal pH). This is because changes in pH
can make and break intra- and intermolecular bonds, changing the shape of the enzyme
and, therefore, its effectiveness.

One of the feature we consider in this work is the classification that this difference
brings in the primary structure. This classification is encoded in uniprot codes. Uniprot
codes have a one to one correspondence to primary structures.

1.3 Categorization of Enzymes

In this section I will introduce the macro categories I had at my disposal.

1.3.1 Enzyme Commission EC

The first characteristic that I want to speak about and that labels enzymes in is EC
from [1]. Enzymes are proteins that allow some catalytic process to occur. There are of
many types and during years it has been developed a standard way of referring at them.
This standard is called enzyme commission (EC): the enzyme commission recommended
a standard way to code enzymes. This will correspond to a code, made of 4 numbers:
the first identify the MACRO CLASS of belonging, and then there is the organization in
other sub-classes, in a hierarchical way. Until having a complete classification identifiable
with 4 numbers. Here below I report the top-level of the code:
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1. EC 1 (Oxidoreductases): To catalyze oxidation/reduction reactions; transfer of H
and O atoms or electrons from one substance to another

2. EC 2 (Transferases): Transfer of a functional group from one substance to another.
The group may be methyl-, acyl-, amino- or phosphate group

3. EC 3 (Hydrolases): Formation of two products from a substrate by hydrolysis

4. EC 4 (Lyases): Non-hydrolytic addition or removal of groups from substrates. C-C,
C-N, C-O or C-S bonds may be cleaved

5. EC 5 (Isomerases): Intramolecule rearrangement, i.e. isomerization changes within
a single molecule

6. EC 6 (Ligases): Join together two molecules by synthesis of new C-O, C-S, C-N or
C-C bonds with simultaneous breakdown of ATP

7. EC 7 (Translocases): Catalyse the movement of ions or molecules across membranes
or their separation within membranes

All these characteristics are embedded in the references to UniProt.

1.3.2 taxonomy

All enzymes we are speaking about are inserted in cellular environments of different or-
ganisms. The organisms we have considered come from different branches of taxonomy
trees. We are speaking about: Mammalia, green plants, fungi, bacteria and archeas.
These last ones belong to a family that has evolved at more elevated temperature aver-
agely (and this is seen from figure 2.11b).

1.3.3 Michaelis-Menten constant

In biochemistry, Michaelis–Menten kinetics is one of the best-known models of enzyme
kinetics. It is named after German biochemist Leonor Michaelis and Canadian physician
Maud Menten. The model takes the form of an equation describing the rate of enzymatic
reactions, by relating reaction rate of formation of product [P ] to of formation of product
[S].

ν =
d

dt
[P ] = V max

[S]

KM + [S]
(1.3)

This equation is called the Michaelis–Menten equation. Here, Vmax represents the maxi-
mum rate achieved by the system, happening at saturating substrate concentration. The
value of the Michaelis constant KM (KM) is numerically equal to the substrate concentra-
tion at which the reaction rate is half of Vmax. Biochemical reactions involving a single
substrate are often assumed to follow Michaelis–Menten kinetics, without regard to the
model’s underlying assumptions. In 1901, French physical chemist Victor Henri found
that enzyme reactions were initiated by a bond (more generally, a binding interaction)
between the enzyme and the substrate. His work was taken up by German biochemist
Leonor Michaelis and Canadian physician Maud Menten, who investigated the kinetics
of an enzymatic reaction mechanism, invertase, that catalyzes the hydrolysis of sucrose
into glucose and fructose. In 1913, they proposed a mathematical model of the reaction.
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It involves an enzyme, E, binding to a substrate, S, to form a complex, ES, which in
turn releases a product, P, regenerating the original enzyme. This may be represented
schematically as:

where k1(forward rate constant), k-1(reverse rate constant), and k2 (catalytic rate
constant) denote the rate constants, the double arrows between S (substrate) and E
S (enzyme-substrate complex) represent the fact that enzyme-substrate binding is a
reversible process, and the single forward arrow represents the formation of P (product).
In general increasing the relative concentration of the enzyme with respect to the other
components of the reaction increases the rate of reaction as can be seen in figure 1.7
Under certain assumptions – such as the enzyme concentration being much less than
the substrate concentration – the rate of product formation is given by (1.3). The
reaction order depends on the relative size of the two terms in the denominator. At low
substrate concentration [S]� KM so that the reaction rate varies linearly with substrate
concentration [S] as in the first part of fig 1.8. However at higher [S] with [S]� KM, the
reaction becomes independent of [S] (zero-order kinetics)and asymptotically approaches
its maximum rate . The constant is not affected by the concentration or purity of an
enzyme. The value of KM is dependent on both the identity of enzyme and that of the
substrate, as well as conditions such as temperature and pH.These are the characteristics
we hope to spot with our analysis. The model is used in a variety of biochemical situations
other than enzyme-substrate interaction.

1.3.4 ligand enzyme interaction

The ligand can be a macromolecule (DNA/RNA/proteins), elemental (< 600 Da) ions,
small organic molecules or peptides. Binding this object is essential for maintaining the
activity of the protein. There can be different approaches for the study of PPI, the
reductionist (molecular view point) point of view (since we know that experimentally we
have knowledge about complexes of proteins that are interacting) studies the features
of interaction from an atomic point of view. This approach requires a high level of
knowledge. Since the number of interactions for which we have knowledge is low it is
necessary to look for an “higher” point of view based on understanding what protein
interacts with, and so having an idea about the protein network. (all the nodes that
represent the proteins, and edges that indicate that 2 proteins are in interaction, so

Figure 1.7: Here is represented the rate of reaction’s curve of some enzyme with respect
to the concentration of enzymes

9



Figure 1.8: Here is represented the rate of reaction’s curve of some enzyme with respect
to the concentration of substrate. In particular it is interesting to see that if in a first
time increasing the concentration of the substrate increases the rate of reaction. After
having reached the saturation point (interpreted as the concentration at which all the
allosteric places in an enzyme are occupied) the rate of reaction doesn’t change anymore
and remains steady

edges start from a single protein). The most complete knowledge of interaction among
proteins is obtained by mixing the two levels,the result is to understand which is the
function, how the protein interacts and what are the groups of proteins that cooperate
of a certain function and identify pathways.
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Chapter 2

Enzyme dataset description

2.1 PDB database

In this section I will speak about PDB repository focusing on just those aspects exploited
in this work. For this job I am referencing what RSCB PDB guide tells about itself. I will
therefore, highlight just what I needed in my work, infact, despite the great variety of
data available, I have decided to consider just carbon-alpha (Cα) coordinates contained
in some ENTRY for those enzymes with just one ASSEMBLY. This means that, to each
Uniprot (sequence of aminoacids, contained in another repository that is however linked
with PDB ) I have different ENTRIES (PDB codes), and for each ENTRY I will have
different INSTANCES (coordinates) of the same ENTITY (Cα) in one ASSEMBLY.
This is important, as I decided not to consider those enzymes composed by multiple
ASSEMBLIES, (hemogoblin has got multiple assemblies of the same protein) NOTE:
when I speak about atoms (Cα), I refer to the ENTITIES that represent the position
of different aminoacids in the enzyme. In practice for one uniprot I have many PDB
ID’s. From each PDB ID I extrct the coordinates of Cα. The PDB ID’s contain just
’non-repeated’ structures.

2.1.1 hierarchical structure

As we already said in the precedent sections, proteins are composed of linear chains of
amino acids that (often) fold into compact subunits which then can associate into higher
level assemblies with other proteins, small molecule ligands, and water or other solvent
molecules. Biomolecules in the Protein Data Bank (PDB) archive are organized and
represented using this hierarchy to simplify searching and exploration. Four levels of
hierarchy are commonly used: Entry, Entity, Instance, and Assembly. These levels are

• An ENTRY is all data pertaining to a particular structure deposited in the PDB
and is designated with a 4-character alphanumeric identifier called the PDB iden-
tifier or PDB ID (e.g., 2hbs).

• An ENTITY is a chemically unique moleculechemically unique molecule that
may be polymeric, such as a protein chain or a DNA strand, or non-polymeric,
such as a soluble ligand. Some entries may even have branched polymeric entities,
such as oligosaccharides. The entities I have considered are aminoacidic chains (Cα
coordinates).
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• An INSTANCE is a particular occurrence of an ENTITY. An ENTRY may contain
multiple INSTANCES of an ENTITY, for example, many copies of Cα associated
to different aminoacids.

• An ASSEMBLY is a biologically relevant group of one or more INSTANCES of one
or more ENTITIES that are associated with each other to form a stable complex
and/or perform a function.

These four level of characterization are important not to confuse an entity for another; in
this way different Cα, have different coordinates. In my work I am interested, as already
said, in Cα coordinates. The PDB archive in this way uniquely maps Various identifiers
to specifically indicate one atom or groups of atoms.

2.1.2 Entity level identifiers

A Protein or polypeptide (short fragment of protein) whose sequence has been mapped
to UniProt includes a UniProt Accession Code (e.g., P11838) for that entity. This
observation is very important in my work as (as I will explain later) I have worked with
just PDBs coming from Uniprot codes. So the access I have made is just to those entities
that have also a Uniprot code associated.

2.1.3 PDB Data

We have seen that the PDB archive is a repository that is structured in a hierarchical
way. At the end of the hierarchy lies the entity. In the entity are contained list of atomic
coordinates and other information describing proteins and other important biological
macromolecules. Structural biologists use methods such as X-ray crystallography, NMR
spectroscopy, and cryo-electron microscopy to determine the location of each atom rel-
ative to each other in the molecule. They then deposit this information, which is then
annotated and publicly released into the archive by the wwPDB. Structures are available
for many of the proteins and nucleic acids involved in the central processes of life, there
you can find multiple structures for a given molecule, or partial structures, or structures
that have been modified or inactivated from their native form.

The primary information stored in the PDB archive consists of coordinate files for
biological molecules. These files list the atoms in each protein (we are interested just in
alpha carbon atoms that are those representing the position of aminoacids), and their
3D location in space.

2.1.4 X-ray Cristallography

Most of the structures included in the PDB archive were determined using X-ray crys-
tallography. For this method, the protein is purified and crystallized, then subjected to
an intense beam of X-rays. The proteins in the crystal diffract the X-ray beam into one
or another characteristic pattern of spots, which are then analyzed (with some tricky
methods to determine the phase of the X-ray wave in each spot) to determine the dis-
tribution of electrons in the protein. The resulting map of the electron density is then
interpreted to determine the location of each atom. X-ray crystallography can provide
very detailed atomic information, showing every atom in a protein or nucleic acid along
with atomic details of ligands, inhibitors, ions, and other molecules that are incorporated
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into the crystal. Biological molecule crystals are finicky: some form perfect, well-ordered
crystals and others form only poor crystals. The accuracy of the atomic structure that
is determined depends on the quality of these crystals. In perfect crystals, we have far
more confidence that the atomic structure correctly reflects the structure of the protein.
Two important measures of the accuracy of a crystallographic structure are its resolu-
tion, which measures the amount of detail that may be seen in the experimental data,
and the R-value, which measures how well the atomic model is supported by the experi-
mental data found in the structure factor file. I have taken most of the data from these
experiment and I didn’t check the precision of the structures and so they are considered
at the same level.

2.1.5 NMR spectroscopy

NMR spectroscopy may be used to determine the structure of proteins. The protein
is purified, placed in a strong magnetic field, and then probed with radio waves. A
distinctive set of observed resonances may be analyzed to give a list of atomic nuclei
that are close to one another, and to characterize the local conformation of atoms that
are bonded together. This list of restraints is then used to build a model of the protein
that shows the location of each atom. The technique is currently limited to small or
medium proteins, since large proteins present problems with overlapping peaks in the
NMR spectra.

A major advantage of NMR spectroscopy is that it provides information on proteins in
solution, as opposed to those locked in a crystal or bound to a microscope grid, and thus,
NMR spectroscopy is the premier method for studying the atomic structures of flexible
proteins. A typical NMR structure will include an ensemble of protein structures, all of
which are consistent with the observed list of experimental restraints. The structures in
this ensemble will be very similar to each other in regions with strong restraints, and very
different in less constrained portions of the chain. Presumably, these areas with fewer
restraints are the flexible parts of the molecule, and thus do not give a strong signal in
the experiment.

In the PDB archive, you will typically find two types of coordinate entries for NMR
structures. The first includes the full ensemble from the structural determination, with
each structure designated as a separate model. The second type of entry is a minimized
average structure. These files attempt to capture the average properties of the molecule
based on the different observations in the ensemble. You can also find a list of restraints
that were determined by the NMR experiment. These include things like hydrogen bonds
and disulfide linkages, distances between hydrogen atoms that are close to one another,
and restraints on the local conformation and stereochemistry of the chain. Just few
enzymes’ structures are of this kind and I treated them alike the others.

2.2 Description of dataset

In this section I will describe the repository I used jumping on much of the preprocessing
did for the final pipeline. I highlight the principal results. In starting repository I
explain how I arrived to the conclusion that I have available 494 Uniprot codes and 4061
PDB files, showing the distribution of number of nodes and connected components . In
little remark I explain how I associated the labels (KM,temperature). In distribu-
tions of data with respect to taxonomy I show the tab of distribution of taxonomy
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Uniprot0 PDB01 ECfirst01 taxonomy01 temperature01 KM01 Cα01

... ... ... ... ... ... ...
PDB0p0 ECfirst0p0 taxonomy0p0 temperature0p0 KM0p0 Cα0p0

... ... ... ... ... ... ...
Uniprot499 PDB499,1 ECfirst499,1 taxonomy499,1 temperature499,1 KM499,1 Cα499,1

... ... ... ... ... ... ...

... PDB499p499 ECfirst499p499 taxonomy499p499 temperature499p499 KM499p499 Cα499p499

Table 2.1: In this table is represented the structure of the data I have. Note that for
each uniprot code (aminoacidic sequence) there are many PDB (structures) each one
equipped with EC, taxonomy, temperature, KM and Cα

commenting those aspects that in my opinion are more relevant in the subsection below.
In Statistical comparison of different enzyme groups I describe the principles of
ANOVA and the method of judging the results in tabs (group starting from 2.12a) Then
I represent the results in graphs and tabs labeled.

2.2.1 starting repository

I have started with a repository created by Giulia Menichetti. This repository contained
informations about:

• uniprot codes associated to (aminoacidic sequences)

• PDB codes associated to (3D structures of enzymes)

• EC and EC first level

• organism

• KM (Michaelis Menten constant)

• substrate (ligand for catalitic process)

• units, comment

• Temperature and pH (of the experiment)

• NCBIid (code coming from National Center for Biotechnology Information ) Su-
perClass

• taxonomy : isMammalia, isFungi, isGreenPlant, isVirus, isBacteria, isArchea, Eu-
kNotFungi

In the end, after some preprocessing, I obtained 494 Uniprot codes and 4061 PDB
in a relation 1 to many. For each PDB I have associated in a relation 1-1 , EC first,
taxonomy, temperature and KM. The latter two have been chosen following the criteria
in little remark. The fact that to each Uniprot code are associated many PDB is due
to the fact that for a single aminoacidic sequence have been done many measures of the
structures and studied different regions of them via NMR and X-Ray cristallography .
In the end I will have a repository represented as in tab 2.1.

In the next sections I will present some graphical representations of the dataset
that highlights the distributions with respect to taxonomy and EC, dimension of the
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Figure 2.1: Histogram of the number of nodes per protein. The highest number of nodes
is around 300, and the average is at 739 nodes. The biggest enzyme considered has 9278
nodes

enzyme, temperature of the experiment and KM. These representations give an idea of
the statistics we are considering and can be useful in the interpretation of the results we
obtain.

2.2.2 little remark

In the phase of preprocessing I found out that, for each uniprot, (that is already associ-
ated to different PDB) I have multiple temperature, pH, KM and ligands. For this reason
I have considered just the average temperature and just one of the KM I had (chosen at
random, not having any further information to the selection) and considered no ligand
at all. This choice is motivated by the fact that I have seen that temperatures for one
uniprot ID are reasonably similar as the different experiment are made more or less in
the same environment for one sequence (as I have that sequence appear just once for each
organism and taxonomy). On the other hand I have that as for the same enzyme I have
multiple ligands then different ligands will have associated different Michaelis-Menden
constants that infact represent the velocity of reaction at equilibrium of the ligands in
their specific allosteric places. As we have different ligands I expect that these values
can vary notabely as we change the chemical nature of the ligands.

2.2.3 distributions of data with respect to taxonomy

In this section I describe enzymes’ labels I have. In particular I represent for each
taxonomy value, how the EC first, temperature, KM and number of Cα are distributed

15



(See from fig.(2.2b) to fig.(2.11a)).

taxonomy min Cα max Cα

Mammalia 99 7893
Green Plants 160 4144

Fungi 114 3407
Bacteria 53 9728
Archea 205 1942

description and observations about distribution of labels

In this section I make inferences about the distribution of labels highlighting what I
think it is important. The most populated sets are those belonging to mammalia and
bacteria,while we have that other taxonomies are less represented. In figure ?? can be
seen that the most of mammalia’s enzymes have relatively small Cα. The average is 789
Cα. . We can see a similar behavior for green plants,fungi and bacteria respctively in
figure 2.4a,2.6a,2.8a. The average Cα for green plants are 679. More the 50 percent of
the overall distributions has got less then 500 Cα. To be noted that fungi are particularly
peaked at around 330. Infact in our dataset there are 554 of them having exactly
330 Cα coming from the same uniprot ID but different 3d structures. This
means that the aminoacidic structure is the same while the PDB structure are different.
Looking at Cα in figure 2.10a for archea we see a tail also at high number infact the
average is 918 nodes even though the sample is not very varied. Informations about
the number of enzymes for each taxonomy class are summed up in 2.2.3 . For all the
taxonomy families we see that the EC distribution as in figures 2.2b ,2.4b,2.6b,2.8b,2.10b
is peaked at 1 with averagely over 50 per cent belonging to that class. As shown in figures
2.3a,2.5a,2.7a,2.9a,2.11a we have that the Michaelis-Menten constants are peaked around
0 with no much dispersion but for Archea that has around 30 per cent of the enzymes
whose constant is bigger then 10. I have not worried about the biological meaning of
these data, I will care just about classification problem. A different picture comes from
the distribution of temperatures whose distributions vary more from family to family. In
mammalia as we can see from figure 2.3b the temperatures are distributed in the range
20-48 degree celsius and mode around 35 degrees. For green plants as in fig. 2.5b the
lowest temperature the range is 20-40 degrees with an mode around 30. In fungi as we
can see from fig. 2.7b temperature is distributed from 15 to 40 with mode around 35
but less peaked with respect to others. Bacteria live in a range from 0-80 degrees and
the mode is around 35 as we see from fig. 2.9b. In the end Archea are in a range from
30 to degrees with the mode around 60 degrees as we see in fig.2.11b. This shows that
Archea have evolved in hotter environments.

2.2.4 Statistical comparison of different enzyme groups

In this subsection I reproduce the results about an Anova (Analysis of Variance) to
the labels of the numerical labels with respect to taxonomy and EC first. From this
analysis will report just Tukey HSD of multiple comparison of means, that show via
p-value considerations whether the null hypothesis (different sub-distributions belong to
the same overall distribution) should be rejected (reject=True, p-adj ≤ 0.05, means that
the two sub-distributions are different) or not (reject=False, p-adj ≥ 0.05, means that
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(a) Histplot picking data just from the mammalia family and whose x-axis are the number of
nodes of the network associated to the enzyme, on the y-axis the probability of observing it

(b) Histplot picking data just from the mammalia family and whose x-axis is the first number
of the EC code of the enzyme, on the y-axis the probability of observing it
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(a) Histplot picking data just from the mammalia family and whose x-axis is the Michaelis-
Menten constant associated to one of the catalitic processes of the enzyme, on the y-axis the
probability of observing it

(b) Histplot picking data just from the mammalia family and whose x-axis is the temperature
of the ambient of the enzyme, on the y-axis the probability of observing it

Figure 2.3: Histogram the probability distribution of enzymes that belong to the Mam-
malia family in its number of nodes, EC first KM and temperature. To this category
belong 1639 enzymes distributed in 7 different organisms
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(a) Histplot picking data just from the green plants’ family and whose x-axis are the number
of nodes of the network associated to the enzyme, on the y-axis the probability of observing it

(b) Histplot picking data just from the green plants’ family and whose x-axis is the first number
of the EC code of the enzyme, on the y-axis the probability of observing it
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(a) Histplot picking data just from the green plants’ family and whose x-axis is the Michaelis-
Menten constant associated to one of the catalitic processes of the enzyme, on the y-axis the
probability of observing it

(b) Histplot picking data just from the green plants’ family and whose x-axis is the temperature
of the ambient of the enzyme, on the y-axis the probability of observing it

Figure 2.5: It is represented in an histogram the probability distribution of enzymes that
belong to the green plants’ family in its number of nodes,EC first KM and temperature.
To this category belong 259 enzymes distributed in 34 different organisms
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(a) Histplot picking data just from the fungi family and whose x-axis are the number of nodes
of the network associated to the enzyme, on the y-axis the probability of observing it

(b) Histplot picking data just from the fungi family and whose x-axis is the first number of the
EC code of the enzyme, on the y-axis the probability of observing it
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(a) Histplot picking data just from the fungi family and whose x-axis is the Michaelis-Menten
constant associated to one of the catalitic processes of the enzyme, on the y-axis the probability
of observing it

(b) Histplot picking data just from the fungi family and whose x-axis is the temperature of the
ambient of the enzyme, on the y-axis the probability of observing it

Figure 2.7: It is represented in an histogram the probability distribution of enzymes that
belong to the fungi family in its number of nodes,EC first KM and temperature. To this
category belong 846 enzymes distributed in 27 different organisms
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(a) Histplot picking data just from the bacteria family and whose x-axis are the number of
nodes of the network associated to the enzyme, on the y-axis the probability of observing it

(b) Histplot picking data just from the bacteria family and whose x-axis is the first number of
the EC code of the enzyme, on the y-axis the probability of observing it
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(a) Histplot picking data just from the bacteria family and whose x-axis is the Michaelis-Menten
constant associated to one of the catalitic processes of the enzyme, on the y-axis the probability
of observing it

(b) Histplot picking data just from the bacteria family and whose x-axis is the temperature of
the ambient of the enzyme, on the y-axis the probability of observing it

Figure 2.9: It is represented in an histogram the probability distribution of enzymes that
belong to the bacteria family in its number of nodes,EC first KM and temperature. To
this category belong 1057 enzymes distributed in 51 different organisms
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(a) Histplot picking data just from the archea family and whose x-axis are the number of nodes
of the network associated to the enzyme, on the y-axis the probability of observing it

(b) Histplot picking data just from the archea family and whose x-axis is the first number of
the EC code of the enzyme, on the y-axis the probability of observing it
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(a) Histplot picking data just from the archea family and whose x-axis is the Michaelis-Menten
constant associated to one of the catalitic processes of the enzyme, on the y-axis the probability
of observing it

(b) Histplot picking data just from the archea family and whose x-axis is the temperature of
the ambient of the enzyme, on the y-axis the probability of observing it

Figure 2.11: It is represented in an histogram the probability distribution of enzymes
that belong to the archea family in its number of nodes,EC first KM and temperature.
To this category belong 58 enzymes distributed in 9 different organisms
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the two sub-distributions are the same). These results are reported in figures: 2.13b,
2.13a, 2.12b,2.12a. I comment the result obtained.

Tukey’s HSD analysis

The calculations of ANOVA can be characterized as computing a number of means and
variances, dividing two variances and comparing the ratio to a handbook value to deter-
mine statistical significance. Calculating a treatment effect is then trivial: ”the effect of
any treatment is estimated by taking the difference between the mean of the observa-
tions which receive the treatment and the general mean”. In particular: Null hypothesis:
Groups means are equal (no variation in means of groups) H0: µ1=µ2=. . . =µp and Resid-
uals (experimental error) are normally distributed (Shapiro-Wilks Test), Homogeneity of
variances (variances are equal between treatment groups) (Levene’s or Bartlett’s Test),
Observations are sampled independently from each other.

yij = µ+ αi + εij
SST = SSB + SSE

(2.1)

where:

• yij is the jth observation of the ith i=1,...,p (in my case will be taxonomy and EC
first values separately)

• µ is the overall population mean (unknown)

• α i is the deviation from the mean

• εij Error distributed as above

• i levels of groups i=1,...,p

• j observation (or replicates) for each group (k=1,...,r)

• SSB =
∑

i pi(ȳi. − ȳ..)
2, weighted variances among of means of different groups

• SSE =
∑

i(yij − ȳi.)
2,variance within a group

• SST =
∑

ij pi(yij − ȳ..)
2 weighted variance if I consider unique distribution.

From ANOVA analysis, we know that treatment differences are statistically significant,
but ANOVA does not tell which treatments are significantly different from each other.
To know the pairs of significant different treatments, we will perform multiple pairwise
comparison (post hoc comparison) analysis for all unplanned comparison using Tukey-
Krames’s honestly significantly differenced (HSD) test. HSD test is not an equivalence
test as it is not (perfectly) transitive, however it allows to capture similarities among
distributions. This consists in calculating from Anova analysis:

HSD = qA,α,dof

√
MSE

2
(

1

ni

+
1

nj

) (2.2)

Where qA,α,dof studentized range statistic with: A number of the group (i.e. Mam-
malia,EC first=1),α significance level (0.05) and dof degrees of freedom. MSE means
squared error from Anova, ni and nj the number of elements in the confronting groups.
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(a) In this figure is represented the Tukey’s analysis of different taxonomy groups with respect
to the temperatures. I list below the classes that can be considered having the same distribution
of temperatures:

•••• EuknotFungi with Fungi and Bacteria

• Bacteria with Green Plants and Mammalia

• Fungi with Green Plants

(b) In this figure is represented the Tukey’s analysis of different taxonomy groups with respect
to the KM. I list below the classes that can be considered having the same distribution of KM:

••••• EukNotFungi with Archea,Bacteria,Fungi and Mammalia

• Archea with Bacteria Fungi and Green Plants

• Bacteria with Fungi

• Fungi with mammalia

. In practice it seems that Green Plants seem to have separate distributions of KM with respect
to the others. 28



(a) In this figure is represented the Tukey’s analysis of different EC groups with respect to the
temperatures.I list below the classes that can be considered having the same distribution of
temperature:

••••• ’1’ with ’3’,’4’ and ’5’

• ’2’ with ’5’ and ’6’

• ’3’ with ’5’

• ’5’ with ’6’

. In practice, ’5’ and ’6’ seem to have a distribution of temperatures that bond all the others

(b) In this figure is represented the Tukey’s analysis of different EC groups with respect to the
KM. It can be seen here that the only ’EC first’ that seemengly comes to a different distribution
of KM with respect all the others that in constrast seem to have the same distribution, is ’4’.

Figure 2.13
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From figure 2.12a one can see that EukNotFungi are found in similar distribution with
Fungi and Green Plants. Bactreria are similar to Mammalia and GreenPlants but not
with Fungi. Fungi is similar with GreenPlants. From here it can be noted that Archeas
live in much hotter environment. From figure 2.12b one can see that more or less they
have all the same distributions of KM but Green Plants. From figure 2.13a one can see
that ’5’ and ’6’ seem to have a distribution of temperatures that bond all the others

From figure 2.13b one can see that ’4’ is different in KM distribution with everybody.

2.3 Uniprot P11838

Uniprot P11838 is the endothiapepsin protein from fungi that belongs to the class of
enzymes of Aspartic proteases. These are a class of enzymes that play a causative
role in numerous diseases such as malaria , Alzheimer’s disease, fungal infections , and
hypertension . For this reason on the PDB repository I have found many strucutues.
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Chapter 3

Mathematical methods

As already explained in the previous chapters, I have 4061 structures of enzymes corre-
sponding to 494 uniprot aminoacid sequences. From these structures, I first extract the
contact map, then calculate the Laplacian and the Normalized Laplacian and their eigen-
vectors and eigenvalues. I take the 40 biggest and 40 smallest eigenvalues as descriptors
for each structure. Since it is known that some relation exists among smallest eigenvalues
and the number of nodes, I tried to rescale them (to make dimensionality dependence
vanish or reduce). I then proceed by applying PCA,t-SNE and UMAP to visualize ’dis-
tances’ among enzymes. The principal motivation for this procedure is that, it is believed
that global features of an enzyme are essential for determination of its properties (fold-
ing kinetic for example (KM) [23]). In this respect, the possibility of reconstructing the
protein structure starting from a reduced representation (A) is an essential aspect for its
application to the study of the protein structure. This fact is linked to [4] that suggests
a representation of our enzyme as a manifold represented by same contact map (A). The
contact map has got naturally associated a Laplacian (L) operator. The action of L
on a N-dimensional lattice corresponds to the discretization of a N-dimensional elastic
membrane, where L’s eigenvalues represent the frequencies of the normal modes and L’s
eigenvectors represent the normal mode solutions or eigenfunctions.

3.1 Methods used for the analysis

In this chapter I expose the mathematical background needed to justify the approach
I pursued in this work for the analysis of the dataset described. In Introduction to
the use of graph in the description of complex networks, I introduce a little
bit the history of networks and the usual features that one extrapolate for a description
of them. In particular it is interesting to look at the clustering components, average
distances among nodes, link density and degree distributions. These data are extracted to
understand features of the networks we are working with. In Contact maps I introduce
how I construct the networks I will work with. I have chosen two different thresholds (8
Å,12 Å), as commonly used in the literature. In Laplacian and subsections, I will define
Laplacian and speak about some of its properties that I looked at. In particular, I state
that the smallest eigenvalue of the laplacian λ0=0, and that the number of connected
components of a graph is equal to the number of eigenvalues equal to 0 (important result
as I consider just connected contact maps). In Introduction to distance geometry
and Embedding problem I introduce the embedding procedure. This problem will be
approached in the following sections. In PCA, t-SNE and UMAP I will explain the
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different embeddings techniques. The final goal is a classification through geometrical
patterns associated to each enzyme.

3.2 Introduction to the use of graph in the descrip-

tion of complex networks

This section is taken from [18]. The historical development of the use of graphs in the
study of complex systems is due to Erdos and Renyi, that in their work hypothesized a
simple model that for each graph of N nodes and a probability of connection between
two nodes p, had in average pN(N-1) edges. Their models were completely random,
but in the years people started to realize that in real networks there is some order and
correlation among parts of the graph, and so some effort should have been put in the
realization of measures that could grasp these non random properties.

Motivated by this some concepts have arisen. Small worlds: The small-world concept
in simple terms describes the fact that despite their often large size, in most networks
there is a relatively short path between any two nodes. The distance between two
nodes is defined as the number of edges along the shortest path connecting them. The
most popular manifestation of small worlds is the “six degrees of separation” concept,
uncovered by the social psychologist Stanley Milgram (1967), who concluded that there
was a path of acquaintances with a typical length of about six between most pairs
of people in the United States (Kochen, 1989). The small-world property appears to
characterize most complex networks: the actors in Hollywood are on average within
three co-stars from each other, or the chemicals in a cell are typically separated by three
reactions. The small-world concept, while intriguing, is not an indication of a particular
organizing principle. Indeed, as Erdos and Renyi have demonstrated, the typical distance
between any two nodes in a random graph scales as the logarithm of the number of nodes.
Thus random graphs are small worlds as well. Clustering: A common property of social
networks is that cliques form, representing circles of friends or acquaintances in which
every member knows every other member. This inherent tendency to cluster is quantified
by the clustering coefficient (Watts and Strogatz, 1998), a concept that has its roots in
sociology, appearing under the name “fraction of transitive triples” (Wassermann and
Faust, 1994). Let us focus first on a selected node i in the network, having ki edges which
connect it to ki other nodes. If the nearest neighbors of the original node were part of a

clique, there would be
ki(ki−1)

2
edges between them. The ratio between the number Ei of

edges that actually exist between these ki nodes and the total number
ki(ki−1)

2
gives the

value of the clustering coefficient of node i,

C i =
2Ei

ki(ki − 1)
(3.1)

The clustering coefficient of the whole network is the average of all individual Ci’s.

C̄ =
1

N

∑
C i (3.2)

In a random graph, since the edges are distributed randomly, the clustering coefficient
is C=p. However, in most, if not all, real networks the clustering coefficient is typically
much larger than it is in a comparable random network. Degree distribution: Not all
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nodes in a network have the same number of edges (same node degree). The spread in the
node degrees is characterized by a distribution function P(k), which gives the probability
that a randomly selected node has exactly k edges. Since in a random graph the edges
are placed randomly, the majority of nodes have approximately the same degree, close
to the average degree 〈k〉 of the network. The degree distribution of a random graph is a
Poisson distribution with a peak at P(〈k〉). One of the most interesting developments in
our understanding of complex networks was the discovery that for most large networks
the degree distribution significantly deviates from a Poisson distribution.

3.3 Network properties related to distance matrix

As [16] and [18] tells us, for studying networks it can be important look for two funda-
mental properties of real complex networks that have attracted much attention recently:
the small-world and the scale-free properties. Many naturally occurring networks are
small world since one can reach a given node from another one, following the path with
the smallest number of links between the nodes, in a very small number of steps. This
corresponds to the so-called “six degrees of separation” in social networks[17]. It is math-
ematically expressed by the slow (logarithmic) increase of the average diameter of the
network,l̄, with the total number of nodes N, l̄ ∼ ln(N), where ` is the shortest distance
between two nodes and defines the distance metric in complex networks Equivalently,
we obtain:

N ∼ el̄/l0 (3.3)

where l0 is a characteristic length.
A second fundamental property in the study of complex networks arises with the

discovery that the probability distribution of the number of links per node, P(k) (also
known as the degree distribution), can be represented by a power-law (scale-free) with
a degree exponent γ usually in the range 2 ≤γ ≤ 3:

P (k) ∼ k-γ (3.4)

3.4 Contact Maps

The undirected graph I work on is the contact map. The contact map is a first coarse-
grained representation of the protein. In particular, it is the representation of the inter-
actions among its constituents,. As already said, PDB files are structured with many
three-d coordinates. Each of these coordinates is associated with an atom. For con-
structing an adjacency matrix (A) I have extracted all the coordinates of Cα atoms
that are considered as the position of the residue attached to it. The edges of A are
those couples of Cα atoms that are closer then some threshold ε and so are considered
to be interacting. The dimension of A is equal to the number of Cα we find in the protein.

Aij = 1
(xi − xj)

2 ≤ ε
(3.5)

The contact map so obtained represents a graph (G,V,E). Whose nodes are represented
with i,j and degrees ki. This will be the standard notation I am going to mantain in the
following section throughout all the thesis. In my case I set ε = 8 and 12 (Å) following
in my approach [23].
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3.5 Laplacian

From A, the Laplacian operator of a network, is derived as:

L = D − A (3.6)

Dij = δijki (3.7)

Where di is the number of contacts for each residue. The dimension of the Laplacian
is the same as the adjacency matrix. In particular, the action of L on a N-dimensional
lattice corresponds to the discretization of a N-dimensional elastic membrane, where L’s
eigenvalues represent the frequencies of the normal modes and L’s eigenvectors represent
the normal mode solutions or eigenfunctions [24]. With this analogy in mind, the eigen-
value decomposition of the Laplacian operator corresponds to searching for extremal
values of the Rayleigh functional, vectors x that maximize or minimize the mutual dis-
tance between nodes in the network, expressed by the following semi-positive quadratic
form:

~xTL~x =
∑
i∼j

(xi − xi)
2 (3.8)

The trivial solution corresponds to the 0 eigenvalue, in which all nodes have the same
spatial coordinates and thus xi = xj for every i,j. The non-trivial solutions seek for a
minimal distance by imposing the orthogonality with the constant vector. If we hypothe-
size that the elastic potential schematized by the Laplacian operator is an approximation
around the minimum of the Lennard-Jones potential-like function, modeling the inter-
action between protein residues, the 3D coordinates of Cα can be estimated by the
components of the 3 eigenvectors associated with the 3 smallest positive eigenvalues of
the Laplacian operator, thus providing a reconstruction of the 3D protein structure up
to a linear transformation.
It is useful also to introduce the normalized Laplacian, as for several classification appli-
cations it resulted to perform better:

L =


1, if i = j

1/
√
kikj, if i,j adjacent

0 otherwise

(3.9)

Once diagonalized, we will call the eigenvalues (λ0, .., λn).

3.5.1 Laplacian’s spectral properties

In this section and the next, we start with a few basic facts about eigenvalues. Some
simple upper bounds and lower bounds are stated. In this section we follow the treatment
of [19]. Mohar in his survey [20]. As the first property to mention of the Laplacian and
the normalized laplacian is:

Theorem 1 The smallest eigenvalue λ0=0.

Proof :
1TL1 =

∑
ij

(diδij)− Aij =
∑
i

(di − di) = 0 (3.10)

The algebraic. connectivity of a graph G is the second-smallest eigenvalue of the Lapla-
cian matrix of G.
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Theorem 2 The second smallest eigenvalue is greater than 0 if and only if G is a con-
nected graph.

Lemma 3 Let G be a simple graph. Then:

λ1 ≤ max{di + dj|i, j ∈ E(G)} (3.11)

where di is the degree of the node i. The equality holds just for connected graphs.

Theorem 4 Let G be a simple graph. Denote by r = max{di + dj|(i, j) ∈ E(G)} and
s = max{di + dj|(i, j) ∈ E(G)− (i, j)}with(i, j) ∈ E(G) such that di + dj = r. Then:

λ1(G) ≤ 2 +
√

(r − 2)(s− 2) (3.12)

this result may further be improved.

Theorem 5 Let G be a simple connected graph. Then:

λ(G) ≤ 2 +max{
√

(di + dj − 2)(di + dk − 2)} (3.13)

where the maximum is taken over all pairs (i, j), (i, k) ∈ E(G). Moreover, equality holds
in 3.13 if and only if G is regular bipartite graph or a semiregular graph, or a path of
order four.

3.5.2 Normalized Laplacian spectral properties

In this section are reported the equivalent theorems of the previous section for the nor-
malized laplacian L where some change is neede. For example, we will see that the
eigenvalues of any graph lie between 0 and 2.

Lemma 6 For a graph G on n vertices, we have:

1. ∑
i

λi ≤ n (3.14)

with equality holding if and only if G has no isolated vertices.

2. For n≥ 2 :

λ1 ≤
n

n− 1
(3.15)

with equality holding if and only if G is the complete graph on n vertices. Also, for a
graph G without isolated vertices, we have:

λn-1 ≥
n

n− 1
(3.16)

3. For a graph which is not a complete graph, we have λ1≤ 1

4. If G is connected, then λ1 ≥ 0. If λi=0 and λi+1 6= 0, then G has exactly i + 1 connected
components.
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5. For all i ≤ n− 1 , we have:
λi ≤ 2 (3.17)

with λn-1= 2 if and only if a connected component of G is bipartite and nontrivial.

6. The spectrum of a graph is the union of the spectra of its connected components.

Lemma 7 The following statements are equivalent:

1. G is bipartite.

2. G has i + 1 connected components and λn-j = 2 for 1 ≤ j ≤ i

3. For each λi, the value 2- λi is also an eigenvalue of G

3.6 Laplacian Eigenmaps for dimensionality reduc-

tion and Data Representation

Enzymes are here considered in a 1 to 1 correspondence to contact map, as undirected
graphs. The Laplacian associated to an undireced graph is useful for classification tasks
as it can be associated to a diffusion problem that gives informations about embedding
an associated manifold in an Hilbert space of some dimension, and this allows looking
at the classification problem through a geometrical perspective. The algorithm works
in the following way as [13] explains: Given k points {x1, ...,xk} in Rl , we construct a
weighted graph with k nodes, one for each point, and a set of edges connecting neigh-
boring points. The embedding map is now provided by computing the eigenvectors of
the graph Laplacian. The algorithmic procedure is formally stated below.

1. (constructing the adjacency graph). We put an edge between nodes i and j if xi and
xj are “close”. ε -neighborhoods (parameter ε ∈ R). Nodes i and j are connected
by an edge if ||xi − xj||2 < ε where the norm is the usual Euclidean norm in Rl .

2. Compute eigenvalues and eigenvectors for the generalized eigenvector problem.

3.6.1 Justification

Let us first show that the embedding provided by the Laplacian eigenmap algorithm
preserves local information optimally in a certain sense. The following is based on stan-
dard spectral graph theory[14]. Recall that given a data set, we construct a weighted
graph G = (V,E) with edges connecting nearby points to each other. For the pur-
poses of this discussion the graph is connected. Consider the problem of mapping the
weighted graph G to a line so that connected points stay as close together as possi-
ble. Let y = (y1, y2, ..., yn)T be such a map. For this map to be defined we choose the
minimization of the cost function:

H =
∑
i,j

(yi − yj)
2Aij

(3.18)
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This minimization is equivalent to the minimization of C = yTLy infact:∑
i,j

(yi − yj)
2Aij =

∑
i

Diiyi
2 +

∑
j

Djjyj
2 − 2

∑
i,j

Aijyiyj := 2yTLy (3.19)

Note that this calculation also shows that L is positive semidefinite. Therefore, the
minimization problem reduces to finding:

argmin
y,yTDy

yTLy (3.20)

Where TDy removes arbitrary scaling factor in the embedding. Matrix D provides a
natural measure on the vertices of the graph. The bigger the value Dii (corresponding
to the ith vertex) is, the more “important” is that vertex. As L is semidefinite positive
we have that y that minimizes (3.18) is given by the minimum eigenvalue solution of the
generalized eigenvalue problem:

Ly = λDy (3.21)

Where we note that if 1 is the vector of all 1 then its eigenvalue λ = 0 then we further
ask:

yT1 = 0 (3.22)

So the solution coincides with the eigenvector associated with the second smallest eigen-
value. Now consider the more general problem of embedding the graph into m-dimensional
Euclidean space. The embedding is given by the k×m matrix Y = [y1, y2, ..., ym], where
the ith row provides the embedding coordinates of the ith vertex. Similarly we have to
minimize: ∑

i,j

||y(i) − y(j)||2Aij = tr(Y TLY ), (3.23)

Where y(i) = [y(i)
1, ..., y

(i)
m]T is the m-dimensional representation of the ith vertex.

argmin
trY TDY =I

Y TLY

(3.24)

For the one-dimensional embedding problem, the constraint prevents collapse of the
node coordinates onto a point. For the m-dimensional embedding problem, the constraint
presented above prevents collapse onto a subspace of dimension less than m−1 (m if, as
in one-dimensional case, we require orthogonality to the constant vector). Standard
methods show that the solution is provided by the matrix of eigenvectors corresponding
to the lowest eigenvalues of the generalized eigenvalue problem Ly = λDy.

3.6.2 Using Laplace Beltrami operator for manifold analysis

In the following section we describe which properties of the Laplacian eigenvalues on a
graph are desirable for embedding problems and are shared with Laplace-Beltrami oper-
ator on manifolds. Let M be a smooth, compact, m-dimensional Riemannian manifold.
If the manifold is embedded in Rl , the Riemannian structure (metric tensor) on the
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manifold is induced by the standard Riemannian structure on Rl . As we did with the
graph, we are looking here for a map from the manifold to the real line such that points
close together on the manifold are mapped close together on the line. Let f be such a
map. Assume that f : M −→ R is twice differentiable. Consider two neighboring points
x, z ∈ M . Let’s try to estimate the distance between two embedded points in terms of
the distance of two points in the manifold:

|f(x)− f(z)| ≤ distM(x, z)||∇f(x)||+ o(distM(x, z)) (3.25)

The gradient ∇f(x) is a vector in the tangent space TMx, such that given another
vector v ∈ TMx, df(v) = 〈∇f(x),v〉M. Let l = distM(x, z). Let c(t) be the geodesic
curve parameterized by length connecting x = c(0) and z = c(l). Then:

f(z) = f(x) +

∫ l

0

df(c(t)) dt (3.26)

and so we have that:

f(z) = f(x) +

∫ l

0

〈∇f(c(t)), c′(t)〉dt (3.27)

Now by Schwartz inequality:

〈∇f(c(t)), c′(t)〉 ≤ ||∇f(c(t))||||c′(t)|| (3.28)

As ||c′(t)|| = 1 then if we expand in Taylor series at the first order:

〈∇f(c(t)), c′(t)〉 ≤ ||∇f(x)||+ o(t) (3.29)

integrating:
|f(z)− f(x)| ≤ l||∇f(x)||+ o(l) (3.30)

as l is the geodesic distance in M between x,z then the statement is verified. Thus, we
see that ||∇f || provides us with an estimate of how far apart f maps nearby points.We
therefore look for a map that best preserves locality on average by trying to find:

argmin
||f ||2=1

∫
M

||∇f ||2

(3.31)

where the integral is taken with respect to the standard measure on a Riemannian
manifold. Note that minimizing

∫
M ||∇f(x)||2 corresponds to minimizing on a graph

Lf =
∑

i,j(f i − f j)
2W ij . Here, f is a function on vertices, and fi is the value of f on the

i-th node of the graph. It turns out that minimizing the objective function reduces to
finding eigenfunctions of the Laplace Beltrami operator L.

Lf := −div∇(f), (3.32)

where div is the divergence of the vector field. It follows from the Stokes’ theorem that
− div and ∇ are formally adjoint operators, that is, if f is a function and X is a vector
field, then: ∫

M

〈∇f,X〉 =

∫
M

divXf (3.33)
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and so: ∫
M

||∇f ||2 =

∫
M

L(f)f (3.34)

We see that L is positive semidefinite. f that minimizes
∫
M
||∇f ||2 2 has to be an

eigenfunction of L. The spectrum of L on a compact manifold M is known to be discrete
(Rosenberg, 1997). Let the eigenvalues (in increasing order) be 0 = λ0 ≤ λ1 ≤ λ2 ≤
...,≤ λn and let fi be the eigenfunction corresponding to eigenvalue λi. It is easily seen
that f0 is the constant function that maps the entire manifold to a single point. To avoid
this eventuality, we require (just as in the graph setting) that the embedding map f be
orthogonal to f0. It immediately follows that f1 is the optimal embedding map. Following
the arguments of the previous section, we see that:

x −→ (f 1(x), ..., fm(x)) (3.35)

provides the optimal m-dimensional embedding

3.7 PCA

Given a set {x1, ..., xn} with xi ∈ Rl such that vector space and having some distribution
whose covariance matrix

Σ(ij) =
∑
k

x(i)
kx

(j)
k

n2
−
∑
k

x(i)
k

n

∑
l

x(j)
l

n
(3.36)

Then PCA is a dimensional reduction of my space that performs a rotation of the axis
of my l-dimensional space, suche that the covariance matrix becomes diagonal and its
eigenvectors are the direction in which the distribution is more spread making now our
variables indipendently distributed and its eigenvector represent how much spread data
are. In this process we want to use less memory loosing the least information as possible
and so the least precision. One way to encode these points is to represent a lower-
dimensional version of them. For each xi ∈ Rn we find yi ∈ Rl with l ≤ n. We want
to find an encoding function f : Rn −→ Rl and a decoding function g : Rl −→ Rn

such that x ≈ g(f(x)). PCA is defined by our choice of the decoding function. Let
x = g(y) = Dy where D ∈ Rnxl. The l-columns are orthogonal one another and
normalized to unity suche that the encoding function is unique. In the costruction of the
algorithm for PCA we first have to choose c such that it minimizes the distance between
x and its decoded counterpart. We call it c*. The minimization is with respect to the
L2 norm:

c* = argmin
c

[x− g(c)]2
2 (3.37)

The equation can be rephrased as

c* = argmin
c

(x− g(c))T(x− g(c)) (3.38)

Then we find that:
c* = argmin

c
g(c)Tg(c)− 2xTg(c) (3.39)

As already stated g(c)=Dc, then we can rephrase as:

c* = argmin
c

cTDTDc− 2xTDc (3.40)
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We solve the problem via vector calculus:

∇c(c
TDTDc− 2xTDc) = 0 (3.41)

then:
c = DTx (3.42)

This makes the algorithm efficient and one can make the encription via matrix-vector
moltiplication. So the encoder function:

f(x) = DTx (3.43)

having that the decoding function is:

r(x) = f(g(x)) = DDTx (3.44)

Now is time to find D. To do so, we minimize the L2 distance between inputs and
reconstructions. Having that this must be valid for all the data we must now minimize
the Frobenius norm of the matrix of all errors computed over all dimensions and points:

D* = argmin
D

√∑
i,j

(xj
(i) − r(x(i))j)2 (3.45)

Where as already said DDT=I l. To derive the algorithm let’s consider the case for l=1.

d* = argmin
d

=
∑
i

||x(i) − ddTx(i)||22 (3.46)

This formulation is not pleasing statistically and so we rephrase it considering dTx(i) as
a scalar and exploiting the commutativity of the scalar product:

d* = argmin
d

=
∑
i

||x(i) − x(i)Tdd||22 (3.47)

With always the constraint on d to be unitary.
If I then define as X being the p× n then I can rephrase the problem as:

d* = argmin
d

Tr(X −XddT)T(X −XddT) (3.48)

and so it is valid

argmin
d

Tr(XTX)− Tr(XTXddT)− Tr(ddTXTX) + Tr(ddTXTXddT) (3.49)

that after noticing that minimization doesn’t depend on some factors and for the sym-
metric nature of scalar product:

argmin
d
− 2Tr(XTXddT) + Tr(ddTXTXddT) (3.50)

exploiting the ciclicity invariance of the and the normalization constraint dTd = 1, we
arrive at the equivalent formulation of the encoding problem as:

argmax
d

Tr(dTXTXd) (3.51)

with dTd=1 .
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3.8 t-SNE

In this section we describe the algorithm as described in [11]. t-SNE is an algorithm
to visualize high dimensional data in lower dimensional spaces (2 or 3). In contrast
with techniques that represent data preserving structure at high distances t-SNE pro-
vides a method for preserving local neighborhood in points mapped onto a new (lower-
dimensional) space. This method provides a map f : X −→ Y where X = {x1, ...,xn}
and Y = {y1, ...,yn} where xi ∈ Rl (l >> 1)and yi ∈ Rm where m = 2, 3. The aim of
dimensionality reduction is to preserve as much of the significant structure of the high-
dimensional data as possible in the low-dimensional map. For high-dimensional data,
that lie on a low-dimensional non-linear manifold, it is usually more important to keep
the low-dimensional representations of very similar datapoints close together, which is
typically not possible with a linear mapping. t-SNE is capable of capturing much of
the local structure of the high-dimensional data very well, while also revealing global
structure such as the presence of clusters at several scales.

Let’s consider X and define the Euclidean distance d(xi,xj) = ||xi − xj||2 between
points in it.

t-SNE as a first step transforms the distance into conditional probability distribu-
tion.The similarity of datapoint xj to datapoint xi is the conditional probability, pj|i
, that xi would pick xj as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at xi .

pj|i =
exp{−d(xi,xj)

2

2σi
2
}∑

k 6=i exp{
−d(xk,xi)

2

2σi
2

}
(3.52)

. Because we are only interested in modeling pairwise similarities, we set the value of
pi|i to zero. For the lower dimensional counterpart whose distance between yi and yj is
d(yi,yj) = ||yi − yj||2 it is possible to compute a similar conditional probability which
we denote with qj|i

qj|i =
(1 + ||yj − yi||2)-1∑
k 6=i(1 + ||yk − yi||2)-3

(3.53)

. Again, since we are only interested in modeling pairwise similarities, we set qi|i = 0.
The t-Student distribution has been choosen as it has heavier tails and so bigger distances
are put far apart and the problem of overcrowding in low dimensional spaces is overcome.
A second step consists on symmetrizing the probabilities.

pij =
pj|i + pi|j

2
qij =

qj|i + qi|j
2

pij =
exp{d(xi,xj)

2

2σ2
}∑

k

∑
l 6=k exp{

d(xl,xk)2

2σ2
}

(3.54)
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Note that in these way we have weights different from zero just for a couple of different
elements,i.e. pii = 0. Let Y be {y1,...,yn} the set of 2 dimensional vectors, and

qij =
(1 + ||yi − yj||2)-1∑

k

∑
l 6=k(1 + ||yk − yl||2)-1

(3.55)

If the map points yi and yj correctly model the similarity between the high-dimensional
datapoints xi and xj , the conditional probabilities pji and qji will be equal. Motivated
by this observation,t-SNE aims to find a low-dimensional data representation that min-
imizes the mismatch between pji and qji.

We have that t-SNE produces a map f : X −→ Y by minimizing the cost function :

H(pij|qij) = −
∑
ij

pijlog(
pij

qij

) (3.56)

that is called Kullback-Leibner divergence that is not convex neither symmetric . .
For this reason the minimization problem is addressed via greatest descent algorithm
and so choosing different starting points we will have different results corresponding to
different minima. By using a heavy-tailed distribution to measure similarities in the
lowdimensional map, t-SNE allows points that are only slightly similar to be visualized
much further apart in the map. This typically leads to very good visualizations compared
with other techniques.However, SNE suffers from a crowding problem that is the result
of the exponential volume difference between high and low-dimensional spaces .

Although the simple algorithm produces visualizations that are often much better
than those produced by other non-parametric dimensionality reduction techniques, the
results can be improved further by using either of two tricks. The first trick, which
we call “early compression”, is to force the map points to stay close together at the
start of the optimization. When the distances between map points are small, it is easy
for clusters to move through one another so it is much easier to explore the space of
possible global organizations of the data. Early compression is implemented by adding
an additional L2-penalty to the cost function that is proportional to the sum of square
distances of the map points from the origin. The magnitude of this penalty term and
the iteration at which it is removed are set by hand, but the behavior is fairly robust
across variations in these two additional optimization parameters. A less obvious way to
improve the optimization, which we call “early exaggeration”, is to multiply all of the
pij’s by, for example, 4, in the initial stages of the optimization. This means that almost
all of the qij’s, which still add up to 1, are much too small to model their corresponding
pij’s. As a result, the optimization is encouraged to focus on modeling the large pij’s by
fairly large qij’s. The effect is that the natural clusters in the data tend to form tight
widely separated clusters in the map. This creates a lot of relatively empty space in the
map, which makes it much easier for the clusters to move around relative to one another
in order to find a good global organization.

3.9 UMAP

Another dimensional reduction can be tried via UMAP and see whether it brings better
results. UMAP is an algorithm based in manifold theory and topological data analysis.
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UMAP formulation relies on topological arguments and constructions of fuzzy sim-
plicial sets, that contain uniformly data. UMAP has no computational restrictions
on embedding dimension, making it viable as a general purpose dimension reduction
technique for machine learning. We now expose the computational implementation of
the algorithm careless of the theoretical motivations that lay on category theory, and
management of simplicial sets (outside the scope of this thesis). UMAP can be put in
the class of k-neighbour based graph learning algorithms such as Laplacian Eigenmaps,
Isomap and t-SNE. As with other k-neighbour graph based algorithms, UMAP can be
described in two phases. In the first phase a particular weighted k-neighbour graph is
constructed. In the second phase a low dimensional layout of this graph is computed.
The differences between all algorithms in this class amount to specific details in how the
graph is constructed and how the layout is computed. The formulations of the algorithm
is based on the following axioms about data:

• there exists a manifold on which the data would be uniformly distributed.

• the underlying manifold of interest is locally connected.

• Preserving the topological structure of this manifold is the primary goal.

Any algorithm that attempts to use a mathematical structure akin to a k-neighbour
graph to approximate a manifold must follow a similar basic structure.

• Graph construction:

1. Construct a weighted k-neighbour graph

2. Apply some transform on the edges to ambient local distance.

3. Deal with the inherent asymmetry of the k-neighbour graph.

• Graph layout:

1. Define an objective function that preserves desired characteristics of this k-
neighbour graph.

2. Find a low dimensional representation which optimizes this objective func-
tion.(in t-SNE KL divergence and UMAP cross-entropy)

The idea here is to construct fuzzy simplicial sets that are covering the points in the
manifold. We can construct the fuzzy simplicial set local to a given point x by finding the
k nearest neighbors, generating the appropriate normalised distance on the manifold, and
then converting the finite metric space to a simplicial set via the functor FinSing, which
translates into exponential of the negative distance. Infact, given X be {x1, ...,xn} with
a metric d : X × X −→ R+. Given an input hyperparameter k, for each xi we compute
the set {xi, ...,xik} of the k nearest neighbors of xi under the metric d. This computation
can be performed via any nearest neighbour or approximate nearest neighbour search
algorithm. For each xi exist ρi and σi such that:

ρi = min{d(xi,xij)|1 ≤ j ≤ k} (3.57)

and σi such that : ∑
j=1

exp{
−max(0, d(xi,xij))

σi

} = log2(k) (3.58)

43



The graph associated is =(V,E,w) where the vertices V of are simply the set X the edges
ρi= {(xi,xij)|1 ≤ j ≤ k} and weights:

wij = exp{
−max(0, d(xi,xij)− ρi)

σi

} (3.59)

. In practice UMAP uses a force directed graph layout algorithm in low dimensional
space. A force directed graph layout utilizes of a set of attractive forces applied along
edges and a set of repulsive forces applied among vertices. Any force directed layout al-
gorithm requires a description of both the attractive and repulsive forces. The algorithm
proceeds by iteratively applying attractive and repulsive forces at each edge or vertex.
This amounts to a non-convex optimization problem. Convergence to a local minima is
guaranteed by slowly decreasing the attractive and repulsive forces in a similar fashion
to that used in simulated annealing. In UMAP the attractive force between two vertices
i and j at coordinates yi and yj respectively, is determined by:

(−2ab+ ||yi − yj||2(b-1)
2)

(1 + ||yk − yl||22)
wxi,xj

(yi − yj) (3.60)

where a and b are hyper-parameters. Repulsive forces are computed via sampling due
to computational constraints. Thus, whenever an attractive force is applied to an edge,
one of that edge’s vertices is repulsed by a sampling of other vertices.The algorithm can
be initialized randomly but in practice, since the symmetric Laplacian of the graph G is
a discrete approximation of the Laplace Beltrami operator of the manifold, we can use a
spectral layout to initialize the embedding. [U+008C]is provides both faster convergence
and greater stability within the algorithm. UMAP is an algorithm that tries to preserve
global structures, however there are severe drawbacks due to the lack of measures for
global structures or even definitions of what global structures are.

3.9.1 Comparison between UMAP and t-SNE

The problem is always to look for relationships between two points in high dimensional
space X and low dimensional embedded space Y. t-SNE defines input probabilities in
three stages. First, for each pair of points, i and j, in X, a pair-wise similarity, pij ,
is calculated, Gaussian with respect to the Euclidean distance between xi and xj as in
(3.54), this is the definition of the distribution in high-dimension space. Following the
same steps in t-SNE section and using the same notation we now spot the differences
between the two algorithm traced in the differences among the different definitions of
cost functions and probability distributions. The starting distribution in both cases is a
Gaussian whose variables are the distances defined in the graph. In t-SNE:

vj|i = exp{d(xi,xj)
2

2σ2
} (3.61)

and
wj|i = (1 + ||yi − yj||2)-1 (3.62)

pij =
vj|i + vi|j∑

k

∑
l 6=k(vl|k + vk|l)

(3.63)

and,

qij =
wj|i + wi|j∑

k

∑
l 6=k(wl|k + wk|l)

(3.64)
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with
H(pij|qij) = −

∑
ij

pijlog(
pij

qij

) (3.65)

as the cost function to be minimized thanks to gradient descent methods. In UMAP we
on the other hand we stop at the definition of distances not caring about normalization
to probability distribution and work with them as the functions that define simplicial
sets. As we said in the previous section:

vj|i = exp[
−dij − ρi

σi

] (3.66)

Calculated just for k-nearest neighbours and vj|i for all the rest of couples.. dij is the
distance between xi and xj , which UMAP does not require to be Euclidean. ρi is the
distance to the nearest neighbor of i. σi is the normalizing factor, that plays a similar
role to the perplexity-based calibration of σi in t-SNE. Symmetrization is carried out by
fuzzy set union can be expressed as:

vij = vj|i + vi|j + vj|ivi|j (3.67)

The low dimensional similarities are given by:

wj|i = (1 + a||yi − yj||22b)-1 (3.68)

where a and b are user-defined positive value. The cost function to be minimized via
gradient descent algorithm is:∑

i 6=j

vijlog(
vij

wij

) + (1− vij)log(
1− vij

1− wij

) (3.69)

3.9.2 Spectral techniques for embedding and clustering

While there is a large body of work on dimensionality reduction in general, most existing
approaches do not explicitly take into account the structure of the manifold on which
the data may possibly reside. The justification comes from the role of the Laplacian
operator in providing an optimal embedding. The Laplacian of the graph obtained from
the data points may be viewed as an approximation to the Laplace-Beltrami operator
defined on the manifold.The embedding maps for the data come from approximations
to a natural map that is defined on the entire manifold. Laplacian preserves the local
structure of a manifold so data that are outliers don’t weight much. A byproduct of this
is that the algorithm implicitly emphasizes the natural clusters in the data.

3.10 Description of dataset

As already mentioned, I have 4061 different PDB structures related to 494 different
UniProt sequences. For each PDB I have extracted the contact map and calculated
the Laplacian,its eigenvalues, eigenvectors, number of nodes, number of components and
number of links. Besides these quantitative labels there are also labels for taxonomy,
KM, organism and EC values. Here below some features of interest about the dataset.

45



Chapter 4

Description of contact maps and
Laplacian

The scope of this chapter is the description of the networks obtained. In the first section,
I will describe the contact maps obtained from the dataset using the tools introduced
in section network properties related to distance matrix. Then I will describe
laplacian’s (L) and normalized laplacian’s L spectra for all enzymes for both the cases
of 8 and 12 Å. Using these informations, I prepare the reader for the rest of the analysis
contained in the next chapter. When I speak about smallest eigenvalues, I refer to the
smallest eigenvalues after the (λ0=0) eigenvalue, which I always neglect as it is trivial and
all contact maps are made by one unique component. After this analysis, I find that the
distributions of 40 smallest and 40 biggest eigenvalues of the laplacian, and properties
of contact maps obtained with threshold at 8 Å seem to contain enough information
for PCA,t-SNE,UMAP representation described in next chapter. For this reason, in
the next chapter I will not show the results for the the normalized laplacian at 8 Å
and for the laplacian and normalized laplacian at 12 Å. Two important results of this
chapter are the linear dependence of the logarithm of the 40 smallest eigenvalues with the
logarithm of the number of nodes, and the logarithm of the 40 biggest eigenvalues with
the logarithms of the link density for both thresholds (thus a polynomial relationship).
Another important result of this section is the observation that the dataset contains
families of enzymes having the same uniprot code (aminoacidic sequence) but different
PDBs (structure) that seem to share similar laplacian spectra and network’s properties,
confirming the hypothesis of similar spectral representation for similar proteins. It is
a general fact from which I highlight just the most striking redundance, the ’P11838’
protein in Fungi.

4.1 Contact maps

I here report the description of the contact maps obtained with threshold at 8 Å and 12
Å. Their description will be brought on the three aspects I have already spoken about:

• small world properties described via relation 3.3

• scale free invariance described by relation 3.4

• average clustering coefficient described via formula 3.2
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(a) (b)

Figure 4.1: In these figures in the x-axis are the degrees for each node of one enzyme ,
and on the y-axis the number counts for each enzyme in the case of threshold 8 Å (a)
and 12 Å (b). Here are represented superposed all the enzymes to show that the degree
distributions are not scale invariant in the sense of equation (3.4) in neither case. In that
case I would have had a decaying graph but that is not the case and infact there is an
initial increase of the probability and then a fall.

As for the first item of the above list, it can be seen that,from fig.[4.7a] and [4.7b] these
enzyme adhere (3.3) for both 8 and 12 Å, and so they have the small world property
with l0=0.695 and l0=0.708 . Infact from a fit I obtain the relation:

log(l̄) = 0.695log(N) + 1.117
log(l̄) = 0.708log(N) + 1.405

(4.1)

Where:

l̄ =
1

N

N∑
i≤j

dij (4.2)

And the parameters 0.694 and 1.117 and 0.708, are found by fitting data and the relative
R2 measure is 0.9. The scale invariance, however, is not matched, indeed, looking at
the distribution of the degrees for each enzyme of figure 4.1a and 4.1b, no one has the
k-γ. The first evidence of structure in the dataset, comes from the distribution of link
density in fig 4.2a for 8 Å contact maps, and less evidently in 4.2b for 12 Å contact
maps. In the former it can be seen that there are three peaks, in the latter, the three
peaks smear. I interpret this behavior as the fact that different aminoacidic sequences
result more different one another at 8 Å. The complete description in terms of the label
distributions of the three peaks of figure 4.2a is contained in figures from 4.3a to 4.5d.
I have decided not to go further in the analysis of the details. One of these three peaks
contains the 554 fungi 3d structures belonging to the same uniprot ’P11838’, that affect
peak size and shape. Shifting to clustering coefficients, we start from figure 4.2a, where
there is a peak around 0.53 with 1198 enzymes. It turns out that also this peak is formed,
for the majority, by P11838 structures. It is by now clear that P11838 is constituted by
very similar structures. This behavior is found for other uniprot sequences too.
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(a) (b)

Figure 4.2: In these two figures are represented the density of links in the distribution of
the contact maps calculated with threshold 8 Å (a), 12 Å (b). The three peaks in figure
(a) are mostly due to redundancies of PDB code for the same uniprot as in the case of
the highest peak where there is an over-representation of 554 structures from P11838.
In figure (b) the peaks are still there even though,the distribution is more smeared. The
above observations suggest that at coarser grained scales enzymes that don’t belong to
the same uniprot maybe more different and so, the capability of spotting some cluster is
diminished.

4.1.1 considerations about biggest and smallest eigenvalues dis-
tributions

In the following subsection I am going to comment the figures that describe the dis-
tribution of biggest and smallest eigenvalues for both normalized and not normalized
laplacian with threshold 8 and 12 Å. These comments are made in the perspective of
the use of these data for comparison of networks with PCA,t-SNE and UMAP repre-
sentation. From tables 4.2, 4.1, 4.5 and 4.6, it can be seen (for both L and L and both
thresholds) that the logarithm of the 40 smallest eigenvalues have a linear dependence
on the logarithm of number of nodes (with different coefficients), while, from figures
4.10a and 4.10b, the biggest eigenvalues show some dependence on the number of nodes
that is however too noisy to try to be removed by scaling. For this reason one part of
the analysis will be brought on by rescaling the smallest eigenvalues with a function of
node number. From the set of figures related to 4.15b (biggest eigenvalues-link density)
and 4.14b (smallest eigenvalues-link density) for both Laplacian at 8 Å and 12 Å, it
can be seen that biggest eigenvalues seem to depend on the link density while smallest
eigenvalues don’t, (that is, they do in a very noisy way). This would suggest a rescaling
with respect to the link density of the biggest eigenvalues for further analysis (which I
didn’t have the time to test).

4.2 description of distributions of eigenvalues

In this section I am going to take a look on the eigenvalues of the laplacian {L} for
threshold at 8 Å and 12 Å. Having verified that information are similar as in the case
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(a) (b)

(c)

(d)

Figure 4.3: In these figure it is represented the composition of the first peak (11.3-11.4) in
figure 4.2a are represented in terms of the classes EC first (a), taxonomy (b), temperature
(c) and KM (d). It can be seen that a biggest chunks comes from mammalia. Also in
this case we find an uniprot code ’P00374’ containing 51 PDB’studied in different ways,
the EC second ’1’ everywhere, the KM however vary and the temperature is 35. They
form the biggest chunk unified of the peak as in total we have 264 elements. It is difficult
to locate this in the t-SNE-UMAP analysis.
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(a) (b)

(c) (d)

Figure 4.4: In these figure it is represented the composition of the second peak (11.3-
11.4) in figure 4.2a are represented in terms of the classes EC first (a),taxonomy (b),
temperature (c) and KM (d). It can be seen that a biggest chunks come from mam-
malia and bacteria. Also in this case we find an uniprot code ’P34913’ containing 61
PDB’studied in different ways, the EC second ’3’everywhere, the KM however vary and
the temperature is 35. They form the biggest chunk unified of the peak as in total we
have 439 elements. It is difficult to locate this in the t-SNE-UMAP analysis.
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(a) (b)

(c) (d)

Figure 4.5: In these figure it is represented the composition of the third peak (12.4-
12.6) in figure 4.2a are represented in terms of the classes EC first (a),taxonomy (b),
temperature (c) and KM (d). It can be seen that a biggest chunks come from mammalia
and bacteria. Also in this case we find an uniprot code ’P11838’ containing 436 PDB’s
studied in different ways, the EC second ’3’everywhere, the KM however vary and the
temperature is 35. This is a part of the chunk coming also from figure 4.8a of 554. They
form the biggest chunk unified of the peak as in total we have 864 elements. This chunk
is pretty visible in t-SNE-UMAP analysis.
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(a) (b)

Figure 4.6: In these scatterplots are represented the logarithms of the number of nodes
per enzyme against the logarithm of the link density per enzyme for contact maps with
threshold of 8 Å (a) and 12 Å (b). From both the figures there is an hint of dependence
on the number of nodes that however is hidden by much noise. In general both the
figures seem compatible to the fact suggested in [25], that all the enzymes share similar
backbone structure, and more or less the enzymes have the same sparseness of long range
contact that seems not to have any structure

(a) (b)

Figure 4.7: In these figures are represented on the x-axis, the average distance among
the nodes on each enzyme in log scale and on the y-axis the number of nodes for each
enzyme in log scale, for both the cases of threshold 8 Å (a) and 12 Å (b). The fitting
equations are: (a) log(l̄)=0.695 log(N) + 1.117 (d) log(l̄)=0.708 log(N) + 1.405
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(a) (b)

Figure 4.8: In these figures in the x-axis are the average clustering coefficients calculated
with the nodes on each enzyme as in equation 3.2 for both the threshold 8 Å (a) and
12 Å (b). There is a peak of counts in the interval [0.53,0.537] of 1198 enzymes. These
’anomalies’ are analyzed in figures 4.9a,4.9b,4.9d,4.9c. It can be seen that the peak is
formed principally by those enzymes of ’P11838’

of link density, I decide to show the moments of distribution of the eigenvalues in tabs
4.8 and 4.9 of the laplacian L and normalized laplacian L for threshold at 8 Å only.

It seems from tab.4.8 that all the distributions are close, that is are similar. However
one would need to make further analysis to tell that. This analysis will be made in via
t-SNE and UMAP that try to represent some aspects (specified better in the following
sections and chapters) of distribution distances.

4.3 Effect of rescaling on Laplacian smallest eigen-

values

As already said , in the next section I will show the analysis of just the laplacian obtained
from the contact map with threshold 8 Å. In this section, exploiting the results of 4.1,
I try to extract the dependence on the smallest eigenvalues in a process that I call
’rescaling’. Let λi (i=1,..,40) be one of the smallest eigenvalue then:

λs,i = λin
-ai (4.3)

where λs,i is the eigenvalue rescaled, n the number of nodes and ai the fitting coefficient
I have found in tab 4.1. It is in our interest to look if the behavior of the rescaled
eigenvalues have some interesting feature, and can spot similarities among enzymes in-
dependently of dimension.

4.4 eigenvalues and link density

In this section I am going to evaluate the correlation between the biggest and smallest
eigenvalues with respect to the link density. This choice is motivated by the lack of rela-
tion among number of nodes and link density, and so it adds a degree of freedom whose
dependencies on eigenvalues may be important . It turns out that smallest eigenvalues
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(a) (b)

(c)
(d)

Figure 4.9: In these figure it is represented how the two ’peaks’ in figure 4.8a are repre-
sented in terms of the classes EC first (a), taxonomy (b), temperature (c) and KM (d).
It can be seen that a big chunk comes from fungi. That set is composed by 554 elements
whose uniprot code is P11838, it is endothiapepsin crystal studied in different ways, the
EC first ’3’, the KM are all 0.0016 and the temperature is not defined. These 554 graphs,
have 330 nodes. They are very similar one another and it can be considered as a redun-
dance. This group of enzymes is going to be recognized also later in the t-SNE-UMAP
analysis.
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(a) (b)

Figure 4.10: These figures represent the logarithm of the biggest (a) and the second
biggest eigenvalue (b) with respect to the logarithm of the number of nodes for laplacian
(L) obtained with a threshold of 8 Å. Even though a dependence on the number of
nodes is suggested for both the eigenvalues, it is very noisy, thus rescaling by node
number might be not much effective. This behavior is similar up to the 40-th biggest
eigenvalue.

seem not to depend on the link density, while linear dependence is visible for the biggest.
I won’t show the coefficients of dependence as I didn’t use them for rescaling. The R2

ranges from 0.6 to 0.9.
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(a)

(b)

(c)
(d)

Figure 4.11: Logarithm of the 40 smallest eigenvalues of the laplacian (L) in the con-
figurations from 8 Å and 12 Å in (a),(b), and of the the 40 smallest eigenvalues of the
normalized laplacian (L) in the configurations from 8Å and 12 Å in (c),(d) respectively,
as a function of protein size (node number).
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(a) (b)

Figure 4.12: These two figures represent histplots containing the means (µL) of the
distribution of the eigenvalues of the laplacian L for each enzyme whose contact map are
obtained with threshold 8 Å (a) and threshold 12 Å (b). They are very similar to figure
4.2a and 4.2b. It is infact the case that the trace of the diagonalized laplacian (sum
of eigenvalues) is = to the trace of the non diagonalized (sum of degrees). The coarse
graining of the structure,again, corresponds to a smear of the distribution.
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Table 4.1

log(λi) = alog(n) + b a b R2

log(λ1) -0.48 6.94 0.34
log(λ2) -0.71 9.36 0.62
log(λ3) -0.77 10.33 0.11
log(λ4) -0.91 12.29 0.72
log(λ5) -0.94 12.86 0.79
log(λ6) -1.02 14.31 0.82
log(λ7) -1.01 14.35 0.84
log(λ8) -1.10 16.02 0.85
log(λ9) -1.12 16.43 0.87
log(λ10) -1.15 17.12 0.89
log(λ11) -1.15 17.14 0.90
log(λ12) -1.17 17.76 0.91
log(λ13) -1.17 17.73 0.91
log(λ14) -1.14 17.23 0.91
log(λ15) -1.14 17.32 0.92
log(λ16) -1.15 17.59 0.92
log(λ17) -1.15 17.66 0.92
log(λ18) -1.16 18.00 0.93
log(λ19) -1.17 18.07 0.94
log(λ20) -1.17 18.24 0.94
log(λ21) -1.18 18.37 0.94
log(λ22) -1.17 18.42 0.94
log(λ23) -1.17 18.4 0.95
log(λ24) -1.17 18.49 0.95
log(λ25) -1.17 18.46 0.95
log(λ26) -1.16 18.38 0.95
log(λ27) -1.16 18.33 0.95
log(λ28) -1.17 18.68 0.95
log(λ29) -1.17 18.7 0.95
log(λ30) -1.18 18.85 0.96
log(λ31) -1.18 18.81 0.96
log(λ32) -1.16 18.57 0.95
log(λ33) -1.16 18.5 0.95
log(λ34) -1.16 18.53 0.95
log(λ35) -1.16 18.57 0.95
log(λ36) -1.16 18.65 0.95
log(λ37) -1.16 18.64 0.95
log(λ38) -1.16 18.78 0.95
log(λ39) -1.17 18.87 0.95
log(λ40) -1.17 18.88 0.95

Table 4.2

log(λi) = alog(n) + b a b R2

log(λ1) -0.54 6.13 0.37
log(λ2) -0.77 6.73 0.59
log(λ3) -0.83 7.06 0.67
log(λ4) -0.99 7.51 0.67
log(λ5) -1.03 7.72 0.74
log(λ6) -1.14 8.04 0.75
log(λ7) -1.16 8.18 0.77
log(λ8) -1.28 8.53 0.79
log(λ9) -1.31 8.69 0.8
log(λ10) -1.36 8.88 0.8
log(λ11) -1.38 9.01 0.81
log(λ12) -1.45 9.23 0.8
log(λ13) -1.47 9.34 0.8
log(λ14) -1.53 9.53 0.81
log(λ15) -1.53 9.62 0.81
log(λ16) -1.59 9.82 0.81
log(λ17) -1.6 9.88 0.8
log(λ18) -1.64 10.03 0.8
log(λ19) -1.65 10.12 0.8
log(λ20) -1.7 10.29 0.8
log(λ21) -1.73 10.39 0.8
log(λ22) -1.75 10.48 0.8
log(λ23) -1.78 10.58 0.8
log(λ24) -1.83 10.74 0.8
log(λ25) -1.85 10.83 0.79
log(λ26) -1.87 10.93 0.79
log(λ27) -1.91 11.05 0.79
log(λ28) -1.96 11.2 0.79
log(λ29) -1.97 11.28 0.79
log(λ30) -2.0 11.39 0.79
log(λ31) -2.03 11.48 0.79
log(λ32) -2.05 11.56 0.79
log(λ33) -2.04 11.57 0.77
log(λ34) -2.06 11.65 0.77
log(λ35) -2.08 11.72 0.77
log(λ36) -2.1 11.81 0.77
log(λ37) -2.12 11.87 0.77
log(λ38) -2.13 11.94 0.77
log(λ39) -2.15 12.0 0.77
log(λ40) -2.16 12.06 0.77

Table 4.3: In these tabs are represented the fitting parameters between the logarithms
of the 40 smallest eigenvalues of the laplacian and the logarithm of the number of nodes,
for the operators whose contact map has been calculated with the threshold of 8 Å (a)
and 12 Å (b)
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Table 4.4: In these tabs are represented the fitting parameters between the logarithms of
the 40 smallest eigenvalues of the normalized laplacian and the logarithm of the number
of nodes, for the operators whose contact map has been calculated with the threshold of
8 Å (a) and 12 Å (b)

Table 4.5

log(λi) = alog(n) + b a b R2

log(λ1) -0.47 4.0 0.43
log(λ2) -0.71 3.54 0.71
log(λ3) -0.76 3.66 0.79
log(λ4) -0.91 3.48 0.83
log(λ5) -0.93 3.53 0.87
log(λ6) -1.0 3.51 0.89
log(λ7) -0.99 3.68 0.9
log(λ8) -1.07 3.62 0.91
log(λ9) -1.08 3.69 0.92
log(λ10) -1.08 3.82 0.93
log(λ11) -1.07 3.92 0.94
log(λ12) -1.12 3.9 0.95
log(λ13) -1.11 4.0 0.95
log(λ14) -1.11 4.09 0.96
log(λ15) -1.09 4.19 0.96
log(λ16) -1.12 4.21 0.96
log(λ17) -1.11 4.27 0.96
log(λ18) -1.12 4.32 0.97
log(λ19) -1.11 4.38 0.97
log(λ20) -1.13 4.41 0.97
log(λ21) -1.13 4.46 0.97
log(λ22) -1.12 4.53 0.98
log(λ23) -1.12 4.57 0.98
log(λ24) -1.12 4.62 0.98
log(λ25) -1.12 4.66 0.98
log(λ26) -1.11 4.72 0.98
log(λ27) -1.11 4.75 0.98
log(λ28) -1.12 4.78 0.98
log(λ29) -1.12 4.81 0.98
log(λ30) -1.13 4.84 0.98
log(λ31) -1.12 4.88 0.98
log(λ32) -1.12 4.92 0.98
log(λ33) -1.12 4.95 0.98
log(λ34) -1.12 4.97 0.98
log(λ35) -1.12 5.0 0.99
log(λ36) -1.13 5.02 0.99
log(λ37) -1.13 5.05 0.99
log(λ38) -1.13 5.07 0.99
log(λ39) -1.13 5.1 0.99
log(λ40) -1.13 5.13 0.99

Table 4.6

log(λi) = alog(n) + b a b R2

log(λ1) -0.54 4.35 0.53
log(λ2) -0.77 4.22 0.77
log(λ3) -0.81 4.4 0.84
log(λ4) -0.98 4.35 0.88
log(λ5) -0.98 4.49 0.89
log(λ6) -1.07 4.53 0.91
log(λ7) -1.08 4.63 0.92
log(λ8) -1.16 4.66 0.94
log(λ9) -1.17 4.76 0.94
log(λ10) -1.19 4.85 0.95
log(λ11) -1.21 4.9 0.95
log(λ12) -1.28 4.92 0.96
log(λ13) -1.27 5.0 0.96
log(λ14) -1.31 5.04 0.96
log(λ15) -1.31 5.09 0.96
log(λ16) -1.36 5.12 0.97
log(λ17) -1.37 5.16 0.96
log(λ18) -1.41 5.18 0.97
log(λ19) -1.41 5.23 0.96
log(λ20) -1.44 5.26 0.96
log(λ21) -1.45 5.3 0.96
log(λ22) -1.47 5.33 0.96
log(λ23) -1.49 5.36 0.96
log(λ24) -1.53 5.37 0.96
log(λ25) -1.54 5.4 0.96
log(λ26) -1.56 5.42 0.96
log(λ27) -1.58 5.45 0.96
log(λ28) -1.61 5.47 0.95
log(λ29) -1.62 5.49 0.95
log(λ30) -1.65 5.51 0.95
log(λ31) -1.66 5.53 0.94
log(λ32) -1.69 5.54 0.94
log(λ33) -1.71 5.56 0.94
log(λ34) -1.74 5.57 0.93
log(λ35) -1.75 5.59 0.93
log(λ36) -1.79 5.6 0.93
log(λ37) -1.8 5.61 0.92
log(λ38) -1.82 5.62 0.92
log(λ39) -1.84 5.64 0.91
log(λ40) -1.87 5.65 0.9
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Table 4.7: In these tab I have represented the average,variance, max value and min value
of the first four principal moments (µ, σ, γ, kurt) for all the eigenvalues of each Laplacian
L (4.2) average and variance, max value and min value of the first four principal moments
(σ, γ, kurt) for all the eigenvalues of each normalized laplacian L (4.3).

Table 4.8

mean variance max min

µL 10.173342 0.520610 8.201439 12.000000
σL 18.230391 1.568598 11.482742 26.352493
γL -0.332704 0.081392 -0.683385 -0.050474

kurtL -0.446208 0.098481 -0.816198 -0.069437

Table 4.9

mean variance max min

µ{L} 1 0 1 1
σ{L} 0.10230 0.3 e-04 0.08713 0.12934
γ{L} -1.373970 0.001561 -1.522011 -1.212919

kurt{L} 1.257559 0.019161 0.804302 1.764981
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Table 4.10: In this tab I represent the fit of the rescaled eigenvalues. It can be seen that
in all the cases R2 has decreased, however the dependence is still there and can be seen
from fig. 4.13a to fig 4.13d

log(λs,i) = alog(ni) + b a b R2

log(λs,1) -0.47 5.07 -0.7
log(λs,2) -0.62 5.91 -3.3
log(λs,3) 0.21 6.25 -105.9
log(λs,4) 0.33 6.24 -52.86
log(λs,5) 1.17 6.29 -2.58
log(λs,6) 1.15 6.28 -3.37
log(λs,7) 1.65 6.69 0.05
log(λs,8) 1.73 6.84 0.24
log(λs,9) 1.8 7.12 0.5
log(λs,10) 1.87 7.15 0.5
log(λs,11) 1.85 7.39 0.63
log(λs,12) 1.92 7.41 0.63
log(λs,13) 2.0 7.19 0.47
log(λs,14) 2.06 7.24 0.5
log(λs,15) 2.01 7.34 0.55
log(λs,16) 2.05 7.38 0.57
log(λs,17) 2.06 7.55 0.66
log(λs,18) 2.11 7.61 0.68
log(λs,19) 2.1 7.69 0.7
log(λs,20) 2.11 7.75 0.72
log(λs,21) 2.14 7.79 0.73
log(λs,22) 2.17 7.79 0.73
log(λs,23) 2.18 7.84 0.74
log(λs,24) 2.23 7.84 0.74
log(λs,25) 2.25 7.79 0.72
log(λs,26) 2.28 7.77 0.7
log(λs,27) 2.22 7.93 0.76
log(λs,28) 2.26 7.96 0.77
log(λs,29) 2.24 8.04 0.79
log(λs,30) 2.27 8.03 0.78
log(λs,31) 2.27 7.86 0.72
log(λs,32) 2.31 7.83 0.7
log(λs,33) 2.31 7.84 0.7
log(λs,34) 2.32 7.86 0.71
log(λs,35) 2.31 7.89 0.72
log(λs,36) 2.32 7.88 0.71
log(λs,37) 2.3 7.95 0.73
log(λs,38) 2.28 8.0 0.74
log(λs,39) 2.22 7.94 0.72
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(a)

(b)

(c)

(d)

Figure 4.13: In these figures are represented the ’rescaled’ eigenvlaues 1 (a), 4 (b), 10
(c), 30 (d). It can be seen that the dependence is always there. However on the smallest
eigenvalues it is less evident.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.14: In these figures I represent the logarithms of λ1 (a,b), λ4 (c,d), λ10 (e,f),
λ30 (g,h) with respect to the logarithm of link density in the laplacian with threshold 8
Å (on the left) and 12 Å (on the right). I have chosen these 4 to show that the there
seems to be no clear dependence.

63



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.15: In these figures I represent the logarithm of λn-1 (a,b), λn-4 (c,d), λn-10

(e,f), λn-30 (g,h) (biggest eigenvalues) with respect to the logarithm of link density in the
laplacian with threshold 8 Å (on the left) and 12 Å (on the right). We start to see a
dependence that becomes more marked going up to 30-th eigenvalue.
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Chapter 5

Results

In this section I will show the results of the analysis I have pursued using the methods
introduced so far. I will show the results for the laplacian extracted from contact maps
whose threshold is 8 Å. I will, besides, show the results of the analysis with: 40 biggest
eigenvalues, 40 smallest eigenvalues and 40 smallest eigenvalues rescaled by node number
(see Table 4.1). In the Appendix, the other cases are shown, and they are not significantly
different from that of the laplacian at 8 Å. T he principal results that I describe in
sections PCA analysis,t-SNE analysis and UMAP analysis are:

• PCA embedding is not able to spot differences related to EC first, taxonomy, tem-
perature and KM labels. Biggest eigenvalues show dependence on the number of
nodes and also the smallest. The rescaled smallest eigenvalues still show significant
dependence on the number of nodes

• t-SNE creates many clusters. These are not able to recognize EC first, taxonomy,
temperature and KM labels. However, clusters are related to the uniprot codes,
and so that different PDB structures belonging to the same uniprot sequence are
very close in this space. Furthermore, the number of nodes still appears as an
identifiable feature

• UMAP create little less clusters than t-SNE. These clusters, again, are not able
to recognize EC first, taxonomy, temperature and KM labels. However, similar to
t-SNE, clusters are related to the uniprot codes. I have set the parameter ’number
of neighbors’ to 5 for the biggest and the smallest eigenvalue and to 10 for the
rescaled smallest eigenvalues, since it provided the best visual structure on the
data.

5.1 Summary of analysis procedure and goals

So far I have calculated the contact maps for each enzyme setting the distance threshold
to both 8 and 12 Å and seeing that there is no much difference among them. From these
contact maps I have extracted the laplacian and normalized laplacian. I have seen that
both from the analysis on the eigenvalues, link density and clustering coefficient, and
PCA,t-SNE and UMAP, the laplacian obtained from contact maps of 8 Å gives enough
information. For this reason I have decided just to show it in my results, and postpone
to the Appendix the analysis of both the normalized laplacian (8 Å) and the laplacian
and normalized laplacian (12 Å).
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The goal of this work, is to see whether Laplacian observables (eigenvalues) are
able to spot differences among different enzymes independently on their dimension.
The differences between enzymes are represented by different labels such as EC, KM,
temperature and taxonomy. The principal problem here is that the dataset (figure
2.10a,2.8a,2.6a,2.2a) ) is composed by enzymes of different size (thus networks with
a different number of nodes). Thus I tried a way to construct a semi-metric space from
the spectrum datathrough UMAP,t-SNE and PCA, independently on network size. The
observable space is composed by the 40 biggest and the 40 smallest eigenvalues of the
Laplacian operator (L). As it is shown by Table 4.2 and ??, for the smallest eigenvalues,
there is a polynomial dependence with node number. This means that in line of princi-
ple, it could be possible to remove from these eigenvalues the dependence on the number
of nodes, but it turns out this is not satisfactorily possible. For the biggest eigenvalues
this was not possible, as no neat relation with node number has been found. So, here,
we will look if PCA,t-SNE and UMAP, applied to these sets in 40 dimensional spaces,
are able to spot differences in taxonomy, temperature, KM and EC indexes for L. I will
try this analysis for ’rescaled’ smallest eigenvalues.

As no previous knowledge on enzyme similarity is known, the parameters of t-SNE
and UMAP were chosen in order to find maximal similarity (i.e. closeness) among
the embedding of the different enzyme structures related to the same protein sequence
’P11838’.

5.2 PCA analysis

5.2.1 40 biggest and smallest eigenvalues laplacian

In this section, Figures 5.1a, 5.1b, 5.1c, 5.1d show the PCA analysis for 40 biggest
eigenvalues of the laplacian L. Figures 5.2a, 5.2b, 5.3a, 5.3b show the PCA analysis
for 40 smallest eigenvalues of the laplacian L and Figures 5.4a, 5.4b, 5.5a, 5.5b show
the PCA analysis for 40 smallest eigenvalues rescaled by node number. In all the PCA
plots, there is not a clear separation of the different labels, even though the amount
of information preserved in the dimensionality reduction (PCA explained variance) is
high, close to 1. This suggests us that features represented by taxonomy, EC first,
KM and temperature might be non linearly related to the eigenvalue space of L, thus
cannot be caught by the PCA analysis (producing linear projections onto this space).
We then moved to algorithms that try to reconstruct more complex manifolds (i.e. not
simple linear projections of the original space). We applied t-SNE and UMAP: these two
algorithms generate non linear trasforms of initial data space by minimizing some cost
function for optimal representation of data as explained in [6].

5.3 t-SNE analysis

In this section I apply t-SNE analysis to the 40 biggest, smallest and rescaled smallest
eigenvalues of the laplacian coming from contact maps with threshold 8 Å . I have tested
different parameter values: the perplexity and the number of nearest neighbors (data not
shown). Finally, I have set the parameters as follows: perplexity=30 . Figures (5.8a,
5.8b, 5.8c, 5.8d) show the t-SNE analysis for 40 biggest eigenvalues of the laplacian
L, (5.9a, 5.9b, 5.9c, 5.9d) show the t-SNE analysis for 40 smallest eigenvalues of the
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(a) (b)

(c) (d)

Figure 5.1: Are here represented the scatterplots of the PCA of the 40 biggest eigenvalues
of the laplacian (L) obtained with the threshold set to 8 Å. Figure (a) is colored by EC
first label, figure (b) by taxonomy, figure (c) by temperature and in the end, figure (d)
by KM. Apparently there is no possibility of conducting discriminant classification of
the different lables. All the classes are infact spread along the figure and mixed without
any sharp distinction among them. The explained variance is [0.95, 0.04]

(a)
(b)
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(a) (b)

Figure 5.3: Are here represented the scatterplots of the PCA of the 40 smallest eigenval-
ues of the laplacian (L) obtained with the threshold set to 8 Å. Figure (a) is colored by
EC first label, figure (b) by taxonomy, figure (c) by temperature and in the end, figure
(d) by KM. Apparently there is no possibility of conducting discriminant classification of
the different lables. All the classes are infact spread along the figure and mixed without
any sharp distinction among them. The explained variance is [0.98, 0.01]

(a) (b)

(a) (b)

Figure 5.5: Are here represented the scatterplots of the PCA of the 40 smallest eigen-
values rescaled of the laplacian (L) obtained with the threshold set to 8 Å. Figure (a)
is colored by EC first label, figure (b) by taxonomy, figure (c) by temperature and in
the end, figure (d) by KM. Apparently there is no possibility of conducting discriminant
classification of the different lables. All the classes are infact spread along the figure and
mixed without any sharp distinction among them. The explained variance is [0.92, 0.03]
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(a)

(b)

(c)

Figure 5.6: In these figures are represented the PCA analysis for the log of the 40 biggest
(a), the log of the 40 smallest (b) and the smallest srescaled eigenvalues of the laplacian
obtained from contact maps of threshold 8 Å, with respect to the logarithm of the number
of nodes. It can be seen from them, a neat distinction among number of nodes. I have
applied the logarithm for both the eigenvalues and the number of nodes as they show
better the dependence. The gradient of color is along the horizontal direction.
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(a)

(b)

(c)

Figure 5.7: In these figures are represented the PCA analysis for the log of the 40 biggest
(a), the log of the 40 smallest (b) and the smallest srescaled eigenvalues of the laplacian
obtained from contact maps of threshold 8 Å, with respect to the logarithm of the link
density. It can be seen from them, a neat distinction among link density. I have applied
the logarithm for both the eigenvalues and the number of nodes as they show better
the dependence. It is curious that the gradient is along the vertical direction while for
number of nodes it was on the horizontal direction

70



laplacian L and (5.10a, 5.10b, 5.10c, 5.10d) show it for the smallest rescaled eigenvalues.
Figures (5.11a, 5.11b, 5.11c) show the t-SNE analysis for 40 biggest,smallest and smallest
rescaled with respect the number of nodes. Figures (5.12a, 5.12b, 5.12c) show the t-SNE
analysis for 40 biggest, smallest and smallest rescaled with respect the link density.

In the end I have chosen one representant for each uniprot code and reapeted the
analysis. In figures (5.13a, 5.13b, 5.13c) show the t-SNE analysis for 40 biggest,smallest
and smallest rescaled with respect the number of nodes. In Figures (5.14a, 5.14b, 5.14c)
show the t-SNE analysis for 40 biggest, smallest and smallest rescaled with respect the
link density. We can see from all these figures many different clusters; however these
clusters don’t represent the classification given by EC first, taxonomy, temperature and
KM labels. Despite the goal of rescaling was to render the embedding independent of
the number of nodes, we could not remove this dependence in this way. Link density
seems to be in general uniformly clustered even though there is some mixing of colors in
the different clusters that need to be investigated further. It seems the case that many
groups of the same uniprot are held together (maybe this reflects the fact that inside
each uniprot there is no much variety in number of nodes) at least in the smallest and
smallest rescaled case. A peculiar fact is showed in the analysis of biggest eigenvalues
that show that the 554 Fungi belonging to the same uniprot code ’P11838’ are split into
two subgroups. I think, that even though some difference in the distribution of the 40
eigenvalues is spotted, that distance doesn’t picture ’real distance’ and is induced by the
dimensionality reduction (I think it is exaggerated in this case). In any case, this this
distinction (not hinted by any measure so far done) would need some further analysis,
even though UMAP doesn’t show this effect. A little comment is deserved by pictures of
the analysis for 496 structures chosen as representant of each uniprot. I have decided to
put them to see if some cluster of enzymes could have formed. Just the smallest rescaled
case shows some clustering.

5.4 UMAP analysis

5.4.1 UMAP laplacian

In this section, Figures (5.15a,5.15b,5.15c,5.15d) show the UMAP analysis for 40 biggest
eigenvalues of the laplacian L. Figures, (5.16a,5.16b,5.16c,5.16d) show the UMAP anal-
ysis for 40 smallest eigenvalues of the laplacian L. Figures (5.17a,5.17b,5.17c,5.17d)
show the UMAP analysis for 40 smallest eigenvalues of the laplacian L. Figures (5.18a
5.18b,5.18c) show the UMAP analysis for 40 biggest, smallest and smallest rescaled eigen-
values of the laplacian L with respect the number of nodes. Figures (5.19a 5.19b,5.19c)
show the UMAP analysis for 40 biggest, smallest and smallest rescaled eigenvalues of
the laplacian L with respect the link density.

I then decided to choose a representant structure for each uniprot code and plot it
in Figures (5.20a 5.20b,5.20c) for 40 biggest, smallest and smallest rescaled eigenvalues
of the laplacian L with respect the number of nodes, and Figures (5.21a 5.21b,5.21c) for
40 biggest, smallest and smallest rescaled eigenvalues of the laplacian L with respect the
link density.

We can see from all these figures many different clusters; however these clusters seem
not to represent EC first, taxonomy, temperature and KM. However in my goal was to
obtain number of nodes-indipendent plots, we see that that is not the case for all the
three cases. This maybe the main cause of similarity of different structures sharing the
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(a)

(b)

(c)

(d)

Figure 5.8: In this four figures are represented the tsne of the biggest 40 eigenvalues of
the laplacian with respect to the label EC first (a), taxonomy (b), temperature (c), and
KM (d) of the enzymes. They are representing many different groups that seem not to
strictly qualify the enzymes via any of these labels. Around (-50,-50) can be seen the
cluster of enzymes belonging the same family, ’P11838’. Part of ’P11838’ is in around
(-75,0)
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(a)

(b)

(c)

(d)

Figure 5.9: In these four figures, are represented the tsne of the smallest 40 eigenvalues
of the laplacian with respect to the label EC first (a), taxonomy (b), temperature (c)
and KM (d) of the enzymes.They are representing many different groups that seem not
to strictly qualify the enzymes via any of these labels. Around (0,-75) can be seen the
cluster of enzymes belonging to the same family, ’P11838’.
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(a)

(b)

(c)

(d)

Figure 5.10: In these four figures, are represented the tsne of the smallest 40 eigenvalues
of the laplacian with respect to the label EC first (a), taxonomy (b), temperature (c)
and KM (d) of the enzymes.They are representing many different groups that seem not
to strictly qualify the enzymes via any of these labels. Around (0,-75) can be seen the
cluster of enzymes belonging to the same family, ’P11838’.
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(a)

(b)

(c)

Figure 5.11: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues and smallest eigenvalues rescaled (c) labeled by their number of
nodes
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(a)

(b)

(c)

Figure 5.12: In these figures are represented the t-SNE analysis of the 40 biggest (a)
and smallest (b) eigenvalues and smallest eigenvalues rescaled (c) labeled by their link
density
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(a)

(b)

(c)

Figure 5.13: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues and smallest eigenvalues rescaled (c) labeled by their number of
nodes. In these figures I have taken 1 representant for each uniprot code
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(a)

(b)

(c)

Figure 5.14: In these figures are represented the t-SNE analysis of the 40 biggest (a)
and smallest (b) eigenvalues and smallest eigenvalues rescaled (c) labeled by their link
density. In these figures I have taken 1 representant for each uniprot code
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same uniprot (as suggested already on t-SNE section). Again the link density doesn’t
seem to be the principal factor for clusters. In the end I have chosen to show the analysis
for a more restricted set of enzymes to see wether clusters could have formed for different
sequences. With the parameter of nearest neighbors set to 10 I have found that just the
smallest rescaled shows clusters. Increasing the number of nodes the clusters tend to
vanish. In any case, smallest rescaled eigenvalues seem those more recommended for
finding structures independently of the number of nodes both in UMAP and t-SNE.

This would need further investigation.
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(a)

(b)

(c)

(d)

Figure 5.15: In these four figures are repersented the UMAP analysis of the 40 biggest
eigenvalues of the laplacian (L) and labeled by EC first (a), taxonomy (b), temperature
(c) and KM (d). The parameter of nearest neighbors is set to 5. They are representing
different groups (less than in the case of t-SNE) that seem not to strictly qualify the en-
zymes via any of the labels. Around (5,-10) can be seen the cluster of enzymes belonging
to the same family, ’P11838’.
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(a)

(b)

(c)

(d)

Figure 5.16: In these four figures are represented the UMAP analysis of the 40 smallest
eigenvalues of the laplacian (L) labeled by EC first (a),taxonomy (b), temperature (c) and
KM (d). The parameter of nearest neighbors is set to 5. They are representing different
groups (less than in the case of t-SNE) that seem not to strictly qualify the enzymes via
any of the labels. Around (0,10) can be seen the cluster of enzymes belonging to the
same family, ’P11838’

81



(a)

(b)

(c)

(d)

Figure 5.17: In these four figures are repersented the UMAP analysis of the 40 smallest
eigenvalues rescaled of the laplacian (L) at 8 Å and labeled by EC first (a), taxonomy (b),
temperature (c) and KM (d). The parameter of nearest neighbors is set to 5. They are
representing different groups (less than in the case of t-SNE) that seem not to strictly
qualify the enzymes via any of the labels. Around (20,10) can be seen the cluster of
enzymes belonging to the same family, ’P11838’
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(a)

(b)

(c)

Figure 5.18: In these figures are represented the UMAP analysis of the 40 biggest (a),
smallest (b) eigenvalues and smallest rescaled eigenvalues of the laplacian with threshold
8 Å and labeled by number of nodes represented in the log scale in the colormap. The
parameter of nearest neighbors for (a) and (b) is set to 5 while for (c) is set to 10 as at
5 it was little too noisy.
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(a)

(b)

(c)

Figure 5.19: In these figures are represented the UMAP analysis of the 40 biggest (a),
smallest (b) eigenvalues and smallest rescaled eigenvalues of the laplacian with threshold
8 Å and labeled by link density represented in the colormap. The parameter of nearest
neighbors for (a) and (b) is set to 5 while for (c) is set to 10 as at 5 it was little too noisy.
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(a)

(b)

(c)

Figure 5.20: In these figures are represented the UMAP analysis of the 40 biggest (a),
smallest (b) eigenvalues and smallest rescaled eigenvalues of the laplacian with threshold
8 Å of one structure form each uniprot and labeled by number of nodes represented in
the colormap. The parameter of nearest neighbors for (a) and (b) and (c) are set to 10.
There is a clear relation among number of nodes and the similarity among enzymes.
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(a)

(b)

(c)

Figure 5.21: In these figures are represented the UMAP analysis of the 40 biggest (a),
smallest (b) eigenvalues and smallest rescaled eigenvalues of the laplacian with threshold
8 Å and labeled by link density for each uniprot. The parameter of nearest neighbors
for (a) and (b) and (c) are set to 10.
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Chapter 6

Conclusions

The goal of this study is to show if geometrical features captured by Laplacian opera-
tor, associated to enzyme’s contact maps, is able to represent similar characteristics of
enzymes (EC, taxonomy, temperature, KM, link density and number of carbon alpha).
In this study, I have considered the spectral properties of laplacian L and normalized
laplacian L.

As a first step of my analysis, I have explored the dataset, and the descriptive labels
I had.

From a statistical analysis in which I compared distributions of KM and temperatures
for all the different couples of families in taxonomy and EC, I see that: Archea live
in different (higher) temperature environments with respect to all the others. KM is
uniformly distributed but for Bacteria. The distributions of temperatures of class EC ’2’
and ’4’ are different from the others, and KM are distributed uniformly with respect all
the ECs.

Secondly, I considered the network features to characterize the contact maps of the
dataset. I have seen that I work with ’small world’ graphs, looked at degree distributions
and average clustering coefficients. I notice that exist 554 structures that belong to
the same uniprot P11838, that are very similar among them. This is a general fact;
different PDBs, associated to the same uniprot, have similar network’s characteristics.
The P11838 case, is taken as a benchmark to measure the similitude among structures
in the spaces reconstructed by PCA, t-SNE and UMAP.

For random networks, for both L and L, it is known that exists a relation between
the number of nodes and link density to eigenvalues. This fact is present in my dataset.
I have found changing polynomial dependence between 40 biggest eigenvalues and link
density, and 40 smallest eigenvalues and number of nodes. I have tried a stratified
rescaling for each smallest eigenvalue and number of nodes, to avoid the dependence on
the size of the enzyme.

I now had, as features’ space: 40 biggest, smallest and smallest rescaled eigenvalues.
The dependence on the number of nodes is never disappeared. This dependence is
confirmed particularly well in all the PCA analysis, it is, indeed, pretty visible a gradient
and I conclude that the main factor of discrimination is the number of nodes (completed
by the link density on the perpendicular direction).

In both t-SNE and UMAP, this dependence didn’t deny the creation of other clusters.
Infact those PDBs belonging to P11838 are always clustered together.

However, increasing (for both t-SNE and UMAP) the number of nearest neighbors,
in the algorithms, the different clusters tend to disappear and form a unique cluster
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where it is present the gradient in the number of nodes. In any case, the other labels
(EC,taxonomy, temperature and KM) are not recognized. Infact none of those seems to
be discriminated entirely.

Extracting the noise of redundancies of structures, choosing one structure for each
uniprot code, it is visible always the dependence in the number of nodes, and just in the
case of the smallest rescaled eigenvalues for UMAP, appear two very separated clusters
that cannot be conducted to labels already available. A further, biological study, must
be done to understand if these clusters are fictitious, dependent on the choice of the
parameter of nearest neighbors, or show some true similarity among enzyme.

In general I haven’t found a way to judge the validity of clusterings found by these
algorithms, but the benchmark of P11838. So further more detailed studies need to be
done when clusterings are found. In any case, smallest rescaled eigenvalues seem those
eigenvalues that are able to spot more structure independently of the number of nodes.
Besides UMAP produces more sharper distinction of clusters. To improve further the
localization of clusters, it can be thought to ’rescale’ with respect to the link density, or
even, ’rescale’ simoultaneously the biggest eigenvalues with respect to link density and
the smallest eigenvalues with respect the number of nodes and build an 80 dimensional
space for t-SNE and UMAP.
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Appendix

I now show the PCA,t-SNE and UMAP of normalized Laplacian at 8 Å the results in the
same form of the chapter Results. For brevity, for laplacian and normalized laplacian
at 12 Å, I will avoid to show the PCA, and just show the dependencies on link density
and number of nodes for both UMAP and t-SNE, as we have learnt that the captions
are not well characterized.

.1 PCA normalized laplacian 8 Å

.2 t-SNE normalized laplacian 8 Å

.3 UMAP normalized laplacian 8 Å

.4 t-SNE Laplacian 12 Å

.5 UMAP Laplacian 12 Å

.6 t-SNE Normalized Laplacian 12 Å

.7 UMAP Normalized Laplacian 12 Å
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(a)

(b)

(c)

(d)

Figure 1: In these figures are represented the scatterplots of the PCA to the 40
biggest eigenvalues of the normalized laplacian (L) of threshold 8 Å of enzymes col-
ored with respect to their average EC first (a), taxonomy (b), temperature (c) and KM
(d).Apparently there is no possibility of conducting discriminant classification of any of
the different labels. All the classes are infact spread along the figure and mixed without
any sharp distinction among them.The explained variance is The explained variance is:
[0.99 0.01]
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(a)

(b)

(c)

(d)

Figure 2: In these figures are represented the scatterplots of the PCA to the 40 small-
est eigenvalues of the normalized laplacian (L) of threshold of 8 Å of enzymes colored
with respect to their EC first (a), taxonomy (b), temperature (c), and average KM
(d).Apparently there is no possibility of conducting discriminant classification of any of
the different labels. All the classes are infact spread along the figure and mixed without
any sharp distinction among them.The explained variance is [0.99 0.01]
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(a)

(b)

Figure 3: In these figures are represented the scatterplots of the PCA to the log of the 40
biggest eigenvalues (a) and the log of the 40 smallest eigenvalues (b) of the normalized
laplacian (L) obtained with threshold 8Å of enzymes colored with respect to the number
of nodes. I have decided to plot the logarithm as it shows better the dependence on
the number of nodes rather then without. Infact log is invertible in the domain of the
laplacian eigenvalues.In the colormap the scale is logarithmic so that it represents better
the color gradient.
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(a)

(b)

(c)

(d)

Figure 4: In these figures are represented the tsne of the biggest 40 eigenvalues of the
normalized laplacian obtained with threshold 8 Å with respect the number of nodes and
labeled with respect the EC first (a), taxonomy (b), temperature (c), KM (d) of the
enzymes. They are representing many different groups that seem not to strictly qualify
the enzymes with any of the labels, however around (0,0) can be seen a cluster of enzymes
belonging to the same family, ’P11838’
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(a)

(b)

(c)

(d)

Figure 5: In these figures are represented the tsne of the smallest 40 eigenvalues of the
normalized laplacian with threshold 8 Å with respect the EC first (a), taxonomy (b),
temperature (c) and KM (d) . They are representing many different groups that seem
not to strictly qualify the enzymes via any of these labels, however around (0,0) can be
seen a cluster of enzymes belonging to the same family, ’P11838’
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(a)

(b)

Figure 6: In these figures are represented the tsne of the 40 biggest eigenvalues (a) and
40 smallest eigenvalues (b) of the normalized laplacian L obtained with threshold 8 Å
with respect the number of nodes
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(a)

Figure 7: In these figures are represented the t-SNE of the 40 biggest (a) and 40 smallest
(b) and smallest normalized (c) eigenvalues of the normalized laplacian with respect to
the number of nodes. In each case has been chosen a representant per uniprot. Note
that setting nearest neighbors to 10 is not sufficient to produce a unique structure (as
in the laplacian) in the biggest eigenvalues, yet a dependence on the number of nodes
persists.
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(a)

Figure 8: In these figures are represented the t-SNE of the 40 biggest (a) and 40 smallest
(b) and smallest normalized (c) eigenvalues of the normalized laplacian with respect to
link density. In each case has been chosen a representant per uniprot

98



(a)

(b)

(c)

(d)

Figure 9: In these figures are represented the UMAP analysis of the 40 biggest eigenvalues
of the normalized laplacian L with threshold 8 Å and labeled EC first (a), taxonomy (b),
temperature (c) and KM (d). The parameter of nearest neighbors is set to 5. They are
representing different groups (less than in the case of t-SNE) that seem not to strictly
qualify the enzymes via any of the labels, however around (15,15) can be seen a cluster
of enzymes belonging to the same family, ’P11838’
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(a)

(b)

(c)

(d)

Figure 10: In these figures are represented the UMAP analysis of the 40 smallest eigenval-
ues of the normalized laplacian L and labeled by EC first (a), taxonomy (b), temperature
(c) and KM (d). The parameter of nearest neighbors is set to 5. They are represented
different groups (less than in the case of t-SNE) that seem not to strictly qualify the
enzymes via any of these labels, however around (-5,0) can be seen a cluster of enzymes
belonging to the same family, ’P11838’
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(a)

(b)

Figure 11: In these figures are represented the UMAP analysis of the 40 biggest (a)
and smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 8 Å
and labeled by the number of nodes represented in the log scale in the color map. The
parameter of nearest neighbors is set to 10
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(a)

(b)

Figure 12: In these figures are represented the UMAP analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 8 Å and
labeled by the number of nodes represented in the log scale in the color map. Here is
selected a structure for each uniprot. The parameter of nearest neighbors is set to 10.
It seems a general fact, that the normalized laplacian produces more clusters compared
to the laplacian.
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(a)

(b)

Figure 13: In these figures are represented the UMAP analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 8 Å and
labeled by the link density . Here is selected a structure for each uniprot. The parameter
of nearest neighbors is set to 10
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(a)

(b)

Figure 14: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the laplacian L obtained with threshold 12 Å and labeled by
the number of nodes represented in the log scale in the color map. The parameter of
nearest neighbors is set to 10
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(a)

(b)

Figure 15: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the laplacian L obtained with threshold 12 Å and labeled by
the link density represented in the log scale in the color map. The parameter of nearest
neighbors is set to 10
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(a)

(b)

Figure 16: In these figures are represented the UMAP analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the laplacian L obtained with threshold 12 Å and labeled by
the number of nodes represented in the log scale in the color map. The parameter of
nearest neighbors is set to 10
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(a)

(b)

Figure 17: In these figures are represented the UMAP analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the laplacian L obtained with threshold 12 Å and labeled by
the link density represented in the log scale in the color map. The parameter of nearest
neighbors is set to 10

107



(a)

(b)

Figure 18: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 12 Å
and labeled by the number of nodes represented in the log scale in the color map. The
parameter of nearest neighbors is set to 10
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(a)

(b)

Figure 19: In these figures are represented the t-SNE analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 12 Å and
labeled by the link density represented in the log scale in the color map. The parameter
of nearest neighbors is set to 10
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(a)

(b)

Figure 20: In these figures are represented the UMAP analysis of the 40 biggest (a)
and smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 12 Å
and labeled by the number of nodes represented in the log scale in the color map. The
parameter of nearest neighbors is set to 10
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(a)

(b)

Figure 21: In these figures are represented the UMAP analysis of the 40 biggest (a) and
smallest (b) eigenvalues of the normalized laplacian L obtained with threshold 12 Å and
labeled by the link density represented in the log scale in the color map. The parameter
of nearest neighbors is set to 10
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