
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI BOLOGNA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria Informatica

Enhancing Symbolic AI Ecosystems
with Probabilistic Logic Programming:
a Kotlin Multi-Platform Case Study

Tesi di laurea in
Linguaggi e Modelli Computazionali M

Relatore
Prof.ssa Roberta Calegari

Correlatori
Dott. Giovanni Ciatto
Prof. Enrico Denti

Candidato
Jason Dellaluce

Prima Sessione di Laurea

Anno Accademico 2020-2021

Abstract

As Artificial Intelligence (AI) progressively conquers the software industry at a fast

pace, the demand for more transparent and pervasive technologies increases accord-

ingly. In this scenario, novel approaches to Logic Programming (LP) and symbolic

AI have the potential to satisfy the requirements of modern software environments.

However, traditional logic-based approaches often fail to match present-day plan-

ning and learning workflows, which natively deal with uncertainty. Accordingly,

Probabilistic Logic Programming (PLP) is emerging as a modern research field

that investigates the combination of LP with the probability theory. Although

research efforts at the state of the art demonstrate encouraging results, they are

usually either developed as proof of concepts or bound to specific platforms, often

having inconvenient constraints. In this dissertation, we introduce an elastic and

platform-agnostic approach to PLP aimed to surpass the usability and portability

limitations of current proposals. We design our solution as an extension of the 2P-

Kt symbolic AI ecosystem, thus endorsing the mission of the project and inheriting

its multi-platform and multi-paradigm nature. Additionally, our proposal compre-

hends an object-oriented and pure-Kotlin library for manipulating Binary Decision

Diagrams (BDDs), which are notoriously relevant in the context of probabilistic

computation. As a Kotlin multi-platform architecture, our BDD module aims

to surpass the usability constraints of existing packages, which typically rely on

low level C/C++ bindings for performance reasons. Overall, our project explores

novel directions towards more usable, portable, and accessible PLP technologies,

which we expect to grow in popularity both in the research community and in the

software industry over the next few years.

i

Acknowledgements

This thesis marks the conclusion of a long phase of my life path. Of this little

milestone of mine, I owe the accomplishment to many.

First, my thoughts go to my family and closest ones. To my parents Benedetta

and Luigi, who believed in me from day one, way before I did. To my sister Gaia,

who I deeply love and admire. To my girlfriend Laura, for having been resilient

and supportive specially during difficult times.

Too many to be singularly mentioned, I’m grateful for all my close friends that

I had the pleasure of encountering along the way. Each one of them has been a

building block of the person I have become.

I’d also like to express my gratitude to all the precious mentors and role models

that I had the privilege to learn from, and which had faith in my potential. Among

the others, special thanks go to Vittorio Viarengo, Ned Rockson, and Nicolas

Salhuana, for walking me through the first steps of my professional career.

Lastly, I’m thankful to Prof.ssa Roberta Calegari, Dott. Giovanni Ciatto, and

Prof. Enrico Denti for their trust and support throughout the years. They pushed

me to go the extra mile, more than once.

ii

Contents

Abstract i

1 Introduction 1

2 State of the Art 3

2.1 Probabilistic Logic Programming 3

2.1.1 Logic Programming . 4

2.1.2 Distribution Semantics . 6

2.1.3 Annotated Disjunctions . 9

2.1.4 Knowledge Compilation . 11

2.1.5 Reasoning Tasks . 13

2.2 Binary Decision Diagrams . 14

2.2.1 Definitions . 14

2.2.2 Algorithms . 17

2.2.3 Knowledge Compilation . 20

2.3 2P-Kt . 22

2.3.1 tuProlog . 23

2.3.2 Kotlin and Multi-Platform Support 24

2.3.3 The 2P-Kt Project . 26

2.3.4 Multi-Paradigm Mechanic 28

3 Analysis 31

3.1 Probabilistic Logic Programming Engine 31

3.2 Use of 2P-Kt . 33

3.3 Binary Decision Diagrams Library 35

iii

CONTENTS iv

4 Design 38

4.1 Architectural Design . 38

4.2 BDD Module . 40

4.2.1 Internal Architecture . 40

4.2.2 Supported Operations . 43

4.2.3 Optimizations and Multi-Platform Support 45

4.3 Prob-Solve Module . 46

4.3.1 Overview of Dependencies 46

4.3.2 Design of the Extension . 47

4.4 Prob-Solve-Problog Module . 49

4.4.1 Core Traits and Supported Features 49

4.4.2 Behavioral Analysis of the Probabilistic Solver 52

4.4.3 Architectural Design of the Solver 62

4.4.4 Accomplishments . 70

5 Implementation 72

5.1 Binary Decision Diagrams Library 72

5.1.1 Default Builder . 73

5.1.2 Visitor Pattern for Operators 74

5.1.3 Visitor Pattern for Type Checking 77

5.1.4 Lazy Evaluation . 79

5.1.5 Apply-Then-Expansion Optimization 80

5.2 Solver . 81

5.2.1 Representing Explanations 81

5.2.2 Clause Head Optimization 83

5.2.3 Knowledge Base Recompilation 85

5.2.4 Annotated Disjunctions . 86

5.2.5 Prolog-Mode Optimizations 89

6 Validation 91

6.1 Testing Setup . 91

6.2 Proof of Concept Demonstration . 93

6.3 Performance Benchmarks . 96

CONTENTS v

7 Conclusions 100

List of Figures

2.1 Example of Non-Reduced Binary Decision Diagram 15

2.2 Example of Reduced Binary Decision Diagram 16

2.3 Structure of Kotlin Multi-Platform Projects. Source: https://

kotlinlang.org/docs/mpp-intro.html 25

2.4 Overview of 2P-Kt : Architectural Modules and Their Dependencies 26

4.1 Modules and Architectural Dependencies of the Project 39

4.2 Binary Decision Diagram Module: Internal Architecture 41

4.3 Binary Decision Diagram Builder Hierarchy 44

4.4 Design of Solvers in 2P-Kt . 46

4.5 Example of Prolog Search Tree . 53

4.6 Architectural Overview of the PLP solver 65

4.7 Example of ProbLog Knowledge Base Recompilation 69

5.1 Indexing Workaround for the prob Meta-Predicate 84

5.2 Binary Decision Diagram with Binary Splits 88

6.1 Example of Probabilistic Graph . 94

6.2 2P-Kt IDE Solving a PLP Query 95

6.3 Binary Decision Diagram Constructed by our PLP solver 97

vi

https://kotlinlang.org/docs/mpp-intro.html
https://kotlinlang.org/docs/mpp-intro.html

Listings

2.1 Prolog - Family Relationships Example 5

2.2 Kotlin - Signature of the solve Method in 2P-Kt 29

2.3 Kotlin - Implementation of the nl Primitive in 2P-Kt 30

4.1 Prolog - Family Relationships Example (Version 2) 52

4.2 ProbLog - Family Relationships Example 54

5.1 Kotlin - Implementation of the any Visitor for BDDs 75

5.2 Kotlin - Implementation of the any Method for BDDs 76

5.3 Kotlin - Implementation of CastVisitor for BDDs 78

5.4 Kotlin - ProbExplanation Object Interface 82

5.5 Kotlin - ClauseMapper Object Interface 86

5.6 ProbLog - Example of Annotated Disjunction for a Rolling Dice . . 87

5.7 Prolog - Example of Recompilation of Annotated Disjunctions . . . 87

6.1 ProbLog - Example of Probabilistic Graph Modeling 94

vii

Chapter 1

Introduction

Artificial Intelligence (AI) is progressively conquering the software industry to be-

come one of the most pivotal fields, with a fast-paced evolution of challenges and

requirements that existing technologies often fail to match. Accordingly, the in-

creasing demand for transparent and pervasive intelligence is opening new horizons

for Logic Programming and Symbolic AI approaches. In this scenario, technologies

such as 2p-kt propose innovative solutions for multi-paradigm symbolic manipu-

lation aimed to fit the requirements imposed by modern software environments.

However, logic-based approaches alone are often not suitable to be integrated with

present-day planning and learning workflows, which natively deal with uncertainty

and probabilistic decision-making.

Probabilistic Logic Programming (PLP) is a modern research field that inves-

tigates the combination of Logic Programming with the probability theory. Al-

though state of the art proposals demonstrate significant results, most solutions

currently implement either proofs of concept or monolithic runtimes, often target-

ing single platforms or having inconvenient constraints and dependencies.

The goal of this dissertation is to propose an elastic and platform-agnostic in-

ference engine for Probabilistic Logic Programming aimed to surpass the usability

constraints of the current proposals. Our contribution is highly accessible in het-

erogeneous software environments and harmoniously integrates with existing logic

programming workflows by being backwards-compatible with traditional Prolog.

1

CHAPTER 1. INTRODUCTION 2

We accomplish our purpose by proposing an extension of 2p-kt for supporting

PLP in the form of new micro-modules, thus inheriting the multi-paradigm and

multi-platform nature of the project. Additionally, our proposal comprehends an

object-oriented and pure-Kotlin library implementation for Binary Decision Di-

agrams (BDDs), a data structure commonly leveraged to perform probabilistic

computation. Our BDD library acts as a multi-platform lean proposal that leaves

space for PLP-specific optimizations, and that goes beyond some limitations of ex-

isting packages that rely on legacy low-level C or C++ bindings for performance

reasons. Finally, a well-covering test suite is provided to assert the validity of our

PLP implementation and its backward compatibility with Prolog.

Accordingly, the reminder of this thesis is structured as follows. In Chapter 2,

we provide a technical background for what concerns Probabilistic Logic Program-

ming, Binary Decision Diagrams, and the 2p-kt project. In Chapter 3, we analyze

requirements and needs we acknowledged for our proposal. Chapter 4 discusses the

design we envisioned for the project by also inspecting the architecture in its soft-

ware modules. In Chapter 5, we disclose details about our Kotlin multi-paradigm

implementation, the optimizations we applied, and some preliminary attempts.

Chapter 6 articulates our assessment methodology. Finally, Chapter 7 concludes

this thesis by summarising its main contribution.

Chapter 2

State of the Art

This chapter introduces notions and state of the art contributions that we reference

in the following chapters of this dissertation. In Section 2.1, we provide background

knowledge regarding Probabilistic Logic Programming. Section 2.2 is dedicated

to Binary Decision Diagrams as a means to solving the Knowledge Compilation

problem. Finally, in Section 2.3 we introduce the 2p-kt project on which this

contribution is based on.

2.1 Probabilistic Logic Programming

This section provides founding knowledge for the research field of Probabilistic

Logic Programming. In Section 2.1.1, we give a broad introduction of Logic Pro-

gramming approaches. Then, in Section 2.1.2 we present the Distribution Seman-

tics with a simplified set of formal definitions. Section 2.1.3 describes Annotated

Disjunctions and their impact on languages based on Distribution Semantics. In

Section 2.1.4 we delineate the problem of Knowledge Compilation and state of the

art solutions for it. Finally, in Section 2.1.5 we discuss the most common tasks

achievable with Probabilistic Logic Programming.

3

CHAPTER 2. STATE OF THE ART 4

2.1.1 Logic Programming

Symbolic approaches in artificial intelligence are based on the idea of representing

a problem with high-level descriptive forms, formally referred to as symbols. Sym-

bols are generally bound to specific problem domains and humans are capable of

easily reading and understanding their meaning. Although the notion of meaning

remains alien to software-based agents, they are still able to manipulate symbols

according to mathematical and logical rules to perform reasoning tasks. Inher-

ently, goals and behaviors determined by symbolic reasoning are intelligible and

transparent to human observers.

The term Logic Programming refers to a declarative programming paradigm

that uses formal logic to perform computing tasks and to represent knowledge.

Logic programs define symbols and logical relationships between them, without

disclosing any detail about the computational flows that might be involved. Ap-

proaches based on Logic Programming have been subject to considerable attention

when associated with Artificial Intelligence in both the literature and the indus-

try. Notorious applications include Knowledge Management, Robotics, Natural

Language Processing, Bioinformatics, and Agent-Based Systems. Among many

proposals, the language family based on Prolog is one of the most adopted imple-

mentations of Logic Programming.

Prolog is a programming language based on first-order logic. Its syntax is

purposely meant to be easily understandable, and encodes logical propositions in

the form:

Head : −Body

Clauses like the one above are formally known as Horn Clauses [15] and can be

interpreted as “Head is true if Body is true”, where Head and Body are terms. As

in first-order logic, terms can either be atoms or predicates with a given number

of arguments. Formally, the number of arguments of a predicate is referred to as

arity. Prolog also supports Variables terms, allowing the representation of both

ground and non-ground formulae. Through the use of terms, the language defines

strings, numbers, variables, lists, compound terms, and operators. Negated literals

are supported through a mechanism commonly known as “Negation as Failure”.

CHAPTER 2. STATE OF THE ART 5

Listing 2.1: Prolog - Family Relationships Example�
1 person(john).

2 person(anna).

3 person(mike).

4 person(jane).

5 male(john).

6 male(mike).

7 female(anna).

8 female(jane).

9 parent(mike , john).

10 parent(mike , anna).

11 parent(jane , anna).

12

13 father(X, Y) :- male(X), parent(X, Y).

14 mother(X, Y) :- female(X), parent(X, Y).

15 sibling(X, Y) :- parent(Z, X), parent(Z, Y).
� �
An example of a term is john, that is a constant, or human(john), a compound

term where the predicate human is a function symbol with arity 1 and has john as

its one argument. Conjunctions and disjunctions of terms are represented as terms

as well. For reference, a simple Prolog theory representing family relations can be

modeled as in Listing 2.1 Notably, that example shows that logic relationships

are expressed in Prolog in the form of Rules that respect the semantics of Horn

Clauses. Rules with no body are formally named Facts and implicitly have a true

body.

Furthermore, the Prolog language allows for solving queries over knowledge

bases, which is analogous to proving a theorem by resolution (Proof by Resolution

[15]). Queries can have zero or many solutions, each one constituting a logic

program that proves the query terms to be true over the given knowledge base.

Prolog solvers usually rely on Selective Linear Definite (SLD) Resolution to solve

queries by exploring solution spaces in a depth-first fashion.

CHAPTER 2. STATE OF THE ART 6

With reference to Listing 2.1, an example of query might be father(mike, X).

Prolog solvers would find two solutions for such a query, that are father(mike,

john) and father(mike, anna), where the variable X is substituted with terms

john and anna. A more generic query could be father(X, Y) aiming to find every

father-child pair in the theory, which in this case would give the same results as

the previous example. It is worth noting that queries such as father(john, X)

would have no solution because they would have no proof nor substitution over

the provided theory, making it a false statement. That is because Prolog is based

on a Closed World Assumption, namely considering every term a false statement

until proven otherwise.

Although Logic Programming provides means for performing symbolic reason-

ing tasks and representing knowledge, it fails to satisfy numerous challenges of

Artificial Intelligence. Logic-based approaches are in fact constrained to a vision

of reality based on pure-logic, so that terms and solutions can exclusively be ei-

ther true or false statements. However, the majority of real-life situations deal with

degrees of uncertainty, for which a binary approximation is clearly inadequate. Ev-

ident examples of those use cases are autonomous planning and automatic learning,

which are probabilistic by nature.

2.1.2 Distribution Semantics

Various approaches have been proposed for combining logic programming with

probability theory to attain robust reasoning capabilities in uncertainty-first sce-

narios. Among the others, we put our attention on methods based on Distribution

Semantics (DS)[16]. Languages of this category assign probabilistic distributions

over logic programs by encoding random choices to each clause. So, the prob-

ability of a query is defined as the joint distribution of all the random choices

used to find a solution. The process gets more complicated in languages support-

ing function symbols. Languages based on DS define the probability over clause

choices with different syntax, but they all have the same expressive power[13]. No-

table mentions include PRISM [17], Logic Programs with Annotated Disjunctions

(LPADs)[20], ProbLog [11], Probabilistic Horn Abduction (PHA)[10]. Of those lan-

CHAPTER 2. STATE OF THE ART 7

guages, we exclusively focus on ProbLog because it has the simplest syntax.

ProbLog has been designed as a simple probabilistic extension of Prolog by

expressing probability distributions over facts. With this idea, facts become prob-

abilistic facts and respect the following notation:

Πi :: fi

Where Πi ∈ [0, 1] and fi is an atom, implying that each ground instantiation of

the term fi is true with probability Πi and false with probability 1−Πi. As such,

grounding a probabilistic fact creates two scenarios with different probabilities:

one for which the fact is true, and one for which the fact is false. The concept can

easily be extended to clauses, thus attaining probabilistic clauses. We proceed by

providing some formal definitions, and purposely avoiding excessive detail to not

diverge from the scope of this dissertation. Detailed definitions can be found in

[13], that we use as reference in the following paragraphs.

An atomic choice is a triple (f, θ, k) indicating whether a grounding fθ of a

probabilistic fact F = p :: f is selected or not, and k ∈ {0, 1} with k = 1 when the

fact is selected and k = 0 when it is not. A set of atomic choice is consistent if

only one alternative is selected for a given probabilistic fact. Formally, a consistent

atomic choice does not contain both (f, θ, 0) and (f, θ, 1). A consistent set of

atomic choice is referred to as a composite choice, for which the probability P (κ)

is defined as:

P (κ) =
∏

(fi,θ,1)∈κ

Πi

∏
(fi,θ,0)∈κ

(1− Πi)

With Πi being the probability that the fact fi is true.

A selection σ is a composite choice that contains one atomic choice for every

grounding of every probabilistic fact of a knowledge base. The logic program

defined by a selection σ is referred to as a probabilistic world wσ, and its probability

is equivalent to the one of σ.

In languages that do not support function symbols and variables, the set of

possible groundings of a probabilistic fact is finite, and the set of possible prob-

abilistic worlds is finite as well. For sake of simplicity, from this point on we

CHAPTER 2. STATE OF THE ART 8

provide definitions that stand by assuming the language does not support func-

tion symbols. If that’s the case, we know that the probability of a probabilistic

program depends on the set of all its probabilistic worlds W = {w1, ..., wn}, and

that
∑

w∈W P (w) = 1.

Let q be a ground term representing a query, we define its conditional proba-

bility given a world w as P (q | w), which is 1 if q in w and 0 otherwise. Then, the

probability of a query q can be defined as following:

P (q) =
∑
w

P (q, w) =
∑
w

P (q | w)P (w) =
∑
w�q

P (w)

Briefly, the probability of a query can be obtained by summing the probabilities

of all the possible worlds where the query is true.

This definition allows to compute the probability of a conjunction of ground

terms q1, ..., qn as well. As such, we are able to model problems involving condi-

tional probability, in which we aim to calculate the probability of a query q given

some evidence represented as a conjunction of ground terms e = e1 ∧ ... ∧ em:

P (q | e) =
P (q, e)

P (e)

Given the above, we proceed by providing a simple example. Consider the

following program composed by two probabilistic facts that models an hypothetical

problem of launching two coins.

0.5 :: heads1.

0.6 :: heads2.

The probabilistic facts heads1 and heads2 define the probability of landing on

heads for the first and the second coin respectively. This program has four possible

worlds:

w1 = {heads1, heads2} P (w1) = 0.5× 0.6 = 0.3

w2 = {heads1,¬heads2} P (w2) = 0.5× (1− 0.6) = 0.2

w3 = {¬heads1, heads2} P (w3) = (1− 0.5)× 0.6 = 0.3

w4 = {¬heads1,¬heads2} P (w4) = (1− 0.5)× (1− 0.6) = 0.2

CHAPTER 2. STATE OF THE ART 9

Considering a query q1 = heads1∧heads2, for which both coins land on heads,

the set of possible worlds Wq1 in which q1 is true contains only w1, so calculating

the probability is straightforward.

P (q1) =
∑
w∈Wq1

P (w) = P (w1) = 0.3

Things get slightly more complex if we take into consideration a query q2 =

heads1 ∨ heads2, in which either coin lands on heads. In this scenario, q2 is

true in three worlds: w1, w2, and w3.

P (q2) =
∑
w∈Wq2

P (w) = P (w1) + P (w2) + P (w3) = 0.3 + 0.2 + 0.3 = 0.8

Note that we calculate probabilities of queries as simple summations of the

probability of all the worlds in which they are true. This is not guaranteed to be

generally safe in terms of correctness, because contributions from each world are

combined disjunctively. As such, this situation can be compared to a disjunction

of two independent Boolean random variables:

P (a ∨ b) = P (a) + P (b)− P (a)P (b) = 1− (1− P (a))(1− P (b))

As clearly visible, with a growing number of worlds and facts involved, calculating

the probability of a query becomes a considerably complex problem, if worlds

distribution are not disjoint from one another. This topic is discussed more in

detail in Section 2.1.4.

2.1.3 Annotated Disjunctions

In the previous section we presented a first way for defining a probability distri-

bution over logic facts. However, the definitions provided are not sufficient in the

general case. By defining a probability value over head of clauses, we implicitly

have two disjunctive logic programs: one in which the head term is true, and one in

which it is false. The concept can be further extended to have multiple disjunctive

logic programs from the same clause, by defining a formalism known as Annotated

CHAPTER 2. STATE OF THE ART 10

Disjunctions (LPADs)[20]. These kind of programs consist of a set of rules of the

following form:

h1 :: Π1 ∨ ... ∨ h1 :: Πn ← b1, ..., bm

Namely, clauses can have multiple head terms, each one with a probability value.

In this form, each probabilistic clause represents a choice among n normal clauses

with one head hi and probability Πi, that are disjoint from one another. Moreover,

an additional clause is added implicitly:

null :: Π0 ← b1, ..., bm

This clause represents the case in which none of the n heads is true, and inherently

has probability Π0 = 1 −
∑n

k=1 Πk. Accordingly, the concept of atomic choice is

extended as well. Given a clause Ci in an LPAD, an atomic choice can be defined by

the triple (Ci, θj, k), where θj is a ground substitution for Ci and k ∈ {0, 1, ..., n}.
A selection σ identifies a probabilistic world wσ that contains all normal clauses

obtained by selecting a single head term for each atomic choice (Ci, θj, k). As such,

the probability of wσ is formalized as follows:

P (wσ) = P (σ) =
∏

(Ci,θj ,k)∈σ

Πik

The rest of the definitions provided in the previous section, with the context of

ProbLog, remain valid.

We proceed by providing a simple example of LPAD. Consider having a box

containing 10 colored balls, of which 6 are known to be red and 3 to be green.

In the following example, we model this problem with a single clause leveraging

Annotated Disjunctions.

0.6 :: red ball ; 0.3 :: green ball.

The only clause of this program can be interpreted as three disjoint facts: one

with 60% probability of being true if the ball is red, another with 30% probability

if the ball is green, and a third one with 10% probability if the ball is neither red

nor green. As these facts are disjoint, they can never appear together in the same

selection σ. This concept is relevant while enumerating the set of probabilistic

CHAPTER 2. STATE OF THE ART 11

worlds, which in this simple case is composed of only three elements (one for

each disjoint head). Note, a similar ProbLog program with three non-disjoint

probabilistic facts would have 23 = 8 worlds instead.

2.1.4 Knowledge Compilation

As we mentioned in Section 2.1.2, providing formal definitions of Distribution

Semantics for logic programs supporting function symbols is beyond the scope of

this dissertation. As such, we only formalize the concepts that we reference in the

rest of the narration.

We define a set of probabilistic worlds wκ that is compatible with a composite

choice κ as wκ = {wσ ∈ W | κ ⊆ σ}, with W being a set containing all worlds

of a given program. As such, a composite choice identifies a set of probabilistic

worlds. Note that, in programs with function symbols, wκ may be uncountable

and P (wκ) can potentially converge to 0. Given a query q, a composite choice κ is

an explanation for q if ∀w ∈ wκ : w � q. A set K of composite choices is covering

with respect to q if every world in which q is true belongs to wK . Considering a

program and a query q, we define the function:

Q(w) =

 1 if w � q

0 otherwise

We know that Q is measurable if q has a finite set K of finite explanations so that

K is covering[13]. With that, we indicate that P (q) = P (Q = 1).

Given the above, calculating the probability of a query over a probabilistic

program with function symbols requires finding a covering set of explanations.

However, as mentioned in Section 2.1.2, calculating the probability of a set of ex-

planations brings back the formula for computing the probability of a disjunction:

P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

In this context, the a and b terms of the formula represent explanations. We know

that P (a ∧ b) = P (a)P (b) if a and b are independent, however this is not usually

CHAPTER 2. STATE OF THE ART 12

the case. Assuming a large set of explanations with no independence guarantee,

computing the probability of a query with the formula above is a complex and

intractable problem.

Observe that the probability of a query q is based on conjunctions and dis-

junctions of random variables defined by atomic choices over a probabilistic logic

program. Inherently, a covering set of explanations can be encoded in a Boolean

formula. Such a formula is a function of Boolean random variables, each encoding

a choice, that has value 1 for assignments representing worlds in which q is true.

Since we know the probability distribution of each Boolean variable, we can also

compute the probability of the formula assuming value 1. However, to do so we

must guarantee all Boolean variables to be pair-wise independent.

Knowledge Compilation is an approach based on the idea of compiling a Boolean

formula in a strategic form that makes some specific computation task easier to per-

form. In our case, this happens in two steps: first, we compose a Boolean formula

that represents a covering set of explanations for a query q, then, we transform

the formula in a form that makes probability computation easier. For inference

tasks, Probability is usually calculated over the new form through Weighted Model

Counting (WMC), that can be computed in polynomial time with some specific

forms.

In this domain, various approaches for Knowledge Compilation are present

in the literature. State of the art proposals include Binary Decision Diagrams

(ProbLog1 [11], PITA[14]), Multi-Valued Decision Diagrams (cplint [12]), Deter-

ministic Decomposable Negation Normal Forms (ProbLog2 [5]), and Sentential De-

cision Diagrams (ProbLog2 [5]). The choice of any of those options is clearly not

neutral, as they show different tractability towards specific kinds of operations. In

this dissertation, we focus exclusively on Binary Decision Diagrams (BDDs) that

are defined in detail in Section 2.2.

CHAPTER 2. STATE OF THE ART 13

2.1.5 Reasoning Tasks

Various approaches related to reasoning have been proposed in the literature with

the scope of Probabilistic Logic Programming. Although this dissertation focuses

only in a specific subset of those, we broadly describe the main ones to provide

context to our narration:

Inference — We want to compute the probability of a query q over a logic pro-

gram, eventually with some evidence e. This implies investigating the prob-

ability of evidence P (e), the unconditional probability P (q), and the con-

ditional probability P (q | e) as well. Other notable inference tasks include

finding a most probable explanation and detecting the probability density of

q. Generally, these approaches fall into two categories of Exact Inference or

Approximated Inference. Exact Inference is meant to solve problems with ex-

actness by strictly following theoretic definitions for calculations. Although

this approach ensures correctness, it can easily become considerably resource

expensive. Approximated Inference takes the opposite route, and attempts

to perform computations by applying simplifications. This causes compu-

tation results to be formally incorrect but with acceptable thresholds, and

resource usage to be reduced as well.

Weight Learning — We want to learn the parameters of a probabilistic logic

program with a given structure and a set of data samples. Data is provided in

the form of ground logical terms, and the system attempts to infer parameters

that assign maximum probability to the samples over the given program. In

this case, by parameter we refer to the probability values for each clause

present in the program, that may not be known in certain cases.

Structure Learning — We want to learn whole probabilistic logic programs

from data samples, including both their structure and parameters. Those ap-

proaches are mostly based on Inductive Logic Programming (ILP)[15], with

specific adaptations to include the notion of probability.

As visible, reasoning tasks in Probabilistic Logic Programming are either con-

cerned about inference or learning. In this dissertation, we focus on tasks regarding

CHAPTER 2. STATE OF THE ART 14

Exact Inference only.

2.2 Binary Decision Diagrams

This section discusses Binary Decision Diagrams in the context of their combi-

nation with Probabilistic Logic programming. In Section 2.2.1, we introduce the

data structure and provide fundamental definitions. Then, in Section 2.2.2 we

inspect some main of the main algorithms. Finally, in Section 2.2.3 we investigate

how Binary Decision Diagrams can be used in Probabilistic Logic Programming

to support Knowledge Compilation, and how the probability of a logic program

can be computed through Weighted Model Counting.

2.2.1 Definitions

Binary Decision Diagrams (BDDs) are data structures capable of representing

Boolean functions. They gained considerable popularity in the design and veri-

fication of digital systems, which require the manipulation of large propositional

formulae. BDDs are rooted graphs that have one level for each Boolean variable

of the represented function. Nodes in the graph represent Boolean variables and

have two outgoing arcs: one corresponding to the true value of the variable, and

one corresponding to the false value of the variable. Terminals are an edge case of

nodes that have no outgoing arcs and have a constant value of true or false (also

called, respectively, 1-terminals and 0-terminals). More practically, each node of

a BDD indicates a choice over a Boolean random variable and has one arc for each

possible outcome.

Figure 2.1 shows a simple example of BDD with three Boolean variables X1,

X2, and X3. In that, variable nodes are represented as ellipsis boxes and terminal

nodes with square boxes that have a value of 0 or 1. In each node, a solid outgoing

arc represents the path for the true choice of the variable, and the dashed arc

indicates the false path. The Boolean function can be evaluated by following all

paths from the root node to the terminals, with the root node being the first

CHAPTER 2. STATE OF THE ART 15

1 0 0 1 0 0 1 1

X1

X2 X2

X3 X3 X3 X3

Figure 2.1: Example of Non-Reduced Binary Decision Diagram

Boolean variable. Furthermore, the order in which variables appear is consistent

over the whole graph, and delineates a specific variable ordering constraint (in this

case, X1 < X2 < X3). In this form, the given Binary Decision Diagram is not

distinguishable from a simple Binary Decision Tree[15]. This is because, in this

example, the data structure has not been reduced. Details regarding a reduction

algorithm for Binary Decision Diagrams are provided in Section 2.2.2.

Consider the reduced and ordered BDD in Figure 2.2, representing the function:

f = X1 ·X2 +X3

This diagram shows relevant properties unseen in the previous example. Work

from Bryant[2] demonstrated that reduced and ordered Binary Decision Diagrams

are a canonical representation of Boolean functions. Besides uniquely represent-

ing a function, the canonicity property implies additional benefits such as making

equivalence checking inexpensive and allowing the usage of memoization techniques

on complex operations. Note that imposing a certain variable ordering constraint

over a BDD is not a neutral choice, because it strongly affects the size of the

diagram itself. We do not explore this topic in detail, but it’s relevant to un-

derstand that an optimal variable ordering can potentially produce significantly

CHAPTER 2. STATE OF THE ART 16

01

X1

X2

X3

Figure 2.2: Example of Reduced Binary Decision Diagram

CHAPTER 2. STATE OF THE ART 17

smaller BDDs than non-optimal orderings. However, the problem of finding the

best variable ordering is known to be NP-hard. Lastly, note that the canonicity

property is granted for a particular Boolean function with a one specific variable

ordering.

Generally, reduction and ordering are taken for granted, and so informal ref-

erences to BDDs implicitly indicate Reduced Ordered Binary Decision Diagrams

(ROBDDs).

2.2.2 Algorithms

Given their importance in certain application domains, there has been considerable

research interest of operations and algorithms over Binary Decision Diagrams. In

this section, we inspect the operations involved in our project proposal, along with

their related founding concepts.

First, we introduce some additional notation. Given a generic BDD node n:

• id(n) is a unique identifying label for the node n

• var(n) indicates the Boolean variable label represented by node n

• lo(n) indicates the node reached through the false outgoing arc (low arc)

• hi(n) indicates the node reached through the true outgoing arc (high arc)

For terminal nodes, which are leaves in the BDD graph structure, the notions of

var(n), lo(n), and hi(n), are not meaningful. Instead, for terminals we indicate

with val(n) the truth value of the node.

Considering any Boolean formula f , and a variable x inside that formula, it

can be rewritten as:

f = (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

Where f [t/x] indicates the function f with the Boolean variable x substituted by

the truth value t. This is known as the Shannon Expansion[1] of the Boolean

formula f . If a Binary Decision Diagram represents a Boolean function f we

CHAPTER 2. STATE OF THE ART 18

observe that for each node n, lo(n) represents f [0/var(n)] and hi(n) represents

f [1/var(n)]. As such, BDDs represent Boolean functions in Shannon normal form.

This notion is fundamental to define construction algorithms for BDDs by means

of Shannon Expansion.

With our notation, a BDD for a certain Boolean variable x can be simply be

defined as a node n so that var(n) = x, lo(n) = 0 and lo(n) = 1. However, we are

interested in constructing BDDs by means of Boolean operations between other

BDDs. In that perspective, we start by observing that a generic binary operator ⊗
between two Boolean formulae f and g can be defined through Shannon Expansion

as:

f ⊗ g = (¬x ∧ (f [0/x]⊗ g[0/x])) ∨ (x ∧ (f [1/x]⊗ g[1/x]))

The apply algorithm revolves around this concept. Given two Boolean formulae f

and g represented by BDDf and BDDg, and a binary Boolean operator ⊗, apply

takes BDDf and BDDg as operands and produces a BDDf⊗g representing the

formula f ⊗ g. Using this algorithm, any binary Boolean operation can be defined

for a pair of BDDs. This concept can be extended to support unary operators as

well. For instance, we can define the Boolean negation of a variable as ¬x = x⊗1.

The apply algorithm is defined as a recursive application of the binary opera-

tor over the nodes of the two operand BDDs, that builds the result by proceeding

bottom-up. Usually, Dynamic Programming is used to optimize the procedure

so that the complexity can remain bounded. The procedure is defined as in

Algorithm 1. For reference, consider G being an hash table that supports Dy-

namic Programming, and Mk a procedure that constructs a new node from a triple

(var, lo, hi). Given two operands Bf and Bg, apply has a time complexity of

O(‖Bf‖ · ‖Bg‖), with ‖Bf‖ and ‖Bg‖ being the number of nodes in Bf and Bg.

By using apply, we are able to support all the basic Boolean operations (and,

or, not) in Binary Decision Diagrams. However, the algorithm itself fails to con-

struct reduced diagrams. So, we introduce another procedure: reduce, which

constructs a ROBDD from an Ordered Binary Decision Diagrams. apply and

reduce are orthogonal, and it is easy to adapt the construction algorithm to pro-

duce reduced BDDs directly. reduce proceeds bottom-up and follows a set of rules

CHAPTER 2. STATE OF THE ART 19

Algorithm 1 Binary Decision Diagrams - apply Algorithm

1: function Apply(op, a, b)

2: init(G)

3: function App(u1, u2)

4: if G(u1, u2) 6= empty then return G(u1, u2)

5: else if u1 ∈ {0, 1} and u2 ∈ {0, 1} then

6: u← op(u1, u2)

7: else if var(u1) = var(u2) then

8: u← Mk(var(u1), App(lo(u1), lo(u2)), App(hi(u1), hi(u2)))

9: else if var(u1) < var(u2) then

10: u← Mk(var(u1), App(lo(u1), u2), App(hi(u1), u2))

11: else

12: u← Mk(var(u2), App(u1, lo(u2)), App(u1, hi(u2)))

13: end if

14: G(u1, u2)← u

15: return u

16: end function

17:

18: return App(a, b)

19: end function

CHAPTER 2. STATE OF THE ART 20

for performing reductions over the nodes of a BDD, which define a way of labelling

nodes with their identifier id(n).

• Remove duplicate terminals: If n is a terminal node, then set id(n) to

be val)n)

• Remove redundant tests: If id(lo(n)) = id(hi(n)) then set id(n) to be

id(lo(n))

• Remove duplicate nodes: If there exist a node m that has already been

labelled so that var(m) = var(n), lo(m) = lo(n), and hi(m) = hi(n), then

set id(n) to be equal to id(m)

This procedure makes use of a hash table to keep track of labelled nodes and

have O(1) lookup time. Given an input B, reduce has a time complexity of

O(‖B‖ · log ‖B‖), with ‖B‖ being the number of nodes in B.

2.2.3 Knowledge Compilation

As we introduced in Section 2.1.4, Binary Decision Diagrams are a popular choice

in Probabilistic Logic Programming as a solution for Knowledge Compilation.

Again, in PLP we want to calculate the probability of a disjunction over a covering

set of explanations. Recall that explanations are composite choices for a given

query q, and that we can compare them to Boolean formulae where each variable

is characterized by an atomic choice. As such, Binary Decision Diagrams are

suitable for encoding explanations because they allow to represent large Boolean

formulae, to reduce them, and to apply Boolean operations. Moreover, Boolean

variables in a BDD are pair-wise independent.

So, the Knowledge Compilation task consists in encoding explanations into

BDDs, and then manipulating them to compute the probability of queries. Con-

sider an atomic choice (C, θ, k) representing a grounding of a probabilistic clause.

We recognize that a Binary Decision Diagram node can easily be constructed as

follows:

CHAPTER 2. STATE OF THE ART 21

• Define a binary random variable XCθ representing the probabilistic clause C

with grounding θ, with probability π of being true equal to the probability

of C.

• Ensure that XCθ is somehow comparable to other random variables so that

a certain variable ordering is respected

• Assign the random variable to node n so that var(n) = XCθ

• Set lo(n) = 0 and hi(n) = 1, so that n has a outgoing arc for each value of k

Then, consider a set of explanations K for the given query q. We want to

represent each explanation as a BDD as well. So, Observe that explanations are

defined as a conjunction over all the contained atomic choices. We can reproduce

the conjunction by using the apply operation with and Boolean operator over all

the BDD nodes encoding the atomic choices.

Finally, remember that the probability of a query q is defined over a disjunction

of all its explanations. We obtain the disjunctive formula by using the apply

operation with or Boolean operator over all BDDs representing the explanations

of K. The final result is one Binary Decision Diagram that represents the following

formula:

fK =
∨
κ∈K

∧
(Ci,θj ,I)∈κ

(XCiθj = I)

Given that we are able to compile the solving formula fK of the query q into

a BDD, we want to compute the probability of q. Weighted Model Counting over

Binary Decision Diagrams is based on the Shannon Expansion, and can be used to

compute the overall probability by considering the random variables in each node.

There is a well-known algorithm that achieves this goal, as shown in Algorithm 2,

that leverages Dynamic Programming to optimize the computation[11].

Note, that Annotated Disjunctions violate some assumptions of the Knowledge

Compilation method proposed in this section. In LPADs, atomic choices are not

binary, which would lead to Decision Diagrams where each node has more than

two outgoing arcs. In fact, in previous works[12] considered the adoption of Multi-

Valued Decision Diagrams (MDDs) to solve this issue. Namely, those are Decision

CHAPTER 2. STATE OF THE ART 22

Algorithm 2 Binary Decision Diagrams - Probability Calculation

1: function Prob(node)

2: if node is a terminal then return 1.0 · val(node)
3: else

4: if TableProb(node) 6= null then return TableProb(node)

5: else

6: p0 ← Prob(lo(node))

7: p1 ← Prob(hi(node))

8: Let π be the probability of being true of var(node)

9: Res← p1 · π + p0 · (1− π)

10: Table(node)← Res

11: return Res

12: end if

13: end if

14: end function

Diagrams with an arbitrary count of outgoing arcs. However, given that BDDs

software packages are more developed and efficient, a second conversion is often

required from MDDs to BDDs in real applications. The most efficient method

to implement such a conversion is by applying binary splits over the multi-valued

random variables.

The open source community proposed various Binary Decision diagram ma-

nipulation packages. Considering that BDDs algorithms can reach considerable

complexity with very large Boolean formulae, the most efficient packages rely on

low-level implementations written in C or C++. Also, most implementations in

other programming languages act as simple wrappers of those low-level packages.

Most popular solutions include CUDD [18], BuDDy [3], BeeDeeDee[9], JDD [19].

2.3 2P-Kt

2p-kt is born as a modern and evolved reboot of tuProlog, a Prolog implementa-

tion proposed two decades ago. In Section 2.3.1, we give a broad introduction of

CHAPTER 2. STATE OF THE ART 23

tuProlog, along with its merits and limitations. Section 2.3.2 discusses the Kotlin

language focusing on its multi-platform capabilities. In Section 2.3.3, we inspect

the core points of the 2p-kt project and its architecture. Finally, in Section 2.3.4,

we show the mechanism that enables multi-paradigm programming.

2.3.1 tuProlog

tuProlog is a logic programming framework supporting multi-paradigm program-

ming via a clean, seamless, and bidirectional integration between the logic and

object-oriented paradigms.[4]. The project was proposed in the late 90s and is

structured as a Java implementation of a Prolog inference core. Its architecture

is compact and follows sound engineering practices acting as a lean, modular, and

configurable code base.

Indeed, tuProlog introduces relevant interesting characteristics. First, its in-

ferential core is modeled as a Finite State Machine (FSM), thus making it easily

understandable, verifiable, and virtually extensible. Second, the framework is

lightweight and provides a strict amount of built-ins, thus optimizing resource ex-

penses and making it suitable for devices with modest computation capabilities.

Third, the project is highly extensible and customizable through the usage of li-

braries. Finally, it offers non-intrusive vectors that run Prolog inferences from

Java, and to leverage Java objects during logic reasoning as well. The two worlds

maintain a transparent separation but are empowered of full bidirectional coop-

eration opportunities that enables coherent multi-paradigm programming. Those

characteristics, coupled with the inherited multi-platform nature of the Java Vir-

tual Machine (JVM), make tuProlog suitable for being used in distributed envi-

ronments and for ubiquitous computing.

On the other hand, tuProlog suffers from some structural defects and con-

straints that were mostly imposed by the technology limitations at the time of

release. Among these problems, a relevant one is the intensive usage of reflection

in multi-paradigm and internal invocations that deteriorates code readability and

reduces the overall performance. Furthermore, classes for model and business logic

are designed for being mutable, which occasionally leads to an ambiguous usage of

CHAPTER 2. STATE OF THE ART 24

those and an overall poorly testable design.

2.3.2 Kotlin and Multi-Platform Support

Kotlin[8] is a statically typed programming language proposed by JetBrains, that

mainly targets JVM , Android, JavaScript and Native platforms. The language is

blended with a solid object oriented base and powerful functional traits. Mixing the

two programming paradigms is considered the norm. Kotlin is inspired by other

popular languages (Java, C#, JavaScript, Scala and Groovy), trying to inherit

and mix the best characteristics of all of them.

Among the many others, one of the most interesting features of Kotlin is multi-

platform support. The main goal is being able to share common code between

multiple platforms, so that it has to be only written once and maintained in a

single place. Currently supported platforms include: JVM, Android, JavaScript,

iOS, Linux, Windows, Mac, and WebAssembly. This trait allows for valuable

business interest due to the possibility of high code reuse and maintainability.

Kotlin multi-platform projects have different code source sets: one for each

targeted platform, and one common source set that is shared between all of them.

A visual representation of this architecture is represented in Figure 2.3.

The common source set is suitable to encode the business logic of an appli-

cation, whereas each platform-specific codebase is responsible for more peculiar

implementations required by their target system. This architecture is supported

through the expected/actual mechanism. With that, common code declares to ex-

pect some functionality to be implemented externally, and seamlessly make use

of them in the business logic by taking for granted that a real implementation

will be provided. Then, platform-specific code fills the gaps by providing actual

implementations of those functionalities. Usage of interfaces, information hiding,

and other solid engineering principles is definitely required for a good code scala-

bility. This design is resilient and suitable for an heterogeneous spectrum of usage,

spacing from full-stack web applications to mobile development.

CHAPTER 2. STATE OF THE ART 25

Figure 2.3: Structure of Kotlin Multi-Platform Projects. Source: https://

kotlinlang.org/docs/mpp-intro.html

https://kotlinlang.org/docs/mpp-intro.html
https://kotlinlang.org/docs/mpp-intro.html

CHAPTER 2. STATE OF THE ART 26

Figure 2.4: Overview of 2P-Kt : Architectural Modules and Their Dependencies

2.3.3 The 2P-Kt Project

2p-kt is the natural evolution and modernisation of tuProlog, that aims to accom-

plish a broader view of becoming a multi-platform ecosystem for symbolic Artificial

Intelligence. The Prolog framework has totally been rebooted and re-engineered as

a multi-platform codebase written in Kotlin. In present day, 2p-kt fully supports

JVM-based and JavaScript-based targets, and all core features of tuProlog have

been re-implemented. The is subject of a fast-paced development, and keeps the

doors open for novel extensions.

The project is split in several modules, each one providing a single self-contained

feature, enforcing the Single Responsibility Principle (SRP) over the whole archi-

tecture. Each module represents a core functionality of the Prolog engine, that

can even be used singularly, and defines a lean dependency graph. Modules also

represent the unit of change for potential extensions, like the one we propose in

this thesis. The whole architecture is shown in the diagram of Figure 2.4. We

proceed by providing a brief description for each module.

Core — It is the basic code base on which most other modules rely on. It contains

CHAPTER 2. STATE OF THE ART 27

model classes and it provides the basics for symbolic manipulation.

Unify — It contains model classes to support unification, and it provides the

basic unification mechanism.

Theory —It provides the concept of Prolog theory, namely a set of logic clauses.

Manipulation constructs are provided, and optimized data structures imple-

ment fast indexed clause retrieval.

Solver — It models basic interfaces and mechanisms for Prolog query resolution

and inference. Solvers and their queries are configurable for easy extensibility.

As such, other resolution or computation mechanics (such as the one of PLP),

can somehow depend on interfaces of this model.

DSL-Core, DSL-Unify, and DSL-Theory — These modules define Domain

Specific Language (DSL) powered by Kotlin native features in the field. The

DSL provided are aimed to make it seamless for developers to define Prolog

structures, use unification, or manipulate theories, all within the imperative

Kotlin world.

Parser-Core and Parser-Theory — Parser modules implement the mechanic

of the lexers that help reading core entities and theories, along with their

formal grammars.

Serialize-Core and Serialize-Theory — These packages offer a way to serialize

core entities and theories, namely translating them in a format that can be

easily stored or externally transferred.

Solve-Classic — It provides implementations for solve module. It contains an

enhanced implementation of tuProlog inferential core. The engine is re-

engineered in a novel Finite State Machine design, that improves performance

and fully leverages data immutability.

Solve-Streams — This is an alternative implementation of entities from the Solve

module. It contains an experimental inferential core implementation, based

on the concept of minimizing the FSM of tuProlog and enhancing it by

stressing the usage of the functional paradigm.

CHAPTER 2. STATE OF THE ART 28

IO-Lib — This library defines Prolog primitives that enable working with input-

output streams and channels from the logic programming world.

OOP-Lib — This library enables multi-paradigm programming from the logic

programming world, namely using object oriented entities while solving Pro-

log queries. This is possible through the implementation of some ad-hoc

Prolog primitives that make the process totally transparent to developers.

Repl and IDE — Repl and IDE are two distributions of 2p-kt that bundle the

engine, through a command line interface and in a graphical JavaFX desktop

application respectively.

2.3.4 Multi-Paradigm Mechanic

2p-kt proposes a multi-paradigm programming model that enables a bidirectional

connection between the two logic-based and object-oriented programming worlds.

The core of this mechanic is defined inside the solve module and relies on the two

concepts of solver and library.

Solvers are abstract entities capable of solving some logic query according to

some logic, implementing one or more inference rule, via some resolution strategy.

In other words, solvers act as a facade for some underlying implementation of a

logic-based inference engine. Note, no particular logic paradigm is enforced at this

level. In fact, solver APIs are open to many symbolic inference archetypes and

developers are encouraged to experiment approaches that go beyond traditional

logic programming. Those APIs are defined in the Solver Kotlin interface. More

practically, solvers are the entrypoint through which developers can execute logic-

based inference from the object-oriented world.

Listing 2.2 shows the signature of the solve method, which is the fundamental

operation in a Solver. In the method, goal represents the logic query submitted

to the underlying inference engine, and option is the hinge of customizability that

regulates the behavior of solvers during resolutions. For instance, options can

define a timeout that stops the solver after a maximum time interval and can

impose a limit to the number of solutions to be found. Additionally, a key-value

CHAPTER 2. STATE OF THE ART 29

Listing 2.2: Kotlin - Signature of the solve Method in 2P-Kt�
1 fun solve(

2 goal: Struct ,

3 options: SolveOptions

4): Sequence <Solution >
� �
storage is provided for specifying custom options that are not available at default.

Finally, note that solutions are returned through the Sequence construct of Kotlin,

which leaves space for lazy resolution strategies where applicable.

However, solvers only encapsulate the business logic for symbolic inference, and

do not include any knowledge base by default. Instead, solvers can be customized

through the usage of libraries. A library is a collection of logic clauses and operators

that define a specific functionality or capability to be included in a solver and that

is applied during resolutions. For example, built-ins for Prolog ISO standards

are implemented and bundled as a library. Note, components of a library are

implemented as objects, thus allowing a first connection to the object-oriented

world from the logic-programming realm. Not only this makes solvers and libraries

fairly easy to test and debug, but it also enables the injection of imperative business

logic inside symbolic resolutions. Accordingly, Primitives are special logic clauses

that are solved during resolutions by invoking a method of a Kotlin object. Most

Prolog built-ins, such as findall or bagof, are implemented as primitives. For

clarity, Listing 2.3 shows how the nl primitive, that simply prints a line break on

the standard output, is defined as an object in the classic solver of 2p-kt.

The Object-Oriented Library (OOP-Library) is another example of library that

bundles primitives for object manipulation to be used in logic programs, thus

solidifying the multi-paradigm proposal of the 2p-kt framework. The built-ins

include primitives for creating objects, invoking methods, and casting primitive

types with full transparency. In this way, open-minded developers can conceive

algorithms that both leverage imperative programming and logic-based resolution

to achieve optimal results.

CHAPTER 2. STATE OF THE ART 30

Listing 2.3: Kotlin - Implementation of the nl Primitive in 2P-Kt�
1 object NewLine: PredicateWithoutArguments

2 .NonBacktrackable <ExecutionContext >("nl") {

3 override fun Solve

4 .Request <ExecutionContext >

5 .computeOne (): Solve.Response {

6 return context.outputChannels.current.let {

7 if (it == null) {

8 replyFail ()

9 } else {

10 it.write("\n")

11 replySuccess ()

12 }

13 }

14 }

15 }
� �
In this dissertation, solvers and libraries (and their combination) represent the

mechanism of our choice to implement probabilistic reasoning.

Chapter 3

Analysis

In this chapter we document and motivate the high level choices, the requirements

and the constraints, that define and shape of our project. In Section 3.1 we debate

the requirements of our Probabilistic Logic Programming proposition. Section 3.2

motivates the usage of 2P-Kt in our work, and how our contribution coherently

fits in the project. Finally, in Section 3.3 we discuss our needs of developing a new

package for Binary Decision Diagrams and the requirements we imposed to it.

3.1 Probabilistic Logic Programming Engine

In this section we disclose the requirements that define the main properties and

characteristics of our Probabilistic Logic Programming proposition. Most of our

requirements are non-functional, and indicate high-level architectural principles.

Generally, our concern is to go beyond some of the limitations of current state of

the art proposals.

Lightweightness — Our probabilistic reasoning engine must have a minor foot-

print in terms of memory, CPU, and code size, namely attempting to use

only resources that are strictly necessary. We assume that our solution could

be executed in constrained environments or in devices with minimal compu-

tation capabilities. At the same time, we don’t want to add unnecessary

31

CHAPTER 3. ANALYSIS 32

heaviness on other projects that include our software as a dependency.

Minimality of dependencies — We intend to include quality open-source de-

pendencies in our project wherever necessary, by also paying attention to

avoid overly large imports that could threat the lightweightness requirement.

This is a common issue in software development, where only a small frac-

tion of the functionalities offered by the imported dependencies is effectively

used. In those scenarios, we consider developing simple home-made imple-

mentations where it does not imply an excessive “reinvention of the wheel”.

Portability — Our proposal must be usable in many environments and adaptable

to multiple platforms. We intend to go beyond the platform constraints

present in some state of the art proposals, and increase the accessibility of

PLP inference.

Simplicity — Although the inner workings of a probabilistic-logic engine are not

trivial by nature, we aim to provide a well-documented and understandable

codebase. Our solution must be simple to use and have a minimal learning

threshold.

Backwards compatibility with Prolog — Considering the background pro-

vided in Chapter 2, we observe that there are many similarities between

traditional LP and PLP query resolution. Without considering the prob-

ability computation mechanic, LP and PLP only differ for the policy on

which solutions are grouped or selected, and so they can share a common

resolution strategy. In fact, probabilistic solvers produce solutions that are

valid for traditional logic queries by just discarding their probability. How-

ever, it would be improper to use a probabilistic engine with the purpose of

solving LP problems, such as Prolog queries. Indeed, probabilistic compu-

tation is fairly more expensive, and it produces solutions outputs that differ

in grouping, order, and count. We aim to provide a unified solution that

is capable of solving both LP and PLP problems and makes the transition

between those two modes frictionless. We want to enable or disable proba-

bilistic computation by simply toggling the engine configuration, to use PLP

CHAPTER 3. ANALYSIS 33

theories for LP query resolution and viceversa, and to not compromise the

native optimizations of each methods.

Flexibility — Our solution must not constrain developers to a specific use case.

Instead, we aim for our solution to be open to updates, domain-specific opti-

mizations, or tasks that go beyond simple probabilistic inference. Moreover,

we envision our system to be seamlessly integrated with other technologies in

the AI field. For instance, probabilistic reasoning well fits problems that deal

with uncertainty such as Machine Learning, Deep Learning, and Data Min-

ing, opening new horizons for adding expert knowledge to improve precision

and control of automatic predictors.

3.2 Use of 2P-Kt

This section motivates the selection of 2P-Kt as the platform of choice for our

Probabilistic Logic Programming proposal towards an optimal satisfaction of the

requirements listed in Section 3.1.

Having the goal of developing a PLP inference engine, we must choose between

building a new solution from scratch or utilizing some existing infrastructure to

apply our extension on. Undoubtedly, we prefer the second option. In this con-

text, we acknowledge that 2P-Kt is an optimal fit for our needs. The project

consists of a logic-based ecosystem for symbolic AI, designed and implemented by

taking openness, modularity, extensibility, and interoperability into account. In-

deed, requirements such as lightweightness and portability are natively matched by

the design principles of 2P-Kt. Moreover, the micro-module oriented architecture

of the project allows a minimization of external dependencies and makes it fric-

tionless to create new extensions. Also, the fastly growing documentation of the

project enables a favorable learning curve. Furthermore, multi-platform support

is provided out of the box by relying on a Kotlin cross-platform setup.

Accordingly, choosing a base platform for our project also introduces new re-

quirements and constraints. In the case of 2p-Kt, this entails:

CHAPTER 3. ANALYSIS 34

• Breaking down our solution into multiple micro-modules and be compliant

with the internal dependencies of 2p-Kt.

• Following the code of conduct of the project and matching the code style

guidelines suggested by the authors to individual contributors.

• Avoiding tampering the existing codebase if not strictly necessary, by itera-

tively discussing any new change with the authors.

• Maximising the re-usage of existing modules and constructs in order to avoid

code repetitions and overlappings.

• Respecting the provided object-oriented interfaces to create our probabilistic

logic solver.

On the other hand, we also find some additional desirable possibilities:

• We can leverage the existing Prolog engine to perform reasoning tasks related

to logic resolution. Then, by assuming that a valid logic solver is provided out

of the box, we would only need to strategically pilot the resolution process

and then perform the probability computation.

• Backwards compatibility with traditional Prolog can be accomplished by

strategically delegating some work to the Prolog solvers of 2P-Kt. The com-

plexity of switching from a probabilistic solver to a simple logic one, and

viceversa, can be hidden behind a configurable interface.

• The rich collection of unit tests asserting Prolog ISO standards can be in-

cluded and reused in our test suite.

Finally, we advocate that our extension is coherent from the standpoint of 2P-

Kt ’s ambitions. Although such a platform is designed as an ecosystem open to

multiple kids of logic, only Prolog is supported so far. Given the lack of differen-

tiated logic systems, our proposition of the probabilistic paradigm fits the growth

intentions of the project and influences the future of its development.

CHAPTER 3. ANALYSIS 35

3.3 Binary Decision Diagrams Library

This section discusses the requirements of Binary Decision Diagrams package we

develop for addressing the Knowledge Compilation problem, which is necessary for

implementing probabilistic logic engines as discussed in Section 2.1.4.

Knowledge Compilation in Probabilistic Logic Programming reasoning can be

addressed through the usage of a variety of data structures, of which strengths

and weaknesses have been richly analyzed in the literature. Among all the possi-

bilities, we believe that Binary Decision Diagrams are the most suitable solution

for our needs. First, BDDs are a well acknowledged choice in the field, so we

have plenty of well documented research attempts to learn from and to use as a

reference. Second, all the Boolean operations required for probabilistic computa-

tion are reproducible through the apply algorithm with fairly acceptable time and

space complexities. Third, we can rely on a wide range of open source software

packages implementing BDDs and their algorithms, that we can either use or learn

from. Lastly, the data structure is relatively simple and the algorithms involved

are generally understandable.

However, we find that no existing open source BDD package that we inspected

is capable of fitting our use case. In fact, most packages rely on low-level imple-

mentations written in C or C++ language in order to achieve good performance.

Accordingly, many other packages are implemented on top of these low-level bind-

ings as wrappers to support other programming languages. As such, we recognize

these packages as defective value propositions for our project. First, implementa-

tions of these packages are scattered across many code repositories and there is a

lack of a unified, coherent, multi-language solution. Second, most packages are not

accessible through some of the most notorious public dependency registries, such

as NPM or Maven Central. Third, the reliance on low-level bindings often limits

the portability of the packages and defeats our multi-platform ambitions. Forth,

most solutions usually implement more data structures or algorithms than the

ones we concretely need. Lastly, we acknowledged a lack of good object-oriented

proposals, whereas developers are constrained to using low-level constructs that

limit the spectrum of domain-specific optimizations.

CHAPTER 3. ANALYSIS 36

Accordingly, we advocate that developing a Binary Decision Diagram library

from scratch is our preferable option. Our goal is to provide a lightweight, flexible,

portable and simple Kotlin-native package. By writing our solution in Kotlin,

we open novel horizons for multi-platform availability of BDDs, and we provide

a set of open object-oriented constructs that can be adapted to many use cases.

Nonetheless, such a code package would kindly fit in 2P-Kt as a micro-module.

We start by implementing only the algorithms we need without deeply diving into

performance optimizations. However, we envision our solution to be open to other

use cases and, potentially, to furtherly grow in the open source community. We

impose the following requirements for our Binary Decision Diagrams package:

Lightweightness — Our solution should be minimal in terms of code size and re-

source usage. Considering that we develop the software package from scratch,

we also plan to minimize external dependencies, if not completely avoid-

ing them where not necessary. This principles would lead to a consistently

lightweight solution that is easy to integrate in many workflow and platforms.

Object-Oriented Design — In contrast with most existing solutions in the field,

our proposal must follow a well engineered object-oriented design. We want

to benefits from the full potential of the design patterns and design princi-

ples that are at the state of the art of object-oriented systems. This implies

factorizing the codebase in interfaces, micro-packages, and using the fac-

tory pattern. We plan to provide a rich set of abstractions so that custom

operations, optimizations, and data representations can be integrated with

ease.

Kotlin-Nativeness — The proposed software package must be written in pure-

Kotlin and must fit in Kotlin multi-platform projects. This requirement

provide some relevant advantages. First, the proposal would be one of the

first of its kind, as we recognized a lack of consistent multi-language and

multi-platform solutions in the field. Second, the Kotlin language brings the

benefits of many state or the art object-oriented and functional program-

ming constructs. Third, the architecture of Kotlin multi-platform projects

allows for integrating platform-specific code, so that we can define the basic

CHAPTER 3. ANALYSIS 37

abstractions and all the algorithms in a shared codebase and then leverage

all native capabilities of each platform to optimize critical code parts.

Expressiveness — Our solution must be expressive, in the sense of not limit-

ing developers in the adoption high-level constructs and operations. For

instance, most proposals in the field force the representation of Binary De-

cision Diagram nodes through numeric labels, and the Boolean variables

ordering is defined as the natural integer order of those labels. Instead, we

advocate the representation of BDD nodes as generic objects, thus elevat-

ing their informative value and enabling the development of domain-specific

operations and optimizations.

2P-Kt Integrability — Coherently with our PLP proposition, we plan to fit our

solution in the 2P-Kt project as a new micro-module. As such, this furtherly

enriches 2P-Kt by offering a data structure that can be used at will in logic

workflows, such as we do in our probabilistic logic engine. Also, the newly

introduced module can grow to host new data structures and algorithms. At

the same time, we envision the BDD module to be standalone, namely not

depending on other modules in 2P-Kt, so that it can be used in external

projects without the burden of including unwanted logic-related code.

Chapter 4

Design

In this chapter we examine the design and the architecture of our project in detail.

In Section 4.1 we provide an overview of the architecture of our proposal, showing

how it fits in the modular structure of 2P-Kt. In Section 4.2 we present the design

of the module for Binary Decision Diagrams. In Section 4.3 we explore the core

traits of the abstract module for PLP support. Finally, in Section 4.4 we discuss

the design of the module for our ProbLog inference engine.

4.1 Architectural Design

As we motivated in Section 3.2, one of the requirements is adopting 2P-Kt as

a base on which constructing our project. Accordingly, our project is compliant

to the architecture of 2P-Kt and is divided into multiple self-contained micro-

modules, each one representing a contribution of our proposal. More specifically,

we designed our solution to be divided in three modules. In Figure 4.1 we show how

our projects fits in the 2P-Kt architecture and dependency graph: the white icons

represent the newly introduced modules, while the darker ones indicate modules

already existing in 2P-Kt. Each arrow indicates a directed dependency from one

module to another.

The bdd module represents our proposal for the Binary Decision Diagram ma-

38

CHAPTER 4. DESIGN 39

Figure 4.1: Modules and Architectural Dependencies of the Project

nipulation library. This module is purely self-contained, in the sense of not having

any dependency over other modules of 2P-Kt. This aspect is crucial for our value

propositions, as we intend to promote the usage of the library as a lean external

dependency on other projects as well.

The prob-solve module is meant to bundle all the entities and traits that

are common to any potential implementation of solvers for the Probabilistic Logic

Programming paradigm. This module is purely abstract, and only provides APIs

or interfaces on which multiple PLP solver implementations can rely on. Con-

sidering the nature of PLP, this module depends on the solve module of 2P-Kt,

which provides basic abstractions for logic solvers. In other words, we model

probabilistic-logic solvers as a direct subset of logic solvers.

The prob-solve-problog module contains the actual implementation of our

proposed PLP solver supporting the ProbLog language. Coherently, it depends

onto the abstractions of prob-solve and is compliant to them. The other fun-

damental dependency is the bdd module, which is used for manipulating Binary

Decision Diagrams during probabilistic logic goal resolution. Additionally, it also

CHAPTER 4. DESIGN 40

depends on solve-classic and test-solve modules of 2P-Kt. Detailed motiva-

tions of these last two dependencies are provided in Section 4.4 and Chapter 6.

Given that our project adheres to the architecture 2P-Kt, our modules are in-

herently managed with Gradle. As such, minimizing the number of dependencies

of each module has been a priority in our architecture. We aim to enable other

developers to use parts of our project without depending on any unused or super-

fluous code. Moreover, our micro-modules are intrinsically published and available

on some the most notorious source repositories, such as NPM, Maven Central, and

Bintray.

4.2 BDD Module

This section analyzes our design choices for the bdd module, which represents

our proposal for the novel Binary Decision Diagrams manipulation library. In

Section 4.2.1 we present the internal architecture of our library, presenting all its

core components. In Section 4.2.2 we expose all the operations and manipulation

tasks that we support in our proposal for the first release. Finally, in Section 4.2.3

we discuss how we attain optimal flexibility over platform-specific optimization

and custom data representations.

4.2.1 Internal Architecture

As discussed in Section 3.3, we recognize the absence of a public, unified, coherent,

portable solution for manipulating and representing Binary Decision Diagrams. As

such, we propose a library that attempts to fill these gaps without sacrificing per-

formance optimizations. We prioritize usability, extensibility, and portability over

multiple languages and platforms. Principles of information hiding are widely ap-

plied over the architecture of the whole module. The core entities are all defined by

abstract components that are accessible and manipulable from the external world.

Every detail regarding representation strategies, algorithms implementation, and

multi-platform support and optimizations, is segregated behind the abstract inter-

CHAPTER 4. DESIGN 41

Figure 4.2: Binary Decision Diagram Module: Internal Architecture

faces of the module. Then, the factory pattern is extensively used to access specific

implementations of each core abstraction. The diagram shown in Figure 4.2 de-

scribes the high level architecture of the module. To shape the set of core entities

of the library, we took inspiration from some of the existing state of the art pro-

posals. The core of our module is defined by a minimal set of components, that

can satisfy a variety of use cases.

BinaryDecisionDiagram — This interface abstractly represents any Binary De-

cision Diagram. The generic type T dictates the value representing each

Variable node inside the diagram. Since the representation strategy for

variable nodes does not affect the manipulation business logic of BDDs, de-

velopers can leverage the generic type for an optimal object-oriented design.

The only constraint over the generic type T is that it has to be comparable

CHAPTER 4. DESIGN 42

to others of its kind. Moreover, the visitor pattern is used to flexibly explore

the structure of Binary Decision Diagrams.

BinaryDecisionDiagramVariable — This interface represents variable nodes in-

side Binary Decision Diagrams. The entity is composed of three attributes:

value — The actual value representing the Boolean variable. By being

represented with the generic type T, developers can represent Boolean

variables as they prefer.

low — A reference to the low sub-diagram.

high — A reference to the high sub-diagram.

Given the presence of low and high, this interface indicates a recursive data

structure. However, there is no constraint over how the referenced sub-BDDs

should be retrieved or accessed. The variable ordering is determined by the

comparable nature of value. In this way, developers are not constrained on

some specific variable ordering method either, whereas most other proposals

rigidly solve this task by using numerical identifiers.

BinaryDecisionDiagramTerminal — This interface represents terminal nodes in-

side Binary Decision Diagrams. The entity is composed by just one Boolean

value, that represents the truth state of the terminal.

BinaryDecisionDiagramVisitor — This interface enables the visitor pattern

over the recursive structure of Binary Decision Diagrams. It provides a

type-safe and and fast way to explore the structure of diagrams, by also

hiding their representation strategy.

BinaryDecisionDiagramBuilder — This interface represents abstract builders

that are responsible for creating Binary Decision Diagrams.

BinaryDecisionDiagramOperators — This is a collection of all the operations

for Binary Decision Diagrams supported by the library.

BinaryDecisionDiagramUtils — This is a collection of helper and utility func-

tions that support the manipulation of Binary Decision Diagrams.

CHAPTER 4. DESIGN 43

4.2.2 Supported Operations

With the term operation, we imply algorithms and operators aimed to the synthesis

of new diagrams starting from one or more Binary Decision Diagram operands.

Indeed, unary and binary Boolean operations on BDDs fall in this category. The

proposed architecture is open to support any kind of operator. In the first version

of the library, we commit to provide an implementation of the apply algorithm in

both its unary and binary versions. We also support the and, or, and not binary

operations, which can easily be attained by relying on the apply algorithm.

Besides construction operators, there are a variety of tasks that can be executed

over Binary Decision Diagrams. These all fall in the collection that we defined utils.

In its first proposal, our library supports the following set of operations:

any — This is the task of finding at least one node inside a BDD that satisfies a

certain Boolean predicate. The simplest of those is the existential predicate,

which aims to be true if the diagram contains at least one node. This can

flexibly host more sophisticated logic that asserts the inner properties of

diagram nodes.

expansion — This task is a generalization of the Shannon Expansion that we

discussed in Section 2.2.2. We model this operation as a recursive reduc-

tion that computes a result value by evaluating each node inside a BDD in

bottom-up order. The result is defined with a generic type as well. This

operation opens a wide spectrum of possibilities. For instance, a possible

simple application could be counting the number of nodes inside a BDD.

Another example could also be creating a deep clone of the diagram itself,

by using a builder to construct the result during the recursive reduction.

map — This task creates a deep clone of a Binary Decision Diagram by applying a

certain transformation function over each of its nodes. Note, this operation

can easily be defined as a sub-case of the expansion operator.

CHAPTER 4. DESIGN 44

Figure 4.3: Binary Decision Diagram Builder Hierarchy

CHAPTER 4. DESIGN 45

4.2.3 Optimizations and Multi-Platform Support

Moreover, the proposed design is strongly open to multi-platform support and

domain-specific optimizations through the BinaryDecisionDiagramBuilder ab-

straction. In fact, the majority of library components do not take in consideration

the way BDDs are created and represented, because builders are the central unique

responsible of that task. As such, the library is mostly platform-agnostic by na-

ture. In the perspective of Kotlin multi-platform projects, most of the code would

reside in the common shared codebase. Then, each target platform can provide

an optimized implementation of builder through the expect/actual mechanism,

in order to satisfy specific constraints imposed by the application domain or the

execution environment. For instance, certain platforms could benefits from array-

based representations of BDDs to better leveraging memory locality, whereas other

systems could be achieve better performance by manipulating dynamic pointers

or by swapping memory with some persistent storage. As such, our library can

easily be extended to host customized optimizations and representation strategies.

Coherently, builders are injected inside each operation and construction algorithm

so that their business logic can ignore the details of node construction. In our pro-

posal, we commit to provide a simple initial representation strategy that makes

BDD manipulation feasible across all the supported platforms, with some basic

optimization to reach acceptable performance. An high level overview of hierarchy

related to the builder abstraction is provided in Figure 4.3. In that, the darker

components indicate the concrete implementations of builder that we include in

our design. The ones delimited by a dashed line represent hypothetical implemen-

tations specific to one or more platforms.

Additionally, the builder abstraction enables the implementation of the reduce

algorithm as well. This can be simply achieved through the decorator pattern. The

idea would be to delegate the actual construction of BDDs to another instance of

builder, and then leveraging some table-based approach to memoize the results in

memory and then apply the node reduction criteria.

CHAPTER 4. DESIGN 46

Figure 4.4: Design of Solvers in 2P-Kt

4.3 Prob-Solve Module

The purpose of the prob-solve module is to provide a common base that could

be shared with any potential implementation of PLP inference solver. For refer-

ence, the solve package of 2P-Kt has an analogous responsibility towards simple

LP solvers. As such, this module is meant to contain only interfaces and base

types to be used in other modules. In Section 4.3.1 we show the constraints and

guidelines imposed by the components on which this module depends on. Then,

in Section 4.3.2 we discuss how we shape our extensions to fit such criteria.

4.3.1 Overview of Dependencies

As hinted in Section 4.1, we model probabilistic solvers to be a subset of logic

solvers, at least for the scope of inference tasks. As such, we design PLP inference

engines to be compliant with the core components that reside in the solve module

on 2P-Kt. Among the numerous entities provided inside that module, we are

exclusively interested in the Solver interface and its semantics. This entity is

responsible for defining the core traits of logic-based solvers. In Figure 4.4 we

briefly illustrate how Solver, and its main dependencies are designed. The solve

method, along with its variants, takes a logic query and a given set of options as

input, and produces a sequence of solutions. Then, SolveOptions is a container

CHAPTER 4. DESIGN 47

for a set of options that can influence the behaviour of a solver. Examples of

options include limiting the number of solutions, implementing lazy resolution,

and imposing a timeout to bound long executions. Finally, Solution abstractly

represents the solution for a given query and its grounding. These three entities

are the main ones on which Prolog solvers implemented in 2P-Kt rely on.

Assuming that the probabilistic logic solvers shaped by our proposition have to

fit the criteria of the Solver object hierarchy, we must decide a way to strategically

extend the entities involved.

4.3.2 Design of the Extension

Given the context described in Section 4.3.1, we proceed by detailing how we plan

to insert the traits for probabilistic resolution inside the components offered by

2P-Kt.

First, we recognize that the only additional information that differentiates a

regular logic solution from a probabilistic one is the notion of probability. Namely,

we can potentially accomplish our purpose by simply adding a new field inside the

Solution interface to represent the probability of a solution as a floating point

number. However, it would be inconvenient to tamper the Solution interface

because it is deeply involved with parts of the 2P-Kt project. Instead, we propose

to add an extension for such interface, that would be visible only in the scope of

probabilistic solvers.

Then, assuming that we have a reliable way to distinguish probabilistic solution

from regular logic ones, we also have to design a way to instruct a Solver whether

to perform probabilistic resolution or not. Reminding the points of Section 3.1,

we imposed as a requirement that probabilistic solver must be versatile enough

to perform both probabilistic and regular logic resolution. As such, we advocate

that modifying or extending the Solver extension would not be an optimal design

to attain our goal. In that case, clients would face the ambiguity of using two

different methods or interface to perform the different kinds of resolutions, which

is inconvenient from the standpoint of both the existing codebase and its future

CHAPTER 4. DESIGN 48

additions. Given this observation, we realize that the optimal solution would be

to intervene on the SolveOptions entity instead. Considering these choices, the

resulting workflow would be fairly simple. We briefly describe it in the following

steps:

1. A specific instance of Solver would be obtained by a factory method.

2. The client customizes the options inside SolveOptions as preferred. Even-

tually, the probabilistic option can be toggled to specify whether probabilistic

resolution is requested or not.

3. The customized instance of SolveOptions is provided to the instance of

Solver along with the query goal.

4. Query is resolved. If requested, the solver will take care of performing prob-

abilistic computation. If such a feature is not supported by the chosen solver

instance, then falling back to regular logic resolution is consented by stub-

bing the probability result with a default value. This makes probabilistic

resolution an optional and best-effort feature.

5. Instances of Solution will be produced in sequence, each one eventually

carrying out the computed probability.

Note, the described process is totally transparent to all the clients that already rely

on the semantics of Solver and his hierarchy. Moreover, this allows probabilistic

solvers to be used as regular logic solvers with ease, by just unselecting probabilistic

resolution in the SolveOptions configuration. Additionally, what described is not

bound to any specific PLP language or resolution strategy.

Additionally, the manipulation of Solution and SolveOptions can be lever-

aged to attain an arbitrary number of additional features. In our proposal, we

want solvers to produce a representation of the underlying data structure that

determined the probability result. In the case of this project, the data structure

would be a Binary Decision Diagram. We envision this feature to be optional as

well, so that clients can request it at will depending on their use cases. For in-

stance, one may want to visualize in some GUI a graphical representation of the

CHAPTER 4. DESIGN 49

Binary Decision Diagram that is behind a given probabilistic solution, to better

inspect and motivate its meaning.

Summarizing, we want Solvers to be extended in order to produce solutions

enriched with the notion of probability. Disabling the probabilistic option must

make the solver fall back to regular logic resolution. From the outside, Solvers

can be used as usual without needing to be aware of the probabilistic extension.

4.4 Prob-Solve-Problog Module

In this section we present design and architecture of our Probabilistic Logic Pro-

gramming solver for inference tasks, which represents the most remarkable contri-

bution of this dissertation. In the previous chapters we occasionally leaked frag-

ments of information regarding our PLP proposal, so in this section we proceed

by providing a vivid and complete description of all the design choices involved.

Accordingly, the remainder of this section is structured as follows. In Section 4.4.1

we provide a summary of the PLP features that we designed our engine to sup-

port. In Section 4.4.2 we discuss the crucial points of the resolution mechanics by

also providing supporting examples. In Section 4.4.3 we analyze the main details

behind the design of our PLP solution. Finally, in Section 4.4.4 we summarize the

accomplishments achieved with our design.

4.4.1 Core Traits and Supported Features

As discussed in Section 2.1, there is a variety of research contributions that ex-

plored the field of Probabilistic Logic Programming. In the literature, propos-

als often differ for language syntax, features, semantics, and supported reasoning

tasks. As such, contributing in this context demands for clarity in terms of where

to fit in the novelty spectrum.

In our proposal, we attempt to further explore the directions of usability and

portability, which have been a secondary concern in the other proposals we in-

spected. An additional value proposition is also represented by the enablement

CHAPTER 4. DESIGN 50

and usage multi-paradigm programming. The latter opens the horizons for better

reasoning optimizations, and favors portability by making it easier to integrate

other technologies distant from the LP realm. From the standpoint of the sup-

ported features, we attempt to match a subset of the ones available at the state of

the art. Our plan is to provide an usable and functioning PLP code base, initially

supporting only the fundamental features, and aiming to be flexible for future

growth. The core features and traits of our proposal can be summarized in the

following points.

ProbLog syntax — Among the various languages and syntaxes perceptible in

the literature, we opt for supporting ProbLog. We appreciate the simplicity

of the language and the high compatibility with traditional Prolog. Consid-

ering the instruments provided in 2P-Kt, supporting the probability operator

on facts and clauses is a simple task. We do not aim to accomplish a faith-

ful reproduction of the language, but we are interested to leverage it for its

simplicity instead.

Compatibility with Prolog — As mentioned in Section 3.1, we want our PLP

engine to accept both ProbLog and Prolog Knowledge bases interchangeably.

That way, we are able to use libraries and legacy code written in Prolog to

perform probabilistic reasoning.

Use of Binary Decision Diagrams — To solve the problem of Knowledge Com-

pilation, we select Binary Decision Diagrams as our data structure of refer-

ence. This is also the choice of many state of the art PLP proposals, not to

mention that BDD packages are considerably more evolved than the other

alternatives. As such, we have a rich set of examples on which inspire our

solution. Additionally, by developing a library for Binary Decision Diagrams

of our own, we can accomplish a deeper control of the data structure and

apply optimizations customized to our use case.

Probabilistic clauses — Traditionally, ProbLog supports probability distribu-

tion only defined over logic facts. Distributing probability over clauses can be

accomplished by reformatting them and by strategically adding probabilistic

CHAPTER 4. DESIGN 51

facts to the given theory. However, this transformation is often costly in

terms of memory utilization and computation, as the logic resolution would

face additional steps and depth. As such, most ProbLog proposals support

probabilistic clauses natively, allowing annotating probability distributions

on clauses similarly to how it is done on facts. Accordingly, we decide to

support this trait in our PLP solution as well.

Probability with evidence — As discussed in Section 2.1.2, one common use

case for probabilistic reasoning is the ability to solve queries given a certain

evidence. In this context, by evidence we imply a set of logic facts that are

known to be true, even though they may be defined over some probability

distribution. Clearly, this influences the resolution process in most reason-

ing tasks. Coherently to most state of the art proposals, we fully support

reasoning with evidence.

Annotated disjunctions — Recalling the contents of Section 2.1.3, Annotated

Disjunctions are a special notation that supports the definition of non-binary

probabilistic distributions over clauses and facts. This is not trivial to accom-

plish, and other state of the art proposals either support Annotated Disjunc-

tions natively or perform strategic operations at the Knowledge Compilation

level. Given their expressive power, we decide to support this feature in our

engine.

Exact inference — Probabilistic Logic Programming allows for various different

reasoning tasks, and each of them has been richly documented in the litera-

ture. As supporting many different tasks would add excessive complexity to

this project, we decide to restrict our focus just on one. More specifically,

in the first version of our proposal we opt for supporting exact inference ex-

clusively. Again, this task concerns solving logic queries and estimating the

probability of each solution without performing any sort of approximation.

Although this approach is limiting in terms of performance, it is definitely

easier to develop.

CHAPTER 4. DESIGN 52

Listing 4.1: Prolog - Family Relationships Example (Version 2)�
1 male(john).

2 male(mike).

3 female(anna).

4 female(jane).

5 parent(mike , john).

6 parent(mike , anna).

7 parent(mike , anna).

8 parent(jane , anna).

9 father(X, Y) :- male(X), parent(X, Y).
� �
4.4.2 Behavioral Analysis of the Probabilistic Solver

In this section we explain the expected behavior of our PLP solver, comparing it to

the mechanics of traditional Prolog solvers. First, we provide an example of query

resolution for a generic Prolog solver over a simple logic program. Subsequently,

we adapt the example so that it is suitable for PLP queries. Then, we demonstrate

the mechanic behind query probability computation, and how it is related to Bi-

nary Decision Diagrams. Lastly, we inspect specific characteristics of probabilistic

solvers including solving goals with negation, computing the probability of a query

with evidence, and dealing with Annotated Disjunctions.

Prolog Query Resolution

First, we start by inspecting the resolution process that a generic Prolog engine

is supposed to undertake in order to solve logic queries. For reference, consider

the logic program in Listing 4.1, that is an adaptation of Listing 2.1 aimed to

better support this analysis. Again, the program describes a basic logic model for

family relationships. In this example, we assume that the Prolog engine searches

solutions in depth-first order, following the mechanic of SLD resolution. With these

premises, we expect the query father(X, Y) to produce a Search Tree similar to

the one showed in Figure 4.5. For sake of simplicity, remind that a Prolog Search

CHAPTER 4. DESIGN 53

Figure 4.5: Example of Prolog Search Tree

Tree is an abstract representation of the resolution process that Prolog engines

carry out for solving goals. The proof of a solved logic goal may be represented by

a depth-first, left-to-right visit of the search-tree. In the tree, each node indicates

an intermediate goal with a local substitution. Also, leaf nodes marked as fail

indicate unfeasible goals on which the solver performs backtracking, whereas true

leaves indicate success nodes that potentially lead to a solution.

By observing Figure 4.5, we conclude that the query produces three solutions:

father(mike, john), father(mike, anna), and father(mike, anna). Each so-

lution is produced in sequence according to the depth-first visit of the search-tree.

The left-most branch does not provide any solution and is pruned, as the engine

fails to solve the parent(john, Y1) goal with the provided Knowledge Base. Note,

the solution father(mike, anna) appears twice in the list. This happens because

the parent(mike, anna) fact is repeated twice in the program of Listing 4.1,

CHAPTER 4. DESIGN 54

Listing 4.2: ProbLog - Family Relationships Example�
1 male(john).

2 0.80:: male(mike).

3 0.65:: female(anna).

4 0.90:: female(jane).

5 0.60:: parent(mike , john).

6 0.65:: parent(mike , anna).

7 0.85:: parent(mike , anna).

8 0.75:: parent(jane , anna).

9 0.95:: father(X, Y) :- male(X), parent(X, Y).
� �
at lines 6 and 7 respectively. Although this does not make sense from a model-

ing standpoint, it a totally legit case from the perspective of a Prolog program.

However, this detail assumes a different meaning in the context of probabilistic

resolution.

Probabilistic Logic Query Resolution

We proceed in our example by considering a probabilistic logic program obtained

by adding probability distributions over each clause of the program in Listing 4.1

using the ProbLog syntax. The result of this adaptation is shown in Listing 4.2.

The probabilities assigned to each clause are fictional and not representative of re-

ality, and are only supposed to be functional to this narrative. First, observe that

the logic structure of the program has not been altered by any means. However,

facts and clauses of this program are not guaranteed to be true anymore. Instead,

they can either be true or false, depending on their assigned probability distribu-

tion. Note that the fact male(john) does not have any annotated probability, in

which case we can assume it is guaranteed to be true with an implicit probability

equal to 1. Also, observe that the facts at lines 6 and 7 still denote the same

logic structure, but that now differ in probability distribution. Differently from

Prolog, this case makes totally sense in the setting of probabilistic logic. In fact,

CHAPTER 4. DESIGN 55

the two facts could represent probabilistic estimates derived from two different

observations of the same phenomena.

For our purposes we are again interested in computing the probability of each

solution of the query father(X, Y), this time using the probabilistic logic Knowl-

edge Base of Listing 4.2. Remind that in Section 3.1 we hinted that resolution

strategies of Prolog solvers are also valid in the context of PLP inference. As such,

we can solve the probabilistic query by following the search-tree of Figure 4.5

based on SLD resolution, and by altering its semantics to take in consideration

the newly introduced probabilistic distributions. First, observe that each logic

solution is obtained by following a path from the root of the search-tree to one

of the true leaf nodes. The Explanation of each solution can be constructed by

considering the probability distribution of all the probabilistic clauses selected in

the solution proof.

From Section 2.1.2, recall that the selection of probabilistic clauses in each

solution is related to the concept of composite choice. As such, consider a generic

probabilistic fact in ProbLog notation C = p :: f . Such a fact can be seen as

a Boolean variable XC that is true with probability p and false with probability

1 − p. The same concept applies to clauses as well, since the probability dis-

tribution is defined over the head terms. As a solution is defined over the logic

conjunction of all the clauses selected to find it, an Explanation can be represented

as the conjunction of all the Boolean variables XCi
involved. Accordingly, we use

the notation EXPL(Ci) to indicate the contribution of a clause Ci in a certain

explanation through its Boolean variable XCi
. Also, to can specify that an Expla-

nation is represented using Binary Decision Diagrams, we use the EXPLBDD(Ci)

notation. So, given a solution s to a certain probabilistic query q, we define its

Explanation as:

EXPL(s) =
∧
i

EXPL(Ci)

Then, the probability of each solution s can be computed by calculating the prob-

ability of EXPL(s). For Explanations represented as Binary Decision Diagrams,

this is feasible through Weighted Model Counting with the procedure shown in

Algorithm 2. However, this is not sufficient for finding the whole solution set of a

CHAPTER 4. DESIGN 56

probabilistic query. In traditional Prolog, solutions can appear with multiplicity

higher than one for a given query, which is totally acceptable but does not provide

any semantic contribution. Differently, multiple repetitions of the same solution

represent different probabilistic worlds in PLP. From Section 2.1.2, recall that the

probability of a probabilistic query is defined over the disjunction of all its prob-

abilistic worlds. Considering that a given solution s can be found n times by a

solver, we indicate its probability as:

ps = PROB(
∨

i∈(1,n)

EXPL(si))

With PROB being the algorithm that computes the probability of an Explana-

tion, depending on the data structures with which is represented. Note, that the

number of repetitions n is inside the interval (1,+∞), and as such the solver can

potentially never terminate computing the probability. This problem is mitigated

by techniques of Approximated Inference, which we do not cover in this project.

We continue with our example by applying the knowledge provided in the

previous paragraph. Considering a PLP solver configured to include Listing 4.2 in

its Knowledge Base, we wish to find all the probabilistic solutions through Exact

Inference for the query father(X, Y). Observing, Figure 4.5, we conclude that we

can find the same three solutions through SLD resolution: father(mike, john),

father(mike, anna), and father(mike, anna). Then, we label each clause as

Ci, with i being their respective line number as in Listing 4.2. We proceed by

enumerating the clauses selected by the solver to find each of the solutions.

father(mike, john) → C2, C5, C9

father(mike, anna) → C2, C6, C9

father(mike, anna) → C2, C7, C9

Then, the head of each clause is used to construct a Boolean variable with its

defined probability, that is represented by a certain Explanation. Assuming that

we represent Explanations as Binary Decision Diagrams, we define an Explanation

CHAPTER 4. DESIGN 57

EXPLBDD(Ci) for each of the selected clauses, such that:

E2 = EXPLBDD(C2), E5 = EXPLBDD(C5), E6 = EXPLBDD(C6),

E7 = EXPLBDD(C7), E9 = EXPLBDD(C9),

PROB(E2) = 0.8, PROB(E5) = 0.6, PROB(E6) = 0.65,

PROB(E7) = 0.7, PROB(E9) = 0.95

Now, the actual solutions for the query, along with their probability, can be defined

as follows:

s1 = father(mike, john)

ps1 = PROB(E2 ∧ E5 ∧ E9) = 0.456

s2 = father(mike, anna)

ps2 = PROB((E2 ∧ E6 ∧ E9) ∨ (E2 ∧ E7 ∧ E9)) = 0.7201

For performing and-or operations between the Explanations (∨ and ∧), we lever-

age the apply algorithm for Binary Decision Diagrams presented in Algorithm 1.

Then, the probability of the resulting Explanation of each solution is computed

Algorithm 2. In this simple example, the same results can also be achieved by

manually manipulating the Boolean formula. For reference, the probability of s2

can also be calculated as:

ps2 = 0.8× (0.65× 0.85 + 0.65× (1− 0.85) + (1− 0.65)× 0.85)× 0.95 = 0.7201

We only provided the calculation for s2 as it is the only non-trivial case of the

example due to the presence of the disjunction between two repeated solutions.

Instead, the probability of s1 is the simple product of the probability of all the

clauses selected to find it.

The example is supposed to show in detail the expected behavior of a generic

PLP solver for performing Exact Inference tasks. We proceed by briefly summa-

rizing the procedure point by point. First, we start by using a Prolog resolution

strategy to search and collect all the solutions to a certain query. While collecting

the solutions, we keep track of all the probabilistic clauses selected by the solver.

CHAPTER 4. DESIGN 58

For each solution, those clauses are gathered in conjunction to build a single Expla-

nation, in our case represented as a Binary Decision Diagram. Then, Explanations

of identical solutions are reduced together disjunctively. At this point, we obtain

a set of unique solutions, each one with its characteristic Explanation. Finally, the

probability of each solution can be computed by manipulating their Explanation,

in our case using Algorithm 2 for Binary Decision Diagrams.

Negation as Failure

In the previous section we highlight multiple similarities between query resolution

in LP and PLP. Now, we put our focus on the additional peculiarities of PLP

inference. The first difference we discuss is how negated goals are differently treated

in probabilistic query resolution.

First, recall how negated goals are dealt with in traditional LP. A negated goal

is the attempt of proving a term in the form ¬q over a given Knowledge Base. A

negated goal ¬q is proven to be true if the solver fails to prove the term q to be

true. This non-monotonic inference rule is known as Negation as Failure, and is

implemented in Prolog through predicates like \+(q) and not(q). This inference

task is non-trivial if the negated goal is not ground. Note, in order to refute a

negated goal ¬q it is sufficient to prove q at most once, in traditional LP.

However, in the case of probabilistic logic, things are considerably different.

First, Negation as Failure is not sufficient to cover negation in a probabilistic

setting because goal resolution is not binary by nature. We can distinguish two

different cases. In a simple scenario, if a solver fails to prove a certain goal, we

could say that the negation of that goal is proven with probability of 1. However,

the solver could be able to proven a certain goal, but still have no guarantee that

its negation is failed. In fact, by definition, the probability of a negated goal is the

complement of the probability of the relative non-negated goal. Given this fact,

in order to solve a negated goal ¬q a probabilistic solver must first try to solve

the goal q compute its probability pq. The probability of ¬q is then defined as

p¬q = 1 − pq, which can potentially be 0. However, proving q only once does not

suffice anymore. In fact, in the previous section we shown how the probability of

CHAPTER 4. DESIGN 59

a certain goal is strongly defined by the disjunctions of all the repeated solutions

found by the solver.

For clarity, consider again the logic program defined in Listing 4.2. As an

example, solving a query such as not(male(mike)) is straightforward. First, the

probabilistic solver would first attempt to prove the goal male(mike), for which

it would find a probability of 0.8. Then, the probability of the query would be

computed as 1− 0.8 = 0.2. However, solving a query such as not(parent(mike,

anna)) is certainly not trivial. Again, the solver would attempt to solve the goal

parent(mike, anna), for which it would find two solutions, with Explanations of

probability 0.65 and 0.86 respectively. Then, it must obtain the overall probability

of such goal as the disjunction of all the probabilities obtained, which would have

value 0.65× 0.85 + (1− 0.65)× 0.85 + 0.65× (1− 0.85) = 0.9475. The probability

of the negated query would then be 1− 0.9475 = 0.0525.

As we demonstrated, solving negated goals is quite expensive in the context

of probabilistic solvers. In fact, the solver would first need to compute all the

solutions of the non-negated goal in order to compute its overall probability. The

procedure relies on probabilistic query resolution, which is inherently costly due to

the necessity of finding and disjoining all the repeated solutions. As such, negation

should be used carefully in probabilistic environments. Moreover, solving non-

ground negated goals is certainly non-trivial, and in most cases not feasible at all.

As such, we endorse the decision of some other state of the art proposals, that do

not support the resolution of non-ground negated goals.

Probability with Evidence

Inference tasks in PLP solvers include solving queries given a set of known facts and

clauses, which constitutes what is referred to as evidence. This resembles the topic

of conditional probability well known in the probability theory. This notion is not

present in traditional LP as it would not be influential during query resolution. On

the other hand, evidence information is relevant in PLP as it changes the inferred

probability of queries. Discussing the inner details of this kind of tasks is non

trivial, and our of the scope of our narrative. From a more practical standpoint,

CHAPTER 4. DESIGN 60

given a conjunction of ground literals e representing the evidence, we can identify

two core tasks: inferring the probability of the evidence P (e), and inferring the

conditional probability P (q | e) for a certain query q.

Solving the first tasks requires two steps. First, we need to find e over the

provided Knowledge Base through simple LP inference. This is needed in order to

ensure that e is a ground term, and that every evidence term inside the Knowl-

edge Base gets considered. Then, the second step involves solving P (e) through

PLP inference, so that P (e) = PROB(EXPL(e)). Choosing between exact and

approximated inference approaches is not relevant here.

The second task involves calculating P (q | e). As introduced in Section 2.1.2,

this can be accomplished through the formula:

P (q | e) =
P (q, e)

P (e)

From this formula, we observe that in order to solve the second task we first need

to compute P (e). Then, using the same notation used in the previous section, the

probability of an atomic query q given evidence e can be computed as:

P (q | e) =
PROB(EXPL(q) ∧ EXPL(e))

PROB(EXPL(e))

Inherently, we need a way to distinguish evidence terms from the rest of the

literals contained in the Knowledge Base. In our design, we endorse the choice we

found in other proposals of using the evidence/1 meta-predicate to indicate those

terms. The purpose of the evidence predicate is to be used as the head term

of facts inside the Knowledge Base. Given a fact evidence(a), we know that

the ground literal a is part of the evidence. Note, evidence can also be the head

term of a clause, and can potentially contain a non-ground argument. In both

cases, finding the ground conjunction of literals e is responsibility of the initial LP

inference task.

Intuitively, solvers should be resilient to three evident edge cases: e can either

be impossible to be solved, result in an empty conjunction, or have probability

equal to 0. In those cases, we impose P (e) = 1 and P (q | e) = P (q).

CHAPTER 4. DESIGN 61

Annotated Disjunctions

In Section 2.1.3, we presented the concept of Annotated Disjunctions as a mean

to represent non-binary probability distributions over facts and clauses. Existing

PLP proposals support this feature either by natively dealing with multi-headed

clauses in the solver, or by re-compiling the Knowledge Base so that Annotated

Disjunctions are represented by an equivalent set of single-headed clauses. Given

our choice of relying on the existing LP solvers of 2P-Kt, our proposal adopts the

second option by design.

In order to correctly map an Annotated Disjunction in a set of single-headed

clauses, we need to fully respect the expected semantics. To better understand

our approach, consider a fact f0 with an Annotated Disjunction:

0.4::green; 0.6::red :- true.

During query resolution, we want to ignore f0 and consider the two equivalent

facts f1 and f2 instead:

P1::green :- true.

P2::red :- true.

Given this idea, we need to ensure that only one between f1 and f2 gets selected

in a given logic solution during query resolution, along with its relative probability

distribution. Considering two feasible explanations E1 and E2, selecting f1 and

f2 respectively, we want to enforce P (E1 ∧ E2) = 0. This constraint is sufficient

to respect the semantics of Annotated Disjunctions. The same principle applies

to Annotated Disjunctions containing non-ground terms. In that case, the solver

would need to find each grounding before enforcing the constraint. Furthermore,

this approach also works for Annotated Disjunctions of clauses.

After ensuring that the semantics of an Annotated Disjunction is respected af-

ter compiling it in a set of equivalent clauses, we still need to adapt the probability

computation procedure. Accordingly, recall that the probability distribution of an

Annotated Distunction defines a random variable X having n > 2 values. As such,

CHAPTER 4. DESIGN 62

we want to use n − 1 Boolean variables X1, ..., Xn−1 resembling the multi-valued

variable X. There are multiple approaches to accomplish this goal, and in our

proposal we adopt a technique based on binary-splits. The approach is based on

the idea that the Boolean variables Xi are mutually exclusive, namely that one is

true only if all the others are false. Inherently, the following can be observed:

X = i → X1 ∧X2 ∧ ... ∧Xi−1 ∧Xi i = 1, ..., n− 1

X = n → X1 ∧X2 ∧ ... ∧Xn−1

Given this premise, the probability distribution of each Boolean variable Xi can

be computed as following:

P (Xi) =
P (X = i)∏i−1

j=1(1− P (Xj))

Note that P (X = i) is known from the Annotated Disjunction as the probability

of the head at index i.

Finally, implementing this technique in a PLP solver demands for a strategy to

encode the binary split. Solvers needs to keep track of the Annotated Disjunction

that originated a certain artificial clause when selecting it. For instance, it would be

incorrect to implement the mutual exclusion of Boolean variables through Negation

as failure, because that would impact the resolution process by potentially negating

other clauses in the Knowledge Base as well. At the same time, the solver must

be capable of maintain in memory information regarding the binary split until all

the involved terms are grounded. Our implementation choices for this problems

are discussed in Chapter 5.

4.4.3 Architectural Design of the Solver

In this section we show how we designed the internal architecture of our proposal

to fit into 2P-Kt as an extension module. As described in Section 4.3, our purpose

is to develop a PLP solver for Exact Inference tasks by respecting both semantics

and interfaces of Prolog solvers in 2P-Kt. Moreover, we are interested in working

on top of already existing LP solvers in order to maximize code reusage and to

CHAPTER 4. DESIGN 63

optimally separate the responsibilities of each module. We proceed by discussing

the design of our solution point by point.

Overview

Intuitively, solving PLP inference tasks by only using a LP-based solver is a non-

trivial task. In our research, we acknowledge two potential approaches for address-

ing this problem:

1. Operating at the low level by rewriting or upgrading the underlying inter-

preter of a LP solver, so that it becomes capable of solving both LP and

PLP tasks. With this approach, it’s easier to add low-level optimizations for

complex computations by tampering the interpreter’s code directly. How-

ever, there also are some inconvenient downsides. First, the interpreter code

would become more fragile, as future code updates in the many parts of

2P-Kt could invalidate the expected behavior of the solver for PLP tasks.

Second, it becomes progressively harder to upgrade the interpreter to sup-

port additional features, as the code would be optimized and minimized.

Third, a general purpose solver supporting both LP and PLP could perform

poorly while performing traditional LP tasks.

2. Designing and creating a library of LP-compliant meta-predicates imple-

menting the additional PLP features. Meta-level interpretation has the ben-

efits of being easier to develop and maintain, and adding new functionalities

is frictionless. Moreover, this approach avoids the need of modifying the

code of LP solvers, as the PLP-specific computations are implemented by

the library predicates, which are written to be LP-compliant. This results in

a more robust solution, as future updates in 2P-Kt would not affect any of

the code related to the PLP library. However, many downsides are present in

this approach as well. First, the logic paradigm is not suitable to implement

many routines involved in PLP inference, such as Knowledge Compilation

and Weighted Model Counting. As such, the whole solution would be fairly

less efficient than any other alternative. Second, the whole Knowledge Base

CHAPTER 4. DESIGN 64

would need to be recompiled in order to be compliant with the new set of

meta-predicates. This detail would not be transparent to clients and would

compromise usability.

During the development of our proposal, we experimented the usage of both

these two approaches. However, we did not find comfort in adopting any of them,

as we found their weaknesses and downsides excessively limiting for our purposes.

As such, we decided to introduce an alternative and unconventional third solution.

Our idea is to adopt an hybrid approach based on multi-paradigm programming,

by writing both object-oriented code and meta-predicates to inherit the benefits

of both worlds. This is feasible in a multi-paradigm ecosystem such as the one

of 2P-Kt. We still introduce a library of meta-predicates covering probabilistic-

related computations, which in this case only act as a facade. Through the prim-

itives mechanism of 2P-Kt, we are able to implement the behavior of each meta-

predicate with object-oriented Kotlin code. This preserves the opportunity to

optimize tasks such as Knowledge Compilation and Weighted Model Counting,

and maintains the flexibility of delegating the whole logic-based reasoning to an

underlying solver. Finally, a middleware component is added to perform Knowl-

edge Base re-compilation in automatic, so that users can be totally unaware of the

underlying meta-predicate system.

Given this overview, the design of our PLP solver is built on top of three inter-

connected components: a Library of Meta-Predicates, a Knowledge Recompilation

Engine and a Solver Piloting Engine. A high-level representation of the whole

architecture with its components is shown in Figure 4.6.

Library of Meta-Predicates

It’s worth mentioning that we find the need of representing Explanations at the

logic level, so that they can be manipulable and propagable by the meta-predicates.

This demands for being able to attach an Explanation object to a logic term,

which are the only entity known by LP solvers. Luckily, this is easily feasible

in 2P-Kt, which provides handy means to attach additional information from the

object-oriented realm to logic terms used by solvers. Further details of how this

CHAPTER 4. DESIGN 65

Figure 4.6: Architectural Overview of the PLP solver

CHAPTER 4. DESIGN 66

is implemented in our proposal are provided in Section 5.2.1. We decided to ma-

nipulate Explanations instead of probabilities, as they provide a more generic and

complete source of truth during goal resolution. Moreover, the probability of an

Explanation can easily be computed anytime through Weighted Model Counting.

We introduced a collection of Prolog-compliant meta-predicates, each one im-

plementing a specific task required for PLP query inference. Some meta-predicates

can be implemented as logic rules, whereas others require imperative business logic

that is insertable through the primitive mechanic of 2P-Kt. The predicates are

collected inside a Prolog-compliant library, so that it can be inserted in the config-

uration of the Prolog solvers of 2P-Kt. We proceed by listing each meta-predicate

and by describing its semantics.

prob query(?Prob, :Goal) — This is the main entrypoint for probabilistic logic

goal resolution. The first argument represents the numeric probability of the

goal being true, and the second argument is the query goal. The probability

argument can either be an input number or an output variable. If the goal

argument is a non ground term, its variable are substituted for each solution

found by the solver, as to be expected by traditional Prolog solvers.

prob(-Expl, :Goal) — This acts as a simple wrapper to attach an Explanation

to a logic term. The purpose is using this as a meta-predicates both in the

head and in the body of clauses to enable the propagation, manipulation, and

substitution of Explanations along with the logic term. The first argument

is a term representing the Explanation, whereas the second argument is the

logic term itself.

prob solve(-Expl, :Goal) — This meta-predicate solves a logic goal and com-

putes its Explanation. The purpose was to create a counterpart of the call

meta-predicate of traditional Prolog capable of operating with Explanations.

Moreover, this implements the solution grouping semantics of PLP solvers.

As such, each substitution of Goal is unique in the solutions produced by

this meta-predicate, and its attached Explanation is computed to represent

the disjunction of all the alternatives.

CHAPTER 4. DESIGN 67

prob expl build(-Expl, +Prob) — This is a primitive to manipulate Explana-

tions right at the logic level. More specifically, this creates an Explanation

term, represented by the first argument, which encodes the numeric proba-

bility specified in the second argument. The resulting Explanation represents

a Boolean random variable that has probability Prob of being true.

prob expl and(-ResExpl, +Expl1, +Expl2) — This primitive allows to com-

pute the and operation between the two Explanation terms Expl1 and Expl2.

The result is an Explanation term substituted to the first argument ResExpl.

prob negation as failure(-Expl, +Goal) — As already mentioned, the Nega-

tion as Failure semantics in PLP differs from the one of LP. As such, we

introduced this meta-predicate as a surrogate of the \+ and not Prolog pred-

icates, which inherently also has an argument for the computed Explanation.

Due to the motivations discussed in Section 4.4.2, passing a non ground term

as a goal of this meta-predicate results in a failure.

prob solve evidence(-Expl) — From the perspective of the analysis of Sec-

tion 4.4.2 regarding solving goals with a given evidence, this meta-predicate

solves the task of computing P(e). However, we respect the format of the

other meta-predicates of computing an Explanation instead of the numeric

probability. More correctly, this meta-predicate executes the business logic

of solving the evidence e over the given Knowledge Base, and computes its

Explanation EXPL(e). Since we find no use in the final solved ground term

e, only the Explanation is substituted and accepted as argument. Failure

in finding or grouding the evidence e results in an Explanation encoding a

probability 1 of being true.

prob solve with evidence(-GoalEvExpl, EvExpl, :Goal) — This meta-predicate

is complementary to prob solve evidence, and is responsible for the busi-

ness logic required to solve P (q | e) given a query q and an evidence

e. More specifically, this solves Goal and substitutes GoalEvExpl with

the conditional Explanation EXPL(q, e) = EXPL(q) ∧ EXPL(e). In-

stead, EvExpl is substituted with the evidence Explanation EXPL(e) as in

CHAPTER 4. DESIGN 68

prob solve evidence. This meta-predicate is used internally by prob query

to solve conditional queries.

As already mentioned, the library of meta-predicates is useless if not coupled

with an adaptation, or recompilation, of the whole Knowledge Base. This is re-

quired for piloting the LP solver to select the right meta-predicates and correctly

implement the semantics of probabilistic reasoning.

Knowledge Recompilation Engine

The meta-predicates approach requires the Knowledge Bases to be formatted in an

ad-hoc way, so that the LP solver is forced to select the meta-predicates during goal

resolution. Clearly, this leads to a terrible user experience from the perspective

of clients, which would instead be interested in writing their probabilistic-logic

Knowledge Base in their preferred language (in our case, ProbLog). Moreover,

the meta-predicates make the Knowledge Base more verbose and not intuitive.

As such, the system demands for a middleware component that automates the

recompilation process.

We name the component responsible for the automated recompilation Knowl-

edge Recompilation Engine. As shown in Figure 4.6, the engine accepts probabilistic-

logic Knowledge Bases provided by clients written in ProbLog syntax. Then,

clauses contained in the Knowledge base are processed one by one, and recompiled

by adding the required meta-predicates of our library and wrapping terms with

the prob predicate where necessary. The logical semantic of each clause is not

altered, and the program is ensured to work as intended. Note, one clause can

be recompiled as one or more clauses. For instance, Annotated Disjunctions can

be split in multiple single-headed clauses, as we mentioned before. Subsequently,

the clauses resulting from the recompilation are stored in an internal Knowledge

Base that is written in pure-Prolog syntax. This internal accumulator will act

as the actual Prolog Knowledge Base used by the underlying LP solver for solv-

ing goals. Observe that consistency between the internal and external Knowledge

Bases is guaranteed by the Knowledge Recompilation Engine, which intercepts all

the probabilistic-logic clauses provided by clients. An example of recompilation is

CHAPTER 4. DESIGN 69

Figure 4.7: Example of ProbLog Knowledge Base Recompilation

represented in Figure 4.7, for which we took some of the clauses from Listing 4.2.

Furthermore, the example show a practical correct usage of the meta-predicates

in our library.

Note that we the whole recompilation system is transparent and invisible to

clients, which may not even be aware of it. Furthermore, clauses are processed

only once, at the moment of insertion in the Knowledge Base. However, we did not

design a component that takes care of reversing the compilation transformation.

We motivate this choice through the lack of use cases of an inverse transformation

in our project, which however could potentially be attained with little effort. One

downside is that the recompilation can be visible to clients if an inspection of the

internal Knowledge Base is requested. However, we found this issue acceptable

for the purposes of our value proposition, as it does not limit the usability of the

solver since clients would still be able to consult the external Problog Knowledge

Base in their possession.

CHAPTER 4. DESIGN 70

Solver Piloting Engine

The last piece needed by our system to fully implement a PLP inference solver

is a component that hides the presence of an underlying LP solver. We name

this portion of software Solver Piloting Engine. This component is responsible for

accepting LP and PLP queries from clients, properly configuring the underlying

LP solver, piloting it to infer the solutions, extracting the probability values and

present the results. As a matter of fact, this represents the presentation layer of our

system. Note, solver configurations are handled at this level, and the component

is capable of passing both LP and PLP queries to the inner solver on demand.

Also, the engine recompiles queries and goals bidirectionally to be compliant

with the meta-predicates semantics of our library. For instance, our library as-

sumes that each query is expressed through the prob_query predicate. Considering

the example in Listing 4.2, a query such as father(X, Y) would be transformed

in prob_query(Prob, father(X, Y)). Once solutions are found, the Solver Pi-

loting Engine extracts the two terms Prob and father(X, Y), and present their

values to the clients in the correct format.

4.4.4 Accomplishments

Considering all the abstractions we introduced, we are able to develop a system

capable of solving inference tasks for both probabilistic and traditional logic, sup-

porting ProbLog and Prolog languages respectively. Our extension maximizes the

usage of what is already existing inside 2P-Kt, and is capable of benefiting of

future updates of other modules with robustness. In fact, logic resolution is to-

tally delegated to a Prolog solver from 2P-Kt, and the extension only integrates

the support for probabilistic computation. Furthermore, we are able to inherit

the benefits from both the logic-based and object-oriented worlds with our hy-

brid approach based on multi-paradigm programming with Kotlin. In fact, the

meta-predicates system allows fan expressive and flexible integration of the fea-

tures related to probabilistic reasoning, whereas the primitives mechanic allow

us to complement with imperative programming the more computation intensive

CHAPTER 4. DESIGN 71

part. Also, semantics and programming interfaces of 2P-Kt solvers are respected,

so that our solver could be used as a simple LP solver with ease.

This section purposely discussed details of design and architecture of our project,

without disclosing facts about how we were able to developing it. In fact, the de-

sign leaves abundant space for implementation choices and specific optimizations.

We dedicate Chapter 5 to the discussion of our most relevant implementation

choices.

Chapter 5

Implementation

In this chapter we present how we developed our project on top of design details

discussed in Chapter 4, putting our focus only on the most relevant implementation

choices and optimizations. Each section of this chapter dives into a specific portion

of the codebase of our proposal.

5.1 Binary Decision Diagrams Library

In this section we discuss the most significant development choices and optimiza-

tions that we introduced in our codebase related to the Binary Decision Diagrams

library. In Section 5.1.1, we describe the structure of our default implementation

for the BinaryDecisionDiagramBuilder interface. In Section 5.1.2, we demon-

strate how we widely leveraged the visitor pattern to implement the supported

operators. Section 5.1.3 presents an optimization that uses the visitor pattern to

avoid performance degradation due to type checking. In Section 5.1.5 we discuss

an optimization that executes the apply algorithm and Shannon Expansion oper-

ations altogether to achieve better performance over the most recurrent computa-

tions. Finally, in Section 5.1.4 we explain how the immutability of the core data

structures consented the use of lazy evaluation to cache the results of computation-

heavy operations.

72

CHAPTER 5. IMPLEMENTATION 73

5.1.1 Default Builder

Reminding what explained in Section 4.2.1, multi-platform support of the library

is enabled through the BinaryDecisionDiagramBuilder interface, which is re-

sponsible of the creation of Binary Decision Diagram nodes. Our choice is to

develop a single implementation that could be used as the default options for all

the supported platforms. Accordingly, we believe that providing platform-specific

optimization is out of the scope of this contribution, which can be subject for

future developments and updates instead.

Our default builder is a simple in-memory heap-based data structure with

mono-directional pointers from parent to child nodes. Naturally, the data structure

is simple enough to be represented through data classes available in Kotlin. Binary

Decision Diagrams can largely grow in size, and so memory consumption is a

serious concern that must be addressed in production environments. However, we

decide not to solve this problem in our first release of the project, and so every node

is maintained in memory with no swapping optimizations. Overall, this provides

an acceptable solution that can be used across the platforms supported by 2P-Kt

A key point of our implementation is that we opted to represent all data struc-

tures as immutable objects. This choice has the downsides of a general increase

in memory consumption and additional computations of construction operations.

However, we accept those defects as a tradeoff to benefit of the valuable guarantees

provided by the immutability property. Among the others, one of the most valu-

able consequence is that each diagram node becomes a canonical representation of

its content. As such, we can optimize resources usage by maintaining in memory

a cached version of the whole node and all unary operations applied to it, which

are guaranteed to remain constant during the lifetime of a program execution.

Moreover, this provides strong guarantees in concurrent environments as well.

Finally, the value representing Variable nodes of Binary Decision Diagrams are

supported through the generic typing available in Kotlin. As such, we are able to

grant maximum reusage of our implementation of both the builder and the data

structures produced by it, by also benefiting from type safety guarantees. As for

design, we constrained the generic type to extend the Comparable interface, so

CHAPTER 5. IMPLEMENTATION 74

that variable ordering logic is explicitly implemented through type comparison.

5.1.2 Visitor Pattern for Operators

With reference to Section 4.2.2, we committed to provide support to three core

operations for Binary Decision Diagrams in our first release: any, expansion, and

map. These operations have a bunch of properties in common. First, they are all

unary, in the sense that they operate on a single Binary Decision Diagram. This

concept makes it safe to maintain their results in memory once computed, as we

designed our diagrams to be immutable. Second, all those operations require the

recursive exploration of the nodes of a diagram, with the purpose of accumulating

information and synthesize a result of a certain kind. In the case of any, the result

is a Boolean, whereas expansion and map can produce objects of generic type.

Given these observations, we acknowledge that the visitor pattern, well sup-

ported in our library, could be leveraged to implement all three operators. The

idea is to provide one implementation of the BinaryDecisionDiagramVisitor in-

terface for each operator, separating the business logic to be applied to Terminal

and Variable nodes. Moreover, the usage of generic types available in the Kotlin

language allows for a single implementation to be suitable for every coherent data

type. For clarity, Listing 5.1 shows how we implement the any operator following

this pattern. Additionally, observe that instances of visitor implemented with this

semantic are inherently stateless. Namely, it is safe to use a single instance to

execute its operator on more than one diagram, even concurrently and in parallel.

Implementing the apply algorithm through the visitor pattern makes things

slightly more difficult. In fact, the algorithm is a first example of binary opera-

tion between Binary Decision Diagrams. As such, using a visitor to explore the

structure of only one diagram is not sufficient. We solved this issue by adding

an attribute to the visitor’s class representing the second operand diagram. That

way, the first operand is represented by the visited diagram, whereas the second

one is referenced by the state attribute. Then, we reproduce the recursive call

of the algorithm by either passing the visitor to another sub-diagram, or chang-

CHAPTER 5. IMPLEMENTATION 75

Listing 5.1: Kotlin - Implementation of the any Visitor for BDDs�
1 internal class AnyVisitor <T: Comparable <T>>(

2 private val predicate: (T) -> Boolean ,

3) : BinaryDecisionDiagramVisitor <T, Boolean > {

4

5 override fun visit(

6 node: BinaryDecisionDiagram.Terminal <T>

7): Boolean = false

8

9 override fun visit(

10 node: BinaryDecisionDiagram.Variable <T>

11): Boolean {

12 var result = predicate(node.value)

13 if (! result) result = node.low.accept(this)

14 if (! result) result = node.high.accept(this)

15 return result

16 }

17 }
� �

CHAPTER 5. IMPLEMENTATION 76

Listing 5.2: Kotlin - Implementation of the any Method for BDDs�
1 fun <T : Comparable <T>> BinaryDecisionDiagram <T>.any(

2 predicate: (T) -> Boolean

3): Boolean {

4 val visitor = AnyVisitor(predicate)

5 return this.accept(visitor)

6 }
� �
ing the referenced instance of the second operand. This multi-dispatching system

practically reproduces the recursive flow of the algorithm defined in Algorithm 1.

During the execution, a table is maintained as a state attribute inside the visitor

to enable dynamic programming. This choices make the apply visitor a stateful

object, which is not safe to be used in concurrent or parallel environments.

Overall, we hid our development choices under simple method signatures. That

way, clients are not aware of the internal constraints, such as the mono-thread

requirement of our implementation apply. Each method creates, or reuses, a

visitor specific for its own operation and then submits it to the diagram to proceed

with the exploration. Then, the computation carried out by the visitor is returned

to the client as result of the method. Under the hood, each method is implemented

by leveraging the extension methods feature offered in Kotlin, which provides an

handy way of modularly adding functionalities to a class or interface without

requiring the inheritance mechanism. So, the BinaryDecisionDiagram interface

explicits information regarding the data structure itself only, whereas methods

for the various operations are collected inside BinaryDecisionDiagramUtils and

BinaryDecisionDiagramOperators. For reference, consult the code in Listing 5.2,

which shows our implementation of the BinaryDecisionDiagram.any extension

method by relying on the visitor shown in Listing 5.1.

CHAPTER 5. IMPLEMENTATION 77

5.1.3 Visitor Pattern for Type Checking

One of the most obvious problems of multi-platform programming is that per-

formance discrepancy can happen between different compilation targets and ex-

ecution environments. This is the case for the type-checking system of Kotlin

multi-platform architectures, which are capable of targeting platforms where the

concept of type is absent. In our case, we observed a noticeable performance de-

crease in the JavaScript platform, which is one of the targets supported by the

2P-Kt project. According to our experience, KotlinJS seems to be inefficient in

translating dynamic casting and type checking into JavaScript code, which causes

a loss of performance when relying on Kotlin constructs such as when, is, or as. In

this context, we propose an optimization that would mitigate the problem without

tampering the underlying Kotlin framework.

As such, our approach leverages functional programming and the double-dispatching

mechanic of the visitor pattern to replace type casting and when statements wher-

ever possible in our codebase. The idea is simple, and consists in configuring a

visitor with many function object, each one consuming one type case of a hierarchy.

In the case of Binary Decision Diagrams, the visitor would accept two function

objects, one consuming Terminals, and the other consuming Variable nodes. After

the configuration, the visitor has to be passed to an object to be visited, such

as a Binary Decision Diagram. During the visit, the natural double-dispatching

of the visitor triggers one of its methods, which is responsible of delegating the

visit to the correct consumer function object. Overall, we are able to specify one

procedure for each case of a type hierarchy by leveraging polymorphism instead of

runtime type-checking. The first is generally more performant, as it does not rely

on any system or introspection mechanism, with the type cast being substituted

by a chain of function calls. We name this class CastVisitor, of which our simple

implementation is observable in Listing 5.3.

CHAPTER 5. IMPLEMENTATION 78

Listing 5.3: Kotlin - Implementation of CastVisitor for BDDs�
1 /**

2 * Example of usage:

3 *

4 * val castVisitor = CastVisitor <... >()

5 * castVisitor.onTerminal = {

6 * it -> // Handle terminal node case

7 * }

8 * castVisitor.onVariable = {

9 * it -> // Handle variable node case

10 * }

11 * bdd.accept(castVisitor)

12 * */

13 internal class CastVisitor <T: Comparable <T>, E> :

14 BinaryDecisionDiagramVisitor <T, E> {

15 var onTerminal: (

16 (o: BinaryDecisionDiagram.Terminal <T>) -> E

17)? = null

18

19 var onVariable: (

20 (o: BinaryDecisionDiagram.Variable <T>) -> E

21)? = null

22

23 override fun visit(

24 node: BinaryDecisionDiagram.Terminal <T>

25): E = onTerminal !!(node)

26

27 override fun visit(

28 node: BinaryDecisionDiagram.Variable <T>

29): E = onVariable !!(node)

30 }
� �

CHAPTER 5. IMPLEMENTATION 79

5.1.4 Lazy Evaluation

As hinted in Section 5.1.1, our choice of implementing Binary Decision Diagrams

as an immutable data structure brings a wide range of benefits. In our perspective,

the most interesting consequence is the opportunity of performing expensive com-

putation only once, and save their results so that it can be returned to the caller

in every subsequent request. This is possible as, by definition, the data structure

does not change during its lifetime. In our use cases, a number of relevant oper-

ations can leverage this property. The simplest case is the one of the toString

and hashCode methods. Both of those are unary operations that trigger a chain

of recursive calls, as the data structure of BDDs is recursive by nature. Prac-

tically, this means that in order to compute the hashCode of a Binary Decision

Diagram, the same computation is needed for all its sub-diagrams until a Terminal

node is reached. The same principle applies for the not logic operator, which we

implemented through the unary version of the apply algorithm. Diving into the

subject, we observe that most operations attainable through Shannon Expansion

could leverage this caching benefit. In our case, this applies to the Weighted Model

Counting that computes the numeric probability of BDDs.

Under the hood, we leveraged the Kotlin property delegation mechanism by

relying on the Lazy delegate. Briefly, the Kotlin language provides advanced tools

for the Delegation Pattern. For reference, property delegation allows for delegating

to an ad-hoc library object the computation or retrieval of the value for a certain

property. The extensive usage of generic typing, grants maximum reusage of the

delegate object across the Kotlin standard library. The delegate of our interest is

Lazy, which accepts a lambda expression containing the computation of a value

and triggers it only at the first request. Subsequently, the result of the first invo-

cation is returned in order to avoid multiple computations. This is an excellent

instrument for our caching purposes, and we widely used the Lazy construct across

our codebase.

CHAPTER 5. IMPLEMENTATION 80

5.1.5 Apply-Then-Expansion Optimization

Indeed, the most frequent operations applied on Binary Decision Diagrams are

the logic operations and, or, and not, which in our implementation all rely on the

apply algorithm. However, we also acknowledge a frequent use of the Shannon

Expansion operation in our project, that is leveraged to perform Weighted Model

Counting with the purpose of computing numeric probabilities. Starting from this

observation, we looked for an optimization that would increase the performance of

our specific use case.

As such, we observe that the apply algorithm builds Binary Decision Diagrams

bottom-up, in a similar way with which procedures based on Shannon Expansion

perform their computation. Accordingly, we advocate that the two operations can

be performed together in one single pass, so that Shannon Expansion computations

are performed right away at the diagram construction. This is possible because the

information required at each recursive level of the Shannon Expansion is the same

used by the apply algorithm. The consequence of this approach is that we are

able to pre-compute one or more values over a Binary Decision Diagram directly

at during its construction, so that they are promptly available when requested.

Obviously, calculating values eagerly makes the overall computation of the apply

algorithm more expensive. However, this trade-off can become beneficial if the

computed value is accessed frequently. Coupled with the reasoning discussed in

Section 5.1.4, the values computed with this optimization are not re-computed in

subsequent requests.

We named this new Binary Decision Diagram operation applyThenExpansion.

Semantically, the operation is equivalent to invoking the two operations apply

and expansion in sequence. However, the overall performance of the sequence is

boosted due to the need of visiting the data structure only once, which is beneficial

in case of very large Binary Decision Diagrams. This operation is implemented

by leveraging the visitor pattern coherently to what we document in Section 5.1.2,

and is based on a simple revision of the code that implemented the standalone

apply operator.

CHAPTER 5. IMPLEMENTATION 81

5.2 Solver

In this section we discuss the most significant development choices and optimiza-

tions that characterize our implementation of the PLP inference solver. In Sec-

tion 5.2.1 we show how we represent Explanations in our system. In Section 5.2.2

we explain an optimization that improves the indexing of the clauses inside the

Knowledge Base of the solver. In Section 5.2.3, we disclose how we implement

the automatic Knowledge Base recompilation. In Section 5.2.4 we show the strat-

egy with which we implement Annotated Disjunctions. Finally, in Section 5.2.5

we present some optimizations that improve the performance for simple Prolog

queries.

5.2.1 Representing Explanations

As hinted in Section 4.4.3, we want our PLP solver to be capable of manipulating

Explanations right at the logic level. The advantage of this approach is that we can

leverage the resolution strategy built inside the logic solver to iteratively construct

the Explanation while solving goals. However, we also need to embed an Expla-

nation object inside logic terms, so that the LP solver is capable of manipulating

it like any other term. By manipulation, we intend the ability of selecting Ex-

planation terms, using them for substitutions, and considering them as predicate

arguments. Then, the business logic implementing the actual construction of the

underlying Binary Decision Diagram data structures is handled by meta-predicates

such as prob exp and.

First, we introduce an object interface for representing Explanations them-

selves, which we name ProbExplanation. By definition, an Explanation is an

abstract collection containing one or more logic terms, that can also be manipu-

lated and combined with other Explanations. The code in Listing 5.4 is a stripped

version of the actual interface definition, containing the core methods and prop-

erties. As visible, we define the interface by the ability of applying the Boolean

operators and, or, and not, and by the possibility of extracting a numeric prob-

ability value from its content. Also, the containsAnyNotGroundTerm property

CHAPTER 5. IMPLEMENTATION 82

Listing 5.4: Kotlin - ProbExplanation Object Interface�
1 internal interface ProbExplanation {

2 val probability: Double

3 val containsAnyNotGroundTerm: Boolean

4 fun not(): ProbExplanation

5 infix fun and(

6 that: ProbExplanation

7): ProbExplanation

8 infix fun or(

9 that: ProbExplanation

10): ProbExplanation

11 fun apply(

12 transformation: (ProbTerm) -> ProbTerm

13): ProbExplanation

14 }
� �
returns true if the Explanation contains at least one term that is not ground. This

case is possible because the Explanation is supposedly constructed during goal

resolution, which may require keeping track of terms yet to be grounded. Finally,

we added the apply method, which is useful to apply a transformation to every

logic term contained in the Explanation. Note, the definition is abstract and not

bound to Binary Decision Diagrams at all. In fact, we want to leave the door open

for future developments that could consider adopting a different data structure for

representing Explanations and computing probabilities, such as one of the alter-

natives we reference in Section 2.1.4. Coherently, we provide an implementation

of the ProbExplanation interface based on our Binary Decision Diagram library.

As visible, we also introduced the new class ProbTerm. This is a simple ex-

tension of the Term interface native in 2P-Kt meant to represent logic terms that

have an attached probability values. In ProbLog syntax, the probability value

is expressed through the ::/2 operator. The class adds few data attributes to

represent the probability, and a numeric identifier that is used to keep track of

CHAPTER 5. IMPLEMENTATION 83

the clause from which the term was selected from the Knowledge Base. Under

the hood, the identifier is used for determining the variable ordering of Binary

Decision Diagrams.

Furthermore, we extend the Term hierarchy of 2P-Kt by introducting the

ProbExplanationTerm class. Intuitively, this entity simply represents a logic term

with an Explanation attached internally. This enables the logic manipulation ca-

pabilities mentioned at the beginning of this section. Logic terms of this class are

meant to be subject to logic substitution and to be arguments of meta-predicates

such as prob exp and. Note, we did not design this logic term to be constant. In

fact, we want the solver to be capable of applying substitutions to the non-ground

terms contained inside an Explanation. In fact, this is the primary use case we

found for the ProbExplanation.apply method.

This implementation choices allow us to introduce some additional optimiza-

tions. First, we acknowledge that the same object instances can be reused at run-

time for the Explanations representing the true and false constants. Practically,

those Explanation are Binary Decision Diagrams containing a single variable node

with probability value of either 1 or 0. Moreover, we recognized that the usefulness

of prob expl build was marginal. In fact, we could decide to pre-compile an Ex-

planation object inside clauses and facts of the Knowledge Base right away during

the recompilation process. This is made possible by the ProbExplanationTerm

class, which allows attaching Explanation objects direcly inside the terms in the

Knowledge Base. As such, the prob expl build meta-predicate is not present in

our implementation of the PLP library.

5.2.2 Clause Head Optimization

In the example we show in Figure 4.7, it is clearly visible that our automatic

recompilation supposedly uses the prob/2 predicate to wrap the head of every

clause inside the Knowledge Base. In this way, the prob/2 meta-predicate does

not require any underlying implementation, as it serves as a simple reference for the

body of other clauses to allow goal resolution. However, this causes an unexpected

degradation of the performance.

CHAPTER 5. IMPLEMENTATION 84

Figure 5.1: Indexing Workaround for the prob Meta-Predicate

Under the hood, 2P-Kt provides a set of optimizations aimed to improve the

performance of clause selection. The Theory interface, which represents abstract

logic Knowledge Bases in 2P-Kt, has an ad-hoc implementation that performs

clause indexing. As modern databases normally do, indexing allows for a faster

retrieval of content by constructing tree-like data structures meant to enable Bi-

nary Search. In that way, 2P-Kt is capable to attain logarithmic time-complexity

for fetching single clauses inside Knowledge Bases. However, this optimization is

in conflict with the outputs of our recompilation. In fact, the information used to

index clauses constitutes of the name of the head predicate and its first argument.

By wrapping every head predicate with the prob/2 meta-predicate, we practically

neutralize the effect of indexing because every clause in the Knowledge base ends

up having a head with the same predicate name.

We solve this issue by adopting two workarounds. First, we avoid wrapping the

head predicates with the prob meta-predicate. The Explanation term is instead

put as last argument of the head predicate. If the head of a clause is an atom,

we transform the atom to a predicate by using the atom literal as the predicate

name, and by making the Explanation term its only argument. As a matter

of fact, we simply increase the arity of each head term by one, by making the

Explanation term the last argument. For clarity, in Figure 5.1 we show an example

of how we apply this transformation. However, we still reference the prob meta-

predicate in the body of each rule in the recompiled Knowledge Base. As such, the

second workaround consists in providing an imperative implementation of the prob

meta-predicate as a 2P-Kt primitive. The implementation of the meta-predicate

CHAPTER 5. IMPLEMENTATION 85

is responsible of hiding the complexity of the first workaround. As such, the code

unwraps the inner term from the prob predicate, then adds the Explanation term

as last argument so that it becomes coherent with the format of the head terms

inside the Knowledge Base.

By adding our workarounds, we are able to fully benefit of the indexing opti-

mizations of 2P-Kt. The downside is that the solver will have additional level of

depth in its resolution process due to the need of invoking the primitive code of

prob every time a goal is solved. Further optimizations can be added to mitigate

this defect, which we do not cover in this dissertation.

5.2.3 Knowledge Base Recompilation

In Section 4.4.3, we present the expected behavior of the Knowledge Recompilation

Engine. Coherently with the design constraints, we opt for implementing the

engine as an extension of the Theory interface of 2P-Kt. As already mentioned,

Theory is the abstraction responsible of representing clause databases and logic

Knowledge Bases. Our idea is to provide an ad-hoc implementation of Theory that

applies the recompilation transformation every time a clause is added. Also, we

leverage the class delegation feature of Kotlin to delegate the real clause database

management to an already existing implementation of Theory provided by 2P-

Kt. As such, our code acts as an interceptor to implement the Decorator Pattern.

Every time a clause in ProbLog syntax is provided by clients, it gets transformed

according to the recompilation specifics, and then accumulated in a 2P-Kt Prolog

theory through delegation.

The most relevant notion regarding the recompilation procedure itself, is that

we adopt an approach based on cascading transformations. We advocate that

the idea is optimal due to the high number of edge case that the recompilation

engine is supposed to deal with. Accordingly, we implement the concept by in-

troducing an internal object interface ClauseMapper, of which definition is visible

in Listing 5.5. We created one concrete class implementation of such interface for

each specific case of the recompilation. For reference, specific recompilation cases

include mapping legacy Prolog clauses, ProbLog clauses, evidence-related predi-

CHAPTER 5. IMPLEMENTATION 86

Listing 5.5: Kotlin - ClauseMapper Object Interface�
1 internal interface ClauseMapper {

2 fun isCompatible(clause: Clause): Boolean

3 fun apply(clause: Clause): List <Clause >

4 }
� �
cates, and Annotated Disjunctions. Of those, the case of Annotated Disjunctions

require specific reasoning, which we document in Section 5.2.4. The ClauseMapper

interface is minimal and only exposes the two methods isCompatible and apply.

The first returns true if the class is capable of recompiling the clause passed as

argument, while the second applies the recompilation itself, accepting one clause

as parameter and returning a list containing one or more clauses. In this scenario,

we apply each mapping transformation in cascade with a given priority order, by

invoking the apply method of the first case for which the isCompatible method

returns true.

5.2.4 Annotated Disjunctions

As for the design presented in Section 4.4.2, we want to support Annotated Dis-

junctions by reproducing their semantics in an LP solver. To achieve this goal, we

transform the multi-valued random variables defined by Annotated Disjunctions in

a set of disjoint Boolean random variables through binary-splits. The disjunction

semantics is guaranteed if the solver is capable of imposing a mutual exclusion

constraint over the set of Boolean variables, so that only one of them is true in

a given Explanation. We proceed to explain our implementative approach. First,

the recompilation engine splits clauses with Annotated Disjunctions in a list of

single-headed clauses so that the LP solver can accept them. Then, we need to

ensure that mutual exclusion constraint gets respected by the solver during goal

resolution. We achieve this by pre-constructing Explanations containing the bi-

nary splits right at the recompilation step, and by inserting them in the head of

the splitted clauses.

CHAPTER 5. IMPLEMENTATION 87

Listing 5.6: ProbLog - Example of Annotated Disjunction for a Rolling Dice�
1 1/6:: dice (1); 1/6:: dice (2); 1/6:: dice (3); 1/6:: dice (4);

1/6:: dice (5); 1/6:: dice (6).
� �
Listing 5.7: Prolog - Example of Recompilation of Annotated Disjunctions�

1 dice(6, ’<expl:bdd :1616357538 > ’) :- true.

2 dice(5, ’<expl:bdd :1544331835 > ’) :- true.

3 dice(4, ’<expl:bdd : -1230819326 >’) :- true.

4 dice(3, ’<expl:bdd :2106363611 > ’) :- true.

5 dice(2, ’<expl:bdd : -707309726 >’) :- true.

6 dice(1, ’<expl:bdd :1383151320 > ’) :- true.
� �
For example, consider the Annotated Disjunction of the fact shown in List-

ing 5.6, which describes the probability distribution of a rolling dice with six faces.

The dice can roll on each face with the same probability, and the mutual exclu-

sion property ensures that the dice rolls only on one face in the same solution.

As discussed, our recompilation engine splits the annotation in six single-headed

facts. Listing 5.7 shows the result of the recompilation for the annotation of List-

ing 5.6, which is written in Prolog. As visible, each head term contains an unusual

literal as its last argument. Considering what described in Section 5.2.1 and Sec-

tion 5.2.2, such a term represents a pre-constructed Explanation attached to each

fact. The weird literal in each term is the result of a printout of the underlying

instance of ProbExplanationTerm, that represents Explanations inside the Knowl-

edge Base. Under the hood, each of those Explanations contain a Binary Decision

Diagram constructed ad-hoc to preserve the mutual exclusion constraints of the

binary splits. The recompilation engine generates the splitted Boolean random

variables according to the definitions provided in Section 4.4.2. In Figure 5.2, we

show an example of Binary Decision Diagram representing an Explanation with

the pre-constructed binary split for one of the clauses of Listing 5.7.

The biggest takeaway of this approach is that the mutual exclusion semantics of

CHAPTER 5. IMPLEMENTATION 88

0 1

1.0::dice(1)

0.5::dice(2)

0.33::dice(3)

0.25::dice(4)

0.2::dice(5)

0.17::dice(6)

Figure 5.2: Binary Decision Diagram with Binary Splits

CHAPTER 5. IMPLEMENTATION 89

Annotated Disjunctions is implemented right away by the recompilation process,

which is static and happens only once. Namely, the recompilation happens out of

the scope of the goal resolution process of the solver, right when a clause is added

to the Knowledge Base. As such, the LP solver is not responsible of any additional

business logic at runtime, and the application of mutual exclusion constraints is

out of its awareness. Note, the complexity of the problem is not avoided, but

just delegated to the underlying Binary Decision Diagram data structures. By

segregating the core responsibility inside the Binary Decision Diagram library, we

are able to better control the hard computation to fine tune performance and to

maintain the logic of the LP solver simple. Observe that this implementation has

the defect of being inefficient for Annotated Disjunctions of large size. As the

number of disjoint heads grow, the overhead of pre-constructing the binary splits

and propagating them during goal resolution becomes more visible.

One of the ways with which we optimize this approach is by leveraging the

applyThenExpansion operator to inspect the probability of a Binary Decision

Diagram as soon as possible. During goal resolution, if the solver constructs a

Binary Decision Diagram which is known having a probability of 0, then the solver

discards the current solution by declaring a failure. This does not violate the

PLP semantics, because the Explanation of solutions is constructed progressively

as a conjunction. As such, we have a fast way to determine if a solution has

a probability equal to 0, which makes it not influential from the standpoint of

probabilistic computation. By definition, the mutual exclusion of the binary splits

is meant to produce Explanations with null probability, so this optimization is

helpful when dealing with Annotated Disjunctions implemented with our approach.

5.2.5 Prolog-Mode Optimizations

As stated in Section 3.1 and Section 4.4.1, we want to implement a logic solver that

it is able of solving inference tasks for both PLP and LP, supporting the ProbLog

and Prolog languages respectively. According to how we designed our project, this

is easily attainable given the fact that a Prolog solver from 2P-Kt is used under

the hood to perform goal resolution in both cases. As such, full Prolog inference

CHAPTER 5. IMPLEMENTATION 90

support is achieved by simply ignoring the information related to Explanations

and probability, and by disabling the solution grouping mechanic related to prob-

abilistic computation. However, although we can obtain a functional Prolog solver

in this way, it would become fairly less performant than any other pure-Prolog so-

lution due to the additional complexity related to the meta-predicates and Binary

Decision Diagram operations. As such, we adopted a set of workarounds aimed to

improve the performance of goal resolution for pure-Prolog problems. Although

this effort is not sufficient to match the performance of Prolog-only solvers, it is

still enough to guarantee acceptable usability.

First, operations related to Binary Decision Diagrams are not ignored, but

totally avoided instead. By checking a configuration argument, the prob expl and

primitive recognizes if the current goal is being solved in Prolog-only mode, thus

avoiding useless computations and substituting the output Explanation with a

stub Binary Decision Diagram. The stub data structures is a simple terminal

node encoding a probability equal to 1. This also means that Prolog and ProbLog

Knowledge Bases can coexists in the same solver, and can be used interchangeably.

In ProbLog mode, Prolog clauses are considered having probability distribution of

1, whereas in Prolog mode the distribution is ignored if the probability is not null.

A second optimization consists in reverting the semantics of Negation as failure

in case of Prolog-only inference, so that at most one goal needs to be solved for

the failure condition to be checked. This is fairly more efficient than iterating over

all the solutions for a negated goal, like the solver is supposed to do in PLP-mode.

Finally, the solution grouping mechanic of probabilistic computation is avoided

by short-circuiting the prob solve meta-predicate to become equivalent to prob.

The advantage of segregating the mechanic inside a single meta-predicate, is that

it is easier to disable it at runtime by simply checking the solver configuration.

Chapter 6

Validation

In this chapter we provide an evaluation our project and some validation metrics.

In Section 6.1 we present how we test our implementation. In Section 6.2 we

provide a brief hands-on demonstration of how our solver can be used. Finally,

in Section 6.3 we provide performance benchmarks of our solver for a set of PLP

examples.

6.1 Testing Setup

In Chapter 5 we discuss some of the most relevant implementation choices that

characterize the development of our project. Considering the first version of our

PLP solver, we are interested in asserting if the requirements are satisfied. As the

proposed solver is meant to deal with both LP and PLP tasks, the test suite we

provide in the prob-solve-problog module is subdivided in two parts.

First, we want to assess that the solver maintains full support to traditional

Prolog problems. This is not guaranteed, as supporting probabilistic computation

introduces additional complexity that could affect the expected behaviour for LP

tasks. As such, we insert the test-solve module of 2P-Kt as an additional de-

pendency in our codebase. test-solve contains a well-covering suite of fine-grain

unit tests for Prolog solvers, asserting that solvers behave as expected with all the

91

CHAPTER 6. VALIDATION 92

features of standard LP. Given the above, our PLP solver successfully passes 327

out of the 361 unit tests in the suite, thus achieving an estimated success rate

of 90.58%. However, the 34 failed tests are caused by inappropriate assertions,

that are not meaningful in our implementation. As such, we adapted the suite

to ignore the remaining 34 unit tests, by documenting our reasons in each one of

them. Broadly, we recognize three main reasons for which we opt for ignoring unit

tests. First, some tests expect a specific stack trace during goal resolution, which

is altered in our solution due to the presence of the meta-predicates levels. Second,

some tests assess the internal morphology of the Knowledge Base, which is mean-

ingless in our case due to the recompilation step. Lastly, we ignore that fail due to

a mismatch between error messages produced by our solver and the expected ones,

as that is an implementation detail that does not affect the semantics. Overall, we

advocate that the 90.58% success rate is not a meaningful measure in our case, as

every test asserting the actual Prolog resolution semantics are passed.

For testing the behavior of our solver with PLP problems, we use a more coarse-

grain approach. More specifically, we use a set of examples and experiments for

the ProbLog language that we adapted from the website[7] of another state of the

art proposal. In our case, those represents examples of acceptance tests assessing

that our implementation computes results as expected. Each test exemplifies one

or more features of PLP, thus effectively verifying the correct behavior of our

solver. Although we acknowledge that this testing strategy is not as effective as

a fine-grain unit test suite applied to every component of the solver, this still

provides an acceptable feedback for our first version of the project. Moreover, this

provided a fast spot-checking strategy that guided the development phase. Our

solver successfully reproduces all the expected results of the examples in the suite,

thus passing all the tests we adapted. Details regarding the performance achieved

in each example are provided in Section 6.3.

Finally, we also introduced a minimal testing suite for the bdd module as well.

Since the tests in prob-solve-problog already assess the correct functioning of

the probabilistic solver, we have a good estimate of the correctness of the bdd

module out of the box. In fact, considering how much Binary Decision Diagrams

are correlated to probabilistic computation, our solver would not pass the accep-

CHAPTER 6. VALIDATION 93

tance test suite if the BDD library was faulty. On top of that, we also introduced

few coarse-grain unit tests in the library module, aimed to verify the correctness

of the three fundamental operators and, or, and not. Overall, the Binary Decision

Diagram library successfully passes all our testing efforts.

6.2 Proof of Concept Demonstration

According to the design and implementation choices, which we discuss in Chapter 4

and Chapter 5 respectively, we shaped the software modules of our contribution to

be easily adaptable in various application use-cases. In this section, we provide an

brief demonstration to show the potential of our PLP solver in real-world scenarios.

In 2P-Kt, the ide module bundles a minimal graphical user interface applica-

tion conceived as a playground meant for users to experiment with the tools of the

logic ecosystem. The IDE application executes on the JVM and its presentation

layer is implemented with JavaFX, thus granting cross-platform support and high

extensibility. As such, we implement a simple adaptation of the IDE that enables

the usage of our solver, thus allowing users to experiment Probabilistic Logic Pro-

gramming problems. This is a proof of concept of how our proposition can be

integrated in various application domains with ease.

For our demonstration, we select one of the examples with use for testing

purposes in Section 6.1. The problem consists in modeling a probabilistic graph,

which are types of graph where the existence of some edges is uncertain. In this

use case, PLP can be leveraged to estimate with which probability a path between

two nodes exists. In the example, the Knowledge Base of Listing 6.1 models the

probabilistic graph represented in Figure 6.1. The IDE accepts Knowledge Bases

both from files and from text input, and is designed to resemble a simple text

editor. Also, control panel for logic resolution tasks is shown on the bottom. We

can specify a query and submit it to an underlying logic solver. Once found, the

query solutions are shown in a list view. Also, a tab view allow the inspection of

the internal state of the solver. In this example, we want to find all the feasible

path in the graph, and calculate their probability. A screenshot of the IDE solving

CHAPTER 6. VALIDATION 94

Listing 6.1: ProbLog - Example of Probabilistic Graph Modeling�
1 0.6:: edge (1,2).

2 0.1:: edge (1,3).

3 0.4:: edge (2,5).

4 0.3:: edge (2,6).

5 0.3:: edge (3,4).

6 0.8:: edge (4,5).

7 0.2:: edge (5,6).

8

9 path(X,Y) :- edge(X,Y).

10 path(X,Y) :- edge(X,Z), Y \== Z, path(Z,Y).
� �

1

30.1

2
0.6

40.3

50.4

60.3

0.2

0.8

Figure 6.1: Example of Probabilistic Graph

CHAPTER 6. VALIDATION 95

Figure 6.2: 2P-Kt IDE Solving a PLP Query

CHAPTER 6. VALIDATION 96

our query is shown in Figure 6.2. As visible, the probability values are presented

in the list view attached to their relative solutions.

Furthermore, our proposal allows a deep manipulation of the Explanation be-

hind each solution. Most proposals at the state of the art rely on external packages

for this task, whereas we propose an internal implementation through our library

for Binary Decision Diagrams. As such, we can achieve more expressive graphical

representations in the presentation layer. For instance, we can attach a printable

view of the Binary Decision Diagram that originated a given solution, with direct

reference to the probabilistic clauses contained in the Knowledge Base. For that,

we implement an additional operator in our library that serializes Binary Deci-

sion Diagrams in a graph-like image representation format. Under the hood, we

implemented the new operator by leveraging the visitor pattern to serialize the

diagram following the specific of the DOT[6] language. Accordingly, users are able

to inspect and render the Binary Decision Diagram behind each solution. For in-

stance, Figure 6.3 show a Binary Decision Diagram generated by our solver that

characterizes the solution path(1,6) of the sample query. Figure 5.2, shown in the

previous chapter, is rendered in the same way. Note, the diagrams we render are

optimized for better computation performance. For debugging purposes, certain

optimizations can be disabled in order to obtain more expressive diagram picture,

which can help understand the rationale of specific solutions.

6.3 Performance Benchmarks

In this last section we want to provide some information regarding the performance

and execution time of our PLP solver in probabilistic logic inference tasks. Our

experiment uses some of the ProbLog examples[7] that we adapted in our testing

suite as we mention in Section 6.1. We run the experiments on both the target

platforms supported by 2P-Kt, which are the JVM and JavaScript.

The benchmarks have been measured on a local physical machine equipped

with a Intel Core i7-10750H CPU with 6 cores and 12 threads, 12MB of L3 cache,

and a clock frequency variable from 2.6GHz to 5GHz. Also, the setup has 32GB of

CHAPTER 6. VALIDATION 97

0 1

0.2::edge(5, 6)

0.8::edge(4, 5)

0.3::edge(3, 4)

0.1::edge(1, 3)

0.3::edge(2, 6)

0.3::edge(2, 6)

0.4::edge(2, 5)

0.3::edge(2, 6)

0.4::edge(2, 5)

0.1::edge(1, 3)

0.6::edge(1, 2)

Figure 6.3: Binary Decision Diagram Constructed by our PLP solver

CHAPTER 6. VALIDATION 98

DDR4-2933MHz RAM divided in two modules of 16GB, and a NVIDIA GeForce

GTX 1650Ti GPU with 4GB of memory GDDR6. Furthermore, the installed

operating system is Microsoft Windows 10 Pro x64 at version 10.0.19042 and

build 1083. The JVM binaries are executed on a Java 11 OpenJDK 64-Bit JVM,

whereas the JavaScript target runs on NodeJs version 14.15.4. At the time of

writing, Kotlin version 1.4.20 is used for the compilation.

The results of our experiment are summarized in Section 6.3. Execution times

of both the JVM and JavaScript executables are reported for each example. The

experiment shows interesting results. First, we have a first insight of the complexity

of probabilistic computation, and how it varies depending on the specific tasks

and its required resolution depth. Second, it is clearly visible that JavaScript

artifacts are fairly less performant than their JVM counterpart. This discrepancy

is determined by a multitude of factors, which are not totally bound to our specific

solver implementations. Our observations highlight the need of further research in

these topics, and we look forward to achieve better performance optimizations in

future developments of this project.

CHAPTER 6. VALIDATION 99

Table 6.1: Execution times of the solver on PLP inference examples

Example Test Name JVM JS

Tossing Coins Basic ProbLog 29ms 40ms

Noisy-or 2ms 18ms

First-order 14ms 32ms

Probabilistic clauses 5ms 14ms

Bayesian Networks Probabilistic facts 13ms 120ms

Probabilistic clauses 7ms 55ms

First-order 95ms 212ms

Annotated disjunctions 63ms 269ms

Rolling Dice Annotated disjunctions 3ms 58ms

Negation as failure 8ms 68ms

Negation as failure (2) 3ms 20ms

Arithmetic expressions 40ms 286ms

Arithmetic expressions (2) 402ms 2669ms

Probabilistic Graphs Probabilistic graph 62ms 170ms

Monty Hall Monty Hall Puzzle 113ms 455ms

Alternative representation 65ms 98ms

Chapter 7

Conclusions

In this thesis we explore innovative ideas in the scope of Probabilistic Logic Pro-

gramming. Our project is in an early stage, and still not suitable to be compared

with other proposals in the field. However, our contribution consists in the exper-

imentation of alternative models and approaches, which we believe to be a solid

value proposition towards the growth of this research field. As such, we advocate

that the goals of this thesis have been accomplished.

By working on top of the 2P-Kt symbolic AI ecosystem, we overcome the

usability and portability constraints that affect most other state of the art pro-

posals. In fact, our artifacts can be deployed in all the platforms supported by

2P-Kt, which at the time of writing are JVM and JavaScript and are expected

to grow in count in the near future. We design and implement a logic solver

suitable for inference tasks for both LP and PLP problems. Our solution is flexi-

ble, and allows a frictionless transition from the traditional logic paradigm to the

novel probabilistic one. Also, the proposed solver can handle both pure-logic and

probabilistic Knowledge Bases interchangeably. Coherently, complete backward

compatibility with Prolog inference is successfully accomplished and effectively

verified through a well-covering suite of unit tests. We propose a unique multi-

paradigm design that combines object-oriented modeling and logic programming,

thus opening new horizons in terms of ad-hoc optimizations and codebase man-

agement. Accordingly, our solver is developed on top of an hybrid approach that

100

CHAPTER 7. CONCLUSIONS 101

successfully combines the benefits of meta-interpreters and low-level engine imple-

mentations by also mitigating the downsides of both. Additionally, the proposed

solver is compliant with the most common features at the state of the art of Prob-

abilistic Logic Programming. Our software supports the ProbLog language, solves

inference tasks without approximation, calculates probabilities with evidence, and

accepts Annotated Disjunctions.

Additionally, we introduce a new library for the manipulation of Binary Deci-

sion Diagrams. Our solution is written in pure-Kotlin with no external dependen-

cies, with the attempt of pioneering the support of this kind of data structures on

multiple platforms. We also overcome the need of depending on an external pack-

age for Binary Decision Diagrams manipulation, which is a common constraint in

most state of the art proposals. Accordingly, the increased control over the library

codebase enable the introduction of ad-hoc optimizations for our use case. As

our library is designed to be a minimal and standalone module, it can flexibly be

included in other projects that require the manipulation of Binary Decision Dia-

grams. Coherently, our design is open to platform-specific implementations with

the purpose of suiting a wide spectrum of future use cases.

Ultimately, one of the top priorities of this research effort is to leave the door

open to future developments. Our design is purposely abstract, and we endorse

the future exploration of alternative implementation ideas. Among the others,

some of the future directions we envision include: supporting Approximate In-

ference, approaching additional Knowledge Compilation data structures, imple-

menting the solver as a standalone optimized Finite State Machine, and adopting

alternative resolution strategies such as Tabled Execution. Conclusively, additional

work will be required for evolving this first version of the project to a more mature

production-ready software. Moreover, we envision our Binary Decision Diagram

library to grow in the open source community, and serve as a proof of concept for

the potential benefits of object-oriented and platform-agnostic approaches to the

subject.

Bibliography

[1] George Boole. An Investigation of the Laws of Thought on Which are Founded

the Mathematical Theories of Logic and Probabilities. Walton and Maberly,

London, 1854.

[2] Randal E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[3] Haim Cohen, John Whaley, Jorn Wildt, and Nikos Gorogiannis. BuDDy.

https://sourceforge.net/p/buddy/.

[4] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog: A light-

weight Prolog for Internet applications and infrastructures. In I.V. Ramakr-

ishnan, editor, Practical Aspects of Declarative Languages, volume 1990 of

Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidel-

berg, 2001. 3rd International Symposium (PADL 2001), Las Vegas, NV, USA,

11–12 March 2001. Proceedings.

[5] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shterionov,

Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference

and learning in probabilistic logic programs using weighted boolean formulas.

Theory Pract. Log. Program., 15(3):358–401, 2015.

[6] Emden R. Gansner and Stephen C. North. An open graph visualization sys-

tem and its applications to software engineering. SoftwareE - Practice and

Experience, 30(11):1203–1233, 2000.

102

https://sourceforge.net/p/buddy/

BIBLIOGRAPHY 103

[7] KU Leuven DTAI Research Group. ProbLog - probabilistic programming.

https://dtai.cs.kuleuven.be/problog/index.html.

[8] JetBrains. Kotlin programming language. https://kotlinlang.org/.

[9] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. A thread-safe library

for binary decision diagrams. In Dimitra Giannakopoulou and Gwen Salaün,

editors, Software Engineering and Formal Methods - 12th International Con-

ference, SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings,

volume 8702 of Lecture Notes in Computer Science, pages 35–49. Springer,

2014.

[10] David Poole. Probabilistic horn abduction and bayesian networks. Artif.

Intell., 64(1):81–129, 1993.

[11] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A proba-

bilistic prolog and its application in link discovery. In Manuela M. Veloso,

editor, IJCAI 2007, Proceedings of the 20th International Joint Conference

on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 2462–

2467, 2007.

[12] Fabrizio Riguzzi. A top down interpreter for LPAD and cp-logic. In Roberto

Basili and Maria Teresa Pazienza, editors, AI*IA 2007: Artificial Intelligence

and Human-Oriented Computing, 10th Congress of the Italian Association

for Artificial Intelligence, Rome, Italy, September 10-13, 2007, Proceedings,

volume 4733 of Lecture Notes in Computer Science, pages 109–120. Springer,

2007.

[13] Fabrizio Riguzzi. Foundations of Probabilistic Logic Programming. River

Publishers, Gistrup, Denmark, 2018.

[14] Fabrizio Riguzzi and Terrance Swift. The PITA system for logical-

probabilistic inference. In Stephen H. Muggleton and Hiroaki Watanabe,

editors, Latest Advances in Inductive Logic Programming, ILP 2011, Late

Breaking Papers, Windsor Great Park, UK, July 31 - August 3, 2011, pages

79–86. Imperial College Press / World Scientific, 2011.

https://dtai.cs.kuleuven.be/problog/index.html
https://kotlinlang.org/

BIBLIOGRAPHY 104

[15] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 3 edition, 2010.

[16] Taisuke Sato. A statistical learning method for logic programs with distribu-

tion semantics. In Leon Sterling, editor, Logic Programming, Proceedings of

the Twelfth International Conference on Logic Programming, Tokyo, Japan,

June 13-16, 1995, pages 715–729. MIT Press, 1995.

[17] Taisuke Sato and Yoshitaka Kameya. PRISM: A language for symbolic-

statistical modeling. In Proceedings of the Fifteenth International Joint Con-

ference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29,

1997, 2 Volumes, pages 1330–1339. Morgan Kaufmann, 1997.

[18] Fabio Somenzi. CUDD: Cu decision diagram package. https://vlsi.

colorado.edu/~fabio/.

[19] Arash Vahidi. JDD: a pure java bdd and z-bdd library. https://bitbucket.

org/vahidi/jdd, 2003.

[20] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs

with annotated disjunctions. In Bart Demoen and Vladimir Lifschitz, editors,

Logic Programming, 20th International Conference, ICLP 2004, Saint-Malo,

France, September 6-10, 2004, Proceedings, volume 3132 of Lecture Notes in

Computer Science, pages 431–445. Springer, 2004.

https://vlsi.colorado.edu/~fabio/
https://vlsi.colorado.edu/~fabio/
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

	Abstract
	Introduction
	State of the Art
	Probabilistic Logic Programming
	Logic Programming
	Distribution Semantics
	Annotated Disjunctions
	Knowledge Compilation
	Reasoning Tasks

	Binary Decision Diagrams
	Definitions
	Algorithms
	Knowledge Compilation

	2P-Kt
	tuProlog
	Kotlin and Multi-Platform Support
	The 2P-Kt Project
	Multi-Paradigm Mechanic

	Analysis
	Probabilistic Logic Programming Engine
	Use of 2P-Kt
	Binary Decision Diagrams Library

	Design
	Architectural Design
	BDD Module
	Internal Architecture
	Supported Operations
	Optimizations and Multi-Platform Support

	Prob-Solve Module
	Overview of Dependencies
	Design of the Extension

	Prob-Solve-Problog Module
	Core Traits and Supported Features
	Behavioral Analysis of the Probabilistic Solver
	Architectural Design of the Solver
	Accomplishments

	Implementation
	Binary Decision Diagrams Library
	Default Builder
	Visitor Pattern for Operators
	Visitor Pattern for Type Checking
	Lazy Evaluation
	Apply-Then-Expansion Optimization

	Solver
	Representing Explanations
	Clause Head Optimization
	Knowledge Base Recompilation
	Annotated Disjunctions
	Prolog-Mode Optimizations

	Validation
	Testing Setup
	Proof of Concept Demonstration
	Performance Benchmarks

	Conclusions

