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Abstract

Our Universe is full of unknowns, among them one of the most mysterious is,
no doubt, dark energy (DE), the entity responsible for cosmic acceleration. We
still do not even know its intrinsic nature, and in investigating its properties we
can not exclude the possibility of an interaction between DE and the other com-
ponents of the Universe.

In recent times, a new class of interacting DE models have been proposed in the lit-
erature. These assume that the interaction between DE and matter could be
well approximated by a pure momentum exchange between the two components.
The efficiency of the process is then described by the interaction cross section.

These models have been investigated by means of N-body simulations in the case
of scattering between DE and dark matter, discovering that the nonlinear effects
can be more significant than the linear ones. More recently such scenario has been
extended to a scattering between DE and baryons, asking whether it would be
possible to detect its effects through direct cosmological observations. A linear
analysis lead to the conclusion that, even for extremely large values of the interac-
tion cross section, the impact of DE-baryon scattering on the CMB temperature
power spectrum and the matter power spectrum would be undetectable, at least
on linear scales.

Therefore, the only yet unexplored field that leaves an opportunity to put cosmo-
logical constraints on such interaction remains the nonlinear regime of structure
formation, which can be properly studied only through N-body numerical simu-
lations. In this work we modify the GADGET-3 code in order to perform, for the
first time in the literature, structure formation multi-particle simulations which
implement DE-baryon scattering.

We focus on the effects of such interaction on major cosmological observables:
the power spectrum, the halo mass function, the halo density profiles and the
halo baryon fraction profiles. We find that the nonlinear effects of DE-baryon
scattering can significantly affect these observables, thus paving the way to the
future constraining of this interaction by means of cosmological observations.



Sommario

Il nostro Universo è pieno di incognite, tra le più misteriose vi è senza dubbio
l’energia oscura (dark energy o DE), l’entità responsabile dell’accelerazione cos-
mica. La sua natura intrinseca ci è ancora sconosciuta e nell’investigarne le pro-
prietà non posiamo escludere la possibilità di un’interazione tra la DE e le altre
componenti dell’Universo.

In tempi recenti, è stata proposta nella letteratura una nuova classe di modelli di
DE interagente. Tali modelli assumono che l’interazione tra DE e materia possa
essere ben approssimata dall’esclusivo scambio di impulso tra le due componenti.
In tal caso si ha che l’efficienza di tale processo di scattering è descritta dalla
sezione d’urto.

Questi modelli sono stati investigati tramite simulazioni a N-corpi nel caso dello
scattering tra DE e materia oscura, scoprendo che gli effetti nonlineari possono
essere più significativi di quelli lineari. Più recentemnte tale scenario è stato esteso
allo scattering tra DE e barioni (DE-baryon scattering), con l’obiettivo di scoprire
se sia possibile rilevare tale interazione per mezzo di osservazioni cosmologiche.
Un’analisi lineare ha portato alla conclusione che, anche per valori estremamente
alti della sezione d’urto, l’impatto del DE-baryon scattering sarebbe comunque
impossibile da rilevare nello spettro angolare della radiazione cosmica di fondo e
nello spettro di potenza delle fluttuazioni di densità della materia, almeno su scale
lineari.

Si ha dunque che l’unico campo, tuttora inespolorato, che potrebbe permetterci
di porre vincoli cosmologici su tale interazione è il regime nonlineare della for-
mazione delle strutture cosmiche, questo può essere opportunamente studiato solo
per mezzo di simulazioni a N-corpi. Nel presente lavoro di tesi modifichiamo il
codice GADGET-3 al fine di eseguire, per la prima volta nella letteratura, simu-
lazioni cosmologiche multiparticellari che implementano lo scattering tra DE e
barioni.

Poniamo la nostra attenzione sugli effetti che tale interazione ha sulle princi-
pali osservabili cosmologiche: lo spettro di potenza, la funzione di massa degli
aloni nonché i profili di densità e di frazione barionica di questi. Dalla nostra
analisi emerge che gli effetti nonlineari del DE-baryon scattering possono alterare
in modo significativo queste osservabili, aprendo dunque la strada a futuri vincoli
che sarà possibile porre per mezzo di osservazioni cosmologiche.
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Chapter 1

Introduction

1.1 Fundamentals of Modern Cosmology

Cosmology is the branch of physics that investigates the properties and the evo-
lution of the Universe as a whole. The starting point of modern cosmology is
Einstein’s General Relativity, that together with the Cosmological Principle, leads
us to the Friedmann equations. These allow to describe the expansion of the Uni-
verse over time in terms of its intrinsic curvature and its components, modeled
as perfect fluids. In this chapter we are going to derive the Friedmann equations,
describe the different components making up our Universe according to the Stan-
dard Model of Cosmology and then explain the most crucial open questions of
such model.

1.1.1 Cosmological Principle and Friedmann Equations

The Cosmological Principle states the following:

The Universe is homogeneous and isotropic at sufficiently large scales.

It is supported by different observations, the most important concerning the pho-
tons of the Cosmic Microwave Background (CMB), which reach us from every
direction with pretty much the same temperature.
On the other hand, at sufficiently large scales, the only force that governs the Uni-
verse is gravity, which is described by Einstein’s General Relativity (GR) [1] in
terms of spacetime geometry. Since we want the Cosmological Principle to hold,
we consider the line-element of a 4-dimensional homogeneous and isotropic space-
time, which is called Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime
and is given by:

ds2 = gµν dxµ dxν = −c2 dt2 + a2(t) dσ2. (1.1)

In the above equation, some very important quantities have been introduced:

1
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• gµν is the metric tensor, which determines all the geometrical properties of
the spacetime described by the system of coordinates xµ.

• a(t) is the scale factor, a parameter with the dimensions of a length used to
account for the expansion of the Universe. In practice a(t) modulates the
physical distances between objects as the Universe evolves. It is conventional
to set its present day value to a0 = 1.

• dσ is the time-independent metric of the 3-dimensional space

dσ2 = γij dxi dxj =
dr2

1−Kr2
+ r2(dθ2 + sin2 θ dφ2). (1.2)

In the previous equation K is the curvature constant, describing the intrinsic
geometry of the Universe: K = +1,−1, 0 corresponds respectively to closed,
open and flat geometries.

We stress that we are following Einstein’s notation, according to which we are
summing over the terms with the same upper and lower indices. The Greek
indices µ and ν run from 0 to 3, while the Latin indices i and j run from 1 to 3.
Once we defined our metric, we want to find the dynamical equations of motion,
i.e. the equations that describe the time evolution of the only dynamical quantity
appearing in the metric: the scale factor a(t). This is when GR comes into play.
We start by calculating the Christoffel symbols from the metric tensor gµν :

Γµνλ =
1

2
gµα(gαν,λ + gαλ,ν − gνλ,α), (1.3)

where gαν,λ ≡ ∂gαν/∂x
λ. From the Christoffel symbols we can then calculate the

Ricci tensor:

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓβαν . (1.4)

The contraction of this tensor, gives the Ricci scalar:

R = gµνRµν . (1.5)

We can now write the Einstein equations, in units where1 c = 1, whose solution
will describe the cosmological dynamics we are looking for:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.6)

where Gµν is the so-called Einstein tensor and T µν is the energy-momentum tensor.
In the FLRW spacetime, T µν takes the perfect fluid form:

T µν = (ρ+ P )uµuν + Pδµν , (1.7)

1From now on we will work in a unit system in which c = 1.
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where δµν is the Kronecker delta, uµ = (−1, 0, 0, 0) is the four-velocity in comoving
coordinates and ρ and P are the energy and pressure densities, respectively, since
the (00) and (ij) components of T µν are T 0

0 = −ρ and T ij = Pδij.
We now define one fundamental quantity of cosmology, the Hubble parameter (the
overdot represents the derivative with respect to t):

H ≡ ȧ

a
. (1.8)

It describes the rate at which the Universe is expanding at a certain cosmic time,
and is typically expressed in units of km/s/Mpc. Its present value is estimated to
be around H0 ≈ 65 km/s/Mpc, thus indicating an expansion, but, as we are going
to see in section 1.2.3, it is characterized by some uncertainty and it is therefore
conventional to take this into account by defining the dimensionless parameter
h ≡ H0/(100 km/s/Mpc).
Coming back to our calculations we find that the non-vanishing Christoffel symbols
in the FLRW spacetime lead us to the following equations for the Einstein tensor:

G0
i = Gi

0 = 0, (1.9)

Gi
j = −(3H2 + 2Ḣ +K/a2)δij, (1.10)

G0
0 = −3(H2 +K/a2), (1.11)

where we used the relation Gµ
ν = gµαGαν . We then consider the (00) and (ij)

components of the Einstein tensor given by (1.11) and (1.10) to obtain the two
equations that completely describe the dynamics of a homogeneous and isotropic
Universe, known as the Friedmann equations:

H2 =
8πG

3
ρ− K

a2
, (1.12)

3H2 + 2Ḣ = −8πGP − K

a2
. (1.13)

Using the first equation, the second can be rewritten as:

ä

a
= −4πG

3
(ρ+ 3P ). (1.14)

Combining the equations (1.12) and (1.14) and differentiating, we get the conti-
nuity equation:

ρ̇+ 3H(ρ+ P ) = 0. (1.15)
This can also be obtained by applying the Bianchi identities to the Einstein equa-
tion, which leads to a null covariant derivative2 of the energy-momentum tensor:

2Given a vector V ν , its covariant derivative is defined as ∇µV
ν = ∂µV

ν + Γν
µλV

λ. It is
the sum of two terms: ∂µV

ν is the partial derivative, while Γν
µλV

λ is a correction term which
accounts for how the coordinates are changing. This definition can be easily extended to act
on a general tensor of rank (m,n). The covariant derivative has the remarkable property of
transforming like a tensor.
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∇µT
µ
ν ≡ T µν;µ = 0.

1.1.2 Different Energy Components of the Universe

The homogeneous Universe we are describing is made up of different components,
and each one of them can be modeled as a perfect fluid, with its distinctive
equation of state:

w ≡ P

ρ
. (1.16)

If we want to describe the evolution of a multi-component Universe, we must
consider the contribution of every single component, the Friedmann equations
then become:

H2 =
8πG

3

∑
ρi −

K

a2
, (1.17)

ä

a
= −4πG

3

∑
(ρi + 3Pi). (1.18)

Moreover, we can combine equations (1.12) and (1.15) to get the density evolution
of a single component as a function of the scale factor or time in the case a flat
Universe is dominated by a single component:

ρ ∝ a−3(1+w), a ∝ (t− ti)
2

3(1+w) . (1.19)

Since P and ρ, are positive definite quantities, we must require ordinary matter to
have w ≥ 0. Indeed from statistical mechanics we find that w = 1/3 for radiation
as well for relativistic matter and w = 0 for non relativistic matter.
An important parameter related to each one of the species of the Universe is the
dimensionless density parameter, which, for a generic component I is given by:

ΩI ≡
8πGρI
3H2

=
ρI
ρcrit

, (1.20)

where we have introduced the critical density : ρcrit = 3H2/(8πG).

1.1.3 Redshift and Cosmic Distances

Redshift

In an expanding Universe, light traveling through space is subject to a stretch of
the wavelength in proportion to the scale factor. To take this effect into account
it is usual to introduce the redshift :

z ≡ λ0 − λe
λe

, (1.21)
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where λe is the wavelength of radiation emitted by the source at te, and λ0 is
the wavelength of the same radiation as received by the observer at t0. One can
show that is it possible to connect the redshift to the scale factor by means of the
relativistic Doppler effect, obtaining a fundamental relation:

1 + z =
a0

a
=

1

a
. (1.22)

In this way, it is possible to interchangeably use a or z.

Proper and Comoving distance

In a cosmological context there is not a unique way to define the distance. The
first one we are going to introduce is known as proper distance. We compute it
assuming dt = 0 (i.e. time does not varies during our measurement) and, without
loss of generality, that the observer is located at the center of the reference frame
and dθ = dφ = 0 (i.e. the measurement is made keeping θ and φ constant). The
proper distance is thus obtained by integrating the FRLW metric from the point
P0 = (0, 0, 0) to the point P = (r, 0, 0):

dP =

∫ r

0

a dr′√
1−Kr′2

= a(t)f(r). (1.23)

Here f(r) is the geometry-dependent term:

f(r) =


sin−1 r for K = +1

r for K = 0

sinh−1 r for K = −1

. (1.24)

It is interesting to note how the proper distance of a point with fixed r changes
depending on the geometry of the Universe.
The comoving distance can be defined as the proper distance computed at the
present time t0:

dc = dP(t0) = a0f(r) =
a0

a
dP(t). (1.25)

We see that dc factors out from dp the effects on distance induced by the expan-
sion of the Universe (i.e. a(t)).

We now introduce two operational ways of defining the distance. These play
a key role in observational cosmology, as we will see in the next section.

Luminosity distance

Let us consider a source emitting light, characterized by known luminosity L.
This source has coordinate r at a time t (we are continuing to assume the observer
located at the origin of the reference frame P0 and dθ = dφ = 0). Let l be the
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flux (i.e. the power received per unit area) at time t0 by the observer. We can
introduce the luminosity distance in the following way:

l =
L

4πd2
L

. (1.26)

We know that the area of a spherical surface centred on P and passing through P0

at the time t0 is given by 4πa2
0r

2. The light received by the observer is redshifted
by the expansion of the Universe by a factor a/a0. Also, it can be shown that
due to the relativistic time dilation effect another factor a/a0 has to be taken into
account. We therefore have:

l =
L

4πa2
0r

2

(
a

a0

)2

. (1.27)

We then combine the two previous equations to obtain:

dL = a2
0

r

a
. (1.28)

Angular Diameter distance

Let us now consider an object with known proper length DP(t) placed at coordi-
nate r at time t. Let ∆θ be the angle subtended by this object, we then have:

DP = ar∆θ. (1.29)

At this point we can define the angular diameter distance as:

dA =
DP

∆θ
= ar. (1.30)

We note that dL and dA are connected by the so-called distance duality relation
[3]:

dL = (1 + z)2dA. (1.31)

1.1.4 Observational Evidence of Dark Energy

As we are going to see in this section, various independent probes indicate that
our Universe is subject to a late-time accelerated expansion. We see from eq (1.18)
that if we want a component to be responsible for such a positive acceleration, we
must require it to have:

P < −ρ/3 ⇒ w < −1/3. (1.32)

A component with this peculiar feature is called Dark Energy (DE). A particular
kind of DE is the one with equation of state w = −1, in this case we refer to it as
the Cosmological Constant Λ.
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Figure 1.1: Luminosity distance dL as a function of the redshift z in three different
cases: flat Universe without DE (solid line), open Universe without DE (dash-
dotted line) and flat Universe with DE (dotted line). The presence of DE results
in greater dL with respect to the case without it. This figure is taken from [36].

Supernova Observations

The first strong observational evidence of the accelerated expansion of the Universe
came in 1998 thanks to the measurement of the distance-luminosity relation of
type Ia supernovae (SN Ia) by two independent research groups: the High-redshift
Supernova Search Team (HSST) [6] and the Supernova Cosmology Project (SCP)
[7]. A SN Ia explosion takes place in a binary system in which a white dwarf3
accretes matter from the companion star (usually a red giant4, but it can be also a
smaller star, even another white dwarf) until its mass exceeds the Chandrasekhar
limitMCh ≈ 1.44M� [8]. A remarkable property of this phenomenon is that, since
the Chandrasekhar limit mass is approximately constant, all the explosions have
similar characteristics (such as the luminosity and the shape of the light curve).
This makes the SN Ia a standard candle, i.e. an object with known absolute
magnitude (in the case of SN Ia we have an absolute magnitude M ≈ −19 at

3White dwarf stars are the remnants of low to intermediate mass stars. These compact
objects balance the gravitational collapse with the electron degeneracy pressure, arising from
quantum mechanical effects.

4Red giants stars are at an intermediate point of their evolution. They are characterized by
large volumes, high luminosities, and outer atmospheres with low temperatures and densities.
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the peak of brightness). In the late 1990s SN Ia became even more reliable as
standard candles: thanks to a sample of high-quality data at low redshift it was
possible to tightly connect brighter explosions with broader light curves [9]. This
means that by measuring the apparent magnitude of a SN Ia and its light curve it
is possible to predict its absolute magnitude. Let now cosmology come into play:
we can compute the luminosity distance dL of a SN Ia once we have measured its
apparent magnitude m and we have estimated its absolute magnitude M :

m−M = 5 log10

(
dL

10 pc

)
. (1.33)

We can also compute its redshift from spectroscopy and then, from the observation
of a sufficiently large number of SN Ia, we can obtain the dependence of the
luminosity distance in terms of z. If we assume the Universe to be dominated
by a non-relativistic fluid and dark energy with equation of state wDE, Taylor-
expanding dL around z = 0, in the limit z � 1, we obtain:

dL(z) =
c

H0

[
z +

1

4
(1− 3wDEΩDE,0 + ΩK,0) z2 +O(z3)

]
. (1.34)

Here the subscript 0 indicates the present day value and we have introduced the
dimensionless curvature density parameter:

ΩK ≡ −
K

(aH)2
. (1.35)

As we can see in equation (1.34) and in figure 1.1, if DE is present (ΩDE,0 > 0
and wDE < 0) dL(z) gets larger. Moreover, from figure 1.1, we can also see that
dL(z) is sensitive to deviations from a flat Universe. The 2011 Nobel prize winners
HSST and SCP groups found that the distance luminosity of SN Ia at different
redshift is consistent with a flat Universe and the presence of a DE fluid which
drives the late-time accelerated cosmic expansion. After 1998 more SN Ia data
have been collected by different surveys (e.g. the Hubble Space Telescope (HST))
and it has been possible to put some tighter boundaries on the values of ΩDE,0 and
wDE. Some of the constraints coming from SN Ia observations, as well as from
other probes, are grouped in figure 1.2.

Other Probes

The luminosity distance of SN Ia is not the only evidence supporting the presence
of DE in our Universe, indeed other independent probes came in the last decades,
some remarkable ones are:

• Cosmic Microwave Background: the angular power spectrum of the
temperature anisotropies of the CMB is a gold mine for what concerns the
information about the cosmological parameters. In particular the measure-
ment of the angular scale of the first peak of such spectrum let us put solid
constraints on the spatial flatness of the Universe. Since in the present day
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Figure 1.2: Constraints on the matter density parameter Ωm and the DE equation
of state w from the analysis made in [10] concerning three principal probes: SN
Ia (JLA [11]; blue), BAO (BOSS DR12 [12]; green), and CMB (Planck 2015 [13];
red). The contours contain 68.3%, 95.4%, and 99.7% of the likelihood, and a flat
universe is assumed. Figure taken from [10].

Universe we measure the matter density parameter to be Ωm,0 ≈ 0.3 and
the one of the radiation to be Ωγ,0 ≈ 10−5, an additional DE component is
required to provide the remaining ΩDE,0 ≈ 0.7 as expected in a practically
flat Universe.

• Baryonic Acoustic Oscillations (BAO): these are the oscillations in the
matter power spectrum due to the coherent oscillations in the baryon-photon
fluid that took place in the early Universe, before recombination. The result
of this phenomenon is a greater probability of galaxies being separated by
a characteristic distance called sound horizon. BAO are an excellent way to
put constraints on DE since make us able to measure the angular diameter
distance dA to high redshift, as well as the Hubble parameter H(z), using
the sound horizon as a standard ruler, which, in analogy with the standard
candle, is an object with known physical size.

The constraints that the probes mentioned above can put on wDE and ΩDE,0 (or
equivalently Ωm,0, since Ωm,0 + ΩDE,0 ≈ 1) are shown in figure 1.2 according to
the recent analysis made in [10].
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1.1.5 Cosmological Constant and the ΛCDM Model

The cosmological constant, labeled Λ, was first introduced by Einstein in order
to describe the Universe he had in mind: a static one, eternal and not expanding
nor contracting. In presence of the cosmological constant the field equation (1.6)
becomes:

Rµν −
1

2
gµνR− Λgµν = 8πGT µν . (1.36)

We have that this is not actually a modification of the field equations, but the
most general form in which these can be written, remaining of the second order
in the metric. Indeed (1.6) can be seen as a special case of (1.36) in which the
constant term Λ has been explicitly set to zero. Another approach from which
the field equations can be derived is the variational formalism. In this context, we
obtain the equations by perturbing the action S, and also in this case it can be
shown that the most general expression of the action, that involves derivatives of
the metric that are not beyond the second order is comprehensive of the simplest
scalar that is possible to construct from the metric (besides the Ricci scalar),
namely a constant. The action takes thus the following form:

S =
1

16πG

∫
d4x
√
−g(R− 2Λ) + Sm, (1.37)

where g is the trace of the metric tensor and Sm is the matter action. We can
notice that Λ has two possible interpretations:

• An alternative theory of gravity in which the Einstein tensor is:

G̃µν = Gµν + Λgµν . (1.38)

• An additional component of the energy budget our Universe, so that the
energy-momentum tensor becomes:

T̃µν = Tµν −
Λ

8πG
. (1.39)

Assuming the latter scenario we can rewrite the Friedmann equations in the case
of a Universe with a cosmological constant:

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (1.40)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (1.41)

and find the exact values required to ρ and Λ in order to obtain a static Universe:

ρ =
Λ

4πG
, Λ =

K

a2
. (1.42)
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Since we want ρ to be a positive quantity, this kind of Universe is forced to have
K > 0 and thus a spherical geometry. In general, we can model Λ as a perfect
fluid, then its pressure and density will be:

PΛ = − Λ

8πG
, ρΛ =

Λ

8πG
. (1.43)

We can see that it is characterized by negative pressure and constant density.
Moreover, as seen previously, we can state that the cosmological constant is a
form of DE, as it allows for accelerating solution of the Friedmann’s equations,
since:

wΛ = −1. (1.44)

Shortly after the introduction of the cosmological constant, the hypothesis of a
static Universe, and so the need for Λ, had to be be discarded due to Hubble’s
discovery of the expansion of the Universe [2]. However at the end of the past
century, Λ came back in action as the most probable culprit of the late-time
positive acceleration introduced in the previous section. Nowadays the Standard
Model of cosmology relies mainly on three elements:

• A Cosmological Constant Λ, which is responsible for the accelerated expan-
sion of the present day Universe.

• A form of Cold Dark Matter (CDM), which is collisionless, non baryonic
and dissipationless. CDM particles were able to clump efficiently in the
early universe, and their gravitational effects are the main driver of the
evolution of the large-scale structure (LSS) (see e.g. [4]).

• A brief epoch in the very early Universe, called Inflation, during which
the slow rolling5 of a scalar field drove the exponential expansion of the
Universe, which also justifies its flatness. The oscillations of this scalar field
at the end of inflation gave rise to the particles populating our Universe.
Inflation is also responsible for the very initial perturbations that grew into
the structures observed today. It is indeed possible to predict from Quantum
Field Theory (QFT) the statistical properties of the small fluctuations of the
scalar field during inflation, which generated perturbations of the metric that
in turn imprinted the primordial perturbations of radiation and matter after
inflation (see e.g. [5]).

It will not be a surprise that we refer to this model as ΛCDM.

5It can be shown [15] that if a scalar field is rolling down a potential energy hill slowly
enough compared to the expansion rate of the Universe, this can give rise to an exponential
cosmic expansion.
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1.2 Problems of the ΛCDM Model

Even if the ΛCDM model is in very good agreement with observational data
coming from different fields, it is definitely not free from problems and tensions.
In this chapter we are going to give an overview of the two most notorious problems
of this model, the coincidence and fine-tuning problem, as well as tensions that
have arisen in more recent years, the σ8 and the Hubble tension.

1.2.1 The Fine Tuning Problem

As we said previously, in the ΛCDM model, the cosmological constant is respon-
sible for the actual cosmic acceleration. From eq. (1.40) we can see that in order
to make this happen we require Λ to be of the same order of magnitude of the
squared present day Hubble parameter H0 [14]:

Λ ≈ H2
0 = (2.0504h× 10−42 GeV)2, (1.45)

where we have used h ≈ 0.7. From eq. (1.43) this leads to the following approxi-
mate value for the energy density of the cosmological constant:

ρΛ ≈ 10−47 GeV4. (1.46)

Λ is not a perfect stranger in the world of particle physics, indeed there could be
a natural candidate coming from QFT which is the vacuum energy of an empty
space. We can calculate its predicted value starting from the zero-point energy of
some field of mass m and momentum k, which is given by E =

√
k2 +m2/2 (in

units of ~ = 1), and summing it over all the energy/momentum scales k up to the
Planck scale kpl. This lead us to the following estimate for the vacuum energy:

ρvac ≈ 1074 GeV4. (1.47)

We thus find a strong inconsistency: the predicted energy density of the vacuum
is 121 orders of magnitude larger than the observed energy density of the cosmo-
logical constant. Therefore, from this perspective, there must be some mechanism
(e.g. an additional fundamental symmetry that is presently unknown) responsible
for an extra contribution, able to cancel the vacuum energy, but not completely.
Nevertheless this contribution should be extremely fine tuned: a perfect symmetry
would indeed lead to an exactly null vacuum energy, in this case we would need
to find another explanation for DE; on the other hand, in order to leave the tiny
observed DE density not vanish at all, we need an almost, but not quite, perfect
cancellation. Despite interesting attempts to solve it (see e.g. [29, 30, 31]), as well
as arguments in favour of an anthropic interpretation (see e.g. [32]), this problem
remains still open, and is regarded as one of the major puzzles of fundamental
physics.
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Figure 1.3: Evolution of the energy density of the different components of the
Universe as a function of redshift. The dashed line indicates the present time.
Matter (green line) and radiation (red line) scale as (1 + z)3 and (1 + z)4 respec-
tively, while the density of the cosmological constant (blue line) remains unaltered
at different times.

1.2.2 The Coincidence Problem

There is another major problem which affects the cosmological constant, this is
the so-called coincidence problem. Let us start from eq. (1.19), we see that the
evolution as a function of a (or equivalently of redshift z) of the energy density of
every component of the universe is described by a power law:

ρ = ρ0(1 + z)3(1+w), (1.48)

where we used the relation a = 1/(1 + z) and ρ0 is the present day energy density
of the referred component. So, considering the three main ingredients of the
Universe, we have:

ργ ∝ (1 + z)4, ρm ∝ (1 + z)3, ρΛ = const, (1.49)

where we used the subscripts γ, m and Λ for radiation, matter and cosmological
constant respectively. It follows that in the history of our Universe, for the vast
majority of the time, there has been only a dominant component at a time. This
can bee seen more clearly by taking a look at figure 1.3. We can also notice
that we are living in one of the very rare, and relatively short, periods in which
the density of two components (in this case matter and Λ) are comparable. To
persuade of that coincidence we can calculate the redshift at which matter and Λ
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had the same density:

1 + zeq,m,Λ =

(
ρΛ,0

ρm,0

)1/3

≈ 0.3, (1.50)

which is quite a recent time.

1.2.3 The Hubble and the σ8 Tension

In recent years, the improved measurements of H0 at low redshifts, as well as
the steps forward in the CMB observation, suggested a tension arising on the
estimated value of H0. The current most precise local method to measure H0

relies essentially on two steps: the calibration of luminosity and distance to nearby
galaxies (typically by means of Cepheid6 variables) followed by the calibration
of larger distances on the more luminous SN Ia (up to z ≈ 0.15). The value
of H0 measured with this method is in significant tension (about 3σ) with the
lower one measured by Planck, which on the other hand is in good concordance
with the value obtained from measurements of baryon acoustic oscillations in
combination with SNe Ia. It has to be noted that the Planck data give an indirect
and highly model-dependent estimate of H0, based on the angle subtended by the
sound horizon as observed in CMB temperature power spectrum. This model-
dependence is a crucial fact that opens the door to the exploration of alternative
cosmologies. Possibilities include early dark energy [27], decaying dark matter,
evolving dark energy, dark radiation, modified gravity or deviations from flatness
[28]. One basic example of evolving dark energy approach which could be used to
address this problem consists in assuming a time dependent equation of state for
dark energy [33, 34], given by w(a) = w0 + wa(1 − a), where w0 and wa are two
free parameters that could be set in order to alleviate the tension.
Moreover there’s (at least) another significant tension: it concerns the amplitude
of the power spectrum of density perturbations (usually referred as σ8). The
value of σ8 measured by different LSS indicators at low redshift including clusters,
lensing and redshift-space distortions turns out to be significantly lower than the
one predicted by CMB measurements in combination with the assumption of the
ΛCDM model [26]. This tension could be alleviated, but still not solved, allowing
a massive active neutrino, to be part of the Cosmological Model, thus invoking
again the need to study models which are different from ΛCDM.

1.3 Cosmological Perturbation Theory
Until now we have treated the Universe as homogeneous, the first step toward a
more accurate and realistic description is represented by the linear perturbation

6A Cepheid is a variable star characterized by radial pulsations. Its variation in diameter and
temperature produces oscillations in brightness which have a well defined period and amplitude.
The tight relationship between the luminosity and the pulsation period makes the Cepheids very
reliable standard candles.
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theory. We are going to consider solutions of the Einstein equation which are
made up of a homogeneous background Universe with a FLRW metric plus some
deviations from this background that are small enough to be modeled by a first
order Taylor expansion.

1.3.1 Perturbing the Einstein Equation

We start by perturbing the metric, which, as mentioned above, we assume to be
described by the sum of two terms: a background metric tensor g(0)

µν and a small
perturbation δgµν :

gµν = g(0)
µν + δgµν . (1.51)

Let us introduce two useful quantities: the conformal time η and the conformal
Hubble function H. These are given by simply rescaling t and H by the scale
factor a:

η ≡
∫

dt

a
, H ≡ 1

a

da

dη
= aH. (1.52)

To describe the FLRW background metric we can rewrite eq (1.1) as:

ds2 = g(0)
µν dxµ dxν = a2(− dη2 + δij dxi dxj). (1.53)

At this point we have freedom of choice for what concerns the coordinates to
use for the perturbed quantities: in fact the so-called gauge transformations have
the property to leave unaltered background metric while changing the perturbed
metric. We will use the Newtonian gauge, in which the observer is fixed to the
unperturbed background frame. Moreover, in the most general case, we would
have to consider not only scalar, but vector and tensor perturbations as well.
However, since we are dealing with perturbations of density, which is a scalar
quantity, it can be shown that vector and tensor perturbation terms can be fairly
neglected [36], leading to the following:

δgµν = a2

(
−2Ψ 0

0 −2Φδij

)
, (1.54)

where Ψ and Φ are two spatial scalars. We can now write the perturbed metric
in the Newtonian gauge:

ds2 = a2(η)
[
−(1 + 2Ψ) dη2 + (1− 2Φ)δij dxi dxj

]
. (1.55)

It is now possible to calculate the perturbed version of the Einstein equation
passing through the Christoffel symbols in the same fashion we did in 1.1.1. This
time we are going to deal with two (tensor) equations:

Gµ(0)
ν = 8πGT µ(0)

ν , δGµ
ν = 8πGδT µν . (1.56)
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The first gives the Friedmann equations for the background evolution, while the
second is the first order perturbed equation we are interested in. After some
calculations, we obtain the perturbed Einstein tensor:

δG0
0 = 2a−2

[
3H(HΨ + Φ′)−∇2Φ

]
, (1.57)

δG0
i = −2a−2(Φ′ +HΨ)|i, (1.58)

δGi
j = 2a−2

[
(H2 + 2H′)Ψ +HΨ′ + Φ′′ + 2HΦ′

]
+ a−2

[
∇2(Ψ− Φ)δij − (Ψ− Φ)i|j

]
, (1.59)

where the subscript | indicates the covariant derivative with the spatial 3-metric,
and ∇2f ≡ f ;µ

;µ . At this point, we need to calculate δT µν in order to complete the
equation (1.56), to do so, we have to specify the matter source. In the next section
we are going to calculate δT µν for the simple case of one non-relativistic component.
Since we are going to perturb the energy-momentum tensor, we must introduce
the four-velocity uµ ≡ dxµ

dτ
, with τ ≡

√
− ds2, and its first order perturbation:

uµ =

[
1

a
(1−Ψ),

vi

a

]
. (1.60)

In the last equation we have introduced the peculiar velocity vi = dxi

dη
= adxi

dt
.

1.3.2 Equations for a Single Fluid

The energy-momentum tensor of a perfect fluid is given by:

Tµν = (ρ+ P )uµuν + Pgµν . (1.61)
We are going to assume that also the perturbed fluid is still a perfect fluid, which
means that δT ij = 0 when i 6= j. Let us now introduce our two perturbed quanti-
ties: the density contrast and the velocity divergence:

δ ≡ δρ

ρ
≡ ρ− ρ

ρ
, θ ≡ ∇iv

i , (1.62)

with ρ being the spatial average of the density field. Keeping in mind that our
fluid has equation of state w = P/ρ, we can write its perturbed energy momentum
tensor:

δT µν = ρ
[
δ(1 + c2

s)uνu
µ + (1 + w)(δuνu

µ + uνδu
µ) + c2

sδ δ
µ
ν

]
, (1.63)

where we have introduced the sound speed cs, defined through c2
s ≡ δP/δρ. At

this point we are ready to write our set of first order perturbation equations:

3H(HΨ + Φ′)−∇2Φ = −4πGa2ρδ, (1.64)

∇2(Φ′ +HΨ) = −4πGa2(1 + w)ρθ, (1.65)

Ψ = Φ, (1.66)

Φ′′ + 2HΦ′ +HΨ′ + (H2 + 2H′)Ψ = 4πGa2c2
sδρ, (1.67)
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where the prime represents the derivative with respect conformal time η. Finally,
we move to the Fourier space, and use the continuity equation (1.15) in combi-
nation with the four above, to obtain the cosmological equivalent of the classical
continuity and Euler equations:

δ′ = −3H(c2
s − w)δ + (1 + w)(3Φ′ − θ), (1.68)

θ′ = −
[
H(1− 3w) +

w′

1 + w

]
θ + k2

[
c2
s

1 + w
δ + Ψ

]
, (1.69)

where δ, θ, Φ and Ψ are implicitly referred to the specific wavenumber k associated
to a Fourier mode. It is important to note that these equation become linear in
the Fourier space, this means that each mode is decoupled from the others, and
thus evolves independently.

1.3.3 Evolution of Perturbations

We now consider a relevant limit in which these equations can be solved, thus
giving some important physical insights on the evolution of perturbations. Before
doing so, we introduce a fundamental length scale in cosmology, the cosmological
horizon, defined as:

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
. (1.70)

This is the maximum distance that is possible to cover (i.e. traveling at the speed
of light) in an expanding Universe at a given cosmic time t. The importance of
this scale lies in the fact that it defines the portion of the Universe that can be
causally connected with the observer. At scales larger then the horizon, gravity is
the only acting force. RH is often approximated with the Hubble radius, defined
as follows:

R̃H(t) =
c

H
. (1.71)

Sub-Horizon Limit

Let us consider scales that are smaller than the horizon, i.e. we take the limit
k � H, and focus on a dust component, i.e. a pressureless fluid with w = 0
(this holds for matter), and we take cs � 1. With these assumptions, eq. (1.64)
becomes the well known Poisson equation in Fourier space:

k2Φ = −4πGρδ. (1.72)

It is also easy to show that eq (1.68) and (1.69) become:

δ′ = −θ, (1.73)

θ′ = −Hθ + k2c2
sδ + k2Φ. (1.74)



18 CHAPTER 1. INTRODUCTION

We now differentiate eq (1.73) and plug it into eq (1.74) to obtain the following
second order differential equation:

δ′′ +Hδ′ +
(
c2
s −

3

2
H
)
δ = 0. (1.75)

From the equation above we have that the perturbation will not grow under the
condition:

c2
sk

2 − 3

2
H2 > 0. (1.76)

This can be translated in physical space, finding that all the perturbations with a
wavelength λ < λJ will will be characterized by an oscillating solution, meaning
that they are not able to grow in time. Here λJ is the Jeans scale:

λJ = cs

√
π

Gρ
. (1.77)

On the other hand, the perturbations with λ > λJ are not damped. In the limit
csk � H gravity dominates over the pressure and eq. (1.75) becomes:

δ′′ +Hδ′ − 3

2
H2δ = 0. (1.78)

We can solve this equation, finding the growing and decaying solutions:

δ+ = Aa, δ− = Ba−
3
2 . (1.79)

In particular we are interested in the first one, while the second becomes rapidly
negligible. We note that the pre-factor depends on the initial conditions, these
are fixed during inflation, as briefly mentioned earlier. Let us consider the so-
called matter era, which began at the time of equivalence teq (z ≈ 103−104) when
radiation was replaced by matter as the dominant component of the Universe, and
ended recently, as we saw in section 1.2.2. It can be shown, by means of eq. (1.19)
and the assumption of a flat Universe, that during this era the perturbations had
grown as δ+ ∝ t2/3, as long as linear theory holds.

An Overview

The linear perturbation equations derived in this section can be successfully used
under different assumptions to describe the behaviour of the various components
of the Universe during the different epochs at different scales. Before exposing the
main results we introduce the time of decoupling tdec (z ≈ 1100) after which the
baryonic matter ceased to be coupled to radiation. We indicate with δc, δb and δγ
density perturbations of CDM, baryons and radiation respectively.

• Super-horizon scales: all the component follow the dominant one, so that
before teq radiation dominates and one has δγ ∝ δc ∝ δb ∝ a2, after teq

matter dominates so that δc ∝ δb ∝ δγ ∝ a.
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• Sub-horizon scales: for λ < λJ , as seen previously, every perturbation un-
dergoes to an oscillating solution which is therefore not able to grow. For
λ > λJ we have that CDM perturbations remain approximately constant be-
fore teq (this phenomenon is known as Meszaros effect [35]) and then grow
like δc ∝ a. On the other hand the perturbations of baryonic matter, as
long as t < tdec, will follow the ones of radiation which are found to be oscil-
lating; after tdec baryons decouple from radiation and are free to follow the
perturbations of CDM that had grown in the meantime (this phenomenon
is known as baryon catch-up), in this case one founds: δb ∝ δc(1− adec

a
).
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Chapter 2

Cosmological Observables

In this chapter we are going to give an overview of three important cosmological
observable quantities that are commonly used to study the properties of the Uni-
verse and to connect the results of numerical simulations with the observations
as well as with theoretical predictions. In the present work we will make use of
these observables to test the effects of DE-baryon scattering.

2.1 Power Spectrum
Let us define the density contrast at a point in space with position x as follows:

δ(x) ≡ ρ(x)− ρ̄
ρ̄

(2.1)

where ρ̄ is the spatial mean of the density field over a sufficiently large volume
V . Since we have only one Universe at our disposal, we take advantage of the
ergodic hypothesis, so that we can consider the average of a quantity over different,
sufficiently large, volumes (dubbed fair samples) equivalent to the average over
different realizations of the Universe. As mentioned in section 1.3, as long as linear
theory holds, the orthonormal modes of the fluctuations evolve independently. It
is therefore useful to expand the density contrast in Fourier series:

δ(x) =
∑
k

δk exp (ik · x) =
∑
k

δ∗k exp (−ik · x), (2.2)

where δk are the Fourier coefficients, given by:

δk =
1

V

∫
V

δ(x) exp (−ik · x) d3x. (2.3)

From the conservation of mass in V , we have that δk=0 = 0, and since δ(x) must
assume real values, we have that δ∗k = δ−k.
From the inflation theory it follows that the primordial density fluctuations, which
were generated by oscillations of the metric, are characterized by a completely
random phase distribution. A consequence of this is that the density contrast can

21
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be described in terms of a Gaussian distribution. From eq (2.1) we see that, by
definition, the first moment (i.e. the mean) of the distribution is zero, however
this is not true for what concerns the variance σ2, in fact we have:

σ2 ≡ 〈δ2〉 =
∑
k

〈|δk|2〉 =
1

V

∑
k

δ2
k, (2.4)

where we are averaging over different realizations (or equivalently, different fair
sample volumes). From eq. (2.4) one can see that 〈|δk|2〉 tells us how much the
wavenumber k contributes to the variance σ. Following the cosmological principle,
we now assume the density field to be statistically homogeneous and isotropic, so
that we will be interested only in k = |k|. In the limit V →∞, we obtain:

σ2 =
1

V

∑
k

δ2
k →

1

2π2

∫ ∞
0

P (k)k2 dk. (2.5)

We have introduced the power spectrum P (k) ≡ δ2
k. This is a fundamental tool

in cosmology since it represents the main way to express how much the density
fluctuations at each scale k contribute to the total power. The power spectrum,
whose domain is the Fourier space, always comes with its physical space alter ego,
the Two-Point Correlation Function ξ(r), defined as follows:

ξ(r) ≡ 〈δ(x)δ(x + r)〉. (2.6)

In the above equation we are averaging over all the positions x and over all the
directions r. We can see that ξ(r) describes the excess of probability of two points
being separated by a distance r, and it can be shown that ξ(r) is the anti-Fourier
transform of P (k):

ξ(r) =
1

2π2

∫ ∞
0

P (k)k2 sin (kr)

kr
dk. (2.7)

A typical assumption for the functional form of the power spectrum is a power
law, characterized by the spectral index n and the normalization A:

P = Akn, (2.8)

and in particular, most inflationary theories provide a primordial spectrum with
index n ≈ 1. Moreover, since we do not want the variance to diverge, from eq.
(2.5) we require the spectral index to be n > −3 for k → 0 and n < −3 for
k →∞. The evolution of the primordial power spectrum Pi(k) up to the time of
equivalence teq is usually embedded in the transfer function T (k), so that:

Peq(k) = Pi(k)T 2(k) (2.9)

As we saw in section 1.3.3, before teq, dark matter perturbations have different
behaviour depending on the scale one considers: for the smaller k (scales larger
than the horizon) perturbations grow as δc ∝ a2, on the other hand, for larger k
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Figure 2.1: Linear-theory matter power spectrum at z = 0 (solid line) inferred
from different cosmological probes (the dotted line shows the impact of nonlinear
clustering at z = 0). This figure is taken from [14].

(scales smaller than the horizon), perturbations do not grow in time, so δc ≈ const.
Since the cosmological horizon grows with time, scales with progressively lower k
will enter inside the horizon thus ceasing to grow. This happens up to the scale
keq which is equal to the horizon scale at teq. It can be shown that the effects
explained above lead to the following form for the transfer function:

T (k) ∝

{
const for k < keq

k−2 for k > keq

. (2.10)

It is worth to say that, in analogy with λJ for baryonic matter, also DM has a
length scale under which all the perturbations are destined to vanish. This phe-
nomenon is known in literature as free-streaming, and the associated threshold
wavelength λFS is significantly dependent on the mass of DM particles. Coming
back to the power spectrum, from linear theory we have that after teq, DM per-
turbations will grow as δc ∝ a without distinction between scales that are larger
or smaller than the horizon. The overall shape of P (k) is thus preserved, while
the total power grows with time. The matter spectrum at z = 0 predicted from
linear theory and constrained by the most recent cosmological probes, is visible
in figure 2.1. As times passes, the smallest scale for which linear theory ceases to
hold becomes progressively larger, so that the effective growth of perturbations at
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smaller scales results larger than the one predicted from linear theory, this effects
are driven by the so-called clustering of matter. The approximate prediction of
the deviation from the linear spectrum is also visible in figure 2.1, where it is
represented by a dotted curve.

2.2 Mass Function
The mass function n(M) is a statistical distribution that tells us the expected
number of objects (e.g. galaxies, halos etc..) with mass between M and M + dM
per unit volume:

dN = n(M) dM. (2.11)

In the case the mass-to-light ratio M/L is known, this can be directly converted
into the luminosity function:

φ(L) = n(M)
dM

dL
. (2.12)

However, this ratio is not known with certainty, and moreover is very different for
different objects: it goes from the order of 10 for galaxies to the order of 400 for
clusters of galaxies. The mass function is a powerful tool that frequently comes
into play in many cosmological problems, it is therefore very important to have
analytic formulae that describe it. It is conventional to introduce the quantity σ2,
which is the variance of the density field smoothed with a top-hat filter with a
radius that encloses a mass M at the mean cosmic matter density:

σ2(M) ∝
∫ ∞

0

k2P (k)W 2(k,M) dk. (2.13)

We have that lnσ−1 can be considered as a mass-like variable, since for a fixed
redshift and power spectrum, we see that higher masses translates in higher values
of lnσ−1. With this introduction, we can express n(M) as follows:

dn

dM
=
ρ0

M

dlnσ−1

dM
f(σ), (2.14)

where ρ0 is the mean mass density of the universe. We now have that all the
characteristics of a particular mass function model are embedded in f(σ), which
is defined as the fraction of mass in collapsed objects per unit interval in lnσ−1.
The first remarkable example of analytical model is the spherical collapse formal-
ism by Press & Schechter [16], which gives the following formula for n(M):

fP−S(σ) =

√
2

π

δc
σ

exp

[
− δ2

c

2σ2

]
, (2.15)

where δc is a parameter extrapolated from linear theory, indicating the critical
threshold from which a density perturbation can grow further. This model had
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Figure 2.2: Comparison at different redshifts between Press & Schechter model
(red dashed line), Sheth & Tormen (black dashed line) model and the mass func-
tion computed by numerical simulations of ΛCDM cosmology with different box
sizes, in which the halos were detected by means of the FoF algorithm. This figure
is taken from [25].

been improved by Sheth & Tormen [17], which proposed the ellipsoidal collapse
formalism. This gives:

fS−T(σ) = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p]
δc
σ

exp

[
−aδ

2
c

2σ2

]
. (2.16)

A plot of these two models at different redshifts, in comparison with the halo
mass function as computed by means of numerical ΛCDM simulations is visible
in figure 2.2. Another option to find an expression for n(M) is to calibrate an
analytical function on the basis of N-body simulations. A successful formula is
the one found by Jenkins et al. [18]:

fJ(σ) = 0.315 exp (−[lnσ−1 + 0.61]3.8). (2.17)

Usually one also considers the cumulative mass function N(> M), which gives
the probability of an object to have mass grater than M :

N(> M) =

∫ ∞
M

n(M) dM. (2.18)
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Figure 2.3: Comparison between the NFW and Einasto density profile for different
values of the Einasto parameter α. This figure is taken from [24].

2.3 Halo Profiles
CDM Halos can be seen as the fundamental unit of cosmological structure. Even
if we are not able to directly observe these objects, there are several probes of their
existence (these include gravitational lensing, stellar dynamics etc..), which makes
us able to put constraints on their structural features. The first evidence came
from the observation of the velocity dispersion of galaxies in clusters [19]. Another
strong evidence concerns the rotational curves of disk galaxies [20]: these show a
constant trend a large radii, against the prediction of a Keplerian fall, proportional
to r1/2, predicted from the visible matter density distribution. In order to explain
the observed rotational curves, the presence of underlying DM density distribution
can be assumed. It is of particular interest therefore to investigate on the radial
density distribution of such halos. A first simple model is the so called Singular
Isothermal Sphere (SIS):

ρSIS(r) = ρ0

(
r

r0

)−2

=
v2
c

4πGr2
. (2.19)

This density profile is the one derived in gasdynamics under the assumption of
hydrostatic equilibrium and uniform temperature. We see that this profile is
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characterised by a constant circular velocity vc = 2(πGρ0)1/2r0, in agreement with
the flat rotational curves at large radii observed in disk galaxies. The next profile
we introduce is the Universal Profile of cold dark matter halos, that comes from
studies on numerical simulations of the ΛCDM cosmology, this is the Navarro,
Frenk & White (NFW) profile [22]:

ρNFW(r) =
ρ0

(r/rs)(1 + r/rs)2
, (2.20)

where ρ0 is the matter density of the Universe at the time of the collapse of the
halo and rs is the scale radius. A distinctive feature of this profile, and of profiles
observed in numerical ΛCDM simulation, is the "cusp" trend at small radii, where
ρ ∝ r−1, which is different from less steep "core" trend of the SIS profile, more
supported by observations of rotation curves. Another remarkable profile is the
Einasto profile [23]:

ρEin(r) = ρs exp

{
− 2

α

[(
r

rs

)α
− 1

]}
, (2.21)

where ρs is the value of the density at rs. In this case the shape is further
dependent on the Einasto Parameter α, which modulates the slope of the profile.
A comparison between NFW and Einasto profile is visible in figure 2.3.

Halo Detection in Numerical Simulations

The task of detecting DM halos in N-Body simulations is not a trivial one. A
typical way of proceeding is by means of the so-called Friends-of-Friends (FoF)
algorithm (see e.g. [21]): once a linking length l is set, one requests that any
particle that finds another particle within a distance l is linked to it in a group.
In this way every particle is connected directly with its friends (particles distant
no more than l) and indirectly to the friends of its friends. At this point the groups
with a number of particles under a fixed threshold are discarded. Moreover, there
is another algorithm, named SUBFIND, implemented in [69] for the first time, which
is used to identify overdense, self-bound particle groups within a larger parent
group by means of gravitational unbinding. The basic idea is the following: first,
a local estimate of the density at the position of each particle is computed; second
a local overdensity inside a group (e.g. a group identified with FoF) is considered
a candidate for a subgroup structure; third the boundaries of the candidates are
defined by progressively lowering the density threshold until different isodensity
surfaces meet each other in a saddle point. Both FoF and SUBFIND are included in
the code we are going to use for our numerical simulations (described in section
4.1): this means that for each snapshot, files containing the catalogues of the
halos found with FoF and the groups and subgroups found with SUBFIND will be
produced.
Once a halo or a subhalo is detected, in first place one wants to compute its mass.
Since, by construction, in a simulation a halo is an ensemble of particles, one could
take the mass contained in all particles that are found with a certain algorithm
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as the mass of the halo, however this method is not so accurate and uneasy to
link with observations. A more convenient way is to consider the mass enclosed
within a sphere around the center of the halo with radius R∆, at which the halo
density is ∆ times the mean matter density or alternatively the critical density of
the Universe:

M∆

4πR3
∆/3

= ∆× ρ̄M ,
M∆,crit

4πR3
∆,crit

= ∆× ρc. (2.22)

In most cases, if ∆ is sufficiently large, almost all of the mass taken into account
is also bound to the halo. A typical choice is ∆ = 200. An important quantity
one can define is the concentration of the halo c∆ ≡ R∆/rs, which has been found
to depend only weakly on halo mass.



Chapter 3

Dark Energy

We have seen so far that the tempting hypothesis of the vacuum energy being the
driver of the late-time accelerated expansion of the Universe suffers of various the-
oretical and observational problems. This motivates to extend further our investi-
gation on the intrinsic nature of dark energy. One possible, and very reasonable,
way that we can undertake is to think of dark energy as an additive component
of our Universe described by a scalar field φ, associated with a self-interaction
potential V (φ). In this chapter we are going to describe the main features of such
component with a particular interest to the (not only gravitational) interactions
that may take place between DE and matter.

3.1 Quintessence

A form of dark energy described by a scalar field φ with a self-interaction potential
V (φ) that interacts with the other species only through gravity is typically referred
to asQuintessence [37, 38]. This kind of model is described by the following action,
which is a revisited version of the eq. (1.37):

S =

∫
d4x
√
−g
[

1

2κ2
R + Lφ

]
+ Sm, (3.1)

where κ2 = 8πG and we have replaced the cosmological constant with the quintessence
scalar field, described by the following Lagrangian:

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (3.2)

From which it follows that, if we consider a FLRW background, the energy density
and the pressure of this new fluid will be:

ρφ =
1

2
φ̇2 + V (φ), Pφ =

1

2
φ̇2 − V (φ). (3.3)

Consequently its equation of state will be given by:

29
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wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (3.4)

Unlike for the cosmological constant, the e.o.s. will be wφ ≥ −1 and in general not
constant. The evolution of the quintessence scalar filed is given by the variation
of the action (3.1) with respect to φ. This leads to the Klein-Gordon equation:

φ̈+ 3Hφ̇+ V,φ = 0. (3.5)

Since we want this field to drive the late-time cosmic acceleration, we must require
that, in recent times, wφ < −1/3, which means that φ̇2 < V (φ). In other words
we want the potential shallow enough for the field to evolve slowly along the
potential [36]. This mechanism is formally very similar to the one that is thought
to have driven the cosmic acceleration during the inflationary period in the very
early Universe. So far, several forms for the potential have been proposed in the
literature (see e.g. [39, 40, 41, 42, 43]).

Phantom Energy

As it is possible to see in figure 1.2, a DE with equation of state smaller than
-1 is not ruled out by the most recent cosmological observations. This kind of
DE is usually referred to as phantom or ghost. The simplest model which realizes
wφ < −1 is a scalar field with a negative kinetic energy [44]. The energy density
and pressure in this case will be given by:

ρφ = −1

2
φ̇2 + V (φ), Pφ = −1

2
φ̇2 − V (φ). (3.6)

And the equation of state of the phantom will be given by:

wφ =
φ̇2/2 + V (φ)

φ̇2/2− V (φ)
, (3.7)

where we see that one has wφ < −1 for φ̇2/2 < V (φ). The dynamics of phantom
energy has further been studied in works such as [45, 46, 47]. One peculiar feature
of this model is that the phantom field rolls up the potential because of the
negative kinetic energy. Another feature of the phantom is that, for certain choices
of the potential (e.g. an exponential function), wφ tends to settle to a constant
and < −1 value which results in one of the most extreme scenarios concerning the
ultimate fate of our Universe, the so called Big Rip [49]. Last but not least, it can
be shown, through the study of the phantom Lagrangian, that this model leads to
an unstable vacuum state [45, 48]. In order to avoid the catastrophic instability
of the vacuum, it is usual to consider theories in which the interaction between
ghosts and normal fields is as weak as possible.
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3.2 Coupled Quintessence

Unless some symmetry prevents it, the scalar field we have introduced in the pre-
vious section is expected to explicitly couple with the ordinary matter present
in our Universe, with a strength that could be comparable to gravity [50]. This
strong coupling, would have such an impact on the nature of the Universe, that
if it had been present we would have already directly detected it. However, we
can not exclude, and therefore we must investigate, the presence of a (possibly
weaker) non-minimal coupling between DE and matter. Moreover, if DE couples
differently with baryons than with DM, as first proposed in [51], the constrains
we can put on the strength of the latter coupling become looser [53]. Before we
start introducing coupled quintessence models it is important to note that from
a mathematical point of view, this coupling is equivalent, via a conformal trans-
formation, to a coupling between quintessence and gravity [52, 55], that leads to
modified gravity theories.

We consider a general model in which DE has the same coupling with baryons
and DM [53]. Our starting point is the following: since we want the Bianchi
identities to hold for the Einstein tensor, the covariant derivative of the total
energy momentum tensor must be zero even if we introduce a coupling term
(which in general implies T µ(I)ν;µ 6= 0 for a specific component I). Therefore the
equations that describe the coupling in our model are the following:

T µ(m)ν;µ = −C(φ)T(m)φ;ν , (3.8)

T µ(φ)ν;µ = C(φ)T(m)φ;ν , (3.9)

where the subscripts m and φ indicate respectively matter (baryons and DM) and
DE, while C(φ) is the coupling function.

3.2.1 Background Evolution

Using the two equations above, we can now calculate the background equations
in a FLRW metric, obtaining:

φ̈+ 3Hφ̇+ V,φ =
√

2/3κβρm, (3.10)

ρ̇m + 3Hρm = −
√

2/3κβρmφ̇, (3.11)

ρ̇γ + 4Hργ = 0, (3.12)

3H2 = κ2(ργ + ρm + ρφ), (3.13)

where we have also taken into account the radiation with subscript γ and we have
introduced β = C

√
3

2κ2
. Integrating the matter continuity equation we get

ρm = ρm,0a
−3e−
√

2
3
κ
∫
β(φ) dφ, (3.14)
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which is one of the fundamental characteristics of the coupled DE models: matter
density is no more conserved since an energy exchange is taking place between
matter and DE. Moreover, if we assume that the number density of matter parti-
cles is conserved in time, from the previous equation we obtain that the mass of
the coupled matter particles evolves in time depending on the scalar field:

M(a) = M(a0)e−
√

2
3
κ
∫
β(φ) dφ. (3.15)

For what concerns the potential of the scalar field we have that a possible, and
extensively studied, choice is a generic exponential function:

V (φ) = Ae−κ
√

2/3αφ. (3.16)

From now on we will make the above assumption. For convenience, let us define
the following dimensionless variables:

x ≡ κ

H
φ′√

6
, y ≡ κ

H

√
V (φ)

3
. (3.17)

3.2.2 Linear Perturbations

Before computing the linear perturbation equations, let us define the dimensionless
scalar mass as:

m̂2
φ ≡

m2
φ

H2
=

1

H

d2V (φ)

dφ2
, (3.18)

then, after having defined the perturbation of the scalar field as ϕ = κδφ
√

6, we
can write the perturbed matter and scalar field equations (see [54, 57, 58] for a
complete derivation):

δ′ = −θ + 3Φ′ − 2βϕ′ − 2ϕβ′, (3.19)

θ′ = −(1− 2βx)Hθ + k2(Φ− 2βϕ), (3.20)

ϕ′ + 2Hϕ′ +
(
k2 +H2m̂2

φ −
HΩmβ

′

x

)
ϕ

− 4HxΦ′ − 2H2y2αΦ = H2βΩm(δ + 2Φ). (3.21)

It is interesting to observe that in case the coupling is not constant, there is an
additional term in eq (3.21) that contributes for the scalar field fluctuations, this
can be interpreted as an effective coupling mass:

m̂2
β ≡

Ωmβ
′(φ)

Hx
. (3.22)

In this way we can introduce the effective mass that will be useful in a moment.

m̂2 ≡ m2

H2
= m̂2

φ + m̂2
β. (3.23)
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We now consider the Newtonian limit (small scales λ � 1, where λ ≡ H/k),
which is the one relevant for N-body simulations. Furthermore we assume that λ2

is not much larger than m̂2. With the above assumptions, it can be shown that:

ϕ ≈ Y (k)λ2βΩmδ, (3.24)

where:

Y (k) =
k2

k2 + a2m2
, (3.25)

where m = m̂H. We now substitute in eq. (3.20) to obtain the effective potential:

Φ̂ = −3

2
λ2Ωmδ

[
1 +

4

3
β2Y (k)

]
. (3.26)

From eq. (3.15) we can express the effective mass of a matter particle of mass
M0 = M(a0) as:

M̃ = M0e
−
√

2
3
κ
∫
β dφ. (3.27)

At this point it is possible to show that, anti-Fourier transforming eq. (3.26), the
effective potential in real space at a distance r from an individual coupled massive
particle can be written as:

Φ̃(r) = −GM̃
r

(
1 +

4β2

3
e−mr

)
, (3.28)

where we see that, in the presence of a coupling, the gravitational potential takes
the form of the Yukawa potential. We can also define the effective gravitational
constant:

G̃ = G

[
1 +

4β2

3
(1 +mr)e−mr

]
, (3.29)

and the parameter:

H̃ = H(1− 2βx), (3.30)

so that we can finally write the Newtonian limit for the gravitational acceleration
felt by the i-th particle in an ensemble of N particles:

v̇i = −H̃vi −
dΦ̃

dri
= −H̃vi −

G̃M̃

r2
. (3.31)

From this equation we can clearly see that the well-known gravitational accelera-
tion equation is modified by the coupling in three ways:
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• The usual friction Hv is modified by an additional friction term −2βx.
This effect does not depend only on the intensity of the coupling, but also
on the term x, which is the kinetic energy of the scalar field. Thanks to the
dependence on x, it can be shown that the usual friction is more strongly
modified, the more the equation of state of dark energy wφ differs from −1.

• The mass M of a generic particle is modified by the factor e−
√

2
3
κ
∫
β dφ.

This effect impacts the gravitational potential, generated by the matter
distribution, so that it not only changes in time according to the dynamics
of the matter particles but also due to the evolution of the scalar field.

• The gravitational constant G is now modified by a term that takes into
account the Yukawa correction for the potential. This term depends on the
mass m associated with the scalar field plus the coupling. In the case m is
negligible there is still a modification of G but the behavior this time is the
one of an additional long-range fifth force.

3.2.3 Consequences of Coupling

The presence of coupling between DE and matter can significantly influence the
evolution of the Universe. One of the most relevant features is the presence of
an intermediate epoch, usually referred as field-matter-dominated-era (φMDE),
between the radiation era and the accelerated era during which the two coupled
fluids maintain a constant ratio of energy densities (see figure 3.1). Indeed, it
can be shown [58] that in the ideal case of a Universe made only of matter and
DE, whose coupling strenght is described by β, the energy density Ωφ of the field
during φMDE is given by:

Ωφ(φMDE) =
4

9
β2. (3.32)

During this era the fluctuations grow less than in the correspondent uncoupled
model. The φMDE has three effects on the CMB: a tilt of the spectrum at low
multipoles, due to the ISW effect [56]; a shift to higher multipoles of the acoustic
peaks, due to the change in the sound horizon; and a change in their amplitude.
On the other hand the main effect on the power spectrum is a reduction of σ8 for
large couplings [53].

3.3 Dark Scattering
Dark Scattering is a particular type of coupled quintessence that was introduced
in [60] and further studied in [61, 62]. This model assumes Cold Dark Matter to be
the only component to have a non-minimal interaction with dark energy, further-
more this interaction can be described as a pure momentum exchange, i.e. with no
transfer of rest-mass energy between the two components, modulated by its char-
acteristic cross section. The basic idea is that, at energies that are sufficiently low,
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Figure 3.1: Background evolution of a standard ΛCDM model (solid lines) and a
coupled model with β = 0.24 (dashed lines). In figure is shown the evolution of
the dimensionless density in radiation (green), matter (black) and DE (red) as a
function of ln a (known as e-folding time). The smaller plot shows the ratio of the
same quantities to the ΛCDM case. We can see that the coupled case gives place
to the φMDE era, during which the two coupled fluids share a constant ratio of
the total energy budget of the Universe. The figure is taken from [59].

the interactions between particles can be modeled as a process of elastic scattering.
Two remarkable examples present in nature are Thomson scattering and Rayleigh
scattering. Let us consider a CDM particle moving through the DE isotropic fluid
with equation of state wφ and stress tensor Tab = diag(ρφ, wφρφ, wφρφ, wφρφ). We
have that, if wφ 6= −1, the particle experiences a momentum flux that imparts
a force proportional to the cross section σc. It can be shown [61, 63] that the
four-force is given by:

gµ = (γf · v, γf), (3.33)

where γ is the Lorentz factor and:

f = −(1 + wφ)σcγ
2ρφv. (3.34)

As said previously, a classical example is the Thomson scattering which takes
place between photons and non-relativistic electrons, described by the force:
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F = −4

3
σtvργ, (3.35)

where σT is the well known Thomson cross section.
One distinctive feature of this models is that this kind of interaction does not affect
the background evolution of the Universe due to the absence of any rest-energy
transfer.

3.3.1 Linear Perturbations

The perturbed equations, in terms of the cosmic time t, for the DE and CDM
fluids are the following:

δ̇φ = −
[
(1 + wφ + 9

H2

k2
(1− w2

φ))

]
θφ

+ 3(1 + wφ)Φ̇− 3H(1− wφ)δφ, (3.36)

δ̇c = −θc + 3Φ̇, (3.37)

θ̇φ = 2Hθφ − anDσc∆θ + k2

(
Φ +

δφ
1 + wφ

)
, (3.38)

θ̇c = −Hθc +
ρφ
ρc

(1 + wφ)anDσc∆θ + k2Φ. (3.39)

Here ∆θ = θφ − θc, nD is the proper number density of CDM particles and
we used the subscript c to indicate CDM. We see that with respect to the cou-
pled quintessence models, we are left only with one distinctive feature: the extra
Hubble-friction term. As done previously, let us write the acceleration felt by a
CDM particle of mass Mc in the Newtonian limit. In doing so, we assume DE
sound speed to be cs = 1, this is provided by most of DE models based on light
scalar fields. With this assumptions one has that DE perturbations at sub-horizon
scales are damped, so that it is possible to take δφ = θφ = 0, as verified numerically
in [61]. We get to the following equation:

v̇i = −[1 + A]Hvi −
dΦ

dri
, (3.40)

where the additional scattering term is defined as follows:

A ≡ (1 + wφ)σc
c

Mc

3ΩDE

8πG
H. (3.41)

We see that the extra term depends on the CDM particle mass Mc, the DE
equation of state parameter wφ and the scattering cross section σc. It is evident
that in the case wφ = −1 one has A = 0, in other words: the Cosmological
Constant can not scatter off matter particles.
In [60], the author performed a linear analysis of the growth factor γ, defined as:
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Figure 3.2: Matter power spectrum ratio of the different models versus the ref-
erence ΛCDM. model. The different line styles refer to wφ = −0.9 (solid) and
wφ = −1.1 (dashed). The different colors refer to different intensities of the dark
scattering, modulated by the parameter ξ. It is possible to see that for each model,
the nonlinear effects of the scattering are opposite, and eventually stronger, with
respect to the linear ones. The figure is taken from [61].

γ =
dln f

dln Ωm

, (3.42)

with f ≡ dln δ/ dln a. Starting from equations (3.36-3.39), the results are the
following: if wφ > −1, the extra velocity-dependent term has the effect of slightly
suppressing the growth of structure, the contrary happens in the case wφ < −1,
in which the growth of structure is slightly enhanced. We stress that this results
hold as long as we are in the linear regime.

3.3.2 Dark Scattering Simulations

To study the effects of dark scattering in the nonlinear regime it is necessary to
perform N-body simulations. In [61] the authors performed high resolution dark
scattering CDM-only simulations using a modified version of the GADGET-3 code
[68, 70] (we are going to describe this code in the next section) which implements
the extra velocity-dependent term (3.41). The equation (3.40) has been imple-
mented in the code to describe the acceleration of the CDM particles in a system
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of N particles. In this case, it can be written as:

v̇i = −[1 + A]Hvi +
∑
j 6=i

Gmjrij
|rij|3

. (3.43)

To modulate the intensity of the scattering, the parameter ξ ≡ c ·σc/Mc has been
introduced, so that the extra term (3.41) is:

A = (1 + wφ)
3ΩDE

8πG
Hξ. (3.44)

The simulations have taken into account three possible constant values for wφ:
−1 (Cosmological Constant), −0.9 (quintessence-like) and −1.1 (phantom-like).
For each of the cases with wφ 6= −1 four simulations had been performed, respec-
tively with ξ = [0, 10, 30, 50] bn · c3/GeV. The results of these simulations are of
particular interest for us: at nonlinear scales the trend of the growth of structures
is the opposite of the linear one. More precisely, in the case wφ = −0.9, the extra
term acts as a friction which is in opposition to the formation of structures as long
as the velocity of the particles is aligned with the gradient of the gravitational
potential (as it is for the linear regime), but when this condition is no more sat-
isfied (i.e. in the nonlinear regime) the same friction shall facilitate gravitational
collapse since it results in the decrease of particles angular momentum. The exact
opposite happens for wφ = −1.1: in this case dark scattering acts as an additional
drag which helps the collapse of the particles onto the forming structures in the
linear regime, but increases particles angular momentum in the nonlinear regime.
What we said can be steadily visualized in figure 3.2, in which one can see the
ratio of the power spectrum, at at z = 0, of each simulation over the ΛCDM one.
One can also notice that the nonlinear effects can be significantly larger than the
linear ones.

3.4 DE-Baryon Scattering

More recently (see [64]), a new model has been introduced, motivated by the
following: what if dark energy is exchanging momentum exclusively with baryonic
matter? This question has been posed in order to assess whether it would be
possible to investigate this interaction trough cosmological observables, such as
the CMB temperature anisotropy power spectrum or the matter power spectrum.

3.4.1 Linear Perturbations

In the case of scattering between DE and baryons, the linear perturbation equa-
tions are the same as the dark scattering ones, but referred to the baryonic matter,
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Figure 3.3: CMB temperature power spectrum for increasing αxb (ratio between
the DE-baryon scattering cross-section to the Thomson cross-section). Upper
panel: CMB temperature anisotropy power spectra for αxb = 0 (black curve), 0.1
(red curve), 0.5 (blue curve), and 1.0 (green curve). Lower panel: relative change
in power with respect to the model with αxb = 0. The light blue band indicates
the uncertainty caused by the cosmic variance. The figure is taken from [64].

for which we use the subscript b:

δ̇φ = −
[
(1 + wφ + 9

H2

k2
(1− w2

φ))

]
θφ

+ 3(1 + wφ)Φ̇− 3H(1− wφ)δφ, (3.45)

δ̇b = −θb + 3Φ̇, (3.46)

θ̇φ = 2Hθφ − aneσc∆θ + k2

(
Φ +

δφ
1 + wφ

)
, (3.47)

θ̇b = −Hθφ +
ρφ
ρb

(1 + wφ)aneσb∆θ + k2Φ, (3.48)

where this time ∆θ = θφ − θb. Since we know that baryons are already involved
in a remarkable scattering process with photons, that is the Thomson scattering,
which is described by its related cross section1 σT ≈ 6.7 · 10−25 cm2 = 0.67 bn, it
is useful to introduce the Thomson Ratio: α ≡ σb/σT to measure the intensity of

1bn is the barn measurement unit: 1 bn = 10−24 cm2.
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Figure 3.4: As in Fig. 3.3 but referring to the matter power spectrum at redshift
z = 0. The small decrease in power at every scales is due to the effect of the
extra velocity-dependent term brought by the DE-baryon scattering. The figure
is taken from [64].

the scattering. We can rewrite eq (3.41) to describe the acceleration of a baryonic
particle of mass Mb:

v̇i = −[1 +B]Hvi −
dΦ

dri
, (3.49)

where the additional scattering term is now:

B ≡ (1 + wφ)α
cσT

Mb

3ΩDE

8πG
H. (3.50)

This relation will be useful later, when we will describe the numerical implemen-
tation of DE-baryon scattering models.
In [64] the authors modified the CAMB code [67] in order to integrate the system
of equations (3.45-3.48) and compute the linear prediction for the CMB Temper-
ature power spectrum and the matter power spectrum. As one can see from eq
(3.50), the more wφ differs from −1, the more the effects of the scattering be-
come significant. So, to enhance the effects as much as possible, they investigated
two models with a constant and "extreme" value for the DE equation of state:
wφ = −0.8 and wφ = −1.2. Surprisingly, they found that, even for very large
values of α (e.g. α & 10), both the cosmological observables mentioned above
are essentially left unaltered, as one can see in fig. 3.3 and 3.4. It is important
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to stress that this result holds for linear scales, and it is likely that the effects
at nonlinear scales might be stronger than the linear ones, analogously with the
findings of the dark scattering simulations performed in [61, 62]. For this reason,
in this work, we are going to perform for the first time in the literature N-body,
multi-particle, structure formation simulations in which DE-baryon scattering is
implemented.

3.4.2 Screening the Interaction at Small Scales

Before we introduce the numerical implementation and the simulations in the next
chapter, let us briefly comment the behaviour of the interaction on the smallest
scales (see [65]). As mentioned in section 3.2, the constraint we can put on the
coupling between DE and baryons is much tighter than the one we can put on
DE-DM coupling. This is because of the high precision with which we are able
to investigate the interactions of baryonic matter in solar system observations as
well as in laboratory experiments. For this reason, models in which DE is coupled
with baryons typically include a mechanism that makes the coupling vanish at
small scales (see e.g. [66]). In this context, we can note that in eq. (3.48), the
term related to DE-baryon scattering scales as ρ−1

b , thus making the interaction
decrease in regions where the baryonic density is higher. By the way we cannot
use these argument to exhaustively solve the screening question: it is not correct
to extrapolate this linear relation to highly nonlinear scales, also because some
of our hypothesis (e.g. considering baryons as a perfect fluid) cease to be true at
these scales. Therefore the only constraints we can put right now on DE-baryon
scattering must come from the cosmological framework, this makes even clearer
the motivation to perform cosmological simulations that include DE-baryon scat-
tering. As a final note, we observe that in principle numerical simulations of DE-
baryon scattering should also include the screening mechanism mentioned above.
In the present work we are not including this feature for simplicity, but we leave
such implementation for future work.
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Chapter 4

Numerical Implementation

As we can conclude from the previous chapter, the nonlinear effects of DE-baryon
scattering could be greater than the linear ones. It is therefore crucial to run
dedicated N-body simulations to shed more light on the effects of this interaction
on a broader range of spatial scales. In this chapter we are going to outline the
framework and the details of our numerical experiments on DE-baryon scattering.

4.1 The GADGET Code

The code we used to perform our simulations is the C-GADGET code. This is a
modified version of the GADGET-3 code, which is in turn one of the latest updates
of the GADGET code [68, 70], originally developed by Volker Springel. Even if there
are clearly some differences between the various versions, the strategies used to
solve the equations of gravity and hydrodynamics remain quite similar. In This
section we are going to describe the main features of the GADGET code(s) and
the modifications we have done in order to implement the effects of DE-baryon
scattering.

4.1.1 Collisionless Dynamics

As long as we ignore the effects of hydrodynamics, we can model our system
as a self-gravitating collisionless fluid, governed by the collisionless Boltzmann
equation (CBE):

df

dt
≡ ∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂r

∂f

∂v
= 0, (4.1)

where f(r,v, t) is the mass density in the single-particle phase space and the
potential is sourced by the well known Poisson equation:

∇2Φ(r, t) = 4πG

∫
f(r,v, t) dv. (4.2)
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The N-body approach to this coupled system of equations models the fluid as
made of a finite number of particles, which are integrated along the character-
istic curves of the CBE. It is of primary importance to have a sufficiently high
number of particles in order to obtain a reliable simulation. The N-body problem
basically consists in solving Newton’s equations of motion for a large number of
particles under their own self gravity. At this point we stress that in our numeri-
cal treatment of such equations it is necessary to introduce a softening εg for the
gravitational force in order to avoid large-angle scattering in two-body collisions.
The equation of gravity then becomes:

Φ(x) = −G
N∑
j=1

mj[
(x− xj)2 + ε2g

]1/2 , (4.3)

so that we are actually introducing a lower cut-off in the spatial resolution. For
what concerns the boundary conditions, the code offers the possibility to use peri-
odic boundaries, this is a typical choice when performing cosmological simulations
and is the one we will adopt, moreover we will use a comoving system of coor-
dinates, so that the real dimension of our box will naturally follow the Hubble
expansion. Finally we point out that the GADGET code also offers the possibility to
include the gasdynamics for the baryonic particles, however we will not describe
this in detail since in the present work we are limiting to treat baryons as a col-
lisionless fluid. This choice of approximation is justified by the fact that in this
work, where DE-baryon scattering is implemented numerically for the first time,
we want to focus our attention on the effects of the interaction alone, without
the complication of disentangling additional effects acting on baryons. In this
context and with this purpose, baryons can be fairly included as a collisionless
component. We leave for future work to run hydrodynamical simulations which
are comprehensive of DE-baryon scattering.

4.1.2 The Tree Algorithm

The method used by the code to compute the gravitational force exerted on a
specific particle by all the particles enclosed within a certain range with arbitrary
spatial resolution is the so-called Tree algorithm, which is based on a hierarchical
multipole expansion. The basic idea of this method is that a group of particles
that is distant enough from the particle for which we are computing the force
can be treated as one massive particle (its mass being the sum of the masses of
the particles of the group) centered in the centre of mass of the group, in other
words we are performing a monopole expansion on sufficiently distant groups. It
is evident that in this way we will not need to do N−1 partial force computations
per particle (with N being the total number of particles), instead the force com-
putation for a single particle will require O(logN) operations (see [71]). The total
computational cost therefore scales from O(N2) to O(N logN). From a practical
point of view we want a method to hierarchically pack up the particles, so that
we start from the biggest groups and we can gradually unpack them until we
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Figure 4.1: Scheme of 2-D version of the oct-tree algorithm proposed in [72]. We
start (left) with a square node that encloses all the particles, this is then iteratively
subdivided into 4 child until every child node contains at most one particle (right).
Note that empty squares do not need to be stored. This figure is taken from [68].

reach the desired precision. This can be done in terms of a recursive subdivision
of space [72]: one starts from a cubical root node which includes the totality of
the particles, from this cube are then generated eight daughter nodes, and this
process is repeated iteratively for each one of the generated nodes that contain
two or more particles. For a better understanding, the 2-D version of a hierar-
chical tree can be visualized in fig. 4.1. Once the tree structure is created, the
force can be computed by "walking" the tree: starting from the root node, every
time one encounters a cube that, if considered as a whole, is not able to provide
sufficient accuracy in the force computation, this is "opened" and each one of the
daughter nodes is subject to the above accuracy test. The final result of the Tree
algorithm will be an approximated version of the true gravitational force, however
the accuracy of the method can be well modulated by the following node-opening
criterion:

GM

r2

(
l

r

)2

≤ α|a|, (4.4)

where M , l and r are respectively the total mass, the extension and the distance
of the node considered, |a| is the magnitude of the acceleration obtained in the
last timestep and α is the tolerance parameter used to set the precision.

4.1.3 The Particle Mesh (PM) Method

An alternative way to solve the equations of gravity is represented by the so-called
Particle Mesh (PM) method, which is even faster than the Tree algorithm, tough
less accurate on the computation of short range forces. We start pointing out
that gravitational potential can be expressed as the convolution of the density
field ρ(x) with a Green’s function g(x):
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Φ(x) =

∫
g(x− x′)ρ(x) dx′. (4.5)

The usefulness of such expression of the gravitational potential becomes evident
if we consider the same relation in the Fourier space:

Φk = gk · ρk. (4.6)

So if we compute the Fourier transform of the density field, we just need to per-
form a multiplication, rather than an integration, with the Fourier transform of
the Green’s function. In practice we start by assigning a cubic Cartesian grid
to the space, so that we can compute the density of each grid cell starting from
the particles that this cell contains (possibly considering a more complex shape
function for the particles rather than the Dirac’s delta), we can then Fourier trans-
form this continuous-like density field and multiply it with the Fourier transform
of the Green’s function to obtain the potential in the Fourier space. Last but not
least we perform the inverse Fourier transform of the potential in order to come
back to the real space; we can now compute the gradient of the potential at the
particles position to obtain the force acting on each of them. It can be shown
that the complexity of this method scales as O(N). On the other hand, the main
disadvantage is that, since we Fourier transform sampling on a mesh with finite
resolution, we lose all the information on the scales that are smaller than the cells,
in other words the spatial resolution of the method is limited to the mesh size.

4.1.4 The TreePM Algorithm

With the introduction of GADGET-2, a new algorithm for the computation of the
gravitational force has been adopted instead of the pure Tree algorithm. This is
the so-called TreePM algorithm [73], this hybrid method consists in a synthesis
of the Particle Mesh method and the Tree algorithm explained above. We start
from observing that the gravitational potential can be explicitly split in Fourier
space into a long-range and a short-range term as follows:

Φk =
4πG

k2
ρk = Φlong

k + Φshort
k , (4.7)

with the two components of the potential being defined by the following:

Φlong
k = Φk exp (−k2r2

s), Φshort
k = Φk[1− exp (−k2r2

s)], (4.8)

where rs is the distance at which the force is split. The short range potential
can be brought back to the real space anti-Fourier transforming the second of the
above equations. We obtain:

Φshort(r) = −Gm
r

erfc

(
r

2rs

)
, (4.9)
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where erfc is the complementary error function, defined in terms of the error
function erf as:

erfc(z) = 1− erf(z) = 1− 2√
π

∫ z

0

e−t
2

dt. (4.10)

Eq. (4.9) can be solved by means of the ordinary Tree algorithm except that the
force law is modified by a short-range cut-off factor. For what concerns the long
range potential, this can be computed in a very efficient way with the Particle
Mesh (PM) method. To persuade the reader of the reliability of this method,
we show in figure 4.2 the spatial decomposition of the force and the error of the
TreePM method, which is found to remain under the 1− 2%.
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Figure 4.2: Force decomposition and force error of the TreePM scheme. In the
upper panel is shown the size of the short-range (dot-dashed) and long-range force
(solid) as a function of distance in a periodic box. The spatial scale rs of the split
is marked with a vertical dashed line. In the lower panel the TreePM force with
the exact force expected in a periodic box are compared. For separations of order
the mesh scale (vertical dotted line), maximum force errors of 1− 2% due to the
mesh anisotropy arise, but the rms force error is well below 1% even in this range,
and the mean force tracks accurately the exact solution. This figure is taken from
[70].
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Figure 4.3: Space-filling Peano-Hilbert curve in two (bottom) and three (top)
dimensions. This figure is taken from [70]

4.1.5 Parallelization strategies

The only way to perform high resolution N-body simulations efficiently is to lever-
age the power of parallel high performance computing. Indeed the GADGET code is
equipped with a brilliant domain decomposition strategy: the 3D computational
domain is mapped onto a 1D Peano-Hilbert space filling curve. This curve is
visible in figure 4.3 in its 3D and 2D version. Once the curve is built for the
domain, it is chopped in pieces of equal length which are distributed among the
processors. For what concerns our domain decomposition, the most important
property of the Peano-Hilbert mapping is the similarity preservation: points that
are close in space, will be also close in the respective Peano-Hilbert curve. In this
way one can be sure that the exchange of information between different processors
is minimized. Furthermore the domain decomposition is not the only part of the
code to employ parallel computing, in fact, the Fourier transform are operated by
means of the parallel version of the FFTW library [74].

4.2 Implementation of DE-Baryon Scattering

We now describe the modification we have applied to the GADGET-3 code in order to
implement the scattering between DE and baryons. Let us start from the equation
describing the gravitational acceleration of a matter particle in the Newtonian
limit, which is the one implemented in the standard code:

v̇i = −Hvi −
dΦ

dri
. (4.11)
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As we have seen in the previous chapter, if we introduce scattering between DE
and baryons, the only effect that arises from linear perturbation theory is a mod-
ification of the above equation, when referred to baryonic particles. Indeed we
have:

v̇i = −[1 +B]Hvi −
dΦ

dri
, (4.12)

where the extra term B is given by:

B = (1 + wφ)α
cσT

Mb

3ΩDE

8πG
H. (4.13)

In practice, if we want to implement DE-baryon scattering, we have to compute
B at every timestep and include it when calculating the gravitational acceleration
of the baryonic particles. We see that B depends on many constant and non
constant terms.

4.2.1 Constant Terms

The fundamental constants such as c or G are already included in GADGET and can
be found in the allvars.h header file. Then there are the two terms Mb and α =
σb/σT, the former being a constant term indicating a characteristic mass for the
baryonic particles and the latter being the intensity of the scattering which in the
present modification is assumed to be constant (an implementation for time depen-
dent σb could be developed in future works). These two terms are sourced from the
parameter file of the GADGET code, in which we have introduced the two extra pa-
rameters BaryonParticleMass and BaryonScatteringCrossSection which in-
dicate respectively Mb in GeV/c2 and σb in bn.

4.2.2 Time dependent Terms

The last three terms we have to deal with are the time dependent ones: wφ,
ΩDE and H. These are connected by the Friedmann equations, in fact, from
equations (1.17) and (1.18), one obtains the evolution of the Hubble parameter
as a function of redshift (or equivalently of the scale factor a), of the present day
density parameters and of the DE equation of state. For a flat Universe we have:

H2(z) = H2
0

[
Ωγ,0(1 + z)4 + Ωm,0(1 + z)3

+ ΩDE,0 exp

{∫ z

0

3(1 + wφ)

1 + z̃
dz̃

}]
,

(4.14)

where the subscript 0 indicates the present day values as usual. Starting from this
equation, we wrote a python script that produces a table which contains the values
of H, ΩDE and wφ for different values of z, once the present day value as well as a
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functional form for wφ are given. For what concerns the modification of GADGET,
we introduced in the parameter file the DarkEnergyFile parameter, which con-
tains the path to the formatted text file including the table described above. Once
the external table is loaded from the external file, this is converted into an inter-
nal table which has a precise (and sufficiently large) number of logarithmically
spaced steps of the scale factor. The internal table is built by performing a linear
interpolation on the external table and is used to read out the relevant values at
all simulation timesteps.

4.2.3 Updating the Acceleration

At this point we have all we need to compute the B term as a function of time. At
every timestep, after the computation of the potential, the gravitational accelera-
tion is calculated in the gravtree.c file. We have introduced a modified version
of this file, which also computes the additional scattering term. This is calculated
by means of the constant and the time dipendent terms, with the latter being
computed at each timestep by performing a linear interpolation on the internal
table. Then the extra term, dubbed baryon_scattering_friction_factor, is
added exclusively to the baryonic particles, which in the GADGET code belong to
the type 0, while the type 1 refers to CDM particles (it is possible to handle up
to six different type of particles).

4.2.4 A Note on Efficiency

After the implementation of DE-baryon scattering, we performed several test runs
with different particle numbers. These runs were of fundamental importance to
verify that we have not introduced some bugs in the code as well as to ensure that
our modified version is essentially as fast as the standard version.

4.3 The Simulations

In this section we describe the main characteristics of the simulations we performed
using our modified version of the GADGET-3 code.

4.3.1 Initial Conditions and Cosmological Setup

For an easier comparison between the different simulations, we use the same initial
conditions for all of them. It is possible to do so without affecting the background
cosmological parameters since, as we have seen, the scattering with DE is a partic-
ular kind of coupling which does not impact the background evolution. However,
it has to be noted that this choice will result in different values of σ8 at z = 0 for
the different models. To generate the initial condition file we used the N-GenIC
code [75], which, basing on the Zel’Dovich approximation [76], displaces the par-
ticles from a homogeneous Cartesian lattice so that their density distribution will
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Figure 4.4: Evolution with redshift of the total friction term (1 + B) in the two
most extreme cases under study, with α = 100. The solid line refers to the model
with wφ = −0.9, while the dashed line refers to to one with wφ = −1.1. One
can see that the effect of DE-baryon scattering rapidly becomes negligible with
increasing redshift. In particular, at zi = 99 (dotted vertical line) our assumption
of B ≈ 0 is well supported.

have a random phase and an amplitude following a tabulated power spectrum
computed through the public Boltzmann code CAMB [67] and consistent with our
cosmological parameters. We chose zi = 99 as starting redshift. The Cosmologi-
cal parameters chosen are visible in table 4.1, they are consistent with the latest
results coming from the Planck satellite [14]. This way of generating the initial
conditions excludes any possibility of scattering between DE and baryons before
zi. This assumption is however definitely reasonable in our case: the extra term
is in fact proportional to ΩDE, that drops quickly with redshift and soon becomes
negligible. To remove all doubt, we show in fig. 4.4 the evolution of the total
friction term (1 +B) with redshift in the two most extreme cases: wφ = −0.9 and
wφ = −1.1, with α = 100.

4.3.2 Main Features

Every simulation of our suite has the following features:

• 5123 CDM particles of mass 7.57× 109 M�/h.

• 5123 collisionless baryonic particles of mass 1.42× 109 M�/h.

• Box size equal to 250 Mpc/h.
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• Snapshots are taken from z = 2 to z = 0 every ∆z = 0.5.

• Gravitational softening equal to εg = 12 kpc/h (approximately 1/40th of
the mean inter-particle separation).

All the models under investigations are characterised by a constant value for wφ,
moreover in the simulations where the scattering is present, we have set the baryon
characteristic mass Mb = 0.5 GeV/c2 (this could be thought as an approximate
average between the electron and the proton mass). We summarize the nine
models under investigation in table 4.2.

4.3.3 Computational Resources

We run our suite of numerical simulations as well as the preliminary test runs on
the Matrix cluster and performed the analysis of such simulations by means of
the BladeRunner cluster, both are part of the OPH cluster of the Physics and
Astronomy Department of the University of Bologna. In particular, the Matrix
cluster has the following characteristics:

• 4 Dell PowerEdge C6420 servers hosting 8 multi-core Intel Xeon Gold 5120
processors with 14 physical multi-threaded cores.

• Infiniband Mellanox 100 Gb/s low-latency connection switch.

• 3.6 TB of RAM for an average of 8 GB/core.

• 20 disk nodes with 12 TB/disk.

For our final simulations we used 4 computing nodes, each one with 28 cores, for
a total of 112 cores. For each node we allocated 250 GB of RAM.
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Parameter Value

H0 67.3 km s−1Mpc−1

ΩDE,0 0.722

Ωm,0 0.278

Ωb,0 0.044

σ8 (z = 0,ΛCDM) 0.832

Table 4.1: Set of the cosmological parameters used in the simulations. These
values are consistent with the latest results coming from the Planck satellite [14].

Run wφ α

ΛCDM −1 −
Q0 −0.9 0
Q1 −0.9 1
Q10 −0.9 10
Q100 −0.9 100

P0 −1.1 0
P1 −1.1 1
P10 −1.1 10
P100 −1.1 100

Table 4.2: Suite of the simulations performed with our modified version of the
GADGET-3 code. Every simulation is characterized by the DE equation of state wφ
and the DE-baryon scattering σb in terms of the Thomson ratio α = σb/σT.



Chapter 5

Analysis of the Simulations

In this chapter we will examine the suite of simulations by means of the cosmo-
logical observables introduced in chapter 2. Our focus will be on the impact of
DE-baryon scattering on such observables, and on the comparison between the
simulations with and without such scattering. One important question we want
to address is "How large should the DE-baryon scattering interaction cross section
be in order to produce significant effects on the cosmological observables?".

5.1 Large Scale Density Distribution
We start with a visual inspection of the density slices of our simulations. These
were computed by means of the Pylians3 library [77] through a Cloud-in-Cell1
(CIC) scheme. In figure 5.1 we show the density slices at z = 0 of the baryonic mat-
ter and CDM distribution for three different cases: the reference ΛCDM simulation
and the two simulations with the most extreme scattering interaction (α = 100),
namely Q100 and P100. Each density slice we show is 150× 150× 15 Mpc/h. We
note that the overall shape of the cosmic web is the same for every simulation, this
reflects the use of the same initial conditions. Comparing the CDM density distri-
butions we see that no significant difference can be noticed, at least by naked eye.
On the other hand if we compare the density distribution of the baryonic matter
we observe that the simulation with wφ = −0.9 and α = 100 features an overall
less intense clustering of the highest density peaks with respect to the ΛCDM
case; conversely we notice the opposite trend for the simulation with wφ = −1.1
and α = 100, which features a stronger clustering on the highest density peaks.
The effect can be seen more clearly in the zoomed region of each plot, centered
on the highest density peak of the slice. This behaviour reflects our expectations
on the linear effects of DE-baryon scattering: suppression or enhancement of the
formation of structures whether one has wφ > −1 or wφ < −1 respectively.

1The CIC mass assignment scheme works as follows: once a mesh is chosen, the mass of each
particle is distributed over cubes which are of the same size of the mesh cubes but centered on
the particles; the mass inside a certain mesh cube is then given by the sum of the intersections
of this cube with the cubes around the other particles.
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Figure 5.1: Density slices at z = 0 of DM (left) and baryons (right) for ΛCDM
(middle) and the two α = 100 models: wφ = −0.9 (top) and wφ = −1.1 (bottom).
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5.2 Power Spectrum

We computed the power spectrum for baryons and CDM alone, as well as for
total matter. We considered three different redshifts: z = 0, 0.5, 1. The spectra
were computed by assigning the mass to a cubic Cartesian grid by means of the
CIC scheme, to do so we again employed Pylians3. The grid chosen has half
the spacing of the mesh used for the large-scale N-body integration, which means
10243 modes. This corresponds to a computation of the power spectrum up to the
Nyquist frequency associated with the grid, given by kNy = πN/L ≈ 12.9h/Mpc.
Once the spectra were computed, we considered the ratio between every case and
the ΛCDM reference case. These results are visible, for each of the redshifts
under consideration, in the left column of figures 5.2, 5.3 and 5.4 for baryons,
CDM and total matter power spectra respectively. Moreover, for a more complete
analysis, we wanted to isolate the effects of the scattering with respect to the ones
caused by the background expansion for the wφ 6= −1 models. To do so, we also
considered the ratio between every model with wφ 6= −1 and the corresponding
case with the same wφ but no scattering (α = 0). The plots are visible in the
right column of figures 5.2, 5.3 and 5.4. In first place, we notice that the effects of
DE-baryon scattering become more significant as redshift approaches the present
value z = 0, this is not unexpected: the effects at lower redshifts are indeed
integrated over longer times; moreover, looking at figure 4.4, we can notice that
the B term, describing the scattering intensity, significantly increases its absolute
value in time. This is essentially due to the fact that B ∝ ΩDE and, in the
models under investigation, dark energy became a non negligible component of
the Universe in relatively recent times. In second place we observe that the effects
are opposite when considering wφ = −0.9 and wφ = −1.1, this can be simply
explained by the fact that the B term changes its sign according to whether wφ
is greater or lesser than −1. We can now focus our analysis of the power spectra
of the different components.

Baryonic matter

Let us start with the plots concerning the baryonic matter power spectrum. We
see that the linear effects consist in the enhancement and suppression of the power
respectively for wφ = −1.1 and wφ = −0.9, this is in concordance with the physical
interpretation introduced in [61] and mentioned previously: in the linear regime,
the peculiar velocity of the particles is aligned with the gradient of the poten-
tial, and so the DE-baryon scattering acts like a friction/drag term suppress-
ing/enhancing the structure formation in the wφ = −0.9 and wφ = −1.1 cases
respectively. We notice that this effect is non negligible only for the most extreme
cases (α = 100) in which we have a deviation from the non-scattering model of
≈ 15% at z = 0, which slightly decreases as z increases in the wφ = −0.9 case, and
more significantly in the wφ = −1.1 case. We see that the scale of the transition
from the linear to the nonlinear regime takes place between k ∼ 0.6h/Mpc and
k ∼ 2h/Mpc. For what concerns the nonlinear effects, we observe the opposite
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trend: an enhancement of the power when wφ = −0.9 and a suppression when
wφ = −1.1. To interpret this behaviour we again recall [61]: in the nonlinear
regime the velocity field is no more aligned with the gradient of the potential and
the collapsing structures start to gain angular momentum; in this context, the
presence of a friction/drag term supports/opposes the loss of angular momentum
by the baryonic particles, and this translates in faster/slower collapse of nonlin-
ear structures for wφ = −0.9 and wφ = −1.1 respectively. We notice that the
nonlinear effects become significant also for the cases in which α = 10, moreover
the dependence from redshift is stronger than in the linear regime. At scales
k ∼ 10h/Mpc we find a deviation from the non-scattering model of ≈ 140% at
z = 0, ≈ 70% at z = 0.5 and ≈ 35% at z = 1 in the most extreme cases and a
significantly lower deviation of ≈ 10% at z = 0 in the cases with α = 10.

CDM

Let us now consider the CDM power spectrum: we find that every effect is signif-
icantly damped with respect to the ones on the baryonic matter power spectrum,
this is due to the fact that in our models CDM is not scattering with DE, and
so the effects on the power spectrum are only indirectly transmitted via gravita-
tional interaction with baryonic matter, which however is subdominant. At the
linear scales the deviation from the non scattering case never exceeds ≈ 3%. On
the other hand, in the nonlinear regime, we still found some significant deviation
when α = 100: considering scales k ∼ 10h/Mpc it is ≈ 20% at z = 0, ≈ 10% at
z = 0.5 and ≈ 6% at z = 1.

Total matter

Last but not least, let us look at the results of DE-baryon scattering on the
total matter power spectrum: as expected we see that the effects are milder
than the baryons-only case. At the linear level, when α = 100, we notice an
enhancement/suppression with respect to the non-scattering model which goes
from ≈ 10% at z = 0 to ≈ 4% at z = 1. Again, the nonlinear effects are more
significant: at scales k ∼ 10h/Mpc and for α = 100, we find a deviation from the
non-scattering model of ≈ 30% at z = 0, ≈ 15% at z = 0.5 and ≈ 10% at z = 1.
In the α = 10 case, we only notice a deviation, at z = 0 and k ∼ 10h/Mpc, of
≈ 3%.
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Figure 5.2: Ratio of the baryonic matter power spectrum to the ΛCDM reference
model (right) and to the α = 0 case (left). We consider both models with wφ =
−0.9 (solid lines) and with wφ = −1.1 (dashed lines) and three redshifts z = 0
(up), z = 0.5 (middle), z = 1 (down). The intensity of DE-baryon scattering is
described by the Thomson ratio α = σb/σT. We see opposite effects depending
on the value of wφ, moreover if the power is enhanced at smaller scales, it is then
suppressed at larger ones, and vice-versa.
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Figure 5.3: As figure 5.2
but for the cold dark matter. As expected the effects are significantly weaker

with respect to the case of baryonic matter.
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Figure 5.4: As figure 5.2
but for the total matter. In this case the effects are milder than in the case with

only baryonic matter.
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5.3 Halo Mass Function
We computed the halo mass function for every snapshot of each simulation as the
number of halos with mass M200,crit lying within a certain number of logarithmic
mass bins. To do so we started from the halo catalogues generated by the SUBFIND
routine, included in the code. For a first consistency check, we compared the
cumulative mass functions of our models with the one predicted by the Jenkins
et al. formula [18] (see eq. 2.17) in the same ΛCDM cosmology as our reference
model. We show the results of such comparison in figure 5.5. We observe a slight
scale dependence when comparing each model to the Jenkins function, however we
find good concordance between our reference ΛCDM model and the theoretical
prediction: the deviation never goes beyond 3% in the range between 2 × 1011

and 1014; we also note that, for masses below 1014M�/h, every model is below
deviations of ≈ 10%. We now focus on the effects of DE-baryon scattering on
the halo mass function. In figure 5.6 we show, in the same fashion of the power
spectrum analysis, the ratio between every model and the reference ΛCDM model
in the left column and the ratio between every case with wφ 6= −1 and its respective
α = 0 case in the right column. We again consider the three redshifts z = 0, 0.5, 1.
To make these plots we considered 10 logarithmically equispaced mass bins in the
range 1012 - 1014M�/h. We notice that also in this case the effects of the scattering
become more relevant as redshift approaches z = 0. For the most extreme cases,
i.e. the two with α = 100 we find a significant deviation both from the ΛCDM
and from the respective non-scattering case. In particular one can see that in the
wφ = −0.9 case there is an enhancement of the abundance of halos at all masses
which is of ≈ 5% at z = 0.5 and grows to ≈ 10 − 15% at z = 0, where it shows
a trend that slightly increases with the mass. On the other hand, for wφ = −1.1,
we have a suppression of the abundance of ≈ 5% at z = 0.5 and ≈ 13% at z = 0.
For what concerns the other scattering cases with lower cross section, we do not
notice any significant effect, with the exception of a mild deviation at z = 0 in
the α = 10 cases, with an amplitude of 1−2%. The enhancement/suppression we
observe in the cases wφ = −0.9 and wφ = −1.1 respectively is connected to the
nonlinear effects of the DE-baryon scattering described in the previous section:
the nonlinear collapse of structures is indeed enhanced/suppressed in the presence
of a friction/drag term acting on baryons and supporting/opposing their loss of
angular momentum.
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Figure 5.5: Upper panel: cumulative halo mass function at z = 0 as predicted by
the Jenkins et al. [18] formula (brown) and as computed for the reference ΛCDM
model (blue line) as well as for the models with wφ = −0.9 (solid lines) and with
wφ = −1.1 (dashed lines). Lower panel: cumulative halo mass function ratio
between our models and the Jenkins prediction. The halos were detected with the
SUBFIND routine, included in our code. Our reference model is in good agreement
with the predicted mass function: even if there is a slight scale dependence, the
deviations remain under ≈ 3%
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Figure 5.6: Ratio of the halo mass function to the ΛCDM reference model (left)
and to the α = 0 case (right). We consider both models with wφ = −0.9 (solid
lines) and with wφ = −1.1 (dashed lines) and three redshifts z = 0 (up), z =
0.5 (middle), z = 1 (down). The different intensity of DE-baryon scattering is
described by the Thomson ratio α = σb/σT.
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5.4 Halo Profiles

To produce the radial density profiles of the halos we used a specific C code which
we are going to briefly describe. First, the user selects which snapshots of the
simulation has to be considered, as well as the number of halos to consider and
the mass interval in which the halos must lie. Once this parameters are given,
the code starts looking through the catalogues produced by the SUBFIND routine,
which containM200, R200 and the positions of the halos. If a suitable halo is found
in the catalogue, the code opens the snapshot file(s) and looks for the particles
that make up the halo. The radial profile is built at this point in the following
way: the position of the particle with minimum potential is taken as the center
of the halo, and a certain number, also set by the user, of spherical shells with
logarithmically equispaced thickness is considered. The code computes the radial
profile by counting how many particles lie in each shell and dividing by the shell
volume. To make the comparison between different halos easier, the profiles are
given as a function of R/R200. This process is repeated for every particle type
considered (DM and baryons in our case) and for the number of desired halos. By
means of this code we computed, for every simulation, DM and baryonic matter
profiles for 100 halos in each one of the following mass bins:

• Mass bin 1: 5× 1012M� < M200 < 1013M�.

• Mass bin 2: 1013M� < M200 < 5× 1013M�.

• Mass bin 3: 5× 1013M� < M200 < 1014M�.

• Mass bin 4: 1014M� < M200 < 5× 1014M�.

At this point we are ready to analyze the results. We chose two parallel ways that
are described in the following.

Profiles of the same halo in different simulations

The first method we employed to analyze the effects of DE-baryon scattering on
halo density profiles consists in the direct comparison of the profiles of objects in
different simulation that can be considered as the same structure. To do so we
wrote a python script which compares all the halos found in a certain mass range
in every simulation. We consider objects in the various simulations to be indeed
the same structure if all of the following conditions are satisfied:

• M200 and R200 deviations must not be greater than 10%.

• The centers of the structures must not be displaced of more than the 80%
of the average R200.
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With this criterion we are able to detect 80 object in the range 5× 1012M�/h <
M200 < 5 × 1014M�/h which can be considered to be the same halo in different
simulations. In figure 5.7 we show four radial density profiles at z = 0 of both
DM and baryons from our sample. Each halo lies in one the four different mass
bins considered. We note that, as the mass increases, the profile tends to have less
noise in it, this is because more massive halos are composed by a larger number of
particles. In first place, we notice that, as expected, the profiles of the reference
ΛCDM model are consistent with the NFW profile. Second, despite the noise,
we can observe that the effects of DE-baryon scattering have also in this case an
opposite trend: we see an increase/decrease of the inner density in the baryonic
matter profile respectively for the cases wφ = −0.9 and wφ = −1.1; this effect is
significant only for the most extreme scattering cases, i.e. the two with α = 100.

Stacked profiles

To reduce the noise and focus better on the effects of DE-baryon scattering, we
considered a second approach: we produced four stacked profiles at z = 0, one
for each mass bin. This is done by averaging the value of the density at each
radius between 100 randomly picked halos from our catalogue. In this case we
must consider the profile over R/R200 instead of the physical radius, in order
to fairly compare halos with different R200. The stacked profiles are visible in
figure 5.8. By looking at the baryonic matter profiles we can confirm a strong
increase/decrease of the inner density at every mass when α = 100, moreover
we note a tiny deviation for α = 10. With the stacked profiles we are able to
detect another interesting feature: at large radii the effect of the scattering has
an opposite trend than the one at inner radii, at every mass range we have indeed
a decrease/increase of the outer density when α = 100 respectively for wφ = −0.9
and wφ = −1.1. The transition between the two effects takes place at ≈ 0.5R200

in every mass range under consideration. These two opposite effects could be
possibly explained by means of the physical interpretation given in [61] for the
dark scattering and mentioned in section 5.2. By means of the stacked profiles it
is also possible to notice that the effects of the scattering are also present in the
DM profiles, but with significantly lower intensity.
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Figure 5.7: Radial density profiles at z = 0 . We show the reference ΛCDM
model (blue line) and the models with wφ = −0.9 (solid lines) and wφ = −1.1
(dashed lines). The different intensity of DE-baryon scattering is described by
the Thomson ratio α = σb/σT. We show both DM profiles (shaded) and baryonic
matter profiles (bright).
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Figure 5.8: Stacked radial density profiles in different mass ranges at z = 0
of the reference ΛCDM model (blue line) and for the models with wφ = −0.9
(solid lines) and wφ = −1.1 (dashed lines). The different intensity of DE-baryon
scattering is described by the Thomson ratio α = σb/σT. We show both DM
profiles (shaded) and baryonic matter profiles (bright). Each stacked profile is
computed by averaging 100 halo profiles in each mass range.
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5.5 Halo Baryon Fraction

Starting from the halo profiles, we computed the radial baryon fraction. In prac-
tice we first computed the cumulative mass profiles M(R) of the two components
by integrating the density profile. For a generic component x we have:

Mx(R) = 4π

∫ R

0

ρx(R
′)R′2 dR′. (5.1)

In our case the integral reduces to a discrete sum over a certain number of spherical
shells. Once the cumulative mass of DM and baryons were computed, we took the
ratio Mb(R)/Mc(R). In figure 5.9 it is possible to see the baryon fraction stacked
profiles obtained also in this case by averaging 100 halos in each one of the four
mass bins. We choose a minimum radius for our plots as follows: we consider
the smallest halo of each mass bin and we start plotting from the radial bin at
which the physical radius exceeds 36 kpc, i.e. three times the softening length
εg. In the ΛCDM reference case, as well as in the cases with α = 0, we see that
the radial profile of the baryon fraction has a similar trend in the different mass
ranges: in the innermost region we have Mb/Mc ≈ 0.1 for the less massive halos
and ≈ 0.14 for the most massive ones; we then observe a growth of the fraction
which tends to settle around ≈ 0.19 ≈ Ωb,0/(Ωm,0 −Ωb,0), i.e the expected cosmic
baryon fraction at z = 0 according to the cosmological parameters chosen in our
simulations. We observe that the systematically lower baryon fraction in the inner
regions could be connected to dynamical friction, acting on the CDM particles,
which are more massive than the baryonic ones, and/or to numerical heating.
Let us now consider the effects of DE-baryon scattering on the baryon fraction.
For the α = 1 case we do not notice any significant deviation from the reference
case. When α = 10 we observe a systematic ≈ 5% enhancement/suppression
respectively for the wφ = −0.9 and wφ = −1.1 cases. As R approaches R200

we observe that in both cases the effect is damped and the value converges to
the reference case. The situation is different when we consider the most extreme
scattering cases, i.e. α = 100, in which it is possible to see that the baryon fraction
profiles are significantly distorted. In the case wφ = −0.9 and α = 100 we notice
a strong enhancement at small radii which leads to deviations of ≈ 100%; we then
have a relatively steep decrease that lets the baryon fraction reach Mb/Mc ≈ 0.19
at R ≈ 1.5R200 and even lower values at larger radii. On the other hand, when
wφ = −1.1 and α = 100, we observe an overall suppression of ≈ 50%; in this case
the profile features a regular growth of the baryon fraction, which is specular to
the wφ = −0.9 case; we can see that even at R ≈ 2R200 the baryon fraction is
lower than the reference case. These two opposite behaviours in the most extreme
cases can be explained considering that the friction/drag term helps/opposes the
loss of angular momentum, thus enhancing/suppressing the gravitational collapse
of baryonic particles into the DM halos, respectively for wφ = −0.9 and wφ =
−1.1. It is important to note that the significant modification of the baryon
fraction brought by DE-baryon scattering in the most extreme cases is expected
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to importantly impact on several astrophysical processes including star formation,
galaxy formation, AGN feedback and so on. This scenarios could be properly
studied by means of simulations which also include hydrodynamics, we leave this
for future work.
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Figure 5.9: Stacked radial profiles of baryon fraction in different mass ranges at
z = 0 of the reference ΛCDM model (blue line) and for the models with wφ = −0.9
(solid lines) and wφ = −1.1 (dashed lines). The different intensity of DE-baryon
scattering is described by the Thomson ratio α = σb/σT. Each stacked profile is
computed by averaging 100 halo profiles in a certain mass range.
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Chapter 6

Conclusions and Future Prospects

In this chapter we are going to summarize our work and results, before doing so
we recall the cosmological background in which we operated. A final section is
left for an overview of the possible future developments of this work.

6.1 Cosmological Background

The first chapter of this thesis is dedicated to the introduction of some funda-
mentals of cosmology. In section 1.1.1 we started by considering that modern
cosmology relies on Einstein’s theory of General Relativity, together with the as-
sumption of the Cosmological Principle; this made us able to derive the Friedmann
equations, which describe the background evolution of the Universe. In section
1.1.2 we used the Friedmann equations to describe the background evolution of
a multi-component Universe. In section 1.1.3 we introduced some basic concepts
like the redshift and different possible definitions of cosmological distances: the
proper distance, the comoving distance, the luminosity distance and the angular
diameter distance. In section 1.1.4 we exposed the main observational evidence
of dark energy, a mysterious component which drives the late-time accelerated
cosmic expansion. These include supernova observations, baryonic acoustic oscil-
lations and CMB. In section 1.1.5 we introduced the Standard model of cosmology,
namely ΛCDM. This is mainly based on the presence of cold dark matter, of the
inflationary epoch in the early Universe and on the identification of DE as the
Cosmological Constant Λ, which has an equation of state wΛ = −1 and can be
readily interpreted as the vacuum energy. In section 1.2 we exposed two long
standing problems of the ΛCDM model, namely the fine tuning and the coin-
cidence problems, as well as two tensions that appeared in more recent times,
these concern the measure of the two cosmological parameters σ8 and H0. We
concluded the first introductory chapter with section 1.3, in which some basics of
cosmological perturbation theory are provided.

In the second chapter we described three cosmological observables which are of
primary interest in this work, since these were used in our analysis to test the
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effects of scattering between DE and baryons. In particular, in section 2.1 we
introduced the concepts of power spectrum and correlation function, and gave
an overview of the evolution of density perturbations on different scale lengths
during the history of our Universe. In section 2.2 we defined the mass function
and mentioned the analytical formulae that can be obtained by means of two im-
portant theoretical models, the spherical collapse and the ellipsoidal collapse, as
well as the simulation-calibrated formula provided by Jenkins et al. that we later
used for a consistency check of our simulations. In section 2.3 we described some
remarkable density profiles typically used to model the matter distribution inside
halos, the most important being the universal NFW profile; we also introduced
two widely used halo finding algorithms, namely FoF and SUBFIND, which were
employed in the simulations of the present work.

As we saw, despite the ΛCDM model is in good agreement with most of the
available observational datasets, it is not free from tensions and open questions.
In this context several models concerning alternative cosmologies have been pro-
posed and studied in the literature. The third chapter has been indeed devoted
to a further investigation on dark energy beyond the cosmological constant. In
section 3.1 we introduced the so-called quintessence and phantom models, based
on a form of dynamical dark energy associated with a scalar field φ with an equa-
tion of state wφ ≥ −1 and wφ < −1, respectively. In section 3.2 we saw how
these models can be further extended to the interacting DE scenario, in which a
nonminimal coupling with matter is assumed. We studied how the coupling be-
tween the DE scalar field and matter affects the evolution of the Universe both at
the background level and at the level of linear perturbation theory (section 3.2.1
and 3.2.2); we observed in section 3.2.3 how one of the most significant effects
introduced by the coupled DE scenario is the presence of an intermediate epoch,
dubbed φMDE, during which the two coupled fluids (i.e. matter and DE) main-
tain a constant ratio of energy densities. In section 3.3 we introduced a particular
form of coupling between DE and DM, the so-called dark scattering (see [60]). In
this case the interaction of the two components is described in terms of a pure mo-
mentum exchange, whose intensity is modulated by the scattering cross section;
an interesting feature of the scattering with DE is that this interaction leaves the
background evolution unaltered, thereby lacking the φMDE epoch that charac-
terises standard coupled DE models. In section 3.3.1 we studied dark scattering at
the level of linear perturbation theory, we saw that, under the hypothesis that DE
sound speed is equal to the speed of light (so that DE perturbations are damped at
sub-horizon scales) this interaction translates mathematically into an additional
velocity-dependent term in the Euler equation of the coupled matter particles;
this extra friction/drag is dependent on the DE energy density, on the mass of
the matter particle, on the scattering cross section and on the equation of state of
DE. This last dependence sets the sign of the additional term, thus determining
whether it behaves like a friction or a drag for wφ > −1 and wφ < −1 respectively.
We then saw, in section 3.3.2, that dark scattering models have been implemented
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in numerical simulations (see [61, 62]) in order to investigate the effects of such
interaction also at nonlinear scales. Indeed, it has been found that the nonlinear
effects can be significantly stronger than the linear ones. In section 3.4, we focused
our attention on a recent work (see [64]) in which a similar scenario featuring a
scattering between DE and baryon has been introduced and studied at the linear
level in order to see if it was possible to put some constraints on such interaction
by means of cosmological observations. This scenario has been the main target
of the research work presented in this thesis. In this class of models the scat-
tering can be described with the introduction of the Thomson ratio α = σb/σT,
i.e. the ratio between the DE-baryon scattering cross-section σb and the Thomson
cross-section σT. The authors of [64] modified the CAMB code in order to solve
the linear perturbations equations in the presence of DE-baryon scattering. Their
analysis regarded the linear effects of such interaction on two important cosmo-
logical observables: the matter power spectrum and the CMB temperature power
spectrum. Their conclusion was that, even for very large values of the DE-baryon
scattering cross section, i.e. α � O(1), no significant deviations were found; at
least at the level of the linear theory. Therefore, the only yet unexplored field that
leaves an opportunity to put cosmological constraints on such interaction remains
the nonlinear regime of structure formation,in which, in analogy with the findings
of [61, 62], the effects could be stronger than in the linear regime. The nonlinear
regime can be properly studied only through N-body numerical simulations, this
constitutes the main motivation of the present work. We concluded this section
mentioning that DE-baryon scattering model should also come equipped with a
proper screening mechanism, able to make the interaction vanish on solar sys-
tem scales. However, to keep things easier, we did not include in this work such
screening mechanism.

6.2 Our Work and Results

The DE-baryon scattering model and its linear analysis operated in [64] represent
the starting points and the main motivation of the present thesis. In this work,
for the first time in the literature, structure formation multi-particle simulations
implementing DE-baryon scattering have been performed in order to investigate
the nonlinear effects of this interaction on cosmological observables.

The fourth chapter was dedicated to the description of the code we used, i.e.
GADGET-3 [70], and of the way it has been modified in order to perform our nu-
merical simulations, whose main features have also been described. In section 4.1.1
we introduced the equations of collisionless dynamics, which are implemented in
the code. We underline that in the present work we modeled baryons as a colli-
sionless fluid, i.e. we neglected hydrodynamics. This approximation is motivated
by the fact that these are the first simulations ever performed for these models
and we then want to focus exclusively on the effects of the scattering, without
the complication to disentangle them from other effects acting on baryons. In
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sections 4.1.2 and 4.1.3 we described the Tree algorithm and the Particle Mesh
method in order to introduce, in section 4.1.4, the TreePM algorithm, which is
the one implemented in the GADGET-3 code to solve the equations of gravity. In
section 4.1.5 we gave an overview of the parallelization strategies of the code. In
section 4.2 we described our modification of GADGET-3: essentially, we acted on
the code so that the extra friction/drag term could be computed and added to the
gravitational acceleration of the baryonic particles. We have verified with several
test runs that our implementation is perfectly working and as fast as the original
version of GADGET-3. In section 4.3.1 we described how the initial conditions for
our simulations have been generated by means of the N-GenIC code and the cos-
mological parameters used, consistent with the latest results of [14]. In section
4.3.2 we exposed the features of our suite of multi-particle numerical simulations:
every simulation was characterized by a 250 Mpc/h comoving box filled with 5123

particles of collisionless baryons plus 5123 CDM particles. The suite was compre-
hensive of: the reference ΛCDM model, four quintessence-like DE models with
wφ = −0.9 and four phantom-like DE models with wφ = −1.1. The non standard
models had increasing values of the Thomson ratio α = 0, 1, 10, 100. In section
4.3.3 we exposed the technical specifications of the Matrix computing cluster,
used to run all the simulations.

In the fifth chapter we performed the analysis of our simulations. We started
considering the slices of the large scale density distribution in section 5.1. Then,
in section 5.2 we investigated the effects of DE-baryon scattering by means of the
nonlinear power spectrum. We computed the spectra for the baryonic matter, the
CDM and the total matter at the redshifts z = 0, 0.5, 1. We found that the effects
on the power spectrum induced by the DE-baryon scattering become larger as the
redshift approaches z = 0. As expected, the effects on the baryonic matter power
spectrum were significantly larger then the ones on the CDM spectrum. In agree-
ment with the findings of [61, 62], in which however a DE-CDM scattering was
considered, we found that DE-baryon scattering enhances or reduces the linear
power with respect to the non-scattering case depending on whether one consid-
ers wφ = −1.1 or wφ = −0.9 but also that these effects are reversed at nonlinear
scales. We noticed that the transition between the linear and the nonlinear effects
occurs roughly at the same scale k ∼ 0.6− 2h/Mpc for all the models. For what
concerns the total matter power spectrum at z = 0, considering the deviation
in the scattering cases with respect to the non-scattering case, we found that at
linear scales there is a uniform suppression/enhancement of ≈ 10% in the α = 100
case with wφ = −0.9 and wφ = −1.1 respectively; on the other hand at nonlinear
scales there is a enhancement/suppression, proportional to k, which turns to be,
at scales k ∼ 10h/Mpc, of ≈ 30% in the α = 100 case with wφ = −0.9 and
wφ = −1.1 respectively. In the α = 10 case we only found a deviation at nonlin-
ear scales, which however is significantly lower: ≈ 3% at k ∼ 10h/Mpc. In the
α = 1 case no significant deviations are detected. We continued our analysis in
section 5.2 by considering the halo mass function of our simulations in the range
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1012 - 1014M�/h. Considering the ratio at z = 0 between the scattering cases
and the non scattering case, we found an enhancement/suppression respectively
for the cases wφ = −0.9 and wφ = −1.1; this is ≈ 10 − 15% in the α = 100
case and ≈ 1− 2% in the α = 10 case; again, no significant deviations are found
when α = 1. In section 5.4 we inspected the radial density profiles of the halos
at z = 0 by considering both profiles of single halos and stacked profiles. In this
case we only found significant effects for α = 100. We observed that DE-baryon
scattering has opposite effects on the inner and outer regions of the halos: there is
an increase/decrease of inner density and a decrease/increase of the outer density
respectively in the wφ = −0.9 and wφ = −1.1 cases; the transition between the
two effects take place at ≈ 0.5R200 in every mass range under consideration. We
found that the deviations in the baryonic matter profiles were significantly larger
than the ones in the CDM profiles. In section 5.5, we concluded our analysis
by considering the baryon fraction radial profiles of the halos. We found that
for α = 100 there is a significant deviation from the non scattering case: when
wφ = −0.9 the baryon fraction is enhanced with a deviation peak of ≈ 100% and
features a trend that decreases with radius; when wφ = −1.1 there is a maximum
suppression of ≈ 50% and a growing trend with radius. For α = 10 the deviation
is milder and more uniform: we saw a ≈ 5% enhancement/suppression respec-
tively for the wφ = −0.9 and wφ = −1.1 cases. For α = 0 we did not notice any
significant deviation.

The results of this work represent an important step toward the answer to the
question posed in [64], namely: "Do we have any hope of detecting scattering
between dark energy and baryons through cosmology?". This is indeed the first
time in the literature in which the nonlinear effects of DE-baryon scattering are
identified in some major cosmological observables. We have seen that the im-
pact of the interaction on these observables becomes significant when α ≈ 10, i.e.
when σb ≈ 10σT. From this approximate value for the cross section, the nonlin-
ear effects start to become stronger than the linear ones. Combined with future
observations, these results, as well as the ones of our future works, will help us
to put some solid constraints on the interaction cross section. Moreover we have
seen that DE-baryon scattering can strongly impact the baryon fraction profile of
the halos, this is expected to significantly alter processes like galaxy formation or
AGN feedback, thus providing further means to constrain the interaction. The
latter aspect deserves a proper exploration in future works.

6.3 Future Prospects

From the analysis of the cosmological observables performed in this work, the
following general conclusion, which is valid both for wφ = −0.9 and wφ = −1.1,
can be drawn: for α = 100 DE-baryon scattering has a significant impact on
the nonlinear matter power spectrum, the halo mass function, the radial density
profiles of halos and on their baryon fraction profiles; for α = 10 these effects are
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remarkably milder, but not negligible; finally, for α = 1 no significant effects are
detected. This suggest that future works on DE-baryon scattering should focus
on the effects in the range 10 ≤ α ≤ 100.

The present thesis constitutes a starting point in the investigation of the non-
linear effects of DE-baryon scattering. As underlined throughout the text, we
have made certain reasonable choices of approximation that simplify this first ex-
ploratory work. On the other hand these choices represent limitations that we can
overcome in future works. First, we could preform zoom simulations by means of
multi-scale initial conditions generated by specific codes (e.g. MUSIC [78]). This
would lead us to focus with higher precision on the impact of DE-baryon scattering
on the halos inner structure and dynamics. Second, we have seen that DE-baryon
scattering models typically come equipped with a screening mechanism that pre-
vents this interaction from being detected at the smallest scales. However this
was not included in our modified version of GADGET-3; therefore it would be of
particular interest a further development of the code in order to include such
screening mechanism. Third, baryons were modeled in the present thesis as a
collisionless fluid; this is justified by the fact that in this work we studied the
nonlinear effects of DE-baryon scattering for the first time in the literature, so we
wanted to put our focus on the effects of the interaction alone. The inclusion of
hydrodynamics in the simulations, however, would pave the way to a more realis-
tic treatment of the baryons. In this context it would be of particular interest to
simulate and study more specific scenarios such as galaxy formation and mergers
in the presence of DE-baryon scattering. Further examples of interest for future
developments include the study of how DE-baryon scattering can influence: the
cosmic voids and their properties, the observation of the intergalactic medium
through the Lyman-α absorption line, the dynamics of bullet-like systems; and
even more to come.
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