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Abstract

In the evolving scenario of 5G end-to-end networks, the Cloud Radio Access
Network (C-RAN) model has proven to be the key for managing ever increas-
ing Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) for mobile
networks while ensuring high Quality of Service (QoS). In a framework of end-
to-end services with stringent QoS requirements, it is of critical importance to
design resource allocation algorithms for the C-RAN that are not only able to uti-
lize efficiently the resources made available by the network, but that are also fast
enough for network reconfiguration in dynamic traffic scenarios.

In Chapter 1 a brief overview of the main elements of the C-RAN and of the
methodologies that are employed in this work is provided.

In Chapter 2, an exact scalable methodology for a static traffic scenario, based
on lexicographic optimization, is proposed for the solution of a multi-objective
optimization problem to achieve, among other goals, the minimization of the
number of active nodes in the C-RAN while supporting reliability and meeting
latency constraints. The optimal solution of the most relevant objectives for net-
works of several tens of nodes is obtained in few tens of seconds of computational
time in the worst case. For the least relevant objective, a simple heuristic is de-
veloped in order to provide near optimal solutions in few seconds of computing
time. This Chapter details and expands the work that has been presented in [8].

In Chapter 3, an optimization framework for dynamic C-RAN reconfigura-
tion is developed. The objective is to maintain C-RAN cost optimization, while
minimizing the cost of virtual network function migration. Significant savings
in terms of migrations (above 82% for primary virtual BBU functions and above
75% for backup virtual BBU functions) can be obtained with respect to a static
traffic scenario, with execution time of the optimization algorithm below 20 sec-
onds in the worst cases, making its application feasible for dynamic scenarios.
This Chapter details the work that has been developed for [7].

In Chapter 4, an alternative Column Generation model formulation is devel-
oped, and the quality of the computed lower bounds is evaluated. Further ex-
tensions from this baseline (e.g. heuristics based on Column Generation, exact
Branch&Price algorithms) are left as future work.

In Chapter 5, the main results achieved in this work are summarized, and
several possible extensions are proposed.





Chapter 1

Introduction

In this chapter, the motivations behind this work are presented. In particular, an
overview of the considered application scenario, that is the Cloud Radio Access
Network (C-RAN) paradigm, is outlined. Finally, the main methodologies that
will be used in this work, which are going to be declined in the network opti-
mization and planning context in the following chapters, are briefly described.

1.1 Cloud Radio Access Network (C-RAN)

In the context of heterogeneous, ever rising mobile traffic, network operators
need to upgrade their infrastructure in order to cope with ownership costs. Rel-
evant figures of merit are the Capital Expenditure (CAPEX) and Operating Ex-
penditure (OPEX) of a network. Briefly, CAPEX accounts for all the costs in
building the network, such as site planning and acquisition, hardware/software
deployment, and so on. OPEX accounts for all the costs needed to operate the
network, such as ordinary and extraordinary maintenance, energy consumption,
hardware/software upgrades, and so on [14]. In particular, the largest contribu-
tion in CAPEX is given by base stations, which are the most expensive compo-
nents, while OPEX increases as cell sites requires a considerable amount of energy
for operating: for instance, China Mobile estimates that cell sites contribute up to
72% to the total energy consumption [5]. Therefore, novel networking paradigms
need to be developed for coping with ever increasing ownership costs and tight
Quality of Service (QoS) requirements.

The root of the C-RAN model lies in the full decoupling of baseband func-
tions from radiofrequency functions, in the form of Baseband Units (BBUs) from
the Remote Radio Units (RRUs) [5]. In particular, the BBUs are virtualized and
centralized in general-purpose processing nodes, called BBU Hotels, which are
able to process traffic pertaining to different RRUs (Figure 1.1). An evolution of
the pure C-RAN scheme is represented by the Next Generation Fronthaul Inter-
face that introduces packet-based interconnection and further functional split in
the optical transport network [11]. The advantages provided by such an architec-
ture are manyfold.

First, centralization of BBUs implies that not all transport nodes able to do pro-
cessing need to be active at the same time. This can lead to tremendous savings in
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Figure 1.1: Cloud Ran (C-RAN) network model for 5G [2].

terms of energy consumption and computing power utilization (up to 80% with
respect to traditional RAN), as only a fraction of the whole set of transport nodes
needs to be activated [4]. This feature makes the C-RAN scalable with respect to
the ever increasing traffic volume in mobile networks.

Second, virtualization of the BBUs allows dynamic reconfiguration of the vir-
tual network topology in case of dynamic, nonuniform traffic. In the traditional
RAN, a sizeable amount of energy would get wasted during time periods in
which the offered mobile traffic was considerably lower than the available net-
work capacity. With the C-RAN, BBU Hotels can be instantiated and reconfigured
according to the time and space distribution of the mobile traffic, with better net-
work capacity utilization [5]. In particular, one can define the Multiplexing Gain
of the C-RAN network versus a traditional RAN as follows:

Multiplexing Gain =
CBS, tot

CHotels, tot
=

∑NBS
i=1 CBS,i∑NHotels

j=1 CHotel,j
(1.1)

Where CBS, tot is the total capacity utilized by the Base Station in the traditional
RAN, whereas CHotels, tot is the total capacity required by the BBU Hotels in the C-
RAN. Generally, it holds that CHotels, tot < CBTS, tot, meaning that the multiplexing
gain accounts for the more efficient utilization of available network resources in
the same offered traffic conditions.

Third, centralization of BBU functions allows to perform also radio functions
in a more optimized way. For instance, in the case of handover between RRUs
managed by the same BBU Hotel, there is no need of signaling between base sta-
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tions: virtualized baseband functions can communicate directly within the cen-
tralized compute unit, reducing delays. Another application example can be in-
terference management via Coordinated Multipoint Transmission and Reception
(CoMP): if all RRUs within a CoMP are managed by the same BBU Hotel, signif-
icant throughput gains can be achieved thanks to the tighter interaction among
baseband functions [2] [3].

One of the main challenges in C-RAN concerns the huge overhead imposed
on the fronthaul links connecting BBU Hotels and RRUs: indeed, traffic needs
to be aggregated at the BBU Hotels. A possible solution for fronthaul connectiv-
ity would be the utilization of dark fibers employed in a circuit switched way.
Although dark fiber deployment is of relatively low cost, network extensibility
might be troublesome as significant fiber resources could be needed. Wavelength
Division Multiplexing (WDM) schemes can be envisaged in scenarios with fiber
scarcity, for which 40-80 wavelengths per links can be multiplexed in a single
fiber, with the drawback of a higher upgrade cost with respect to dark fibers [4].

In the evolving scenario of end-to-end service provisioning in 5G networks,
three main service classes have been defined: Massive Machine Type Commu-
nications (MMTC), Ultra Reliable Low Latency Communications (URLLC) and
Enhanced Mobile Broadband (EMBB). For the URLLC service class in particu-
lar, tight constraints in terms of latency, aiming at sub-ms latency, and reliability,
aiming at 99.999% ("five nines") reliability, must be satisfied [1]. Virtual resource
allocation in C-RAN quickly becomes a complex issue as service constraints are
taken into account in the network optimization and planning problem. In par-
ticular, in order to account to such requirements, proper redundancy of the BBU
Hotels for robustness to hardware/software failures and latency constraints need
to be taken into account in network optimization and planning models, adding a
further degree of complexity to the problem [12] [18] [21].

1.2 Integer Linear Programming

Integer Linear Programming (ILP) problems are a relevant class of problems for
network optimization and planning. In an ILP optimization problem, given a
set of integer decision variables, the aim is to minimize/maximize an objective
function under a set of linear constraints. A general formulation for an ILP opti-
mization problem can be expressed as follows:

min cT · x
subject to A · x ≥ b

x ≥ 0, integer

Where c ∈ Rn is the cost vector, x ∈ Rn are the decision variables, A ∈ Rm×n is
the constraint matrix, and b ∈ Rm is the right-hand side vector of the constraints.
Integrality constraints on the decision variables are equivalent to nonlinear con-
straints in the form sin(π · x) = 0. Many relevant problems in network optimiza-
tion and planning can be formulated as ILP, such as the Routing and Wavelength
Assignment Problem (RWA) [20], the traffic grooming problem in Elastic Optical



4 1. Introduction

Figure 1.2: Branch-and-Bound decision tree.

Networks (EON) [23], and the optimal BBU Hotel placement problem that will
be studied in this work. In general, computational complexity of ILP problems in
optimization form is NP-Hard, therefore handcrafted heuristics are often used to
obtain good quality solutions in reasonable computing time.

Often, exact solution methods for ILPs rely on the Branch-and-Bound algo-
rithm, which adopts a divide-and-conquer approach by dividing (i.e. "branch-
ing") the original problem into smaller subproblems and by solving their linear
relaxation. Branch-and-Bound behaves as an enumerative algorithm, for which
non-optimal solutions are discarded (i.e. "bounding") according to the computed
lower bounds value. Execution of the Branch-and-Bound algorithm can be figu-
ratively represented by a decision tree, as shown in Figure 1.2.

Examples of solvers for ILP optimization problems implementing the Branch-

Figure 1.3: Concert Technology application high-level architecture.
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and-Bound algorithm are CPLEX, Gurobi, XPress, SCIP. It is important to note
that, in addition to the core Branch-and-Bound, commercial solvers include a
plethora of complex subroutines such as cutting planes, presolve (transformation
of the original problem in an equivalent, easier one), primal heuristics (heuristic
algorithms executed in promising subproblems that may yield integer solutions),
whose behaviour can be tuned via several parameters.

In this work, the commercial solver CPLEX via its Concert Technology C++
API has been used, which provides a library of classes and functions for optimiza-
tion. The high-level architecture of a Concert Technology application is illustrated
in 1.3. In summary, modelling objects are provided for building the optimization
problems. The model is passed to IloCplex class objects, which solve the problem
by interfacing with the CPLEX internals, and can then be queried for extracting
solution information.

1.3 Lexicographic Optimization

A generic Multi-Objective optimization problem can be expressed as follows:

min f(x) = min (f1(x), . . . , fn(x))

subject to x ∈ X

where X denotes the feasible set.
Since in general it is not possible to minimize all objectives simultaneously,

the fundamental concept for defining optimality in multi-objective optimization
problems is the one of Pareto optimality. In particular, a solution x∗ is said to be
Pareto optimal if there does not exist x ∈ X such that:

f(x) ≤ f(x∗) with fi(x
∗) < fi(x) for some i (1.2)

meaning that no objective can be further improved without worsening some
other objectives. Pareto optimal solutions lie in the Pareto Frontier within the
objective functions space, as illustrated in Figure 1.4 for an example in two di-
mensions with two objective functions.

A-priori without any domain knowledge the whole Pareto frontier should be
explored for finding the best trade-off among objectives, which can be in many
cases computationally cumbersome. On the other hand, if a ranking of impor-
tance between the objective functions is made available by the application sce-
nario, the Lexicographic method can be applied [9].

Assume that objectives are ranked in importance such that minimization of
fi(x) is infinitely more important than minimization of fi+1(x), i = 1, . . . , n − 1.
Objectives ranked in this way are said to be lexicographically ordered. The Lex-
icographic method consists in solving a sequence of n single-objective optimiza-
tion problems in the following form:

min fj(x) (1.3)
subject to x ∈ X (1.4)

fi(x) ≤ y∗i ∀i < j (1.5)
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Figure 1.4: Pareto frontier for a minimization problem.

where y∗i is the optimal solution value for the i-th single-objective problem. The
above formulation means that the objectives are solved independently in order
of importance, and subsequent single-objective optimization problems are con-
strained in order not to worsen the solutions computed for the previous higher
priority objectives. Such an approach is said to be non-scalarized, since the objec-
tive functions are not multiplied by scalars according to their importance, avoid-
ing potential numerical issues due to very large weights. It is important to note
that the solution found by the Lexicographic method shall be within the subset
of Pareto optimal solutions that also satisfy the lexicographic ordering.

With respect to a scalarized approach, where objective functions are multi-
plied by weights according to their priority and summed, decoupling the objec-
tives has the potential of decomposing a single "harder to solve" multi-objective
optimization problem into several "simpler to solve" single-objective optimiza-
tion problems. This consideration however is not general, and there may be
problems or instances for which the application of the Lexicographic method is
not beneficial. For instance, it may happen that even though the computational
time for solving a single-objective problem is smaller than the one for solving
the multi-objective problem, the overall running time for solving all the single-
objective problems may be actually larger. This depends on the particular prob-
lem or instance at hand, and needs to be evaluated a-posteriori. In addition, the
lexicographic approach is only possible when a clear ranking of the objectives is
available. Previous applications of Lexicographic optimization in telecommuni-
cations problems can be found in literature, such as in [16] [10].
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1.4 Column Generation

Column Generation is an algorithm used to solve Linear Programming (LP) prob-
lems with an exponential number of variables (e.g. linear relaxation of the Vehicle
Routing Problem in Set Partitioning formulation). Consider a generic LP formu-
lation:

min cT · x
subject to A · x ≥ b

x ≥ 0

Where c ∈ Rn is the cost vector, x ∈ Rn are the decision variables, A ∈ Rm×n is the
constraint matrix, and b ∈ Rm is is the right-hand side vector of the constraints.
The dual formulation for the above LP problem is the following:

maxyT · b
subject to yT ·A ≤ cT

y ≥ 0

Where y ∈ Rm are the dual variables.
It is assumed that number of decision variables in x is very large. In the worst

case, the number of variables is exponential, therefore it would be impossible
to fit the model within the computer memory or it would be computationally
expensive for the solver to deal with this large set of variables. The Column Gen-
eration algorithm initializes the model with a subset x̃ of the variables, solving a
reduced problem. Optimality of the computed solution is given by verifying fea-
sibility for the dual problem. Each variable in the primal problem corresponds to
a constraint in the dual, therefore non-optimal solution for the restricted primal
problem will result infeasible for the dual. The Column Generation algorithm is
outlined as follows:

1. Initialize the problem with a subset of columns of Ã, x̃T , c̃T

2. Solve the reduced primal, get the dual variables y∗

3. If y∗ does not violate any constraint in yT ·A ≤ cT then STOP. Otherwise,
add to the primal one or more columns associated with violated dual con-
straints, and GOTO 2.

Note that, given dual variables y∗ associated with the solution of the restricted
primal, finding a violated constraint is equivalent to finding a column xj with
constraint coefficients defined by Aj such that cT − y∗T ·Aj < 0. This expression
is the reduced cost associated with variable xj , which represents the change in
the primal objective function value per unit increase of xj . Therefore finding a
violated dual constraint is equal to finding a column xj with negative reduced
cost, corresponding to a variable that, if added to the restricted problem, can
improve the objective function value.
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Chapter 2

Static Traffic Scenario

In this chapter, an exact algorithm for the optimal BBU Hotel placement problem,
accounting for reliability and latency constraints, is developed for a static traffic
scenario. This algorithm employs the framework of lexicographic optimization,
which relies on the priority among the objectives, dictated by the considered ap-
plication scenario. Along with the mathematical formulation of the problem, a
sample C++ code implementation will be provided for modelling and solving
the problem via CPLEX Concert Technology. The performance of this algorithm
is compared with an aggregate optimization approach. The lexicographic opti-
mization approach finds the optimal solution for the most relevant objectives in
networks of several tens of nodes, and computes much better solutions than the
aggregate one for the largest network of 100 nodes. This Chapter details the work
that has been presented in [8].

2.1 Problem Statement

The main elements of a transport networks to support C-RAN are the nodes,
the ports within nodes and the wavelengths on each link. As discussed in the
previous chapter, the C-RAN model allows to centralize BBU functions in a few
nodes, thus reducing the number of nodes in the transport network that needs to
be activated, which means sizeable cost savings in terms of power consumption
and network management. At the same time a larger number of wavelengths
is required when centralizing due to longer paths traversed to reach the BBU
Hotel. Furthermore, a higher number of hops, and consequently higher delay, is
introduced with centralization.

In Figure 2.1 the reference transport network with the main elements consid-
ered in the model, as previously discussed in 1.1, is presented, according to [12].
A set of RRUs equipped with antennas covers a geographical area, and each RRU
is connected to a node to access the transport network where the BBU function-
ality is located. The transport network consists of a set of nodes interconnected
by WDM optical fibers acting as fronthaul segments, according to the C-RAN
principle. Support for reliability is provided with reference to single BBU hotel
failure, by assigning primary and backup BBUs to each RRU in distinct nodes.
The point of access to BBU functionalities, either primary or backup, is referred
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Figure 2.1: Main elements of the C-RAN transport network.

to as port. Backup ports can be shared by RRUs with different primary nodes: in
case of single primary node failure, only RRUs assigned to the failed primary will
switch to the assigned backup port. Thus, backup ports sharing allows to save re-
sources on the computing nodes. Conversely, RRUs with the same primary node
need to have distinct backup ports, otherwise, in case of a failure of a shared
primary, there would be conflict between two sets of RRUs trying to access the
same backup port. A static traffic scenario is assumed, meaning that the number
of active RRUs per node, and thus the overall wavelength demand, are a-priori
known. Considering the aforementioned elements, the problem statement for the
BBU Hotel assignment problem in a static traffic scenario can be defined.

Given the network topology and the number of active RRUs per node, find
a BBU Hotel assignment that minimizes the number of active BBU Hotels, the
total number of hops between BBU Hotels and RRUs, and the total number of
backup ports. The BBU Hotel assignment must be subject to maximum distance
constraints between BBU Hotels and their RRUs, in order to ensure low latency,
and to maximum wavelength constraints, to ensure that capacity in each WDM
fronthaul link is not exceeded.

2.2 Optimization Model

The BBU Hotel assignment problem can be formulated as an ILP optimization
problem. In the past, different approaches, based on ILP models or heuristics,
have been proposed for the solution of this problem, each one showing its pros
and cons [12], [15], [13]. In particular, solving the ILP models by the means of
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Table 2.1: Model parameters and variables

Parameters

S Set of transport nodes. |S| = s
H s× s matrix. hij is the distance in hops between nodes i and j computed

with the shortest path.
α Weight for the distance in the cost function.
β Activation cost for a single BBU hotel.
γ Cost for a BBU hotel port.
ri Number of RRUS at site i, i ∈ S.
δlij 1 if shortest path between i and j is using link l, 0 otherwise, i, j ∈ S,

l ∈ L
MW Maximum number of wavelengths available in each link.
MH Maximum allowed distance in hops between RRU and BBU.
L Set of links.

Variables

Bj 1 if node j ∈ S hosts a BBU hotel, 0 otherwise
pij 1 if BBU hotel j is assigned as primary for RRUs at node i, i, j ∈ S, 0

otherwise.
bij 1 if BBU hotel j is assigned as backup for RRUs at node i, i, j ∈ S, 0

otherwise.
yj Number of BBU ports required at hotel site j for backup purposes, j ∈ S.
cijj′ 1 if RRUs at node i are using destination j as primary and j′ as backup

hotel site, i, j, j′ ∈ S, 0 otherwise.

a solver has shown some scalability limitations that the heuristics are typically
suited to overcome, albeit with some degradation in solution quality [13].

2.2.1 Aggregate Method

The aggregate method employs a scalarization of the objective function, in which
objectives are weighed with positive scalars, whose magnitude is proportional to
the objective priority, and summed. In this way, all three objectives are optimized
at the same time, hence the name "aggregate".

Notation for the model parameters and variables is reported in Table 2.1.
Then, the scalarized costs for the objective functions can be defined as follows:

CB = β ·
∑
j∈S

Bj Cost for the activation of nodes. (2.1)

CH = α ·
∑
i∈S

∑
j∈S

(pij + bij) · hij Cost for the total hops. (2.2)

CP = γ ·
∑
j∈S

yj Cost for the backup BBU Hotel ports. (2.3)
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Therefore, given the problem, the ILP model for the BBU Hotel assignment prob-
lem in a static traffic scenario can be formulated as follows:

minC = CB + CH + CP (2.4)∑
j∈S

pij = 1 ∀i ∈ S (2.5)∑
j∈S

bij = 1 ∀i ∈ S (2.6)

pij + bij ≤ Bj ∀i, j ∈ S (2.7)
(pij + bij) · hij ≤MH ∀i, j ∈ S (2.8)∑

i∈S

∑
j∈S

(pij + bij) · δlij · ri ≤MW ∀l ∈ L (2.9)

cijj′ ≥ pij + bij′ − 1 ∀i, j, j′ ∈ S, j 6= j′ (2.10)

yj′ ≥
∑
i∈S

cijj′ · ri ∀j, j′ ∈ S, j 6= j′ (2.11)

Bj ∈ {0, 1} ∀j ∈ S (2.12)
pij ∈ {0, 1} ∀i ∈ S, j ∈ S (2.13)
bij ∈ {0, 1} ∀i ∈ S, j ∈ S (2.14)
cijj′ ∈ {0, 1} ∀i ∈ S, j ∈ S, j′ ∈ S, j 6= j′ (2.15)

yj ≥ 0, integer ∀j ∈ S (2.16)

The objective function (2.4) minimizes the sum of the three objectives, weighted
by the coefficients α, β, γ. Constraints (2.5) and (2.6) impose that each RRU has
a primary and backup BBU Hotel assigned, in order to ensure reliability. Con-
straints (2.7) impose that for each RRU backup and primary BBU Hotels are dis-
tinct, and are used to count the number of active BBU Hotels. Constraints (2.8)
impose that the distance between each RRU and their primary and backup BBU
Hotels does not exceed MH . Note that, even though in this work the distance
is expressed in number of hops, any distance metric can be employed. Con-
straints (2.9) impose that the number of wavelengths in each WDM fronthaul
link does not exceed MW . Constraints (2.10) and (2.11) are used jointly in order to
determine the number of backup ports after sharing. Constraints (2.10) are used
to define if a node i is using destination j as primary and j′ as backup nodes
(i, j, j′ ∈ S, j 6= j′), and constraints (2.11) to count the number of needed backup
ports for each active BBU Hotel. Recall that the sharing policy was the following:
backup ports can only be shared between RRUs that do not share the same pri-
mary BBU Hotel. Given a backup BBU Hotel at node j′, constraints (2.11) impose
that the number of backup ports is greater than (i.e. equal, since their total num-
ber is minimized by the objective) to the maximum number of RRUs assigned
at node j′ that share the same primary BBU Hotel: the remaining ports can then
be shared. Finally, constraints (2.12) - (2.16) define the variable domains. Note
that due to constraints (2.7) and to the fact that pij , bij and Bj are binary, the term
(pij + bij) in constraints (2.8) and (2.9) can be at most equal to 1.
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Implementation

In the following, a sample C++ implementation in CPLEX Concert Technology for
the aggregate method problem shall be provided. The following lines are used to
include the Concert Technology libraries and to ensure code portability.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

The macro "ILOSTLBEGIN" translates to "using namespace std" when the C++
Standard Library is used, otherwise its value is null.

As a first step, an "IloEnv" environment object must be declared for managing
all the modeling objects that will be later created. The IloEnv object must then
be destroyed at the end of the program by calling the "end" method, in order to
correctly free the allocated memory.

int main()
{

IloEnv env;
// Model building and optimization
env.end();
return 0

}

The C++ Concert library provides arrays up to dimension 4 to hold both model
parameters. Arrays can be directly read from input data files via the overloaded
stream extraction operator "> >", but the input data files must be formatted cor-
rectly. In general, arrays must be formatted as "[x, y, ... z]" where x is an element
of the array. An example of a .dat file containing a scalar, one array of dimension
1, one array of dimension 2 and one array of dimension 3 is:

100
[1.5, 2, 4, 3.2]
[[1, 0, 1, 1, 0],
[0, 0, 1, 1, 1],
[1, 1, 0, 0, 1]]
[[[1, 0],
[0, 1]],
[[2, 0],
[0, 2]]]

Assuming the data file to be called "input.dat", one can create the arrays for stor-
ing the input data and read it as follows:

IloInt data1; // integer scalar
IloNumArray data2(env, 4); // float array of dimension 1
IloIntArray2 data3(env, 3) // int array of dimension 2
for (IloInt i = 0; i < 3; ++i) // array initialization

data3[i] = IloIntArray(env, 4);
IloIntArray3 data4(env, 2); // int array of dimension 3
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for (IloInt i = 0; i < 2; ++i) {
data4[i] = IloIntArray2(env, 2);
for (IloInt j = 0; j < 2; ++j}

data4[i][j] = IloIntArray3(env, 2);
}
ifstream inputfile("input.dat");
input >> data1 >> data2 >> data3 >> data4;

In the following, it will be assumed that the model parameters have been im-
ported from .dat file and stored in appropriate data structures in a way similar
to what has been shown. Decision variables are instantiated via the "IloNumVar"
class. Multidimensional arrays of decision variables can be defined via similar
definitions:

typedef IloArray<IloNumVarArray> IloNumVarArray2;
typedef IloArray<IloNumVarArray2> IloNumVarArray3;

Considering the optimization model, decision variables are instantiated as fol-
lows:

// B_j
IloNumVarArray activeHotel(env, nbNodes, 0, 1, ILOINT);
// p_ij and b_ij
IloNumVarArray2 primaryHotel(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

primaryHotel[i] = IloNumVarArray(env, nbNodes, 0, 1, ILOINT);
IloNumVarArray2 backupHotel(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

backupHotel[i] = IloNumVarArray(env, nbNodes, 0, 1, ILOINT);
// y_j
IloNumVarArray backupPorts(env, nbNodes, 0, IloInfinity,

ILOINT);
// c_ijj’
IloNumVarArray3 commonPorts(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i) {

commonPorts[i] = IloNumVarArray2(env, nbNodes);
for (IloInt j = 0; j < nbNodes; ++j) {

commonPorts[i][j] = IloNumVarArray(env, nbNodes, 0, 1,
ILOINT);

}
}

Note that instantiation of decision variables requires the specification of the opti-
mization environment, the array dimension, the lower and upper bounds for the
variables, and the variable type (in our case integer, specified by "ILOINT").

The optimization model is instantiated via the "IloModel" class, which pro-
vides several methods for model building. In this implementation the "add"
method has been used, which allows to add expressions, functions of the decision
variables, for the objective functions and the constraints. Thus, the implementa-
tion for the model is done as follows:
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IloModel model(env);

// Objective function (2.8)
IloExpr obj(env); // Initialize an empty expression
obj += beta * IloSum(activeHotel) + gamma * IloSum(backupPorts);
for (IloInt s = 0; s < nbNodes; ++s) {

obj += alpha * IloScalProd(primaryHotel[s],
connectionCost[s]) + alpha * IloScalProd(backupHotel[s],
connectionCost[s]);

}
model.add(IloMinimize(env, obj));
obj.end();

// Constraints (2.9)
for (IloInt s = 0; s < nbNodes; ++s)

model.add(IloSum(primaryHotel[s]) == 1);

// Constraints (2.10)
for (IloInt s = 0; s < nbNodes; ++s)

model.add(IloSum(backupHotel[s]) == 1);

// Constraints (2.11)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d)
model.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
}

// Constraints (2.12)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d)
model.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
}

// Constraints (2.13)
for (IloInt l = 0; l < nbLinks; ++l) {

IloExpr v(env);
for (IloInt a = 0; a < nbNodes; ++a) {

for (IloInt b = 0; b < nbNodes; ++b)
v += (primaryHotel[a][b] + backupHotel[a][b]) *

delta[l][a][b] * rrusAtNode[a];
}
model.add(v <= maxWavelengths);
v.end();

}

// Constraints (2.14)
for (IloInt s = 0; s < nbNodes; ++s) {



16 2. Static Traffic Scenario

for (IloInt d = 0; d < nbNodes; ++d) {
for (IloInt d1 = 0; d1 < nbNodes; ++d1) {

if (d != d1)
model.add(commonPorts[s][d][d1] >=

primaryHotel[s][d] + backupHotel[s][d1] - 1);
}

}
}

// Constraints (2.15)
for (IloInt d = 0; d < nbNodes; ++d) {

for (IloInt d1 = 0; d1 < nbNodes; ++d1) {
if (d != d1) {

IloExpr v(env);
for (IloInt s = 0; s < nbNodes; ++s)

v += commonPorts[s][d][d1] * rrusAtNode[s];
model.add(backupPorts[d1] >= v);
v.end();

}
}

}

Objects of class "IloExpr" are used to define expressions function of the decision
variables, such as the objective function and the constraints. Function "IloAdd"
allows to compute the sum of all elements in an array. Function "IloScalProd"
allows to compute the scalar product between two arrays of equal size. Function
"IloMinimize" allows to instantiate an object of class "IloObjective" for defining an
objective function for a minimization problem. Expression "obj" is then destroyed
for freeing memory as it is not anymore needed in the following.

The syntax for defining the constraints is quite similar to how the mathemat-
ical model is formulated, but particular attention needs to be put when building
an expression iteratively, as for constraints (2.13) and (2.15). In these constraints,
a dummy "IloExpr v(env)" is created in order to construct the required expression
within a for cycle. After such expression is then added in the model within a con-
straint, one must take care in destroying it to avoid undesirable memory bloating
effects.

In order for the model to be solved, it needs to be extracted by an object of class
"IloCplex", which will store the model into the proper efficient data structures and
will interface with the internals of CPLEX for solving it. From the IloCplex object,
the solver properties can be set. The implementation is the following:

IloCplex cplex(env);
cplex.setParam(IloCplex::Param::TimeLimit, 3600);
cplex.setParam(IloCplex::Param::WorkMem, 28000);
cplex.setParam(IloCplex::Param::ClockType, 2);
cplex.setParam(IloCplex::Param::MIP::Display, 3);
cplex.setParam(IloCplex::Param::MIP::Tolerances::MIPGap, 1e-9);
cplex.extract(model);



2.2 Optimization Model 17

An equivalent one-liner for instantiating the IloCplex object and extracting the
model is the following:

IloCplex cplex(model);

Several solver parameters have been set. Execution time limit was set to 3600 sec-
onds (1 hour), the maximum memory occupation before swapping/compression
was set to 28000MB. The clock type, for the function "cplex.getCplexTime()", was
set to 2, which is the wall clock time (1 is CPU time). CPLEX log display was set
to 3, which means that a timestamp for each best integer feasible solution found is
provided. Finally, tolerance for the MIP relative gap was set to 10−9, meaning that
if the relative MIP gap is less than 10−9 the solution is considered to be optimal.

Finally, for solving the model the "solve" method is called:

cplex.solve();

The solver will start displaying on the terminal (or writing on a log file, if the out-
put was redirected) the CPLEX log, with the set display rules. It can be useful to
print, after the log, some information regarding the solution status, for example:

cplex.out() << "Solution status: " << cplex.getStatus() << endl;
cplex.out() << "Optimal value: " << cplex.getObjValue() << endl;
cplex.out() << "Best bound: " << cplex.getBestObjValue() <<

endl;
cplex.out() << "MIP relative gap: " <<

cplex.getMIPRelativeGap() << endl;

An example CPLEX log is reported:

Version identifier: 20.1.0.0 | 2020-11-10 | 9bedb6d68
CPXPARAM_MIP_Display 3
CPXPARAM_TimeLimit 3600
CPXPARAM_WorkMem 28000
CPXPARAM_MIP_Tolerances_MIPGap 1.0000000000000001e-09
Tried aggregator 1 time.
MIP Presolve eliminated 275 rows and 16 columns.
MIP Presolve modified 308 coefficients.
Reduced MIP has 4389 rows, 4384 columns, and 18120 nonzeros.
Reduced MIP has 4368 binaries, 16 generals, 0 SOSs, and 0

indicators.
Presolve time = 0.00 sec. (11.12 ticks)
Found incumbent of value 1668560.000000 after 0.01 sec. (13.85

ticks)
Probing time = 0.00 sec. (2.04 ticks)
Tried aggregator 1 time.
Detecting symmetries...
Reduced MIP has 4389 rows, 4384 columns, and 18120 nonzeros.
Reduced MIP has 4368 binaries, 16 generals, 0 SOSs, and 0

indicators.
Presolve time = 0.02 sec. (14.76 ticks)
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Probing time = 0.02 sec. (2.01 ticks)
Clique table members: 288.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.03 sec. (32.49 ticks)

Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 1668560.0000 0.0000 100.00%
Found incumbent of value 1668560.000000 after 0.08 sec. (71.94

ticks)

* 0+ 0 868352.0000 0.0000 100.00%
Found incumbent of value 868352.000000 after 0.08 sec. (72.03

ticks)

* 0+ 0 868144.0000 0.0000 100.00%
Found incumbent of value 868144.000000 after 0.08 sec. (72.06

ticks)

* 0+ 0 867936.0000 0.0000 100.00%
Found incumbent of value 867936.000000 after 0.08 sec. (72.09

ticks)

* 0+ 0 867728.0000 0.0000 100.00%
Found incumbent of value 867728.000000 after 0.08 sec. (72.13

ticks)

* 0+ 0 867520.0000 0.0000 100.00%
Found incumbent of value 867520.000000 after 0.08 sec. (72.16

ticks)

* 0+ 0 867312.0000 0.0000 100.00%
Found incumbent of value 867312.000000 after 0.08 sec. (72.19

ticks)

* 0+ 0 867104.0000 0.0000 100.00%
Found incumbent of value 867104.000000 after 0.08 sec. (72.23

ticks)
0 0 264000.0000 90 867104.0000 264000.0000 686 69.55%

* 0+ 0 264160.0000 264000.0000 0.06%
Found incumbent of value 264160.000000 after 0.14 sec. (129.25

ticks)
0 0 264000.0000 72 264160.0000 Cuts: 26 706 0.06%
0 0 264000.0000 75 264160.0000 Cuts: 85 792 0.06%
0 0 264000.0000 84 264160.0000 ZeroHalf: 84 848 0.06%
0 0 cutoff 264160.0000 848 0.00%

Elapsed time = 0.23 sec. (234.79 ticks, tree = 0.01 MB,
solutions = 9)

Implied bound cuts applied: 7
Zero-half cuts applied: 46
Lift and project cuts applied: 1

Root node processing (before b&c):
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Real time = 0.23 sec. (235.24 ticks)
Parallel b&c, 16 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.

------------
Total (root+branch&cut) = 0.23 sec. (235.24 ticks)
Solution status: Optimal
Optimal value: 264160
Best bound: 264160
MIP relative gap: 0

From the log, several information can be extracted. Integer feasible solutions that
improve the current objectives are marked with an asterisk (*) and associated
with a timestamp, as IloCplex::Param::MIP::Display was set to 3. In particular,
integer feasible solution found with a heuristic are marked with a plus (+). Then,
the columns display, in order, the current node in exploration, the number of
nodes left to be explored, the objective function best value, the best lower bound
from the LP relaxations, the cumulative iteration count of the algorithm solving
the subproblems and the relative gap.

2.2.2 Lexicographic Method

Considering the aforementioned problem and the reference application scenario,
it is possible to define a priority ordering among objectives. In particular, for a
solution to be relevant in the context of C-RAN optimization, it must hold that
α � β � γ. This means that BBU Hotel minimization has the highest priority,
followed by hops minimization and port minimization. The practical reasons
for imposing such an ordering are manyfold. Firstly, since the main objective of
the C-RAN model is to reduce CAPEX and OPEX, and it has been shown that
the majority of costs come from the energy consumption within active transport
nodes, it is paramount to activate as few nodes as possible in the network in
order to maximize the savings. Secondly, imposing a priority for the hops or the
ports higher than the nodes would lead to useless solutions from the practical
point of view. If hops were given a higher priority than BBU Hotels, all transport
nodes would then need to host a BBU Hotel, as RRUs would get assigned to
their transport node for either primary or backup purposes. If ports were given
a higher priority than BBU Hotels one would also get a very high number of
BBU Hotels. This is because according to the sharing policy, backup ports can
only be shared among RRUs that do not share the same primary BBU, thus each
RRU would get assigned to its transport node for primary purposes, so that RRUs
would have no primary BBU Hotel in common and maximum sharing is possible.
Finally, since latency is a major requirement for the URLLC service class, it makes
sense to give higher priority to the hops than to the ports, also considering that
the major savings in terms of energy consumption are made by the minimization
of the number of active BBU Hotels. Therefore, given this lexicographic ordering
among objectives, the three-steps lexicographic method is formulated as follows.
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Step 1: Minimization of the number of active BBU Hotels

This step is used to determine the optimal activation cost of BBU hotels in trans-
port nodes, which is the objective of highest priority. The ILP model solved in
this step reads as follows:

minCB =
∑
j∈S

Bj (2.17)∑
j∈S

pij = 1 ∀i ∈ S (2.18)∑
j∈S

bij = 1 ∀i ∈ S (2.19)

pij + bij ≤ Bj ∀i, j ∈ S (2.20)
(pij + bij) · hij ≤MH ∀i, j ∈ S (2.21)∑

i∈S

∑
j∈S

(pij + bij) · δlij · ri ≤MW ∀l ∈ L (2.22)

Bj ∈ {0, 1} ∀j ∈ S (2.23)
pij ∈ {0, 1} ∀i ∈ S, j ∈ S (2.24)
bij ∈ {0, 1} ∀i ∈ S, j ∈ S (2.25)

The objective function (2.17) requires to minimize the activation cost CB, ex-
pressed as the number of nodes hosting a BBU Hotel. Constraints (2.18) and (2.19)
impose, respectively, that one primary node and one backup node are associated
with each RRH, in order to ensure reliability for single BBU Hotel failure. Con-
straints (2.20) impose that primary and backup BBU Hotels for each RRU must
be distinct in order to ensure reliability for single BBU Hotel failure, and are also
used for counting the number of active BBU Hotels. Constraints (2.21) impose
that the maximum distance between RRUs and their primary and backup BBU
Hotels does not exceed the MH . Note that in this work hops are used for measur-
ing the distance between two nodes, but any distance metric can be used. Con-
straints (2.22) impose that the number of wavelengths over each WDM fronthaul
link is at most MW . Finally, constraints (2.23)-(2.25) define the variable domains.
Note that due to constraints (2.20) and to the fact that all decision variables are
binary, the term (pij + bij) in constraints (2.21) and (2.22) is at most equal to 1.

Step 2: Minimization of the number of hops

In this step, the objective is the minimization of the distance, expressed as the
number of hops needed to connect BBU hotels and RRUs. The ILP model solved
in this step reads as follows:

minCH =
∑
i∈S

∑
j∈S

(pij + bij) · hij (2.26)

(2.18)− (2.25)∑
j∈S

Bj ≤ C∗B (2.27)
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The objective function (2.26) is the minimization of the total number of hops. All
the constraints defined in the ILP model of step 1 are imposed: indeed, in this
step we have to define the optimal assignment of primary and backup nodes
(and, consequently, the number of active nodes) so as to minimize the number
of hops. However, the number of active nodes is limited to C∗B with constraint
(2.27), in order not to worsen the solution computed at Step 1, of higher priority.
In this way, the lexicographic ordering among objectives is imposed.

Step 3: Minimization of the number of ports

In this step, the objective is the minimization of the total number of backup ports.
Recall that backup ports can only be shared among RRUs that do not share the
same primary BBU Hotel. The ILP model solved in this step reads as follows:

minCP =
∑
j∈S

yj (2.28)

(2.18)− (2.25), (2.27)
cijj′ ≥ pij + bij′ − 1 ∀i, j, j′ ∈ S, j 6= j′ (2.29)

yj′ ≥
∑
i∈S

cijj′ · ri ∀j, j′ ∈ S, j 6= j′ (2.30)∑
i∈S

∑
j∈S

(pij + bij) · hij ≤ C∗H (2.31)

∑
j∈S

yj ≥
∑

i∈S ri

C∗B − 1
(2.32)

yj ≥ 0, integer ∀j ∈ S (2.33)
cijj′ ∈ {0, 1} ∀i ∈ S, j ∈ S, j′ ∈ S, j 6= j′ (2.34)

The objective function (2.28) requires to minimize the total number of backup
ports. As per Step 2, all constraints of the previous steps are imposed. However,
we limit the search space by the optimal values obtained in the previous steps
(constraints (2.27) and (2.31)), ensuring that the solutions computing at the higher
priority steps are not worsened. Constraints (2.29) is used to define if a node i is
using destination j as primary and j′ as backup nodes (i, j, j′ ∈ S, j 6= j′), and
constraints (2.30) determine the number of needed backup ports for each active
BBU Hotel. As expected, this step is the hardest to be solved, especially due to
the large number of variables cijj′ . By preliminary computational experiments,
it was observed that due to constraints (2.29) weak lower bounds were obtained
by solving the Linear Programming relaxation of this model, as fractional solu-
tions with pij = bij′ = 0.5 would lead to a lower bound of 0. In order to improve
this lower bound constraint (2.32) was added, that computes the minimum num-
ber of backup ports required in any optimal solution. It corresponds to the ratio
between the total number of RRUs and the number of active nodes minus one.
Indeed, recall that RRUs can share backup ports only if they have different pri-
mary BBU hotels. Therefore, the minimum number of backup ports is obtained
by considering the largest number of different primary nodes: the latter coin-
cides with the number of active nodes, but we cannot assign the same node as
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primary and as backup (see constraints (2.20)), hence we subtract one. Note that
constraint (2.32) can only be imposed within the Lexicographic approach, since
C∗B is computed at a previous optimization step. In the aggregate approach, since
CB is a function of the decision variables, the constraint would become nonlinear,
leading to a nonlinear feasible set, therefore it cannot be inserted in the model.

Implementation

In the following, two sample C++ implementations in CPLEX Concert Technol-
ogy for the Lexicographic method shall be provided. The first presented ap-
proach, which is simpler, employs the function "IloStaticLex" provided by the
Concert library, however it does not allow customization of the optimization pa-
rameters for each optimization step. The second presented approach will define
three optimization models, as they were defined in the mathematical formulation,
and solve them in sequence.

Using IloStaticLex. In this first implementation, the only change that needs to
be performed in the code for the aggregate approach is in the objective function,
which is defined via the "IloStaticLex" function. This functions needs as argu-
ments the optimization environment, and arrays of equal size containing the ex-
pressions of the objectives, their priorities, their weights, their absolute tolerance
with respect to the lower bound and their relative tolerance with respect to the
lower bound. The syntax is the following:

IloExpr objNodes(env);
IloExpr objHops(env);
IloExpr objPorts(env);
objNodes = IloSum(activeHotel);
for (IloInt s = 0; s < nbNodes; ++s)

objHops += IloScalProd(primaryHotel[s], connectionCost[s]) +
IloScalProd(backupHotel[s], connectionCost[s]);

objPorts = IloSum(backupPorts);

// Define an array with the objectives of the three steps
IloExprArray objArray(env);
objArray.add(objNodes);
objArray.add(objHops);
objArray.add(objPorts);

// Assign priorities to the objectives
IloIntArray priorities(env, 3);
priorities[0] = 2;
priorities[1] = 1;
priorities[2] = 0;

// Assign weights to the objectives (e.g. if two or more
objectives have the same priority)

IloNumArray weights(env, 3);
weights[0] = 1.0;
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weights[1] = 1.0;
weights[2] = 1.0;

// Absolute tolerances for each objective (equivalent to
IloCplex::Param::MIP::Tolerances::AbsMIPGap)

IloNumArray absTols(env, 3);
absTols[0] = 0.0;
absTols[1] = 0.0;
absTols[2] = 0.0;

// Relative tolerances for each objective (equivalent to
IloCplex::Param::MIP::Tolerances::MIPGap)

IloNumArray relTols(env, 3);
relTols[0] = 0.0;
relTols[1] = 0.0;
relTols[2] = 0.0;

model.add(IloMinimize(env, IloStaticLex(env, objArray, weights,
priorities, absTols, relTols)));

objNodes.end();
objHops.end();
objPorts.end();

When solving a multi-objective optimization problem in this way, for having
the CPLEX log to be outputted with the same level of detail of what has been
shown for the aggregate code, the parameter to be set is the following:

cplex.setParam(IloCplex::Param::MultiObjective::Display, 2);

Defining three models. In this second implementation, according to the previ-
ously developed mathematical formulations, three optimization models are de-
fined and solved in order. The three models can be instantiated and built in the
following way:

IloModel model(env); // Optimize number of nodes
IloModel model2(env); // Optimize hops
IloModel model3(env); // Optimize ports

// Objective (2.5)
IloExpr cNodes(env);
cNodes = IloSum(activeHotel);

// Objective (2.6)
IloExpr cHops(env);
for (IloInt s = 0; s < nbNodes; ++s)

cHops += IloScalProd(primaryHotel[s], connectionCost[s]) +
IloScalProd(backupHotel[s], connectionCost[s]);

// Objective (2.7)
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IloExpr cPorts(env);
cPorts = IloSum(backupPorts);

model.add(IloMinimize(env, cNodes));
model2.add(IloMinimize(env, cHops));
model3.add(IloMinimize(env, cPorts));
cNodes.end();
cHops.end();
cPorts.end();

// Constraints (2.9)
for (IloInt s = 0; s < nbNodes; ++s) {

model.add(IloSum(primaryHotel[s]) == 1);
model2.add(IloSum(primaryHotel[s]) == 1);
model3.add(IloSum(primaryHotel[s]) == 1);

}

// Constraints (2.10)
for (IloInt s = 0; s < nbNodes; ++s) {

model.add(IloSum(backupHotel[s]) == 1);
model2.add(IloSum(backupHotel[s]) == 1);
model3.add(IloSum(backupHotel[s]) == 1);

}

// Constraints (2.11)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
model.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
model2.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
model3.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
}

}

// Constraints (2.12)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
model.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
model2.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
model3.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
}

}

// Constraints (2.13)
for (IloInt l = 0; l < nbLinks; ++l) {
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IloExpr v(env);
for (IloInt a = 0; a < nbNodes; ++a) {

for (IloInt b = 0; b < nbNodes; ++b)
v += (primaryHotel[a][b] + backupHotel[a][b]) *

delta[l][a][b] * rrusAtNode[a];
}
model.add(v <= maxWavelengths);
model2.add(v <= maxWavelengths);
model3.add(v <= maxWavelengths);
v.end();

}

// Constraints (2.14)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
for (IloInt d1 = 0; d1 < nbNodes; ++d1) {

if (d != d1)
model3.add(commonPorts[s][d][d1] >=

primaryHotel[s][d] + backupHotel[s][d1] - 1);
}

}
}

// Constraints (2.15)
for (IloInt d = 0; d < nbNodes; ++d) {

for (IloInt d1 = 0; d1 < nbNodes; ++d1) {
if (d != d1) {

IloExpr v(env);
for (IloInt s = 0; s < nbNodes; ++s)

v += commonPorts[s][d][d1] * rrusAtNode[s];
model3.add(backupPorts[d1] >= v);
v.end();

}
}

}

In principle one could instantiate three IloCplex objects, one for each prob-
lem, but in fact only one is sufficient, provided that model extractions are placed
correctly within the code.

This approach allows to individually set solver parameters (e.g. maximum
execution time, emphasis on feasibility/optimality, etc.) for each optimization
step. For solving Step 1, the syntax is the following:

IloCplex cplex(env);
cplex.setParam(IloCplex::Param::TimeLimit, 200);
cplex.setParam(IloCplex::Param::WorkMem, 28000);
cplex.setParam(IloCplex::Param::MIP::Display, 3);
cplex.setParam(IloCplex::Param::ClockType, 2);
cplex.setParam(IloCplex::Param::MIP::Tolerances::MIPGap, 1e-9);
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cplex.extract(model);
IloNum start1 = cplex.getCplexTime();
cplex.solve();
IloNum time1 = cplex.getCplexTime() - start1;

where variable "time1" is used for storing the computing times of each step.
Now, constraint (2.27) needs to be added to the models for both Step 2 and

Step 3, with the following:

model2.add(IloSum(activeHotel) <= cplex.getObjValue());
model3.add(IloSum(activeHotel) <= cplex.getObjValue());

Furthermore, one can also add constraint (2.32), which imposes a lower bound
on the minimum number of backup ports, to the model for Step 3:

model3.add(IloSum(backupPorts) * (cplex.getObjValue() - 1) >=
IloSum(rrusAtNode));

Before extracting the model for Step 2, an important step that should be per-
formed is to provide for the following step an initial solution, or MIP start. In
fact, the computed solution at Step 1 is feasible, albeit likely non-optimal, for Step
2. Thus, providing such solution to Step 2 allows to save computational time for
finding an initial feasible solution. This is particularly critical for lesser priority
objectives, since constraints from the lexicographic ordering greatly reduce the
search space, thus finding an initial feasible solution can become a cumbersome
task. For the problem at hand, if a starting feasible solution is not provided to
Step 3, the solver would run for an hour without finding even one single inte-
ger feasible solution. For instructing CPLEX to process MIP starts, the following
parameter needs to be set:

cplex.setParam(IloCplex::Param::Advance, 1);

In order to define a MIPstart, one possible approach is to use the IloCplex
method "addMIPStart". For this, one must define two one-dimensional arrays
of equal length, one with the variables for which they want to provide an initial
value, and another with the initial values. Note that this method is not incremen-
tal, that is, successive calls of the "addMIPStart" method overwrite any existing
MIP start. The syntax for defining the MIP start for Step 2 is following:

IloNumVarArray startVar2(env); // Array of variables
IloNumArray startVal2(env); // Array of starting values

for (IloInt i = 0; i < nbNodes; ++i) {
startVar2.add(activeHotel[i]);
startVal2.add(cplex.getValue(activeHotel[i]));

}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar2.add(primaryHotel[i][j]);
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startVal2.add(cplex.getValue(primaryHotel[i][j]));
}

}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar2.add(backupHotel[i][j]);
startVal2.add(cplex.getValue(backupHotel[i][j]));

}
}

Then, one can add the MIP start to the model for Step 2 and solve it with the
following syntax:

cplex.setParam(IloCplex::Param::TimeLimit, 200);
cplex.extract(model2);
cplex.addMIPStart(startVar2, startVal2);
IloNum start2;
cplex.solve();
IloNum time2 = cplex.getCplexTime() - start2;

Note that the extraction takes place before addMIPStart. This is because, before
the instruction "cplex.extract(model2)", the active model, that is the one currently
extracted, was the one for Step 1. Had one called addMIPStart before extract, the
MIP start would’ve been added to the model for Step 1, which would have been
then immediately overwritten by the extract method.

The CPLEX log will display in the first line whether a MIP start was accepted
as an initial solution and will display the initial solution value. In this problem,
since the solution of a step is feasible also for the following ones, the MIPStart
will be always accepted. An example can be the following:

Version identifier: 20.1.0.0 | 2020-11-10 | 9bedb6d68
CPXPARAM_MIP_Display 3
CPXPARAM_TimeLimit 3200
CPXPARAM_WorkMem 28000
CPXPARAM_MIP_Tolerances_MIPGap 0
Processing 1 MIP starts.
MIP start ’m1’ defined solution with objective 230.0000.
1 of 1 MIP starts provided solutions.
MIP start ’m1’ defined initial solution with objective 230.0000.

Finally, one can add constraint (2.31) to the model for Step 3, provide a MIP start
and solve the model in a very similar way to what has been done for Step 2, with
the following syntax:

model3.add(totalHops <= cplex.getObjValue());

IloNumVarArray startVar3(env);
IloNumArray startVal3(env);
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for (IloInt i = 0; i < nbNodes; ++i) {
startVar3.add(activeHotel[i]);
startVal3.add(cplex.getValue(activeHotel[i]));

}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar3.add(primaryHotel[i][j]);
startVal3.add(cplex.getValue(primaryHotel[i][j]));

}
}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar3.add(backupHotel[i][j]);
startVal3.add(cplex.getValue(backupHotel[i][j]));

}
}

cplex.setParam(IloCplex::Param::TimeLimit, 3200);
cplex.extract(model3);
cplex.addMIPStart(startVar3, startVal3)
IloNum start3 = cplex.getCplexTime();;
cplex.solve();
IloNum time3 = cplex.getCplexTime() - start3;

2.3 Numerical Evaluations

In this section, numerical results and performance comparisons between the ag-
gregate and the lexicographic methods will be detailed. In particular, particular
emphasis will be put on algorithm scalability to networks with a large number of
transport nodes, up to 100.

2.3.1 Problem Instances

The numerical results were obtained using the commercial solver CPLEX 12.10,
running on an Intel Core i9-9900K@4.8GHz with 32GB@3000MHz RAM. The time
limit for execution was set to 1 hour. In the lexicographic approach, the time
limit was set to 200 seconds for Step 1, 200 seconds for Step 2, and 3200 seconds
for Step 3. Four regular Lattice networks (e.g. Fig. 2.2a) of 36, 49, 64 and 100
nodes were considered, with ri = 10 RRU per node and a maximum of MW = 80
wavelengths per link. In order to test the effectiveness of the algorithm also on
less regular networks, tests on 49 and 64 nodes networks, where 10 random links
are removed with respect to the regular Lattice networks (e.g. Fig. 2.2b), were
performed. In the numerical evaluations, β = 106, α = 103, and, γ = 1 were used
as weights in the multi-objective function of the aggregate model as in [12], thus
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(a) 64-nodes regular Lattice network.

(b) 64-nodes regular Lattice network with 10 random links removed.

Figure 2.2: 64-nodes networks considered for the problem instances.



30 2. Static Traffic Scenario

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

36 49 64 100

 R
el

at
iv

e 
G

ap
 %

 Number of nodes 

 A: MH = 5
 A: MH = 6
 L: MH = 6

Figure 2.3: Relative gaps of the two approaches for different instances, varying
the maximum distance MH . A:= Aggregate, L = Lexicographic.

imposing the hierarchy among objectives required by the application scenario.
An important figure of merit for performance comparison, other than the ex-

ecution time, is the relative gap of the best integer solution with respect to the
lower bound. However, the aggregate and the lexicographic method compute
such gap in two different ways. For the aggregate, there is one value for the gap,
that is for the single objective function that is being optimized. For the lexico-
graphic, there are three different values for the gap, one for each step. Evaluating
the gap of the lexicographic individually can be deceiving as, for instance, a very
large gap on the least-priority objective can give the impression that the algo-
rithm is performing poorly. Therefore, in order to compare the two approaches
under the same metric, the following formula is used for computing an equiva-
lent gap for the lexicographic by weighing the objectives and the lower bounds
of each step by the same weights used in the aggregate:

Geq =
Ceq − LBeq

Ceq
(2.35)

Ceq = β · C∗B + α · C∗H + γ · C∗P (2.36)
LBeq = β · LB(CB) + α · LB(CH) + γ · LB(CP ) (2.37)

where LB(·) is the best lower bound value achieved by the solver in the execution
time limit for the corresponding model in each step, and C∗ is the objective value
of the best solution found in that step.

2.3.2 Results

Figure 2.3 reports the relative percentage gaps of the two approaches for the four
networks and MH equal to 5 or 6 (see Table 2.2 for more details). When MH = 5,
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Figure 2.4: Execution times of the first two steps of the lexicographic for different
instances. S1 = Step 1, S2 = Step 2, varying the maximum distance MH .

the relative percentage gap of the lexicographic approach is at most 0.0042% for
all instances, hence it is not reported, while the aggregate model has a gap of
about 15% for two instances. When MH = 6, near-optimal solutions are obtained
by the lexicographic approach for all the instances with up to 64 nodes, while
the aggregate model shows much larger gaps (more than 10%). For the network
with 100 nodes, the relative gap increases also for the lexicographic approach, in
particular for MH = 6, but it is significantly smaller (about 1/3) than the gap of
the aggregate model.

In Figures 2.4 and 2.5 the computing times required by the lexicographic ap-
proach (steps 1 and 2) and by the aggregate model are reported, respectively.

For all instances but the largest one (no matter the MH value), the lexico-
graphic approach requires very short computing times and obtains optimal or
near-optimal solutions. For the network with 100 nodes, the computing time
increases: when MH = 5, the lexicographic approach obtains a near-optimal so-
lution, while, when MH = 6, step 1 reaches the time limit of 200 seconds. On the
other hand, the aggregate model requires much longer computing times (see Fig-
ure 2.5) and reaches the time limit of 3600 seconds for most instances. Although
the third step of the lexicographic approach reaches the time limit for most in-
stances, the advantage of this method is that it is able to obtain proven optimal
solutions for what concerns the first two objectives. Since the third component of
the objective function has a much smaller weight than the first two, these solu-
tions are also near-optimal ones for the multi-objective problem.

In Figure 2.6 the required number of BBU Hotels in the considered networks
for different distance values are shown. As the distance value increases, the num-
ber of required BBU hotels decreases sharply. Correspondingly, as shown in Fig-
ure 2.7, the total number of wavelengths increases with the distance value. In fact,
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Figure 2.7: Total number of wavelengths as a function of the distance value vary-
ing the network size.

as the number of BBU hotels decreases, more wavelengths are required in the in-
terconnection networks to connect RRUs to their assigned primary and backup
BBU hotels. In addition, as the distance value increases, further minimization of
the number of BBU hotels becomes increasingly difficult. This is because as the
number of active BBU hotels decreases, constraints (2.22) become more tight due
to the greater number of total wavelengths to distribute in the fronthaul WDM
links.

In Figure 2.8 the average number of hops required by RRUs to reach their
BBU primary or backup hotel is shown. In the reference networks, as the dis-
tance constraints get less tight, the average number of hops does not exceed 3. In
particular, considering figure 2.6, one can observe that centralization does not re-
sult in a severe increase of the average number of hops, furthering the choice for
the lexicographic ordering of the objectives. In addition, since the reference net-
works have the same structure, the average number of hops results to be mostly
independent from the number of nodes.

In Figure 2.9 the number of needed primary and backup wavelengths for the
64 node network is shown. The additional backup wavelengths, for each dis-
tance value, show similar values as the needed primary wavelengths. This is
because primary and backup hops were given the same level of priority in the
lexicographic ordering.

In Figure 2.10 the number of needed primary and backup ports for the 64
nodes network is shown. As mentioned before, the number of primary ports is
constant, since they cannot be shared, and equal to the sum of all RRUs. The
overall sum of backup ports is minimized, albeit with lowest priority, therefore a
non-monotonic behaviour of the solution value with respect to the instance size
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Figure 2.8: Average number of hops required in different networks, for different
distance values.
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work for different distance values.

is to be expected. As an example, for MH = 3 a larger number of backup ports is
obtained as a consequence of the higher priority in minimizing the total number
of hops.

In Table 2.2 the objective values and relative percentage gaps obtained by
the lexicographic and aggregate approaches for the regular Lattice networks are
reported. Results for the aggregate approach are based on [12]. Except for a
few cases (36 nodes with MH = 6, 49 nodes with MH = 5, and 64 nodes with
MH = 5) in which both methods have comparable performance, the lexicographic
approach performs significantly better than the aggregate model. For instances
with up to 64 nodes, it finds optimal or near-optimal solutions, being able to guar-
antee the optimality of the first two steps, while the aggregate model shows, in
some cases, much larger gaps, thus providing worse information regarding the
actual quality of the solutions obtained. Not only the relative gap is smaller for
the lexicographic approach, but also better solutions are obtained. For the largest
instance, it finds a near-optimal solution, characterized by a smaller number of
hops than the aggregate model, when MH = 5. When MH = 6, even if the lexi-
cographic approach has 23.5% gap, it finds a significantly better solution with 8
active nodes and 506 hops compared to the 18 nodes and 607 hops required by
the aggregate model.

The major bottleneck in the algorithm consists in the port optimization, which
even though is the lowest priority objective, in only two instances (|S| = 36 with
MH = 5, and |S| = 36 with MH = 6) converged to the optimal solution within
the 3200s time limit. Therefore, given the fact that port optimization is the low-
est priority objective and in order to mitigate the bottleneck, a simple heuristic
algorithm for Step 3 has been developed.

The heuristic algorithm consists in fixing the variables Bj as they are found at
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Table 2.2: Results of the lexicographic and aggregate approaches for the regular
Lattice networks.

Approach |S| MH CB CH CP Gap%

Lexicographic 36 5 4 156 180 0
Aggregate 36 5 4 156 180 19.16
Lexicographic 36 6 3 194 180 0
Aggregate 36 6 3 194 180 0

Lexicographic 49 5 4 259 250 0.0022
Aggregate 49 5 4 259 250 0
Lexicographic 49 6 4 259 250 0.0022
Aggregate 49 6 4 259 250 11.21

Lexicographic 64 5 5 348 300 0.0026
Aggregate 64 5 5 348 290 0.0002
Lexicographic 64 6 5 344 270 0.002
Aggregate 64 6 5 356 220 18.16

Lexicographic 100 5 8 506 500 0.0042
Aggregate 100 5 8 535 470 15.37
Lexicographic 100 6 8 506 540 23.5
Aggregate 100 6 18 607 280 68.9

Table 2.3: Results of the heuristic for Step 3 for the regular Lattice networks of 36,
49, 64 and 100 nodes.

|S| MH Telapsed (s) Cstart
P CP Cbest

P

36 5 0.17 190 180 180
36 6 0.20 220 180 180

49 5 0.38 270 250 250
49 6 0.42 300 250 250

64 5 0.86 340 290 290
64 6 0.86 310 260 270

100 5 2.94 620 510 550
100 6 2.88 540 530 530
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Table 2.4: Results of the lexicographic and aggregate for the regular Lattice net-
works of 49 and 64 nodes, where 10 random links are removed.

Approach |S| MH CB CH CP Gap%

Lexicographic 49 5 5 226 230 0
Aggregate 49 5 5 229 210 17.98
Lexicographic 49 6 4 269 220 0.0013
Aggregate 49 6 4 269 220 9.21

Lexicographic 64 5 6 305 320 0.0030
Aggregate 64 5 6 306 380 14.86
Lexicographic 64 6 5 363 340 0.0034
Aggregate 64 6 6 331 230 30.43

the end of Step 2, therefore optimizing, in Step 3, only decision variables pij , bij ,
cijj′ and yj .

In table 2.3 results for the heuristic algorithm for Step 3 for the considered reg-
ular Lattice networks are shown. It can be observed that computational times are
relatively small, at most 3s for the 100-nodes network. Column Telapsed (s) reports
the execution time of the heuristic algorithm. Column Cstart

P reports the number
of ports resulting from the MIPStart, that is the starting feasible solution from
Step 2. It can be observed that for all instances, the solution from the MIPStart is
worse than the best one, therefore plainly stopping execution at the end of Step 2
might not be the most effective strategy. Column CP reports the number of ports
after fixing Bj according to the results of Step 2 and optimizing the remaining
variables. Column Cbest

P reports the best solution found by Step 3 in 3200s of com-
putational time. It can be observed that for all instances results are either equal or
better (namely, for |S| = 64 with MH = 6, |S| = 100 with MH = 5, and |S| = 100
with MH = 6) with respect to the best ones, all in a couple seconds of compu-
tational time. Therefore, this simple heuristic algorithm is effective enough for
handling the bottleneck induced by solving Step 3 in an exact way.

In table 2.4 the objective values and relative percentage gap obtained by the
lexicographic and aggregate approaches for the regular Lattice networks with 10
removed random links are shown. It can be observed that results show similar
trends to what was shown in table 2.2, if not better in terms of percentage gap
(e.g. |S| = 64 with MH = 6). Therefore, one can conclude that the lexicographic
method works efficiently also on non-regular network topologies.

2.4 Conclusions

A lexicographic approach is proposed to solve a multi-objective optimization
problem for C-RAN optimization in a static traffic scenario, aiming at achieving
scalability in optimal transport network design. The multi-objective problem is
divided into three single-objective steps which are analyzed in terms of execution
time and accuracy. Compared to a previously defined aggregate model, the lexi-



38 2. Static Traffic Scenario

cographic approach shows much better performance and accuracy when applied
to large networks: it allows to calculate the optimal (or near-optimal) solution in
a few tens of seconds for the most relevant objectives, also in those situations that
the aggregate model was not able to solve. The main bottleneck of the approach
is represented by port optimization: a simple heuristic algorithm was developed,
which returned in few seconds of computational times equal or better than the
best ones obtained by optimizing the ports in an exact way.



Chapter 3

Dynamic Traffic Scenario

In this chapter, an exact algorithm for the optimal BBU placement problem is de-
veloped for a dynamic traffic scenario. This algorithm employs the framework of
lexicographic optimization developed in the previous chapter. Differently from
the static traffic scenario, the algorithm takes into account reconfiguration needs
of the C-RAN as a consequence of traffic changes: the objective is to maintain
C-RAN cost optimization, while minimizing the cost of virtual network function
migration. Even though some works in literature regarding C-RAN optimization
with migration costs exist [22] [19], as far as my knowledge goes, this is the first
approach taking also into account reliability and latency constraints. Along with
the mathematical formulation of the problem, a sample C++ code implementa-
tion will be provided for modelling and solving the problem via CPLEX Concert
Technology. The algorithm leads to significant savings in the total number of mi-
grations (above 82% for primary virtual BBU functions and above 75% for backup
virtual BBU function). The execution time of the optimization algorithm is below
20 seconds in most cases, making its application feasible for dynamic scenarios.
This Chapter details the work that was developed for [7].

3.1 Problem Statement

In the static traffic scenario, a constant number of active RRUs per transport node
was assumed. In dynamic traffic scenarios this may not be the case, as the traf-
fic volume varies through the day, following some general daily trends such as
the one shown in [6] [17]. In particular, a BBU Hotel assignment computed for a
certain traffic volume becomes infeasible if an increase in the traffic would imply
exceeding the capacity of one or more fronthaul WDM links, therefore requir-
ing a reconfiguration. However, even though the algorithm for the static traffic
scenario has been proven to be efficient in terms of computational times and solu-
tion quality, it is completely blind to virtual network function migrations. In fact,
when reconfiguring the network after a traffic increase, instead of completely
changing the assignment for the sake of optimality, one should take into account
the displacement, i.e., the number of migrations, with respect to the previous,
now infeasible, solution. Similarly, when the traffic decreases, reconfiguration
is useful to reduce the energy consumption: in this case, one would like to de-
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activate nodes if possible, but should also to take into account the number of
migrations induced by a deactivation.

Therefore, in a dynamic traffic scenario, the aim is to minimize the cost of
migrating network functions in relation to the traffic changes in time, includ-
ing nodes and hops optimization, subject to constraints on the maximum latency
with support for reliability to single BBU Hotel failure. In practice, the migration
cost accounts for the time and processing needed to reconfigure the assignment.

3.2 Optimization Model

The optimization model is solved multiple times according to a predefined time
granularity (e.g. one instance every 60 seconds) within a reference period (e.g. a
day). For example, a 60 seconds time granularity over a time period of one day
would correspond to a total of 1440 problem instances to be solved in sequence.
In each time interval, according to the traffic values sampled at the beginning
of the interval, the model optimizes the number of network function migrations
while preserving as much as possible C-RAN optimality, with respect to the static
traffic scenario, in terms of active BBU Hotel and total hops between BBU Hotels
and their assigned RRUs. In particular, migrations are considered with respect to
the solution that was computed for the previous time interval. Therefore, after
solving the model in a time interval, the current solution is stored to be used
as a reference for the successive time interval. A starting reference solution is
provided by solving an initial instance via the lexicographic algorithm for a static
traffic scenario developed in 2.2.2. The model is solved using a lexicographic
method, since it was proven to be computationally much faster than an aggregate
approach.

For what concerns the definition of the objectives, several considerations need
to be made in order to properly account for the migrations. Indeed, considering
the starting solution from a previous time instant, a cost must be associated with
activating a previously idle node. This alone would lead to keeping the previous
solution, if feasible, without any change. However, from an application point of
view, one must also take into account, other than the allocation of resources, their
release when they are no more needed. Therefore, a reward must be associated
with deactivating a previously active node. However, the cost for activation must
be greater than the reward for deactivation: otherwise a deactivation followed by
an activation, an undesirable event from the migrations point of view, would
result in a net cost less or equal than 0.

To summarize, the highest priority objective, optimizing the number of active
nodes, must account for the following:

• A cost for activating nodes that were not active in the previous solution,

• A reward for deactivating nodes that were active in the previous solution,

• The cost for activating previously-inactive nodes must be greater than the
reward for deactivating previously-active nodes.
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This first objective therefore optimizes the number of active BBU Hotels, mini-
mizing the displacement from the previous solution in terms of active BBU Hotels
and releasing resources whenever possible, driven by the reward.

The second objective, given the objective function value from the previous
step, will then minimize the displacement from the previous solution in terms
of primary and backup assignments for each BBU Hotel, i.e. minimize the total
number of migrations.

The third and final objective will optimize the total number of hops, in the
same way that has been discussed for the static traffic scenario. Port optimization,
given that according to the considered application is the least priority objective, is
neglected for the dynamic traffic scenario, since its optimization requires longer
computing times.

Overall, the optimization consists in two ILPs to be optimized in sequence,
imposing the lexicographic ordering of the objectives. The first ILP optimizes
the first objective, which is function of variables Bj . The second ILP optimizes
jointly the second and the third objectives, which are both function of variables
pij and bij . This is because separating the objectives according to the decision
variables appearing in the objective functions was proven to be computationally
more efficient than having one optimization step per objective. The parameters
and decision variables are reported in Table 3.1.

3.2.1 Step 1: Optimal BBU activation/deactivation

This step is used to determine the optimal activation cost for BBU Hotels in trans-
port nodes. The ILP model of this step reads as follows:

minCB =
∑
j∈S0

Bj −
1

2

∑
j∈S1

(1−Bj) (3.1)∑
j∈S

pij = 1 ∀i ∈ S (3.2)∑
j∈S

bij = 1 ∀i ∈ S (3.3)

pij + bij ≤ Bj ∀i, j ∈ S (3.4)
(pij + bij) · hij ≤MH ∀i, j ∈ S (3.5)∑

i∈S

∑
j∈S

(pij + bij) · δlij · ri ≤MW ∀l ∈ L (3.6)

Bj ∈ {0, 1} ∀j ∈ S (3.7)
pij ∈ {0, 1} ∀i ∈ S, j ∈ S (3.8)
bij ∈ {0, 1} ∀i ∈ S, j ∈ S (3.9)

The objective function (3.1), as discussed, penalizes the activation of new BBU
Hotels with respect to the solution of the previous time interval and rewards
the deactivation of a BBU Hotel active in the previous solution. The penalty is
larger than the reward, so that the deactivation of a BBU Hotel followed by the
activation of a BBU Hotel results in a penalty. Overall, this step minimizes the
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Table 3.1: Model parameters and variables

Parameters

S Set of transport nodes. |S| = s
S0 Set of inactive nodes in the previous solution.
S1 Set of active nodes in the previous solution.
EP0 Set of inactive primary assignments in the previous solution.
EB0 Set of inactive backup assignments in the previous solution.
L Set of links.
H s× s matrix. hij is the distance in hops between nodes i and j computed

with the shortest path.
α Migration cost of a primary BBU function.
β Migration cost of a backup BBU function.
γ Weight for the distance in the cost function.
ri Number of active RRUS at site i, i ∈ S.
δlij 1 if shortest path between i and j is using link l, 0 otherwise, i, j ∈ S,

l ∈ L
MW Maximum number of wavelengths available in each link.
MH Maximum allowed distance in hops between RRU and BBU.

Variables

Bj 1 if node j ∈ S hosts a BBU hotel, 0 otherwise
pij 1 if BBU hotel j is assigned as primary for RRUs at node i, i, j ∈ S, 0

otherwise.
bij 1 if BBU hotel j is assigned as backup for RRUs at node i, i, j ∈ S, 0

otherwise.
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displacement in terms of active BBU Hotels with respect to the previous solu-
tion, while deactivating as much BBU Hotels as possible. Constraints (3.2) and
(3.3) impose that each RRU has a primary and backup BBU Hotel assigned. Con-
straints (3.4) are used to count active BBU Hotels and to impose that primary and
backup BBU Hotels for each RRU are distinct. Constraints (3.5) impose that the
distance of each RRU from its primary and backup BBU Hotels does not exceed
MH . Constraints (3.6) impose that the number of wavelengths per WDM link
does not exceed MW . Finally, constraints (3.7)-(3.9) define the variable domains.

3.2.2 Step 2: Optimal Number of Migrations and Hops

This step is used to minimize the number of migrations and the distance between
RRUs and BBU Hotels, which is expressed in number of hops. The ILP model
solved in this step reads as follows:

minCM + CH = α
∑

(i,j)∈EP0

pij + β
∑

(i,j)∈EB0

bij + γ
∑
i∈S

∑
j∈S

(pij + bij) · hij (3.10)

(3.2)− (3.9)∑
j∈S0

Bj −
1

2

∑
j∈S1

(1−Bj) ≤ C∗B (3.11)

The weighted multi-objective function (3.10) minimizes the total primary and
backup migrations, and the total number of hops. All the constraints defined
in the ILP model of Step 1 are imposed, since the choice of active BBU Hotels is
not fixed from the previous step. Constraint (3.11) reduces the search space and
guarantees that the optimal solution of the previous higher priority step, that is
the net cost resulting from activations and deactivations, is not worsened.

3.2.3 Implementation

In the following, a sample C++ implementation in CPLEX Concert Technology
for the NFMig algorithm shall be provided. It will be assumed that the model
parameters have been imported from properly formatted .dat files and stored in
appropriate data structures.

Given that the algorithm will be called repeatedly for each time instant ac-
cording to a predefined time granularity, it is advisable to automate it by putting
the optimization procedure within a for loop such as the following:

const IloInt totInstances = 1440; // 1m granularity
for (IloInt t = 0; t < totInstances; ++t) {

IloEnv env;
// Optimization procedure
// Update reference solution
env.end();

}

For instance, in the above example the algorithm is called 1440 times for a time
granularity of 1 minute, for an overall time period of one day.
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The decision variables are defined in the same way as for the implementation
in the static traffic scenario:

IloNumVarArray activeHotel(env, nbNodes, 0, 1, ILOINT);
IloNumVarArray2 primaryHotel(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

primaryHotel[i] = IloNumVarArray(env, nbNodes, 0, 1, ILOINT);
IloNumVarArray2 backupHotel(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

backupHotel[i] = IloNumVarArray(env, nbNodes, 0, 1, ILOINT);
IloNumVarArray primaryPorts(env, nbNodes, 0, IloInfinity,

ILOINT);
IloNumVarArray backupPorts(env, nbNodes, 0, IloInfinity,

ILOINT);

It is reminded that IloIntArray2 is not a data type defined in Concert and needs
to be defined via:

typedef IloArray<IloNumVarArray> IloNumVarArray2;

The previous solution is stored in a properly formatted .dat file and imported in
the proper data structures:

IloIntArray solActiveHotel(env, nbNodes);
IloIntArray2 solPrimaryHotel(env, nbNodes);
IloIntArray2 solBackupHotel(env, nbNodes);

//Read previous sol. from properly formatted .dat file
const char* solfile = "PATH-TO-DATA";
ifstream sfile(solfile);
sfile >> solActiveHotel >> solPrimaryHotel >> solBackupHotel;
sfile.close();

As for the previously developed Lexicographic method, two optimization models
to be solved in sequence are defined and populated with their respective objective
functions and constraints according to the mathematical formulations:

IloModel model(env); // Step 1
IloModel model2(env); // Step 2

// Objective functions definitions
IloExpr objNodes(env);
IloExpr objMig(env);
IloExpr objHops(env);
// Objective 3.1
for (IloInt i = 0; i < nbNodes; ++i) {

if (solActiveHotel[i] == 0)
objNodes += activeHotel[i];

else
objNodes += -0.5 * (1 - activeHotel[i]);

}
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// Objective 3.10
for (IloInt i = 0; i < nbNodes; ++i) {

for (IloInt j = 0; j < nbNodes; ++j) {
if (solPrimaryHotel[i][j] == 0)

objMig += alpha * primaryHotel[i][j];
if (solBackupHotel[i][j] == 0)

objMig += beta * backupHotel[i][j];
objHops += gamma * (primaryHotel[i][j] + backupHotel[i][j])

* connectionCost[i][j];
}

}
model.add(IloMinimize(env, objNodes));
model2.add(IloMinimize(env, objMig + objHops));
objMig.end();
objHops.end();

// Constraints definitions
// Constraints (3.2)
for (IloInt s = 0; s < nbNodes; ++s) {

model.add(IloSum(primaryHotel[s]) == 1);
model2.add(IloSum(primaryHotel[s]) == 1);

}

// Constraints (3.3)
for (IloInt s = 0; s < nbNodes; ++s) {

model.add(IloSum(backupHotel[s]) == 1);
model2.add(IloSum(backupHotel[s]) == 1);

}

// Constraints (3.4)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
model.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
model2.add(primaryHotel[s][d] + backupHotel[s][d] <=

activeHotel[d]);
}

}

// Constraints (3.5)
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
model.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
model2.add((primaryHotel[s][d] + backupHotel[s][d]) *

connectionCost[s][d] <= maxDistance);
}

}
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// Constraints (3.6)
for (IloInt l = 0; l < nbLinks; ++l) {

IloExpr v(env);
for (IloInt s = 0; s < nbNodes; ++s) {

for (IloInt d = 0; d < nbNodes; ++d) {
v += (primaryHotel[s][d] + backupHotel[s][d]) *

delta[l][s][d] * rrusAtNode[t][s];
}

}
model.add(v <= maxWavelengths);
model2.add(v <= maxWavelengths);
v.end();

}

Given the potentially high number of instances to be solved in sequence, it is
advisable to redirect the output log to a file, via the following:

ofstream fout("PATH-TO-LOGFILE");
cplex.setOut(fout);
cplex.setWarning(fout);
cplex.setError(fout);

Then, a IloCplex object needs to be instantiated and the parameters for solving
Step 1 need to be set. Then, the model for Step 1 is extracted and solved, and the
solving time is stored.

IloCplex cplex(env);
Cplex.setParam(IloCplex::Param::TimeLimit, 35);
cplex.setParam(IloCplex::Param::WorkMem, 28000);
cplex.setParam(IloCplex::Param::ClockType, 2);
cplex.setParam(IloCplex::Param::MIP::Display, 3);
cplex.setParam(IloCplex::Param::Advance, 1);
cplex.setParam(IloCplex::Param::MIP::Tolerances::MIPGap, 1e-9);

float start1 = cplex.getCplexTime();
cplex.extract(model);
cplex.solve();
float time1 = end1 - cplex.getCplexTime();

Information on the solution status, objective function value, lower bound and
MIP gap can be printed in the log file with the following:

cplex.out() << "Solution status: " << cplex.getStatus() << endl;
cplex.out() << "Optimal value: " << cplex.getObjValue() << endl;
cplex.out() << "Lower bound: " << cplex.getBestObjValue() <<

endl;
cplex.out() << "MIP relative gap: " <<

cplex.getMIPRelativeGap() << endl;

Then, from the solution of Step 1, a MIPStart is provided to Step 2, and the con-
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straint enforcing the lexicographic ordering of the objectives is added.

IloNumVarArray startVar2(env);
IloNumArray startVal2(env);

for (IloInt i = 0; i < nbNodes; ++i) {
startVar2.add(activeHotel[i]);
startVal2.add(cplex.getValue(activeHotel[i]));
}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar2.add(primaryHotel[i][j]);
startVal2.add(cplex.getValue(primaryHotel[i][j]));

}
}

for (IloInt i = 0; i < nbNodes; ++i) {
for (IloInt j = 0; j < nbNodes; ++j) {

startVar2.add(backupHotel[i][j]);
startVal2.add(cplex.getValue(backupHotel[i][j]));

}
}

// Constraint 3.11
model2.add(objNodes <= cplex.getObjValue());
objNodes.end();

For this particular implementation, a time granularity of one minute was as-
sumed. Therefore, assuming a backoff of 10 seconds needed to propagate the
NFMig solution and to perform migrations, the overall time limit for Step 1 plus
Step 2 is set to 50 seconds. In particular, it was set at most 35 seconds for Step 1
and the residual time to Step 2. This can be done with the following:

float timelim2 = 50 - time1;
timelim2 = max(15.0f, timelim2);
cplex.setParam(IloCplex::Param::TimeLimit, timelim2);

Finally, the model for Step 2 is extracted, the MIPStart is added, the model is
solved, and the computing time is stored:

float start2 = cplex.getCplexTime();
cplex.extract(model2);
cplex.addMIPStart(startVar2, startVal2);
cplex.solve();
float time2 = end2 - cplex.getCplexTime();

At this point, the file containing the previous solutions must be updated with
the current solution, to be used at reference for the next time instant. Given the
formatting required by Concert and the previously shown syntax for importing
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the data, the solution file can be updated as follows:

ofstream updatefile("PATH-TO-SOLFILE");
IloInt i;
IloInt j;
updatefile << "[";
for (i = 0; i < nbNodes - 1; ++i)

updatefile << cplex.getValue(activeHotel[i]) << ", ";
updatefile << cplex.getValue(activeHotel[i]) << "]" << endl;

updatefile << "[";
for (i = 0; i < nbNodes - 1; ++i) {

updatefile << "[";
for (j = 0; j < nbNodes - 1; ++j)

updatefile << cplex.getValue(primaryHotel[i][j]) << ", ";
updatefile << cplex.getValue(primaryHotel[i][j]) << "]," <<

endl;
}
updatefile << "[";
for (j = 0; j < nbNodes - 1; ++j)

updatefile << cplex.getValue(primaryHotel[i][j]) << ", ";
updatefile << cplex.getValue(primaryHotel[i][j]) << "]]" <<

endl;

updatefile << "[";
for (i = 0; i < nbNodes - 1; ++i) {

updatefile << "[";
for (j = 0; j < nbNodes - 1; ++j)

updatefile << cplex.getValue(backupHotel[i][j]) << ", ";
updatefile << cplex.getValue(backupHotel[i][j]) << "]," <<

endl;
}
updatefile << "[";
for (j = 0; j < nbNodes - 1; ++j)

updatefile << cplex.getValue(primaryHotel[i][j]) << ", ";
updatefile << cplex.getValue(backupHotel[i][j]) << "]]" << endl;
updatefile.close();

3.3 Numerical Evaluations

The reference network consists in 38 transport nodes, interconnected as shown
in Figure 3.1. The mean traffic offered to the network during the day, based on
the general trends described in [6], [17] and expressed in average RRUs per node,
is shown in Figure 3.2. Such traffic behaviour is comprehensive of both low and
high traffic, and of both positive, negative and null gradient with respect to time.

For each time instant, the number of active RRUs in a node consists of the
mean value, illustrated in Figure 3.2, plus a random contribution uniformly dis-
tributed between [−2, 2] active RRUs, in order to take into account small devia-
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Figure 3.1: 38-node C-RAN used for the numerical evaluations

tions with respect to the average traffic values in each transport node.
For the following comparisons, the developed algorithm for the dynamic traf-

fic scenario shall be referred to as "NFMig". The described NFMig algorithm is
applied to maintain the virtual BBU function assignment optimized in relation to
traffic variation. The instants of application can be set periodically with a given
time granularity that can be constant or variable during the observation period.
It can also be triggered by sudden changes in traffic. A constant interval is here
chosen and the sensitivity to its length is evaluated. One main requirement is
that the execution time of the algorithm is enough shorter than the time period.
In this way, time for the consequent network re-configurations and network func-
tion migrations is accounted for. Intervals from a few tens of seconds to a few tens
of minutes can be assumed. When the time granularity gets larger, optimization
is done less frequently leading to insufficient resource allocation, especially in the
case of increasing traffic.

In this section the performance of the NFMig algorithm with respect to the
aforementioned scenarios is shown. The numerical results were obtained using
the commercial solver CPLEX v12.10, running on an Intel Core i9-9900K@4.8GHz
with 32GB@3000MHz RAM. A maximum of 6 hops between BBU Hotels and
RRUs and 80 wavelengths per link were imposed. For what concerns Step 2,
α� β was considered in order to penalize more primary migrations with respect
to backup migrations, according to the application scenario. Furthermore, β � γ
was considered in order to prioritize the minimization of migrations with respect
to the total number of hops. An optimization model for static traffic conditions
was presented in [8] and detailed in Chapter 2, solved by a lexicographic method,
and will be referred to as "NFStat" for the following comparisons.

Figure 3.3 shows the execution times of the instances calculated by NFMig and
NFStat, with time granularity equal to 1 minute, assuming the traffic dynamics of
Figure 3.2. The execution time of NFMig depends on the traffic variations, but it is
on average below 20s. NFMig obtains optimized results in a time which is much
shorter than for NFStat (average 0.7885s for NFMig while 5.746s for NFStat) and
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Figure 3.2: Average traffic offered to the network during 24 hours expressed in
active RRUs per node

always far below 1 minute, that can be chosen as the basic granularity for further
evaluations.

3.3.1 Fine time granularity evaluations

Firstly, NFMig was applied with a fine time granularity, which is every 60 seconds
in the 24 hour range. The time limit was set to 50 seconds, with at most 35 seconds
for Step 1 and the residual time for Step 2. For NFStat, at most 40 seconds were
given to BBU Hotel optimization and the residual time to hop optimization.

Figure 3.4 shows the number of active BBU Hotels computed by NFMig in
comparison with the number of active BBU Hotels obtained by NFStat, with the
same time granularity. NFMig and NFStat are called once every minute through-
out a period of one day, for a total of 1440 problem instances. NFMig reached the
time limit in only 4 instances out of 1440: also for those 4 instances the optimal
solution was found, missing the proof of optimality only. NFStat reached the time
limit in several instances, nevertheless it generally computed solutions with the
same or a better number of active nodes than NFMig. The reason is that NFStat,
myopic to migrations, completely neglects the solution computed in the previ-
ous time period. However, one can observe that on average there is not much
difference between the two sets of results. In particular, the average worsening
throughout all instances is equal to 0.1169 BBU Hotels. Focusing on the time in-
tervals in which the number of active BBU Hotels varied the most, between 6:00
and 9:00 the average worsening is equal to 0.1018 BBU Hotels, whereas between
20:00 and 24:00 is equal to 0.5991 BBU Hotels. Therefore, the solutions obtained
by NFMig are either optimal or near optimal even if NFMig also accounts for mi-
grations, and one can conclude that the minimization of the displacement from
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Figure 3.3: Execution time of each instance for NFMig and NFStat, with time
granularity equal to 1 minute over 24 hours.

the previous time instance does not hinder the number of active BBU Hotels.
In Figure 3.5 the total number of hops computed by NFMig is compared with

that obtained by NFStat in the same time limit. The average worsening through-
out all instances is equal to 7.333 hops, between 6:00 and 9:00 is equal to 21.61
hops, and between 20:00 and 24:00 is equal to 9.390 hops. Since the minimization
of the total number of hops has the lowest priority among all objectives, it is rea-
sonable to observe a larger worsening with respect to optimal or near-optimal
static traffic solutions. Nevertheless, the obtained solutions are of acceptable
quality (6.43% average difference from NFStat optimum) and most importantly
compliant with the maximum distance constraint, which is paramount for latency
requirements.

In Figures 3.6 and 3.7 the total number of primary migrations and backup
migrations are shown. One can observe that for NFStat, which completely disre-
gards migrations, the overall number of migrations is completely out of control
except for the instances in which the fronthaul links capacity approaches satura-
tion. In all other instances, the small random contribution in the number of active
RRUs per node is enough to completely destabilize NFStat. In particular, the to-
tal number primary and backup migrations for NFStat are respectively equal to
15703 and 15307, whereas for NFMig they are equal to 648 and 925. One can com-
pute the improvement provided by NFMig with respect to NFStat as follows:

Improvement%NFMig =
#MigsNFStat − #MigsNFMig

#MigsNFStat
· 100

Therefore, there are 95.87% less primary migrations and 93.95% less backup mi-
grations than in NFStat, with a worst case improvement of 18.75% and 25% for
primary and backup migrations respectively.
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Figure 3.4: Number of active BBUs of each instance for NFMig and NFStat, with
time granularity equal to 1 minute over 24 hours.
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Figure 3.5: Total number of hops of each instance for NFMig and NFStat, with
time granularity equal to 1 minute over 24 hours.
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Figure 3.6: Primary BBU virtual function migrations of each instance for NFMig
and NFStat, with time granularity equal to 1 minute over 24 hours.
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Figure 3.7: Backup BBU virtual function migrations of each instance for NFMig
and NFStat, with time granularity equal to 1 minute over 24 hours.
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Figure 3.8: Execution time of each instance for NFMig and NFStat, with time
granularity equal to 30 minutes over 24 hours.

Furthermore, for NFMig, one can observe that the large majority of migrations
is concentrated in the time instants in which new nodes are either activated or
deactivated, as expected. Considering the mean traffic profile, it is reasonable to
execute the algorithm between short time intervals when the traffic is rising, so
as to maximize responsiveness. However, when the mean traffic is decreasing,
it may be beneficial to execute the algorithm between longer time intervals, and
perform BBU Hotels de-activations and consequent migrations only a few times
over the descending slope.

3.3.2 Coarse time granularity evaluations

Secondly, the algorithm was applied with a coarser time granularity, which is
every thirty minutes. The time limit was set to 1700 seconds, with at most 1200
seconds for Step 1 and 500 seconds for Step 2.

Figure 3.8 shows the computing times of NFMig and NFStat for each instance.
One can observe that even though the time granularity is much coarser than in
the previous case, and therefore traffic variations between two instances are much
larger, the average computing times remain in the same order of magnitude as
shown in Figure 2.4.

Figure 3.9 shows the number of active BBU hotels of NFMig versus NFStat.
NFMig and NFStat are called once every 30 minutes throughout a period of one
day, for a total of 48 problem instances. The average worsening of NFMig with
respect to NFStat over the entire day is equal to 0.1667 BBU Hotels, between 6:00
and 9:00 is equal to 0.2857 BBU Hotels and between 20:00 and 24:00 is equal to
0.5556 BBU Hotels. Thus, even though a coarser time granularity was considered
and therefore larger traffic variations, also in this case the minimization of the
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Figure 3.9: Number of active BBUs of each instance for NFMig and NFStat, with
time granularity equal to 30 minutes over 24 hours.

displacement from the previous solution does not hinder the number of active
BBU Hotels.

Figure 3.10 shows the total number of hops of NFMig versus NFStat. The
average worsening of NFMig with respect to NFStat over the entire day is equal
to 5.511 hops, between 6:00 and 9:00 is equal to 13.66 hops and between 20:00 and
24:00 is equal to 10.37 hops. As for the scenario with finer time granularity, we
still get solutions of acceptable quality (5.147% average difference from NFStat
optimum), even though minimization of the total number of hops is assigned the
lowest priority among objectives.

Figures 3.11 and 3.12 show the number of primary and backup migrations, re-
spectively, of NFMig versus NFStat. Overall, NFMig performs 82.58% and 75.04%
less primary and backup migrations, respectively, than NFStat. In the worst case,
NFMig performs 33.3% and 20.83% less primary and backup migrations, respec-
tively, than NFStat. The total number of migrations is much smaller with respect
to the 1m time granularity: this can be of particular interest in case of decreasing
traffic, where the timeliness of VNFs reconfiguration is not crucial, thus saving
computing power. As an example, the scenario between 20:00 and 24:00 shows
830 migrations with 1m time granularity, and 90 migrations with 30m time granu-
larity. Therefore, since with decreasing traffic the current solution maintains feasi-
bility, the advantage of adopting a coarser time granularity is twofold: firstly, the
algorithm can be called fewer times, thus saving computational power; secondly,
the total number of migrations to be performed is much smaller, avoiding re-
dundant re-configurations while deactivating unnecessary BBU Hotels. Instead,
when the traffic is increasing, it is paramount to reconfigure the network as fast
as possible, therefore a finer granularity should be adopted.

In Figure 3.13a the active BBU Hotels, highlighted in red, at 7:30 are shown. At
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Figure 3.10: Total number of hops of each instance for NFMig and NFStat, with
time granularity equal to 30 minutes over 24 hours.
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Figure 3.11: Primary BBU virtual function migration of each instance for NFMig
and NFStat, with time granularity equal to 30 minutes over 24 hours.
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Figure 3.12: Backup BBU virtual function migration as a function of time per-
formed by NFMig and NFStat, with time granularity equal to 30 minutes.

7:30 there are 6 active BBU Hotels (2, 10, 13, 18, 19, 27), as reported in Figure 3.9.
In Figure 3.13b the active BBU Hotels at 8:00 are reported after a traffic increase
with respect to 7:30. In particular, previously active BBU Hotels which are kept
active are highlighted in red, previously active BBU Hotels that have been deacti-
vated are circled in red, and new active BBU Hotels are highlighted in green. As
reported in Figure 3.9, at 8:00 there are 10 active BBU Hotels, 6 more than 7:30.
One can observe that 5 new nodes (3, 9, 25, 32, 38) have been activated: had one
fixed the previous solution, that would have led to 11 active BBU Hotels. Since
the objective function of NFMig rewards the deactivation of previously activated
BBU Hotels when they are not anymore needed, node 2 has been deactivated.
This allows NFMig to reach the optimal NFStat solution value of 10 active BBU
Hotels, in shorter computing time and by also minimizing the total number of
migrations to be performed.

3.4 Conclusions

An optimization algorithm, based on sequentially solving an ILP model by a lex-
icographic method, is proposed to design reliable latency-constrained C-RAN
with dynamic traffic. The model accounts for virtual BBU migration cost and
for penalties and rewards in the presence of activation or de-activation of BBU
Hotels between two time intervals. The algorithm is applied to a 24 hour traffic
profile to show its effectiveness in maintaining optimized resource assignment
according to the chosen time granularity. The results obtained with the proposed
NFMig algorithm are compared with those of the NFStat algorithm illustrated in
2.2.2, defined for static traffic. It is shown that NFMig shows negligible degrada-
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(a) Active BBU Hotels at 7:30

(b) Active BBU Hotels at 8:00

Figure 3.13: Active BBU Hotels activations and deactivations between 7:30 and
8:00, with time granularity of 30 minutes.
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tion in terms of number of active BBU Hotels and total hops with respect to the
optimum achieved by NFStat, with remarkable reduction in the total number of
virtual function migrations, 82% and higher for primary and 75% and higher for
backup functions. The execution time, in the range of few tens of seconds, allows
fine granularity in optimized design adaptation to traffic changes.
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Chapter 4

Column Generation Model

In this chapter, an alternative model for the optimal BBU placement problem for
a static traffic scenario will be developed, and its linear relaxation solved via a
Column Generation procedure. A basic Column Generation framework aimed at
the minimization of the number of active BBU Hotels is developed, that can be
used as a baseline for extensions aimed at more complex modelling, exact branch-
and-price algorithms or Column Generation based heuristics.

4.1 Problem Statement

The problem considered in this chapter is the Linear Programming relaxation of
the first step of the lexicographic method developed for the static traffic scenario,
that is, the minimization of the number of active BBU Hotels under maximum
distance and maximum wavelengths constraints.

The main difference from the previous approach is that now each variable
models a set of assignments of RRUs to a certain BBU Hotel, greatly reducing
the symmetry present in the original formulation, at the price of a much larger
number of decision variables. Given the fact that in general the number of pos-
sible assignments is exponential, and therefore it is impractical to include in the
model all variables, the model is initialized with an initial subset of variables en-
suring the existence of at least one feasible solutions, and variables are generated
dynamically via a Column Generation procedure.

4.2 Optimization Model

The optimization model consists in a Master Problem and in a Column Genera-
tion Subproblem. The purpose of the Master problem is to minimize the number
of active BBU Hotels, that is the primary objective in the problem statement. Due
to the fact that the number of variables can be too large to be effectively managed
by the solver, the Master problem is initialized with a subset of the variables.
Thus, the purpose of the Column Generation subproblem is to generate feasi-
ble assignments that improve the current objective function value of the Master
problem.
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Table 4.1: Models parameters and variables

Parameters

S Set of transport nodes.
L Set of links.
A Set of feasible RRU assignments.
H s× s matrix. hij is the distance in hops between nodes i and j computed

with the shortest path.
ri Number of RRUS at site i, i ∈ S.
δlij 1 if shortest path between i and j is using link l, 0 otherwise, i, j ∈ S,

l ∈ L
bi,j 1 if node j is the BBU Hotel for assignment i, 0 otherwise, j ∈ S, i ∈ A
ai,j 1 if RRUs at node j are in assignment i, 0 otherwise, j ∈ S, i ∈ A
wi,l Number of wavelengths occupied in link l by assignment i, l ∈ L, i ∈ A
MW Maximum number of wavelengths available in each link.
MH Maximum allowed distance in hops between RRUs and BBUs.
M A large number

Variables: Master Problem

xi 1 if assignment i is selected, 0 otherwise, i ∈ A

Variables: Column Generation Subproblem

αj 1 if RRUs at node j are in the assignment, 0 otherwise, j ∈ S
βj 1 if node j is the BBU Hotel for the assignment, 0 otherwise, j ∈ S
λl number of wavelengths of the assignment on link l, l ∈ L
πj Dual variables for constraints (4.2), j ∈ S, ≤ 0
µj Dual variables for constraints (4.3), j ∈ S, free
γl Dual variables for constraints (4.4), l ∈ L, ≤ 0
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The optimization model for the Master problem reads as follows:

minCm =
∑
i

xi (4.1)∑
i∈A

xi · bi,j ≤ 1 ∀j ∈ S (4.2)∑
i∈A

xi · ai,j = 2 ∀j ∈ S (4.3)∑
i∈A

xi · wi,l ≤MW ∀l ∈ L (4.4)

xi ∈ {0, 1} (4.5)

Objective function (4.1) minimizes the number of active BBU Hotels. In fact,
each decision variable represents a feasible assignment, that is one active BBU
Hotel and all of its assigned RRUs. Therefore, minimizing the number of uti-
lized assignments is equivalent to minimizing the number of active BBU Hotels.
Constraints (4.2) ensures that only one assignment per possible active BBU Ho-
tel can be selected. In fact, many feasible assignment per active BBU Hotel may
exists, but ultimately at most one of them can be selected for the final solution.
Constraints (4.3) ensure that each RRU has a primary and backup BBU Hotel as-
signed. This is equivalent to imposing that each RRU must appear in exactly two
assignment. Due to constraints (4.3) imposing that only one assignment can be
selected per possible active BBU Hotel, it is ensured that primary and backup
BBU Hotels are also distinct. Constraints (4.4) impose that the maximum num-
ber of wavelengths in each WDM fronthaul link does not exceed MW . Finally,
constraints (4.5) define the variable domains.

The Master problem is initialized with a subset of all possible assignments.
In order to add to the problem only assignments that can improve the current
solution, the reduced cost of the new potential assignment is employed as the ob-
jective function for the Column Generation subproblem. The optimization model
for the Column Generation subproblem reads as follows:

minCs = 1−
|S|∑
j=1

βj · πj −
|S|∑
j=1

αj · µj −
|L|∑
l=1

λl · γl (4.6)

|S|∑
j=1

βj = 1 (4.7)

αj · hk,j ≤MH +M · (1− βj) ∀j, k ∈ S (4.8)

λl ≥
|S|∑
j=1

αj · δlk,j · rj −M · (1− βj) ∀k ∈ S, l ∈ L (4.9)

λl ≤Mw l ∈ L (4.10)
βj ∈ {0, 1} (4.11)
αj ∈ {0, 1} (4.12)
λl ∈ N (4.13)
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Objective function (4.6) is the reduced cost of the assignment. A negative reduced
cost for a variable expresses the improvement in the objective function value of
the Master problem per unit increase of such variable. Therefore, finding a vari-
able with negative reduced cost implies finding a feasible assignment that, added
to the Master problem, will improve the current solution. On the other hand, not
finding any variable with negative reduced cost would imply that no assignment
exist that can improve the current solution, and thus the current solution is also
the optimal one. Constraint (4.7) impose that the assignment must have exactly
one active BBU Hotel. Constraints (4.8) impose that the distance in hops between
the RRUs in the assignment and the active BBU Hotel does not exceed MH . Con-
straints (4.9) count the number of wavelengths over each link with respect to each
path from the active BBU Hotel to each assigned RRU. Constraints (4.10) impose
that the total number of wavelength per link does not exceed the maximum ca-
pacity MW . Finally, constraints (4.11)-(4.13) define the variable domains.

An alternative formulation for the Column Generation subproblem is to fix
one active BBU Hotel and to find an improving assignment for that active BBU
Hotel only. Differently from the previous formulation, |S| subproblems need to
be solved per iteration, with at most |S| generated columns per iteration. The
alternative Column Generation subproblem formulation reads as follows:

∀k ∈ S :

1− πk +min−
|S|∑
j=1

αj · µj −
|L|∑
l=1

λl · γl (4.14)

αj · hk,j ≤MH ∀j ∈ S (4.15)

λl =

|S|∑
j=1

αj · δlk,j · rj ∀l ∈ L (4.16)

λl ≤Mw ∀l ∈ L (4.17)
αj ∈ {0, 1} (4.18)
λl ∈ N (4.19)

Objective function (4.14) is the reduced cost of the assignment, having the BBU
Hotel active at node k. Constraints (4.15) impose that the maximum distance
between the BBU Hotel at node k and its assigned RRUs does not exceed MH .
These constraints can be eliminated via a simple preprocessing operation, fixing
to 0 all variables αj that violate the constraints. Constraints (4.16) and (4.17) count
the number of wavelengths in the link between the BBU Hotel at node k and the
assigned RRUs, and ensure that the number of wavelengths per link does not
exceed the maximum MW . Finally, constraints (4.18)-(4.19) define the variable
domains.

4.3 Implementation

In this section, a sample C++ implementation in CPLEX Concert Technology for
the NFMig algorithm shall be provided. In particular, it will be shown how to
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set up the Column Generation loop for the case in which the Column Generation
subproblem has to be solved for each BBU Hotel. In this implementation, for
demonstrative purposes, the Column Generation subproblem at each iteration is
solved exactly, by solving the model with the solver. Implementation and testing
of a heuristic pricing algorithm for the subproblem is left as future work. It will be
assumed that the model parameters have been imported from properly formatted
.dat files and stored in appropriate data structures.

The first step is to build the Master problem model and initialize it with a
set of initial variables that provide an initial feasible solution. For instance, a
simple initialization set can be built considering all BBU Hotels to be active and
to consider them in pairs of adjacent neighbors, assigning for each one the RRUs
at their own transport node and the RRUs at the other node in the pair. In this
way, one easily ensures that each RRU has a primary and a backup BBU Hotel.

Initialization vectors are stored in properly formatted .dat files. The syntax for
loading the initialization data into the proper data structure is the following:

IloIntArray2 bbu_init(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

bbu_init[i] = IloIntArray(env, nbNodes);
ifstream bbuInit("bbu_init.dat");
bbuInit >> bbu_init;
bbuInit.close();

IloIntArray2 rru_init(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

rru_init[i] = IloIntArray(env, nbNodes);
ifstream rruInit("rru_init.dat");
rruInit >> rru_init;
rruInit.close();

IloIntArray2 wavs_init(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

wavs_init[i] = IloIntArray(env, nbLinks);
ifstream wavsInit("wavs_init.dat");
wavsInit >> wavs_init;
wavsInit.close();

In this way, a number of initialization assignments equal to the number of nodes
is created, characterized by the values of the parameters aij , bij and wij .

Differently from the previous implementation, the model needs to be dynam-
ically extended as new columns are generated, therefore it needs to be populated
in a different way. The syntax for creating the model, the decision variables, the
objective function and the constraints reads as follows:

IloIntArray rhs_bbu(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)

rhs_bbu[i] = 1;
IloIntArray rhs_rru(env, nbNodes);
for (IloInt i = 0; i < nbNodes; ++i)
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rhs_rru[i] = 2;
IloIntArray rhs_wavs(env, nbLinks);
for (IloInt l = 0; l < nbLinks; ++l)

rhs_wavs[l] = maxWavs;

IloModel master(env);

IloObjective activeHotel = IloAdd(master, IloMinimize(env));
IloRangeArray bbuConstraints = IloAdd(master,

IloRangeArray(env, 0, rhs_bbu));
IloRangeArray rruConstraints = IloAdd(master,

IloRangeArray(env, rhs_rru, IloInfinity));
IloRangeArray wavsConstraints = IloAdd(master,

IloRangeArray(env, 0, rhs_wavs));

IloNumVarArray assign(env);

In this way, an empty objective function and empty constraints are created, which
are going to be progressively populated during the Column Generation process.
In particular, for the objective function it is sufficient to specify that it is a mini-
mization problem. For the constraints, lower bounds and upper bounds are spec-
ified according to the mathematical model that has been defined. Finally, array
"assign" will hold the decision variables for each assignment.

The syntax for the initialization of the Master problem reads as follows:

for (IloInt i = 0; i < nbNodes; ++i)
assign.add(IloNumVar(activeHotel(1) +

bbuConstraints(bbu_init[i]) + rruConstraints(rru_init[i])
+ wavsConstraints(wavs_init[i])));

The one-liner within the loop performs several actions. With the "add" method,
a new variable is added to the "assign" array. As arguments for the definition of
the new variables, the coefficients in the objective function and in the constraints
are specified. In the above syntax, "activeHotel(1)" imposes that the coefficients
of the new variable (which is one of the xi variables) in the objective function is
equal to 1, whereas for the constraints it specifies the initialization coefficients in
the constraint matrix aij , bij and wij , which were imported from the initialization
data file.

As a next step, an IloCplex object acting as a solver for the Master problem is
created, along with data structures for holding the dual prices and the coefficients
for the new assignment generated via Column Generation. The syntax is the
following:

IloCplex masterSolver(master);

IloNumArray price_bbu(env, nbNodes);
IloNumArray price_rru(env, nbNodes);
IloNumArray price_wavs(env, nbLinks);
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IloNumArray new_bbu(env, nbNodes);
IloNumArray new_rru(env, nbNodes);
IloNumArray new_wavs(env, nbLinks);

At this point, the Column Generation loop is started. In this particular imple-
mentation, the Column Generation subproblem model is instantiated, solved and
destroyed within the loop. Had one implemented the first method for the Col-
umn Generation subproblem, in which it needs to be solved only once, the model
could have been defined outside the loop as for the Master problem. In this case,
where |S| problems needs to be solved per loop iteration, it would have been
impractical to define |S| models outside the loop, considering also the fact that
for large network it could cause a non-negligible memory overhead. Besides, in
Column Generation based heuristics, exact methods are called only in case of
a negative response from the pricing heuristic algorithm. Therefore, it is more
convenient, also for future extensions, to instantiate and destroy the subproblem
within the loop.

The loop can be declared as follows:

IloInt check = 1;
while (check) {

// Column Generation Procedure
}

This means that the loop will run until a certain check is satisfied. The check will
return false when no assignment with negative reduced cost is returned from
solving the Column Generation subproblem.

As a first step within the Column Generation loop, the Master problem is
solved and the values of the dual variables are stored in the data structures cre-
ated before, querying them from the IloCplex masterSolver object via the "getD-
ual" method. The syntax reads as follows:

masterSolver.solve();

for (IloInt i = 0; i < nbNodes; ++i)
price_bbu[i] = masterSolver.getDual(bbuConstraints[i]);

for (IloInt i = 0; i < nbNodes; ++i)
price_rru[i] = -masterSolver.getDual(rruConstraints[i]);

for (IloInt l = 0; l < nbLinks; ++l) {
price_wavs[l] = -masterSolver.getDual(wavsConstraints[l]);

At this point, a for loop solving the Column Generation subproblem is declared:

for (IloInt node = 0; node < nbNodes; ++node) {
// Subproblem building and solving
// If (reduced cost < 0) add column to the Master problem
// else break
}
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In the following, until otherwise specified, it will be assumed that the code is
running within the for loop. The Column Generation subproblem model can be
built as follows:

IloEnv env2;

IloModel colGen(env2);

IloObjective reducedCost = IloAdd(colGen, IloMinimize(env2, 1 -
price_bbu[node]));

IloNumVarArray rru(env2, nbNodes, 0, 1, ILOINT);
IloNumVarArray wavs(env2, nbLinks, 0, maxWavs, ILOINT);

// Constraints 4.15
for (IloInt j = 0; j < nbNodes; ++j)

colGen.add(rru[j] * costMatrix[node][j] <= maxDistance);

// Constraints 4.16
for (IloInt l = 0; l < nbLinks; ++l) {

IloExpr v(env2);
for (IloInt j = 0; j < nbNodes; ++j) {

v += rru[j] * delta[l][node][j] * rrusAtNode[j];
}
colGen.add(wavs[l] == v);
v.end();

}

reducedCost.setLinearCoefs(rru, price_rru);
reducedCost.setLinearCoefs(wavs, price_wavs);

IloCplex colSolver(colGen);

A new optimization environment is instantiated, in which variables and con-
straints are declared. Particular care must be put when working with multiple
optimization environments, as operations between objects pertaining to differ-
ent environments will raise an exception. Furthermore, since the instantiation of
these object is within the Column Generation loop, which is expected to run for
a large number of iterations, care must be taken in freeing correctly the allocated
memory, otherwise severe memory bloating will arise.

The objective function initialized with the constant terms (1 and the price re-
lated to the selected active BBU Hotel), whereas for variables α and λ the prices
are set via the method "setLinearCoefs" of the IloObjective reducedCost object,
taking as arguments a vector of variables and their linear coefficients in the objec-
tive functions. Constraints are added via the "add" method, in the same way the
models in the previous chapters were built. Finally, an IloCplex object "colSolver"
is created to be used as a solver for the Column Generation subproblem.

The model is then solved, and if the reduced cost turns out to be negative a
new column is added to the Master problem, otherwise the current loop iteration
is ended. The syntax is the following:
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colSolver.solve();

// Check if reduced cost is above tolerance
if (colSolver.getValue(reducedCost) >= -TOL) {

env2.end(); // free memory!
continue;

}

check = 1;

for (IloInt i = 0; i < nbNodes; ++i) {
if (i == node)

new_bbu[i] = 1;
else

new_bbu[i] = 0;
}

for (IloInt i = 0; i < nbNodes; ++i) {
if (colSolver.isExtracted(rru[i]))

new_rru[i] = colSolver.getValue(rru[i]);
else

new_rru[i] = 0;
}

for (IloInt l = 0; l < nbLinks; ++l)
if (colSolver.isExtracted(wavs[l]))

new_wavs[l] = colSolver.getValue(wavs[l]);
else

new_wavs[l] = 0;

env2.end(); // free memory!

assign.add(IloNumVar(activeHotel(1) + bbuConstraints(new_bbu) +
rruConstraints(new_rru) + wavsConstraints(new_wavs)));

The first if statement checks whether the objective function value, that is the re-
duced cost of the column, is above a very small tolerance (e.g. 10−6). In case of a
reduced cost above the tolerance, the new optimization environment is destroyed
and the current loop iteration is ended, moving on to the subproblem for the next
active BBU Hotel. In case of a negative reduced cost, the new generated column
is added to the data structures that were created previously. Before querying the
model for the values of the variables, one must check whether or not these vari-
ables have been extracted, otherwise an exception might be thrown. After storing
the values of the column coefficients in the appropriate data structures, the new
optimization environment is destroyed. Finally, the new generated column is
added to the Master problem using the same syntax that was shown during the
initialization phase, specifying the coefficients for the new variable in the Master
problem objective function and constraints.
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At this point in the code both the inner loop (the one cycling all active BBU
Hotels) and the outer loop (the Column Generation loop) are terminated. At
this point, the optimal solution of the LP relaxation of the optimal BBU Hotel
placement problem, hence a lower bound, is found. A simple heuristic for finding
an integer solution can be the following:

master.add(IloConversion(env, assign, ILOINT));
masterSolver.exportModel("D:/PNET/model.lp");
masterSolver.solve();
cout << "Solution status: " << masterSolver.getStatus() << endl;
cout << "Solution value: " << masterSolver.getObjValue() <<

endl;

The variables for the assignments are converted from float to integer variables,
and the model is solved using the generated columns. Another possible heuris-
tic framework could be to heuristically fix one column at a time based on some
criteria (e.g. the one that in the LP relaxation solution is closer to 1, the last col-
umn added, and so on) and repeat the Column Generation procedure in order to
generate additional columns until the integer solution is found.

4.4 Numerical Evaluations

In this section, the quality of the lower bound obtained for a 100 nodes network
instance via the developed Column Generation algorithm is discussed.

4.4.1 Problem Statement

The considered problem is the first step of the Lexicographic method in the static
traffic scenario, that is, the minimization of the number of active BBU Hotels,
under maximum distance, maximum number of wavelengths per link and re-
dundancy constraints. The evaluations were carried out for the 100 nodes Lattice
network, since it is the instance for which the model developed in 2.2.2 did not
find an optimal solution within the time limit.

4.4.2 Results

As a first result, it was observed that the approach for which the subproblem is
solved |S| times is much more efficient with respect to the approach in which it is
solved only once. In particular, the first approach takes 82 seconds to converge,
whereas the second approach takes more than an hour to converge. This can be
traced back to the fact that more diversified columns are generated, at most one
per potential active node. Furthermore, the ILP model in the approach where the
subproblem is solved only once presents Big M constraints in the formulation,
which are a well known cause of weak lower bounds, notably slowing down
optimization as the number of iterations increases.

Regarding the obtained lower bound, it was found that the Column Genera-
tion model is capable of finding a lower bound of 7 active BBU Hotels. This is
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better than the lower bound found in the 200 seconds time limit by solving the
Step 1 presented in 2.2.2. By plugging this lower bound within the first step of the
Lexicographic method unfortunately the optimal solution was not found in the
residual time, however the same solution previously found (8 active BBU Hotel)
was found in the residual time, with a much better optimality gap thanks to the
computed lower bound (11.7% versus 25.5%), with an absolute difference of only
1 active BBU Hotel.

4.5 Conclusions

A Column Generation model for solving the linear relaxation of the optimal BBU
Hotel placement problem was developed for the first step of the previously devel-
oped Lexicographic method in the static traffic scenario. For 100 nodes network
instance for which the optimal solution was not found, it was demonstrated that
the Column Generation model is capable of achieving a better lower bound in
reasonable computing times, improving the optimality gap by 13.8%, with an
absolute difference of only 1 BBU Hotel from the best integer solution found. De-
velopment of a heuristic pricing algorithm for the subproblem, calling the exact
algorithm only when the heuristic fails to return a negative reduced cost, can re-
duce the computing times. Finally, this baseline can be extended to be part of a
Column Generation based heuristic or an exact Branch-and-Price algorithm.
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Chapter 5

Conclusions and Future Work

In this thesis work two major problems in C-RAN optimization are considered,
and exact algorithmic frameworks are developed.

For the first problem, with reference to a static traffic scenario, a lexicographic
method for optimal BBU placement is developed, obtaining scalable and effi-
cient optimization for networks with up to 100 nodes, and the implementation
details are outlined. In particular, it is shown that for the two most important
objectives, optimality can be guaranteed for networks with up to several tens of
nodes in few minutes of computing time, whereas for the largest network of 100
nodes a solution of much better quality is achieved with respect to an aggregate
approach. The methodological contribution is also underlined, since in many
works in telecommunications engineering literature multi-objective ILP models
are solved via an aggregate method: on the contrary, leveraging expert domain
knowledge and the application scenario, the lexicographic ordering of the objec-
tives can lead to significant time savings and to gaining more degrees of freedoms
in tackling the different subproblems.

For the second problem, with reference to a dynamic traffic scenario, an algo-
rithm for optimal BBU placement with costs for virtual network function migra-
tions is developed, and the implementation details are outlined. Leveraging the
lexicographic method previously developed, computing times under few tens of
seconds are obtained, allowing for fast reconfiguration of the network. As far
as my knowledge goes, this is the first time in literature that such problem is
considered along with latency constraints and redundant assignment for relia-
bility purposes. It is demonstrated that this model obtains solutions negligibly
worse with respect to the ones obtained by the model for the static traffic sce-
nario, with up to 82% savings in the number of migrations. The time granularity
with which the algorithm should be applied is also discussed. In case of a trend
of increasing traffic it is best to run the algorithm with a fine time granularity
(e.g. every minute) in order to follow the traffic pattern and hastily reconfigure
the network, avoiding potential blockage scenarios. In case of a trend of decreas-
ing traffic, a coarser time granularity (e.g. thirty minutes) can be envisaged, due
to the fact that blockage scenarios are unlikely and virtual resources need only to
be released.

Finally, a Column Generation approach for the static traffic scenario is devel-
oped. The aim is to provide a baseline that can be extended for Column Gen-
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eration based heuristics or for exact Branch-and-Price algorithms. A Column
Generation model formulation for the first step of the lexicographic method is
developed, and the implementation details are outlined.

A possible extension of this work can be, starting from the Column Generation
baseline algorithm, to develop a full-fledged Column Generation based heuris-
tic or an exact Branch-and-Price algorithm, which have the potential to perform
quite efficiently given the promising lower bounds achieved. The model can be
further extended in order to take into account all possible paths from RRUs to
BBU Hotels, and not only the shortest path. In fact, a model considering all pos-
sible paths would be better be solved via a Column Generation algorithm, given
the large number of paths to be considered. Finally, the model can be further
extended by inserting additional reliability requirements, such as for protection
against single or multiple link failures.
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