
1 
 

ALMA MATER STUDIORUM – UNIVERSITÁ DI BOLOGNA 

 

School of Engineering and Architecture 

 

Master Degree in Electronics Engineering 

Master Thesis in  

HW/SW Design for Embedded Systems M 

 

Design of a memory-to-memory tensor reshuffle unit  

for ultra-low-power deep learning accelerators 

 

 

 

 

Candidate                    Supervisor 

Riccardo Gandolfi         Francesco Conti 

        

     Co-supervisor 

      Davide Rossi  

 

Session I 

Academic Year 2020/2021 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Summary 

 

Introduction           4 

 

1. Near-Sensor Analytics Devices        6 
1.1.  Processing at the Extreme Edge       6 
1.2.  Traditional and Deep Learning-based Near-Sensor Analytics  7 
1.3.  State-of-the-Art in SoC’s for Near-Sensor Analytics    8 
1.4.  PULP Architecture                  10 

1.4.1.  MCU Subsystem Architecture                10 
1.4.2.  Cluster Architecture                 12 
1.4.3.  Hardware Accelerators in Darkside               15 

 

2. Data marshaling in Deep Learning-based applications             17 
2.1.  HWC and CHW Data Formats                                                                                17 
2.2.  Impact of Data Marshaling                                                                                     18 

 

3. The Datamover: an accelerator for marshaling operations                                 22 
3.1. HWPE communication protocols                 22 
3.2. Internal structure and functionality                29 
3.3. Internal buffering mechanism                35      
3.4. Cluster integration                  41           
3.5.  SoC integration                    44 

3.5.1. Protocols and interfaces                 44 
3.6.  Testing the Datamover                  46 
3.7.  Use cases                      49 
 

4. Experimental Results                  53 
4.1.  Standalone results                  53 

4.1.1.  Setup                   53 
4.1.2.  Timing and area                  54   
4.1.3.  Performance                  55 

4.2.  Putting it all together: the Darkside SoC               65 

 

5. Conclusions                                                             66 

 

6. Bibliography                    67 



4 
 

Introduction 

 

The work done for this thesis was carried out in the context of the PULP (Parallel Ultra Low 

Power) platform, a conjoined project between the University of Bologna and the ETH of Zurich. 

The PULP SoC (System on Chip) is a multicore platform comprising of a MCU (Microcontroller 

Unit) Subsystem and a cluster of RISCV cores capable of achieving very high energy efficiency 

while retaining flexibility and programmability, crucial features in the field of embedded 

systems and IoT (Internet of Things) applications.   

Especially in the field of IoT, the perspective of moving the elaboration towards the endpoint 

sensors is a promising direction, since it allows to reduce both the energy spent on 

communication and the network load by exploiting extreme-edge computing and near-sensor 

analytics. 

Also, Deep Neural Networks (DNNs) are experiencing a rapid growth in importance. These 

networks are able to offer high performance and accuracy in a wide range of artificial 

intelligence and image processing tasks but are quite resource demanding. To mitigate these 

costs, data marshaling and reordering operations could be carried out on data stored into 

memory. This approach could prove useful to reduce the costs associated to data movements 

and communications.  

Also, the need for high performance and low-latency data transfers within MCUs has brought 

more and more focus on accelerators and DMAs for low power hardware platforms such as 

PULP. In this context, the following thesis illustrates a lightweight and easily configurable 

accelerator to perform data marshaling operations on tensors stored in the TCDM memory of a 

PULP cluster. This is particularly useful to perform HWC to CHW conversion on data utilized by 

image processing applications, with HWC (Height-Width-Channel)  and CHW (Channel-Height-

Width) being the two most common formats in which image data is stored into memory.  

The proposed accelerator will be part of the Darkside prototype, a chip under design during the 

time frame of the development of this thesis work. This chip implements the PULP platform in 

tsmc65 technology and includes both a SoC and a cluster of 8 RISCV cores. This chip is mainly 

focused on image processing applications, and it’s featured with a variety of hardware 

accelerators. Besides the Datamover, the cluster is provided with a tensor processing unit and 

a depthwise accelerator.  
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The first chapter will focus on a brief overview of the near-sensor analytics trend in IoT 

applications and extreme-edge processing in MCUs. The main advantages deriving from 

implementation of learning-based algorithms will be shown and a few state-of-the-art solutions 

will be illustrated. Then, an overview of the PULP platform architecture will follow.  

The second chapter will concentrate on data marshaling in deep learning-based applications. 

The HWC and CHW formats will be illustrated and the need for data marshaling will be 

discussed.   

In the third chapter, the Datamover structure and functionality will be discussed in detail. 

Particular attention will be given to the internal structure, the instantiated modules, and the 

utilized communication protocols used to interface the accelerator with the rest of the cluster. 

Also, the integration of the Datamover within the SoC will be explored and detailed. Finally, the 

internal buffering mechanism will be described, and focus will be given to how it can enable the 

accelerator to perform reordering operations on data widths lower than 32 bits.  

In the fourth and final chapter, the synthesis procedure and setup for the Datamover will be 

shown and the related results will be discussed in terms of area occupation, power 

consumption and timing constraints. At the end, experimental results will be provided for the 

whole Darkside SoC.  
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1: Near-Sensor Analytics Devices 

There are two main challenges to tackle when entering the field of near-sensor analytics. The 

first one being the need for collecting meaningful data-streams directly from endpoint sensors 

and use them in learning-based algorithms. This poses a challenge in terms of resources, with 

the MCUs being forced to operate in a critical environment in terms of memory size, power 

consumption and computational power. Of course, operating on-device allows for speed and 

power consumption to be optimized, but poses a serious challenge in terms of implementation 

and resource management.  

The second main challenge is to efficiently provide data-security and privacy for the 

information being elaborated on the IoT devices. This is all the more important when 

considering the wide range of IoT applications, spanning from aerial surveillance to health 

monitoring and home automation.  This can be dealt with by means of encryption engines, 

which however add a significant workload on the device, further increasing the computational 

stress on the end-nodes.  

These challenges are, however, balanced by some promising points of strength. By exploiting 

end-nodes capable of elaborating data directly on the spot, lower latency is introduced with 

respect to a cloud-based computing solution. The key difference is to elaborate data as close as 

possible to its gathering point, which allows better support for latency-sensitive applications, 

and also allows for better scalability and flexibility. By not relying on network connectivity and 

a centralized computing solution, edge-computing can also be extended to remote areas and 

emergency situations, all scenarios in which a cloud-based solution would prove far less 

efficient and reliable.  

  

1.1: Processing at the Extreme Edge 

The challenges mentioned above derive from the trend of moving the computation in IoT 

applications towards the end-nodes, as to avoid transmitting large volumes of unprocessed 

data and allow elaboration directly on the spot. In this context, the IoT end-nodes must shift 

their role, from simple data collectors to being able to perform a pre-selection of valuable data 

and obtain high-level features to transmit onward in the system. 
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These nodes could increase their capabilities by adding specialized hardware and encryption 

engines, thus optimizing on-the-spot computation, and simultaneously addressing security 

concerns.  Several trade-offs are to be considered though.  

 

1.2: Traditional and Deep Learning-based Near-Sensor Analytics 

IoT end-nodes must operate in a severe resource-constrained environment, thus having to deal 

with trade-offs between power consumption and computational power. The majority of current 

solutions rely on small batteries, being able to handle only low-bandwidth sensors (the likes of 

temperature and pressure sensors). In this context, many approaches rely on heavy duty 

cycling and deep-sleep power states, to achieve power consumption rates in the order of few 

tens of nW. Other approaches are  based on high degrees of circuit-level optimization, with the 

implementation of leakage suppression modes, with the  goal to provide minimum power 

consumption at very low  frequencies (few Hz [1]).  

These traditional approaches are undoubtedly limited when facing the requirements of the 

most recent IoT applications, focused on obtaining rich and meaningful data directly from the 

end-nodes, such as audio or video streaming, and performing computationally intensive tasks 

directly on the field of operation [1].    

Luckily, DNNs and CNNs (Convolutional Neural Networks) algorithms can provide a crucial 

support in moving complex computations on MCUs and transmitting only classes and high-level 

features to the higher hierarchies of the system. This approach allows to avoid sending large 

volumes of raw sensor data, thus reducing the energy consumption and time needed for data 

communications. DNNs are indeed capable of delivering high accuracy and outstanding 

performances on a wide range of application fields, from speech recognition to image 

processing and artificial intelligence. Versatility and performances come at a price though. The 

computational complexity related to this kind of algorithms is quite high, with millions of MAC 

operations and a large memory footprint being required [2].  

So, a crucial factor in near-sensor analytics is to move these complex and resource-demanding 

algorithms on the end-nodes of IoT systems and still achieve acceptable functionality and 

performances.  
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1.3: State-of-the-Art in SoC’s for Near-Sensor Analytics 

As previously mentioned, the need for secure and reliable data elaboration is one of the crucial 

requirements in near-sensor analytics, and the related workload is all the more demanding 

when combined with the one deriving from DNNs algorithms. The resulting computational 

effort required from the edge devices quickly becomes prohibitive and calls for urgent 

solutions.   

The solution illustrated in [2] tackles these challenges by proposing a specialized SoC named 

Fulmine where multiple engines, either programmable cores or hardware accelerators, are 

connected to the L1 memory through a low-latency interconnect. This SoC is capable of 

sustaining intensive data analytics workloads with optimal security and privacy features 

thanks to an embedded encryption engine. As already mentioned, encryption engines take a 

considerable toll on the global workload, thus the integration with an efficient low-power 

system is mandatory.  The studied use cases include aerial surveillance, CNN-based detection, 

and seizure detection, with a maximum energy consumption of 12.7 pJ per operation.  

In [3] another solution is proposed, by relying on low bit-width QNNs (Quantized Neural 

Networks), complex machine learning models and algorithms can be deployed on IoT end-

nodes, with the beneficial effect of reducing the required memory footprint. This can be done 

by exploiting the quantization technique, allowing to  reduce inputs and weights to fixed-point 

formats such as 8-bits or even going to sub-byte widths.  

Complexity though, is added on another side. Given the lack of sub-byte instructions in state-

of-the-art microprocessors, this optimization becomes hard to exploit. Thus, the need for 

specialized SIMD (Single Instruction Multiple Data) instructions arises. The exciting feature is 

that each operand precision is set dynamically in a core status register rather than being 

explicitly encoded. This avoids increasing complexity in decoding stages and saturating the 

encoding space when compared to a variable-length instruction approach. To this end, a new 

RISCV ISA core MPIC (Mixed Precision Inference Core) is proposed.  

In [1] the Mr. Wolf chip is proposed as a PULP SoC for IoT edge processing provided with a wide 

set of peripherals and an autonomous IO subsystem. Mr. Wolf also features an eight-core cluster 

to be utilized for the most computational-intensive tasks and an aggressive on-chip power 

management system to enable energy-efficient operation for always-on IoT end-nodes. This 

allows to improve performance by several orders of magnitude with respect to a traditional 
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single-core MCU. This is done by exploiting several on-chip memory-sharing techniques and 

implementing a parallel programmable processing engine for multi-sensor data analysis and 

fusion.  

In [4], the Envision platform is proposed as a way to achieve higher performances than most 

state-of-the-art ConvNet (Convolutional Networks) accelerators and GPUs (by one order of 

magnitude) and meet the requirements for always-on applications. The main feature of the 

Envision platform is the possibility to scale the energy consumption while maintaining 

recognition rate and throughput in visual recognition applications. Specifically, the concept of 

hierarchical recognition is put to use, where many different and individually trained 

convolutional networks can be exploited. These networks differ for size, topology and 

computational precision, allowing to scale the energy consumption while constantly scanning 

an object and to choose the accuracy needed case-by-case. 

Another solution with a degree of reconfigurability and flexibility is proposed in [5]. Eyeriss is 

a reconfigurable accelerator for deep convolutional neural networks that exploits concepts of 

data reuse and statistics to minimize energy consumption avoiding unnecessary computations 

and data accesses. Data movement is optimized through the intensive use of buffering to 

facilitate the temporal reuse of data. Besides this, by clock gating unused PEs and saving partial 

results to be later restored, configurability ad efficiency are obtained.  

Besides purely hardware solutions, also software kernels are proposed to maximize the 

performance of neural networks while minimizing their memory footprint. In [6] the CMSIS-

NN kernels are proposed as a way to achieve improvements in terms of throughput and energy 

efficiency. Functions that implement the most popular neural network layers, such as 

convolutions, depthwise convolutions and fully connected, are supported by utility functions 

including data conversion and activation tables. This way, more complex neural network 

modules can be built.  
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1.4: PULP Architecture 

The following overview  of the PULP platform takes the Darkside chip as a reference. Both the 

cluster and the MCU subsystem will be illustrated.  

 

1.4.1: SoC Architecture 

The SoC is built around the open-source full-RI5CY core ([7], [8]) , a two-pipeline stage RISC-V 

processor optimized for low power consumption. This core is connected to a low latency 

interconnect and implements the RV32IMC RISC-V ISA. It also includes an integer 32-bit 

sequential multiplier and a 32-bit divider. It provides support for the basic RISCV extensions as 

well as for the XpulpV2 extension, which introduces SIMD instructions for 16- and 8-bits 

formats, hardware loops and bit manipulation instructions. The SoC also features 16 SRAM 

banks of 32 KB each, for a total of 512 KB of interleaved memory, a private memory of 64 KB 

and 8 KB of ROM memory. All these components are connected through a low-latency 

interconnect [9].  

 

 

Figure 1: Darkside MCU Subsystem Architecture 
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A DMA controller [10] is also included in the SoC, as well as all the typical peripherals of an 

advanced MCU, such as I2S, UART, QSPI, and I2C. Also, an HyperBus peripheral is included to 

extend the on-chip memory through a DDR interface with 800 Mbit/s of bandwidth. Every one 

of these peripherals has a dedicated lightweight µDMA channel, which allows to control data 

transfers from and to the L2 memory. Besides granting a predictable latency related to memory 

accesses, this also allows multiple and concurrent data transfers towards external devices 

while operating at low frequency with no need for the peripherals to be connected to large 

buffers.  

Also, a low-cost APB bus provides access to configuration registers, clock and power control, 

timers and a SoC event generator. As can be seen from Fig. 1, also the Datamover is connected 

to the low latency interconnect. This was done by writing a wrap of the accelerator in order to 

bind together the different interfaces used within the SoC and the cluster. The cluster and the 

SoC are connected by means of an AXI bus . The accelerator is connected to the interconnect by 

means of a XBAR_TCDM_BUS and an APB_BUS (based on the industrial standard AMBA, as well 

as for the AXI bus) interfaces.  

Regarding the TCDM protocol, it’s a simple memory protocol used to interface HWPEs with to 

L1/L2 external memories. In particular, the L1 (Level 1) shared memory is the closest memory 

available to the processor and it’s meant to be accessed in a quick and easy manner. Thus, it’s 

crucial that the interconnect provides a large bandwidth coupled with a very low latency. While 

accessing local shared memory can take up to a couple of cycles, accessing a global memory 

would prove highly inefficient, given the latency in the order of hundreds of cycles [9]. It 

supports only single outstanding transactions and operates around a two-signals handshake, 

which is based on two phases: request and response. Specifically, a valid handshake only 

happens when both the req and the gnt signals are asserted.  

One of the key aspects  to  achieve high computing efficiency is the sharing of on-chip memory 

resources. For this reason, all the functional units share data through the L2 memory, by means 

of a double-buffering mechanism. This mechanism allows for data transfers from peripherals 

to L2 and from L2 to L1 to be completely overlapped. Also, the memory hierarchy is organized 

as a single address space, this way every master in the chip can access all memory locations, 

leading to  an easier overall programmability of the system.  

 



12 
 

1.4.2: Cluster Architecture 

The cluster is built around 8 RISCV-NN cores, 16 TCDM memory banks, a TCDM interconnect 

and the HWPEs. The cores of the cluster support the RVC32IMF instruction set, plus an 

extension for energy-efficient digital signal processing (Xpulp).  This set of instructions 

includes hardware loops, load/store with post increment and MAC operations. Other 

instructions include vectorial ones and bit manipulation.  

In the following image, the general cluster architecture for a PULP platform is shown.   

 

 

Figure 2: Cluster Architecture 

 

The L1 memory can serve all memory requests in parallel with a single-cycle access latency by 

means of a low-latency logarithmic interconnect featuring a word-level interleaving scheme.  

 

 



13 
 

This TCDM interconnect consists of two layers:  

• Routing tree: the routing switches route each packet between the processor side and the 

memory side. These switches are bidirectional and handle data, handshake signals and 

addresses.  

• Arbitration tree: the arbitration switches use the round-robin algorithm. This way, a 

starvation-free arbitration mechanism is provided.  

Further  details about the TCDM interconnect will be given in section 3.1, where the HWPE 

communication protocols are described.  

A dedicated peripheral interconnect is used to access the cluster peripherals such as a timer 

and the event unit (HW SYNC in Fig. 2) and the AXI bus as well. The lightweight DMA controller 

[11] supports data movements from L1 memory to L2 memory, and up to 16 outstanding 

transactions toward the AXI bus, thus hiding the access latency to the L2 memory.  

The hierarchical cache [12]  is implemented with a latch-based memory, which improves the 

access energy consumption, but significantly increases the area overhead. To ease this, the 

cache is shared by the 8 cores, in such a way to avoid instruction replication on the private 

caches which are typically employed in multi-core systems. Also, to reduce the impact of 

physical implementation of latch-based memories, the cache is split  into four arrays, so that 

each array has a write port connected to the AXI bus. This multi-port architecture allows the 

cores to perform non-blocking access to the cache, with performances equal to a private cache.  

Additionally, fast event management, parallel thread organization and synchronization are 

supported by a dedicated hardware event unit enabling low-overhead parallelism to boost 

performance and energy efficiency of parallel workloads with a fine-grain. This specialized 

hardware block also controls the clock gating at the top level of each core within the cluster. 

This allows to minimize the dynamic power consumption of a core waiting for a certain event 

and resume its execution in just two clock cycles.  

Also, both the DMA controller and the event unit have dedicated ports to each core of the cluster 

in such a way to enable fast and non-blocking accesses. The connection strategy, a 2-level 

demuxing logic, ensures that accesses to the low-latency interconnect are prioritized over the 

peripherals.  
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Since FPUs are expensive in terms of area [1], a shared approach is adopted. This works since 

the percentage of floating-point operations is rarely greater than 50% in most applications, and 

FPUs need to be pipelined to match the frequency of the rest of the system.  

The following operations are implemented by the FPU:  

 

Figure 3: FPU Supported Operations 

 

Also, the shared FPU is integrated into the cluster through an auxiliary interconnect that, 

featuring a request/grant protocol with round-robin arbitration, allows each processor to 

access each unit of the FPU and to be stalled whenever the shared resource is used by another 

CPU.  

While more focus will be given to the HWPE subsystem later in the thesis, a general structure 

is illustrated in the following figure. 

 

Figure 4: HWPE Subsystem scheme 
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The HWPEs are instantiated within the HWPE subsystem, and local bindings can be performed 

to adapt the interfaces of the accelerator. Specifically, two interfaces are needed:  

• HCI (Heterogeneous Cluster Interconnect) core interface: this interface is used for data 

communication between the TCDM interconnect and the accelerator.  

• Xbar periph bus interface: this interface is used for configuration purposes. Generally, a 

control module exposing one or more register contexts is instantiated inside the HWPE. 

Note that this interface requires a local binding inside the subsystem, since the HWPEs 

use a specialized interface named hwpe_ctrl_intf_periph.  

These interfaces will be described in detail in section 3.1. 

 

1.4.3: Hardware Accelerators in Darkside 

Now, the HWPE subsystem implemented in Darkside will be described in detail, while a general 

structure has already been shown in Fig. 4.  

  

Figure 5: Darkside HWPE Subsystem scheme 
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Three hardware accelerators have been designed for the Darkside chip:  

• Tensor Processing Unit: it performs mixed precision matrix products between floating 

point operands for neural network training and inference.  

• Depthwise Accelerator: it allows to optimize the depthwise convolution of a 3x3 kernel 

by exploiting re-use of data stored into memory in the HWC format.  

• Datamover: it performs reordering operations on tensors stored in the L2 memory of 

the cluster and the L1 memory of the SoC. The internal buffering mechanism allows 

these operations to be performed on data widths lower than 32 bits (specifically 8-, 4-, 

2- and 1-bit) within each word being transferred. Also, the address generator modules 

allow to shuffle the elements of the tensor at word-level.  

These three IPs are integrated within the PULP cluster and connected to the low-latency 

interconnect. The interfaces used in the HWPE subsystem are hci core interfaces for the tcdm 

ports and hwpe ctrl periph for the configuration ones. While the Datamover is directly 

connected, the other two accelerators are connected to a mux and can be switched between one 

another. This holds true for both the data and configuration interfaces, as well for the event 

signals coming from each accelerator. The selection signal hwpe_sel_i comes from a register 

instantiated in the cluster control unit.  

Together, these IPs allow for a lot of flexibility and configurability when performing tasks 

involving neural networks, from data marshaling to depthwise convolutions and inference. 

Further in the thesis, the HWPE library modules and interfaces will be briefly discussed, while 

a bit more focus will be given to the communication protocols.  
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2: Data Marshaling in Deep Learning-based Applications 

Data marshaling is the process of transforming the layout of data stored into memory in a more 

convenient format for its transmission or elaboration by a DNN [13]. Given the rising 

importance and diffusion of DNNs on MCUs, one of the crucial tasks in deep learning 

applications deployment is to ensure  that these networks are not redundant. This means that 

no additional operations should be performed unless the quality of the results is improved. To 

this end, there are some trends that aim at minimizing the price of DNNs operation while 

maintaining a good quality of results. Two orthogonal directions can be identified:  

• Trying to adapt DNNs for deployment on small devices by shrinking their topologies.  

• Introduce quantization operations to minimize the cost-per-operation both in terms of 

energy and parameters stored into memory.  

Another crucial task is to achieve maximum utilization of the computing units once the DNN 

has been deployed. In this sense, it’s vital to reduce performance penalties related to 

transferring data across the memory hierarchies.  In some cases, these penalties can be solved 

by realizing highly specialized hardware architectures to accelerate specific layers or entire 

networks, but this can lead to a lack of flexibility. This can be countered by providing a highly 

optimized software support instead of physical hardware blocks.  

 

2.1: HWC and CHW Data Formats 

These are the two most common formats in which image data can be found stored into memory:  

• CHW: Channel-Height-Width 

• HWC: Height-Width-Channel 

Depending on the format, the dimension ordering is the same as that of the data stride. 

Considering an HWC format, the data along the channel is stored with a stride of 1 element, 

whereas the data along the width is stored with a stride equal to the channel count. At last, the 

data stored along the height is stored with a stride equal to 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑜𝑢𝑛𝑡 × 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ.  

Analogously, considering a CHW format, data along the width dimension is stored with a stride 

of 1, data along the height with a stride equal to the image width. Again, data stored along the 

channel dimension has a stride of 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ × 𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡. 
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For a visual reference, the following image is proposed:  

 

Figure 6: Data storage in 3D [6] 

 

2.2: Impact of Data Marshaling 

Thus, one of the main challenges is to efficiently move data across the memory hierarchy and 

minimize the chance for data traffic to become an application bottleneck. So, data re-use and 

tiling strategies become essential.  

 

Figure 7: Typical Deep Neural Network Structure [6] 

Popular neural network layers are convolution, depthwise separable convolution, fully 

connected, pooling and activation. Many of these require data reordering operations in 

memory. For example, a convolution layer extracts a new feature map by computing a dot 

product between filter weights and a small portion of the input feature map. Typically, a 

convolution is decomposed into two phases:  

• Input reordering: in the form of an im2col operation.  

• Dot product: to compute the activation values of the output feature map. 
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This decomposition is necessary to efficiently implement the convolution operation on an MCU-

like device. 

Specifically, im2col is the process  of transforming the input into columns that contain the data 

required by each convolution filter. This allows to load the input features as a contiguous array 

into memory. An example of the im2col operation is shown below:  

 

 

Figure 8: im2col operation [6] 

 

One of the main challenges of the im2col operation is the increased memory footprint deriving 

from repeated pixels of the input image within the column buffers. Indeed, the required 

memory footprint can be computed as 𝐶 × 𝑘𝑤 × 𝑘ℎ. To alleviate this, partial im2col operations 

could be implemented ([6]) to only expand a limited number of columns, sufficient to boost the 

matrix-multiplication kernels while keeping the memory overhead low. So, the performance of 

convolution layers is significantly impacted by the layout with which image data is stored into 

memory.  
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The following image can be considered for reference:  

 

Figure 9: Convolution on 3D data [14] 

Then, the values of the output feature map can be computed as: 

𝑂(𝑚, 𝑥, 𝑦) = 𝑑𝑜𝑡 (𝑊(𝑚), 𝑖𝑚2𝑐𝑜𝑙(𝑥, 𝑦)) 

Where 𝑊(𝑚) is the m-th bank of the weight filter, whereas 𝑖𝑚2𝑐𝑜𝑙(𝑥, 𝑦) is the unrolled input 

buffer of length 𝐶 × 𝑘𝑤 × 𝑘ℎ. Between the two formats introduced in section 2.1, the most 

efficient one is HWC. This format allows data for each pixel, which can be identified as a (x,y) 

coordinates couple for a specific channel, to be stored in a contiguous manner into memory. 

Data stored in such manner can also be copied efficiently by means of SIMD instructions, thus 

introducing lower runtime overhead when the im2col buffers are built.  

In the following image some results gathered in [6] are shown:  

 

Figure 10: Comparison between CHW and HWC data layout [6] 
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These results are related to the convolution execution on a Cortex-M7. The HWC input is fixed 

at 16x16x16 at the beginning and then the number of channels is swept. With the same matrix 

multiplication performance, the im2col runtime is visibly lower for the HWC format.  

So, designing a hardware accelerator able to perform conversions between the HWC and CHW 

formats on image data stored into memory could lead to significant reductions of runtime and 

increase of performance in relation to convolution layers. Indeed, a lot of attention will be 

given to the capability of 3D stridden data access and possibility of unpackaging data below 

the 8-bit data width, which can prove useful when deploying QNNs.  
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3: The Datamover: An Accelerator for Data Marshaling Operations 

The Datamover is a simple accelerator capable of performing stridden accesses into the tcdm 

memory of the cluster, both to load and store data. This allows to perform a variety of 

reordering operations along three dimensions simply by configuring a set of registers. 

Alongside this, an internal buffering mechanism has been implemented in order to perform 

reordering operations with different granularities within each word of the  tensor. This chapter 

is structured as follows. First of all, the HWPE library modules and communication protocols 

will be described, followed by an in-depth look at the Datamover internal structure and 

functionality. Then, both the integrations of the Datamover within the cluster and the SoC will 

be presented, while focusing on the interfaces and protocols used in each context. Then, the  

internal buffering mechanism of the Datamover and possible use cases will be illustrated.  

 

3.1: HWPE communication protocols 

HWPEs (Hardware Processing Engines) are specialized hardware accelerators that can be 

integrated in the SoC and the cluster of a PULP system to perform specific tasks and help the 

system to improve its overall efficiency and performance. A general structure of these 

accelerators is shown in the following image. 

 

Figure 11: Typical HWPE structure 
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HWPE-Stream Protocol 

First of all, the HWPE-Stream protocol is the one used to  move data within the sub-components 

of the accelerator. So, these streams are generated and consumed within the accelerator. I’'s 

possible to use them to cross different clock domains when coupled with a dual-clock FIFO. 

Particular attention must be put on the handshake procedure, which must occur in a fully 

synchronous way.  

To use this protocol, a hwpe_stream_intf_stream must be instantiated. The interface signals and 

directions can be observed in the following figure.   

 

Figure 12: hwpe_stream_intf_stream signals 

 

This interface has two modports: source and sink. Modports are lists of signals in which 

directions are declared for each signal of the interface. When instantiating a module that makes 

use of interfaces, the related modports need to be specified.  

Referring to Fig. 12, the  source modport is the one sending data, strobe and valid signals, 

whereas the sink port only responds with the ready signal. The data signal obviously contains 

the data payload, whereas each bit of the strobe signal indicates a meaningful byte of data. The 

handshake of the protocol relies on the valid and ready signals, both of which are asserted when 

set to 1. The following set of four rules is to be respected for a valid handshake to happen:  

• Both valid and ready  have to be asserted for a valid handshake to  happen. Also, after 

the handshake, the current payload is considered consumed by the sink side.  

• The data and strb signals can change value only when valid is de-asserted or in the cycle 

following a valid handshake.  



24 
 

• The valid signal can’t depend in a combinational way on the ready signal for its 

assertion. Such a constraint is not required for the ready signal.  

• The valid signal can only be de-asserted after a valid handshake.  

By referring to Fig. 11, these are the kind of streams that the streamer and the internal engine 

of the HWPE use to communicate with each other. 

 

TCDM-HWPE Protocol 

The communication between the HWPE and the TCDM interconnect is handled by means of a 

hci_core_intf interface. The involved signals are shown in the following figure.   

 

Figure 13: hci_core_intf signals 

 

Note that the HPWE exposes a master modport. The signals meanings are:  

• Req: the req signal is sent by the master of the transaction to the tcdm interconnect as a 

way to request access to a shared resource (e.g. a memory bank).  

• Gnt: this signal is used to handle conflicts between different masters requesting access 

to the same memory bank within the same cycle. When asserted for a certain master, its 

request is confirmed, and the data is forwarded. Thus, the handshake procedure takes 

place. Otherwise, if the request cannot be immediately granted, a stall occurs.  
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• Add: this signal contains the desired address for the read/write access performed by the 

HWPE.  

• Wen: this signals discriminates between write accesses (wen=0) and read accesses 

(wen=1) to memory.  

• Data: this signal contains the data payload to be written into memory at the specified 

address.  

• Be: this signal indicates a valid data byte when set to 1.  

• Boffs: it specifies the intra-bank offset.  

• Lrdy: indicates when data being sent from the master is ready for being loaded into 

memory.  

• R_data: data being read from the master when a read access into memory is specified.  

• R_valid: it indicates when valid data is being sent to the master for reading accesses.  

• R_opc: it  specifies the opcode of the current operation. This is not used in the 

Datamover.  

By referring to Fig. 11, this interface that allows the streamer component of the HWPE to 

communicate with the TCDM interconnect.  

The arbitration mechanism between the different masters accessing to the memory is 

implemented through a logarithmic interconnect, so a binary tree is established for each 

memory bank master port [15]. This kind of structure is shown in the following figure.  

 

 

Figure 14: Example of HCI in a cluster [15] 
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It’s quite clear how, by increasing the number of afferent ports to the interconnect, this 

structure can quickly grow in size and latency. So, for HWPEs exposing a lot of ports towards 

the interconnect, a separate structure can be implemented: the HWPE interconnect. The 

resulting internal structure of the interconnect is the following.  

 

 

Figure 15: Internal structure of the HCI [15] 

 

This solution allows to avoid the arbitration inherent to the logarithmic interconnect for the 

HWPEs. The main elements are:   

• HWPE Interconnect: by adopting a word interleaved memory scheme and allocating 

consecutive addresses to adjacent memory banks, a spread of consecutive data over 

multiple banks is obtained. This mechanism allows for a high degree of flexibility when 

accessing data, since the accelerator will request data from contiguous memory banks, 

thus eliminating possible conflicts. Also, it’s crucial that, at the memory side, all requests 

from the HWPE are collectively granted or stalled, avoiding situations where only a 

portion of data required by the accelerator is valid.  This derives from merging all the 

slave ports of the HWPE into a single larger port.  
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• Shallow Interconnect: this block performs multiplexing between the access to the 

memory banks and the two interconnect structures. This is done by exposing two sets 

of slave ports, one for each interconnect, and featuring each memory bank with a 1-bit 

multiplexer that selects between the LIC (Logarithmic InterConnect) and the HWPE 

interconnect. This arbiter block is needed since both the interconnects expose master 

ports towards the memory banks.  

In the following figure, an example of request  forwarding towards the HWPE interconnect is 

shown.  

 

Figure 16: HWPE Interconnect request forwarding [15] 

 

In this case, the HWPE needs to access four double words starting from address 0x98. By 

arranging data as previously mentioned, four different memory banks need to be accessed in 

order to satisfy the accelerator request.  

This bypass solution is not strictly needed by the Datamover accelerator, since only a single 32-

bits wide port is exposed towards the interconnect.  
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HWPE-Periph Protocol 

HWPEs generally expose a control slave port for configuration purposes. This port is connected 

to the peripheral system interconnect by means of a hwpe_ctrl_intf_periph. The interface 

signals are shown in the following figure.  

 

Figure 17: hwpe_ctrl_intf_periph signals 

 

Most of the signals have the same role as in the hci_core_intf. The only differences are due to 

the id and r_id signals, which are used in load operations. The id identifies the master during 

the request phase, whereas the r_id is used during the response phase. This is very useful when 

data traffic has to be sorted through different masters. By  referring to Fig. 11, this interface is 

used to configure the control sub-component of the HWPE through the peripheral interconnect.  
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3.2:  Internal Structure and Functionality 

The description of the Datamover structure begins from the top module. The interface exposed 

by the top module is the following:  

 

module datamover_top #( 
  parameter int unsigned ID        = 10, 
  parameter int unsigned BW        = 32, 
  parameter int unsigned N_CORES   = 8, 
  parameter int unsigned N_CONTEXT = 2 
) ( 
  // global signals 
  input  logic                    clk_i, 
  input  logic                    rst_ni, 
  input  logic                    test_mode_i, 
  // events 
  output logic [N_CORES-1:0][1:0] evt_o, 
  // tcdm master ports 
  hci_core_intf.master            tcdm, 
  // periph slave port 
  hwpe_ctrl_intf_periph.slave     periph 
); 

Figure 18: Datamover top module interface 

 

Besides the clock and reset (active low) signals, the interface includes a test mode signal, an 

array of events and the two interfaces mentioned in the previous section. The interface named 

tcdm is the one used for communicating with the tcdm interconnect, whereas periph is the one 

used for configuration of the control unit within the accelerator.  

Within the top module, the following are instantiated:  

• datamover_streamer: this modules receives the input stream from the tcdm memory 

and handles the internal data streams.  

• datamover_engine: for the Datamover the engine is just a FIFO that takes the stream 

coming from the stream merger and sends it back to the streamer module.  

• hwpe_ctrl_slave: this is the module used to configure the accelerator. It features one 

context of 13 configuration registers that can be accessed via-software during testing.  

• datamover_buffering: this is the buffering module used to unpack the incoming data 

according to the width specified during configuration.  
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• stream_splitter: this module generates a variable number of data streams depending on 

the chosen buffering factor.  

• stream_merger: this module recreates a single stream after the buffering modules. The 

conjoined functionality of this module and the buffers is what allows the reordering 

operations on the data being streamed.  

 

Datamover streamer 

The streamer module exposes the following interface:  

module datamover_streamer #( 
  parameter int unsigned TCDM_FIFO_DEPTH = 2, 
  parameter int unsigned BW = 32 
) ( 
  // global signals 
  input  logic                   clk_i, 
  input  logic                   rst_ni, 
  input  logic                   test_mode_i, 
  // local enable & clear 
  input  logic                   enable_i, 
  input  logic                   clear_i, 
  // input data stream + handshake 
  hwpe_stream_intf_stream.source data_in, 
  // output data stream + handshake 
  hwpe_stream_intf_stream.sink   data_out, 
  // TCDM ports 
  hci_core_intf.master           tcdm, 
  // control channel 
  input  ctrl_streamer_t         ctrl_i, 
  output flags_streamer_t        flags_o 
); 

 

Figure 19: datamover_streamer interface 

The internal streams of the accelerator are exposed by the streamer interface. These are 

handled by means of two hwpe_stream_intf_stream interfaces, which are declared within the 

top module. Also, the tcdm connection is passed to the streamer in order to generate the 

addresses to which data is accessed.  
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The data streams are:  

• data_in: this is the stream that contains the data read from the tcdm memory and that 

goes into the datamover engine. Indeed, the interface modport at the streamer top level 

is the source one, meaning that data is sent as an output from the streamer.  

• data_out: analogously to data_in, this is the stream that contains the data that will be 

written into the tcdm memory and that’s sent back to the streamer from the datamover 

engine.  

So, it’s crucial that the tcdm interface is passed to the streamer in order to generate the two 

internal data streams. This is done by using modules of the HCI (Heterogeneous Cluster 

Interconnect) library. First of all, the tcdm interface is passed to the hci_core_r_valid_filter 

module, which filters out r_valid signals that may be generated by the cluster even when the 

access to the tcdm memory is a write one. By means of an interface binding, the master interface 

tcdm is connected to a slave interface of the same type, named tcdm_prefilter.  

Then, this slave interface is connected to two different modules, depending on the value of the 

TCDM_FIFO_DEPTH parameter. When greater than zero, two modules are instantiated by 

means of a generate statement:  

• hci_core_fifo: this module exposes two hci_core_intf modports. The master modport is 

connected to the tcdm_prefilter interface, whereas the slave one is connected to another 

interface named tcdm_prefifo. This one is then passed to the hci_core_load_store_mixer 

module.  

• hci_core_load_store_mixer: this module exposes a hci_core_intf master modport 

(tcdm_prefifo) which is then bound to two different slave hci_core_intf modports 

(virt_tcdm[0] for load operations and virt_tcdm[1] for store operations) depending on 

the nature of the request.  

Otherwise, when the parameter TCDM_FIFO_DEPTH is equal or lower than zero, only a 

hci_core_mux_dynamic is instantiated. Without using the mixer, the tcdm_prefilter interface is 

bound to the two virt_tcdm interfaces. This conditional statement on the fifo depth parameter 

is necessary since it’s not possible to perform TCDM muxing before a FIFO, given there is no 

standard procedure to couple a response with the channel that requested it. Now, the two 

interfaces of the array virt_tcdm are  connected to the two main modules of the streamer, the 

hci_core_sink and the hci_core_source.  
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Hci core sink & Hci core source 

These two modules are responsible for generating the two internal streams of the accelerator 

and the related addresses at which data are read/written. This depends on the hci_core_intf 

modport that each module exposed by each module. The only difference between these two 

modules resides in the exposed modport of the stream interface: the hci_core_source exposes a 

source modport, whereas the hci_core_sink exposes a sink modport.  

Inside of both modules, the addresses at which data  is accessed are generated by a library 

module, the hwpe_stream_addressgen_v3. This module allows to perform 3D stridden access to 

into memory once it has been correctly configured. 

The address generator module can be programmed with stride and length parameters along 

three dimensions: d0 (width), d1 (length) and d2 (channel). Also, a total number of elements 

to be transferred must be specified in order to correctly generate the required addresses. These 

parameters are written in a set of registers that can be accessed during testing and are assigned 

within the top module of the accelerator. The functionality of the address generator is based on 

a counter realized with three conditional assignments. The first condition checks the address 

counting on d0. If the current length is less than the specified length, the stride along d0 is added 

to the address. So, until the condition on d0_len gets verified, the address is increased along the 

dimension d0. Once that condition is no longer verified, the check on d1_len is performed, with 

the address getting increased by the stride specified along d1. The next increase will again be 

along the dimension d0, while the next increase along d1 will happen only when d0_len is 

reached again.  

By imagining a 3D tensor, this can be seen as swiping the elements of the first row until d0_len 

is reached. If configured correctly, the d1_stride parameter will be such that the next accessed 

element is the first of the second row and so on. When the last row of this face of the tensor is 

completed, the address is increased by d2_stride. This stride will be configured in such a way 

that the next accessed element will be the first element of the next face of the tensor, at this 

point the behaviour of the address generator repeats itself until the total number of transfers 

is reached. The illustrated behaviour is realized by the code in Fig. 20. 
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if(overall_counter_q < ctrl_i.tot_len) begin 
        addr_valid_d = 1'b1; 
        if((d0_counter_q < ctrl_i.d0_len) || (ctrl_i.dim_enable_1h[0] == 1'b0)) 
begin 
          d0_addr_d    = d0_addr_q + d0_stride; 
          d0_counter_d = d0_counter_q + 1; 
        end 
        else if ((d1_counter_q < ctrl_i.d1_len) || (ctrl_i.dim_enable_1h[1] == 
1'b0)) begin 
          d0_addr_d    = '0; 
          d1_addr_d    = d1_addr_q + d1_stride; 
          d0_counter_d = 1; 
          d1_counter_d = d1_counter_q + 1; 
        end 
        else begin 
          d0_addr_d    = '0; 
          d1_addr_d    = '0; 
          d2_addr_d    = d2_addr_q + d2_stride; 
          d0_counter_d = 1; 
          d1_counter_d = 1; 
          d2_counter_d = d2_counter_q + 1; 
        end 
        overall_counter_d = overall_counter_q + 1; 
      end 

 

Figure 20: Address generation code 

Also, enable signals are available for disabling the address counting along a certain dimension. 

Then, the address is sent out of the address generator module by means of a HWPE stream. This 

is done within both the hci_core_source and the hci_core_sink, thus allowing to generate 3D 

strided addresses for read and write accesses to the tcdm memory.  

Also, the hci core  modules can perform data realignment by adding 32 additional bits to the 

width of the tcdm port. With the bandwidth of the datamover being only 32 bits wide, this 

feature is excluded with the insertion of a parameter.   

 

Datamover engine 

The engine within the Datamover is  quite simple, being just a hwpe_stream_fifo  module that 

links the incoming data stream into the outgoing one. So, the only elaborations performed by 

the datamover are the reordering of words along three dimensions, the transposition of data 

with sub-word widths and mapping the input address range into an output one.  
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Hwpe_ctrl_slave 

The slave module is the one exposing the hwpe_ctrl_intf_periph interface for configuration. This 

module provides one context of 11 registers needed to configure the accelerator. These 

registers are used to store the parameters of the address generator modules, so the lengths, 

strides and the base addresses of the read interval and write interval in the tcdm memory.  

The Datamover also features a configurable buffer factor, which is specified in the configuration 

register [2] as the exponent of a power of 2. This feature allows to choose at which sub-byte 

granularity perform the additional transposition for each word being transferred. The possible 

values are: 

• 0: the incoming 32-bits of data are kept as a single stream of 32-bits. Basically, this 

implements a simple transfer of the tensor data between the two specified address 

ranges. 

• 1: the incoming 32-bits of data are split into 2 parallel streams of 16-bits each.  

• 2: the incoming 32-bits of data are split into 4 parallel streams of 8-bits each.  

• 3: the incoming 32-bits of data are split into 8 parallel streams of 4-bits each.  

• 4: the incoming 32-bits of data are split into 16 parallel streams of 2-bits each.  

• 5: the incoming 32-bits of data are split into 32 parallel streams of 1-bit each.  

 

The buffer factor specifies the number of elements within each 32-bits buffer. The configuration 

register in which this option is implemented is mapped as follows:   

 

𝐴𝐷𝐷𝑅 𝑈𝑛𝑢𝑠𝑒𝑑 𝐵𝑢𝑓𝑓𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟  𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

0𝑥08 31 ÷  30 29 ÷  24 23 ÷  0 

 

Figure 21: HWPE reg[2] mapping 
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Datamover FSM 

The FSM (Finite State Machine) of the Datamover has four states:  

• DM_IDLE: this state is reached when the active low reset signal is asserted. When 

slave_flags.start is asserted, the next state is set to DM_STARTING.  

• DM_STARTING: this state is simply a passage to the DM_WORKING state. Also, the flags 

for requesting the hci core modules to start their operations are asserted.  

• DM_WORKING: in this state, a check is performed on the streamer flags and the FIFO flag 

that signals when its empty. This way, whenever one between the done and ready_start 

gets asserted for each stream and the FIFO is empty, the next state is set to 

DM_FINISHED.  

• DM_FINISHED: in this state, the next state is simply set to DM_IDLE and the flag that 

signals the end of operation for the slave module is asserted.  

 

3.3: Internal Buffering Mechanism  

Now the internal buffering mechanism of the Datamover will be described. This allows to 

perform transpositions at word-level on data widths spanning from 32 bits down to 1 bit. The 

general architecture is shown in the figure below. 

 

Figure 22: Datamover internal structure 
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Of course, the number of interfaces and buffers within the architecture is fixed:  

• 32 buffers each wide 32 bits are instantiated between the stream splitter and the stream 

merger.  

• 32 interfaces, each with a maximum data width of 8 bits, connect the stream splitter to 

the buffer array.  

• Again, 32 interfaces, each with a data width of 32 bits, connect the buffer array to the 

stream merger.  

Depending on the chosen buffer factor, the number of interfaces (and percentage of the data 

width) and buffers that are used change accordingly.  

 

Stream Splitter module 

In this case, the 32 bits coming from the streamer into the stream splitter are divided into 4 

streams of 8 bits each. Of course, also the other signals of the stream interfaces are handled. 

The valid signal coming from the streamer is assigned to the four valid signals sent to the 

buffers, whereas the ready signal going to the streamer is obtained by means of an AND of the 

ready signals coming from the buffers. Also, the strobe signals are passed to the downstream 

signals with simple assignments. The stream splitter is structured as follows.  

 

Figure 23: Stream Splitter structure 
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The four streams coming out of the splitter are then sent into four buffers of 32 bits each, which 

require, under the current hypothesis, four clock cycles to be filled. In the following section, the 

buffering module is described.  

 

Buffer modules 

Analogously to the other sub-components of the accelerator, the buffering module exposes two 

hwpe_stream_intf_stream interfaces to handle the internal data streams. Also, by acting on the 

internal data streams rather than interfacing with the tcdm all address-related information is 

handled by the address generator modules, thus reducing the number of signals and allowing 

to handle the streams through the use of simple counters.  

module datamover_buffering #( 
 parameter int unsigned BANDWIDTH     = 32 
) ( 
 // global signals  
 input logic [23:0]     tot_len, 
 input logic [3:0]     buffer_factor, 
 input logic            clk_i, 
 input logic      rst_ni, 
 input logic      enable_i,  
 input logic      clear_i, 
 
 input logic [5:0]                      buffer_count_control, 
 input logic [23:0]                  buffer_tot_len_control, 
  
 // Stream interface for data coming from the Datamover Streamer 
 // into the Datamover Buffering 
 hwpe_stream_intf_stream.sink    data_in, 
 
 // Hci_core_intf slave interface to connect the Datamover Buffering  
 // with the Datamover Engine 
 hwpe_stream_intf_stream.source   data_out_int, 
 output logic        buffer_full 
); 

 

Figure 24: Datamover buffering module interface 
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This module is essentially a shift register controlled by a Mealy FSM made of four states which 

will be described now:  

• IDLE: this state is reached when the reset signal is asserted or when the transfer 

procedure has ended. In the IDLE state a check on the enable signal is performed. When 

the enable signal is asserted, the next state is set as SHIFT or FULL if valid data is found 

as input, otherwise the next state is set as IDLE. Note that only when the chosen buffer 

factor is equal to 0, the FULL state can be reached directly from the IDLE state.  

• SHIFT: again, a check on valid data is performed. If that’s the case, the content of the 

register is shifted until it’s been filled. Then, the next state is set as FULL. Note that, 

whenever setting the FULL state as the next state, the counter for the total number of 

transferred words is enabled. Otherwise, if the buffer is yet to be filled or if no valid data 

is given as input, the next state remains equal to SHIFT.  

• FULL: first of all, the output valid and strobe signals are asserted. Then, a check is 

performed on the data_out_int.ready signal. If output data is ready to be sent out, the 

buffer content is maintained. This is necessary to perform the sub-word transposition 

operations. Indeed, the counter which keeps track of the elements within the buffer is 

enabled and, depending on the chosen buffer factor, the content of the buffer is kept 

constant for a certain number of clock cycles. It’s also important to notice that the 

buffer_full signal is asserted only when data_out_int.ready is asserted as well. This 

avoids having a valid buffer content for more cycles than those needed.  

When the specified number of cycles has passed, a check on the current number of 

transferred words it’s performed. If the last transfer has been reached, the next state is 

set as IDLE, otherwise valid data is checked again at the input. In the case of a buffer 

factor equal to zero, there is no need to go back to the SHIFT state, since only a single 

element needs to be shifted into the buffer. This mechanism though, requires that the 

counter that keeps track of the cycles spent in the FULL state is set back to zero. This is 

done by adding the additional FULL_RESET state.  

• FULL_RESET: in this state, the only operation is the assertion of the reset_full signal. The 

next state is always set as FULL. 
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The FSM diagram can be found below.  

 

Figure 25: Buffering module FSM 

 

It’s crucial to point out that the buffering module is parametrized on the chosen buffer factor. 

Referring to the example of a buffer factor equal to 4, the shift register will fill with up to four 

8-bits data. This means that only four  out of the total 32 buffering modules will be used in this 

particular case. Also, transposition at sub-word level will only be possible with a 8-bit data 

width.  

 

Stream Merger module 

The streams coming from the buffers are then sent to the stream merger module. This module 

basically performs a transposition of the current content of the buffers. To implement this 

behaviour, a counter is necessary to keep constant che words stored in the buffers until the 

transposition is completed. The following figure refers to the buffer_factor=4 use case.   
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Figure 26: Stream Merger and Buffer modules 

 

Then, the four 8 bits-wide streams coming from the splitter are stored into the 32-bits buffers. 

Each buffer is then sent to the engine depending on the value of the counter signal. This allows 

to transpose the matrix composed by the words stored into the four buffers. Each column of the 

matrix is loaded by the splitter module, whereas each row of the matrix is sent to the engine 

one at a time.  

The counter is enabled by the buffer_full_int signal, which is obtained as an AND of the related 

signals coming from the four buffers. This way, even if only one of the buffers is not full the 

execution is halted.  

Of course, all the other signals of the interfaces are also handled within the stream merger. The 

valid signal that’s sent to the engine is the one related to the buffer being selected as a row of 

the buffer matrix. The ready signals being sent to the buffers are instead all equal to the one 

being sent by the engine downstream. The strobe  signals instead are assigned to the related 

interface each time a row is selected and sent to the engine of the Datamover. This handling of 

the interface signals is illustrated in the figure below.  
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Figure 27: Interface handling in the Stream Merger 

 

The 32-bits wide stream coming from the merger is then sent to the engine and back into the 

streamer. Then, it will be written into the tcdm memory according to the addresses elaborated 

by the address generator module.  

 

3.4: Cluster Integration  

Within the PULP cluster, three different accelerators have been integrated. These are, besides 

the Datamover, a Depthwise accelerator and a Tensor Processing Unit. All of these IPs are 

instantiated within the HWPE subsystem but are connected to the cluster interconnect in 

different ways. The Datamover is directly connected to the tcdm interconnect, whereas the 

Depthwise accelerator and the Tensor Processing Unit are muxed between each other.  
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Figure 28: HWPE connections inside PULP cluster 

 

As can be seen in Fig. 28, the HWPE subsystem is connected to the cluster interconnect wrap 

with two interfaces. These are:  

• s_hci_hwpe[1] : this is the interface dedicated to the TPU and the Depthwise accelerator. 

It’s connected to the slave port hwpe_tcdm_slave[0] of the cluster interconnect wrap.  

• s_hci_hwpe[0] : this is the interface with which the Datamover is connected to the cluster 

interconnect wrap. Note that the Datamover gets connected as a master to the cluster 

interconnect wrap, so in a similar way to the cores of the cluster. Indeed, an additional 

s_hci_core interface has been declared for this purpose. The binding between the slave 

interface (s_hci_hwpe[0]) and the master (s_hci_core[8[)  is performed by means of a hci 

core assign.  
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Also, a selection signal has been implemented to choose which accelerator to use between the 

depthwise and the TPU. This signal has been implemented by using the 13th bit of the cluster 

control unit register, which was previously unused. Then, the selection bit gets passed to the 

hwpe subsystem where is then passed to the mux module. When asserted to 1, the Depthwise 

accelerator is selected, otherwise the TPU is selected.  

Of course, also  the configuration ports of the accelerators must be considered. These interfaces 

are declared as an array of XBAR_PERIPH_BUS slave interfaces named hwpe_cfg_slave within 

the HWPE subsystem. The interface of index 0 is reserved to the Datamover, whereas the one 

of index 1 is muxed between the other two IPs. This array of interfaces is then passed to the 

cluster peripheral module, as can be seen in Fig. 29, where the two interfaces are then bounded 

to the speriph_slave interface array.  

 

// TPU and Depthwise assign 
     assign speriph_slave[SPER_HWPE_ID].gnt     = hwpe_cfg_master[1].gnt; 
     assign speriph_slave[SPER_HWPE_ID].r_rdata = hwpe_cfg_master[1].r_rdata; 
     assign speriph_slave[SPER_HWPE_ID].r_opc   = hwpe_cfg_master[1].r_opc; 
     assign speriph_slave[SPER_HWPE_ID].r_id    = hwpe_cfg_master[1].r_id; 
     assign speriph_slave[SPER_HWPE_ID].r_valid = hwpe_cfg_master[1].r_valid; 
 
     assign hwpe_cfg_master[1].req   = speriph_slave[SPER_HWPE_ID].req; 
     assign hwpe_cfg_master[1].add   = speriph_slave[SPER_HWPE_ID].add; 
     assign hwpe_cfg_master[1].wen   = speriph_slave[SPER_HWPE_ID].wen; 
     assign hwpe_cfg_master[1].wdata = speriph_slave[SPER_HWPE_ID].wdata; 
     assign hwpe_cfg_master[1].be    = speriph_slave[SPER_HWPE_ID].be; 
     assign hwpe_cfg_master[1].id    = speriph_slave[SPER_HWPE_ID].id; 
 
// Datamover assign 
    assign speriph_slave[SPER_DATAMOVER_ID].gnt     = hwpe_cfg_master[0].gnt; 
    assign speriph_slave[SPER_DATAMOVER_ID].r_rdata = hwpe_cfg_master[0].r_rdata; 
    assign speriph_slave[SPER_DATAMOVER_ID].r_opc   = hwpe_cfg_master[0].r_opc; 
    assign speriph_slave[SPER_DATAMOVER_ID].r_id    = hwpe_cfg_master[0].r_id; 
    assign speriph_slave[SPER_DATAMOVER_ID].r_valid = hwpe_cfg_master[0].r_valid; 
 
    assign hwpe_cfg_master[0].req   = speriph_slave[SPER_DATAMOVER_ID].req; 
    assign hwpe_cfg_master[0].add   = speriph_slave[SPER_DATAMOVER_ID].add; 
    assign hwpe_cfg_master[0].wen   = speriph_slave[SPER_DATAMOVER_ID].wen; 
    assign hwpe_cfg_master[0].wdata = speriph_slave[SPER_DATAMOVER_ID].wdata; 
    assign hwpe_cfg_master[0].be    = speriph_slave[SPER_DATAMOVER_ID].be; 
    assign hwpe_cfg_master[0].id    = speriph_slave[SPER_DATAMOVER_ID].id; 

 

Figure 29: Periph interconnect binding for the HW accelerators 
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As can be seen in Fig. 29, these bindings are performed by assigning an ID to each hardware 

accelerator. These IDs are defined in the pulp cluster package and are needed to identify the  

correct address space reserved to each peripheral in the interconnect. Specifically, an address 

space of 0x400 is dedicated to each peripheral.  

 

3.5: SoC Integration 

Concerning the SoC  integration, the Datamover has been instantiated by means of a top-level 

wrap within the fabric controller HWPE subsystem.  

 

3.5.1: Protocols and Interfaces  

Given the different interfaces that are used within the SoC with respect to the cluster, writing a 

wrapper for the IP was needed. The purpose of the wrapper is to bind the interfaces of the two 

different contexts:  

• Within the cluster, the Datamover is connected to the tcdm memory trough a hci 

interface, whereas the control slave is programmed with a HWPE control interface.  

• Within the SoC, the Datamover must be connected to a XBAR_TCDM_BUS (for 

transferring data) and to an APB_BUS interface (for configuration purposes).   

 

The top wrap of the Datamover has been instantiated as follows. 
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datamover_top_wrap #( 
        .ID  ( ID_WIDTH ) 
    ) i_datamover_top_wrap ( 
        .clk_i            ( clk_i          ), 
        .rst_ni           ( rst_ni         ), 
        .test_mode_i      ( test_mode_i    ), 
        .tcdm_req         ( tcdm_req       ), 
        .tcdm_gnt         ( tcdm_gnt       ), 
        .tcdm_add         ( tcdm_add       ), 
        .tcdm_wen         ( tcdm_wen       ), 
        .tcdm_be          ( tcdm_be        ), 
        .tcdm_data        ( tcdm_wdata     ), 
        .tcdm_r_data      ( tcdm_r_rdata   ), 
        .tcdm_r_valid     ( tcdm_r_valid   ), 
        .periph_req       ( periph_req     ), 
        .periph_gnt       ( periph_gnt     ), 
        .periph_add       ( periph_add     ), 
        .periph_wen       ( ~periph_we     ), 
        .periph_be        ( periph_be      ), 
        .periph_data      ( periph_wdata   ), 
        .periph_id        ( '0             ), 
        .periph r_data    ( periph_r_rdata ), 
        .periph_r_valid   ( periph_r_valid ), 
        .periph_r_id      ( periph_r_id    ), 
        .evt_o            ( s_evt          ) 
    ); 

 

Figure 30: Datamover top wrap interface 

Notice that the top wrap of the accelerator exposes the unpacked signals of the two interfaces. 

This is needed since the interface bindings are performed in the fc_hwpe module. Specifically, 

these bindings are shown in the two following figures.  

genvar i; 
    generate 
        for (i=0;i<4;i++) begin : hwacc_binding 
            assign hwacc_xbar_master[i].req   = tcdm_req   [i]; 
            assign hwacc_xbar_master[i].add   = tcdm_add   [i]; 
            assign hwacc_xbar_master[i].wen   = tcdm_wen   [i]; 
            assign hwacc_xbar_master[i].wdata = tcdm_wdata [i]; 
            assign hwacc_xbar_master[i].be    = tcdm_be    [i]; 
            // response channel 
            assign tcdm_gnt     [i] = hwacc_xbar_master[i].gnt; 
            assign tcdm_r_rdata [i] = hwacc_xbar_master[i].r_rdata; 
            assign tcdm_r_valid [i] = hwacc_xbar_master[i].r_valid; 
        end 
    endgenerate 

 

Figure 31: Tcdm interface binding in the fabric controller 
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apb2per #( 
        .PER_ADDR_WIDTH ( 32             ), 
        .APB_ADDR_WIDTH ( APB_ADDR_WIDTH ) 
    ) i_apb2per ( 
        .clk_i                ( clk_i                   ), 
        .rst_ni               ( rst_ni                  ), 
        .PADDR                ( hwacc_cfg_slave.paddr   ), 
        .PWDATA               ( hwacc_cfg_slave.pwdata  ), 
        .PWRITE               ( hwacc_cfg_slave.pwrite  ), 
        .PSEL                 ( hwacc_cfg_slave.psel    ), 
        .PENABLE              ( hwacc_cfg_slave.penable ), 
        .PRDATA               ( hwacc_cfg_slave.prdata  ), 
        .PREADY               ( hwacc_cfg_slave.pready  ), 
        .PSLVERR              ( hwacc_cfg_slave.pslverr ), 
        .per_master_req_o     ( periph_req              ), 
        .per_master_add_o     ( periph_add              ), 
        .per_master_we_o      ( periph_we               ), 
        .per_master_wdata_o   ( periph_wdata            ), 
        .per_master_be_o      ( periph_be               ), 
        .per_master_gnt_i     ( periph_gnt              ), 
        .per_master_r_valid_i ( periph_r_valid          ), 
        .per_master_r_opc_i   ( periph_r_opc            ), 
        .per_master_r_rdata_i ( periph_r_rdata          ) 
    ); 

 

Figure 32: Periph interface binding in the fabric controller 

 

In the following section, the testing of the Datamover will be illustrated, both for the cluster and 

the SoC instances.  

 

3.6: Testing the Datamover  

The Datamover test is written in C  language and requires a certain protocol of operations to be 

performed in order to operate correctly. Also, the configuration of the Datamover is carried out 

in the test file, by using functions to write into the control registers. Some optimization has been 

introduced:  

• The number of contexts exposed from the hwpe_ctrl_slave module has been reduced 

from 2 to 1. This is useful to decrease the area occupation of the control slave module, 

but it prevents multiple jobs from being configured at the same time.  

• Also, the same registers have been used for storing input and output lengths along the 

dimensions d0 and d1. This allowed to reduce the original number of registers from 13 

to 11.  
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• Also, the register  [2] has been used to store the total transfer length and the buffer 

factor.  

Of course, the Datamover has been tested both for the cluster and the SoC instances. This 

required inserting a USE_CLUSTER parameter to select which instance to test. Also, a correct 

base address needs to be specified in order to correctly select and configure the accelerator 

registers. Of course, besides specifying a new base address, also a new set of functions within 

hal_datamover.h had to be defined to test the SoC instance of the Datamover. In this section, the 

protocol for testing the cluster instance of the accelerator will be described.  

The following functions are used when launching a job on the Datamover:  

• DATAMOVER_CG_ENABLE: this function enables the clock for the accelerator.  

• DATAMOVER_SET_PRIORITY_DATAMOVER: this functions gives the priority to the 

Datamover with respect to the cores of the cluster and the DMA.  

• DATAMOVER_RESET_MAXSTALL: this function resets the maximum stall previously 

configured.  

• DATAMOVER_SET_MAXSTALL: this function sets the maximum consecutive stall to 8 

cycles for the cores on the DMA side. 

After these preliminary operations, a soft clear must be given to the Datamover. This is done by 

means of the DATAMOVER_WRITE_CMD function which, given an offset and a value as 

parameters, it writes the specified value to the address pointed at by the offset added to the 

Datamover base address. Then, the DATAMOVER_BARRIER_ACQUIRE function is called, in 

order to acquire the specified job. 

Following on, the register context of the hwpe_ctrl_slave need to be configured. This is done by 

means of the DATAMOVER_WRITE_REG function which, in a similar way to the WRITE_CMD 

function, allows to write on the Datamover registers.  
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// set up datamover 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_PTR,  x); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_PTR, y); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_TOT_LEN,       BUFFER_FACTOR_AND_TOT_LEN); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_OUT_D0_LEN, LEN_IN_OUT_D0); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D0_STRIDE,  STRIDE_IN_D0); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_OUT_D1_LEN, LEN_IN_OUT_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D1_STRIDE,  STRIDE_IN_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D2_STRIDE,  STRIDE_IN_D2); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D0_STRIDE, STRIDE_OUT_D0); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D1_STRIDE, STRIDE_OUT_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D2_STRIDE, STRIDE_OUT_D2); 

 

Figure 33: Datamover setup 

 

After having configured the Datamover, the job needs to be launched. This is again done by 

means of the WRITE_CMD function, for which the specified parameters are 

DATAMOVER_COMMIT_AND_TRIGGER and DATAMOVER_TRIGGER_CMD. Notice that also 

DATAMOVER_COMMIT_CMD can be passed as a second parameter. This can be done to 

configure more than one job on the accelerator and launch them in succession, provided at least 

two configuration contexts are exposed by the control slave.  

At this point, the execution of the transfer takes place until the DATAMOVER_BARRIER function. 

Then, the clock needs to be disabled by means of the DATAMOVER_CG_DISABLE function. Then, 

the priority is given back to the core side by using the DATAMOVER_SETPRIORITY_CORE 

function. After the execution has taken place, the produced results are checked with respect to 

a golden model. The input data used in the test can be generated by means of a 32-bit LFSR 

(Linear Feedback Shift Register) or an 8-bit counter. The LFSR produces pseudo-random 32-

bit words, whereas the 8-bit counter returns 32-bit words obtained by the concatenation of 

four successive values. The return value of the check function is computed as the number of 

errors found in the output data. If, given a certain output address, the read data is different from 

the expected one, a counter is increased. This allows to easily debug the behaviour of  the 

accelerator.  

The golden models are specified as arrays in the golden_arrays.h file, and they cover all the 

supported data-widths (32-, 16-, 8-, 4-, 2- and 1-bit) for different sizes of transfers (64-, 128-, 

256-, 512- and 1024-words). The golden model to check the results with can be selected inside 

the check function.   
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3.7: Use Cases  

The Datamover has been tested for a variety of tensor sizes and reordering granularities within 

each word.  These are the main use cases for the Datamover, and the performance results will 

be shown in the last chapter of the thesis. Besides these, it’s also possible to act on the 

dimensional parameters of the address generators to shuffle the tensor at word-level.   

First of all, the transposition of rows and columns in the (W, H) plane can be performed by 

configuring the address generators with the following sets of strides: 

 

𝐼𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑑𝑒𝑠: < 𝑑0, 𝑑1, 𝑑2 > | 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑑𝑒𝑠: < 𝑑1, 𝑑0, 𝑑2 > 

 

So, data which was previously stored in the d0 dimension with a stride of 4, gets reordered with 

a stride of 8*4 (e.g. in the case of a 8 𝑥 8 𝑥 4 tensor) in the output address range. This operation 

can easily be represented graphically as:  

 

   

Figure 34: Input data layout     Figure 35: Output data layout after transposition 

Where each cube is a 32-bit word stored into an address of the tcdm memory. So, the input 

tensor can be transposed in the (H,W) plane simply by inverting the strides along the 

dimensions d0 (W) and d1 (H) on the output address generator. Of course, this transposition 

along these two dimensions occurs for every section of the tensor, so by counting channels 

along the d2 dimension. 

Another reordering operation that can be performed by the Datamover is the conversion 

between the HWC and the CHW data formats. This requires a different configuration for the 
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address generator modules. Specifically, the input and output sets of strides are chosen as 

follows:  

𝐼𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑑𝑒𝑠: < 𝑑1, 𝑑0, 𝑑2 > | 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑑𝑒𝑠: < 𝑑2, 𝑑1, 𝑑0 > 

The operation can be graphically represented as:  

 

   

Figure 36: Input data before HWC to CHW conversion  Figure 37: Data after HWC to CHW conversion 

 

So, data stored along the channel dimension in the input tensor is stored along the width 

dimension in the output tensor. Basically, this can be seen as a transposition of the tensor data 

in the (W,C) plane. Indeed, data placed across the diagonal  of the upper face remains in the 

same position after the conversion. This allows to access the data across the channels as rows 

in the (W,H) plane.  

Of course, these are just two of the possible configurations for the address generator modules. 

By correctly setting the lengths along each dimension and the related strides, other reordering 

operations can be carried out.  

Besides reordering at word-level, data can be transposed within each word of the tensor for the 

supported data widths listed at the beginning of this section. The following figures show some 

examples of this behaviour.  
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Figure 38: Reordering on 8-bit data 

 

In the previous figure, the transposition within each output word is performed with an 8-bit 

granularity. For reference, the first output word is 0x0004080c, which is clearly the 

concatenation of the MSB 8-bits of the first four input words. Analogously, the second output 

word is the concatenation of the 2nd 8-bits elements of the first four input words, resulting in 

0x0105090d and so on.  

 

 

Figure 39: Reordering on 4-bit data 

 

Following on, these are the observed results when the transposition is performed with a 4-bit 

granularity. If the first output word, which is 0x00001111, is again considered as reference, it’s 

clear that it’s the result of the concatenation of the MSB 4-bits of each of the first eight input 

words. The same holds for the following words.  

In the two figures below, the results for 2-bits and 1-bit granularities are shown.  



52 
 

 

Figure 40: Reordering on 2-bit data 

 

 

Figure 41: Reordering on 1-bit data 
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4: Experimental Results 

In this chapter, the synthesis results will be illustrated for both the Datamover  and the overall 

Darkside SoC. Each design is synthesized with tsmc65 libraries for a 65 nm technology. 

 

4.1: Standalone Results 

In this section, the results for the synthesis of the Datamover are shown. First of all, the 

structure of the synthesis script will be illustrated, followed by the results in terms of area and 

timing.  

 

4.1.1: Setup 

The design has been synthesized with the Synopsys Design Compiler. The  synthesis scripts is 

structured as follows:   

• First of all, the paths to  the main folders containing the rtl of the Datamover and the IPs 

used within it are specified.  

• Then, the options for timing_enable_through_paths and compile_timing_high_effort are 

set as true.  

• Following on, all the rtl of the design is analysed with a bottom-up approach. Starting 

from the packages all the way to  the top module of the accelerator.  

• After having analysed the whole hierarchy of the design, the link command is executed, 

with the correct return value being 1. This assures that no unresolved references are 

found in the design. Then, the constrains are set in terms of clock period, clock 

uncertainty and the option to not optimize the clock network is specified.  

• Then, the input and output delays are set, together with the driving cell and library used 

for synthesizing the design. Also the load is specified during this phase.  

• At this point the design is checked and compiled. Then, the reports are generated. These 

include area occupation, power measures, timing constraints and an overall report on 

the design.  

• A Verilog netlist is also produced for post synthesis simulations.  
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The following results were obtained in a worst-case scenario, with the chosen library being 

sc8_cln65lp_base_lvt_ss_typical_max_0p90v_125c, so with the transistors threshold set as low, 

the alimentation voltage as 0.90 V and the temperature being 125 °C.  

 

4.1.2: Timing and area 

The following results were gathered from the reports generated by means of the synthesis 

script. First of all, the minimum clock period for which no timing violations occur in the design 

is:  

 

𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑆𝑙𝑎𝑐𝑘 

2.7 𝑛𝑠 0.0001 𝑛𝑠 

 

The longest path for data is the between two registers for the data_count signal used inside the 

buffers to keep track of the total number of transfers.  

The minimum clock period found for the Datamover is quite smaller than the one used for 

synthesizing the cluster, which is 4.5 ns. So, a decrease in area occupation is to be expected. The 

area occupation for both clock periods is:  

 

𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝐴𝑟𝑒𝑎 

2.7 𝑛𝑠 (standalone) 77749.881 𝜇𝑚2 

4.5 𝑛𝑠 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 69382.401 𝜇𝑚2 

 

 

Referring to the synthesis with a clock period of 2.7 ns, more than half of the final area 

occupation is due to the array of 32 buffers, each one with an area of 1500 𝜇𝑚2 approximately. 

The other main contributions are given by the slave control module, which alone has an area of 

more than 10000 𝜇𝑚2 and the streamer, which accounts for more than 15000 𝜇𝑚2.  
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When inserted in the cluster, the Datamover accounts for around 2% of the total area 

occupation, making it slightly smaller than a single core.  

 

4.1.3: Performance 

In this section the results obtained through the use of performance counters are illustrated. 

These performance counters allow to measure various statistics related to the execution of a 

task. Performance results have been gathered for the cluster instance of the Datamover. The 

results that follow are  organized as below:  

• Table [1]: performances for 64-words transfer with 8-, 4-, 2- and 1-bit transpositions. 

• Table [2]: performances for 128-words transfer with 8-, 4-, 2- and 1-bit transpositions. 

• Table [3]: performances for 256-words transfer with 8-, 4-, 2- and 1-bit transpositions. 

• Table [4]: performances for 512-words transfer with 8-, 4-, 2- and 1-bit transpositions. 

• Table [5]: performances for 1024-words transfer with 8-, 4-, 2- and 1-bit transpositions.  

 

The performance of the accelerator with respect to the software emulation has been measured 

by means of the PI_PERF_CYCLES, which allows to measure the cycles needed for a specific task. 

This counter can be simply used by configuring it with the desired metric and placing the start 

and stop functions at the edges of the task to be measured. 

The setup for measuring the accelerator performance is the following:  

pi_perf_conf (1 << PI_PERF_CYCLES); 
    pi_perf_reset(); 
    pi_perf_start(); 
 
    // acquire job 
    int job_id = -1; 
    DATAMOVER_BARRIER_ACQUIRE(job_id); 
 
    // printf ("Job acquired \n"); 
 
    // set up datamover 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_PTR,  x); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_PTR, y); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_TOT_LEN,       BUFFER_FACTOR_AND_TOT_LEN); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_OUT_D0_LEN, LEN_IN_OUT_D0); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D0_STRIDE,  STRIDE_IN_D0); 
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    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_OUT_D1_LEN, LEN_IN_OUT_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D1_STRIDE,  STRIDE_IN_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_IN_D2_STRIDE,  STRIDE_IN_D2); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D0_STRIDE, STRIDE_OUT_D0); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D1_STRIDE, STRIDE_OUT_D1); 
    DATAMOVER_WRITE_REG(DATAMOVER_REG_OUT_D2_STRIDE, STRIDE_OUT_D2); 
 
    // printf ("Datamover set up done \n"); 
 
    // commit and trigger datamover operation 
    DATAMOVER_WRITE_CMD(DATAMOVER_COMMIT_AND_TRIGGER, DATAMOVER_TRIGGER_CMD); 
 
    // printf ("Commit and trigger operation done \n"); 
     
    // wait for end of computation 
    DATAMOVER_BARRIER(); 
 
    pi_perf_stop(); 
    uint32_t cnt_cycles_acc = pi_perf_read(PI_PERF_CYCLES); 

 

Figure 42: PI_PERF_CYCLES accelerator setup 

 

So, the measured cycles account for the configuration of the accelerator, the barriers, and the 

execution of the transfer. The number of cycles is then stored into a dedicated variable. A similar 

procedure has been put in place for measuring the performance of the software emulation.  

In the following page, only the code behind the software emulation for the 8-bits and 4-bits 

reordering is shown since the same code also works for the remaining cases when 

appropriately scaled.  

for (addr_x = addr_first_x; addr_x < addr_last_x; addr_x += 16) 
 { 
   for (addr_index = 0 ; addr_index <4; addr_index ++) 
   { 
    addr_tmp = addr_x + 3 - addr_index; 
    for (i=0; i<4; i++) 
    { 
     data_tmp[3-i] = *(uint8_t *)(addr_tmp); 
     addr_tmp = addr_tmp + 4; 
    } 
    for (i=0; i<4; i++) 
     *(uint8_t *)(addr_y+i) = data_tmp[i]; 
    addr_y = addr_y + 4; 
   } 
 } 

 

Figure 43: Software emulation for 8-bits reordering 
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for (addr_x = addr_first_x; addr_x < addr_last_x; addr_x += 32) 
{ 
 for (addr_index = 0 ; addr_index < 4; addr_index ++) 
 { 
  addr_tmp = addr_x + 3 - addr_index; 
  for (i=0; i<8; i++) 
  { 
   byte_tmp_x = *(uint8_t *)(addr_tmp); 
   data_tmp_1[i] = byte_tmp_x >> 4; 
   data_tmp_2[i] = byte_tmp_x & 0x0F; 
   addr_tmp = addr_tmp + 4; 
  } 
  for (i=0; i<8; i++) 
   word_tmp = word_tmp | (data_tmp_1 [i] << (32-4*(i+1))); 
  *(uint32_t *)(addr_y) = word_tmp; 
  word_tmp = 0; 
  addr_y = addr_y + 4; 
  for (i=0; i<8; i++) 
   word_tmp = word_tmp | (data_tmp_2 [i] << (32-4*(i+1))); 
  *(uint32_t *)(addr_y) = word_tmp; 
  word_tmp = 0; 
  addr_y = addr_y + 4; 
 } 
} 

 

Figure 44: Software emulation for 4-bits reordering 

 

Whereas 8-bits wide data can be easily accessed at a certain address, handling sub-byte data 

requires some bitwise manipulations. This was done by implementing for loops with a 

parametrized shifting mechanism to handle data. To this end, some bitwise operations made 

available in C have been used.  

The gathered results are organized in the following tables:  

 

64 − 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 346 429 (367) 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 449 375(358) 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 805 359 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 3133 351 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 5761 347 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 17983 369 

Table 1: Reordering performance of a 64-words transfer 
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128 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 538 495 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 738 503 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1481 517 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 5235 510 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 10649 503 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  33987 499 

Table 2: Reordering performance of a 128-words transfer 

 

256 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 920 748 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1314 791 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 2540  805 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 9690 783 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 20191 767 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  66141 759 

Table 3: Reordering performance of a 256-words transfer 

 

512 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1691 1239 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 2466 1380 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 4652 1393 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 18145 1288 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 38845 1257 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  130540 1241 

Table 4: Reordering performance of a 512-words transfer 

 

1024 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 3229 2286 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 5282 2543 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 9128 2504 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 35389 2419 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 77266 2356 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  258762 2323 

Table 5: Reordering performance of a 1024-words transfer 

 

Some observations on the results:  

• First of all, it’s clear how the accelerator allows to significantly speed up the reordering 

task, especially for sub-byte data widths. This becomes even more clear when increasing 

the number of transferred words. Referring to Table [1] (64 words transfer), roughly a 

2.24x speedup is measured for 8-bits data. This increases up to nearly 49x when 

considering 1-bit data. The performances are already better when considering Table [2] 
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(128 words transfer) where a peak speedup of 68x can be observed. The overall best 

result is, as expected, the one for a 1024-words transfer with 1-bit reordering (Table 

[5]), where the accelerator achieves a 111x speedup when compared to the software 

execution.  

• It’s also quite clear how the software increases its execution time by a factor 2 each time 

the number of words is doubled, whereas the overhead is significantly smaller for the 

accelerator.    

• An overhead was observed in the first version of the buffer FSM. This was due to the 

request signal of the tcdm interface going low for a single clock cycle each time a word 

was processed. This issue was solved by adding an intermediate state (FULL_RESET) to 

reset the counter that keeps track of the cycles during which the content of the buffer 

must be kept fixed. By eliminating this additional cost, the performances for the 32-bits 

and 16-bits have been improved as can be seen in the previous tables (cycles between 

parenthesis). This overhead also explains why reducing the data-width on which the 

reordering is performed allows to reduce the hardware execution time. When selecting 

a 32-bit granularity (let-through transfer), the extra cycle occurred much more often 

than when choosing a lower data-width.  

• This overhead also led to the accelerator being outperformed when choosing to simply 

transfer the tensor and perform no transposition operations. After having removed the 

overhead, the accelerator is outperformed only when choosing a transfer size of 64  

words.  

 

The results gathered in the previous tables  are visually represented in the following graphs. 

Specifically, the first two graphs expose the comparison between the software and hardware  

execution for 64-words and 1024-words transfers.  The last graph summarizes the results in 

terms of cycles/byte for every hardware execution.  
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Figure 45: Comparison between HW and SW executions of a 64-words transfer in the cluster 

 

 

Figure 46: Comparison between HW and SW executions of a 1024-words transfer in the cluster 
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It’s clear how the execution time of the accelerator remains almost constant regardless of the 

chosen granularity, whereas the software execution is deeply affected by it. From being close 

to the accelerator when performing no reorder operations, the software performance gets 

dramatically worse when decreasing the data-width on which the transposition is performed.  

 

 

Figure 47: Overall HW performances  

 

By looking at Fig. 47 it’s clear how the performance of the accelerator significantly increases for 

larger transfer sizes. This is due to the configuration overhead being absorbed once the number 

of words goes over 64.  

In the following tables, the performance results related to the SoC instance of the Datamover 

are shown, although similar results are to be expected: 

 

64 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 220 237 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 317 253 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 581 254 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1722 245 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 3655 241 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  14757 239 

Table 6: Reordering performance of a 64-words transfer 
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128 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 412 365 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 605 397 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1109 398 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 3402 381 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 7271 373 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  29489 369 

Table 7: Reordering performance of a 128-words transfer 

 

256 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 796 621 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1181 685 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 2165 686 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 6762 653 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 14503 637 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  58953 629 

Table 8: Reordering performance of a 256-words transfer 

 

512 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 1564 1134 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 2333 1260 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 4277 1261 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 13482 1198 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 28967 1166 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  117881 1150 

Table 9: Reordering performance of a 512-words transfer 

  

1024 𝑤𝑜𝑟𝑑𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (𝑐𝑦𝑐𝑙𝑒𝑠) 
32 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 3102 2157 
16 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 5148 2413 
8 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 8756 2414 
4 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 26796 2285 
2 − 𝑏𝑖𝑡𝑠 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 58149 2221 
1 − 𝑏𝑖𝑡 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔  235642 2189 

Table 10: Reordering performance of a 1024-words transfer 

 

The results are quite similar to those obtained for the cluster instance of the Datamover. Indeed, 

the accelerator is outperformed by the software execution only when choosing to transfer 64 

words without performing any reorder operation, as in the cluster.  

Also, by checking the top performance of the accelerator (1024-words transfer with 1-bit 

reordering), the obtained speedup is around 107x, whereas a top speedup of 111x was 

observed in the cluster.  



63 
 

In the following graphs, the Cycles/byte metric is evaluated for SoC Datamover instance. 

 

Figure 48: Comparison between HW and SW executions of a 64-words transfer in the SoC  

 

 

 

Figure 49: Comparison between HW and SW executions of a 1024-words transfer in the SoC 
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Figure 50: Overall HW performances 

 

By comparing this graph with Fig. 47, it can be observed that, while the worst cluster 

performances stood around the 1,4 cycles/byte mark for the SoC the results are slightly better, 

with the worst performance always being lower than 1 cycles/byte.  
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4.2: Putting it all together: The Darkside SoC 

In this last section, some results regarding the Darkside cluster are shown. In Fig. 51, the results 

in terms of area occupation for the cluster  are illustrated.  

 

Figure 51: Cluster area occupation 

 

Most of the area occupation is due to the tcdm memory banks, the cache and the eight RISCV 

cores. Also, the areas of the three accelerators are considered in the cluster, with the Datamover 

accounting for only 2% of the total area, being slightly smaller than a single core. These results 

were obtained by synthesizing the design with a 4.5 ns clock period, a supply voltage of 1.08 V 

and a temperature of 125 °C. The tapeout of the whole chip will happen shortly, with further 

results in terms of power and timing. 
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5: Conclusions 

In the end, the purpose of designing a small and simple accelerator to perform data marshaling 

tasks and reordering operations on sub-byte widths has been successful. The strengths of this 

accelerator surely lie in the ease of configuration and the significant speedup obtained when 

compared to a not overly optimized software emulation. After removing the tcdm overhead, the 

accelerator is outperforming the software emulation in almost every supported configuration. 

Only when choosing to transfer 64 words and not to perform any reordering the software 

emulation is slightly faster. This is likely due to the configuration overhead of the accelerator.  

Besides this, the possibility for 3D stridden data access and the flexible architecture, complete 

a simple and efficient design for tensor manipulation and layout conversion to be used in image 

processing applications. These features make the Datamover a valid hardware component for 

augmenting extreme-edge processing capabilities on IoT nodes.  
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