
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Static Analysis of Resources in QASM:

Estimation of the Number of Qubits

Relatore:
Chiar.mo Prof.
Ugo Dal Lago

Correlatore:
Dott.
Martin Avanzini

Presentata da:
Damiano Scevola

Sessione I
Anno Accademico 2020/2021

A nonno Francesco

Sommario

La computazione quantistica è la nuova frontiera del calcolo: la sua particolarità
risiede nella capacità di rappresentare molteplici stati computazionali classici in un sin-
golo stato quantistico e di effettuare su di essi la medesima operazione tramite una
singola istruzione. Il numero di stati classici sovrapponibili in un dispositivo quantistico
è esponenziale rispetto al numero di qubit disponibili, di conseguenza vi è uno speedup
esponenziale del tempo di esecuzione e ciò apre le porte alla risoluzione di problemi com-
putazionali che anche il più potente supercomputer classico impiegherebbe una quantità
di tempo inconcepibile per risolvere.

Un semplice esempio in cui si nota facilmente la differenza tra la computazione classica
e quella quantistica è riscontrabile nell’algoritmo di Deutsch-Jozsa, che è in grado di
determinare se una funzione black-box f : {0, 1}n −→ {0, 1} è bilanciata o costante.
Con un modello di calcolo classico, la complessità di tale problema sarebbe dell’ordine
di 2n, mentre grazie all’algoritmo suddetto, essa si riduce ad un numero costante di
istruzioni quantistiche seguito da una scansione lineare dell’output.

I computer quantistici attualmente esistenti sono pochi e hanno risorse limitate poichè
l’implementazione fisica dei qubit è molto costosa, e dunque la rivoluzione tecnologica
che ci si aspetta è percepibile solo dagli addetti ai lavori. Un obiettivo importante
della ricerca è, dunque, quello di studiare modi per limitare lo spreco di qubit nella
progettazione degli algoritmi quantistici, e la presente tesi si propone di mostrare uno
strumento di analisi statica del linguaggio OpenQASM per la stima del numero di qubit
effettivamente utilizzati dai programmi.

OpenQASM è un linguaggio sviluppato per descrivere circuiti quantistici e operare su
di essi attraverso controller classici, che ricevono ed elaborano l’output delle misurazioni
effettuate sui qubit. In OpenQASM sono disponibili molti elementi e costrutti di un linguag-
gio di programmazione ordinario (dichiarazioni, tipi di dato, assegnamenti, espressioni,
funzioni, if-then-else, cicli for e while) oltre ad istruzioni e parole chiave specifiche per
lavorare con la parte quantistica dei programmi (dichiarazioni e misurazioni di qubit,
porte logiche quantistiche).

Per stimare il numero di qubit effettivamente utilizzati da una funzione viene effet-
tuata un’esecuzione simbolica della stessa. Innanzitutto si associa un simbolo ad ogni
argomento in input come parametro attuale, poi si simulano le istruzioni tenendo trac-

2

cia di quali qubit sono potenzialmente entangled e quali vengono misurati. Alla fine
dell’esecuzione si tiene conto solo dei qubit che erano entangled a dei qubit su cui è
avvenuta una misurazione, o che sono stati essi stessi misurati. Inoltre, quando si in-
contrano delle regioni di codice coperte da una condizione, si invoca l’SMT solver, che
determina se la condizione è soddisfacibile o no, e a seconda della risposta si procede o
meno con la simulazione di quello specifico frammento di codice.

L’analizzatore è scritto in Python, ed è suddiviso in più moduli. Il parser prende in
input il testo del programma da analizzare e costruisce un albero di parsing composto
da più nodi, ognuno dei quali incapsula una regola della grammatica del linguaggio e
fornisce i metodi per navigare agilmente attraverso le produzioni. L’albero di parsing
viene poi passato al classificatore di subroutine, che inserisce in una struttura dati tutte
le informazioni circa le caratteristiche delle subroutine, ognuna delle quali viene poi
data in input al ‘Symbolic Execution Engine’, che utilizzando gli strumenti forniti dagli
altri moduli, costruisce l’albero di esecuzione simbolica, e al raggiungimento delle sue
foglie effettua il confronto tra il numero di qubit effettivo e l’upper bound fornito dal
programmatore.

L’analizzatore presentato nella tesi è soltanto una prima versione, e gli orizzonti di
sviluppo sono molteplici: dalla semplice risoluzione di incompatibilità con le librerie
utilizzate all’analisi di casi più complessi quali i cicli indeterminati o il tracciamento
degli entanglement nelle definizioni delle porte logiche quantistiche.

3

Contents

1 Introduction 7

2 Quantum Computing 9
2.1 Quantum States . 9

2.1.1 Deterministic Systems . 9
2.1.2 Probabilistic Systems . 10
2.1.3 Quantum Systems . 10

2.2 Qubits and Quantum Registers . 11
2.2.1 Bits and Qubits . 11
2.2.2 Measurement . 12
2.2.3 Quantum Registers . 13
2.2.4 Entanglement . 13

2.3 Quantum Gates . 14
2.3.1 Hadamard Gate . 14
2.3.2 Controlled NOT Gate . 15
2.3.3 Phase Shift Gate . 15

2.4 Quantum Circuits . 16
2.4.1 Deutsch Algorithm . 16
2.4.2 Deutsch-Jozsa algorithm . 18

3 OpenQASM 20
3.1 Header . 21
3.2 Lexer Rules . 22
3.3 Types . 23

3.3.1 Quantum Types . 23
3.3.2 Classical Types . 24

3.4 Index Identifiers . 25
3.5 Generical Statements . 25

3.5.1 Expression Statements . 26
3.5.2 Assignment Statements . 29
3.5.3 Classical Declarations . 29

4

3.5.4 Branching Statements . 30
3.5.5 Loop Statements . 30
3.5.6 Quantum Statements . 31

3.6 Global Statements . 31
3.6.1 Subroutine Definition . 32
3.6.2 Quantum Gate Definition . 33
3.6.3 Quantum Declaration Statements 33

4 Symbolic Execution 34
4.1 Initial State and Execution Stack . 34
4.2 Simulation of Statements . 35

4.2.1 Expression Statements . 36
4.2.2 Assignment Statements . 36
4.2.3 Classical Declarations . 37
4.2.4 Branching Statements . 37
4.2.5 Quantum Statements . 38
4.2.6 Loop Statements . 40

5 QASM Analyzer 41
5.1 Parser . 42

5.1.1 Node . 42
5.2 Types and Variables . 43

5.2.1 ClassicalType . 43
5.2.2 Symbol . 44
5.2.3 Variable . 45
5.2.4 Value . 45

5.3 Subroutine Classifier . 46
5.3.1 ClassicalArgument . 46
5.3.2 QuantumArgument . 46
5.3.3 Subroutine . 46
5.3.4 SubroutineClassifier . 48

5.4 Registers and Ranges . 48
5.4.1 BitRange . 48
5.4.2 Bit . 49
5.4.3 CReg . 49
5.4.4 QubitRange . 50
5.4.5 Qubit . 51
5.4.6 QReg . 51
5.4.7 Range . 51
5.4.8 SetDeclaration . 52

5.5 Expression Manipulator . 53

5

5.5.1 UnaryOperator . 53
5.5.2 BinaryOperator . 54
5.5.3 Expression . 54

5.6 SMT Solver . 55
5.6.1 Solver . 56

5.7 Symbolic Execution Engine . 56
5.7.1 SymbolicState . 56
5.7.2 Store . 57
5.7.3 QRegManager . 58
5.7.4 ExecutionStack . 59
5.7.5 Meta-Instructions . 60
5.7.6 SymbolicExecutionEngine . 60

6 Conclusion 61
6.1 Limitations and Future Development . 61

6

Chapter 1

Introduction

The idea of quantum computing was conceived in the 1970s, when researchers of
the caliber of Feynman, Manin and Deustch started to theorize that the properties of
quantum mechanics might prove useful for performing computations differently from the
classical paradigm [Mau]. The main concept that lays at the core of this new model is
the superposition of states, that is the simultaneous co-existence of multiple computa-
tional states at the same moment, with the possibility to perform the same operation to
all of those states within a single computational step. Physical devices that are capable
of such power are called “quantum computers”, and they constitute a polynomial-time
implementation of non-determinism, thus achieving an exponential-order level of paral-
lelism. This fact invalidates the assumption that some problems (NP-complete ones, for
instance) require too much time to be solved compared to human life duration, hence it
opens the doors to a new variety of applications, and it also tears down the ones which
rely on this assumption (like RSA cryptography [Den19]). Literature usually refers to
this scenario as “Quantum Supremacy”.

Quantum computers operate through qubits, which are the quantum equivalent of
bits, and can have not only 0s and 1s as values, but also combinations of them. Qubits
are sequenced together to form quantum registers, which hold the actual computational
power of quantum computers. For instance, a 3-qubit register can be in a superposition
of the states |000〉 , |001〉 , |010〉 , . . . , |111〉, that are 23 = 8 base states. Generalizing
the previous result, we notice that an n-qubit register can represent up to 2n states
simultaneously, thus showing where the exponential speedup resides. Some more material
about quantum computing can be found in [Nos08], [Gri14], [Nie10] and [Per12]

Some companies like Google and IBM have already built fully-functional quantum
computers. However, all of them have a limited number of qubits due to the elevate cost
of implementing them physically. Therefore, it is crucial that quantum programmers
are thrifty with the usage of qubits while designing quantum circuits. The aim of this
document is to show a simple tool which is able to analyze programs written in QASM
language (Quantum Assembly) and check whether the number of qubits that are actually

7

used is bounded by a certain expression. We start by introducing some concepts of
quantum computing, then we describe the QASM language and we provide details about
the features that are taken into account by the analyzer. After that we describe the
tool that performs the estimation of the number of qubits by presenting the symbolic
execution technique that is used, how it is able to simulate the various types of statements
and how the estimation of the number of qubits is actually performed, going through
some examples. Finally, before the conclusion, we describe the Python API of the tool,
listing all the modules that it is build upon one by one.

8

Chapter 2

Quantum Computing

2.1 Quantum States

2.1.1 Deterministic Systems

In classical systems, when we need to encode the state of an object, we often use
numbers. For example, consider a simple case where we have a skyscraper with n floors
(counting the ground floor also), and we want to represent on which one an employee is
located. Trivially, this can be done using an integer number k, and if we assume there
are no underground floors, then we can state k ∈ {0, 1, . . . , n− 1}.

Another option for representing such a state would be using a state vector, that is a
vector v ∈ {0, 1}n whose entries are all zeros except for the k-th, which is a 1.

n− 1

n− 2

...

k

...

1

0

0

0

...

1

...

0

0

Such an approach seems exaggerated for this simple case, but it is crucial to understand
how quantum systems work. Let us take a look at another scenario.

9

2.1.2 Probabilistic Systems

Imagine now that the floor the employee is on is not known for sure, but we are only
given probabilities of her being on each floor. The state vector now looks something like:

v =

p0
p1
...

pn−1

 ∈ [0, 1]n

We now have a generalized version of our previously defined state vector, because each
entry pi is a real number between 0 and 1. Since we are talking about probabilities, we
impose the constraint that the entries of v must sum up to 1.

n−1∑
i=0

pi = 1

It should be noticed that there is no way to represent probabilistic states with a single
number like we do for deterministic ones. It is clear, however, that in case we know
the exact location of the employee, the probability vector would collapse to the previous
case. In fact, if we are certain that the employee is on the k-th floor, then pk = 1, and
∀i ∈ {0, 1, . . . , n−1}r{k}, pi = 0. Now we are able to define state vectors for quantum
systems.

2.1.3 Quantum Systems

Consider a quantum object (e.g. an electron or a photon), and assume its position
can be measured in the domain {x1, x2, . . . , xn}.

x1 x2 . . . xi . . . xn

To each position xi, corresponds a basic vector having all zeros as elements except for a
single 1 as the i-th entry.

|x1〉 =

1
0
...
0

 , |x2〉 =

0
1
...
0

 , . . . , |xn〉 =

0
0
...
1

Definition 2.1.1 (Quantum State). A quantum state |ψ〉 is a linear combination of the
basic vectors |x1〉 , |x2〉 , . . . , |xn〉 having complex weights c1, c2, . . . , cn ∈ C.

|ψ〉 = c1 |x1〉+ c2 |x2〉+ · · ·+ cn |xn〉

10

Therefore, |ψ〉 can be represented as

|ψ〉 =

c0
c1
...

cn−1

 ∈ Cn

where
n−1∑
i=0

|ci|2 = 1

Since it is a weighted sum of basic states, we say that |ψ〉 is a superposition of them.
The square norm of ci tells us the probability of observing the particle in the position
xi, and since the sum of probabilities must add up to 1, so does the sum of the square
norms.

The reason why we need complex numbers to represent quantum states is that quan-
tum objects (like elementary particles) have a wave-like behavior, so they can interfere
either constructively or disruptively. By using complex numbers, we can sum waves and
capture the fact that they could interfere disruptively, since the square norm of the sum
of two complex number is not necessarily greater than both of the square norms of the
addends.

2.2 Qubits and Quantum Registers

2.2.1 Bits and Qubits

In order to understand what qubits are, we should remark the meaning of classical
bits and then make a generalization.

Definition 2.2.1 (Bit). A bit is an elementary unit of information describing the state
of the simplest classical system.

As we know, a bit can only assume values in the domain {0, 1}.

0 1

By following the approach of the previous section, we can also describe bits using a
two-dimensional state vector, where the top entry stands for 0, and the bottom for 1:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
If we take |0〉 and |1〉 as basic states, we can define a quantum system by considering all
normalized linear combinations of those states. Such a quantum system is called qubit.

11

Definition 2.2.2 (Qubit). A qubit is a quantum system having |0〉 and |1〉 as basic
states, and therefore it can be represented as an element of C2.

|q〉 = c0 |0〉+ c1 |1〉 = c0

[
1
0

]
+ c1

[
0
1

]
=

[
c0
c1

]
∈ C2

Keep in mind that the sum of the square norms must be equal to 1. In other words, the
state must be normalized.

|c0|2 + |c1|2 = 1

Example 2.2.1. Here is an example of a qubit:

|q〉 =
|0〉+ |1〉√

2
=

[
1√
2
1√
2

]
In fact, if we check the sum of the square norms of the coefficients, we see that they add
up to 1. (

1√
2

)2

+

(
1√
2

)2

=
1

2
+

1

2
= 1

Of course, the following are also qubits:

|q0〉 =
|0〉 − |1〉√

2
=

[
1√
2

− 1√
2

]
, |q1〉 =

|1〉 − |0〉√
2

=

[
− 1√

2
1√
2

]
We shall notice that all the qubits described so far are superpositions of the basic states
|0〉 and |1〉.

2.2.2 Measurement

When we measure a qubit, the possible outcomes are only 0 and 1, and the probability
of observing the one or the other is dictated by the square norms of the coefficients c0
and c1. In addition to this, the measurement affects the internal state of the qubit
permanently, making it to collapse to the value that has just been measured.

Example 2.2.2. Consider a qubit whose state is

|ψ〉 =

√
3

2
|0〉+

1

2
|1〉

If we measure it, we have
(√

3
2

)2
= 3

4
= 75% of probability to observe the outcome

being 0, and
(
1
2

)2
= 1

4
= 25% of probability of it being 1. Let us say we obtain 0 from

the actual measurement. The state of the qubit is not |ψ〉 anymore, but it has become
|ψ′〉 = |0〉 because the measurement made it collapse as a side effect. This fact is at the
core of quantum mechanics, and it just tells us that in order to observe something we
must inevitably interact with it and alter its internal state.

12

2.2.3 Quantum Registers

Quantum computers with a single qubit are not very interesting, so we need a way
to combine qubits and form registers. In order to combine quantum systems, we use the
tensor product. For example, let us say we wanted to represent the two-qubits state |01〉.
We would then need to compute the tensor product |0〉 ⊗ |1〉 as follows:

|0〉 ⊗ |1〉 =

[
1
0

]
⊗
[
0
1

]
=

1

[
0
1

]
0

[
0
1

]
 =

0
1
0
0

 =

c00
c01
c10
c11

If we observe the result carefully, we can notice that the normalization constraint still
holds, and the only occurrence of the bit 1 that appears in the final result corresponds
to c01, which is right the coefficient labelled with our state |01〉. If we try to do the same
thing with the state |101〉, we obtain:

|101〉 = |1〉 ⊗ |0〉 ⊗ |1〉 =

0
0
0
0
0
1
0
0

=

c000
c001
c010
c011
c100
c101
c110
c111

Since the result of the tensor product enumerates all possible states with n qubits, the
dimension of the output is as large as 2n.

Of course, considering the fact that quantum computers allow superpositions of many
states, we shall clarify that the previous examples have only taken into account basic
states. Hence we can also have a 3-qubit register in the state

|ψ〉 =
|000〉+ |010〉 − |011〉 − |100〉+ |110〉√

5

2.2.4 Entanglement

When multiple qubits are involved to form a quantum register, the latter can some-
times have the property that if we measure one of the qubits, then we automatically
know the value of the others. We say, then, that those qubits are entangled.

Example 2.2.3. Consider a quantum register with 2 qubits and assume its state is

|ψ〉 =
|00〉+ |11〉√

2

13

If we measure the first qubit and we observe the value 1, we automatically know that
the other also has value 1 by just noticing that the only basic state that appears in |ψ〉
and has a |1〉 at the first position is |11〉, so we know for sure that the other one is |1〉
as well.

In this case, the measurement not only makes the state of the measured qubit collapse
to |1〉, but it also affects the state of the entangled one.

2.3 Quantum Gates

So far we have discussed how to represent qubits and quantum registers and what
their properties are, but in order to perform a computation we need a way to manipulate
them according to an algorithm and exploit their computational power. Just like classical
computers manipulate bits using logic gates, quantum computers use quantum gates to
achieve their objective.

The physical implementation of quantum gates is as complicated as that of qubits,
but we can represent what these gates do by using mathematical objects that operate
on state vectors and keep the output normalized so that the sum of the square norms of
the coefficients of the output vector is always 1. These objects are unitary matrices.

There are infinite possible quantum gates. Here we describe the set of universal ones
{H,CNOT,R(θ)}, which contains three gates that can be combined together to simulate
an arbitrary gate.

2.3.1 Hadamard Gate

The Hadamard gate is encoded by the following matrix:

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
=

1√
2

[
1 1
1 −1

]

The Hadamard matrix is the transition matrix from the canonical basis

{[
1
0

]
,

[
0
1

]}
to the Hadamard basis

{[
1√
2
1√
2

]
,

[
1√
2

− 1√
2

]}
, which is used to express arbitrary states in

terms of superpositions of basic states. This allows calculations to be performed on
a superposition (or equivalently, on all the basic states it is composed) with a single
computational step.

Since H is unitary, by applying it twice we go back to the canonical basis, so after
calculations are finished, the Hadamard gate can be applied again to translate the results
back into the canonical basis, ready to be measured by the observer.

14

Example 2.3.1. By applying Hadamard gate to the qubits |0〉 and |1〉 we get:

H |0〉 =

[
1√
2

1√
2

1√
2
− 1√

2

][
1
0

]
=

[
1√
2
1√
2

]
=
|0〉+ |1〉√

2
= |+〉

H |1〉 =

[
1√
2

1√
2

1√
2
− 1√

2

] [
0
1

]
=

[
1√
2

− 1√
2

]
=
|0〉 − |1〉√

2
= |−〉

It is easy to verify that applying Hadamard on |+〉 and |−〉 we go back respectively to
|0〉 and |1〉. We will represent the Hadamard gate as a box labelled with ‘H’.

|0〉 H
|0〉+|1〉√

2

2.3.2 Controlled NOT Gate

While Hadamard gate affects a single qubit, the controlled NOT gate (CNOT or CX
for short) needs two of them. One is the control qubit, and the other is the target.

|x〉 |x〉

|y〉 |x⊕ y〉

Here ⊕ denotes the binary exclusive OR operation. That is, if |x〉 = |0〉 then the bottom
output will be left unaltered, otherwise if |x〉 = |1〉, then the bottom qubit is flipped.
The matrix that corresponds to the CNOT gate is:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2.3.3 Phase Shift Gate

Phase shift gate is a parametric gate that affects a single qubit by rotating it in
the Bloch sphere, adjusting its phase. We will not go over the details of Bloch sphere
representation, but we just give the matrix which encodes the phase shift here.

R(θ) =

[
1 0
0 eθ

]
Now that we have discussed quantum gates, we can move to designing quantum circuits
(or algorithms).

15

2.4 Quantum Circuits

Quantum circuits are the equivalent of algorithms for classical computing. By com-
bining quantum gates, we can build a circuit that performs a certain computation and
exploits the power of superpositions to drastically reduce the time of execution compared
to a classical program.

Definition 2.4.1 (Quantum circuit). A quantum circuit is a computational routine con-
sisting of coherent quantum operations on quantum data, such as qubits, and concurrent
real-time classical computation [Qisb]. It is an ordered sequence of quantum gates, mea-
surements and resets, all of which may be conditioned on and use data from the real-time
classical computation.

In order to understand how quantum circuits work, we will discuss the Deutsch
algorithm for balanced and constant function classification.

2.4.1 Deutsch Algorithm

Before describing the Deutsch algorithm, let us define what balanced and constant
functions are.

Definition 2.4.2 (Balanced and constant functions). A function f : {0, 1} −→ {0, 1} is
balanced if f(0) 6= f(1), otherwise it is constant.

The Deutch algorithm solves the following problem:

Problem 2.4.1 (Deutsch). Suppose we have a function f : {0, 1} −→ {0, 1} which we
can evaluate, but we do not know its exact definition. Determine whether f is balanced
or constant.

If we wanted to use the classical approach, we would need to evaluate f twice and
compare the results. With the Deutsch algorithm, we will see that only one evaluation
is sufficient.

Suppose we have a unitary matrix Uf that encodes f :

|x〉
Uf

|x〉

|y〉 |y ⊕ f(x)〉

Let us now build a circuit that uses Uf and solves our problem:

16

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

|0〉 H

Uf

H

|1〉 H

In terms of matrices, the circuit corresponds to

(H ⊗ I)Uf (H ⊗H) |01〉

The algorithm starts with the state

|ψ0〉 = |01〉

Then it proceeds by applying Hadamard to both qubits, putting them in a superposition:

|ψ1〉 = |+,−〉 =

[
|0〉+ |1〉√

2

] [
|0〉 − |1〉√

2

]
=
|00〉 − |01〉+ |10〉 − |11〉

2

Now let us pause for a moment and ponder about what happens if we apply Uf to
a generic state |x,−〉. We use the ket notation with commas to separate qubits (e.g.
|0, 1〉 = |01〉)

Uf |x,−〉 = Uf (|x〉
[
|0〉 − |1〉√

2

]
) = Uf

[
|x, 0〉 − |x, 1〉√

2

]
= |x〉

[
|0⊕ f(x)〉 − |1⊕ f(x)〉√

2

]
Which simplifies to

Uf |x,−〉 = |x〉

 |f(x)〉 −
∣∣∣f(x)

〉
√

2

where we denote the opposite of f(x) with f(x). So we have

Uf |x,−〉 =

|x〉
[
|0〉−|1〉√

2

]
if f(x) = 0

|x〉
[
|1〉−|0〉√

2

]
if f(x) = 1

We can write the last expression as

Uf |x,−〉 = (−1)f(x) |x〉
[
|0〉 − |1〉√

2

]
= (−1)f(x) |x〉 |−〉

17

Going back to our circuit, this means that, after applying Uf to |ψ1〉, we get

|ψ2〉 = Uf |+,−〉 =
Uf |0,−〉+ Uf |1,−〉√

2

=
(−1)f(0) |0〉+ (−1)f(1) |1〉√

2
|−〉

Now let us see what happens in the two cases where f is balanced or it is constant. If f
is balanced f(0) 6= f(1), then the top qubit becomes either |0〉−|1〉√

2
or −|0〉+|1〉√

2
depending

on which way it is balanced, but in either case we can write

|ψ2〉 = (±1)
|0〉 − |1〉√

2
|−〉 = (±1) |−,−〉

Since the coefficient (±1) is global, it can be ignored due to the normalization constraint,
so we can say |ψ2〉 = |−,−〉 if f is balanced.

On the other hand, if f is constant f(0) = f(1), then the top qubit becomes either
|0〉+|1〉√

2
or −|0〉−|1〉√

2
, but in either case we can write

|ψ2〉 = (±1)
|0〉+ |1〉√

2
|−〉 = (±1) |+,−〉

Here the argument for (±1) still holds, so we can say |ψ2〉 = |+,−〉 if f is constant.
Summing up, we have

|ψ2〉 =

{
|+,−〉 if f is constant

|−,−〉 if f is balanced

Finally, the last Hadamard gate brings our state back to the canonical basis, and so

|ψ3〉 =

{
|0,−〉 if f is constant

|1,−〉 if f is balanced

Now we can measure the top qubit, and we can be sure about the function being balanced
or constant by just looking at the result.

Notice that the Deutsch algorithm only evaluated the function once on the superpo-
sition |+,−〉. The generalized version of this algorithm, the Deutsch-Jozsa algorithm,
shows the speedup in the computation even more.

2.4.2 Deutsch-Jozsa algorithm

Although we are not going to illustrate all the analysis of the Deutsch-Jozsa algorithm,
we will still define the problem, show the circuit that solves it and state some facts
about its computational complexity compared to the classical case. Let us generalize the
definition of balanced and constant functions.

18

Definition 2.4.3 (Balanced and constant functions). A function f : {0, 1}n −→ {0, 1}
is balanced if exactly half of the possible input values go to 0 (and the other half go to
1). Otherwise,it is constant if all of the inputs go to the same output (either 0 or 1).

The Deutsch-Jozsa problem is the same as the previous one, only with the assump-
tions that f : {0, 1}n −→ {0, 1} and f is guaranteed to be either constant or balanced.

With the classical approach, in order to determine whether f is balanced or constant
we need to evaluate it on half plus one of the inputs in the worst case. This is because
as soon as we detect two different output values, we can conclude that the function is
balanced, but if f is constant, we cannot be sure of it until we check that more than
half of its outputs are the same. So the worst case scenario requires 2n

2
+ 1 = 2n−1 + 1

evaluations, which is exponential with respect to the size of the input. Let us now delve
into the quantum world and contemplate its power.

Since we are given the possibility to evaluate f , assume there is a unitary matrix Uf
that fulfills the task:

n n|x〉
Uf

|x〉

|y〉 |f(x)⊕ y〉

Here we denote the top input |x〉 = |x0x1 . . . xn−1〉 in bold and the wire mark n

indicates that it is a bit string with length n. The circuit that solves the problem is the
following:

n n n n|0〉 H⊗n

Uf

H⊗n

|1〉 H

We can notice that it is very similar to the previous circuit, with the only difference
that there are n qubits as the top input, and we denoted the fact that we are applying
Hadamard to each one of them with the gate H⊗n, that is the tensor product of n
Hadamard matrices.

This circuit is capable of telling us whether f is balanced or constant in a single run.
In other words, we have an exponential speedup compared to the classical algorithm
for the same problem. There are many other problems that benefit from the quantum
speedup, and some of them are of a practical relevance. This is why quantum computing
is so powerful.

In order to design and execute quantum algorithms, we need a language that allows
us to describe them in terms of gates and classical instructions. In the next chapter we
will explore OpenQASM, which is a powerful and compact language that achieves the goal.

19

Chapter 3

OpenQASM

OpenQASM is an imperative programming language designed for quantum algorithms
and applications. It has a dual nature as an assembly language and as a hardware
description language [Qisa]. There are multiple versions of OpenQASM, but we consider a
simplified version of OpenQASM 3.0.

Example 3.0.1 (Deutsch-Jozsa Algorithm). Here is an example of a program written
in OpenQASM, namely the Deutsch-Jozsa algorithm:

OpenQASM 3.0;

include "stdgates.inc";

include "oracle.qasm";

/** Suppose the above include statement provides a quantum

* gate called U_f that accepts an integer n, which is

* the dimension of the input domain of the function f. */

const n = 4; // Dimension of the input domain of f

qreg[n] x; // Declare n qubits

qubit y; // Declare the bottom qubit

reset x[0:n-1]; // Set all qubits to |0>

creg[n] c; // Declare the output bits

reset y; // Set the qubit y to |0>

X y; // The X gate flips the qubit , so y becomes |1>

// Apply Hadamard to all qubits

for i in [0 : n-1] {

H x[i];

}

// Apply U_f oracle

U_f(n) x[0:n-1], y;

20

// Apply Hadamard to the top qubits

for i in [0 : n-1] {

H x[i];

}

// Measure x

c[0 : n-1] = measure x[0 : n-1];

// If all the bits in c are 0, then the function is constant

// Otherwise it is balanced

As we can notice, the language syntax appears quite intuitive to those who have a
background in programming and know the basics of quantum computing. In the rest of
this chapter, the aim is to fully describe our simplified version of OpenQASM 3.0. We
will present the formal grammar using the ANTLRv4 syntax [Par14] and comment it
providing informal semantic and context.

The first non-terminal rule defines the structure of OpenQASM programs:

program

: header (globalStatement | statement)*

;

So we first describe the header and then we proceed to discuss all the other aspects
of the language that are used in statements.

3.1 Header

header

: version? include*

;

version

: ’OPENQASM ’ (Integer | RealNumber) SEMICOLON

;

include

: ’include ’ StringLiteral SEMICOLON

;

The header consists in an optional version string followed by zero or more ‘include’
statements, that are used to import gates and functions from other files at compile time.

21

A typical example of what the header looks like is:

// Header

OPENQASM 3.0;

include "stdgates.inc";

/*

comment

*/

We can see here that comments are C-like, and string literals are wrapped by double
quotes.

From now on we will proceed in a bottom-up fashion, describing all the features of
the language that are used in more complex rules, starting from lexicon, types and index
identifiers up to global and non-global statements.

3.2 Lexer Rules

LBRACKET: ’[’;

RBRACKET: ’]’;

LBRACE: ’{’;

RBRACE: ’}’;

LPAREN: ’(’;

RPAREN: ’)’;

COLON: ’:’;

SEMICOLON: ’;’;

DOT: ’.’;

COMMA: ’,’;

EQUALS: ’=’;

ARROW: ’->’;

PLUS: ’+’;

MINUS: ’-’;

MUL: ’*’;

DIV: ’/’;

MOD: ’%’;

22

Constant: (’pi’ | ’tau’ | ’euler ’);

Whitespace: [\t]+ -> skip;

Newline: [\r\n]+ -> skip;

fragment Digit: [0 -9];

Integer: Digit+;

fragment ValidUnicode: [\p{Lu}\p{Ll}\p{Lt}\p{Lm}\p{Lo}\p{Nl}];

fragment Letter: [A-Za-z];

fragment FirstIdCharacter: ’_’ | ’$’ | ValidUnicode | Letter;

fragment GeneralIdCharacter: FirstIdCharacter | Integer;

Identifier: FirstIdCharacter GeneralIdCharacter *;

fragment SciNotation: [eE];

fragment PlusMinus: PLUS | MINUS;

fragment Float: Digit+ DOT Digit *;

RealNumber: Float (SciNotation PlusMinus? Integer)?;

LineComment: ’//’ ~[\r\n]* -> skip;

BlockComment: ’/*’ .*? ’*/’ -> skip;

StringLiteral

: ’"’ ~["\r\t\n]+? ’"’

| ’\’’ ~[’\r\t\n]+? ’\’’

;

3.3 Types

In OpenQASM, types are divided in two categories: quantum types and classical types.

3.3.1 Quantum Types

quantumType

: ’qubit’

| ’qreg’

;

We will describe how to make a quantum declaration in the ‘Global Statements’ section.

23

3.3.2 Classical Types

classicalType

: singleDesignatorType designator

| doubleDesignatorType doubleDesignator

| noDesignatorType

| bitType designator?

;

bitType

: ’bit’

| ’creg’

;

singleDesignatorType

: ’int’

| ’uint’

| ’float’

| ’angle’

;

doubleDesignatorType

: ’fixed’

;

noDesignatorType

: ’bool’

;

designator

: LBRACKET expression RBRACKET

;

doubleDesignator

: LBRACKET expression COMMA expression RBRACKET

;

A designator is simply a parameter for the type, for example int[16] indicates a 16-bit
integer, where 16 is the designator. The single designator for the float and angle types
is for specifying the precision. Another example could be fixed[7, 24], which indicates
a 24 + 7 + 1 = 32-bit fixed point signed number having 7 integer bits and 24 fractional
bits.

bitType has a single designator that stands for the number of bits of the array (or
register, equivalently), whereas only the boolean type has no designator.

24

3.4 Index Identifiers

indexIdentifier

: Identifier rangeDefinition

| Identifier (LBRACKET expressionList RBRACKET)?

| indexIdentifier ’||’ indexIdentifier

;

indexIdentifierList

: (indexIdentifier COMMA)* indexIdentifier

;

indexEqualsAssignmentList

: (indexIdentifier equalsExpression COMMA)* indexIdentifier

equalsExpression

;

rangeDefinition

: LBRACKET expression? COLON expression? (COLON expression)?

RBRACKET

;

These rules are used to refer to specific bits or qubits in both classical and quantum
registers. For better understanding, we provide some examples. Given two registers x

and y, each having 8 bits:
• x || y: the 16-bit concatenation of x and y

• x[0]: the first bit of x

• y[-1]: the last bit of y

• x[0,3,5]: bits 0, 3 and 5 of x

• x[0:6]: the first 6 bits of x

• y[0:2:7]: every second bit of y from 0 to 7 (stops at 6)

• y[-4:-1]: the last three bits of y

3.5 Generical Statements

statement

: expressionStatement

| assignmentStatement

| classicalDeclarationStatement

| branchingStatement

25

| loopStatement

| quantumStatement

;

In our simplified version of OpenQASM we consider six types of statements: expres-
sions, assignments, classical declarations, branching if-then-elses, for and while loops and
quantum statements. We now go over these statement types one by one, and we will be
commenting only those that require further clarification, since most of them have similar
syntax and semantic to other well-known programming languages.

3.5.1 Expression Statements

expressionStatement

: expression SEMICOLON

;

expressionList

: (expression COMMA)* expression

;

expression

: expressionTerminator

| unaryExpression

| xOrExpression

| expression ’|’ xOrExpression

;

xOrExpression

: bitAndExpression

| xOrExpression ’^’ bitAndExpression

;

bitAndExpression

: bitShiftExpression

| bitAndExpression ’&’ bitShiftExpression

;

bitShiftExpression

: additiveExpression

| bitShiftExpression (’<<’ | ’>>’) additiveExpression

;

26

additiveExpression

: multiplicativeExpression

| additiveExpression (PLUS | MINUS) multiplicativeExpression

;

multiplicativeExpression

: expressionTerminator

| unaryExpression

| multiplicativeExpression (MUL | DIV | MOD) (

expressionTerminator unaryExpression)

;

unaryExpression

: unaryOperator expressionTerminator

;

expressionTerminator

: Constant

| Integer

| RealNumber

| Identifier

| StringLiteral

| MINUS expressionTerminator

| LPAREN expression RPAREN

| expressionTerminator LBRACKET expression RBRACKET

| expressionTerminator incrementor

;

unaryOperator

: ’~’ | ’!’

;

incrementor

: ’++’

| ’--’

;

The grammar for expressions is defnined hierarchically to implement the conventional
evaluation order of operators.

Expression statements do not affect the memory unless incrementors are present, in
which case the respective variables are updated accordingly to the incrementor sign.

27

Even if they are not included in the expressionStatement rule, we show the gram-
mar for boolean expressions here, because they will be used in other statement types
from now on.

booleanExpression

: membershipTest

| comparisonExpression

| booleanExpression logicalOperator comparisonExpression

;

comparisonExpression

: expression // if (expression)

| expression relationalOperator expression

;

relationalOperator

: ’>’

| ’<’

| ’>=’

| ’<=’

| ’==’

| ’!=’

;

logicalOperator

: ’&&’

| ’||’

;

membershipTest

: Identifier ’in’ setDeclaration

;

setDeclaration

: LBRACE expressionList RBRACE

| rangeDefinition

| Identifier

;

28

3.5.2 Assignment Statements

assignmentStatement: (classicalAssignment |

quantumMeasurementAssignment) SEMICOLON;

classicalAssignment

: indexIdentifier assignmentOperator (expression |

indexIdentifier)

;

assignmentOperator

: EQUALS

| ’+=’ | ’-=’ | ’*=’ | ’/=’ | ’&=’ | ’|=’ | ’~=’ | ’^=’ | ’

<<=’ | ’>>=’

;

quantumMeasurement

: ’measure ’ indexIdentifierList

;

quantumMeasurementAssignment

: quantumMeasurement (ARROW indexIdentifierList)?

| indexIdentifierList EQUALS quantumMeasurement

;

Assignments are defined in the usual way, with the addition of quantum measurements,
that simply tell the hardware to perform a measurement on certain qubits and store the
result in classical variables. As we explained in the previous chapter, we remark that
after being measured, qubits collapse to the observed state, so measurements are usually
done at the end of the circuit.

3.5.3 Classical Declarations

classicalDeclarationStatement

: (classicalDeclaration | constantDeclaration) SEMICOLON

;

classicalDeclaration

: singleDesignatorDeclaration

| doubleDesignatorDeclaration

| noDesignatorDeclaration

| bitDeclaration

;

29

singleDesignatorDeclaration

: singleDesignatorType designator (identifierList |

equalsAssignmentList)

;

doubleDesignatorDeclaration

: doubleDesignatorType doubleDesignator (identifierList |

equalsAssignmentList)

;

noDesignatorDeclaration

: noDesignatorType (identifierList | equalsAssignmentList)

;

bitDeclaration

: bitType (indexIdentifierList | indexEqualsAssignmentList)

;

constantDeclaration

: ’const’ equalsAssignmentList

;

3.5.4 Branching Statements

programBlock

: statement

| LBRACE statement* RBRACE

;

branchingStatement

: ’if’ LPAREN booleanExpression RPAREN programBlock (’else’

programBlock)?

;

3.5.5 Loop Statements

loopStatement: loopSignature programBlock;

loopSignature

: ’for’ membershipTest

| ’while’ LPAREN booleanExpression RPAREN

;

30

3.5.6 Quantum Statements

quantumStatement

: quantumInstruction SEMICOLON

;

quantumInstruction

: quantumGateCall

| quantumMeasurement

;

quantumGateCall

: quantumGateName (LPAREN expressionList? RPAREN)?

indexIdentifierList

;

quantumGateName

: ’CX’

| ’U’

| ’reset’

| Identifier

;

Here it is worth mentioning that quantum gates can be called on multiple qubits,
and this is the only possible cause of entanglement.

3.6 Global Statements

After the header, the program consists in a sequence of statements and global state-
ments. Global statements are defined by the rule:

globalStatement

: subroutineDefinition

| quantumGateDefinition

| quantumDeclarationStatement

;

31

3.6.1 Subroutine Definition

subroutineDefinition

: (’#qubits ’ expression)? ’def’ Identifier (LPAREN

classicalArgumentList? RPAREN)? quantumArgumentList

returnSignature? subroutineBlock

;

classicalArgumentList

: (classicalArgument COMMA)* classicalArgument

;

classicalArgument

: classicalType association

;

quantumArgumentList

: (quantumArgument COMMA)* quantumArgument

;

quantumArgument

: quantumType designator? association

;

association

: COLON Identifier

;

returnStatement: ’return ’ statement;

returnSignature

: ARROW classicalType

;

subroutineBlock

: LBRACE statement* returnStatement? RBRACE

;

Subroutines have two sets of arguments: classical arguments and quantum arguments.
They also have an optional return signature, which is used to specify the return type of
the function. Before the def keyword, the programmer can annotate the expression of
the upper bound on the number of qubit that she wishes to assert, so that the analyzer
can compare it to the estimated number of actually used qubits.

32

Here is an example of a subroutine definition:

#qubits 4

def f2 (int [5]:x) qreg [5]:q, qreg [5]:u -> int[8] {

int[5] r;

if (x * x < 0) {

r = measure q;

} else {

CX q[0:3], u[1:4];

r[0:2] = measure q[2:4];

}

int[5] s = r + x;

return s;

}

Notice that the above example obviously passes the qubit check, since the branch
where x * x < 0 is never taken.

3.6.2 Quantum Gate Definition

We will not delve into the actual grammar of quantum gate definitions, since the
analysis that we are going to discuss in the next chapters does not take them into
account. In fact, our analyzer treats them as black-boxes that can potentially entangle
all the input qubits together.

3.6.3 Quantum Declaration Statements

quantumDeclarationStatement: quantumDeclaration SEMICOLON;

quantumDeclaration

: quantumType indexIdentifierList

;

As we can notice, a quantum declaration is simply the declaration of a qubit (or an array
of them). It must be done globally, since qubits cannot be allocated dynamically.

Having clear how the language is defined, we can now discuss the tool that performs
analysis on QASM programs and estimates the number of qubits.

33

Chapter 4

Symbolic Execution

This chapter focuses on the actual symbolic execution of subroutines [Bal+18], how
the various types of statement are simulated, and shows some concrete examples. We are
now going to discuss the implementation of the SymbolicExecutionEngine’s analyzeSubroutine
method. The specification of all the other classes and methods is deferred to the next
chapter.

4.1 Initial State and Execution Stack

Suppose we have the following (classical) subroutine and we want to build its symbolic
execution tree:

def foo(int:x, int:y) {

int t = 0;

if (x > y) {

t = x++;

} else {

t = x + y;

}

t /= 2;

return t;

}

The analyzeSubroutine method takes the subroutine as an argument, analyzes its
signature and builds the root SymbolicState (which we call initialState) with the
following properties:

• constraints: True

• store: {x : $0, y : $1}

34

As we see, the two arguments of the subroutine have been assigned a fresh symbol each,
and since there is no assumption on the state yet, we could set the constraints to True,
meaning that the state is valid for each possible domain value of the symbols. After
defining the initial state, the ExecutionStack must be built, so we take the ‘subrou-
tineBlock’ node, unravel its children (which are all statements) and push them on a
brand new executionStack.

4.2 Simulation of Statements

The next step is to call the simulateExecution private method, which takes a
SymbolicState (representing the currentState), and an ExecutionStack. That is, this
method performs the simulation of all the statements that are in the executionStack

starting from the currentState parameter and generates a symbolic execution tree like
the following one:

def foo(int:x, int:y)

True — {x : $0, y : $1}

int t = 0;

True — {x : $0, y : $1, t : 0}

if (x > y)

True — {x : $0, y : $1, t : 0}

if (x > y)

x > y — {x : $0, y : $1, t : 0}

t = x++;

x > y — {x : $0 + 1, y : $1, t : $0 + 1}

t /= 2;

x > y — {x : $0 + 1, y : $1, t : $0/2 + 1/2}

else

x <= y — {x : $0, y : $1, t : 0}

t = x + y;

x <= y — {x : $0, y : $1, t : $0 + $1}

t /= 2;

x <= y — {x : $0, y : $1, t : $0/2 + $1/2}

35

In order to generate such a tree, the simulateExecution method pops the statement
on top of the stack, and it checks whether it is a concrete statement or a meta-instruction.
In the first case we need to detect the statement type and simulate its behavior. One or
more child states are created (based on the type of statement), and after setting them up
(as well as the execution stack, if it needs to be modified) there is a recursive call for each
of the child states. The base case occurs when the execution stack is empty, then the
qubit upper bound is checked against the information that the QRegManager holds. Now
we describe the operations of the symbolic execution engine for each statement type.

4.2.1 Expression Statements

The simulation of expression statements, just like the majority of the others, starts
with the cloning of the current state. The expression statement can only modify the
state if incrementors are present (i.e. ++ or --). The expression node is passed to the
Expression constructor, and an evaluation is performed on the store of the new state.
Since the evaluation procedure automatically updates the values of variables in the store
if incrementors are found, the simulation is over after the evaluation. The final value of
the expression is discarded, and the engine can proceed with the execution of the next
statement.

4.2.2 Assignment Statements

There are two types of assignment statements: classical ones and quantum measure-
ments.

Classical Assignments

Classical assignments involve LHS (Left-Hand Side) and RHS (Right-Hand Side)
expressions. The RHS can be either an expression or an index identifier. In the first case
it is evaluated to a symbolic expression, while in the second case it becomes a CReg. The
assignment operator can include a binary operator (e.g. +=, -=, etc.), in which case the
LHS is also evaluated and the operator is applied to the couple (LHS, RHS). The final
step is setting the value in the store, which is done by calling its assign method. If the
old value in the store is a simple symbolic expression, it is just overwritten, but if it is a
CReg, its content array is updated according to the new value.

36

Quantum Measurements

Quantum measurements return a fresh symbol and set it in the store, since we ig-
nore what happens at quantum level. Furthermore, when a quantum measurement is
performed, the measured qubits and all the ones entangled to them are transfered by
the QRegManager from the potentialEntanglements array to the actualQubits set by
invoking the markAsMeasured method.

4.2.3 Classical Declarations

The main difference between declarations and assignments is that the first have to
take the type and domain of the variable into account. This is accomplished by calling
the ClassicalType class constructor with the arguments obtained by inspecting the
statement subtree.

Since declarations can have an immediate assignment, that case is handled like the
previous case, after having initialized the store item with the correct type.

Constant declarations are allowed too, but the type does not need to be specified.
Thus, the store item will only contain the ‘value’ field, and this is fine because the type
is only needed when treating symbols with the SMT solver.

4.2.4 Branching Statements

When simulating if-then-else statements, both paths need to be generated, unless one
of them has an unsatisfiable condition. In other words, the first thing to do is evaluate the
boolean expression of the condition and check both it and its negation for unsatisfiability.
If one of them is unsatisfiable, the corresponding subtree is not generated.

Once determined which paths are to be generated, a clone state and a clone execution
stack are created for each one of them, and the corresponding program blocks are ex-
panded into sequences of statements and pushed on top of their execution stack. This is
necessary because a branching instruction hides all the statements that are in the nested
blocks, and so they need to be explicitly pushed on the stack for the engine to execute
them. Notice that the statements that appear after the end of the if-then-else remain
untouched and are present in all the execution stack’s clones, just below the expanded
blocks. All child states are appended to the current state’s children array, and a re-
cursive call to the simulateExecution method is done for each one of them, with the
corresponding execution stack passed as second argument.

37

4.2.5 Quantum Statements

When a quantum gate call is encountered, all the qubits that appear in the it are
considered to be potentially entangled, so the addPotentialEntanglement method of
QRegManager is called on them.

Example 4.2.1. Suppose we have the following quantum registers:

qreg q[4];

qreg r[4];

qreg s[4];

Here is an example of how the QRegManager arrays are affected by quantum statements
(we put the array contents as comments between statements):

// potentialEntanglements: []

// actualQubits: []

CX q[0], q[1];

// potentialEntanglements: [{q[0],q[1]}]

// actualQubits: []

CX q[2], r[0];

// potentialEntanglements: [{q[0],q[1]}, {q[2],r[0]}]

// actualQubits: []

CX q[1], q[3];

// potentialEntanglements: [{q[0],q[1],q[3]}, {q[2],r[0]}]

// actualQubits: []

CX r[1:4], s[1:4];

// potentialEntanglements: [{q[0],q[1],q[3]}, {q[2],r[0]},

// {r[1],s[1]}, {r[2],s[2]}, {r[3],s[3]}]

// actualQubits: []

CX r[2], r[3];

// potentialEntanglements: [{q[0],q[1],q[3]}, {q[2],r[0]},

// {r[1],s[1]}, {r[2],s[2],r[3],s[3]}]

// actualQubits: []

CX r[0], s[3];

38

// potentialEntanglements: [{q[0],q[1],q[3]},

// {q[2],r[0],r[2],s[2],r[3],s[3]}, {r[1],s[1]}]

// actualQubits: []

measure r[2];

// potentialEntanglements: [{q[0],q[1],q[3]}, {r[1],s[1]}]

// actualQubits: [q[2],r[0],r[2],s[2],r[3],s[3]]

measure q[0];

// potentialEntanglements: [{r[1],s[1]}]

// actualQubits: [q[2],r[0],r[2],s[2],r[3],s[3],q[0],

// q[1],q[3]]

The code above uses only 9 qubits (the size of actualQubits array) out of 12 that
have been declared. The QASM analyzer is therefore able to tell the programmer which
qubits are actually used, so that resources can be saved for other computations.

39

4.2.6 Loop Statements

Simulating loops symbolically is a hard task, so in this version of the analyzer only
‘for’ loops with a known number of iterations have been considered. When such a
loop statement is encountered, the execution stack is updated so that the loop block is
repeated the right number of times, and between two consecutive sequences there is a
SetStoreValueInstruction that updates the value of the iterator.

Example 4.2.2. Suppose we have the following ‘for’ loop.

for i in [0:4] {

CX q[i], r[i];

c[i] = measure r[i];

}

Suppose also that the execution stack is already filled with some statements and the for

loop on the top.

for i in [0:4] {...}
...

So, when the engine simulates the for statement, the execution stack becomes:

SetStoreValueInstruction(‘i’, 0)

CX q[i], r[i]

c[i] = measure r[i]

SetStoreValueInstruction(‘i’, 1)

CX q[i], r[i]

c[i] = measure r[i]

SetStoreValueInstruction(‘i’, 2)

CX q[i], r[i]

c[i] = measure r[i]

SetStoreValueInstruction(‘i’, 3)

CX q[i], r[i]

c[i] = measure r[i]

SetStoreValueInstruction(‘i’, 4)

...

40

Chapter 5

QASM Analyzer

QASM Analyzer is a tool written in Python 3 that performs static analysis on QASM
programs, more specifically it classifies all the subroutines (based on the presence of
loops, recursive calls, branching statements and so on) and simulates their execution
by substituting formal parameters with immutable symbols, that are then involved in
assignments, branching conditions and loop guards. By invoking an SMT solver, the
analyzer determines all the paths that the execution will actually take, and estimates
the number of qubits that are actually used. We remark the word “actually” because
there may be regions of code that are never executed, like an unsatisfiable condition in
an if-then-else statement. The source code is available on GitHub [Sce] and it is split
into multiple modules:

• Parser: takes the QASM program as input and outputs a parse tree.

• Types and variables: utility classes to manage types, variables and subroutine
arguments.

• Subroutine classifier: navigates the parse tree and builds a data structure con-
taining information about all the subroutines, each wrapped by an object of the
‘Subroutine’ class.

• Registers and ranges: utility classes, helpful for working with arrays of bits or
qubits

• Expression manipulator: takes an expression node of the parse tree and builds
an Abstract Syntax Tree, which is then used to evaluate that expression in a certain
context.

• SMT solver: takes a symbolic boolean expression as input and checks whether it
is satisfiable or not.

• Symbolic execution engine: takes a subroutine object and builds a symbolic
execution tree by simulating the instructions of that subroutine. At the end of the

41

simulation it checks if each branch of the execution does not exceed the number of
qubits declared by the programmer.

In this chapter we provide details about each of them and explain how symbolic execution
works.

5.1 Parser

The module we start with is the parser, since it provides the data structure that will
be used throughout all the other modules: the parse tree.

Having defined the grammar of the language in the qasm3sub.g4 file, we can invoke
the ANTLRv4 tool [Par14] to generate the actual parser:

$ antlr4 -Dlanguage=Python3 qasm3sub.g4

This command generates a series of files which are stored in the qasm3sub folder. One
of these files contains the Listener class, that allows us to navigate the raw parse tree
built by ANTLRv4 and pick only the information that we need to build a simplified
version of the parse tree, which we will be using in the other modules of the analyzer.
Our parse tree is composed by interconnected instances of the Node class.

5.1.1 Node

This class represents the core of the parse tree, and it encapsulates a generic grammar
rule.

Attributes

• type: the name of the grammar rule (e.g. ‘assignmentStatement’, ‘classicalDecla-
ration’), None if it is a lexer token.

• children: an array containing all the nodes obtained by expanding the rule with
its actual production.

• parent: the node whose rule the current rule is obtained from.

• text: the space-trimmed string of the input program corresponding to the current
rule.

• rules: a dictionary that maps a rule type with the (ordered) list of all child nodes
matching that type.

• position: the index of the current Node in parent.children list.

• index: the index of the current node in parent.rules[self.type].

42

Methods

• init (type, text): sets the type and text attributes.

• appendChild(child): used internally for the ANTLRv4 tree walker to build the
custom parse tree.

• getChildByType(type, index=0): returns the index-th child matching type.

• getChildrenByType(type): returns the array of all children matching type.

• getChild(index=0): returns the index-th child.

• getDescendantsByType(type): returns an array containing all the nodes match-
ing the type which appear in the subtree using DFS visit.

• getLastChild(): returns the last child in the children array.

• hasChildren(): returns whether the current node has any child or not.

The parse tree root node can be obtained by calling the static function passing the
program path string as argument:

Parser.buildParseTree(filePath)

5.2 Types and Variables

This is an utility module for encapsulating all the information regarding types and
variables. We describe these classes providing details about what their attributes and
methods are.

5.2.1 ClassicalType

This class represents a classical type as defined in the QASM grammar, with zero,
one or two designator expressions.

Attributes

• node: the parse tree node which the type comes from

• typeLiteral: the string literal of the type, it can be one of ‘bit’, ‘creg’, ‘int’, ‘uint’,
‘float’, ‘angle’ and ‘fixed’.

• designatorExpr1: the expression node of the first designator (None if it is a
no-designator type).

• designatorExpr2: the expression node of the second designator (if present, None
otherwise).

43

Methods

• init (typeLiteral, designatorExpr1, dedsignatorExpr2, node): if node
is not None, instantiates a ClassicalType and reads the information in the node

to fill the other attributes; otherwise they must explicitly be passed as arguments.

• hasLimitedDomain(): returns a boolean value indicating if the current type has a
limited (‘bit’, ‘creg’ or ‘bool’) or unlimited domain.

• getTypeForSolver(): returns the mathematical numerical set of the current type
(‘Bool’, ‘Integer’, ‘Real’ or ‘BitVector’) in order to allow the SMT solver to check
for satisfiability according to the right domains.

5.2.2 Symbol

Symbolic expressions (which are different from our parse expression trees) are man-
aged by the sympy library, which allows us to define symbols and automatically performs
simplifications on expressions. This class acts as a static symbol provider, and has both
static attributes and static methods.

Attributes

• nextIndex: since new symbols can be defined at any time, they are given an
incremental index in order to make them unique. This attribute keeps track of
what the index of the next symbol should be.

• symbolTypes: a dictionary that associates each symbol to its classical type.

Methods

• getNewSymbol(type): invokes sympy to create and return another symbol, whose
label is the character $ concatenated to the nextIndex stringified value ($0, $1,
$2, . . .). Additionally, it stores the newly-created symbol type in the symbolTypes

dictionary.

• getSymbolType(label): returns the classical type associated to the symbol match-
ing label.

44

5.2.3 Variable

This class represents a classical variable in an expression AST (which will be described
in the next section).

Attributes

• identifier: the variable identifier.

• type: the variable classical type.

Methods

• init (identifier, type): instantiates a new variable named identifier en-
capsulating its type.

Child classes ClassicalVariables(Variable) and QuantumVariable(Variable) are
also defined, with the only abstraction that the former has a constructor that accepts a
typeNode argument and automatically calls the ClassicalType constructor to set the
type attribute.

5.2.4 Value

This class represents a hard-coded value in an expression AST.

Attributes

• typeLiteral: a string representing the type of the value, which determines its
domain.

• value: the actual value.

Methods

• init (value, typeLiteral): instantiates an element having the specified value

and typeLiteral. If the latter is None, it is automatically detected.

45

5.3 Subroutine Classifier

This module has four classes: ClassicalArgument, QuantumArgument, Subroutine
and SubroutineClassifier. The first two are extensions of ClassicalVariable and
QuantumVariable respectively.

5.3.1 ClassicalArgument

This class extends ClassicalVariable, inheriting attributes and methods. The util-
ity of this class resides merely in the constructor.

Methods

• init (node): takes a ‘classicalArgument’ node and instantiates a classical vari-
able based on the information that the node carries.

• hasLimitedDomain(): returns a boolean indicating whether the encapsulated ar-
gument has a limited domain or not.

5.3.2 QuantumArgument

This class extends QuantumVariable. Again, its utility resides in the constructor.

Methods

• init (node): takes a ‘quantumArgument’ node and instantiates a quantum
variable based on the information that the node carries.

5.3.3 Subroutine

This class holds all the information about a subroutine. By calling its constructor on
a ‘subroutine’ node, it basically fills up all the attributes that tell us what the properties
of the subroutine are.

Attributes

• identifier: the subroutine identifier string.

• classicalArgument: an array containing a ClassicalArgument instance for each
classical argument of the subroutine.

• quantumArgument: an array containing a QuantumArgument instance for each quan-
tum argument of the subroutine.

46

• symbolicExecutionTree: the root state of the symbolic execution tree (it will be
discussed later).

• qubitUpperBound: the symbolic expression annotated by the programmer to check
against the number of qubits in each branch of the execution tree.

• qubitChecks: an array of symbolic expressions and True values. The former rep-
resent violations of the upper bound on the number of qubits, while the latter
represent successful checks. It is filled during the last stages of the symbolic exe-
cution.

Other than these, there are a bunch more of attributes wich are actually properties
of the subroutine:

• hasOnlyLimitedArgs: a boolean value indicating if the only arguments that the
subroutine has have a limited domain.

• hasInfiniteDomainArgs: the logical negation of hasOnlyLimitedArgs

• returnType: an instance of ClassicalType, indicating the return type of the
subroutine. None if there is no return value.

• hasBranchingStatements: a boolean value indicating whether the subroutine con-
tains any if-then-else statement in its body.

• hasLoops: indicates if there are any loops in the subroutine body.

• hasSubroutineCalls: indicates if there are any subroutine calls in the subroutine
body.

• isPlainSequential: indicates if the subroutine has no statements other than
assignments and expressions in its body.

• hasOnlyBranchingStatements: indicates if the subroutine has no other statement
than assignment, expression and branching statements.

• isRecursive: indicates if the function makes any recursive call.

Methods

• init (node, parseTree): takes a ‘subroutineDefinition’ node and the root
parse tree node, and fills the classicalArguments and quantumArguments arrays,
and all the property attributes with the right values. This last thing is accom-
plished by traversing the subroutine parse tree and checking for the existance of
if-then-else statements, loops and subroutine calls.

• addQubitCheck(qubitCheck): takes a symbolic expression representing an upper
bound violation, or True and pushes it into the qubitChecks array.

47

• respectsQubitBound(): returns whether all the branches of the execution respect
the upper bound on the number of qubits or not by checking if there are any
non-True values in the qubitChecks array.

5.3.4 SubroutineClassifier

This class is simply a wrapper for Subroutine. Its constructor takes parseTree

as only argument, it goes over all global statements and for each subroutine that it
encounters it instantiates a Subroutine object, which automatically performs all the
analysis. A dictionary attribute, namely subroutines, associates each subroutine object
to its identifier, so that it is possible to retrieve information about a particular subroutine
by simply looking for it in that dictionary.

5.4 Registers and Ranges

This module contains multiple utility classes that are used to work with both classical
and quantum registers, and to simplify array ranges manipulation.

5.4.1 BitRange

This class encapsulates a range of bits in a classical register creg, it has the start

and end expressions (which can be either numerical or symbolic), a symbol to represent
it in symbolic expressions, and a value, which can also be None if not specified.

Attributes

• creg: the classical register that has the current range as content.

• start: the range’s starting index with respect to the parent creg.

• end: the range’s ending index with respect to the parent creg.

• symbol: a sympy symbol used to represent the current range.

• value: the actual value of the range (either numerical or symbolic).

Methods

• init (creg, start, end, symbol): sets the range attributes according to the
parameters.

48

5.4.2 Bit

A bit is a particular case of bit range, where the start and end expression coincide.
So this class inherits all from BitRange and its constructor makes sure that the range is
one bit long.

Methods

• init (creg, index, value): sets the start attribute to index and the end

one to index+1. Sets the other attributes according to parameters.

5.4.3 CReg

CReg stands for “Classical Register”, which is an array of bits.

Attributes

• identifier: the classical register identifier.

• size: the number of the register bits.

• symbol: the symbol which is used in symbolic expressions to represent the register
value. More about symbolic expressions and registers will be discussed in the
‘Expression Manipulator’ section.

• content: an array containing instances of the BitRange and Bit classes, which
symbolically represent the actual content of the register.

Static Methods

• fromStringLiteral(stringLiteral): returns a CReg containing as many Bits
as the length of stringLiteral, with the former matching the 0s and 1s of the
latter.

• fromSymbolAndSize(identifier, symbol, size): returns a CReg having a cer-
tain size, represented by symbol and identified by identifier.

• concat(lreg, rreg): takes two CRegs and returns a CReg having size lreg.size

+ rreg.size, and being the concatenation of lreg and rreg, in the order.

Instance Methods

• findBit(index): returns the first bit in the content array having start ==

index, None if not present.

49

• getBit(index): returns the first bit in the content array having start == index,
creating it if not present.

• findRange(rangeDefinition): returns the range in the content array matching
the rangeDefinition, None if not present.

• getRange(rangeDefinition): returns the range in the content array matching
the rangeDefinition, creating it if not present.

• getList(expressions): returns the list of Bits specified in the expressions

array, creating them if not present.

• setRange(rangeDefinition, value): sets the value of the range matching the
rangeDefinition, creating it if not present.

• setList(expressions, values): sets each Bit having index in expressions to
the correspondent expression in values (which is a BitRange)

• getSymbolicExpression(): returns an expression that represents the content of
the register. If there are no symbolic indexes, the actual integer value is returned
(by converting the content from binary to integer).

5.4.4 QubitRange

This class encapsulates a range of qubits in a quantum register qreg. Like BitRange,
it has start and end attributes, but neither value nor symbol.

Attributes

• qreg: the quantum register that has the current range as content.

• start: the range’s starting index with respect to the parent qreg.

• end: the range’s ending index with respect to the parent creg.

Methods

• init (creg, start, end): sets the range attributes according to the parame-
ters.

• hash (): returns the hash of qreg.identifier + start + end for the range, in
order to create sets of QubitRanges.

• eq (qubitRange): defines the equality for QubitRanges. Returns True if qreg.
identifiers, start and end all match.

50

5.4.5 Qubit

Like the case for bit ranges and bits, a qubit is a particular case of qubit range, where
the start and end expressions coincide. So this class inherits all from QubitRange and
its constructor makes sure that the range is one qubit long.

Methods

• init (qreg, index): sets the start attribute to index and end to index+1.
Sets the qreg parent attribute according to the parameter.

5.4.6 QReg

QReg stands for “Quantum Register”, which is an array of qubits.

Attributes

• identifier: the quantum register identifier.

• size: the number of the register qubits.

• content: an array containing instances of the QubitRange and Qubit classes, which
symbolically represent the actual content of the register.

Methods

• addItem(item): appends item to the content array.

• findQubit(index): returns the first qubit in the content array having start ==

index, None if not present.

• getQubit(index): returns the first qubit in the content array having start ==

index, creating it if not present.

• findRange(start, end): returns the range in the content array matching start

and end, None if not present.

• getRange(start, end): returns the range in the content array matching start

and end, creating it if not present.

• getAll(): returns the list of all Qubits and QubitRanges in the register.

• clone(): returns a deep copy of the register.

5.4.7 Range

This class is defined in the ‘Symbolic Execution Engine’ module due to dependency
issues, but we discuss it here for clearness. It represents a Python-like range.

51

Attributes

• node: the parse tree node that the range is obtained from.

• start: the range start symbolic expression (e.g. in [1:4], the start would be 1).

• end: the range end symbolic expression (e.g. in [1:4], the end would be 4). The
end expression is included in the resulting range.

• step: the range step expression (e.g. in [0:2:8] the step is 2, meaning that the
range will be [0, 2, 4, 6, 8])

Methods

• init (node, context, size): instantiates a Range object by inspecting the
node and evaluating its expressions in the provided context. In case one extreme
is not specified, the size parameter is used to determine the actual range.

• isSymbolic(): returns whether the range is determined by actual numbers, or it
has symbolic expressions as start or end.

• toArray(): returns the array that the range defines. If the range is symbolic, None
is returned instead.

5.4.8 SetDeclaration

This class is defined in the ‘Expression Manipulator’ module due to dependency
issues, but we discuss it here for clearness. It represents an abstraction over ‘setDecla-
ration’ nodes of the parse tree.

Attributes

• node: the parse tree node that the set declaration is obtained from.

• items: an array containing the elements of the declared set.

• start: the start expression, in case the set is a range.

• end: the end expression, in case the set is a range.

• step: the step value, in case the set is a range.

Methods

• init (node): constructs a SetDeclaration object by inspecting the node and
setting the attributes accordingly.

52

5.5 Expression Manipulator

The aim of this module is to setup a tool which can evaluate expressions (coming
from the parse tree) symbolically. This is done by taking an ‘expression’ node from the
parse tree, building the respective Abstract Syntax Tree (AST) and translating it in a
symbolic sympy expression.

An AST is composed of UnaryOperators and BinaryOperators as internal nodes,
and Variables and Values as leaves.

Operators are simple data structures that hold a string literal for what operation they
represent, and one or two arguments (depending on the operator being unary or binary),
which are AST nodes in turn. Furthermore, they have the applyTo method, which takes
symbolic operands as arguments and returns the symbolic expression of them combined
with the operator.

5.5.1 UnaryOperator

This class constitutes a possible internal node for an expression AST.

Attributes

• literal: the operator string literal (e.g. ‘-’ for the negative sign, ‘!’ for the logical
NOT).

• arg: the AST node the operator is applied to.

Methods

• init (literal, arg): returns an instance of UnaryOperator with the at-
tributes set accordingly to parameters.

• hasLeafArgument(): returns True if the argument is a leaf (Value or Variable),
or False if it is another operator in turn.

• applyTo(operand): takes a symbolic sympy expression as argument and returns
the symbolic expression with the current operator applied to the operand (e.g.
UnaryOperator(‘-’).applyTo(x+y) returns -(x+y), which is simplified to -x-y

automatically by sympy).

53

5.5.2 BinaryOperator

This class constitutes another possible internal node for an expression AST.

Attributes

• literal: the operator string literal (e.g. ‘+’ for the addition, ‘-’ for the subtraction,
‘*’ for the multiplication, etc.).

• arg1: the AST node that the operator takes as left argument.

• arg2: the AST node that the operator takes as right argument.

Methods

• init (literal, arg1, arg2): returns an instance of BinaryOperator with
the attributes set accordingly to parameters.

• hasLeafAsFirstArgument(): returns True if arg1 is a leaf, False if it is another
operator in turn.

• hasLeafAsSecondArgument(): returns True if arg2 is a leaf, False if it is another
operator in turn.

• applyTo(operand1, operand2): takes two symbolic sympy expressions as argu-
ments and returns the symbolic expression with the current operator applied to
those operands (e.g. BinaryOperator(‘*’).applyTo(x+y, x-y) returns (x+y) *

(x-y)).

5.5.3 Expression

This is the core class of this module, and it is used for both arithmetical and boolean
expressions.

Attributes

• node: the parse tree node the expression comes from.

• tree: the root of the expression AST.

• isBoolean: whether or not it is a boolean expression.

54

Methods

• init (node, tree, isBoolean): returns an Expression object having attributes
set as specified by the parameters.

• buildExpressionAST(node): builds the AST for the expression by inspecting the
node and recursively instantiating UnaryOperators, BinaryOperators until Values
and Variables are reached as base cases. The root of the AST is assigned to the
attribute tree.

• applyBinaryOperator(literal, secondOperand): modifies the expression by
creating a new BinaryOperator and setting it as tree root. The operands are, in
the order, the old expression and secondOperand.

• clone(): returns a deep copy of the expression.

• evaluate(context): recursively calls the applyTo methods of the operators in
the AST in order to build the corresponding sympy symbolic expression. When
a Variable base case is reached, the evaluator asks the context what the actual
value of that variable is; whereas, when a Value is reached, no calls to the context
are required since its actual value is hard-coded. The context argument is an
instance of Store, which will be discussed in the ‘Symbolic Execution Engine’
section.

5.6 SMT Solver

SMT stands for ‘Satisfiability Modulo Theory’, which means that an SMT solver
is able to check formulas of a certain theory for satisfiability. In this case, the theory
we are using is non-linear arithmetic, since our boolean expressions can include com-
parisons, equalities and inequalities between symbolic arithmetic expressions involving
multiplications, powers, fractions and so on.

Building an SMT solver is a long and complex task, so we use the PySMT library.
However, since our symbolic expressions are stored in sympy format, we need to convert
them to allow PySMT to check for satisfiability. This module simply converts a sympy

expression to PySMT format and checks for satisfiability or unsatisfiability modulo non-
linear arithmetic theory.

55

5.6.1 Solver

Static Methods

All of the following methods take a sympy symbolic expression as argument.

• getConvertedExpression(symbolicExpression): returns the PySMT-formatted
expression by visiting the symbolicExpression sympy tree and progressively build-
ing the correspondent PySMT tree.

• isSat(symbolicExpression): returns True if the symbolicExpression is satis-
fiable, False otherwise.

• isUnsat(symbolicExpression): returns True if the symbolicExpression is un-
satisfiable, False otherwise.

5.7 Symbolic Execution Engine

This is the core module of the project, it is responsible for the simulation of the
QASM program, and during the symbolic execution it calls the SMT solver to determine
whether certain execution paths are taken or not. Based on this, some regions of code
that contain potential entanglements and measurements are detected to be unreachable,
so they are not considered in the count of the qubits. The main concern of this module
is to build a symbolic execution tree. Such a tree is composed of SymbolicStates.

5.7.1 SymbolicState

Each SymbolicState holds the following information:

• The memory configuration in a Store object

• The constraints that state assertions on the symbols defined that far.

• The set of all potential entanglements that are active and quantum measure-
ments that have been detected that far (in the QRegManager).

Attributes

• subroutine: the Subroutine that the symbolic execution is performed on.

• node: the parse tree node of the instruction that generated the state.

• store: the Store object (discussed later).

• constraints: a sympy boolean expression made up by a conjunction of multiple
assertions on the symbols defined that far. Those assertions are made by the
execution engine whenever a certain condition occurs in the program. The details
will be discussed in the next chapter.

56

• qregManager: the QRegManager object (discussed later).

• children: the children SymbolicStates. Only one in case of a sequential instruc-
tion, two in case of a branching statement or a loop.

Methods

• addChild(childState): adds childState (which is a SymbolicState) to the
array of children.

• clone(newNode): returns a deep copy of the symbolic state.

• addConstraint(booleanExpression): adds a constraint to the state by making
a conjunction with the previous constraint expression.

• symbolizeAll(): substitutes all the variable values in the memory with fresh
symbols. This is used when indeterminate loops are simulated and there is no
information on the post-condition of those variables.

5.7.2 Store

This class represents the memory configuration in a SymbolicState.

Attributes

• store: a dictionary that maps variable names to memory items. Each item is a
dictionary that has two keys, ‘value’ and ‘type’, that represent respectively the
symbolic expression (or CReg object, in case it is a register) associated to the
variable, and the ClassicalType of it.

Methods

• init (store): initializes the store with the parameter, or an empty dictionary
if it is None.

• clone(): returns a deep copy of the store

• set(key, value, type): sets the value and type of the item associated to the
variable named key according to parameters.

• get(key): returns the item associated to key.

• getValue(key): returns the symbolic expression associated to the variable named
key. None if the variable is not defined.

• setValue(key, value): sets the value of the variable named key.

• setType(key, type): sets the type of the variable named key.

57

• getType(key): returns the ClassicalType of the variable named key. None if
the variable is not defined.

• evaluate(indexIdentifierNode): returns the symbolic expression associated to
the CReg referenced by indexIdentifierNode, according to the indexes that ap-
pear in it.

• assign(indexIdentifierNode, value): sets the content value of the register
referenced by indexIdentifierNode, according to the indexes that appear in the
latter.

• evaluateType(indexIdentifierNode): returns the ClassicalType associated to
indexIdentifierNode, with the designatorExpr1 set according to the size of the
referenced portion of register.

• symbolizeAll(): substitutes all ‘value’ fields of each item with a fresh symbol.

5.7.3 QRegManager

This class implements a tool to keep track of potential entanglements and quantum
measurements that occur in the program, so that the estimation of the number of qubits
is reduced to a simple count of all the qubits that are entangled with a measured one,
or are themselves measured.

Attributes

• quantumRegisters: dictionary that holds information about all the globally de-
clared qubits.

• potentialEntanglements: an array of sets. Each one contains a certain number
of Qubits and QubitRanges that are potentially entangled.

• actualQubits: a set of Qubits that have been measured, or were entangled to a
measured one. The number of qubits in this set is the estimated upper bound to
the number of actually used qubits.

Static Methods

• fromParseTree(parseTree): returns a QRegManager with the quantumRegisters
attribute already initialized with the ones that are declared in the program code.

Instance Methods

• init (quantumRegisters, potentialEntanglements, actualQubits): cre-
ates a new QRegManager object having the specified attributes.

58

• addQReg(identifier, size): inserts a new QReg named identifier having the
specified size in the quantumRegisters dictionary.

• markAsMeasured(indexIdentifierNode, context): searches for the qubits spec-
ified in the indexIdentifierNode (evaluating its indexes in the specified context)
and adds them to the actualQubits set.

• addPotentialEntanglement(indexIdentifierNodes, context): searches for all
the qubits referenced in the indexIdentifierNodes array (evaluating the indexes
in the specified context), and merges all the already-existent potential entangle-
ments containing one of them. If a qubit is not present in any of the potential
entanglements, a new one is created and immediately merged with the others. At
the end of the procedure, all the specified qubits will be in the same entanglement
set and there will be no duplicates in the other potential entanglements.

• clone(): returns a deep copy of the QRegManager.

• findEntanglementContainingQubit(qubit): returns the element appearing in
the potentialEntanglements array that contains the specified qubit. None if
there is no match.

• checkQubitBound(bound): returns whether the actual number of qubits in the
current state does not exceed the bound expression.

5.7.4 ExecutionStack

An instance of this class is a stack that holds the next program statements to be
executed. A statement can cause one or more new statements to be pushed on top of
the stack, since some of them hold program blocks that have to be expanded.

Attributes

• sequence: the array of statements that have to be executed. The last element is
the first to be popped out.

Methods

• pop(): returns the next statement to be executed, removing it from the stack.

• append(block): pushes all the statements in the block on the stack.

• isEmpty(): returns True if the stack is empty, False otherwise.

• clone(): returns a deep copy of the execution stack.

• addMetaInstruction(instruction): pushes a meta-instruction on the stack.

59

5.7.5 Meta-Instructions

Meta-instructions are instances of the MetaInstruction superclass, and they repre-
sent instructions for the symbolic execution engine. For example, at the end of a ‘for’
loop iteration, the engine must increment the value of the loop iterator, so the engine
must know the exact moment when this operation needs to be done. This is achieved
by pushing a meta-instruction on the stack underlying the loop body statements that
reminds the engine to update the value of the iterator before going on with the other
program statements.

The classes that represent meta-instructions are the following:

• AddConstraintInstruction(constraint): adds the specified constraint to
the SymbolicState.

• SetStoreValueInstruction(identifier, value): updates the Store by updat-
ing the value of the variable having the specified identifier.

5.7.6 SymbolicExecutionEngine

This is a static class that has a single public method, but it wraps all the logic that
allows the symbolic simulation to be performed, and the actual number of qubits to be
estimated. As already anticipated, the details on how the engine operates are discussed
in the previous chapter. Here we describe the API of the class.

Static Methods

• analyzeSubroutine(subroutine): takes a Subroutine object as argument and
sets its symbolicExecutionTree attribute. It also sets the qubitChecks array
so that it is possible to determine if the upper bound on the number of qubits is
respected.

60

Chapter 6

Conclusion

In conclusion, we could say that this is the first version of a static analyzer for
QASM, and the main concern is to estimate the number of qubits that are measured
and/or entangled to measured ones. This could help quantum programmers to care
about the resources that they use, and this is fundamental in quantum computing since
qubits are really expensive, and the actual speedup provided by quantum superpositions,
that allow multiple states to be computed at the same time, is exponential with respect
to the number of qubits.

6.1 Limitations and Future Development

The present tool at its current version is not complete, in fact there are some features
that have not been implemented and some improvements that could be done.

Missing Features

• Function calls in expressions (e.g. 2 + a + getNumber()).

• Boolean auto-cast in conditional statements (e.g. if (variable)): the libraries
make it hard to cast from number to boolean.

• Bitwise shift operations (<< and >>): bit vectors are only available in PySMT, not
in sympy.

• Modulo operation (%): not available in PySMT

• Alias statements (e.g. let y = x): keeping track of all the references could be
difficult, especially if there are more levels of indirection.

• Indeterminate loops (e.g. while (a > 0)): here some technique should be used
to detect loop invariants and use them to make assertions about pre- and post-
conditions.

61

• Control directive statements (break, continue and end): they would complicate
indeterminate loop handling even more.

• Symbolic designators in index identifiers (e.g. a[n], where n is not known at
compile time): every time a symbolic designator is detected, it should be checked
against all the previous ones for equality. This is quite time-consuming and it does
not always guarantee that the analysis is correct.

Improvements

• Check whether the measured value of a qubit is read before being overwritten, and
signal it to the programmer.

• Perform analysis also in the quantum part of the program, considering some prop-
erties of the most commonly used quantum gates and reducing their number.

The path for Quantum Supremacy is still long, but every step counts. Reducing
the number of qubits that a program requires is a tiny step, but together with other
innovations and newer technologies for the physical implementation of qubits, could make
the difference and lead to a completely new world for communications, cryptography, big
data and phisical phenomena simulations.

62

Bibliography

[Nos08] Mirco A. Mannucci Noson S. Yanofsky. Quantum Computing for Computer
Scientists. Cambridge University Press, 2008. isbn: 9780521879965.

[Nie10] Michael Nielsen. Quantum computation and quantum information. Cambridge
New York: Cambridge University Press, 2010. isbn: 978-1107002173.

[Per12] Riley Perry. Quantum computing from the ground up. Singapore: World Sci-
entific, 2012. isbn: 978-9814412117.

[Gri14] John Gribbin. Computing with quantum cats : from Colossus to Qubits. Amherst,
New York: Prometheus Books, 2014. isbn: 978-1616149215.

[Par14] Terence Parr. ANTLR. 2014. url: https://www.antlr.org/.

[Bal+18] Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In:
ACM Comput. Surv. 51.3 (2018).

[Den19] Dorothy E Denning. “Is quantum computing a cybersecurity threat?” In:
American Scientist 107.2 (2019), pp. 83–85.

[Mau] Raffaele Mauro. Quantum computing: cos’è, a cosa serve e perché è impor-
tante. url: https://www.zerounoweb.it/techtarget/searchdatacenter/
quantum-computing-cose-a-cosa-serve-e-perche-e-importante/.

[Qisa] Qiskit. OpenQASM. url: https://qiskit.github.io/openqasm/index.
html.

[Qisb] Qiskit. Qiskit. url: https://qiskit.org/textbook/preface.html.

[Sce] Damiano Scevola. QASM Analyzer. url: https://github.com/lusvelt/
qasm-analyzer.

63

