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Abstract

Among the candidates for dark matter, Primordial Black Holes are extremely promising, as

they do not require the introduction of new physics beyond the Standard Model of particle

physics. These objects can arise from the collapse of overdense regions generated by the

curvature perturbation generated during inflation. The probability distribution of these

overdense regions is related to the power spectrum of the scalar perturbation which must

be enhanced by compared to the perturbation at CMB scale in order for the collapse to

generate enough Primordial Black Holes to account for the dark mater budget we observe

today. In this thesis we discuss two possible amplification mechanism in non-canonical

inflation, employing a decreasing sound speed. In the first case we consider a model which

starts in a slow-roll regime at CMB scale. Later during inflation the field enters in a non-

canonical regime and it approaches the k-inflation attractor. During this kinetically driven

transient phase the sound speed and the slow roll parameter ε decrease exponentially and

the power spectrum of the curvature perturbation gets amplified. We then consider a DBI

model where we consider the presence of a gaussian spike in the warp factor, thus leading to

the transition, from the canonical phase at CMB scales to a strongly non-canonical regime.

In this latter phase, the sound speed of perturbation is much smaller than 1, and leads to

an amplification of the scalar perturbation power spectrum.



Abstract

Fra i candidati per spiegare la materia oscura i buchi neri primordial sono fra i più promet-

tenti, dato che non richiedono l’introduzione di nuova fisica al di fuori del Modello Standard

della fisica delle particelle. Questi oggetti si formano dal collasso di regioni sovradense ge-

nerate delle perturbazioni di curvatura generate durante l’inflazione, e la distribuzione di

probabilità di queste sovradensità è collegata allo spettro di potenza delle perturbazioni

scalari che deve essere amplificata rispetto alle scale della CMB affinché il collasso possa

generare abbastanza buchi neri primordiali per spiegare la materia oscura che osserviamo

oggi. In questa tesi andiamo a studiare due possibili meccanismi di amplificazione in model-

li di inflazione non-canonica, sfruttando una decrescita della velocità del suono. Nel primo

caso studiamo un modello che si trova in un regime di slow-roll sulla scala della CMB; a

seguito durante l’inflazione il campo lascia l’attrattore di slow-roll e si avvicina all’attrat-

tore di k-inflation. Durante questa fase transiente la velocità del suono ed il parametro

di slow-roll ε calano esponenzialmente e lo spettro delle perturbazioni viene amplificato.

Consideriamo poi un modello DBI dove studiamo uno spike nello warp factor, che porta

alla transizione da un regime canonico nella scala della CMB ad un regime fortemente non

canonico. Durante questa fase la velocità del suono delle perturbazioni è molto più piccola

di 1 portando ad una amplificazione dello spettro di potenza delle perturbazioni scalari.
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Introduction

Since its first run in 2015, LIGO has detected many gravitational waves genereated by

the merging of two black holes in the 10− 100M� mass range. The astrophysical model of

Supernova collapse does not allow black holes in this mass range, thereby, this discovery

has spiked the interest in Primordial Black Holes (PBH) as candidates for Dark Matter.

As of today there has not been a direct observation of Primordial Black Holes, rather the

indirect observation leads to two interesting windows in the mass range:

• 1016−1024g in which the current observations allow all of Dark matter to be composed

of Primordial Black Holes.

• 10− 100M� which is the LIGO mass range.

As postulated by Hawking and Carr, PBH can arise due to the collapse of an overdense

region generated by primordial perturbations in the early universe. Thus, it is possible

to relate it to the theory of inflation, which has been proven to be an extremely effective

hypothesis to explain both the homogeneity of the universe on cosmological scale and

the presence of structures on large scales such as Galaxies and Clusters. By using the

Press-Schechter formalism it is possible to evaluate a threshold for collapse to occur. The

abundance of PBH produced in a given mass range is then related to the power spectrum of

curvature perturbation generated during inflation. A power spectrum 7 order of magnitude

bigger than the COBE normalization is necessary for an efficient PBH formation, therefore

to build an inflationary model which can replicate the data observed by PLANCK it is

necessary to introduce a mechanism which amplifies the perturbation on small scales.

In this thesis we discuss a possible amplification mechanism for non canonical models

of inflation exploiting a decreasing sound speed for perturbations since, naively one has the

following expression for the power spectrum in a slow-roll regime P ζ ' H2

8π2εcs
.

In the first model we employ a k-inflation model where the dynamics of the inflaton

field during inflation is dominated by the kinetic terms and the model possesses an attrac-

tor trajectory in phase space where both ε and cs vanish. We impose that the kinetical
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attractor trajectory in phase space is a solution of the equation of motion, thereby ensuring

a k-inflation phase during which both the sound speed and the slow-roll parameter ε will

decrease significantly. This kinetic phase though is not able to reproduce the observations

at CMB scale, thus the introduction of an initial slow-roll phase is necessary. In particular,

by choosing a lagrangian L = −X + L(ϕ)X2 − V (ϕ), where X = 1
2 ϕ̇

2 is the canonical

kinetic term, with an exponential potential, one can recreate the expected perturbation

at CMB scale and, during the kinetical regime, obtain ε ∝ e−γs∆N , cs ∝ e−
γs
2 ∆N thereby

leading to an exponential growth of the power spectrum. Compared to other mechanisms

for amplification, such as Ultra slow-roll, the amplitude of the modes does not undergo an

amplification on superhorizon scales. Rather, due to the decreasing sound speed it freezes.

In the second model we consider a DBI lagrangian and study the effect of a steep variation

of the warp function through the introduction of a spike which causes a quick decrease of

the sound speed for perturbations and of the slow-roll parameter ε. To ensure that inflation

lasts for about 60 e-folds after the scales of the perturbation which are responsible for the

CMB anisotropies cross the horizon, it is necessary to select an extremely narrow spike;

this causes a violation of the slow-roll approximation, both during the growth of the warp

factor and during its decrease. Interestingly during the latter phase one observes a quick

growth of the sound speed which leads to an increase of the sound horizon for scalar pertur-

bations. Such an increase should lead to the amplification of the perturbed modes on the

superhorizon scale. This feature does not appear in our model, as due to the steep growth

of the sound speed the sound horizon increases. Thus the modes which should have been

amplified on superhorizon scale re-enter the horizon and their amplitude gets damped.

The thesis is organized as follows: in Chapter 1 we review the theory of inflation both in

a canonical and non canonical case, explaining the shortcoming of the Hot Big Bang model

and describing the theory of cosmological perturbation. In Chapter 2 we discuss Primordial

Black Holes describing their formation mechanism, the current experimental constraints and

reviewing some known model in canonical single field inflation. In Chapter 3 we describe

how Primordial Black Holes may form as a consequence of non-canonical inflation discussing

more in depth the k-inflation and DBI case.
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Chapter 1

The Theory of Inflation

1.1 The FRW Universe

The theory of cosmology is based on two principles, the Copernical principle:

“We are not the preferred observer in the universe”

which is strongly considered as a symbol for the antihomocentric nature of science. Beyond

this philosophical meaning though, this principle alone does not have many practical uses.

The second one is the so called Cosmological Principle:

“The universe is spatially homogeneous and isotropic.”

While the isotropic feature has been confirmed by the experimental observations, the ho-

mogeneity then comes naturally from the Copernical Principle. When introducing these

principles, a short consideration is necessary: the existence of galaxies and larger struc-

tures violates the Cosmological principle. Rather it is necessary to introduce a so called

Cosmological Scale beyond which it is possible to consider galaxies as components of an

homogeneous fluid.

It is possible now to identify the structure of the universe by considering the internal

symmetries fixed by the cosmological principle. These conditions impose the existence of

three spatial translation killling vectors and the rotation killing vectors. We do not consider

the existence of a time translation killing vector as it was shown that the universe is ex-

panding. These conditions uniquely determine the Friedmann-Robertson-Walker-Lemaitre

(or FRWL for short) metric:

ds2 = dt2 − a(t)2
[ dr2

1−Kr2 + r2dΩ2
]

(1.1)
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where a(t) is the scale factor of the universe and the factor K sets its geometry. Through a

suthing rescale of the radius it is always possible to redifine K as ±1, 0. This marks three

different cases:

• In the K = 0 case we have a flat universe and, if we consider the equal time slicing

Σt this is a three dimensional euclidean space.

• The K = −1 case is for an open universe, the equal time slicing Σt is a three dimen-

sional hyperboloid.

• The K = +1 case is for a closed universe, the equal time slicing Σt is a three dimen-

sional sphere.

Coming back to the hypothesis of homogeneity and isotropy for our universe we can

introduce a matter component. The previous conditions find an optimal candidate in a

perfect fluid. It is easy to evaluate the energy momentum tensor for a perfect fluid in special

relativity [44] and, by using the Einstein Equivalence principle, we obtain the expression

for the energy momentum tensor on curved spacetime:

Tµν = (ρ+ p)uµuν − pgµν (1.2)

where p, ρ are the pressure and the energy density of the fluid and uµ is the 4-velocity of

the fluid. In this context we suppose that the fluid is at rest. The first observation we have

to make is that our energy momentum tensor satisfies the continuity equation ∇µTµν = 0,

which for an homogeneous and isotropic field translates into:

ρ̇ = −3H(ρ+ p) (1.3)

where H = ȧ
a is the Hubble parameter. Now if we insert (1.2) into the Einstein equations

we get the so called Friedmann equations:

H2 − K

a2 = ρ

3MP2 ,
ä

a
= −ρ+ 3p

6MP2 . (1.4)

In the context of cosmology a perfect fluid having the equation of state p = wρ, has an

energy density which evolves as:

ρ ∝ a−3(1+w). (1.5)

The common fluids which are employed in cosmology are dust, radiation and vacuum energy.
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• Dust is a fluid composed by non relativistic matter, with no other force acting beyond

gravity so that w = 0. Inserting it into (1.5) we see that the energy density scales as

a−3, as one would expect for a set of particles in an expanding universe.

• Radiation is a fluid whose energy momentum tensor is traceless, hence we obtain

w = 1
3 , and we can see that the energy density scales as ρ ∝ a−4.

• Vacuum Energy is a fluid with the energy density which does not change during

the universe expansion with an equation of state w = −1. This latter case describes

an empty universe with a cosmological constant Λ

It is possible to recast the Friedmann equations (1.4) by introducing a critical density

ρc = H2

3MP2 , and the density parameter Ω = ρ
ρc
:

Ω− 1 = K

a2H2 . (1.6)

The current observations show that our universe is highly compatible with Ω − 1 = 0

therefore from now on we shall consider a flat universe.

Problems of the Hot Big Bang Model

The notion of the expansion of the universe brings into cosmology the problem of choos-

ing a valid initial condition. Supposing that our universe is composed only by matter and

radiation and, knowing that the energy density of the latter decreases faster, it is reason-

able to assume that, at its very early stages the universe was filled with plasma with very

high energy and positive pressure. In this situation though it is necessary to realize that,

as we go back in time, we get close to the Big Bang singularity, at which point a quantum

description of gravity is necessary. Hence someone could argue that the problem arising in

the Hot Big Bang Model only exist because we do not have a Quantum Theory of Gravity

whatever it is.

Horizon Problem

The Cosmic Microwave background gives us a picture of the early universe. It shows

that at the time of recombination the primordial plasma was extreamely homogeneous and

at thermal equilibrium. It is important now to make the following observation: if we apply

a time slicing and consider the Universe at a fixed time t0 a signal emitted at Big Bang is
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able to travel only inside the cosmological Horizon:

lH(t0) = a(t0)
∫ t0

tP

dt
a(t) = a(t0)

∫ da
a2H

. (1.7)

But if we start from a radiation dominated universe we find that at recombination the

cosmological horizon is too small, and we have about 104 − 105 indipendent patches which

are not casually connected. This of course is not compatible with the observations unless

an excessive fine tuning is applyed to the initial conditions.

Flatness Problem

The current observation sets |Ω−1| < 0.02, and we can calculate this quantity at Planck

time. Using equation (1.6) we can evaluate the ratio:

Ω(t0)− 1
Ω(tP)− 1 = (aH)2|tP

(aH)2|t0
. (1.8)

Inserting the values for the universe today, and supposing that at Planck time the Hubble

parameter is of the order of the Planck mass, the above ratio turns out to be 1058. The

observed flatness would then require the initial conditions:

|Ω(tP)− 1| ≤ 10−60 (1.9)

which is an unreasonable amount of fine tuning.

1.2 Homogeneous Inflation

Both the horizon and flatness problem arise because the comoving Hubble Radius

(aH)−1 monotonically increase. A simple solution to the fine tuning problem briefly il-

lustrated above could be the introduction of an initial phase where, during the expansion

of the universe, the comoving Hubble radius shrinks. Neither a matter dominated phase or

a radiation phase are able to generate a decreasing comoving Hubble Horizon, and it does

not arise naturally in hot big bang model. Rather we could add an initial phase before

the radiation dominated phase where d
dt(aH)−1 < 0 which takes the name of inflation.

Supposing that inflation starts at energies higher than the present ones, the causal physics

before inflation established spatial homogeneity, thereby explaining the homogeneity ob-

served in the CMB. Similarly it trivially solves the Flatness problem as, by looking at (1.6),

a decreasing comoving Hubble Horizon automatically drives the evolution towards flatness.
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To see how this inflationary phase could arise it is useful to look at the Friedmann

equation. It is easy to see that the following 4 conditions are equivalent:

• Decreasing comoving Hubble Radius

• Accelerated expansion (ä > 0)

• Slowly varying Hubble Parameter

• Negative pressure phase (p < −1
3ρ)

when one of them holds, automatically the system is in an inflationary phase. To translate

this conditions into a possible model, we consider, for example, the slow variation of the

Hubble parameter and we take the limit case H = const, corresponding to an exponential

growth of the scale factor. During inflation both the scale factor, and the cosmological

time t span many orders of magnitude1, hence it is useful to introduce a new quantity to

parametrize the universe expansion, the number of e-folds:

N = log(a) =
∫

dtH(t). (1.10)

We can then apply some condition on the duration of inflation, by imposing that it lasts

long enough to ensure the flatness of the universe. We compare Ω − 1 at the onset of

inflation t, where we expect H ' MP, and today:

|1− Ω(t)|
|1− Ω(t0)| =

(
a0H0

a(t)H(t)

)
� 1 (1.11)

now we multiply and divide by aH evaluated at the end of inflation. As the Hubble factor

is expected to be nearly constant during inflation we can set H(t)
Hend

to be 1 and, using (1.10)

we can set aend
a(t) = eNTOT . At the end of inflation the scale factor can be related to the the

temperature of the universe as a ' T−1:

Ntot > log
(
aendHend

)
− log

(
a0H0

)
= log

(
Hend

Treh

)
− log

(
H0
T0

)
' 66 + log

(
Hend

Treh

)
, (1.12)

where Treh is the reheating temperature according the current experimental data, and we

therefore obtain: − log
(
H0
T0

)
' 66. This is a lower bound on the duration of inflation. A

more precise calculation can be found in [27].

1Studies on the primordial fluctuations lead us to believe that inflation happened in the interval 10−43 −
10−36s
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What is left is to identify possible ways to toggle the accelerated expansion of the

universe. Historically the first satisfying model was proposed by Starobinsky [40, 41] and it

consisted in an action with higher order terms in the Ricci scalar. Beyond the Starobinsky

model other have been introduced. One of the most popular way to obtain an inflationary

phase is to consider a universe whose matter component is completely described by a single

scalar field (the inflation). The first models developed in the 80’s (Old Inflation or Guth

models) considered the consequences of a phase transition, where the system is in a false

vacuum with a positive energy density. This false vacuum is unstable and it decays via a

process of nucleation of bubbles to the true vacuum. As the universe expands the collision of

the bubble wall create particles and their kinetic energy will turn into heat. These models

though are not viable candidates to explain inflation as, imposing that the inflationary

phase lasts long enough to explain the homogeneous nature of the universe, the bubble

nucleation rate is too small to explain the thermalization of the universe. The Old Inflation

model has been abandoned in favour of the New Inflation model employing a second order

phase transition (which has been discarded too as it requires an excessive fine tuning) and

the chaotic inflation model, which does not employ phase transitions and turned to be

succesful. In this thesis we will consider the latter one.

Canonical Model of Inflation

We consider a generic scalar field ϕ in a FRW spacetime whose action takes the following

form:

S =
∫

d4x a3
[
− R

16πGN
+ 1

2 ϕ̇
2 − V (ϕ)

]
(1.13)

where we suppose the dynamics of the scalar field significantly influences the evolution

of the universe and that the field itself is homogeneous. We refer to these models as

"Canonical" in the sense that the action of the scalar field has a canonical kinetic term.

We can evaluate the energy momentum tensor Tµν = 2√
g
δSϕ
δgµν which, by employing the

hydrodynamical formalism we expect it to be of the form (1.2), and identify the pressure

and the energy density:

p = ϕ̇2

2 − V (ϕ), ρ = ϕ̇2

2 + V (ϕ). (1.14)
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Hence the equation describing the dynamics of the system are the Friedmann equation (1.4)

and the Klein-Gordon (KG) Equation:

ϕ̈+ 3Hϕ̇+ ∂ϕV = 0. (1.15)

Can this model generate inflation? First of all we observe that:

ä

a
= H2

(
1 + Ḣ

H2

)
(1.16)

and, the request for an accelerated expansion, as mentioned before, is equivalent to a small

variation of the Hubble parameter. It is useful to introduce the first slow-roll parameter:

ε = −d logH
dN = − Ḣ

H2 = 3
2

ϕ̇2

ϕ̇2

2 + V (ϕ)
(1.17)

and as long as ε < 1 (see equation (1.16)) the accelerated expansion of the universe is

ensured. Moreover for ε → 0 the Hubble parameter is a constant and we fall back to a

de Sitter Universe and, in general, when ε is small the universe has a nearly exponential

expansion. We notice that in a flat universe the slow-roll parameter ε will be non negative

as long as the energy density is positive which, in a flat FRW universe, occurs. Since the

Flatness problem requires more than 60 e-folds to be solved we need inflation lasting long

enough. To ensure this we introduce the second slow-roll parameter ε2 which measures how

fast ε changes during the evolution of the universe:

ε2 = d log ε
dN = ε̇

Hε
(1.18)

it should be noted though that the smallness of this latter parameter is actually not neces-

sary to ensure an accelerated phase.

Evaluating the slow-roll parameter ε, we see that by imposing ϕ̇2 � V (ϕ) it will take

a small value and will ensure an inflationary evolution. Moreover the requirement that

inflation lasts long enough to solve the flatness problem, turns into the conddition ϕ̈ �

3Hϕ̇ since, evaluating the second slow-roll parameter ε2 = 2ε + 2 ϕ̈
Hϕ̇ , we observe that it

becomes small under this assumption. If we impose both of this conditions we can obtain an

approximated form for the equation of motion which is usually referred to as the slow-roll
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approximation:

3Hϕ̇ '− ∂ϕV, H2 ' V

3MP2 . (1.19)

It is useful now to introduce the potential slow-roll parameters:

εSR = MP
2

2

(
∂ϕV

V

)2
, ηSR = MP

2∂
2
ϕV

V
(1.20)

which can be expressed in terms of ε, ε2 by applying the approximation (1.19) obtaining

ε ' εSR ε2 ' 4εSR − 2ηSR. Thus the smallness of εSR, ηSR may lead to an inflationary

evolution. It could be argued that those conditions are not actually sufficient to ensure

an inflationary evolution, as they do not set any condition on the speed of the field. This

does not pose an actual problem as we can show that the inflationary trajectory is an

attractor [37]. The attractor nature of the inflationary trajectory also solves many possible

doubts on the validity of the inflationary theory as it eliminates the necessity of an excessive

fine tuning.

Some Models of Inflation

It is possible to introduce a very simple classification of potentials able to generate a

slow-roll evolution according to their duration expressed by the inflaton field variation. We

call ϕCMB the value of the inflaton field at the instant of horizon crossing for the modes

of CMB and ϕend the value that the field has when the inflation ends. Comparing the

variation of the scalar field with the Planck mass we can identify two possible cases:

• If during the evolution of the system the value of the field changes significantly com-

pared to the Planck mass (ϕend−ϕCMB
MP

� 1), we say we have a Large Field Model.

Among the various potentials falling in this category the simplest is probably the

monomial potential:

V = V0ϕ
p (1.21)

• The complete opposite case is the small field model in which ϕend−ϕCMB
MP

� 1. These

models can arise due to spontaneous symmetry breaking, a famous model which re-

mains very popular in the phenomenological case is the Coleman-Weinberg potential:

V = V0

[(
ϕ

µ

)4(
log

(
ϕ

µ

)
− 1

4

)
+ 1

4

]
(1.22)
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which could arise due to the spontaneous symmetry breaking in grand unified theo-

ries [38]

1.3 Non-Canonical Inflation

The range of possible models able to generate an inflationary phase can be expanded

by looking at lagrangians having non-canonical kinetic terms beyond the canonical one,

such as those discussed in [3, 20]. A motivation to introduce such higher dimensional terms

can be found either in string theory or in effective field theories for gravity. Here we shall

introduce a generic non canonical lagrangian and see how that could start an inflationary

phase.

A General Non-Canonical Model

We consider here a generic scalar field ϕ minimally coupled with gravity:

S =
∫

d4x
√
−g
[ −R

16πGN
+ p(ϕ, ∂ϕ)

]
, (1.23)

where p(ϕ, ∂ϕ) is the scalar field lagrangian density and we define:

X = 1
2g

µν∂µϕ∂νϕ. (1.24)

Let us assume that p is a generic function of X. We can evaluate the energy momentum

tensor for the matter field:

Tµν = 2
√
g

δ
√
gp

δgµν
= ∂p

∂X
∂µϕ∂νϕ− pgµν . (1.25)

If ∂µϕ is a time like vector it is possible to relate this energy momentum tensor to the one

of a perfect fluid in General Relativity (1.2). So we can set the 4-velocity as: uµ = σ
∂µϕ√

2X

where σ is the sign of the speed of the field. We can observe that the pressure component

of Tµν coincides with the p functional in (1.23), while the energy density of the system is:

ρ = 2X ∂p

∂X
− p. (1.26)

If we consider an homogenous and isotropic spacetime we need to impose that the field ϕ

is homogeneous too, and the space dependence arise only for the perturbations over the

homogeneous background. The equations describing the dynamics of the system are the
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Friedmann equations (1.4) and the Klein Gordon equation:

ϕ̈+ 3Hϕ̇p,X
ρ,X

+ ∂ϕρ

ρ,X
= 0. (1.27)

An additional background parameter which plays an important role in non-canonical models

for inflation is the sound speed for perturbations which, from the hydrodynamical theory,

is defined as c2
s = δp

δp , and it is easy to verify that:

c2
s = δp

δρ
= ∂Xp

∂Xρ
=
(

1 + 2X∂2
Xp

∂Xp

)−1
(1.28)

when considering a canonical case this is always equal to one during the inflationary phase.

Now due to the more general form of the action (1.23) compared with the canonical

one we have some regions in phase space which are not suitable for a field theory. As

noted in [6] for any inflationary lagrangian we should require the null energy condition

ρ + p ≥ 0 which translates into ∂Xp ≥ 0. Moreover the non-trivial nature of the sound

speed requires further consideration, as we could have either super luminal pertutbation

speed or non-physical cases for which c2
s < 0 so that the system is unstable. Remarkably

those requirements translate into those following conditions

∂Xp ≥ 0, ∂2
Xp > 0 (1.29)

and requiring these conditions on the whole phase space is not possible, rather we can just

require that the inflationary trajectory does not enters a forbidden region in phase space.

K-Inflation

In non-caonical models (1.23) it is possible to achieve an inflation evolution if we suppose

the energy density is dominated by the potential or if ∂Xp ' 0. We focus on the latter

case, which takes the name of kinetical driven inflation or k-inflation for short, showing

that a purely kinetic lagrangian can generate an accelerated expansion of the universe.

We consider thus a generic action where the dynamics is completely driven by the kinetic

component of the field. As we neglect a potential term, if we impose that the pressure of

the field vanish for X = 0, thus its expansion around this point shall be:

p(ϕ,X) = K(ϕ)X + L(ϕ)X2 + . . . (1.30)
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To obtain an accelerated evolution of the universe we must impose that some of the coeffi-

cient (K(ϕ), L(ϕ), . . . ) in the expansion (1.30) takes a negative value.

We consider first a case where the coefficients in the matter lagrangian (1.30) are con-

stants. Selecting for example a simple model:

p = KX + LX2 (1.31)

It possesses an attractor trajectory ϕ̇2 = −K
L . Imposing K < 0 and L > 0 we fix this

attractor trajectory in an accessible region of phase space. We can evaluate the equation

of motion of the system for the canonical momentum Π = ϕ̇(K + Lϕ̇2):

d
dtΠ + 3HΠ = 0. (1.32)

Solving (1.32) we see that Π ∝ e−3N , thus, setting the initial condition to be ϕ̇ > −K
L the

system approaches the attractor solution and both the sound speed and the first slow-roll

parameter decrease exponentially. As noted in the original paper by Armendáriz-Picón

et al. [3] this model is the equivalent of a de Sitter model with a constant energy density.

Namely it does not offer a smooth transition to a Friedmann universe and no graceful exit.

To avoid this problem one must impose a ϕ dependence in the coefficients of the lagrangian.

In general k-inflation is not a viable model to explain all of inflation as it leads to a

small sound speed which is ruled out by the current observation of Non-Gaussianities in

the CMB. Thus to build a viable non-canonical model we must introduce a potential term

and suppose that at CMB scale the system was in a slow-roll regime.

Slow-Roll

In a similar fashion to the canonical case we should introduce the slow-roll parameters,

we look back at the definition of the first slow roll parameter (1.17) and we can rewrite it

in the more general form:

ε = − Ḣ

H2 = 3
2
ρ+ p

ρ
(1.33)

and again we see that by imposing the null energy condition ε always has a positive value.

Moreover we expect the inflation to last long enough to solve the Flatness problem, hence

we should require that ε varies slowly during the inflationary evolution. Thus we evaluate
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the second slow-roll parameter:

ε2 = d log ε
dN = ρ̈

Hρ̇
− Ḣ

H2 −
ρ̇

Hρ
= 4ε−

(
ε− Ẋ

2HX

)
−
(
ε− Π̇

HΠ

)
(1.34)

where Π = ∂p
∂ϕ̇ is the canonical momentum. For simplicity it is possible to define the

parameters:

ηX = ε− Ẋ

2HX = ε− 1
2

d logX
dN , ηΠ = ε− Π̇

HΠ = ε− d log Π
dN (1.35)

and we can notice that in canonical models ηΠ = ηX . To ensure the small rate of change of

the first slow-roll parameter during inflation, we should require |ηX+ηΠ| � 1, for simplicity

from now on we shall consider the two parameters (1.35) to be small separately. A similar

request of slow variation during inflation should be made on the sound speed, hence the

following slow-roll parameter for the sound speed is introduced

κ = d log cs
dN = ċs

Hcs
. (1.36)

Now the smallness of the slow-roll parameters can be obtained dinamically in various

ways, for example it is easy to show that a purely kinetic model, shortly discussed before,

can generate an inflation where those parameters are zero, but it is not able to generate a

graceful exit.

The experimental data of PLANCK shows us that modes generating the CMB exited

during a slow-roll phase, thus we need to translate the conditions imposed in the canonical

case to a more general lagrangian and see whether this behaviour is possible.

First of all we need to restrict our study to a class of separable lagrangians: p(ϕ,X) =

q(ϕ,X)−V (ϕ) where q(ϕ,X) cannot be further separated, and we suppose that the system

is potential dominated so that H2 ' V
3MP2 which implies w ' −1. Thus we obtain a

potential driven inflation in the non canonical case. To ensure a slow-roll evolution we

also need to impose that ε is almost constant during inflation, this, as we can see in the

equation (1.34), requires that the acceleration of the field and the time derivative of the

conjugated momentum are negligible in their equation of motion so that:

ϕ̈

Hϕ̇
,� 1 Π̇

HΠ � 1. (1.37)
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Attractors

As illustrated before for the canonical case the inflationary trajectory is an attractor

in phase space. To ensure that non-canonical inflation can generate inflation in a natural

way, it is necessary to check that the inflationary solution has a similar property also in

the non-canonical case.

There are various ways to show that an inflationary trajectory is an attractor in phase

space, here we obtain this result by using the Hamilton-Jacobi formalism following the

approach presented in [16]. We consider the hamiltonian as a function of the field parameter

ϕ, and substitute the speed of the field in the action by employing the equations (1.4) and

we finally obtain the field derivative of the Hubble parameter:

H ′(ϕ) =
√

2Xp,X
2MP2 (1.38)

where we have set ϕ̇ and X to have an opposite sign without loss of generality. It is

important to notice that we can not obtain an exact solution for ϕ̇ as that would be model

dependent. Substituting (1.38) into the Friedmann equation (1.4) we obtain the Hamilton-

Jacobi equation for the general action:

3MP
2H2 = 4MP

2H ′2

p,X
− p. (1.39)

Considering a general solution to (1.39) H0(ϕ), for the time being we do not need to

impose it as an inflationary solution, and applying a small perturbation to this solution

H0(1+δH), one can insert this perturbation into the Hamilton-Jacobi equation and evaluate

the evolution of this perturbations expanding (1.39) to the first order:

6MP
2H2

0δH = 8MP
4H ′0(H ′0δH +H0δH)

p,X
− 4MP

4H ′20 p,XX
p2
,X

δX − p,XδX. (1.40)

We have to express δX and, to do so we can use the definition of the sound speed (1.28)

and perturbing (1.38), we rewrite the Hamilton-Jacobi equation for the perturbations as:

δH ′

δH
= − 3

2MP2
H0
H ′0

[
c2
s − 2
p,X

− 4MP
2c2
sH
′2
0
p,XX
p,X

]−1
− H ′0
H0

. (1.41)

Using the definition of the sound speed and equation (1.38) it is possible to rewrite this
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equation in a much more simple form:

δH ′

δH
= 3

2MP2
H0
H ′0

p,X −
H ′0
H0

(1.42)

It is useful now to consider the definition of the e-folds parameter (1.10), we can use this

definition and the Hamilton-Jacobi formalism ro obtain

dN = − 1
2MP2

H0
H ′0

p,Xdϕ. (1.43)

Inserting this into equation (1.41) we can finally express the evolution of the perturbed

Hubble parameter as a function of the e-folds number N as

δH = exp
(
− 3N + 2MP

2

p,X

H ′20
H2

0
N

)
, (1.44)

where we note that the second term in the exponential coincides with the first slow-roll

parameter (1.17) multiplied by the number of e-folds. Hence if H0 is an inflationary so-

lution and we have ε � 1, the perturbations evolve as e−3N . Since the number of e-folds

grows rapidly during inflation perturbations from non-canonical inflationary solutions are

decreasing and become negligible. Interestingly this result coincides with the one obtained

in the canonical case [37].

For the sake of completeness we consider a DBI model and obtain the same result.

Starting from the DBI action:

S =
∫

d4xa3
[1
h

(
1−
√

1− 2hX
)

+ V

]
(1.45)

we apply the Hamilton-Jacobi formalsm and we evaluate:

2hX = 4MP
4hH ′2

1 + 4MP4hH ′2
H2 = 1

3MP2

[1
h

(√
1 + 4MP4hH ′2 − 1

)
+ V

]
. (1.46)

We then apply a perturbation around a solution to the Hamilton-Jacobi equation H =

H0(ϕ)
(
1 + δH

)
and we obtain the linearized perturbation equation:

δH ′

δH
= 3

2MP2
H0
H ′0

√
1 + 4MP4hH ′20 −

H ′0
H0

. (1.47)

we again use the relationship (1.43), where in the DBI case ∂Xp =
√

1 + 4MP4hH ′20 , and

this equation coincides with the one obtained in the general case. Thus we finally obtain
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the expected solution

δH = exp
(
N(ε− 3)

)
. (1.48)

1.4 Perturbation

The model discussed so far describes an homogeneous picture of the universe in which

the inflaton evolves generating an inflationary phase and, eventually, will reach a global

minimum in its potential ending the accelerated expansion phase. This evolution can be

evaluated in a classical context and, by itself, does not allow the generation of structures

in the universe or even the anisotropies in the CMB. To actually obtain these features in

a model of inflation, we need to consider the effects of the inflaton perturbations during

its evolution in the form of quantum fluctuations. Hence we apply a semiclassical approx-

imation by supposing a background classical field, which in this case is the homogeneous

inflaton, and then quantize the perturbation over the background evolution, which here

describe the space dependent part of the field.

In this procedure we must consider a quantization scheme for our perturbations, be-

fore going ahead with the description of cosmological perturbations we briefly review the

quantization procedure on a de Sitter spacetime.

Quantization in de Sitter spacetime

We consider a scalar field ξ evolving on a de Sitter spacetime and we suppose that it

is a spectator field, meaning that gravity does not get any back reaction from its evolution

and just acts as an expanding background. For simplicity we take a massless field, thereby

we have the well known action:

S = 1
2

∫
dtd3x a3

(
ξ̇2 − 1

a2 (∂iξ)2
)
. (1.49)

It is useful, as we are working in a conformally flat spacetime, to introduce the conformal

time τ =
∫

dta−1 which, in the de Sitter case, can easely shown to be τ = −1
aH . We can also

rescale the scalar field by introducing σ = ξ
a(τ) , so that the action takes the following form:

S = 1
2

∫
dτd3x

(
(σ′)2 − (∇σ)2 −meff(τ)σ2

)
. (1.50)

It is interesting to notice that through the introduction of the conformal time parameter and

the rescaling of the scalar field we obtain an action similar to that of a Klein-Gordon field
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in a Minkowski spacetime with an effective mass meff = −a′′

a . Indeed, all the information

about the gravitational interaction are included in the definition of the effective mass.

As usual, we expand the field σ in Fourier modes, so we’ll rewrite the action in Fourier

space and we express the general solution as a linear combination of the mode functions

vk(τ), v∗k(τ). As the energy depends only on the modulus of the momentum k the mode

function will be a function only of the modulus of the momentum. We will see later that the

perturbation equations too will depend only on the modulus of the momentum. Imposing

the realness of the scalar field we set σ∗k = σ−k, thereby:

σ(τ,x) =
∫

dτ d3k
(2π)3/2

1√
2

[
a−k v

∗
k(τ) + a+

−kvk(τ)
]
eikx

=
∫

dτ d3k
(2π)3/2

1√
2

[
a−k v

∗
k(τ)eıkx + a+

k vk(τ)e−ıkx
] (1.51)

and it follows that a+
k = (a−k )∗.

We can now apply the usual second quantization procedure by quantizing the original

field σ substituting the coefficients a±k with the time independent operators ak, and its

complex conjugate a†k, as the creation and annhilation operators, respectively. By then

requiring the canonical equal time commutation relation between the field σ and its conju-

gated momentum π = δS
δσ′ , we are led to the usual commutation relations for the creation

and annhilation operators:

[
ak, a

†
k′
]

=δ(k− k′),
[
a†k, a

†
k′
]

=
[
ak, ak′

]
= 0. (1.52)

What it is left to do is to evaluate the mode functions and, by inserting equation (1.51)

into (1.50) we see that vk must obey the equation:

v′′k +
(
k2 +meff

2(τ)
)
vk = 0 (1.53)

and, the commutation relations (1.52) lead to the normalization condition v′kv∗k−vkv
′∗
k = 2i,

which is equivalent to requiring the linear indipendence of vk and v∗k.

To complete the quantization process we must choose the vacuum. In the Minkowski

quantum theory the vacuum is defined as the minimum energy state. Here, though, the

hamiltonian has a specific time dependence, thereby it does not have a time indipendent

eigenstate. There are various prescription to define a suitable vacuum in a general space-

time. In an inflationary framework, the usual setup is to define the vacuum state as the

eigenstate minimizing the instantaneous hamiltonian at a fixed time τ .
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Thus we consider vacuum |0v〉 chosen by taking a generic solution of the equation (1.53),

such that ak |0v〉 = 0. We evaluate the mean value of the hamiltonian operator and find

the function vk(τ) minimizing it. We can evaluate the hamiltonian originating from the ac-

tion (1.50), and, operating the mode expansion and the quantization procedure, we obtain:

H(τ) = 1
4

∫
d3k

[
akakFk ∗+a†ka

†
−kFk +

(
2a†kak + δ(3)(0)

)
Ek

]
(1.54)

where:

Ek = |v′k|2 + (k2 +meff
2)|vk|2, Fk = v′2k +

(
k2 +meff

2)v2
k. (1.55)

Evaluating the expectation value for a general vacuum state at a fixed time τ0, we obtain

the energy. The presence of the divergent term δ(3)(0) could be worrying but that is just a

volume normalization factor [31]. Evaluating the energy density:

ρ = 〈0|H(τ)|0〉 = 1
4

∫
d3k

(
|v′k|2 + (k2 +meff

2)|vk|2
)

(1.56)

for a fixed k the choice of the mode function is reduced to the choice of a suitable initial

condition. Moreover if we set ourselves in the far past where |meff
2| � k2, and by imposing

the consistency relationship for the modes and the minimization of Ek, we see that the

minimizing vk is:

lim
τ→−∞

vk = 1√
2k
eikτ (1.57)

and this fixes the vacuum as the Bunch-Davies Vacuum [7], which is defined as the Minkowski

vacuum in the early-time limit.

Now we can come back to the equation (1.53), and it is interesting to notice that it

actually has an exact solution of the form:

vk = A
e−ikτ√

2k

(
1− i

kτ

)
+B

eikτ√
2k

(
1 + i

kτ

)
(1.58)

where A, B are integration constants. By imposing the Bunch-Davies vacuum and the

quantization condition (1.52), we set A = 0, B = 1 obtaining the unique mode function:

vk = eikτ√
2k

(
1 + i

kτ

)
. (1.59)
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We can then evaluate the 2 point function in Fourier space of the original field ξ:

〈ξkξk′〉 = (2π)3δ(k + k′) |vk|
2

a2 = (2π)3δ(k + k′)H
2

2k3 (1 + k2τ2). (1.60)

Classical Perturbations

We are interested here in evaluating the first order perturbations of the inflation-gravity

system, by solving the linearized Einstein equations:

δGµν = 8πGNδTµν . (1.61)

To do this we will study the perturbations to the metric components and the matter com-

ponents separately, and plug them into equation (1.61). It is possible to decompose both

the metric and the stress energy tensor into independent scalar, vector and tensor modes

having helicity 0,±1,±2 respectively, and it can be shown that the different modes do not

interact at the linear level and can therefore be studied separately.

The most general metric arising from this scalar, vector, tensor decomposition is:

ds2 = (1+2φ)dt2+2a(B,i+Si)dxidt−a2
[(

(1+2ψ)δij+2E,ij+Fi,j+Fj,i+hij
)
dxidxj

]
(1.62)

where the vector components Si, Fi have null gradient, while the tensor perturbations hij
are traceless and transverse. As expected the perturbations fields consist exactly of 10

degrees of freedom. From now on the vector perturbations will be ignored, since in single

field inflation there are no non vanishing helicity 1 perturbations [21].

A generic spacetime in general relativity is invariant under diffeomorphism, so we can

consider an infinitesimal transformation x̃µ = xµ + εµ, and evaluate the behaviour of the

system under this transformation. We decompose the gauge transformation as εµ = (ε0, εi)

with εi = σ⊥i + σ,i and σi⊥ ,i = 0, so we insert this in (1.62) and see how this acts on the

perturbations.

Under this gauge transformation the scalar transformation behave in this way:

φ→ φ̃ = φ− 1
a

˙(aε0), B → B̃ = B + σ′ − ε0, (1.63)

ψ → ψ̃ = ψ
a′

a
ε0, E → Ẽ = E + σ. (1.64)

It is natural to express the scalar perturbations in such a way to obtain the following gauge
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invariant quantities:2

Φ = φ− 1
a

[
a(B − E′)

]′
, Ψ = ψ + a′

a
(B − E′) (1.65)

which take the name of Bardeen potentials. These new fields do not change under infinites-

imal coordinate transformations. Hence if they vanish in a given coordinate system they

will vanish in any the other coordinate system.

The tensor perturbations hij do not change under gauge transformations, they describe

gravitational waves in a gauge invariant way already.

We come back to the equation (1.61) and evaluate the first order perturbation of the

Einstein and energy momentum tensor. In a similar fashion the perturbation components

which are not gauge invariant must be rewritten in a gauge invariant way.

Scalar Perturbations

By expanding the gauge invariant version of the Einstein tensor, we obtain:

∆Ψ− 3H(Ψ′ +HΦ) = 4πGNa
2 ¯δT 0

0 (1.66)

(Ψ′ +HΦ),i = 4πGNa
2 ¯δT 0

i (1.67)[
Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ + 1

2∆(Φ−Ψ)
]
δij −

1
2(Φ−Ψ),ij = −4πa2GN

¯δT ij

(1.68)

where Φ, Ψ are the Bardeen potentials defined in (1.65), the barred terms ¯δTµν are the

gauge invariant component of the perturbed energy momentum tensor, while H = a′

a is the

conformal Hubble parameter. Now we suppose that our matter field has a perfect fluid

energy momentum tensor and the perturbed energy momentum tensor is

¯δT 0
0 = δ̄ρ, ¯δT 0

i = 1
a

(ρ+ p)δ̄ui, ¯δT ij = −δ̄pδij , (1.69)

where again the barred terms are to be interpreted as the gauge invariant components. By

inserting this latter definition in the equation (1.68), we notice that there are no off-diagonal

components, thereby Φ = Ψ. It is important to notice that this relation has been evaluated

in a gauge invariant way, and must hold regardless the gauge choice.

2This is not the only possible gauge invariant combination, is just the simplest one for the study we’re
carrying
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From now on we shall consider the longitudinal gauge, by setting B = E = 0:

ds2 = a2[(1 + 2Φ)dτ2 − (1− 2Φ)dxidxjδij
]
. (1.70)

Now we evaluate the δT 0
0 and δT 0

i in this gauge as functions of the Bardeen potential Φ

and δϕ
ϕ̇0
:

a2δT 0
0 = ρ+ p

c2
s

[
∂τ

(
δϕ

ϕ′0

)
− Φ

]
− 3H(ρ+ p)δϕ

ϕ′0
, a2δT 0

i = (ρ+ p)
(
δϕ

ϕ′0

)
,i

(1.71)

where ϕ0 is the unperturbed field. Considering the scalar perturbation, the discussion of the

spatial component is not necessary, because when we insert the above equations into (1.66),

(1.67) and (1.68) we can see that the ij equations are actually linear combinations of the

00 and 0i ones. The equations (1.66) and (1.67) can be rewritten in the following way:

∂τ

(
δϕ

ϕ′0

)
=
(

1 + c2
s∆

4πG(ρ+ p)

)
Φ, ∂τ (aΦ) = 4πGa2(ρ+ p)δϕ

ϕ′0
. (1.72)

What is left to do is to rewrite these equations in a more useful way.

We’d expect to describe the scalar perturbation through a single perturbation field, to

do that, we need to combine the Bardeen potential and the field perturbation. Thus, we

introduce the fields ξ, and ζ where Φa2 = 4πGHξ and δϕ
ϕ′ = ζ

H −
4πG
a2 ξ. By using these

relations and (1.72), it is possible to rewrite them in the much more compact form:

ξ′ =a4(ρ+ p)
H2 ζ, ζ ′ = c2

sH2

a4(ρ+ p)∆ξ. (1.73)

To normalize the amplitude of the quantum perturbation, it is necessary to obtain their

action. The general action (1.49) can be expanded to the second order in the perturbation.

By applying the definitions of ξ, ζ it is possible to find their action (reproducing the

equation of motion (1.73)):

S =
∫

dτd3x

[
ξÔ(∆)ζ ′ − H2c2

s

2a4(ρ+ p)ξÔ(∆)ξ + a4(ρ+ p)
2H2 ζÔ(∆)ζ

]
(1.74)

where Ô is a time independent operator, which should be determined. As said before we

would like to reduce the description to a single field,by evaluating the constraints. We

observe that the ξ variable is not dynamical, so by using equation (1.73), we can substitute
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the ξ′ with ζ. Thus, finally one obtains the action for the scalar perturbations:

S = 1
2

∫
dτd3x z2[(∂τζ)2 + c2

sζ∆ζ
]

(1.75)

where we have introduced the new variable z = a
√

2ε
cs

( Ô(∆)
∆
) 1

2 . Here the Laplacian should

be understood as a c-number representing the corresponding eigenvalue.

In order to quantize the perturbations we introduce a new variable v = ζz, also called

Mukhanov-Sasaki variable. What is left to obtain is the function Ô which is fixed when we

we compare the action (1.75) with the one obtained in the canonical theory of inflation [30]

we are led to Ô = ∆. So we finally find the so called Mukhanov-Sasaki Action:

S = 1
2

∫
dτd3x

[
v
′2 + c2

sv∆v + z′′

z
v2
]

(1.76)

which is the action of a scalar field with effective mass − z′′

z .

We can apply here the quantization procedure described before. First of all we have to

apply the Fourier mode decomposition, and the evolution of the modes will be described

by the Mukhanov-Sasaki equation:

v′′k +
(
c2
sk

2 − z′′

z

)
vk = 0 (1.77)

where as initial condition we’ll choose the Bunch-Davies vacuum, which takes the following

form due to the non trivial background sound speed:

lim
τ→−∞

vk = e−icskτ√
2kcs

. (1.78)

Obtaining an exact analytic solution to the equation (1.77) is not always possible and in

general one should resort to numerical simulations. Still in various cases such as slow-roll

or Ultra slow-roll it is possible to obtain an analytical approximate solution. We can write

the effective mass as a function of the slow-roll parameters:

z′′

z
= (aH)2

[
2− ε− 3κ− ε2κ+ 3

2ε2 + εε2
2 + εκ+ ε22

4 + κ2 − κ̇

H
+ ε̇2

2H

]
. (1.79)

and if the slow-roll parameters are small they can be treated as constant to the first order,

aH = τ−1 and then (1.77) reduces to a Bessel equation with z′′

z '
ν2− 1

4
τ2 . Imposing the
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Bunch Davies condition (1.78) as initial conditions for the differential equation, one obtains:

vk =
√
−πτ
2 H(2)

ν (−cskτ). (1.80)

During slow-roll inflation indeed the slow-roll parameters are small and almost constant,

thus it is possible to neglect their derivatives in the effective mass term and take (1.80) as

an approximated solution.

We now take a step back to relate the quantum scalar perturbations to an observable

quantities. The Bardeen potential Φ, in the Longitudinal gauge coincides with the Newto-

nian Gravitational potential in General Relativity in the Newtonian limit, and during the

evolution of the universe, the trajectory of the primordial photons will be influenced by its

behaviour. This phenomena is called the Sachs-Wolfe Effect [36] and it relates the fluctu-

ations of the temperature of CMB photons with the Bardeen potential; at large angular

scales we have δT
T '

Φ
3 . Coming back to the definition of the Parameter ζ we see that by

using the equations (1.73) it is:

ζ = 5ρ+ 3p
3(ρ+ p)Φ + 2ρ

3(ρ+ p)
Φ′
H
. (1.81)

Hence, we can relate the anisotropies of the CMB to the correlation functions of the per-

turbation ζ. A complete analysis would require the evaluation of all the n-point correla-

tion function. Given the current theoretical development in field theory and experimental

physics, this is unattainable, for the moment we consider only the 2-point correlation func-

tion. We shall discuss later the possible higher order correlation functions.

The first important consideration we should make regarding the evolution of the pertur-

bations is the following. Taking the action for the scalar perturbations (1.75) and applying

the Fourier decomposition, one finds the equation of motion for the comoving curvature

perturbation:

ζ ′′k + 2z
′

z
ζ ′k + c2

sk
2ζk = 0. (1.82)

We can immediately identify two different region in which the behaviour of the mode will

be qualitatively different. In the far past the modes will start in a subhorizon scale where
csk
aH � 1, then, as the universe expands, the comoving Hubble Horizon will decrease and

the mode will eventually exit the horizon, reaching the superhorizon scale where csk
aH � 1.

In this regime the term proportional to c2
sk

2 in (1.82) is negligible. Thus we can obtain an
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analytical solution to the modes equation on superhorizon scale:

ζk = C1 + C2

∫ da
a

c2
sH

2a3ε
(1.83)

where C1 and C2 are integration constants. We can identify an important feature of the

scalar perturbations on superhorizon scale, they are described by a constant mode C1 and

a mode which multiplies C2. On superhorizon scale during slow-roll the modes freeze as

the mode which multiplies C2 quickly becomes negligible when compared to the constant

modes. It should be noted however that, depending on the dynamics of the homogeneous

background the decaying mode may turn into a growing one. This happens for d
d log a

Hc2
s
ε > 3

and the decaying mode will become a growing one the freezed solution becomes negligible.

This happens for example in a Ultra slow-roll phase when ε ∝ a−6 or in models with a

quick growth of the sound speed. After inflation ends the comoving Hubble Horizon will

start increasing and the modes will renter the horizon during the radiation or matter phase

and they will leave significant effect on the structures in the universe.

To compare the theoretical models with the experimental observation we shall evaluate

the 2-point correlation functions, the power spectrum:

P ζ(k) = k3

2π2 |ζk|
2 = k3

2π2
|vk|2

z2 . (1.84)

It is useful to apply a taylor expansion around a pivot scale k∗ and express the power

spectrum, close to the pivot scale, as a power law:

P ζ(k) = As

(
k

k∗

)ns−1
(1.85)

where we introduced the spectral index ns describing the slope of the spectrum. We note

that for ns = 1 the power spectrum turns out to be scale invariant, for ns > 1 we have a

blue tilted power spectrum and for ns < 1 a red tilted one.

We now study the behaviour of the perturbation in a slow-roll regime, first we remark

that the freezing of the modes on superhorizon scale is expected as we assume both ε and cs
to behave as constants. Thereby, looking back at (1.83) we expect C2 to be a decaying mode.

Moreover, in the effective mass term in the Mukhanov-Sasaki equation (1.79), we can ignore

all the ε2 and κ terms. Thus we can suppose that the Mukhanov-Sasaki equation reduces to

a Bessel equation having as a solution (1.80). Inserting this result into (1.84) and evaluating
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the limit to τ → 0 it is possible to obtain an analytical result:

P ζ = H2

8π2εcs
|csk=aH (1.86)

where the term on the right side can be evaluated at horizon crossing for each mode,

and this assumption holds only if the conditions for the freezing on superhorizon scale is

satisfied. Similarly it is possible to evaluate the tilt of the power spectrum as a function of

the slow-roll parameters, by inserting (1.86) into the definition of ns − 1:

ns − 1 = d logP ζ(k)
d log k ' −2ε− ε2 − κ (1.87)

where we have neglected non linear terms and we can notice that a slow-roll evolution is

compatible with a flat or almost flat power spectrum. Moreover one could ask if ns − 1

has a constant value, in which case (1.85) would describe the power spectrum at all scale,

or it has a k dependence. The experimental data obtained by PLANCK[34] offer us some

stringent constraints on the scalar perturbations at CMB scale k∗ = 0.05Mpc−1:

As = 2 · 10−9, ns = 0.965± 0.0041, dns
d log k = −0.003± 0.0069. (1.88)

Those data show the picture of an almost flat power spectrum at CMB scale, compatible

with a negligible running.

Tensor Perturbations

Coming back to the general metric perturbations (1.62), we focus our attention on the

tensor perturbations hij . As noted before, this tensor perturbations are already gauge

invariant, so we directly move over to the linearized Einstein Equations.

h′′ij + 2Hh′ij −∆hij = 16πGNδTij (T ) (1.89)

where δTij (T ) is the transverse traceless component of the energy momentum tensor. As-

suming that the universe is filled with a perfect fluid, we see that these components of the

momentum energy tensor are equal to zero. Indeed at linear order, the primordial gravita-

tional waves do not introduce perturbations in the perfect fluid. As said before, the tensor

perturbations have 2 degrees of freedom. Knowing the theory for a spin-2 massless field we

introduce the time indipendent polarization: hij = h+e
+ + h×e

× where the polarization
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tensor are, for example setting the propagation direction to be x3:

e+ = 1√
2


1 0 0

0 −1 0

0 0 0

 , e× = 1√
2


0 1 0

1 0 0

0 0 0

 . (1.90)

We can evaluate the evolution of the two polarizations separately. In a similar fashion to

the scalar fields perturbations, we introduce the action reproducing this equation of motion.

It is then useful now to introduce a canonically normalized variable v(A) = MP
2 ah(A) with

A = +, ×, so that its action takes the following form:

S =
∑
A

1
2

∫
d4x

[
(v(A) ′)2 + a′′

a
v(A) 2 −

(
∂iv

(A))2] (1.91)

and this actions coincides with (1.50) so we can proceed in the usual way by applying the

mode decomposition. We can apply the second quantization setting the vacuum as the

Bunch-Davies Vacuum (1.57), and evaluate the correlation function:

〈h(A)
k h

(B)
k′ 〉 = δABδ(k− k′)|h(A)

k |
2 (1.92)

and the dimensionless power spectrum:

PT = 2P h(k) = 2 k3

2π2 |h
(A)
k |

2 ' 2
π2

H2

MP2 |k=aH . (1.93)

We notice that in the non canonical context the horizon crossing of the scalar and tensor

modes may not coincide.

As of today, there has been no direct and indirect detection of primordial gravitational

waves. It is possible to obtain a constraint on the tensor to scalar ratio of the primordial

perturbation by considering the temperature anisotropies of the CMB, and their polariza-

tion. The current observations obtained by PLANCK [34] constraint the tensor to scalar

ration to be r = PT
P ζ

< 0.07. It is possible to express the tensor to scalar ratio as a function

of the slow-roll parameters if the inflation occurs in a slow roll regime and it expression is

given by

r = 16εcs. (1.94)
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1.5 Non Gaussian Features

All the calculations done up to now, allow us to derive a picture of the linear interactions

happening in the primordial universe. To obtain a satisfying description, which could allow

us to apply further constraints on the various inflationary models, it is necessary to evaluate

the impact of the non linear interactions happening during inflation. To do that, it would

be necessary to evaluate all the n-point correlation functions of the field ζ. Doing that

in a theoretical framework is (with some exception) far beyond the current instruments

developed in field theory.

In this section, we’ll look at the constraints on the 3-point correlation functions and the

role of non gaussianities. A complete description of the role of this non linear interactions

is far beyond the scope of this thesis, rather we’ll limit ourselves to a short introduction,

and their role in non-canonical inflation. For a more in depth review we redirect to [5, 43].

Interaction Picture

To evaluate higher order correlation function, studying the first order perturbation

dynamics is not enough and we should evaluate the third order perturbed action. To

evaluate the correlation function of an interactive field in cosmology we have to use the

in-in formalism.

We quickly review the interaction picture through a perturbative approach. Considering

the hamiltonian H[ϕ(τ,x),Π(τ,x)] of an interacting single field theory, we need to separate

the perturbed components from the background ones. In the context of cosmological per-

turbation, it is natural to select the background solution as the homogenous and isotropic

part of the field. We apply the usual quantization procedure to the perturbed field and

momentum and the hamiltonian can be expanded as:

H[ϕ,Π] = H[ϕ0,Π0] + H̃[δϕ, δΠ, τ ] +
∫

d3xδH
δϕ

∣∣∣∣
ϕ0,Π0

δϕ+ δH

δΠ

∣∣∣∣
ϕ0,Π0

δΠ (1.95)

where the linear terms in δϕ, δΠ vanish, as they coincide with the background equation of

motion, and H̃ is the perturbation hamiltonian. If we restrict to first order perturbations,

the perturbed hamiltonian can be expressed as the one of a free field ζ with a time dependent

mass, as we did in the previous section. In studying this higher order interactions we do

not expect to obtain an exact solution and we must apply perturbation theory. Hence we

split the perturbed hamiltonian into the free part, containing the first order terms, H0 and

the interaction part, containing higher orders, HI. We can introduce the time evolution
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operator for the complete theory and the free theory as the operators U, U0, solving the

following equations:

U ′(τ, τ0) = −iH̃U(τ, τ0) U(τ0, τ0) = 1 (1.96)

U ′0(τ, τ0)− iH0U0(τ, τ0) U0(τ0, τ0) = 1 (1.97)

using these operators we can define the time evolution in the interaction picture as:

δϕI
′ = i

[
H0, δϕ

]
=⇒ δϕ(τ,x)I = U−1

0 (τ, τ0)δϕ(τ0,x)U0(τ, τ0) (1.98)

δΠI
′ = i

[
H0, δΠ

]
=⇒ δΠ(τ,x)I = U−1

0 (τ, τ0)δΠ(τ0,x)U0(τ, τ0). (1.99)

The time evolution of course does not fix the initial conditions, and we do that by requiring

that at a given fixed time τ0 the interaction perturbations coincide with the ones obtained

in the free case, thereby we can see that by introducing the operator:

F (τ, τ0) = U−1
0 (τ, τ0)U(τ, τ0) = T̂ exp

(
− i

∫ τ

τ0
dτ̄HI(τ̄)

)
(1.100)

where T̂ is the time ordering operator.

We now take a step back and make the following consideration: in flat spacetime QFT,

we usually consider the transition probability from a given initial non interacting state in

the far past, to a non interacting state in the far future. Naturally a similar apporoach

would not work in a cosmological context as:

1. We can only fix conditions on the far past,

2. We need to evaluate the expectation value of the observables at a given time.

We should fix the vacuum state in the far past as the Bunch-Davies one and use the

operator (1.100) to evaluate the time evolution of the interacting vacuum state |in(τ)〉.

First of all, we expand the vacuum state in eigenstates of the free hamiltonian, then we

consider the time evolution close to τ0 = −∞:

|in(τ)〉 = U(τ, τ1) |in(τ0)〉 = |0〉 〈0|in(τ0)〉+
∑
n>0

eiEn(τ−τ0) |n〉 〈n|in(τ0)〉 . (1.101)

We see that, by adding a small immaginary part to the time parameter τ̃ = τ(1− iε) and

setting the system in the far past, all the excited components in (1.101) vanish and we can
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identify the interaction state at a given time as:

|in(τ)〉 = T̂ exp
(
− i

∫ τ

−∞(1−iε)
dτ̄HI(τ̄)

)
|0〉 〈0|in(τ0)〉 . (1.102)

We can evaluate the expectation value of a given operator W (τ) as:

〈W (τ)〉 = 〈0|F (τ,−∞(1− iε))†W (τ)F (τ,−∞(1− iε)|0〉 (1.103)

To compute the expectation value we have to resort to a perturbative expansion of (1.103)

in HI:

〈W (τ)〉 = 〈0|W (τ)|0〉+ 2 Im
∫ τ

−∞(1−iε)
dτ ′ 〈0|W (τ ′)HI(τ ′)|0〉+ . . . (1.104)

Third Order perturbative Action

What is left is to evaluate are the three point function and the interaction hamiltonian.

This is a rather tedious work, to evaluate them we have to come back to the action of the

system and apply a perturbation:

S = S0[ϕ(t), gµν(t)] + S2[ζ2] + S3[ζ3] + . . . (1.105)

from the homogeneous action the background parameters are derived, while from S2 one

obtains the linear perturbations and, from higher orders, one obtains the interaction hamil-

tonian. In the current discussion the description up to cubic terms is sufficient. The interac-

tion hamiltonian was studied in detail by Maldacena for a canonical single field model [28],

while a more general field case has been tackled many times assuming the simplified case

cs ' 1 and for a generic sound speed by Chen et al. [12].

We consider the expectation value for the cubic function and make the following con-

sideration: we know from Minkowski QFT that if a given scalar field has a gaussian dis-

tribution, then all the expectation values 〈ζ2n〉 can be expressed as products of 〈ζ2〉, while

all the expectation values 〈ζ2n+1〉 vanish. Thus, one could restrict its attention to the non

gaussian features in the CMB, to do that it comes natural to apply an expansion around

the gaussian solution as:

ζ(τ,x) = ζg(τ,x) + 3
5fNL

local
(
ζg(τ,x)2 − 〈ζg(τ,x)2〉

)
+ . . . (1.106)

and given the current experimental data we can restrict our discussion to the terms ζ2
g and
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the experimental constraints are set on the parameter fNL.

We move now to the momentum space by introducing the fourier transform of the three

point function, the bispectrum:

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)Bζ(k1 + k2 + k3) (1.107)

and by using the approximated form (1.106) and plugging it into (1.107) we derive:

Bζ(k1, k2, k3) = 6
5fNL

[
|ζk1 |2|ζk2 |2 + |ζk2 |2|ζk3 |2 + |ζk3 |2|ζk1 |2

]
. (1.108)

The Dirac delta in (1.107) indicates that the modes of the bispectrum form a closed triangle.

It is interesting to notice that different theoretical models will predict different maximal

signals for different shapes, the most interesting cases one has are:

• Squeezed triangles (k1 ' k2 � k3)

This is the dominant non-gaussian effect for models with multiple light fields or curva-

ton scenario. Moreover for single field models of inflation it was proven by Creminelli

and Zaldarriga [14]:

lim
k3→0

〈ζk1ζk2ζk3〉 = (2π)δ(k1 + k2 + k3)(1− ns)|ζk1 |2|ζk3 |2 (1.109)

thereby for a scale invariant power spectrum non gaussian perturbation in the squeezed

limit should vanish. As the experimental data suggest the power spectrum for CMB

modes is almost flat and we expect that the non-gaussian perturbations in the squeezed

limit have negligible contribution, their eventual detection would rule out the single

field inflationary models.

• Equilateral (k1 = k2 = k3)

In models with higher derivative interaction such as non canonical single field inflation

the signals are peaked for equilateral triangles with:

fNL
equil = − 35

108

( 1
c2
s

− 1
)

+ 5
81

( 1
c2
s

− 1− 2A
)

(1.110)

where A = X2p,XX+ 2
3X

3p,XXX
Xp,X+2X2p,XX

. It is easy to notice that for a sound speed close to one

the non gaussianity is very small, and it increases quickly as cs gets smaller.

The current observation brought up by PLANCK [33] have showed the following con-
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straints to the non-gaussianity parameters evaluated at CMB scale:

fNL
local = 0.5± 5.0, fNL

equil = −4± 43. (1.111)

The local non gaussianity parameter is compatible with the expected values from the Mal-

dacena Theorem (1.109), and in general the small value of fNL indicates that at least at

CMB scale the perturbations are practically gaussian. Moreover in a non-canonical models

of inflation the observed equilateral non gaussainity, poses a lower bound on the sound

speed at CMB scales.
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Chapter 2

Primordial Black Holes

2.1 Formation

The idea of black holes forming in the early stages of the universe by the collapse of

overdense regions was first proposed in 1975 by Hawking and Carr [9]. Many possible

formation mechanisms have been studied, in the context of this thesis we’ll consider only

the case of collapse from overdensities originated by the primordial perturbations formed

during the inflationary phase.

Here we illustrate the procedure proposed by Carr in its original paper. We consider

a flat background Friedmann universe (1.1) and we introduce some perturbations to the

metric and the energy momentum tensor. To discuss the possible formation of primor-

dial black holes it is useful to introduce the separate universe approach. We consider that

each super-horizon sized overdense region of the universe evolves as a separate Friedmann-

Robertson-Walker universe. Where energy density and pressure are locally homogeneous.

Thereby we may consider these overdense regions as closed Friedmann universes with met-

ric:

ds2 = dt′2 −R2
[ dr2

1− kr2 + r2dΩ2
]

(2.1)

where t′ is the comoving time and R is the scale factor for the overdense universe. Then

it is necessary to set the initial conditions of the perturbed region, and we choose it to be

initially comoving with the background Friedmann universe hence imposing:

a(t0) = R(t′0), da
dt

∣∣∣∣
t0

= dR
dt′
∣∣∣∣
t′0

. (2.2)

We can now move to the time evolution of the overdense region, we fix this by using

the Friedmann equation for a closed universe, it is useful to introduce the overdensity
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δ0 = ρ̄−ρ
ρ evaluated at initial time t0. The small overdense patch then will evolve up to a

maximum extension before it will start collapsing; Inserting the initial condition (2.2) into

the Friedmann equations we can obtain the maximum extension of the universe and the

instant at which the collapse begins:

Rmax ' a0δ
1

1+3ω
0 , tmax ' t0δ

−3 1+ω
2(1+3ω)

0 (2.3)

where t0 is the initial time for the homogeneous background universe.

Carr in its original paper studied the simplest possible overdense homogeneous model

so that the condition for the formation of a primordial black hole is that the maximum

extension of the overdense region is smaller than the particle horizon and bigger than its

Jeans Length. By using the relationship (2.3) we can express this condition in a more

useful way by employing the perturbation in the energy density. Supposing we are dealing

with a perfect fluid with equation of state p = ωρ we can approximate the Jeans length as
√
ωRH where RH = H−1 is the particle horizon, and we can translate the condition for the

black holes formation in a better way by using the perturbation density which leads to the

condition:

δc < δ0 < δmax ' 1 (2.4)

where δc is the threshold for PBH formation, δ0 is the initial density perturbation evaluated

at horizon crossing, and δmax is the value of the overdensity when the perturbed patch

reaches its maximum extension.

The critical overdensity parameter will be dependent on the model chosen to describe

the overdense patch, a first crude approximation is done by setting δc ' ω as it was done in

the original paper by Carr. Since then, many numerical and analytical calculation have been

brought up. A more realistic analytical critical value was found by Harada et al. [22] where

they considered a three zone model with the overdense region enveloped by an underdense

region:

δc
UH = sin2

(
π
√
ω

1 + 3ω

)
(2.5)

where δUHc is the threshold evaluated in the uniform Hubble slice. This formula is in good

agreement with numerical simulation of Black Hole collapse, it should be noted though that

the numerical calculations have shown that the overdensity value on itself is not a sufficient

parameter to understand wether a perturbation does collapse or not. Different effects arise

due to the perturbation shape, and are expected. A simple example in the inflation case

is the presence of non gaussian features in the perturbation spectrum, which can greately
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change the PBH abundance [17].

The overdensity perturbation parameter is not the only observable which could be

used to understand whether a perturbation can generate a Black Hole. In 1999 Shibata

and Sasaki obtained a threshold for the Bardeen Potential Φ [39] which can be quickly

related to the amplitude of the comoving curvature perturbation. Such a formulation could

actually lead to some inconsistencies when used to check whether a given perturbation in

the early universe does generate a PBH, so it was found more useful to obtain some useful

observables as functions of the comoving curvature perturbation. We consider a general

perturbed universe in the ADM formalism, and we choose a comoving slicing. In such a way

we can consider it as a flat Friedmann universe with spatial metric gij = a(t)2e2ζc(t,x)δij ,

thus we can obtain the various observables for the universe. We focus our attention to the

overdensity of the perturbation, and we can obtain, at linear order:

δ(t,x) = 2(1 + ω)
5 + 3ω

∆
(aH)2 ζc(t,x) (2.6)

and to obtain a more useful form we can apply a Fourier transform and see:

δ(t)k = 2(1 + ω)
5 + 3ω

(
k

aH

)2
ζc k(t). (2.7)

Abundance of Primordial Black Holes

We can now relate the production of primordial black holes to the theory of perturba-

tions generated during inflation. The perturbed modes generated in the early universe will

re-enter the horizon during the radiation phase and, if the amplitude of the modes is large

enough, it will generate overdense regions collapsing into primordial black holes. The mass

of a PBH generated by the collapse of a mode is strictly related to the wavelength of the

given mode. We obtain first the Horizon mass for a mode k as:

MH = 4π
3 ρH−3|f (2.8)

where the Hubble parameter is evaluated at the time of formation when k = aH. In a

radiation dominated universe the wavelength and the Hubble parameter can be related as

H ∝ k2 and in general it is useful to relate the Black hole mass to the horizon mass at

matter radiation equivalence Meq [26]:

MPBH(k) = γMeq

(
geq
gBH

)1/6( k

keq

)−2
(2.9)
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where γ is a numerical factor representing the efficiency of the collapse while gBH, geq are the

relativistic degrees of freedom at formation and at matter radiation equivalence respectively.

The first analytical calculations done by Carr [8] have set γ ' 0.2. Manipulating (2.9) we

can extimate a relationship between the PBH mass and the number of e-folds between

the horizon crossing of the modes generating the anisotropies on the CMB and the modes

generating the overdensities collapsing into PBH

∆N = 18.4− 1
12 log gBH

g0
− 1

2 log M

M�
+ log cs,BHcs,CMB + log HCMB

HBH
. (2.10)

Where g0 are the relativistic degrees of freedom evaluated today, while HCMB, cs,CMB are

evluated at the horizon crossing for the modes generating the anisotropies of the CMB and

HBH , cs,BH are evaluated at the horizon crossing for the overdensities collapsing into PBH.

We now compare the amount of PBH generated from a given model of inflation with

the exprimental data. We consider the fraction of total energy density in the primordial

universe which is composed by PBH and hence we introduce:

β(M) = ρPBH(M)
ρ

∣∣∣∣
f

(2.11)

which is evaluated at the time of formation. In the following calculations we’ll suppose that

the perturbations have a gaussian shape, eventual non gaussian effects may actually lead

to different threshold on the formation of PBH from the collapse [17] and may significally

increase and reduce their fraction in the early universe. Precise calculations in the non

canonical model of inflation have not been brought up, thus for the moment this effect is

ignored.

It is necessary to introduce the smoothed density contrast δ(x,R) evaluated by applying

a convolution of the density contrast with a window function W (x,R) where R is the

comoving scale at formation. We can apply a Fourier transform and evaluate the variance

as:

〈δ2〉 =
∫ ∞

0
d log k W̃ (k,R)2 k

3

2π2 |δ(k)|2 =
∫ ∞

0
d log k W̃ (k,R)2 4(1 + ω)2

(5 + 3ω)2 (kR)4P ζ(k)

(2.12)

where P ζ is the spectrum of the comoving perturbation. In order to relate the comoving

density perturbation with the fraction of PBH (2.11) we could use either the Press-Schechter

formalism or peaks theory, in this thesis we’ll consider the former; hence supposing a
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gaussian distribution we obtain:

β = 2
∫ +∞

δc

dδ√
2π 〈δ2〉

exp
(
− δ2

2 〈δ2〉

)
= erfc

(
δc√

2 〈δ2〉

)
(2.13)

where δc is the threshold value of the density perturbation for PBH formation. It is neces-

sary now to apply a few considerations. First of all we suppose that the perturbation power

spectrum is a power law (1.85). Moreover we guess that the choice of the window function

W (x,R) does influence the expected constraints on Black Holes formation [2]. We consider

here a Gaussian window function 1√
(2π)3R3 e

− x2
2R2 and, inserting it into (2.12), we obtain:

〈δ2〉 = As
2(1 + ω)2

(5 + 3ω)2(k0R)ns−1 Γ
(
ns + 3

2

)
. (2.14)

We can now evaluate a threshold value for the power spectrum. We can also express

the PBH abundance as [10]:

βf (M) ' 4
√
γ

10−9
(
g∗f
g∗0

) 1
4
√
M

M�

ρPBH(M)
ρCDM

(2.15)

where g∗f and g∗0 are the relativistic degrees of freedom evaluated at formation and today.

Setting the critical value of the density perturbation (2.5) for ω = 1
3 and supposing all of

dark matter to be composed by PBH of mass M = 10−15M� we extimate:

P ζ > 0.01 (2.16)

for ns ' 1 and, thus it is necessary an amplification of about 7 order of magnitude from

the CMB scale.

2.2 PBH as dark matter

One of the main unsolved problems in modern astrophysics is the nature of dark matter.

The current theoretical model on CMB and primordial nucleosynthesis clearly indicate that

most of the matter in the universe is dark and non-baryonic [18] According to the current

observation we have Ωb = 0.04 and ΩM = 0.3 where the first one is the density parameter

for the baryonic (or ordinary) matter and the total matter in the universe. Many possible

candidates have been brought up, it is possible to classificate them into hot dark Matter,

relativistic matter at the present epoch, and cold dark matter, non relativisitic matter at

the present epoch. One candidate for cold dark matter which has gained a lot of attention
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in the last years are primordial black holes. Moreover in 2015 LIGO detected the merging

of two black holes of mass 36M� 29M�, which are not allowed by the supernova collapse

models for black holes and their formation mechanism is still unclear. It is thereby possible

that the objects observed by LIGO are of primordial origin. Although there is no direct and

conclusive evidence for the existence of primordial black holes, it is possible to put some

severe constraints on their abundance, based on the current observation and theoretical

expectation.

To discuss the constraints on masses beyond the lower bound we introduce a quantity

which gives the ratio of black holes compared to the cold dark matter today. Rather than

an extended mass function it is more useful to consider a monochromatic one:

f(M) = ρPBH(M)
ρCDM

(2.17)

following the discussion in [11] we can divide the constraints into 6 subgroups according to

the physical observations.

Evaporation Constraints

It was theorized in the 70s by Hawking that black holes emit black body radiation at

hawking temperature:

TH = MP
MkB

'
(
M�
M

)
10−7K (2.18)

where M is the mass of the black hole. Thus we can evaluate the time necessary for

the complete evaporation of a black hole: t ' M3. Considering the instant of formation

during the radiation epoch it was shown that only the PBH with mass bigger than 5 ·1014g

can survive to the present epoch. Beyond this lower bound the Hawking radiation would

significantly influence the γ-ray background if a significant amount of PBH were to fall in

the 1015 − 1018g mass range.

Lensing Constraints

A significant amount of black holes in the universe would lead to lensing effects on the

photons travelling through the universe; the observation of various sources allow significant

constraint on the various mass ranges. The observation on Galactic sources for example

offer constraints on the planetary mass black hole, while recent observation on the stars

in the Magellanic Cloud show some light constraint on a wide mass range from planetary

scale up to LIGO scale. Looking at the microlensig of quasar and the millilensing of
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compact radio sources also offer constraint on a wide scale of masses, in particular the

first one shows the impossibility of all of dark matter to be composed by PBH in the mass

range 10−3 < M
M�

< 60, while the latter shows some extremely light constraint on the

SuperMassive range.

Dynamical Constraints

The addition of MACHO population in stellar systems would lead to its expansion due

to the increase in the kinetic energy of its stars. Populations with high mass to luminosity

ratios are more sensitive to this effect, and in particular ultra faint dwarf galaxies would

have been disrupted by the presence of massive primordial black holes, this fixes the bound

on the abundance of black holes in the 104M� mass range to be f ≤ 10−3. At LIGO

masses the dynamical constraints are not significative compared to the microlensing or

gravitational waves constraints.

CMB constraints

Supposing a Gaussian distribution of the perturbations, primordial black holes are gen-

erated at the tail end of the perturbations, then they would introduce a µ deformation

of the CMB power spectrum due to the Silk dumping of the density perturbation. These

argument poses strong constraints over the mass range 103 < M
M�

< 1012. It should be

noted that these assumptions rely on the gaussianity of the perturbations and the presence

of non-gaussian features could mitigate these constraints. To avoid the constraints on the

supermassive range though a huge non-gaussianity would be necessary, and this is not in

accordance with the PLANCK observations. Still the supermassive black holes observed in

the center of galaxies could be of primordial origin by supposing that the primordial black

holes generated undergo an accretion after the µ era ( 106 s < t < 109 s).

Accretion Constraints

The accretion of background gas could lead to a large luminosity for Primordial Black

Holes at early times, this luminosity will enhance the matter temperature of the background

universe. Using FIRAS it was obtained f <
(
M
M�

)−2 in the mass range 1 < M
M�

< 103 while

WMAP imposes the constraints f <
(

M
30M�

)
in the 30M� < M < 104M� mass range. At

solar masses these constraints should rule out f ' 1, although this results have turn out to

be model dependent and incorrect due to a technical error, actually f = 1 is excluded only

above 100M�.
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Gravitational Waves

Since its first run LIGO detected at least 40 merging of black holes in the mass range

between 1−300M�, the rate of observation allows us to conclude that, if the compact object

detected by LIGO are of primordial origin then the ratio of PBH in Cold dark matter must

be smaller than 10−2 in this mass range. Moreover the presence of Black Holes as dark

matter should lead to a gravitational wave background which, as of today, it has not been

observed. This, imposes that the primordial black holes in this mass range can’t provide

all of the dark matter.

Window Functions

This set of observation allow us to sketch a series of interesting windows in the mass

range for which PBH could compose a significant amount of dark matter, as one can notice

in figure 2.1:

• 1016 − 1017g and 1020 − 1024g. In this mass range a monochromatic population of

Primordial Black Holes can provide all of dark matter.

• 10 − 103M�. Although this mass range can’t provide all of dark matter the LIGO

and VIRGO observations reveal a significant population of intermediate mass Black

Holes.

• 1014− 1018.5M�. This window in the mass spectrum has long been neglected as such

massive objects are nonsensically big, and cannot provide dark matter in the galactic

halos. They may provide intergalactic dark matter but the possible constraint in this

mass range have yet to be studied.

2.3 Ultra slow-roll Inflation

As stated before the generation of a significant amount of PBH requires that the power

spectrum of the scalar perturbation is amplified up to Pζ ' 10−2 (2.16)1. Comparing this

threshold with the observed data from the cosmic microwave background we conclude that

an amplification of at least seven order of magnitude is necessary. Such an amplification is

impossible in single field inflationary models if the system is in a slow-roll regime [29], rather

a violation of this regime can lead to a significant amplification to the power spectrum.

1different calculations may lead to a slightly smaller or bigger threshold
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Figure 2.1: Constraints on f(M) according to the current experimental observation, this graph
has been taken from [11], here the interesting window functions are highlighted

Beyond the usual slow-roll inflation other evolutions leading to an accelerated expansion

are possible in the canonical inflation case. An interesting mechanism which is worth

investigating can be obtained by supposing that instead of a slowly changing potential

we have a constant one. This mechanism is called Ultra slow-roll. The Klein-Gordon

equation (1.15) then becomes:

ϕ̈+ 3Hϕ̇ = 0 (2.19)

so the acceleration of the field is compensated by the friction term. Interestingly if we solve

this equation we obtain φ̇ ∝ e−3N where N is the number of e-folds, and inserting this

solution in the energy density we see that the Hubble parameter quickly reaches a constant

value H2 ' V0
3MP

and so an inflation phase is ensured. Inserting the equation (2.19) in the

definition of ε2 we get (in a canonical case):

ε2 = 2ε+ 2 φ̈

Hφ̇
= 2ε− 6 ' −6 (2.20)

and then, during an inflation phase with ε� 1 it is reasonable to approximate ε2 ' −6, so

that the slow-roll approximation is violated and ε quickly decreases.

This model of course is not a viable possibility to describe the universe and the infla-

tionary phase as it does not replicate the observed CMB spectrum and it does not offer

graceful exit from the inflation phase. A more realistic possibility would be to build an

inflation model which, after an initial slow-roll phase, enters an almost constant potential

phase in which the system behaves in a similar way to a constant potential and eventually

it comes back to a slow-roll approximation. We can describe the evolution of the system

in the following way: if the factor |V ′| will reduce drastically, when the system is in the
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slow-roll limit, this will correspond to a steep decrease of |φ̇|. As the speed of the field

decreases the acceleration term becomes significant and it locks to the friction term so that

the system is described by equation (2.19). Looking at the case of a constant potential

we see that the speed of the field evolves as a−3, which takes the name of free fall case.

Comparing this to the expected value for the speed of the field in the slow-roll approxima-

tion φ̇SR = −V ′
3H we see that if the expected value for slow-roll decreases faster than in the

free fall case the system moves away from the slow-roll attractor and enters in a ultra slow

roll phase. It is easy to notice that, as the system moves into the ultra slow-roll phase, εV
becomes smaller than the slow-roll parameter ε, thus the number of e-folds necessary to fly

over the flat patch of the potential is actually far smaller then expected when evaluating it

using the slow roll approximation [15].

Now we consider the behaviour of the scalar perturbations during the ultra slow-roll

phase. It is important to notice that the analytical result (1.86) will not hold. Looking

back at the perturbation equation (1.82) we see that the friction term:

z′

z
=
(

1 + ε2
2 − κ

) 1
aH

(2.21)

has a negative value during the ultra slow-roll phase as ε2 ' −6. Thus when evaluating

the analytical solution for the modes equation on superhorizon scale (1.83) the decreasing

mode will turn into a growing one and the perturbation will grow on superhorizon scale.

Due to this feature the analytical evaluation for the power spectrum (1.86) does not hold

and numerical evaluation of the Mukhanov Equation is required.

In the last years some approaches have been brought up to construct an inflation toy

model with an ultra slow-roll phase. Probably the most successful class of models have been

those with a potential with an inflection point. These models can arise in the Standard

Model or Minimal Supersymmetric Standard Model theories [23] as one can obtain an

inflationary evolution with a simple renormalizable potential such as:

V = m2

2 ϕ2 − g

3ϕ
3 + λ

4ϕ
4. (2.22)

Setting g = 2m
√
λ the potential (2.22) has an inflection point in ϕc = m√

λ
. Close to the in-

flection point φc the system can undergo a slow-roll inflation as εV , ηV � 1. When building

those models one supposes that the inflation starts after the inflection point exploiting the

flatness of the potential in this region without actually having to go through the inflection

point. Obviously such a system undergoes a slow-roll evolution and it can not generate an
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amplification of the power spectrum. As noted by García-Bellido and Ruiz Morales these

models can actually be repurposed to have an USR phase and generate a significant amount

of black holes [19]. If for example the CMB modes exit significantly before the inflection

point, in stark opposition to the typical inflection point models, the system will eventually

reach the inflection point later. Here the speed of the field in the slow-roll approximation

will decrease faster than the in the free fall case and the system will abandon the slow-roll

attractor. To avoid an eternal inflation, which would be triggered if the system reaches

a point where both V ′ = V ′′ = 0, one should resort to a near-inflection point. In their

analysis they proposed a toy model with polynomial potential:

V = λv4

12
x2(6− 4ax+ 3x2)

(1 + bx2)2 (2.23)

where x = ϕ/v, and the potential can be obtained multiplying a renormalizable potential

such as (2.22) by a factor (1 + cϕ2)−2. The behaviour of the system will be strongly

dependent on the two parameter a, b while v, λ are essenetially an energy scale. A short

calculation reveals that in order to have an inflection point V ′′(x0) = 0 for a real x0 one

must impose a relationship between the b and a as:

bc(a) = 1− a2

3

(
1−

( 9
2a2 − 1

)2/3)
(2.24)

we then introduce a resonance parameter to avoid an eternal inflation: b = bc(a) + br so

that we obtain a near inflection point, obviously the smaller the resonance parameter is

the longer the expected duration of the USR phase is. The model they presented was not

actually able to generate PBH as the maximum value obtained in the power spectrum was

smaller than the expected threshold (2.16) and only generated an amplification up to 10−4.

More recently some models have been found which both show connections to known

phenomenological models of inflation and describe an USR phase which amplifies the power

spectrum enough to generate a significant amount of black holes. One model was developed

by Özsoy et al. [32] by employing axion inflation; here the perturbative axion shift symmetry

is spontaneously broken and a large field inflation model with either monomial or cosine

potential arise. Supposing that the non-perturbative effects breaking the symmetry are

large enough to superimpose the oscillation on the potential.

V = V0 + 1
2m

2ϕ2 + Λ4
1
ϕ

f
cos

(
ϕ

f

)
+ Λ4

2 sin
(
ϕ

f

)
(2.25)

45



0

2× 10−10
4× 10−10
6× 10−10
8× 10−10
1× 10−9

1.2× 10−9
1.4× 10−9
1.6× 10−9
1.8× 10−9
2× 10−9

0 2 4 6 8 10 12 14
0

5× 10−11

1× 10−10

1.5× 10−10

2× 10−10

2.5× 10−10

3× 10−10

3.5× 10−10

4× 10−10

0 2 4 6 8 10 12 14

V

ϕ/MP

V
′

ϕ/MP

Figure 2.2: The potential and its first order derivative in the axion model developed by Özsoy
et al. using the coefficients of Case 1 shown in the table 2.1

Λ4
1 Λ4

2
MP
f

Case 1 2.202MP
2

m2 0.64MP
2

m2 1.6
Case 2 2.601MP

2

m2 0.462MP
2

m2 1.7

Table 2.1: Coefficients for the potential (2.25) used in [32]

and depending on the amplitude of the perturbations new local maximum or minumum

appear in the thoery. If Λi
m2fd

> 1 then we would expect the presence of some critical point

beyond the global minimum at ϕ = 0, rather if one sets Λi
f < 1 but not negligible then

some near inflection point could come up. In their calculations they introduced two cases:

where the mass m is fixed by imposing the COBE normalization to the power spectrum at

CMB scale. In particular in case 2 the bumpy feature of the potential temporarily halts

the inflation before the Ultra slow-roll phase.

Other phenomenological models were recently developed such as the one proposed by Ci-

coli et al. [13] in the context of Fibre Inflation, a model built on type IIB compactification

or the one developed by Ballesteros et al. [4] in which a polynomial potential with a non

minimal coupling between an inflaton and gravity was considered. All the models quickly

discussed here produce primordial black holes in the asteroid mass range where they can

describe all dark matter. It should be noted that, as of today, all the models using Ul-

tra slow-roll to generate PBH show a red tilted power spectrum not compatible with the

PLANCK data.
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Chapter 3

Possible PBH formation

mechanism in Non-Canonical

Inflation

3.1 Kinetical Amplification

As remarked in the first chapter a non-canonical theory of inflation may possess, be-

yond the slow-roll attractor, a kinetical attractor defined by ∂Xp = 0. Looking back at the

definition of the sound speed (1.28) and of the first slow-roll parameter ε (1.33) we see that

both of them vanish on the attractor. We will show that while the system approaches the

k-inflation attractor the perturbation modes will freeze on the superhorizon scale and it is

possible to recover an analytical solution for the power spectrum which actually coincides

with the slow-roll one (1.86). Thereby the kinetically driven inflation can trigger an am-

plification of the power spectrum which, as we will show, is able to produce a significant

amount of Primordial Black Holes [25]. As discussed in Chapter 1, k-inflation on CMB

scale is ruled out by the observational constraints of the non-gaussian features in the tem-

perature anisotropies imposed by PLANCK. To alleviate this problem we can introduce a

potential term so that the inflation is divided in two phases: in the first phase the energy

density will be dominated by the potential and the system will be in a slow-roll regime.

During this phase the modes on the CMB scales will exit the horizon. In the second phase

the system evolves towards the k-inflation attractor with cs � 1. This second phase occurs

later during inflation so that the modes exiting the horizon are unconstrained by the CMB
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observations. We will study the two phases separately in the following non-canonical model:

p = KX + LX2 − V, (3.1)

and we solve the equations governing the homogeneous dynamics:

ϕ̈+ 3Hϕ̇ K + Lϕ̇2

K + 3Lϕ̇2 +
∂ϕK

ϕ̇2

2 + 3
4∂ϕLϕ̇

2 + ∂ϕV

K + 3Lϕ̇2 = 0 (3.2)

H2 = 1
3MP2

[
K
ϕ̇2

2 + 3Lϕ̇
4

4 + V

]
. (3.3)

Slow-roll evolution

We apply the slow-roll condition to the system first and we suppose that the system

energy density is dominated by the potential. We then to ensure the smalleness of the

slow roll parameter ε and then impose the smallness of the second slow-roll parameter

through the smallness of the parameters ηX and ηΠ. This requires that the acceleration of

the field is negligible with respect to the friction term in the Klein-Gordon equation and

that the time derivative of the momentum is negligible when compared to the friction term

HΠ. We evaluate the conjugated momentum and we see that it takes the following form

Π = ϕ̇
(
Lϕ̇2 +K

)
. Thus we obtain:

Π̇
HΠ = ϕ̈

Hϕ̇
+
∂t
(
Lϕ̇2 +K

)
H
(
Lϕ̇2 +K

) (3.4)

and, by requiring it to be small we obtain the following conditions:

ϕ̈

Hϕ̇
� 1,

∂t
(
Lϕ̇2 +K

)
H
(
Lϕ̇2 +K

) � 1. (3.5)

We insert the condition (3.5) in the Klein-Gordon equation and we impose that the

dynamic of the system is dominated by the potential term. Thus we obtain the slow-roll

equation:

ϕ̇
(
Lϕ̇2 +K

)
' −∂ϕV3H . (3.6)

We apply the latter result to the Friedmann equations, and we can obtain the first slow-roll

parameter:

ε ' εV
Lϕ̇2 +K

. (3.7)

Moreover we can evaluate the time derivative of the slow-roll equation (3.7), and we can
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express the variation of the momentum as a function of the slow roll parameters:

Π̇
HΠ ' −

εV − ηV
Lϕ̇2 +K

. (3.8)

The factor K +Lϕ̇2 can either amplify or reduce the slow-roll parameters with respect

to the canonical framework. We can notice that if the factor K + Lϕ̇2 approaches 0 the

analytical results will deviate from the numerically evaluated slow-roll parameters. In this

regime it is still possible to obtain an accelerated expansion of the universe as we can notice

that the field is approaching the k-inflation attractor.

Approaching the k-inflation attractor

We now study the transient phase in which the system approaches the k-inflation at-

tractor. First we solve the equation ∂Xp = 0, and we obtain the attractor trajectory in

phase space:

X = −K2L. (3.9)

We want this trajectory to be in an accessible region of phase space, thus we must impose

that K and L have opposite sign. Selecting a negative L would lead to a negative kinetic

term for high momentum, thus we will impose K to be negative and L positive. Moreover

we can, through a field redefinition, fix either K or L to have a constant value and rewrite

the lagrangian in a simpler form. Here we fix K = −1:

ϕnew =
∫

dϕold
√
|K(ϕold)|. (3.10)

If we impose that the attractor solution X = 1
2L solves the Klein-Gordon equation, the

potential must satisfy the following condition

∂ϕ

(
− V − 1

4L

)
= 0. (3.11)

This condition fixes the potential in the action.

Now we study how the field approaches the attractor solution during the transient phase

and we study the Klein-Gordon equation for X = 1
L + D(ϕ) and we evaluate it at linear

order in D:

∂ϕD + σ
3H0
√
L

MP
D = 0 (3.12)

where H0 is the Hubble parameter evaluated on the attractor and σ = sign ϕ̇. We solve
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equation (3.12) obtaining:

D = D0 exp
(
− 3σ

MP

∫
dϕ̄H0

√
L
)

(3.13)

which describes the transient approach of the system to the k-inflation attractor. Let us

note that H0 is the Hubble parameter evaluate on the attractor. Close to the attractor

we have ϕ̇ ' σ√
L
, thus the integral term in (3.13) can be solved by applying a change in

integration variable: dt = dϕ̄
√
L. Thus we can solve this integral obtaining D = D0e

−3N

and we notice that this coincides with the result obtained in Chapter 1 using the Hamilton-

Jacobi formalism.

We now insert this solution into the definition of the slow-roll parameter ε and the sound

speed, to study the behaviour of the system as it approaches the k-inflation attractor. We

apply a Taylor expansion around the attractor solution and we obtain, at linear order in

D:

ε = D

H2
0
, c2s = DL. (3.14)

Because D ∝ e−3N , we notice that as the system approaches the attractor solution both

the sound speed and the slow-roll parameter tend to 0. We then evaluate the parameters

ε2 and κ, obtaining:

ε2 = −3 + 2σMP∂ϕ log(L) κ = −3
2 + σMP∂ϕ log(L). (3.15)

We notice that if we impose ∂ϕL = 0 both ε2 and κ are constants and both the sound speed

and the slow-roll parameter ε decrease exponentially.

First we focus our attention to a model where L has no dependence on the field ϕ.

Looking back at (3.11) we see that this choice fixes the potential to be constant, thus such

a model can’t undergo a slow-roll phase and is not able to replicate the perturbations at

CMB scale. We can mitigate this problem by introducing an additional potential term in

the action which will dominate the dynamic of the model at CMB scale. Later, during

inflation, in the kinetically driven phase, the potential will not dominate the energy density

and it will behave as a perturbation term. We come back to the equation (3.11) and we

add a perturbation term f :

∂ϕ

(
V + 1

4L

)
= f (3.16)

imposing L to be a constant we notice that the perturbation term f coincides with the field
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derivative of the potential V . We study again the dynamics of the system as it approaches

the k-inflation attractor with the addition of a perturbation in the potential. We evaluate

the Hubble parameter on the attractor as: H0 = 1
4L and we insert X = 1

2L + D(ϕ) in the

Klein-Gordon equation obtaining, after linearizing

∂ϕD + σ
√

3
2MP

D + f

2 = 0. (3.17)

We solve this equation and we find:

D(ϕ) = exp
(
− σ
√

3
2MP

ϕ

)[
D0 −

∫
dϕ̄ exp

(
σ
√

3
2MP

ϕ

)
f

2

]
. (3.18)

The term multiplying the constantD0 will quickly vanish and the approach to the k-inflation

attractor will be described by the term in f .

We can again evaluate the sound speed and the slow-roll parameter ε at linear order

obtaining:

ε = 12DL, c2
s = DL (3.19)

and the slow-roll parameters ε2 and κ

ε2 = 2κ = −3− σ2
√

3 f
D
. (3.20)

We now select an exponential potential V = V0e
α ϕ
MP , and we insert it into (3.17). It is

easy to see that:

D = D0e
αϕ
MP (3.21)

solves equation (3.17), where

D0 = −α

2
(
α+ σ

√
3

2

) . (3.22)

Requiring D0 to be positive we see that α must be smaller than σ
√

3
2 .

We can then evaluate the value of the field as a function of the number of e-folds.

During the kinetically driven phase the speed of the field and the Hubble parameter are

approximately constant, thus we can write:

ϕ̇2 = H2
0

( dϕ
dN

)2
= 1
L
. (3.23)
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As H2
0 = 1

4L we can obtain: ϕ(N) = σ2
√

3N −N0 where N0 is the number of e-folds at the

onset of the kinetically driven phase. We insert this result into (3.21) and we see that, as

the system approaches the k-inflation attractor, D and by extension ε and cs decrease as

exponentially in N :

D = D0e
−γs∆N (3.24)

where

γs = −σ2
√

3α. (3.25)

Moreover looking back at (3.20) we find ε2 = −γs, κ = −γs
2 .

We now consider the behaviour of the perturbations during the transient phase, first of

all we insert the slow-roll parameters in the perturbation equation (1.82). We see that the

friction coefficient z′

z is always positive regardless of the value of γs, thus the perturbation

modes ζk will freeze on superhorizon scale.

We then insert the slow-roll parameters into the effective mass in the Mukhanov-Sasaki

equation (1.79). We notice that all the terms in ε2 and κ cancel each other and the mass

term becomes:
z′′

z
= (aH)2

[
2− ε− εγs

]
' 2(aH)2 (3.26)

as ε decreases exponentially the last equality holds. Then the Mukhanov-Sasaki equation

will reduce to a Bessel equation, and we can obtain an analytical value of the power spec-

trum, which coincides with the analytical result obtained in the slow-roll case (1.86). Thus

as the system approaches the k-inflation attractor the power spectrum (1.86) will grow as

e
3
2γsN . It is thereby easy to do a rough estimate of the number of e-folds necessary to obtain

an amplification up to the threshold for PBH formation (2.16), setting an amplification by

7 order of magnitude we obtain: ∆N = 14
3γs log 10.

One could notice that the behaviour of the field and the slow-roll parameters is similar

to the ultra slow-roll model for single field canonical inflation. In both cases the speed of the

field decrease exponentially during the transient phase and the power spectrum undergoes

an amplfication. It should be noted that in a model employing a kinetically driven inflation

the power spectrum can be evaluated analytically while the ultra slow-roll case require

numerical investigation. Moreover as we will show in the following section, it can replicate

the observables at CMB scale and generate a significant amount of Primordial Black Holes

while the ultra slow-roll models present a red tilted power spectrum.
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α cs∗ r dns
d log k ∆N M

M�

5·10−2 9·10−2 4·10−2 −5·10−3 75 1·10−55

0.12 0.12 0.15 4.3 · 10−2 30 1·10−16

0.15 0.13 0.20 6.85 · 10−2 24 1·10−10

Table 3.1: Extimate for models with different α with L and V selected to obtain the COBE
normalization and ns = 0.965 at CMB scale.

A Simple K-Inflation Model

We now consider some toy models with an exponential potential where we will set L

and V0 to have P ζ = 2.4 · 10−9 and ns = 0.965 at CMB scale. The choice of α (see above)

will set the expected number of e-folds necessary to reach the threshold value of the power

spectrum for PBH formation. A flatter potential will require more e-folds to undergo a

significant amplification. We evaluate the behaviour of the system for different values of

the parameter α and we present various observables in Table 3.1. One notices that for

small α (α = 0.05 in Table 3.1) we obtain both a running tilt parameter and ratio between

the scalar and tensor perturbation in agreement with the PLANCK observation, but Black

Holes with an excessively small mass. Choosing for higher value of α (α = 0.15) we expect

the amplification during k-inflation to be faster, thus we can obtain Black Holes in the

asteroid mass range or even higher mass ranges. In those latter cases however the ratio

between scalar and tensor perturbation is too big and not compatible with the PLANCK

data.
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Figure 3.1: The horizon crossing for CMB modes is set at N = 0 ,on the right we plot the first
slow-roll parameter and the sound speed for perturbation in the second model, the analytical slow
roll approximation is plotted as a dotted line. On the right hand side ε2 and κ are plotted.

Thereby a more realistic model can be introduced by setting a small modification to
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the potential selecting:

V = V0e
αϕ

15MP
[
1 + tanh

(
αϕ

MP

)]
(3.27)

so that for ϕ > 0 we have a very flat potential which is more suitable to replicate the

system at CMB scale. As ϕ < 0 the potential becomes steeper thus leading to a very quick

amplification. To stop the amplification we apply a small variation to the coefficients in the

lagrangian (3.1) which is negligible during the k-inflation phase and here we have chosen

to set L = L0

(
1 + δe

− αϕ
2MP

)
. As L grows the system will move away from the attractor

trajectory. On figure 3.2 we plot the power spectrum for the two different model where

we’ve set for the simple exponential model

L0 = 1.15 · 108MP
−4, α = 0.12, V0 = 10−8MP

4, δ = 2 · 10−9 (3.28)

while in the latter case we set

L0 = 1.81 · 109MP
−4, α = 0.45, V0 = 1.4 · 10−10MP

4, δ = 10−11, (3.29)

obtaining the observables:

cs∗ = 0.09 r = 0.03 dns
d log k = −0.0001 MPBH = 10−13M� (3.30)

It should be noted that the following model does not possess a mechanism for the

graceful exit, as the k-inflationary phase does not allow the speed of the field to be smaller

than
√

1
L and to make inflation end we need to introduce a mechanism which makes K

change sign, so that the system abandons the kinetical attractor. Moreover we should

introduce a modification to the potential and allow the existence of a minimum, so that

the system re-approaches the canonical slow-roll attractor and inflation eventually ends.

3.2 Brane Inflation

One of the most succesful model of non-canonical inflation arises in string theory, from

the model of Brane Inflation. In this class of models inflation is driven by the motion

of a D3-brane in a warped throat of a stabilized compact space [24]. To preserve the

four dimensional Lorentz (or de Sitter) inrvariance the D3-brane fills the four dimensional

spacetime and is pointlike in extra dimensions. It is possible to rearrange this model into

a four dimensional field theory in a FRW spacetime by introducing an inflaton scalar field
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Figure 3.2: The power spectrum of the comoving curvature perturbation, the horizon crossing for
the CMB modes is set as N = 0, on the left we plot the first model setting α=0.12 and on the right
the second model is considered.

parametrizing the position of the brane. We introduce the Dirac Born Infeld (DBI) action:

SDBI = −
∫

d4x
√
−g 1

h

√
1− h∂µϕ∂µϕ (3.31)

where h(ϕ) is the rescaled warp factor describing the geometry of the throat. If we consider

the couplings of the D-Brane with the other background fields we can introduce a potential

term in the DBI action [1]. We write the potential as: V − h−1 and, adding it to the DBI

action (3.31) we obtain:

S =
∫

dtd3xa3
[1
h

(
1−

√
1− hϕ̇2

)
− V (ϕ)

]
(3.32)

where we have considered a homogeneous scalar field on a FRW background. We can

evaluate the Klein-Gordon equation:

ϕ̈+ 3Hϕ̇c2
s + ∂ϕV c

3
s + ∂ϕh

h
ϕ̇2 1− cs

cs

1− 2cs
1 + cs

= 0 (3.33)

where cs is the sound speed for perturbations:

c2
s = 1− h(ϕ)ϕ̇2 = γ−1. (3.34)

we notice that the sound speed for perturbation is the inverse of the Lorenz factor γ for

the Brane. The Friedmann equation is:

H2 = 1
3MP2

[1
h

( 1√
1− hϕ̇2 − 1

)
+ V

]
. (3.35)

55



The DBI action employs an interesting dynamics as, if we suppose hϕ̇2 � 1 we recover

the canonical action (1.13) and the Klein-Gordon equation (3.33) coincides with the canon-

ical one. In this regime the sound speed (3.34) is very close to 1. Instead if hϕ̇2 ' 1 the

sound speed is far smaller than 1, we will show that a DBI model can generate inflation

also in this phase. We see that if hϕ̇2 = 1 the sound speed is equal to 0, remarkably this is

a solution to the Klein-Gordon equation (3.33), but is a singular trajectory for the Fried-

mann equation (3.35). If we consider instead hϕ̇2 > 1 the action is not real. Thus we must

restrict the phase space to regions where ϕ̇2 < h−1 and we observe that the Dirac-Born

Infield action possesses a speed limit. Interestingly one notices that in this region of phase

space both the null energy condition and the stability of the perturbation are satisfied.

We can now evaluate the slow-roll parameter ε for a DBI lagrangian:

ε = 3
2
ρ+ p

ρ
= 3

γ ϕ̇
2

2
γ2

γ+1 ϕ̇
2 + V

(3.36)

as expected, when γ ' 1 it coincides with the canonical case. If γ � 1 (3.36) does not

coincide with the slow-roll parameter in a canonical case. We notice though that also in the

non-canonical regime an accelerated evolution requires the energy density to be dominated

by the potential.

3.3 Attractor in Brane Inflation

As discussed in section 1.3 in a non-canonical model the inflationary trajectory is an

attractor, here we’ll obtain the attractor trajectory for the DBI model. We should notice

though that the strongly non canonical evolution of the system does not coincide with the

k-inflation described by Mukhanov [3] as, looking at the DBI lagrangian we see that a

trajectory in phase space where ∂Xp = 0 does not exist .

To evaluate the attractor trajectory we can introduce the parameter χ = h
1
2 |ϕ̇|, so

that we can rewrite the sound speed for perturbations as
√

1− χ2. Now we rewrite the

DBI action (3.32) as a function of ϕ and χ, although χ is not the canonical momentum

associated to ϕ it can still be used to evaluate the attractor solution of the theory [42]. We
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obtain the linear equations of motion:

χ = h
1
2 |ϕ̇| (3.37)

dχ
dt =

(
1− χ2)[h 1

2

√
1− χ2∂ϕV − 3Hχ− ∂ϕh

h3/2

(
1−

√
1− χ2

)]
(3.38)

H2 = 1
3MP2

[
h−1

( 1√
1− χ2 − 1

)
+ V (ϕ)

]
(3.39)

one of them has the trivial solution χ = 1 which coincides with the singular trajectory

in phase space. To obtain the attractor solution it is useful now to introduce two non-

canonicalness parameters:

A = ∂ϕV

3H h
1
2 ∆ = ∂ϕh

3Hh3/2 (3.40)

and dividing the equation (3.39) by 3H on both sides and rewriting it as:

dχ
dt =

(
1− χ2)[A√1− χ2 − χ−∆

(
1−

√
1− χ2

)]
(3.41)

we can evaluate the attractor solution as:

χatt = −∆ + (A+ ∆)
√

1 + 2A∆ +A2

1 + (A+ ∆)2 . (3.42)

We see that this solution is the attractor trajectory of the model by inserting in (3.39)

χ = χatt + δχ and expanding at linear order in δχ:

˙δχ+ 3Hλδχ ' 0 (3.43)

where λ > 0. By solving equation (3.43) we see that regardless of the sign of δχ the system

will be driven towards χatt [42] thus confirming the attractor nature of the trajectory (3.42).

We expect to apply this results to an inflationary phase therefore we need the energy density

to be potential dominated, and we can express the non-canonicalness parameters (3.40) as

functions of the field:

A = MP

√
2
3εV V h, ∆ = MP

∂ϕh√
3V h3

. (3.44)

Now we evaluate the sound speed and the slow-roll parameters on the attractor solution.

During the accelerated expansion of the universe we expect that ∆ is negligible. We make

this assumption because if ∆ becomes big both ηX , and ηΠ become significantly bigger
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than 1 [16], leading to a fast variation of the first slow-roll parameter ε and of the sound

speed which is incompatible with the observation at CMB scale.

Thus we evaluate the attractor solution (3.42) for ∆ = 0:

χatt
2 = A2

1 +A2 (3.45)

and, inserting this result into (3.34) we evaluate:

c2
s = 1

1 +A2 . (3.46)

In a similar fashion we evaluate the first slow-roll parameter ε and we obtain:

ε = 3
2

χ2√
1− χ2((1− χ2)− 1

2 − 1 + V h
) =


3
2
A2

V h = εV , for A� 1

3
2
A
V h = εV

A , for A� 1
(3.47)

We see that a sound speed close to 1 requires A � 1, and in this case the model is in

a canonical regime, while for A � 1 the sound speed is small, we call this latter phase

strongly non-canonical or DBI regime. Therefore we observe that when A� 1 the system

is in a strongly non-canonical regime with a small sound speed while for A� 1 it behaves

as a canonical model. Then we evaluate the coefficients ηX and ηΠ (1.35) on the attractor

in the canonical and non-canonical limit:

ηX = ε− ϕ̈

Hϕ̇
= ε+ ηV − εV

(1 +A2)3/2)
=


ηV for A� 1

εV
A for A� 1

(3.48)

ηΠ = ε− Π̇
HΠ = ηV

(1 +A2)1/2 =


ηV for A� 1

ηV
A for A� 1

(3.49)

where Π is the canonical momentum. Lastly we evaluate κ, and we notice that Π = ϕ̇
cs
,

hence we have:

κ = ϕ̈

Hϕ̇
− Π̇
HΠ = ηΠ − ηX (3.50)

which we can estimate both in the canonical and non canonical limit to be

κ = ηΠ − ηX =


0 for A� 1

ηV −εV
A for A� 1

(3.51)
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and as expected, in the canonical limit, the sound speed will be constant and equal to 1,

thus κ will vanish while in the non canonical limit it will undergo small variations.

3.4 PBH production in Brane Inflation

To generate a significant amount of primordial black holes from our theory we require

an amplification of the power spectrum with respect to its value at CMB scales, to about

10−2, which is the commonly assumed threshold for the power spectrum excluding possible

non gaussian effects. The known phenomenological models for DBI inflation are not able to

produce Primoridial Black Holes. It is possible though to introduce some modifications to

the known phenomenological cases and study some toy model which could account for some

possible mechanism for the production of PBH in a Brane inflation. To do that we could

consider some possible modification of the warp factor as, by looking at (3.34) and (3.40)

we see that it generates significant variations to the sound speed and the dynamics of

the system. One model for PBH formation was proposed by Özsoy et al. [32], where by

introducing a step in the warp factor one expects a steep growth of the sound speed. This

leads to a negative friction term in the perturbation equation (1.82) an and thus we should

observe an amplification of the curvature perturbations on super horizon scale.

Introducing a Spike in the Warp Factor

In a canonical model during a slow-roll evolution the power spectrum can be evaluated

analytically using the equation (1.86). In order for this approximation to hold we need

the effective mass in the Mukhanov-Sasaki equation to behave as ν2− 1
4

τ2 so that we can

analytically solve it. Interestingly during a DBI inflation phase, with A� 1, the slow-roll

parameters are small, in a similar fashion to the slow-roll approximation in a canonical

model of inflation. Thus we see that the power spectrum can be evaluated analytically

using (1.86).

By inserting the analytical values of ε (3.47) and the sound speed (3.46) into (1.86) we

can obtain a simple expression for the power spectrum in a canonical slow-roll phase and

in a DBI regime:

P ζ = A2 H2

8π2εV
for A� 1. (3.52)

We can obtain an amplification by imposing that the non-canonical parameter undergoes a

quick growth, which can be achieved by introducing a spike in the warp factor which moves

the system in a strongly non canonical regime.
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An important consideration should be done regarding the width of the spike as, esti-

mating analytically the duration of inflation we find:

N =
∫

dtH =
∫

dϕ 1√
2εcs

'


∫

dϕ 1√
2εV

for A� 1∫
dϕ
√

A2

2εV for A� 1
(3.53)

As we could expect we see that, in a non canonical phase, the number of e-folds will grow

faster compared to the canonical case. In particular a change of several order of magnitude

of h leads to a similar increase of the number of e-folds necessary to traverse the spike. To

make the system compatible with the expected duration of the inflation (about 60 e-folds)

and obtain an amplification of several order of magnitude, a very slim spike is required.

Taking for example a gaussian spike in the warp factor h = h0(ϕ)
[
1 + δ exp

(
− (ϕ−ϕ0)2

2σ2MP2
)]
,

where h0(ϕ) is a given background warp factor, we can evaluate the non canonicalness

parameter ∆:

∆ = ∆0√
1 + δe

− (ϕ−ϕ0)2
2σ2MP2

− δ
ϕ−ϕ0
σ2MP2 e

− (ϕ−ϕ0)2

2σ2MP2√√√√3h0V

(
1 + δe

− (ϕ−ϕ0)2
2σ2MP2

)3
, (3.54)

where ∆0 is the delta factor linked to the original warp factor. We select a spike sufficiently

high to generate a significant amplification of the power spectrum, and sufficiently narrow

to make the amplified phase lasts a short number of e-folds. This latter requirement leads

to a non negligible ∆ during the evolution. As the field gets closer to the spike the warp

factor grows until |∆| � 1 and, in this conditions the slow-roll approximation breaks down.

If we evaluate ηX , ηΠ [16] at first order expansion in ∆ we see that neither of them are

small. Moreover looking at equation (3.54) we can compare the ∆ factor to A, and across

the spike we can suppose A0 =
√

2
3εV V h0 to be almost constant and we obtain:

∆
A
' − δ

A0σ
y

e−
y2
2(

1 + δe−
y2
2

)2 (3.55)

where y2 = ϕ−ϕ0
σ2MP2 . Thus if the spike is sufficiently narrow and we have: ∆ � −A close

to the minimum of ∆. If we insert this assumption into the attractor solution (3.42) we

see that the term inside the square root becomes negative and the attractor trajectory

disappears. As the system reaches the top of the spike ∆ becomes small again, thus the

field re-enters the attractor solution and its dynamics can be studied analytically. As the
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system exits the spike ∆ becomes large again and the ηX , ηΠ terms are not small. In this

case though the ∆ factor is positive and, looking back at (3.42) we see that the attractor

solution is well defined. Moreover we observe a quick growth of the sound speed as we can

see that in this regime κ > 1 and this implies that the horizon will start growing during this

phase. This can be shown easily by evaluating the scale of the modes crossing the horizon

as ks = aH
cs

, and calculating the derivative of log ks by the number of e-folds:

d log ks
dN = 1− ε− κ (3.56)

we see that the horizon grows when κ > 1 − ε. To avoid confusion with the comoving

Hubble horizon (aH)−1, which decreases during inflation regardless of the sound speed

variation, from now on we will refer to the horizon for the scalar perturbations as the sound

horizon. Due to the growing horizon for scalar perturbations the modes close to the top of

the spike will re-enter the horizon and, when they eventually re-exit their amplitude shall

be significantly damped.

Constant warp factor model

We now study the follwing two models with a gaussian spike in a constant warp factor

selecting an exponential and quadratic potential

V = m2

2 ϕ2, V = V0e
α ϕ

MP , h = h0

[
1 + δ exp

(
− (ϕ− ϕ0)2

2σ2MP2

)]
(3.57)

Since we fixed the potential and the warp factor we can evaluate the number of e-folds

necessary to get across the spike. Close to ϕ0 the system is in a strong DBI regime and we

can approximate the warp factor as h ' h0δ exp
(
− −(ϕ−ϕ0)2

2σ2MP

)
and, inserting it into (3.53)

we can obtain analytically the number of e-folds necessary to cross the spike.

For the exponential potential we obtain:

∆N spike = 2σ
√
πV0h0δ

3 exp
(
− 2αϕ0

MP
+ 2α2σ2

)
(3.58)

while for a quadratic potential:

∆N spike = 2
√

2
3πδh0V0σϕ0 (3.59)

where we used the fact that the contribution at the tail of the gaussian is negligible to

evaluate the integral in the whole interval of ϕ.
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Figure 3.3: Comparison between the speed of the field and its acceleration on the left hand side
and the Hubble parameter on the right side. On the top we plot the top we plot the quadratic
potential case and on the bottom the exponential potential case
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Figure 3.4: First slow-roll parameter and sound speed for perturbation compared with their ana-
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potential model while on the left the exponential potential. We can notice that at the beginning of
the spike when the system enters a transient phase, the analytical value of the sound speed does not
coincide with the numerical evaluation. Moreover we can see that with the exponential potential
the analytical value of ε deviates from the numerical evaluation outside of the spike as there A is of
the order of unity and we can not completely resort to the DBI regime approximation.
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Imposing the COBE normalization and the almost flatness of the power spectrum at

CMB scale setting ns = 0.965 we select:

V0 = 10−9 h0 = 2.71 · 1011 α = 0.24 (3.60)

for the exponential potential and:

V0 = 4.264 · 10−11 hCMB = 8.44 · 1013 (3.61)

for the quadratic potential. We suppose that the spike is far enough from the horizon

crossing of the CMB modes not to influence the dynamic of the system, thus we can

evaluate the observables regardless of its height and narrowness. We obtain:

dns
d log k = −0.0003 cs = 0.32 r = 0.0047 (3.62)

for the exponential potential and:

dns
d log k = −0.0003 cs = 0.20 r = 0.03 (3.63)

for the quadratic potential. The height of the spike and its narrowness will set the max-

imum value of the power spectrum and its duration, we choose the position of the spike

to be about 20 e-folds after the CMB horizon crossing, thus selecting ϕ0 = 0.4 for the

exponential potential and ϕ0 = 5.5 for the quadratic potential. To reach the threshold for

σ log10(δ) ∆Nanalytical ∆N Pmax

2.51 · 10−3 4.00 8.78 8.83 9.25 · 10−6

1.58 · 10−3 4.50 9.85 9.87 2.92 · 10−5

1·10−3 5.00 11.05 11.06 9.25 · 10−5

6.31 · 10−4 5.50 12.40 12.39 2.92 · 10−4

3.98 · 10−4 6.00 13.91 13.91 9.25 · 10−4

Table 3.2: Here we compare the duration of the spike evaluated numerically and using the equa-
tion (3.58) for an exponential model varying the height and narrowness of the spike

PBH formation we need an amplification of about 7 order of magnitude. We were not able

to solve numerically the dynamics for the parameters leading to an amplification. However

it has been possible to study the system with shorter spikes and observe that the analytical

approximation coincide with the exact numerical results. It is thereby reasonable to ex-

trapolate these numerical results to different choices of the parameters without numerically

solving the Mukhanov equation.
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σ log10(δ) ∆Nanalytical ∆N Pmax

2.51 · 10−3 4.00 11.99 11.99 9.88 · 10−6

1.58 · 10−3 4.50 13.46 13.45 3.13 · 10−5

6.31 · 10−4 5.25 12.70 12.70 1.76 · 10−4

3.98 · 10−4 5.75 14.25 14.25 5.56 · 10−4

1.58 · 10−4 6.25 10.09 10.09 1.76 · 10−3

Table 3.3: Here we compare the duration of the spike evaluated numerically and using the equa-
tion (3.59) for the quadratic model varying the height and narrowness of the spike

In the figures we have plotted as examples the power spectrum and the slow-roll pa-

rameters evaluated setting σ = 6.31 · 10−4 and δ = 105.5 for the exponential potential, and

σ = 6.31 · 10−4 and δ = 105.25 for the quadratic potential. 1 Using equation (2.10) we

can evaluate the mass of the PBH produced by the modes that exit the horizon while the

field is on top of the spike. We find for the exponential potential M = 10−14M� and for

quadratic potential M = 10−13M�.

Modes freezing on super horizon scales

During the exit from the spike one should expect κ > 1 and, as mentioned by Ro-

mano [35] and, such a background evolution should lead to a growth of the modes on super

horizon scale, adding thereby a second amplification mechanism. In this model we can ex-

pect this feature to be still present as, by evaluating the coefficient of amplification (2.21)

we observe a negative value of the friction term in the perturbation equation. Looking at

the numerically evaluated power spectrum in figure 3.6 though, we notice that, at the top

of the spike, the numerical estimate and the slow-roll analytical approximation of P ζ do co-

incide. Moreover, evaluating the time evolution of the different modes we observes that the

modes that exit the horizon when the field is on top of the spike do freeze on superhorizon

scale. Modes on smaller scales exit the horizon and they initially freeze, during this initial

frozen phase the system enters in a phase where z′

z is negative and thereby we should expect

an amplification on super horizon scale. Importantly though, since during the evolution the

(csk)2 term in the Mukhanov-Sasaki equation grows and becomes non-negligible, we can’t

completely ignore the sound speed component in the perturbation equation and, thus the

superhorizon approximation does not hold. A significant amount of the modes will actually

re-enter the sound horizon, so that their amplitude get significantly damped as one can see
1One could notice that the duration of the spike in the two cases plotted is slightly larger than expected

using the analytical result. The choice of a purely gaussian spike (3.57) turns out to be excessively demanding
to the computation and we had to resort to a slight modification in the numerical simulations setting
h = h0δ exp

(
− y2

0
2σ2

(x−x0)2

y2
0+(x−x0)2

)
with y0 =

√
2 log(δ)σ. This model deviates slightly from the gaussian case

and the number of e-folds necessary to cross the spike is slightly by a few e-folds
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Figure 3.7: Time evolution of the modes exiting at N = 30 and N = 34.9 in the quadratic
potential model, in both cases the exit from the horizon is highlighted by a black dotted line, in
the figure on the right also the re-entry of the mode is highlighted. We notice that both the modes
freeze on superhorizon scale, the first one does not amplify during the exit phase while the second
mode re-enters and its amplitude gets significantly damped

in figure 3.7.

We note that the amplification of the modes on superhorizon scales, in single field

models they require a negative friction term on a superhorizon scale which could arise due

to a significant growth of the sound speed, or a fast decrease of the slow-roll parameter

ε. Relying only on the sound speed variation though we’d require κ > 1 which, in turn,

imposes that the sound horizon is not monotonically decreasing and, thereby a significant

number of modes which should have undergone an amplification on super horizon scale

actually re-enter the horizon. Deeper studies should be brought up to obtain an actual

threshold for the maximum κ and the necessary duration of this phase which allows the

superhorizon amplification both in the case where the negative value of the friction term

is solely due to κ or cases where ε2 < 0 and κ > 0 which can arise by introducing a near

inflection point in the potential during a strongly non canonical regime. In any case this

effects are subdominant and, as shown in the figures still the analytical approximations

employed are quite accurate and lead to a quite affordable prediction on the amplification

of the power spectrum.
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Conclusions

In this thesis we studied some possibel mechanism to generate primordial Black Holes

in a non-canonical model of inflation.

In the first chapter we offered an introduction to standard cosmology, describing the

shortcomings of the Hot Big Bang Model. We then studied the model of inflation as

a viable solution to these problems, focusing our attention on single field models. Here

we studied the background dynamics of the inflaton field both in a canonical and a non-

canonical context, focusing in particular on the latter case. We’ve shown that is is possible

to achieve an accelerated phase both described by a slow-roll evolution where the energy

density is dominated by the potential, and through a kinetically dominated energy density.

Subsequently we considered the scalar perturbation, studying their generation and evolution

through the Mukhanov-Sasaki equation. Using the quantization formalism in a quasi de

Sitter spacetime we introduced the power spectrum P ζ and the spectral tilt ns. The current

observational constraints by PLANCK offer stringent bounds on these observables at CMB

scales (kCMB ' 0.05Mpc−1). Lastly we quickly reviewed the non-gaussian features of the

perturbations discussing how the perturbations may become significantly non-gaussian for

a small small value of the sound speed cs.

In the second chapter we discuss Primordial Black Holes as viable candidates for Dark

Matter. We reviewed their formation mechanism due to the gravitational collapse and their

abundance calculated by assuming a gaussian probability distribution of primordial density

fluctuations, the collapse occurs when overdensities re-enter the horizon in a radiation

dominated phase. We then shown that Primordial Black Hole dark matter requires an

amplification of the power spectrum up to 10−2 on PBH scales. Lastly we discussed the

current experimental constraints on PBH abundance and the Ultra slow-roll mechanism in

single field canonical inflation.

In the third chapter we studied some possible amplification mechanisms in non-canonical

inflation. First we studied a polynomial non canonical model p = −X + LX2 + V , we se-

lected a model which starts in a slow-roll regime at CMB scale. Later during inflation it
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will abandon the slow-roll trajectory and approach the k-inflation attractor. During this

transient phase the sound speed and the slow roll parameter ε decrease exponentially, and

we have shown that during this transient phase the power spectrum can be evaluated an-

alytically and gets enhanced. We also considered a DBI toy model where we introduced a

spike in the warp factor. We considered a gaussian spike and showed that it determines

a transition for the system from a canonical evolution to a strongly non canonical one.

During the transient phase approaching the strongly non-canonical phase both the sound

speed and the slow-roll parameter ε decrease quickly. This leads to a steep growth of the

power spectrum. It was also observed that after this phase the sound speed undergoes a

steep growth, which should lead, in principle, to an amplification of the modes on super-

horizon scale which was not observed. However showed that the steep growth of the sound

speed causes the sound horizon to grow, thus the modes which should have undergone an

amplification on superhorizon scale re-enter the horizon and their amplitude is significantly

damped.

It should be noted that the first toy model does not include a mechanism describing a

graceful exit. Moreover that significant non-gaussian features could be generated during the

enhancement of the power spectrum and this may alter the estimates regarding the amount

of amplification necessary to produce a certain abundance of Primordial Black Holes. Still

the study of non-gaussianities is very complicated and goes beyond the scope of this thesis.
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