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Abstract

This work is a feasibility study for the detection of a violation of Bell inequalities using
top spin correlations at the LHC. Bell inequalities are a model-independent test of non-
classical behavior; in a theory where observables are local and have definite values ahead
of measurement, one can put an upper bound on how correlated two systems can be. A
violation of such limits (i.e. of Bell inequalities) has been observed in many quantum
systems, such as pairs of entangled photons. We are able to cast Bell inequalities in a form
that is usable for tt̄ pairs produced in hadron colliders, in what would be the first test at
the TeV scale. In particular, top quark pairs emitted perpendicular to the proton beam
at v ∼ c have their spin maximally entangled as a consequence of conservation of angular
momentum. In this regime our proposed experimental setup is identical (in spirit) to
the one used in quantum optics. We simulate the measurement starting from event
generation at parton level, fully showering hard partons, simulating the response of the
ATLAS detector, reconstructing the event kinematics, and unfolding the distributions
obtained. We show that a violation of Bell inequalities is expected. The statistical
significance for a violation is small if considering the upcoming LHC Run 3 luminosity,
but should grow after the next High-Luminosity run, reaching, conservatively, ∼ 90%
CL.
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Introduction

If a pair of particles is created and then separated, the two–particle wavefunction
retains a non–separable character. A measurement on the first particle, whose outcome
is undetermined prior to experiment, in some cases predicts with complete certainty the
outcome of a measurement on the second particle, even if the two experiments happen
at spacelike separation.

This (apparent) tension between quantum mechanics and special relativity was fa-
mously pointed out in 1935 by Einstein, Podolsky and Rosen in what is known as the
EPR Paradox [1]. It was suggested that there may exist additional classical degrees of
freedom, known as hidden variables, that would keep reality classical and local.

Whether or not the bizzarre predictions of quantum mechanics are an accurate de-
scription of reality is not a philosophical question but a matter of experiment. In 1964,
Bell proved [2] classical theories obey limits about correlations between outcomes of
experiments perfomed at a distance, that quantum mechanics can sometimes violate.

Several experiments have been performed over the last half–century, mostly involving
the polarization of photons produced in atomic transitions. All results obtained so far
appear to violate Bell Inequalities, and are interpreted as a confirmation of quantum
mechanics against alternate competing theories.

Recently, the field has seen a period of rapid growth after the prospect of using
hadron colliders to test Bell Inequalities has emerged. In 2020 and 2021, several papers
by Afik et al [3], Fabbrichesi et al [4], and Takubo et al [5] argued the detection of
entanglement and of a violation of Bell Inequalities using spin and flavor correlations is
in principle possible at the LHC.

This thesis is a feasibility study for the experimental observation of entanglement
and of a violation of Bell Inequalities using spin correlations in tt̄ pairs, prompted by the
upcoming start of Run 3 of the LHC. Such an experiment would be the first TeV scale
test of the puzzling non–local correlations that are a core feature of quantum mechanics,
and could also be reinterpreted as a novel probe for beyond-the-Standard-Model effects.

This work is organized as follows. This first Chapter is a general introduction to
the EPR Paradox, entanglement in quantum mechanics, and Bell Inequalities, together
with an outlook on recent EPR experiments in high energy physics. The second Chapter
concerns top quark pairs produced in hadron colliders such as the LHC, studies their
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kinematic properties, and establishes an experimental road to measure spin correlations
using a dilepton final state. The third Chapter contains our main theoretical result, a set
of observables in pp→ tt̄→ `+`− events sensitive to the presence of entanglement and to
the violation of Bell Inequalities in two different regions of phase space. The fourth and
fifth Chapters describe our analysis at parton level, using events generated within the
Standard Model at Leading Order. In the last three Chapters we describe our complete
analysis, using events generated, showered, and reconstructed inside a simulated ATLAS
Detector.
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Chapter 1

Entanglement and EPR

Consider two systems A and B, whose quantum states belong to Hilbert spaces HA
and HB. The space of states for the joint system A+B is the tensor product HA⊗HB.
A state of A+B is separable if it can be written as:

|ψ〉 = |ψA〉 ⊗ |ψB〉 ≡ |ψA ψB〉 , (1.1)

with ψA ∈ HA and ψB ∈ HB. In mathematics these states are called decomposable
tensors. If the whole system is in the separable state |ψAψB〉, subsystem A is in state
|ψA〉 and subsystem B is in state |ψB〉, with the two parts being independent.

Since not all tensors are decomposable, there are states of the whole system that
can not be interpreted as having the constituents in well defined states by themselves.
Consider a pair of spin 1/2 particles in a spin singlet state:

|ψ〉 =
|↑↓〉 − |↓↑〉√

2
. (1.2)

Not much can be said of each individual particle, except that upon measurement we
will find |↑〉 or |↓〉 randomly with 50% probability. However, comparing experimental
outcomes on the first and second particle, we find perfect (negative) correlation. States
like the one in (1.2) that can not be decomposed are called entangled.

Entanglement can not be reproduced in any way at the classical level and is a primary
feature of quantum mechanics.

Entanglement in mixed states

A quantum state is pure if its density matrix can be written as:

ρpure = |ψ〉 〈ψ| , (1.3)

for some ψ. A state is mixed if it is not pure. In this case, the best we can do is to
decompose its density matrix as:

ρmixed =
∑

pk |ψk〉 〈ψk| , (1.4)
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where the coefficients pk are positive and add to one. The interpretation is that ρmixed

describes a state belonging to a statistical ensemble, with probability pk of being ψk.

The distinction between separable and entangled states can be generalized. The state
of a system composed of two subsystems A and B is separable if its density matrix ρ
can be written as:

ρ =
∑

pk ρ
k
1 ⊗ ρk2, (1.5)

where ρkA and ρkB are density matrices for A and B, and the coefficients are positive and
add to one. The state is entangled when it is not separable.

Several different definition of entanglement are present in the literature, with some-
what different conventions being used in different fields. We go for the simplest, in which
entanglement is synonym for non–separability.

One can find necessary and sufficient conditions that have to be satisfied in order
for a mixed state to be entangled. One test is the Peres–Horodecki criterion [6], which
is equivalent to entanglement if dimHA ≤ 2 and dimHB ≤ 3. Consider the partial
transpose:

ρTB = (1⊗ T ) ρ, (1.6)

obtained by acting with the identity on A and transposing B. The criterion is: if ρTB

has a negative eigenvalue, ρ is entangled.

The EPR “paradox”

Figure 1.1: Schematic
representation of an
EPR experiment.

Einstein, Podolsky, and Rosen, proposed in 1935 [1] an
argument against the quantum mechanical description of
reality that can be summarized as follows:

Consider a pair of spin 1/2 particles produced in a singlet
state like (1.2) that propagate into remote regions of space.
Choose axis â, b̂ and measure the particles’ spin projections
along them. We find correlations:

p(same spin) = sin2
(
θ/2
)
, (1.7)

p(opposite spin) = cos2
(
θ/2
)

(1.8)

with θ being the angle between â and b̂. How can these cor-
relations occur? Quantum mechanics predicts the exper-
imental outcome is random and unpredictable. However,
the apparatus can be set up so the two measurements are
spacelike separated, so no communication at all is possi-
ble. EPR argue the two particles must have agreed on the
outcomes beforehand, storing the result into additional hidden degrees of freedom not
accounted for by quantum mechanics.

Indeed, to quote [7], “No tribunal or detective would believe that, in any circumstance,
perfect correlations could be observed in remote places without being the consequence of
some common characteristics shared by both objects.”
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There are two notions, that EPR took as self–evident, that have to be addressed:

1. Locality: there is no action at a distance, all communications occur at v ≤ c.
2. Realism: given enough knowledge all observables can be predicted ahead of exper-

iment.

These two assumptions together go by the name of local realism, also known as Einstein
locality. The EPR paper actually proved:

Theorem. Quantum mechanics is incompatible with local realism.

Quantum mechanics seems to be valid, with correlations between events that remain
well defined even at spacelike separations. An entangled system is to be considered as a
unique indivisible entity. Since the wavefunction lives and evolves in an abstract Hilbert
space which is not spacetime, there is little point in implementing locality arguments in
spacetime.

This point of view seems in contradiction with special relativity, and yet it isn’t: there
is no way to transmit information, or cause effects of any kind, faster than the speed of
light, no matter all the quantum behavior. Correlations, that indeed are non–local, do
not carry any information through space and can not cause any effect.

The connection between entanglement and spacetime is very deep, and ultimately
comes to the long standing problem of finding a quantum theory of gravity.

Recent developments include the ER = EPR conjecture formulated in 2013 by Madal-
cena and Susskind [8]. The name quotes two 1935 papers, one about wormholes by Ein-
stein and Rosen (ER) [9], and the one about entanglement by Einstein, Podolsky, and
Rosen (EPR) [1]. It is known that general relativity has solutions in which two distant
black holes are connected by a wormhole. The conjecture reinterprets these solutions as
connections between entangled black holes, and suggests similar bridges could also form
for entangled states in general.

Another noteworthy recent contribution is the 2016 work by Cao, Carroll, and Micha-
lakis [10], where they exhamine how a manifold and its geometry emerge just from the
entanglement structure in the Hilbert space. They also argue entanglement perturba-
tions translate into perturbations on the manifold that obey some analog of Einstein’s
field equations, and recover a version of the ER = EPR conjecture relating entanglement
to spatial proximity.

1.1 Bell inequalities

EPR’s arguments and subsequent discussions are not philosophical. Whether nature
behaves quantum–mechanically and all local realistic theories are in error is a question
to be decided by experiment.

If local realism holds, numerical results can be derived about correlations between
measurements carried on separated systems: if two systems can only exchange informa-
tion classically, we expect an upper bound on how correlated they can be. Tests are
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usually cast in the form:
CA,B ≤ constant, (1.9)

where C measures correlation between the supposedly non-interacting subsystems A and
B. These tests will be particularly interesting in regions of parameter space where they
disagree with quantum mechanics.

A test of the form (1.9) was first proposed by Bell in 1964 [2], and many more have
been suggested in the literature since, see also the review [7]. All such inequalities are
referred to as Bell inequalities, and experimental tests as EPR tests.

Remark. Bell inequalities are completely model–independent: it does not matter if
the underlying theory is classical mechanics, a modified version of quantum mechanics,
such as QM with the addition of hidden variables, or some exotic counterpart. As long
as local realism holds, the inequalities hold.

There is an hierarchy:

Violation of
Bell inequalities

=⇒ Entanglement =⇒ Correlations, (1.10)

where the contrary implication is not true in general, not all correlations come from
entanglement and not all entangled states violate a Bell inequality.

CHSH inequality

Clauser, Horne, Shimony, and Holt in 1969 [11] proposed an inequality, now known
as the CHSH inequality, that is particularly convenient and versatile for experiments.
Their argument is as follows:

We measure two quantities a, b of system A and B respectively, whose possible values
are ±1. Under local realism, the outcome of a is a function of the experimental setup
and of internal variables λA of the first system; similarly the outcome of b will depend
on the experimental setup and on some λB proper of the second system. Consider the
expectation value:

〈ab〉 =

∫
a(λA) b(λB) ρ(λA, λB)dλA dλB, (1.11)

where ρ is the probability distribution for the internal variables. Now also consider two
different measured quantities a′ and b′ of A and B, giving four expectation values 〈ab〉,
〈a′b〉, 〈ab′〉, and 〈a′b′〉. Consider:

|〈ab〉 − 〈ab′〉| =
∣∣∣∣ ∫ (ab− ab′) ρ dλ

∣∣∣∣ (1.12)

=

∣∣∣∣ ∫ ab(1± a′b′) ρ dλ−
∫
ab′(1± a′b) ρ dλ

∣∣∣∣ (1.13)

≤
∫
|ab| |1± a′b′| ρ dλ+

∫
|ab′| |1± a′b| ρ dλ, (1.14)
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where we used the fact that |
∫

(f + g) | ≤ |
∫
f | + |

∫
g | and |

∫
f | ≤

∫
|f |. Since |ab|

and |ab′| are at most 1, we can further write:

|〈ab〉 − 〈ab′〉| ≤
∫
|1± a′b′| ρ dλ+

∫
|1± a′b| ρ dλ (1.15)

≤
∫

(1± a′b′) ρ dλ+

∫
(1± a′b) ρ dλ (1.16)

≤ 2± (〈a′b′〉+ 〈a′b〉), (1.17)

where the absolute value was dropped since the terms in brackets are not negative. By
choosing the suitable sign in the ± so as to make ±(〈a′b′〉 + 〈a′b〉) = −

∣∣〈a′b〉 + 〈a′b′〉
∣∣,

we reach the famous CHSH inequality:∣∣〈ab〉 − 〈ab′〉∣∣+
∣∣〈a′b〉+ 〈a′b′〉

∣∣ ≤ 2. (1.18)

Quantum mechanics is incompatible with this constraint, with a maximum possible
violation of: ∣∣〈ab〉 − 〈ab′〉∣∣+

∣∣〈a′b〉+ 〈a′b′〉
∣∣ = 2

√
2 > 2. (1.19)

Note the maximum value is 2
√

2 and not the naive expectation of 4, see [12] for a full
proof.

Consider the prototype experiment of Chapter 1, where a pair of spin 1/2 particles
in the singlet state is measured along different axis. Quantum mechanics predicts the
expectation value of the two spins along axis ~a and ~b is given by:

〈ab〉 = 〈↑↓ − ↓↑√
2
|(~σ · ~a)⊗ (~σ ·~b)|↑↓ − ↓↑√

2
〉 , (1.20)

where ~σ = (σ1, σ2, σ3) is a vector of Pauli matrices. A short calculation gives:

〈ab〉 = −~a ·~b. (1.21)

Figure 1.2: Polarizer align-
ment for the prototype EPR
experiment.

In the simplest case where all axis lie in the
same plane, the experimental setup is described by
three angles as in Figure 1.2. One finds:

〈ab〉 = − cosα, (1.22)

〈ab′〉 = − cos γ, (1.23)

〈a′b〉 = − cos(β − α), (1.24)

〈a′b′〉 = − cos(γ − β). (1.25)

So that the CHSH inequality (1.18) becomes:∣∣− cosα+ cos γ
∣∣+
∣∣ cos(β − α) + cos(γ − β)

∣∣ ≤ 2. (1.26)
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This relation is violated in large parts of parameter space, with the maximum value of
2
√

2 reached at:

α =
π

4
, β =

π

2
, γ =

3π

4
, (1.27)

see also Figure 1.3 and Figure 1.4.

Figure 1.3: Regions of α, β, γ parameter
space where the CHSH inequality (1.26) is
violated. The maximally violating points
(π4 ,

π
2 ,

3π
4 ) and ( 3π

4 ,
π
2 ,

π
4 ) are highlighted in

black.

Figure 1.4: Values of the test statistic (1.26)
with the symmetric choice α = β

2 = γ
3 as

a function of α. The classical limit of 2 is
highlighted.

Hardy’s impossibilities

There are many schemes conceptually similar to Bell inequalities. One was intro-
duced by Hardy [13], and aims to test local realism in a different way: one looks for
events forbidden under local realism but allowed by quantum mechanics.

To see how this can be possible, consider a system of two particles which undergo
different measurements a or a′ on the first and b or b′ on the second. Assume each
measurement can only return values ±1, and the following set of rules hold:

1. a′ = +1 and b′ = +1 can be obtained;

2. a′ = +1 and b = +1 is forbidden;

3. a = +1 and b′ = +1 is forbidden;

4. a = −1 and b = −1 is forbidden.

If particles “decide” in advance how to behave under measurement, these rules are
contradictory. In fact, assume the particles decided as in rule 1, so under measurement
of a′ and b′ they will return +1 and +1. By rule 2, a measurement of b will return −1.
By rule 3, a measurement of a will return −1. But then, a measurement of a and b must
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return −1 and −1, which is in contradiction with rule 4. Therefore, no system obeying
local realism can behave like this.

However, quantum mechanics does it! Again using the example of two spin 1/2
particles, denote |↑〉 and |↓〉 the eigenstates of a and b, and |↑′〉 = cos θ |↑〉 + sin θ |↓〉,
|↓′〉 = − sin θ |↑〉+ cos θ |↓〉 the eigenstates of a′ and b′. Consider the state:

ψ = − cos θ |↑↓〉 − cos θ |↓↑〉+ sin θ |↑↑〉 . (1.28)

Rule 1 is satisfied, since 〈ψ| ↑′↑′〉 = cos2 θ sin θ is different from zero. Rules 2, 3, and 4 are
satisfied, since |↑′↑〉, |↑↑′〉, and |↓↓〉 are all orthogonal to ψ. No contradiction emerges.
Experimental observation of a system obeying these four rules confirms its non-classical
nature.

1.2 Experimental tests

Tests of Bell inequalities are theoretically straightforward. However, the kind of
non-classical correlations one is looking for occur in very rare situations, and are hard to
notice experimentally. In fact, there are only two places where they have been observed:
experiments designed for this goal, and quantum computers, that rely precisely on these
effects.

The first violation of a Bell inequality was seen in 1972 by Freedman and Clauser [14]
using photons emitted by the J = 0 → 1 → 0 transition of Calcium. The experimental
apparatus was conceptually similar to the one in our thought experiment in Chapter 1:
a pair of entangled photons is produced by the Calcium atom, the two photons fly apart
and are measured by polarizers that can be rotated at will. The coincidence rate as a
function of the relative angle can be readily interpreted as a measure of non-classical
behavior.

Numerous experimental tests on a variety of physical systems have been performed
since, all showing consistency with quantum mechanics rather than local realism.

We mention two recent experiments. The first one in 2015 [15] used two electrons
produced in a entangled spin state and then physically separated by 1.3 km. The mea-
surement is carried in the usual way with rotating Stern-Gerlach devices. Over around
200 trials a value of 2.42±0.20 was found for the CHSH inequality, violating the classical
limit of 2 by about two standard deviations. Cases involving massive particles are of
particular interest, since generally a massive particle displays more classical properties.

The second experiment [16], also in 2015, used entangled photons rather than elec-
trons. Photons, being massless, are easier to handle. A violation of a Bell inequality
was observed to a significance of about five standard deviations.

Loopholes

Deciding whether or not a given setup truly shows a contradiction with local realism
is a controversial topic. Possible “loopholes” in experimental design might allow classical
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effects to conspire in such a way that a violation to local realism is seen, even though
none is actually present. Loopholes include:

- Fair sampling: detector efficiency in experiments is rarely close to 100%. One has
to assume missed events are similar to recorded ones, and should every event be
included, the result would not change by much. This loophole can be closed with
better detectors, however in many cases high efficiency is physically or practically
impossible, and we just have to assume there is no bias.

- Locality: our current understanding of particle physics suggests the entangled pairs
do not exchange information after they are separated, but communication can not
be ruled out definitely unless measurements are spacelike separated. To close the
loophole, one has to make sure this is the case. It is also interesting to check
whether the correlation changes as one moves from timelike to spacelike separated
measurements.

- Free choice: doing experiments requires making choices. For example, one has to
choose at which angle polarizers are oriented. All choices should be free, in the
sense that they should be independent on the system that is being measured. If
free choice is not ensured, one can introduce hidden classical variables that conspire
with the apparatus and produce the observed correlations. For example, in our
thought experiment of Chapter 1 we might have polarizer orientations set using
random number generators while the particles are in flight.1

Since one can imagine more and more involved hidden effects, some argue [17] that
a truly loophole–free experiment is philosophically impossible. However, it is tempting
to say hidden variables become less and less likely the more convoluted they should be
to match observations. In the end, few people actually take this seriously.

The two recent experiments with photons and electrons that were quoted above [15]
and [16] claim to have closed all reasonable loopholes.

1.3 EPR at high energy

Most EPR experiments involve energies in the eV range, typically visible light pho-
tons or magnetic interactions in solids at millikelvin temperature. High energy physics
is a completely different environment. Data from colliders such as the LHC can be used
to look for entanglement and perform EPR–like experiments at the TeV scale.

Collider experiments present loopholes. Whether or not these loopholes can be closed
in a satisfactory way is a matter of debate, see [18] and [19] for constrasting viewpoints.
In any case, high energy tests are meant to provide a novel way to investigate new
physics, besides producing a strict test of quantum mechanics.

1Then one could claim random number generators are also part of the conspiracy...
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Flavor correlation

One way to perform EPR experiments in particle physics is with flavor correlations,
usually strangeness or bottomness.

In pp̄ collisions K0K̄0 entangled pairs are produced, where strangeness is analogous
to helicity in the two photon system. Kaon pairs are produced in a JPC = 1−− state,
with wavefunction:

|ψ〉 =
|K0K̄0〉 − |K̄0K0〉√

2
(1.29)

=
|KSKL〉 − |KLKS〉√

2
, (1.30)

where K0 = ds̄, K̄0 = sd̄, KS = K0−K̄0
√

2
and KL = K0+K̄0

√
2

. Long (L) and Short (S) kaon

states are convenient to use since their time evolution is simple:

|KS(t)〉 = |KS〉 e−imSt, (1.31)

|KL(t)〉 = |KL〉 e−imLt, (1.32)

where the masses mS and mL differ by ∆m of order 10−6 eV. The complete time
evolution for ψ is thus:

|ψ(ta, tb)〉 =
1√
2

(
|KSKL〉 e−i(mSta+mLtb) − |KLKS〉 e−i(mLta+mStb)

)
, (1.33)

where ta and tb are the two kaon proper times.

The probability to find a like–strangeness state K0K0 or K̄0K̄0 at proper times ta
and tb is given by:

Psame(ta, tb) = | 〈K0K0|ψ(ta, tb)〉 |2 + | 〈K̄0K̄0|ψ(ta, tb)〉 |2 (1.34)

=
1− cos

(
∆m(ta − tb)

)
2

. (1.35)

A similar calculation gives the probability to find an unlike–strangeness state, K0K̄0 or
K̄0K0:

Pdiff(ta, tb) = | 〈K0K̄0|ψ(ta, tb)〉 |2 + | 〈K̄0K0|ψ(ta, tb)〉 |2 (1.36)

=
1 + cos

(
∆m(ta − tb)

)
2

. (1.37)

Had we included the finite kaon lifetime into our model, equations (1.35) and (1.37)
would generalize to equations (3) and (4) of [20], plotted numerically in Figure 1.5.

We see the probability oscillates as a function of ta− tb due to the cosine term, with
a timescale set by ∆m. There is, so to speak, a “rotating polarizer” driven by time
evolution during free propagation, that stops when the kaons interact or decay. These
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Figure 1.5: Probability to find same and different strangeness state in a K0K̄0 pair
as a function of tb, with ta = 0. Dashed: infinite kaon lifetime, equations (1.35) and
(1.37), continuous: actual kaon lifetime, equations (3) and (4) of [20].

are EPR-type correlations, that can be measured in order to prove particles remain
entangled despite their spatial separation.

The CPCLEAR Collaboration at CERN in 1998 [20] was able to perform an exper-
iment using kaons from collisions between 200 MeV antiprotons and a fixed hydrogen
target. Two different measurements are needed for an EPR test. In the first configura-
tion, kaons were made to interact in an absorber material after a nearly equal flight time.
In the second one, kaons would have a flight path difference of about 5 cm, corresponding
to ∼ 1.2 times their oscillation length. Results were inconsistent with a separable (that
is, not entangled) wavefunction and consistent with usual quantum mechanics.

Further analysis [21] revealed many striking analogies between the kaon experiment
and a simple EPR test with entangled photons of opposite helicities. For instance,
strangeness mixing is seen to be equivalent to optical birefringence, and the finite kaon
lifetime is formally analogous to polarization–dependent losses.

Another experimental test came in 2003 from the Belle Collaboration at KEK [22].
This test directly evaluated the CHSH inequality using B0B̄0 pairs from the decay of
a Υ(4S) meson produced in e+e− collisions at 10 GeV. Since entangled B0 B̄0 pairs
undergo flavor oscillation similarly to K0K̄0 pairs, measuring flavor at different decay
times has the same effect as rotating the polarizer angle in photon experiments. Flavor
tagging was performed over about 80 million pairs, with decay time difference ∆t from 0
to 2.6 ps, equivalent to ∼ 1.7 oscillation periods. A clear violation of the CHSH inequality
was observed, with values up to 2.72± 0.17stat ± 0.09sys, the classical limit being 2.

Further measurements [23] from the same Collaboration with a dataset twice as
large allowed evaluation of asymmetry parameters of B0 B̄0 pairs for ∆t up to 20 ps,
again consistent with quantum mechanics and inconsistent with various spontaneous
disentanglement models.

A feasibility study on the detection of the same effect at the LHC has been published
very recently [5].
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Spin correlation

A different approach is to study spin correlations. By choosing a reaction in which the
final state decays electroweakly, we are automatically granted most mechanisms needed
for a EPR experiment:

- It is a general feature of weak decays that spin correlation of the parents produce
angular correlations in the daughters. Information about the original spin state
can be extracted by measuring the final state momenta.

- The experimenters can choose which axis to use to measure angles. This freedom,
it is argued [19], is equivalent to the freedom to choose the polarizer direction, and
thus closes the free choice loophole.

- To rule out communication between the two particles and close the locality loop-
hole, one can test if correlations change for spacelike vs timelike separation between
the two decay events.

The idea that weak decays could be used for EPR experiments has been entertained
for some time, [24, 25]. More recent analysis, such as [19] and [26], concluded observing
violation of a Bell inequality using spin correlations is experimentally doable using the
weak decays ηc → ΛΛ, χc → ΛΛ, and J/ψ → ΛΛ.

It is critical to choose a channel in which a violation can be seen clearly. In fact, some
processes such as J/ψ → ΛΛ̄ do produce an entangled pair, but due to the specific form
of the matrix element are not expected to produce a visible violation. Other particles,
for example the χc and ηc mesons, should give a better signal [19].

The fact that spin correlations are transferred to the momenta of decay products
is not exclusive of electroweak decays, QCD is also sensitive to spin. Entanglement
is expected [27] to be found in strong processes such as ηc → φφ → KKK̄K̄ and
B → φK? → KKK̄π. In fact, the only interaction which has not (yet) been employed
to generate and detect entanglement is gravity.

To conclude this Chapter, we notice that several searches for new physics have covered
angular correlations, although not directly relating them to entanglement. The BELLE
and LHCb Collaborations recently reported [28, 29, 30] angular analysis of various B →
K`` decays where a tension between the Standard Model and observations is reported
at a statistical significance of over 3σ. The tension persisted [31] when new data from
Run 2 of LHC was added to the analysis in 2020, and seems to be consistently seen over
different channels [32]·
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Chapter 2

Physics of tt̄ pairs

The top quark is the heaviest known fundamental particle, and is a natural candidate
for high energy EPR-like tests. This is due to the neat separation in timescales relevant
to top physics. The top production time m−1

t is smaller by two orders of magnitude than
its lifetime Γ−1

t . In turn this is over ten times smaller than the typical QCD hadronization
timescale, Λ−1

QCD, so the top decays before it has a chance to hadronize and behaves like
a free particle. Further, depolarizing effects of QCD would act to decorrelate spin on a
timescale of mt Λ−2

QCD, so any spin correlation present in tt̄ pairs is passed on the decay
products unobscured.

Figure 2.1: Relevant timescales for top physics, in GeV−1.

In this Chapter and in following ones, we will consider events generated using Mad-
Graph5 aMC [33] with the NN23LO1 parton density function [34]. Calculations were
performed at leading order unless differently stated.

2.1 Kinematics

The kinematics of a tt̄ pair is determined by the invariant mass mtt̄ and the produc-
tion angle θ in the center of mass frame, see Figure 2.2. The parameters mtt̄ and θ can
be calculated from the quark momenta pt and pt̄,
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Figure 2.2: Schematic of
a pp collision resulting in
a tt̄ pair, in the CM frame.

m2
tt̄ = (pt + pt̄)

µ(pt + pt̄)µ, (2.1)

cos θ =
pt z
|~pt|

, (2.2)

where the beam axis is taken to be ẑ. In most cases it
is safe to identify θ and π − θ. The transverse momentum
pT of the top quark is given in terms of mtt̄ and θ by:

pT = sin θ

√(mtt̄

2

)2
−m2

t . (2.3)

The antitop also has transverse momentum pT . Note this
quantity is invariant under the ẑ boost from the laboratory to the center of mass frame.
Constant pT lines in mtt̄ − θ space are plotted in Figure 2.3.
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Figure 2.3: Top tranverse momentum as a function of mtt̄ and θ.

Figure 2.4: Helicity basis
{k̂, r̂, n̂}, n̂ is into the page.

Another commonly used quantity is the top velocity
v (or β) in the center of mass frame, related to mtt̄ by:

v =

√
1− (2mt)2

m2
tt̄

. (2.4)

The established technique to measure spin correla-
tions between weakly decaying particles is via the final
momenta of decay products. In order to do this, it is
best to use the so–called helicity basis in the center of
mass frame, given by:

k̂ = top direction, r̂ =
p̂− k̂ cos θ

sin θ
, n̂ = k̂ × r̂, (2.5)
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where p̂ is the beam axis, and θ the production angle. A schematic representation is in
Figure 2.4.

2.2 Spin state

We can group all pp → tt̄ processes with a gg initial state in the category of gluon
fusion, and all processes with a qq̄ initial state in the category of qq̄ annihilation. The rel-
ative strength of these two channels is determined by the proton parton density function,
and is a function of the collision energy.

The matrix element squared for a tt̄ pair production and decay can be written as:

|M(c)|2 =
∑∣∣M(c→ tt̄→ ff̄f f̄bb̄)

∣∣2, c = gg or qq̄, (2.6)

where f and f̄ denote light fermions (`, ν, q), and
∑

stands for average over initial state
color and spin, and sum over tt̄ color. Neglecting interference between production and
decay, which is reasonable given the top quark is relatively long lived with respect to its
mass, we can factorize:

|M|2 = ρk`m̄n̄ Γk` Γ̄m̄n̄. (2.7)

Indices run over the top/antitop quark spin, with barred indices referring to the antipar-
ticle. Top and antitop decay is decoupled from the pair production, and is described by
the decay spin density matrix defined as:

Γk` =M(tk → ff̄ b)M(t` → ff̄ b)?, (2.8)

and similarly for the t̄ part. On the other hand, tt̄ production is described by the
production spin density matrix:

ρk`m̄n̄ =
∑
M(c→ tk t̄m̄)M(c→ t`t̄n̄)?. (2.9)

This is the density matrix for the tt̄ spin system, up to a normalization constant propor-
tional to the total cross section. It implicitly depends on the production channel c = gg
or qq̄.

The most general form for a density matrix in C2 ⊗ C2 space is:

ρ =
1

4

(
1⊗ 1 +Bi σi ⊗ 1 + B̄j 1⊗ σj + Cij σi ⊗ σj

)
, (2.10)

where σ are the Pauli matrices and i, j = 1, 2, 3 label an orthogonal reference frame.
The first factor in the tensor product is the top spin space and the second factor is the
antitop spin space. Using this form for (2.9), expectation values for the top and antitop
spin projections mi and m̄j are given by:

〈mi〉 = Tr
[
ρ σi ⊗ 1

]
= Bi, (2.11)

〈m̄j〉 = Tr
[
ρ 1⊗ σj

]
= B̄j , (2.12)

〈mim̄j〉 = Tr
[
ρ σi ⊗ σj

]
= Cij , (2.13)
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where to avoid factors of two appearing in our formulae we have taken the two values of
m and m̄ to be ±1 and not ±1

2 .

Using equations (2.11)–(2.13) we can give physical meaning to the parameters in ρ:
B and B̄ are the individual top/antitop spin, and C characterizes correlations. These
parameters are not all independent. In the Standard Model,

C = CT , (2.14)

up to small C, P, and CP violating terms, and B = B̄, with:

B = B̄ = 0, (2.15)

up to small P violating terms.

Extensive calculations for B, B̄, and C can be found in [35, 36, 37, 38]. Each of
the fifteen values in (2.10) can be probed by different observables. As explained in the
following, differential cross sections are sensitive to B and B̄ (differential with respect to
the angle of emission of decay products), doubly differential cross sections are sensitive
to C. In a dilepton final state an interesting observable is the angle between the two
leptons, sensitive to Tr[C].

Evidence for tt̄ spin correlations was first observed by the ATLAS experiment at the
LHC in 2012 [39]. The ATLAS and CMS experiments have reported many measurements
of tt̄ spin correlations, using various observables in decay channels containing two charged
leptons or one lepton and one jet, [40, 41, 42, 43, 44, 45]. All measurements so far agree
with Standard Model predictions.

2.3 Observables

Parent

Parent spin

Decay product

θ

Figure 2.5: Schematic rep-
resentation of the decay of a
fermion.

As already noted, it is a general feature of weak de-
cays that the angular distribution of decay products is
correlated with the parent particle’s spin. In the Stan-
dard Model, a weakly decaying fermion has differential
width [36]:

1

Γ

dΓ

d cos θa
=

1 +Baα cos θa
2

, (2.16)

where θa is the angle between the momentum of a
chosen decay product and the a axis, and −1 ≤ Ba ≤ 1
is the expectation value of the original spin along a. All
momenta are evaluated in the parent rest frame.

The parameter α in (2.16) is known as the spin an-
alyzing power and measures how well a given daughter probes the spin of its parent.
Standard Model values of α for different particles are in Table 2.1, and a plot is in Fig-
ure 2.6. The most favorable final state is the one containing a charged lepton, for which
|α| = 1, its maximum possible value.
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Particle α

e+, µ+, τ+ 1.00

d̄, s̄ 0.94

u, c −0.30

b −0.39

Table 2.1: Standard model values of the spin analyzing power

for the t→ X decay, [46] [47]. Values for antiparticles differ by a

sign.
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Figure 2.6: Differential width for different decay products, see equation
(2.16), for a fully polarized ensamble of top quarks, Ba = 1.

The decay of polarized tt̄ pairs into a dilepton final state follows a generalization of
(2.16), and allows reconstruction of the parents’ spin by analyzing angular correlation
in the lepton momenta. The differential cross section for tt̄ → `+`− in the absence of
kinematic cuts is given by [38]:

1

σ

d4σ

dΩ dΩ̄
=

1

16π2

(
1 +B · ˆ̀+ − B̄ · ˆ̀− − ˆ̀+ · C · ˆ̀−

)
, (2.17)

where Ω and Ω̄ are the solid angles of the leptons in their parent top rest frame. Since
the spin measurement involves one lepton and one antilepton, factors of α`+α`− = −1
appear in the formula. Integration of the azimuthal angles gives:

1

σ

d2σ

d cos θa d cos θ̄b
=

1

4

(
1 +Ba cos θa − B̄b cos θ̄b − Cab cos θa cos θ̄b

)
, (2.18)

where θa is the angle between the antilepton momentum and the a-th axis in its parent
top rest frame, and θ̄b is the angle between the lepton momentum and the b-th axis in
its parent antitop rest frame. Relevant reference frames should be reached in a two step

21



process, first boosting to the tt̄ center of mass frame, then to each top with a rotation
free boost.

By changing variables and integrating, the differential cross section with respect to
cos θa cos θ̄b is given by:

1

σ

dσ

d(cos θa cos θ̄b)
=

1

2

(
Cab cos θa cos θ̄b − 1

)
log
∣∣ cos θa cos θ̄b

∣∣. (2.19)

A plot of (2.19) for different values of Cab is in Figure 2.7.
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Figure 2.7: Differential cross section for tt̄→ `+`− with respect to the
variable cos θa cos θ̄b, as in equation (2.19).

Restoring spin analyzing powers, the expectation value is given by:

〈cos θa cos θ̄b〉 =
αᾱ

9
Cab =

αᾱ

9
〈mam̄b〉, (2.20)

where αᾱ = −1 for a dilepton final state.

Remark. All results are derived in the narrow width approximation for top quarks.
Near production threshold and in particular when |mtt̄ − 2mt| ∼ Γt, interference effects
between the initial and final state can become important, in principle distorting the
distributions (2.16) and (2.17). In our analysis we generate events using the full 2 → 6
matrix element that does not assume Γt = 0. Results are found to be in agreement with
the theoretical expectations derived using the narrow width approximation.
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Chapter 3

Entanglement and Bell
inequalities in tt̄ pairs

3.1 Entanglement

A notable difference between entanglement tests for tt̄ pairs and low energy experi-
ments like those quoted in Section 1.2 is that the tt̄ quantum state produced in colliders is
mixed, as the initial state is determined by the parton density function, without external
control.

An entanglement test for tt̄ pairs has been proposed [3] in 2020 using the Peres–
Horodecki criterion, see Chapter 1. The partial transpose of the density matrix (2.10)
is given by:

(1⊗ T )ρ =

1

4

 1 +B3 + B̄3 + C33 B̄1 + C31 + i(B̄2 + C32) B1 + C13 − i(B2 + C23) C11 + C22 + i(C12 − C21)

B̄1 + C31 − i(B̄2 + C32) 1 +B3 − B̄3 − C33 C11 − C22 − i(C12 + C21) B1 − C13 − i(B2 − C23)

B1 + C13 + i(B2 + C23) C11 − C22 + i(C21 + C12) 1−B3 + B̄3 − C33 B̄1 − C31 + i(B̄2 − C32)

C11 + C22 + i(C21 − C12) B1 − C13 + i(B2 − C23) B̄1 − C31 − i(B̄2 − C32) 1−B3 − B̄3 + C33

.
(3.1)

There is no need to lose generality by fixing a specific basis, so we label entries of B, B̄,
and C using generic 1, 2, 3 indices.

By the Peres–Horodecki criterion, this matrix has a negative eigenvalue if and only
if the corresponding spin state is entangled.

Consider the matrix constructed with the first and fourth components of 3.1,

1

4

(
1 +B3 + B̄3 + C33 C11 + C22 + i(C12 − C21)

C11 + C22 + i(C21 − C12) 1−B3 − B̄3 + C33

)
. (3.2)

If this matrix has one negative eigenvalue, then (3.1) has one as well. A sufficient
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condition for entanglement is thus:

det

(
1 +B3 + B̄3 + C33 C11 + C22 + i(C12 − C21)

C11 + C22 + i(C21 − C12) 1−B3 − B̄3 + C33

)
< 0. (3.3)

Explicitly,

− (B3 + B̄3)2 − (C11 + C22)2 − (C21 − C12)2 + (1 + C33)2 < 0. (3.4)

Since −1 ≤ C33 ≤ 1, a sufficient condition is:

− C33 + |C11 + C22| > 1, (3.5)

or equivalently:

−C11 − C22 − C33 > 1 (3.6)

C11 + C22 − C33 > 1 (3.7)

are both sufficient conditions for entanglement. We stress the only condition equivalent
to entanglement is the one based on negative eigenvalues of (3.1), all other conditions
are only sufficient.

3.2 Bell inequalities

In Section 3.1 we argued that tt̄ pairs produced in certain regions of phase space have
their spins entangled, and reviewed a way to experimentally confirm this prediction. A
stronger test is to set up a Bell inequality and look for violations. Such violation would
give a concrete, theory independent confirmation of non-classical behavior.

The CHSH inequality (1.18) can be written as:

|〈mam̄b〉 − 〈mam̄b′〉|+ |〈ma′m̄b〉+ 〈ma′m̄b′〉| ≤ 2, (3.8)

where m and m̄ are t and t̄ spin along the unit vectors a, a′ and b, b′. We take the two
possible values of m and m̄ to be ±1.

An equivalent form of the CHSH inequality is:∣∣〈mam̄b〉 − 〈mam̄b′〉+ 〈ma′m̄b〉+ 〈ma′m̄b′〉
∣∣ ≤ 2. (3.9)

This form seems weaker than (3.8), but is actually equivalent to it. This is seen by noting
one is free to redefine the axis by introducing an extra minus sign that is absorbed inside
absolute values. Contrary to (3.8), inequality (3.9) is readily testable when the density
matrix ρ for the system is available. In the case of two spin 1

2 particles the CHSH
inequality reduces to:

|〈C〉| =
∣∣Tr[C ρ]

∣∣ ≤ 2, (3.10)
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where C is the CHSH operator,

C = (aibj − aib′j + a′ibj + a′ib
′
j)σi ⊗ σj . (3.11)

We denote a, b, a′, b′ the unit vectors describing orientations along which we measure
spin. Recall that the most general density matrix is the one in equation (2.10). We have
the following:

Theorem. The CHSH inequality (3.9) evaluated for a system described by the den-
sity matrix (2.10) reaches a maximum value of:

max
a a′ b b′

∣∣〈mam̄b〉 − 〈mam̄b′〉+ 〈ma′m̄b〉+ 〈ma′m̄b′〉
∣∣ = 2

√
λ+ λ′, (3.12)

where λ and λ′ are the two largest eigenvalues of CTC. The maximal value is obtained
for the following choice of directions:

a = Cd, a′ = Cd′, (3.13)

b = d cosϕ+ d′ sinϕ, b′ = −d cosϕ+ d′ sinϕ, (3.14)

where d and d′ are eigenvectors of CTC of eigenvalues λ, λ′, and tanϕ =
√

λ′

λ .

Proof. (This proof is partially based on arguments in [48], a different proof using
Lagrange multipliers is in [26].) We want to evaluate:

|〈C〉| =
∣∣Tr[C ρ]

∣∣ =
∣∣(aibj − aib′j + a′ibj + a′ib

′
j)Cij

∣∣. (3.15)

Consider the pair of orthogonal and unit norm vectors:

d =
b− b′

2 cosϕ
, d′ =

b+ b′

2 sinϕ
, (3.16)

where cos2 ϕ = 1
2(1− b · b′). We can rewrite:

|〈C〉| = |2 aTCd cosϕ+ 2 a′TCd′ sinϕ|. (3.17)

We now maximize this expression with respect to all the variables. First for ϕ:

max
ϕ
|〈C〉| = 2

√
(aTCd)2 + (a′TCd′)2. (3.18)

Note aTCd = |a||Cd| cos θ where θ is the angle between a and Cd, so to maximize one
takes a in direction Cd, and similarly a′ in direction Cd′:

max
ϕ,a,a′

|〈C〉| = 2
√
|Cd|2 + |Cd′|2. (3.19)

Finally, notice |Cd|2 = dTCTCd. Since the matrix CTC is real and symmetric, it has
orthogonal eigenvectors and positive eigenvalues. We take d and d′ equal to the two
eigenvectors corresponding to the largest eigenvalues:

max
ϕ,a,a′,d,d′

|〈C〉| = 2
√
λ+ λ′. (3.20)

Note this also implies tanϕ =
√

λ′

λ . This completes the proof.
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3.3 Violation of Bell inequalities implies entanglement

We stress a point about the chain of logical implications highlighted in (1.10):

Violation of
Bell inequalities

=⇒ Entanglement =⇒ Correlations. (3.21)

The second logical implication is trivial; as a consistency check, we show the first logical
implication holds in a simple case.

Translating into the language of top spin correlations, both the presence of entangle-
ment and a violation of Bell inequalities are probed with conditions on the Cij matrix.
Assuming the top and antitop polarizations B and B̄ are numerically small compared
to entries of the correlation matrix C, the spin density matrix for the tt̄ system can be
written as:

ρ =
1

4

(
1⊗ 1 + Cij σi ⊗ σj

)
. (3.22)

Further assuming C = CT , as is approximately the case in the Standard Model, the
C matrix can be diagonalized with a rotation and can be taken of the form C =
diag {C1, C2, C3}. Since the density matrix of a system is positive definite, the following
relations about eigenvalues of ρ hold true in general:

C1 + C2 + C3 < 1,

−C1 − C2 + C3 < 1,

−C1 + C2 − C3 < 1,

C1 − C2 − C3 < 1.

(3.23)

A calculation shows the Peres–Horodecki criterion yields:

min
{
C1 − C2 − C3, −C1 + C2 − C3, −C1 − C2 + C3, C1 + C2 + C3

}
< 1, (3.24)

as a necessary and sufficient condition for entanglement. A violation of the CHSH
inequality occurs when the two largest eigenvalues of CTC, that is C2

1 , C2
2 , and C2

3 , sum
to a value greater than 1:

C2
1 + C2

2 + C2
3 −min

{
C2

1 , C
2
2 , C

2
3

}
> 1. (3.25)

Figure 3.1 plots the outcome of the entanglement test (3.24) together with regions where
the CHSH inequality (3.25) is violated. The geometrical structure that emerges is the
first iteration of the famous Sierpinski fractal in three dimensions. By examining the
plot, we are reassured that the logical implication (1.10) holds for the tt̄ system as well.
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Entanglement

CHSH

Figure 3.1: Plot of the entanglement test (3.24) and of regions where
the CHSH inequality (3.25) is violated, assuming B = B̄ = 0 and C =
diag {C1, C2, C3}. Regions where the corresponding density matrix would
not be positive definite are excluded from the plot.

3.4 Bias in eigenvalue estimation.

The result proved in Section 3.2 suggests an indirect experimental test for violations
of Bell inequalities. First, compute the Cab matrix by fitting the observed distribution
of cos θa cos θ̄b, then evaluate the two largest eigenvalues λ, λ′ of CTC. If one finds:

λ+ λ′ > 1, (3.26)

the CHSH inequality is guaranteed to be violated for some choice of measurement axis,
with a maximal violation of 2

√
λ+ λ′.

The λ + λ′ test statistic is challenging to evaluate from data. Random fluctuations
are more likely to drive the eigenvalues of CTC towards +∞ rather than towards −∞,
since eigenvalues of a symmetric real matrix can not be pushed negative. Furthermore,
when selecting the two largest eigenvalues λ and λ′ one is more likely to pick the ones
that fluctuated up rather than the ones that fluctuated down.

The two effects highlighted above produce a considerable bias in the estimated value
of λ + λ′. To see the biasing effect at play, we generate random 3 × 3 matrices of the
form C = 1+∆ where each ∆ij is a gaussian random variable with mean 0 and standard
deviation σ. The eigenvalues of CTC are then computed and plotted in Figure 3.2. A
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bias towards the right is clearly seen. The sum of the two largest eigenvalues is then
plotted in Figure 3.3, we see that the bias towards the right is further increased.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Average of eigenvalues

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

N
um

be
r 

of
 e

nt
ri

es

 = 1σ
 = 0.5σ
 = 0.1σ

Figure 3.2: Average of the three eigenvalues
of CTC for 105 randomly generated C matri-
ces, see text. The true value λavg = 1 found
for σ = 0 is indicated by the dotted line.
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Figure 3.3: Sum of the two largest eigenval-
ues of CTC for 105 randomly generated C ma-
trices, see text. The true value λ + λ′ = 2
found for σ = 0 is indicated by the dotted
line.

The bias effect present in the evaluation of λ+λ′ can hint at a violation of the CHSH
inequality even when none is actually present in the data, or can artificially enhance the
statistical significance of a violation observed. Since this systematic effect is hard to
evaluate in practice, we opt for a different approach. Nevertheless, the numerical value
of 2
√
λ+ λ′ remains an useful guide during the analysis, especially when evaluated using

a large statistical sample for which the bias is not particularly significant.

3.5 Loopholes

When performing an EPR–like experiment several loopholes have to be addressed,
such as the ones highlighted in Section 1.2. As already noted, high energy particle
physics tests are far from being able to close all loopholes.

- The most prominent loophole is that the pp → tt̄ → · · · event happens deep
inside a hadron collider, while the setup for an EPR experiment requires outside
intervention during the correlation measurement, to choose freely (that is, unknown
to the system that is being measured) what to measure. There is no ready fix for
this loophole for high energy physics experiments.

- Only a small fraction of events in collider experiments is actually recorded and
usable for physics. To close the fair sampling loophole, we have to assume the
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events that are recorded are a fair representation of the bulk, and had we used a
perfect detector the result would not have changed. Although there is no way to
test experimentally if a given detector is sampling fairly, since lost events are by
definition unknown, it is certainly believable this is the case for actual experiments
such as particle detectors at the LHC. This assumption goes under the name of
fair sampling hypothesis

- Another loophole that has to be addressed is the so–called locality loophole. It
could be the case that the tt̄ system exchanges classical information at v ≤ c
through hidden particles, and the spin correlations we see are not the outcome of
a quantum effect. To address this problem in a satisfactory manner, one should
only consider events in which the t and t̄ decays are spacelike separated. There is
no feasible experimental way to make this distinction on a event-by-event basis,
only a statistical argument can be made.

In the center of mass frame, top quarks are emitted back to back with velocity β
given by (2.4) as a function of mtt̄. After a brief (∼ Γ−1

t ) flight, both particles
decay and eventually stable daughters are emitted carrying information about the
original spin state. The condition for spacelike separation of the t and t̄ decays
can be cast in the form: ∣∣∣∣ t1 − t2t1 + t2

∣∣∣∣ < v, (3.27)

where v is the velocity of both particles. We denote t1 and t2 the top and antitop
lifetimes, that follow the exponential distribution:

f(t; γ) = γΓ e−γΓt, (3.28)

where Γ ≡ Γt = 1.2 GeV is the top width and γ = 1/
√

1− v2 is the Lorentz factor
for the two tops.

500 1000 1500 2000
mtt (GeV)

20

40

60

80

100

Spacelike probability, %

Figure 3.4: Fraction of t and t̄ decays that are spacelike separated,
for tt̄ pairs with a given mtt̄.

29



In Figure 3.4 we plot a Monte Carlo evaluation of the probability of spacelike
separated decays as a function of mtt̄. More than half of tt̄ pairs decay spacelike–
separated for mtt̄ > 400 GeV, the fraction rises to 90% for mtt̄ > 800 GeV and to
98% for mtt̄ > 1700 GeV.

To close the locality loophole in a satisfactory manner, an EPR experiment should
only focus on the high–mtt̄ region. Luckily, as we will see, violations of Bell in-
equalities are expected for mtt̄ of order TeV.
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Chapter 4

Parton–level analysis

In order to investigate tt̄ spin correlations we consider the process in which a tt̄ pair
is produced in s channel and subsequently decays in a dilepton final state:

p p→ tt̄→ b b̄ `+ `− ν ν̄, (4.1)

At the TeV scale the cross section for the 2→ 6 process p p→ b b̄ `+ `− ν ν̄ is dominated
by the five diagrams of Figure 4.1. Although diagrams (c) and (d) are numerically
subleading, they are known to produce interference terms and should not be neglected
[49, 50].

Figure 4.2 plots the cross section for p p → b b̄ `+ `− ν ν̄ as a function of center of
mass energy. A large fraction of events feature the production of a tt̄ pair in s channel.
The dominant production channel is qq̄ annihilation for

√
s . 2 TeV and gluon fusion

for higher energy.

4.1 Event generation

We generate processes of the form 2→ 6:

pp→ `− `+ ν ν̄ b b̄, (4.2)

where ` = e, µ, taken to be both in same and different flavor combinations: e+e−, e+µ−,
µ+e−, and µ+µ−.

Events are generated using MadGraph5 aMC [33]. MadGraph5 aMC@NLO is a self–
contained package providing all the elements necessary for Standard Model (and BSM)
phenomenology, including the automated computation of Leading and Next-to-Leading
Order matrix elements and their matching to parton shower simulations.

We generate events at Leading Order in all coupling constants, where the general
strategy is to integrate a cross section produced from tree–level diagrams and obtain a
set of unweighted events from it. The computation consists of two steps, generation and
running. In the generation phase, MadGraph constructs the cross section relevant to
the process given as input. In our case, the relevant command is:
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Figure 4.1: Dominant diagrams for b b̄ `+ `− ν ν̄ production in pp collisions. Diagrams
related by mirroring or taking the charge conjugate are identified and only one is drawn.

generate p p > l− l+ vl vl∼ b b∼

This computes the amplitude for the process in 4.2 within the Standard Model. The
leading–order matrix element consists of over 3000 diagrams, the numerically leading
ones being those in Figure 4.1. Top quarks and W bosons appearing as intermediate
states are not put on shell during event generation, so interference effects are fully taken
into consideration. We use the following numerical values for input parameters related
to top physics:

mt = 173 GeV, Γt = 1.49 GeV, mZ = 91.2 GeV, GF = 1.166 · 10−5 GeV−2. (4.3)

All particles are assumed to be massless and stable except for t and b quarks, elec-
troweak and Higgs bosons, and the τ lepton. No kinematic cuts are imposed during
event generation, except for a lower limit on the invariant mass of same flavor `+`−

pairs:
m`+`− > 5 GeV, (4.4)

needed to keep the process γ → `+`− infrared safe (leptons are taken to be massless).

During the running stage, MadGraph integrates the cross section generated previ-
ously and produces a given number of unweighted events. The proton–proton initial
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Figure 4.2: Total leading order cross section for p p→ `+ `− ν ν̄ as a function of pp center
of mass energy, together with relative contributions from diagrams with a gg and qq̄ initial
state. Values refer to a given flavor final state, e.g. `+ = e+, `− = µ−.

state includes gluons, and u, d, c, s quarks and antiquarks. Partons are weighted ac-
cording to a given parton density function. We use the NN23LO1 [34] parton density
function at leading order.

We generate events in runs consisting of 105 events each. Each run requires a few
hours of CPU time on a typical machine, and produces about 70 MB of output in the
form of a ROOT TTree. Our final dataset consists of 600 runs, 300 with one electron
and one muon, 150 with two electrons, and 150 with two muons. Computations were
carried on the CERN batch system.

4.2 Cross section and number of events

The total cross section for pp → tt̄ has been evaluated at NNLO for
√
s = 7 and

14 TeV [51]. The cross section has a strong dependence on the center of mass energy.
During Run 2 of the LHC protons were collided with

√
s = 13 TeV, for which [50]:

σ = 832 +20
−29 ± 35 pb, (4.5)

where the fist error is theoretical and the second is for the PDF and αs. These results
assume mt = 172.5 GeV, accounting for the current experimental uncertainty in mt

introduces an additional uncertainty in σ of order ±20 pb. Recent measurements [52]
are in agreement with the theoretical prediction,

σexp = 826± 4 (stat)± 12 (syst)± 16 (lumi)± 2 (beam) pb. (4.6)

The differential cross section as a function of the pair kinematic variables mtt̄ and θ
is plotted in Figure 4.3.

The ratio between gluon fusion and qq̄ annihilation is shown in the two plots of
Figure 4.4, differential in mtt̄ − θ and in mtt̄ and the center of mass rapidity ycm.
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Figure 4.3: Differential cross section dσ
dmtt̄ dθ

in pb
GeV rad for pp→ tt̄ at

√
s = 13 TeV

at Leading Order. Right: gg → tt̄. Left: qq̄ → tt̄ for q = u, d, c, s. Plots use data
from 1300 fb−1 of simulated luminosity.

The t→ b ` ν branching ratio is 11.1% for ` = e, µ [53]. This implies a cross section
of:

σtt̄→2` = σ (2 · 11.1 %)2 = 41 pb (4.7)

for a dilepton final state.

We only consider physical background, consisting of events with a `− `+ ν ν̄ b b̄ final
state without an intermediate tt̄ pair1, or with an intermediate tt̄ pair that does not
decay emitting two prompt light leptons. Further sources of background in the different
flavor channel include tt̄ V events, diboson events, and misidentification of leptons. These
backgrounds are known to amount to a few percent of the total [50] and are neglected in
this analysis. The same flavor channel is also contaminated from Z + jets events, whose
number, after cuts, is at the percent level, comparable with other backgrounds already
quoted [45].

The ratio between the signal cross section σtt̄→2` and the total cross section for (4.2) is
evaluated using MadGraph at Leading Order, and is found to be σtt̄→2`/σpp→2` = 0.895.
Assuming this ratio is stable when including higher order corrections, the NNLO total
cross section for (4.2) is approximately:

σpp→2` =
σtt̄→2`

0.895
= 46 pb. (4.8)

1An event is tagged by MadGraph as containing an s channel top quark if the invariant mass of a
b ` ν system is within 15 Γt of mt.
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Figure 4.4: Ratio between gluon fusion and total cross section for pp → tt̄ at√
s = 13 TeV at Leading Order. Right: as a function of mtt̄ and θ, Left: as a

function of mtt̄ and the absolute value of the center of mass rapidity. Plots use
data from 1300 fb−1 of simulated luminosity.

Our general strategy is to generate events at Leading Order, reweighting the number of
events accounting for the NNLO value for the cross section.

We generate 60 million events of the form pp → `− `+ ν ν̄ b b̄ at Leading Order.
Considering the NNLO cross section, this is equivalent to an integrated luminosity of
∼ 1300 fb−1.

For comparison, after Run 2 (2015 - 2018) of the LHC the total luminosity recorded
by the ATLAS Detector is [54]:

LRun 2 = 139± 2 fb−1. (4.9)

After the second Long Shutdown (2019 - 2021), the upcoming Run 3 (2022 - 2024) of
the LHC should deliver 300 fb−1 of integrated luminosity, for a Run 2 + Run 3 total of
450 fb−1 . After 2027, the High Luminosity LHC upgrade should increase the luminosity
available to experiments by a factor of ∼10, achieving an integrated luminosity of order
4000 fb −1 over a ten year period.

The approximate event yield for the process pp→ `− `+ ν ν̄ b b̄ combining Run 2 and
Run 3 of the LHC is:

NRun 2 + Run 3 ≈ 20 000 000 events (4.10)

In the following we will run the analysis over 20 million events.

4.3 General results

The smallest eigenvalue of (3.1), a marker of entanglement due to the Peres–Horodecki
criterion, is evaluated bin by bin in tt̄ phase space in the top plot of Figure 4.5.
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The generic structure of entanglement in tt̄ phase space seems to be sensitive to the
top transverse momentum, see Figure 2.3, with the middle transition region occurring
around pT = mt.

The test statistic 2
√
λ+ λ′, equal to the maximal value in the CHSH inequality, is

also evaluated in tt̄ phase space, and results are in the bottom plot of Figure 4.5.

Authors of [4] in 2021 concluded the null hypothesis λ + λ′ ≤ 1 can be excluded to
98% CL using existing data from Run 2 of the LHC and to 99.99% CL after the next
high luminosity run. The systematic effect highlighted in Section 3.4 might imply the
statistical significance of this result has been overestimated.
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Figure 4.5: Markers of entanglement and of violation of Bell inequalities in tt̄ phase space.
Top: smallest eigenvalue of (3.1), a negative value is equivalent to entanglement. Bottom:
maximum value in the CHSH inequality using (4.11). Plots use 1300 fb−1 of simulated
luminosity, for which statistical uncertainty is negligible.
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4.4 Data analysis procedure

The left hand side of the CHSH inequality, maximized over all possible choices of
axis a, a′, b, b′ has been shown to be equal to:

max
a a′ b b′

∣∣〈mam̄b〉 − 〈mam̄b′〉+ 〈ma′m̄b〉+ 〈ma′m̄b′〉
∣∣ = 2

√
λ+ λ′. (4.11)

where λ and λ′ are the two largest eigenvalues of CTC.

In order to obtain estimators for the left hand side of the CHSH inequality and for
other observables of interest such as the entanglement markers (3.6) and (3.7) we proceed
as follows.

We first evaluate from a large number of simulated events the optimal axis a, a′, b,
b′ along which to measure spin using equations (3.13) and (3.14) in every phase space
region of interest. Once the measurement axis have been fixed, the reconstructed C
matrix is used to evaluate the expectation value of the CHSH operator (3.11):

〈C〉 = (aibj − aib′j + a′ibj + a′ib
′
j)Cij . (4.12)

The statistical significance of a violation of |〈C〉| < 2 is then straightforward to calculate
using standard statistical data analysis tools.

Entries of the C matrix are evaluated using tt̄→ `+`− events as described in Section
2.3, either by fitting the distribution (2.19) or using the relation between expectation
values found in (2.20). In Figure 4.6 we show the distribution at parton level of the
nine observables cos θi cos θ̄j used as estimators for the entries Cij . The distributions are
accurately described by the theoretical prediction in (2.19), and values of Cij extracted
using the two different estimators (a fit of (2.19) or (2.20)) agree within their statistical
uncertainties.

Since the C matrix is approximately symmetric, its entries are highly correlated. The
technique usually followed by experimental collaborations is to work with the new set of
variables Cii, Cij +Cji, and Cij −Cji. As it turns out, we will only need entries on the
diagonal, so for our purposes it is enough to see that C11, C22 and C33 have negligible
correlation. The physics behind this argument is clear, as Cii and Cjj for i 6= j relate to
the spin projection along perpendicular axis. However, since the same dataset is used to
evaluate all entries it might be the case that spurious effects appear. Figure 4.7 shows
scatter plots between pairs of entries on the diagonal of C. The correlation coefficient
between Cii and Cjj never exceeds 0.01 for i 6= j in helicity basis. Profile histograms
of the scatter plots in Figure 4.7 are shown in Figure 4.8. Correlations are seen at the
percent level. In the following, we will assume correlations are subleading with respect
to statistical uncertainties in each entry.

38



1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

kθ cos kθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) kθ
 c

os
 

kθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.324 ijC

 0.000± (Avg.) = -0.323 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

rθ cos kθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) rθ
 c

os
 

kθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.000 ijC

 0.000± (Avg.) = -0.000 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

nθ cos kθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) nθ
 c

os
 

kθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = 0.001 ijC

 0.000± (Avg.) = 0.001 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

kθ cos rθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) kθ
 c

os
 

rθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = 0.000 ijC

 0.000± (Avg.) = 0.000 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

rθ cos rθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) rθ
 c

os
 

rθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.008 ijC

 0.000± (Avg.) = -0.008 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

nθ cos rθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) nθ
 c

os
 

rθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.002 ijC

 0.000± (Avg.) = -0.002 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

kθ cos nθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) kθ
 c

os
 

nθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = 0.001 ijC

 0.000± (Avg.) = 0.001 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

rθ cos nθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) rθ
 c

os
 

nθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.001 ijC

 0.000± (Avg.) = -0.001 ijC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

nθ cos nθcos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

) nθ
 c

os
 

nθ
d(

co
s 

σd
 σ1

 0.000± (Fit)  = -0.319 ijC

 0.000± (Avg.) = -0.319 ijC

Figure 4.6: Parton level distribution of cos θi cos θ̄j in helicity basis, i, j = k, r, n. The
value of Cij is extracted by fitting the function in (2.19) and using the expectation value
relation (2.20). Plots use 1300 fb−1 of simulated luminosity and cover the whole tt̄ phase
space without kinematic cuts. Statistical uncertainty is always beyond the quoted digits.
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Figure 4.7: Scatter plots between cos θi cos θ̄i and cos θj cos θ̄j , estimators for Cii and Cjj
respectively, in helicity basis. Top: i = k and j = r, bottom left: i = k and j = n, bottom
right: i = r and j = n. Plots use 1300 fb−1 of simulated luminosity.
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Figure 4.8: Profile along the x axis of scatter plots in Figure 4.7, evaluating correlations
between Cii and Cjj for i 6= j.
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Chapter 5

Results at parton–level

In the previous Chapter we argued there are two tt̄ phase space region where en-
tanglement is expected. We now investigate each one in detail looking for entanglement
and a violation of Bell inequalities.

5.1 First region: large mtt̄ and θ

The first region of tt̄ phase space to consider in detail is the one at mtt̄ � mt and
θ ∼ π

2 . In this regime both gluon fusion and qq̄ annihilation produce an entangled spin
1 state,

|ψ〉 =
|↑n̂↓n̂〉+ |↓n̂↑n̂〉√

2
. (5.1)

This state is a consequence of conservation of angular momentum in the massless top
limit, regardless of production channel. The initial state has helicity along the beam
axis, while a final state of two massless top quarks has spin aligned with their motion.
If the angle of emission is θ = π

2 , a state like (5.1) must be reached.

Entanglement

An entanglement test in this region is given by inequality (3.7) in helicity basis,

Ckk + Crr − Cnn > 1, (5.2)

sensitive to the spin 1 state (5.1). A plot of this entanglement witness is in Figure 5.1.

Bell inequalities

We expect a measurable violation of Bell inequalities. The value of 2
√
λ+ λ′ in this

region is in excess of 2.6, close to the theoretical bound of 2
√

2 that signals perfect
quantum correlation.
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Figure 5.1: Entanglement witness (5.2), a value > 1 implies en-
tanglement. Plot uses 1300 fb−1 of simulated luminosity, for which
statistical uncertainty is negligible.

A CHSH experiment in this regime is equivalent to an experiment with two entangled
photons, meaning the the optimal choice of axis should be the one found in (1.27):

a = (0, 1, 0), a′ = (0, 0, 1), (5.3)

b = (0, − 1√
2
,

1√
2

), b′ = (0,
1√
2
,

1√
2

), (5.4)

where vectors are expressed in the helicity basis. We can confirm this prediction using
generated events and equations (3.13) and (3.14). The optimal choice of axis in the
region mtt̄ > 900 GeV and θ > 1.3 is numerically found to be:

a = (0.009, 0.999, −0.036), a′ = (0.007, 0.036, 0.999), (5.5)

b = (−0.013, −0.781, 0.625), b′ = (0.030, 0.749, 0.661), (5.6)

thus confirming our argument. Choosing (5.3) and (5.4) as the measuring axis, the
CHSH inequality can be cast in a particularly simple form:∣∣− Crr + Cnn

∣∣ ≤ √2. (5.7)

A plot of the value of (5.7) in tt̄ phase space is in Figure 5.2. Spin correlations at high
mtt̄ and θ are found in the r̂ n̂ plane of the helicity basis. A pictorial representation of
the tt̄ pair with the r̂ n̂ plane superimposed is in Figure 5.3, notice the striking similarity
of this setup with usual EPR experiments in quantum optics.
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Figure 5.2: Value in the CHSH inequality (5.7), a value >
√

2 or
< −
√

2 is a violation. Plot uses 1300 fb−1 of simulated luminosity,
for which statistical uncertainty is negligible.

Figure 5.3: Schematic drawing of a pp → tt̄ event, together
with the r̂ n̂ plane in helicity basis where spin correlations are
found at high mtt̄ and θ.
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5.2 Second region: tt̄ threshold

The second region of interest in tt̄ phase space is at threshold, mtt̄ ∼ 2mt. Gluon
fusion produces entangled spin 0 pairs at threshold,

|ψgg〉 =
|↑n̂↓n̂〉 − |↓n̂↑n̂〉√

2
, (5.8)

but in the same regime qq̄ annihilation produces pairs in a separable state [3]. For
instance, at θ = 0 the spin density matrix for qq̄ → tt̄ is:

ρqq̄ =
|↑p̂↑p̂〉 〈↑p̂↑p̂|+ |↓p̂↓p̂〉 〈↓p̂↓p̂|

2
. (5.9)

The relative strength of the two production channels depends on collision energy, see
Figure 4.2, and on kinematics, see Figure 4.4.

Entanglement

It is known [3] that tt̄ pairs produced at threshold are entangled, and that inequality
(3.6),

−Ckk − Crr − Cnn > 1, (5.10)

is sensitive to it. A plot of the entanglement witness in (5.10) is in Figure 5.4.

An interesting observable in a dilepton decay is the angle ϕ between leptons, with
both momenta evaluated in their parent top rest frame:

cosϕ =
∑
a

cos θa cos θ̄a. (5.11)

Integration of (2.17) after a change of variables shows the cross section differential in
cosϕ is sensitive to Tr[C]:

1

σ

dσ

d cosϕ
=

1−D cosϕ

2
, D =

Tr[C]

3
, (5.12)

where the minus sign comes from αᾱ = −1 in a dilepton final state. The expectation
value is given by:

〈cosϕ〉 = −D
3

= −
∑

a〈mam̄a〉
9

. (5.13)

Inequality (5.10) can be directly tested using data from hadron colliders. Since D =
TrC/3 is measured using (5.12) from tt̄→ `+`− decays, a sufficient condition for entan-
glement is:

D < −1

3
. (5.14)
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Figure 5.4: Entanglement witness (5.10), a value > 1 implies en-
tanglement. Plot uses 1300 fb−1 of simulated luminosity, for which
statistical uncertainty is negligible.

The parameter D has been measured by the CMS Collaboration in 2019 [45] (that uses
a different sign convention):

Dexp = −0.237± 0.011, (5.15)

without any cuts on tt̄ phase space.

It is known that tt̄ pairs produced at threshold are entangled, and it is expected that
entanglement will be visible using (5.14) as a test. According to [3], restricting attention
to tt̄ pairs with mtt̄ < 450 GeV leaves about 104 usable events in the LHC Run 2 dataset,
and is enough to rule out the null hypothesis D > −1

3 with a large statistical significance
if D can be estimated to a-few-% level accuracy. Authors note such a precision is the
measurement of D is likely to be achievable.

Bell inequalities

Observing a violation of Bell inequalities at threshold is not straightforward. Fist
of all, as already noted in Section 3.5, only . 50% of tt̄ events in this region decay
spacelike separated. This observation alone can already be a show–stopper for an EPR–
like experiment.

For the sake of completeness, a detailed search was carried in the range 345 GeV ≤
mtt̄ ≤ 505 GeV, that resulted in the plot in Figure 5.5. We observe an increase in the
value of 2

√
λ+ λ′ approaching threshold, with a maximum value near 2.
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Figure 5.5: Detail near threshold of the bottom plot of Figure 4.5.

The tt̄ pair spin state is dependent on its production channel, that at leading order
can be gg → tt̄ or qq̄ → tt̄. To highlight the differences, in Figure 5.6 we evaluate
the 2

√
λ+ λ′ test statistic from gg events only. A violation of the CHSH inequality is

seen, and comparison with Figure 5.5 shows qq̄ events act as an unwanted background.
It is worth noting that, even with perfect gg/qq̄ selection, this analysis would require
reconstruction of mtt̄ with ∼ 10 GeV accuracy, which is very challenging for existing
experiments.
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Figure 5.6: Replica of Figure 5.5 only considering events coming
from a gg initial state.
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Top spin correlation analysis in general, and our Bell inequality study in particular,
would enjoy great benefit from the ability to discriminate the tt̄ pair production channel.
Some feasibility studies exist in the literature [55].

In proton proton collisions at
√
s = 13 TeV, the fraction of gg to qq̄ events is approx-

imately 7 : 1 at tt̄ production threshold.

A simple handle to enhance gg events with respect to qq̄ in pp collisions is the center
of mass rapidity ycm. Quarks in a proton are on average faster than antiquarks, so a qq̄
collision is likely to feature partons with uneven velocities, thus resulting in a moving
center of mass. Since the gluon parton density function is symmetric in both colliding
protons, one expects an enhancement in gg events near ycm = 0. A plot of the ratio
σgg/(σgg + σqq̄) in pp → tt̄ events as a function of the center of mass rapidity and mtt̄

is in Figure 4.4, the discussed enhancement is indeed seen at ycm ∼ 0. Unfortunately,
the test statistic 2

√
λ+ λ′ does not improve substantially even with aggressive cuts, so

a more involved method is needed.

Assuming one is able to identify the tt̄ initial state and produce a pure gg → tt̄
sample, the experiment becomes equivalent to the prototype of Chapter 1, with two
entangled spin 1/2 particles in a spin 0 state. The optimal choice of axis a, a′, b, b′ along
which to measure spin is similar to the one in (1.27):

a = (1, 0, 0), a′ = (0, 0, −1), (5.16)

b = (− 1√
2
, 0,

1√
2

), b′ = (
1√
2
, 0,

1√
2

). (5.17)

Of course a spin 0 state is rotation invariant, so any rigid rotation of (5.16) and (5.17) is
equally valid. The optimal choice of axis in the region mtt̄ < 360 GeV only using gg → tt̄
events is numerically found to be:

a = (1.000, 0.007, 0.009), a′ = (0.008, 0.021, −1.000), (5.18)

b = (−0.725, −0.015, 0.689), b′ = (0.712, −0.010, 0.702), (5.19)

where vectors are expressed in the helicity basis. Choosing (5.16) and (5.17) as the
measuring axis, the CHSH inequality can be written as:∣∣Ckk + Cnn

∣∣ ≤ √2. (5.20)

A plot of the value of (5.20) is in Figure 5.7. Spin correlations at threshold are
mostly found in the helicity basis k̂ n̂ plane. A drawing of the tt̄ pair production event
with the k̂ n̂ plane superimposed is in Figure 5.8.
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Figure 5.7: Value in the CHSH inequality (5.20), a value >
√

2 or
< −
√

2 is a violation. Plot uses 1300 fb−1 of simulated luminosity,
for which statistical uncertainty is negligible.

Figure 5.8: Schematic drawing of a pp → tt̄ event, with the
k̂ n̂ plane in helicity basis where spin correlations are found at
threshold.
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Chapter 6

Reconstruction–level analysis

6.1 Event generation

We perform the data analysis described in Section 4.4 using 1300 fb−1 of

pp→ `− `+ ν ν̄ b b̄, (6.1)

events, generated at the parton level, then showered, and reconstructed inside a general
purpose particle detector.

Events were generated using MadGraph5 aMC at leading order as described in Sec-
tion 4.1. Hard processes coming from event generators such as MadGraph have to be
hadronized and showered, it is only after this step that realistic events are available, as
they could be observed in a detector. Showers are almost completely nonperturbative,
and require extensive modelling and tuning based in part or in full on parametrisations
of experimental data.

Our tool of choice for showering is Pythia 8 [56]. Pythia is a program for the gener-
ation of high energy collision events, including parton showers, fragmentation, and the
decay of unstable particles. MadGraph is capable of automatically steering to Pythia
the showering of previously generated hard events. The specifics of parton showering
and hadronization as modeled by Pythia are technical, and can be found in [56] and in
references therein.

Events are reconstructed inside the ATLAS detector of the Large Hadron Collider
[57]. ATLAS is the largest general–purpose particle detector at the LHC. It consists
of an inner tracking detector, electromagnetic and hadronic calorimeters, and a muon
spectrometer. The inner detector is immersed in a 2 T magnetic field and provides
charged particle tracking for |η| < 2.5. The calorimeter system covers the range |η| < 4.9,
hadronic calorimetry is segmented into barrel structures within |η| < 1.7. The muon
spectrometer comprises high-precision tracking chambers measuring the deflection of
muons in a magnetic field generated by superconducting toroid magnets. The field
integral of the toroids ranges from 2 to 6 T m across the detector. Interesting events are
selected by the first-level trigger system implemented in custom hardware, followed by
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selections made by algorithms implemented in software in the high–level trigger (HLT).
Events accepted by the HLT are subsequently reconstructed offline.

The ATLAS detector is simulated within the Delphes framework [58]. Delphes per-
forms a multipurpose detector response simulation, that we tune to match the character-
istics of the ATLAS experiment. The simulation includes a tracking system embedded
into a magnetic field, calorimeters, and a muon system. The framework is interfaced to
Pythia and outputs observables including leptons, missing transverse energy, and jets.

Leptons have some pT and η–dependent probability of being reconstructed, and their
final momentum is obtained as a Gaussian smearing of the true value. The missing trans-
verse energy is assessed from the transverse component of the total energy deposited in
the detector. Jets are the result of clustering the particle-flow tracks; within Delphes,
the user has the freedom to choose the jet clustering algorithm. In our analysis hadron
jets are handled by the FastJet package using the anti-kt algorithm [59] [60]. The jet
b–tagging algorithm can be specified. The performance of our simulated b–tagging al-
gorithm follows the one in [61] expected from the ATLAS detector during Run 2 of the
LHC.

The final Delphes output is stored in a ROOT TTree. On a typical single–core
machine, one run with 105 simulated events requires around one hour to shower and
reconstruct inside the simulated ATLAS detector and occupies ∼150 MB of disk space.

6.2 Event selection

We require exactly two leptons of opposite charge, both with pT > 25 GeV and
|η| < 2.47. Both leptons must pass an isolation requirement, the isolation of particle P
is defined by:

I(P ) =

∑
pT (i)

pT (P )
, (6.2)

where the sum is over all particles that lie in a cone of radius ∆R =
√

(∆η)2 + (∆φ)2

around the particle P , not counting P . Values I ≈ 0 indicate the particle is isolated.
We take ∆R = 0.5 and require leptons to have I ≤ 0.15.

In the e+e− and µ+µ− channels, Z + jets processes are suppressed by requiring
pmiss
T > 40GeV and 20 GeV < m`+`− < 76 GeV or m`+`− > 106 GeV.

We require the presence of two jets with pT > 25 GeV and |η| < 2.5. At least one jet
has to be b–tagged. If only one jet has been b–tagged, we assume the second b-jet is the
one not b–tagged with largest pT .

6.3 Neutrino reconstruction

The correlations we want to measure require careful reconstruction of the tt̄ pair.
We employ an algorithm partially based on the one used by the CMS Collaboration in
recent top spin correlation papers [44, 45].
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Charged leptons are reconstructed directly, and b quarks are reconstructed from
the b-tagged jets. Neutrinos are then reconstructed solving for the kinematics of a
tt̄→ `− `+ ν ν̄ b b̄ event, 

pmiss
x = px ν + px ν̄

pmiss
y = py ν + py ν̄

p2
ν = 0

p2
ν̄ = 0

(p`+ + pν)2 = m2
W+

(p`− + pν̄)2 = m2
W−

(p`+ + pν + pb)
2 = m2

t

(p`− + pν̄ + pb̄)
2 = m2

t̄ ,

(6.3)

where we have denoted pmiss the missing momenta transverse to the beam, that we take
to be in the z direction.

Before reconstructing the event, the measured pb, pb̄, and pmiss are smeared randomly
according to the simulated distribution of reconstructed values around true values. In
practice, this means a gaussian smearing with σ ∼ 20 GeV in each component of ~pb
and ~pb̄, and in the x and y components of pmiss. Lepton momenta are not smeared
since their reconstruction is very accurate. The W boson masses mW+ and mW− are
smeared according to a Breit–Wigner distribution centered in mW = 80.4 GeV with
width ΓW = 2.1 GeV.
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Figure 6.1: Distribution of the neutrino energy used in the
weighting function (6.4). The distribution is evaluated using
1300 fb−1 of simulated tt̄→ `− `+ ν ν̄ b b̄ events.
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System (6.3) can be solved analytically, see Appendix A. The solution is assigned a
weight:

w = f(Eν), (6.4)

where f(x) indicates the normalized probability distribution of x evaluated at parton
level, a plot is in Figure 6.1. System (6.3) can have multiple solutions, in this case all
solutions are assigned weights and considered in the following.

Several combinations of kinematic variables have been considered for the weighting
function. To avoid introducing bias in our spin correlation analysis, only rotation in-
variant variables such as energy or total momentum were tested. The choice in (6.4)
is the one yielding the most satisfactory result for our purposes. Only one neutrino is
considered, under the rationale that once the first neutrino has been identified, the sec-
ond one is fixed by kinematic constraints. If solutions are not weighted, that is w = 1,
the neutrino and antineutrino energy is systematically overestimated by a significant
amount. This is not a problem if global distributions are evaluated and subsequently
unfolded, however this analysis requires to identify mtt̄ and θ on a event-by-event basis
to decide if a given tt̄ pair does or does not fall into the signal region.

The smearing on b quarks and pmiss is repeated Nsmear = 100 times. There is a
twofold ambiguity in assigning b quarks to b–tagged jets, so reconstruction is performed
twice for each event. The assignment yielding the largest sum of weights over the Nsmear

trials is chosen, and the final pν and pν̄ are calculated as a weighted average. If no valid
solution for the kinematics is ever found during the Nsmear trials, the event is discarded.

6.4 Expected number of events

The combination of cuts described above together with our neutrino reconstruction
algorithm accepts 11% of events at parton level. Signal purity, defined as the fraction
of accepted events that contain a tt̄ pair, is about 92%. Background contamination is
reduced in the final event sample with respect to all events at parton level since non
tt̄ events are less likely to produce valid solutions for the tt̄ decay kinematics. Our
estimation of purity is optimistic since background not coming from a b b̄ `+ `− + Emiss

final state is not included in this analysis.

A summary of our expected event yield with LHC Run 3 luminosity is in Table 6.1.
These numbers are not far from those quoted from the ATLAS and CMS Collaborations
in recent top spin correlation measurements [42, 45]. To assess more accurately the
behavior of our cuts when applied to hard events of the form pp → `− `+ ν ν̄ b b̄, Table
6.2 shows the expected number of events as the cuts described in Section 6.2 are applied
in succession.
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Events at parton level Events reconstructed

All `− `+ pmiss b b̄ 20 000 000 2 276 075

tt̄→ `− `+ ν ν̄ b b̄ 17 892 163 (90%) 2 091 430 (92%)

Background 2 107 837 (10%) 184 645 (8%)

Table 6.1: Approximate event yield from a luminosity of 450 fb−1 at

parton level and after full event reconstruction. The relative fraction of

signal and background is indicated in parenthesis.

Number of events

All events at parton level 20 000 000

Exactly two leptons 7 532 063 (38%)

Leptons of opposite charge 7 527 055 (38%)

Leptons with pT > 25 GeV, |η| < 2.47, and isolated 4 940 210 (25%)

Different flavor / same flavor passing m`+`− and pmiss
T cuts 3 880 033 (20%)

At least two jets 3 532 110 (18%)

At least two jets with pT > 25 GeV, |η| < 2.5 3 139 256 (16%)

At least one jet b–tagged 2 645 234 (13%)

Neutrinos reconstructed successfully 2 276 075 (11%)

Table 6.2: Approximate number of events from a luminosity of 450 fb−1

starting from parton level and applying in order the cuts of Section 6.2.

In parenthesis we denote the relative fraction of events that survives at

each stage.
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Chapter 7

Performance of event
reconstruction

7.1 Reconstruction of kinematics

The performance of our event reconstruction algorithm is summarized in the following
Figures. In Figure 7.1 the reconstructed lepton momenta are compared to their true
value. Figures 7.2, 7.3, and 7.4 show similar plots for bottom quarks, neutrinos, and
top quarks. Reconstruction of the total center of mass momentum pcm and the tt̄ pair
kinematical variables mtt̄ and θ is in Figure 7.5.

Observables cos θi and cos θ̄j , representing the lepton direction evaluated in their
parent top quark reference frame are compared to their true values in Figure 7.6. Figure
7.7 compares true and reconstructed values of cos θi cos θ̄j for i, j = 1, 2, 3 in helicity
basis, used to reconstruct the ij entry of the C matrix.
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Figure 7.1: Comparison between true and reconstructed momenta for leptons. We use
spherical coordinates r, θ, φ with the beam on the z axis. Plots use 1300 fb−1 of simulated
luminosity.
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Figure 7.2: Comparison between true and reconstructed momenta for bottom quarks.
The parton–jet pairing is the one given by the neutrino reconstruction algorithm. We use
spherical coordinates r, θ, φ with the beam on the z axis. Plots use 1300 fb−1 of simulated
luminosity.
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Figure 7.3: Comparison between true and reconstructed momenta for neutrinos. We use
spherical coordinates r, θ, φ with the beam on the z axis. Plots use 1300 fb−1 of simulated
luminosity.
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Figure 7.4: Comparison between true and reconstructed momenta for top quarks. We use
spherical coordinates r, θ, φ with the beam on the z axis. Plots use 1300 fb−1 of simulated
luminosity.
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Figure 7.5: Comparison between true and reconstructed tt̄ pair kinematic variables. Top:
center of mass total momentum. Bottom left: mtt̄, bottom right: θ in the center of mass
frame. Plots use 1300 fb−1 of simulated luminosity.

60



20

40

60

80

100

120

140

160

310×

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Reconstructed

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

T
ru

e
kθcos 

20

40

60

80

100

120

140

310×

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Reconstructed

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

T
ru

e

rθcos 

50

100

150

200

250

300

310×

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Reconstructed

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

T
ru

e

nθcos 

Figure 7.6: Comparison between true and reconstructed lepton direction in the top quark
reference frame in helicity basis. Plots use 1300 fb−1 of simulated luminosity and cover the
whole tt̄ phase space without kinematic cuts.
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Figure 7.7: Comparison between true and reconstructed value of cos θi cos θ̄j in helicity
basis, i, j = k, r, n. Plots use 1300 fb−1 of simulated luminosity and cover the whole tt̄ phase
space without kinematic cuts.
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7.2 Unfolding

The reconstructed distributions of cos θi cos θ̄j are compared to their true values in
Figure 7.8. Various detector effects and biases introduced during event reconstruction
alter the distributions used to estimate entries of the C matrix. These effects have to
be accounted for by unfolding the reconstructed distributions of cos θi cos θ̄j .

Unfolding is the process of inferring the true distribution of a quantity from the
observed one, that is to correct the observed spectrum for distortion and noise. The
algorithm is trained using 2/3 of the generated dataset (≈ 850 fb−1). The analysis is
subsequently run on the remaining 1/3 (≈ 450 fb−1), equivalent to the expected lumi-
nosity available after Run 3 of the LHC.

Training consists of a comparison between true and reconstructed values. This in-
cludes events that were not reconstructed but did contain a tt̄ pair with mtt̄ and θ inside
the signal region of phase space (counted as Miss), and events that were reconstructed
but did not contain a tt̄ pair at all, or did contain one but not in the signal region of
phase space (counted as Fake).

A naive implementation of unfolding likely leads to dramatic numerical instabilities.
Various algorithms exist in the literature, we choose the iterative Bayesian method pro-
posed by D’Agostini [62]. Unfolding was performed with the RooUnfold framework [63].
Distributions are unfolded iteratively for n = 20 times, final distributions are found to
be regular and stable under further iterations of the same method.

7.3 Performance of unfolding

As a benchmark to test unfolding performance, we measure entries of the C matrix
in helicity basis without phase space cuts. In Figure 7.9 we show the distributions of
cos θi cos θ̄j after unfolding, compared to their true values as in Figure 7.8. Numerical
results are in Table 7.1, that also shows a recent measurement of C from the CMS
Collaboration [45]. The performance of unfolding is satisfactory, and all reconstructed
values are made compatible to their true values within statistical uncertainty. Both
estimation methods for Cij , namely the fit of (2.19) and the expectation value relation
(2.20), provide similar results.
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Figure 7.8: Comparison between reconstructed and parton level distribution of cos θi cos θ̄j
in helicity basis, i, j = k, r, n. Plots use 1300 fb−1 of simulated luminosity and cover the
whole tt̄ phase space without kinematic cuts.
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Figure 7.9: Comparison between unfolded and parton level distribution of cos θi cos θ̄j in
helicity basis, i, j = k, r, n. Plots use 1300 fb−1 of simulated luminosity and cover the whole
tt̄ phase space without kinematic cuts.
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Entry True value Reconstructed (Fit) Reconstructed (Avg.) Experiment [45]

Ckk −0.324 −0.322± 0.003 −0.322± 0.002 −0.300± 0.038

Ckr 0.000 −0.008± 0.003 −0.008± 0.002

Ckn 0.001 0.005± 0.002 0.005± 0.002

Crk 0.001 0.000± 0.003 0.000± 0.002

Crr −0.008 −0.009± 0.003 −0.009± 0.002 −0.081± 0.032

Crn −0.002 −0.007± 0.002 −0.007± 0.002

Cnk 0.001 0.004± 0.002 0.004± 0.002

Cnr −0.001 0.004± 0.002 0.004± 0.002

Cnn −0.319 −0.324± 0.002 −0.324± 0.003 −0.329± 0.020

Table 7.1: Results for entries of the C matrix in helicity basis without tt̄ phase space cuts.

True values come from 1300 fb−1 of simulated luminosity at Leading Order. Reconstructed

values follow from our analysis, and are obtained using the expectation value relation

(2.20) and the fit of (2.19). Uncertainty is statistical only and is scaled to a luminosity of

450 fb−1, equivalent to the expected yield of Run 2 + Run 3 of the LHC.

Remark. Ref. [45] redefines the helicity basis according to the sign of cos θ,{
k̂, r̂, n̂

}
→
{
k̂, sign(cos θ) r̂, sign(cos θ) n̂

}
. (7.1)

This different choice makes the coefficients Ckr and Crk different from zero. Entries on
the diagonal are left invariant, and can be compared with our analysis.
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Chapter 8

Results

8.1 Entanglement

In order to measure the presence of entanglement we run the analysis with three
different prescriptions for tt̄ phase space cuts. The figure of merit we try to maximize is
the statistical significance for the observation of entanglement (not the numerical value
of the entanglement markers (5.2) and (5.10), that is essentially meaningless per se).

The first cut prescription, henceforth weak cuts, is to include all regions of phase
space where entanglement is expected at parton level, i.e. bins with a value larger than
1 in Figures 5.1 and 5.4. The second prescription is stronger, henceforth intermediate
cuts, and amounts to only including regions with a value larger than 1.1 in the same
Figures. The third prescription is the strongest, denoted strong cuts, and only considers
bins with a numerical value larger than 1.2.

Our choice of cuts explicitly amounts to:

- Weak cuts.
At high mtt̄ and θ using (5.2), any of the following conditions have to hold:

mtt̄ > 600 GeV ,
2θ

π
> 0.8

mtt̄ > 700 GeV ,
2θ

π
> 0.6

mtt̄ > 900 GeV ,
2θ

π
> 0.5

mtt̄ > 1200 GeV ,
2θ

π
> 0.4.

(8.1)

These cuts cover 4.5% of the total pp→ tt̄ cross section.
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At threshold using (5.10), any of the following:

mtt̄ < 400 GeV

mtt̄ < 500 GeV ,
2θ

π
< 0.4

mtt̄ < 600 GeV ,
2θ

π
< 0.2

mtt̄ < 900 GeV ,
2θ

π
< 0.1.

(8.2)

These cuts cover 34% of the total cross section.

- Intermediate cuts.
At high mtt̄ and θ: 

mtt̄ > 600 GeV ,
2θ

π
> 0.8

mtt̄ > 700 GeV ,
2θ

π
> 0.7

mtt̄ > 800 GeV ,
2θ

π
> 0.6

mtt̄ > 1000 GeV ,
2θ

π
> 0.5.

(8.3)

These cuts cover 3.5% of the total cross section.

At threshold: 

mtt̄ < 400 GeV

mtt̄ < 500 GeV ,
2θ

π
< 0.3

mtt̄ < 600 GeV ,
2θ

π
< 0.2

mtt̄ < 800 GeV ,
2θ

π
< 0.1.

(8.4)

These cuts cover 30% of the total cross section.

- Strong cuts.
At high mtt̄ and θ: 

mtt̄ > 700 GeV ,
2θ

π
> 0.7

mtt̄ > 900 GeV ,
2θ

π
> 0.6

mtt̄ > 1000 GeV ,
2θ

π
> 0.5.

(8.5)

These cuts cover 2.3% of the total cross section.
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At threshold: 
mtt̄ < 400 GeV ,

2θ

π
< 0.9

mtt̄ < 500 GeV ,
2θ

π
< 0.3

mtt̄ < 600 GeV ,
2θ

π
< 0.1.

(8.6)

These cuts cover 24% of the total cross section.

Figures 8.1, 8.2, 8.3, 8.4, 8.5, and 8.6 show the distributions of cos θk cos θ̄k, cos θr cos θ̄r,
and cos θn cos θ̄n when weak, intermediate, and strong cuts are applied in the two rel-
evant regions of phase space. The value of Ckk, Crr, and Cnn extracted from a fit of
(2.19) and from the relation (2.20) is also shown in the plot.
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Figure 8.1: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at high mtt̄ and θ passing weak cuts for entanglement. The
distribution is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted
from the fit and from (2.20) is shown. Uncertainty is statistical only and is scaled to the
LHC Run 2 + Run 3 luminosity of 450 fb−1.
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Figure 8.2: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at threshold passing weak cuts for entanglement. The distribution
is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted from the fit
and from (2.20) is shown. Uncertainty is statistical only and is scaled to the LHC Run 2 +
Run 3 luminosity of 450 fb−1.
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Figure 8.3: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at high mtt̄ and θ passing intermediate cuts for entanglement. The
distribution is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted
from the fit and from (2.20) is shown. Uncertainty is statistical only and is scaled to the
LHC Run 2 + Run 3 luminosity of 450 fb−1.
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Figure 8.4: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at threshold passing intermediate cuts for entanglement. The
distribution is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted
from the fit and from (2.20) is shown. Uncertainty is statistical only and is scaled to the
LHC Run 2 + Run 3 luminosity of 450 fb−1.

72



1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n

 0.095± (Fit)  = 0.341 ijC

 0.038± (Avg.) = 0.359 ijC

kθ cos kθcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n

 0.029± (Fit)  = 0.701 ijC

 0.028± (Avg.) = 0.696 ijC

rθ cos rθcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

D
if

fe
re

nt
ia

l c
ro

ss
 s

ec
tio

n

 0.026± (Fit)  = -0.543 ijC

 0.033± (Avg.) = -0.558 ijC

nθ cos nθcos 

Figure 8.5: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at high mtt̄ and θ passing strong cuts for entanglement. The
distribution is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted
from the fit and from (2.20) is shown. Uncertainty is statistical only and is scaled to the
LHC Run 2 + Run 3 luminosity of 450 fb−1.
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Figure 8.6: Distribution of cos θk cos θ̄k (top), cos θr cos θ̄r (bottom left), and cos θn cos θ̄n
(bottom right) for events at threshold passing strong cuts for entanglement. The distribution
is fitted using (2.19). The corresponding value of Ckk, Crr, and Cnn extracted from the fit
and from (2.20) is shown. Uncertainty is statistical only and is scaled to the LHC Run 2 +
Run 3 luminosity of 450 fb−1.

Numerical results are in Table 8.1. Entanglement is present when the numerical
value of the markers (5.2) and (5.10) exceeds one. To evaluate the entanglement test
statistics, we use values of Cij coming from the fit of (2.19), that is found to be more
stable than the expectation value relation (2.20), especially when uncertainties are large.
Uncertanties are propagated from Ckk, Crr, and Cnn assuming negligible correlations,
as seen in Section 4.4.
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True value Reconstructed

Weak cuts at high mtt̄ and θ 1.359± 0.003 1.386± 0.043

Intermediate cuts at high mtt̄ and θ 1.407± 0.005 1.456± 0.046

Strong cuts at high mtt̄ and θ 1.579± 0.005 1.585± 0.103

Weak cuts at threshold 1.301± 0.002 1.297± 0.009

Intermediate cuts at threshold 1.341± 0.002 1.347± 0.010

Strong cuts at threshold 1.381± 0.002 1.408± 0.012

Table 8.1: Results for the entanglement markers (5.2), top three rows, and (5.10),

bottom three rows, for given tt̄ phase space cuts, see text. True values come from

1300 fb−1 of simulated luminosity at Leading Order. Reconstructed values follow from

the fit of (2.19), uncertainty is statistical only and is scaled to the LHC Run 2 + Run

3 luminosity of 450 fb−1.

The statistical significance for the detection of entanglement is & 10σ across different
choices of cuts both at high mtt̄ and θ and at threshold. Even after rescaling uncertainties
to the Run 2 luminosity of 139 fb−1 the statistical significance remains above the standard
5σ level.
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8.2 Bell Inequalities

The general strategy to observe a violation of Bell Inequalties is essentially the same
as the one employed for entanglement in Section 8.1. We try to maximize the statistical
significance of a violation using three different cut prescriptions.

Weak cuts include all tt̄ phase space regions where the CHSH inequalities (5.7) and
(5.20) are violated, that is bins in Figures 5.2 and 5.7 with a value larger than

√
2 = 1.41.

Intermediate cuts include regions of phase space where the CHSH inequality is violated
by more than 5%, meaning a numerical value larger than 1.05

√
2 = 1.48 in the same

Figures. Finally, strong cuts only consider phase space regions where the violation is
over 10%, i.e. a value larger than 1.10

√
2 = 1.56.

The cuts chosen above are empty in the threshold region, and in the high mtt̄ and θ
region translate to:

- Weak cuts.
Any of the following conditions have to hold:

mtt̄ > 900 GeV ,
2θ

π
> 0.9

mtt̄ > 1100 GeV ,
2θ

π
> 0.8.

(8.7)

These cuts cover 0.20% of the total cross section, ∼ 6 000 events after Run 3 of
LHC.

- Intermediate cuts.

mtt̄ > 1000 GeV ,
2θ

π
> 0.9. (8.8)

These cuts cover 0.084% of the total cross section, ∼ 1 900 events after Run 3.

- Strong cuts.

mtt̄ > 1100 GeV ,
2θ

π
> 0.9. (8.9)

These cuts cover 0.049% of the total cross section, ∼ 700 events after Run 3.

Figures 8.7, 8.8, and 8.9 show the distributions of cos θr cos θ̄r and cos θn cos θ̄n when
weak, intermediate, and strong cuts are applied. The value of Crr and Cnn extracted
from a fit of (2.19) and from (2.20) is also printed.
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Figure 8.7: Distribution of cos θr cos θ̄r (left) and cos θn cos θ̄n (right) for events at high
mtt̄ and θ passing weak cuts for Bell Inequalities. The distribution is fitted using (2.19).
The corresponding value of Crr, and Cnn extracted from the fit and from (2.20) is shown.
Uncertainty is statistical only and is scaled to the LHC Run 2 + Run 3 luminosity of
450 fb−1.
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Figure 8.8: Distribution of cos θr cos θ̄r (left) and cos θn cos θ̄n (right) for events at high
mtt̄ and θ passing intermediate cuts for Bell Inequalities. The distribution is fitted using
(2.19). The corresponding value of Crr, and Cnn extracted from the fit and from (2.20) is
shown. Uncertainty is statistical only and is scaled to the LHC Run 2 + Run 3 luminosity
of 450 fb−1.
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Figure 8.9: Distribution of cos θr cos θ̄r (left) and cos θn cos θ̄n (right) for events at high
mtt̄ and θ passing strong cuts for Bell Inequalities. The distribution is fitted using (2.19).
The corresponding value of Crr, and Cnn extracted from the fit and from (2.20) is shown.
Uncertainty is statistical only and is scaled to the LHC Run 2 + Run 3 luminosity of
450 fb−1.

Our numerical results are shown in Table 8.2. To evaluate the CHSH inequality we
use values of Cij coming from the fit of (2.19), that is found to be more stable than
the expectation value relation (2.20). Uncertanties are propagated from Crr and Cnn
assuming negligible correlation. For ease of reading, the value obtained from (5.7) has
been multiplied by

√
2, so a violation of Bell Inequalities is present when the numerical

value reported exceeds two, as usual.

True value Reconstructed

Weak cuts 2.08± 0.02 2.87± 0.73

Intermediate cuts 2.31± 0.03 2.87± 0.66

Strong cuts 2.42± 0.05 3.36± 0.90

Table 8.2: Results for the left hand side of the CHSH inequality (5.7) for given tt̄ phase

space cuts, see text. Numerical values are multiplied by
√

2 for ease of reading. True

values come from 1300 fb−1 of simulated luminosity at Leading Order. Reconstructed

values follow from the fit of (2.19). Uncertainty is statistical only and is scaled to the

LHC Run 2 + Run 3 luminosity of 450 fb−1.
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Conclusions

In this work we presented a feasibility study for the detection of entanglement and
the violation of Bell inequalities using spin correlations in top quark pairs.

We presented a full set of observables that are sensitive to the presence of entan-
glement and to a violation of a CHSH–like inequality using the process p p → t t̄ →
b b̄ `+ `− ν ν̄. Our study is at Leading Order within the Standard Model.

At parton level entanglement is readily visible, and a violation of Bell inequalities is
seen in a small region of tt̄ phase space, at mtt̄ of order TeV and top scattering angle
near π

2 , where spin correlations are a consequence of conservation of angular momentum
and do not depend on the specifics of the production channel.

Generated hard events were subsequently showered and reconstructed inside a sim-
ulated ATLAS detector, in a scenario similar to the one expected during the upcoming
Run 3 of the LHC, set to start in early 2022.

The detection of entanglement remains straightforward at the reconstruction level,
and as already noted in [3] the Run 2 dataset should be enough to reach a 5σ statistical
significance. Bell inequalites are much more challenging, and a convincing observation
of a violation will likely require at least the High–Luminosity Run of the LHC, predicted
to start in 2027.

The prospect of a 4σ violation visible after the High–Luminosity run as argued in [4]
is probably too optimistic. Nevertheless, rescaling the statistical uncertainty in our study
to match the expected integrated luminosity of 4000 fb−1, assuming the total uncertainty
is predominantly statistical, and centering the range on the true value, we find (from
Table 8.2):

True value Reconstructed CL for violation

Intermediate cuts 2.31± 0.03 2.31± 0.22 84%

Strong cuts 2.42± 0.05 2.42± 0.30 90%

In the unlikely situation that no further improvements can be made to our analysis,
the statistical significance for a violation of Bell inequalities should be of order . 2σ, or
about 90% CL, after the High–Luminosity run.

Whether or not a violation can actually be seen to a satisfactory statistical sig-
nificance, our proposed measurement would be the first TeV–scale EPR experiment,
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opening new prospects for high–energy precision tests of quantum mechanics and pro-
viding a novel test to beyond the Standard Model phenomena, e.g. violations of lepton
universality.
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Appendix A

Kinematics of tt̄→ `− `+ ν ν̄ b b̄

This Appendix describes the solution of the 2 → 6 decay in (6.3) following approx-
imately [64]. The momentum of particle a is denoted (aE ,~a) = (aE , ax, ay, az). We use
signature (+−−−) and denote pµq

µ = p ·q and −piqi = ~p ·~q . We assume m` = mν = 0.
Define:

αE = bEm
2
W − `+E(m2

t −m2
W −m2

b − 2b · `+) (A.1)

αx = 2(bE`
+
x − `+Ebx) (A.2)

αy = 2(bE`
+
y − `+Eby) (A.3)

αz = 2(bE`
+
z − `+Ebz) (A.4)

The neutrino satisfies:
αE + ~α · ~ν = 0 (A.5)

Coefficients βE , βx, βy, βz are defined by the replacements b → b̄, `+ → `− in equations
(A.1) to (A.4). The antineutrino satisfies:

βE + ~β · ~ν = 0 (A.6)

Define:

γxx = −4(`+E
2 − `+x

2
)− 4(`+E

2 − `+z
2
)
α2
x

α2
z

− 8`+x `
+
z

αx
αz

(A.7)

γxy = −8(`+E
2 − `+z

2
)
αxαy
α2
z

+ 8`+x `
+
y − 8`+x `

+
z

αy
αz
− 8`+y `

+
z

αx
αz

(A.8)

γxz = 4m2
W (`+x − `+z

αx
αz

)− 8(`+E
2 − `+z

2
)
αEαx
α2
z

− 8`+x `
+
z

αE
αz

(A.9)

γyy = −4(`+E
2 − `+y

2
)− 4(`+E

2 − `+z
2
)
α2
y

α2
z

− 8`+y `
+
z

αy
αz

(A.10)

γyz = 4m2
W (`+y − `+z

αy
αz

)− 8(`+E
2 − `+z

2
)
αEαy
α2
z

− 8`+y `
+
z

αE
αz

(A.11)

γzz = m4
W − 4(`+E

2 − `+z
2
)
α2
E

α2
z

− 4m2
W `

+
z

αE
αz

(A.12)
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The neutrino satisfies:

(
νx νy 1

)γxx γxy γxz

γyy γyz

γzz


νxνy

1

 = 0 (A.13)

Coefficients δxx, δxy, δxz, δyy, δyz, δzz are defined by the replacements b → b̄, `+ → `−,
α→ β in equations (A.7) to (A.12). The antineutrino satisfies:

(
ν̄x ν̄y 1

)δxx δxy δxz

δyy δyz

δzz


ν̄xν̄y

1

 = 0 (A.14)

Define:

ηxx = δxx (A.15)

ηxy = δxy (A.16)

ηxz = −δxz − 2pmiss
x δxx − pmiss

y δxy (A.17)

ηyy = δyy (A.18)

ηyz = −δyz − 2pmiss
y δyy − pmiss

x δxy (A.19)

ηzz = pmiss
x

2δxx + pmiss
y

2δyy + pmiss
x pmiss

y δxy + pmiss
x δxz + pmiss

y δyz + δzz (A.20)

The neutrino satisfies:

(
νx νy 1

)ηxx ηxy ηxz

ηyy ηyz

ηzz


νxνy

1

 = 0 (A.21)
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Define:

λ0 = γ2
yyη

2
zz + γyzηzz(γyzηyy − γyyηyz)

+ γyyγzz(ηyzηyz − 2ηyyηzz) + γzzηyy(γzzηyy − γyzηyz) (A.22)

λ1 = γyyηxz(2γyyηzz − γyzηyz) + γyyηyz(2γzzηxy + γxzηyz)

+ γzzηyy(2γxzηyy − γyzηxy)− γyyηzz(γyzηxy + γxyηyz)

− 2γyyηyy(γzzηxz + γxzηzz)− ηyyηyz(γyzγxz + γxyγzz)

+ γyzηyy(γyzηxz + 2γxyηzz) (A.23)

λ2 = γ2
yy(2ηzzηxx + η2

xz)− γyyηxz(γyzηxy + γxyηyz)

+ γyzηxx(γyzηyy − γyyηyz) + γyyηxy(γzzηxy − γxyηzz)
+ γyyηyz(2γxzηxy + γxxηyz) + (2γzzγxx + γ2

xz)η
2
yy

− 2γyyηyy(γzzηxx + γxzηxz + γxxηzz) + γxyηyy(2γyzηxz + γxyηzz)

− ηyyηxy(γyzγxz + γxyγzz)− ηyyηyz(γyzγxx + γxyγxz) (A.24)

λ3 = γyyηxz(2γyyηxx − γxyηxy)− γyyηxx(γyzηxy + γxyηyz)

+ γyyηxy(γxzηxy + 2γxxηyz)− 2γyyηyy(γxzηxx + γxxηxz)

+ γxyηyy(2γyzηxx + γxyηxz) + γxxηyy(2γxzηyy − γxyηyz)
− ηyyηxy(γyzγxx + γxyγxz)

λ4 = γ2
yyη

2
xx + γxyηxx(γxyηyy − γyyηxy)

+ γxxηxy(γyyηxy − γxyηyy) + γxxηyy(γxxηyy − 2γyyηxx) (A.25)

The neutrino satisfies:

λ0 + λ1νx + λ2ν
2
x + λ3ν

3
x + λ4ν

4
x = 0 (A.26)

This is a polinomial equation of degree 4 and can be solved analytically with standard
techniques. Once νx is known, define:

κ0 = γyy (A.27)

κ1 = γxyνx + γyz (A.28)

κ2 = γxxν
2
x + γxzνx + γzz (A.29)

ρ0 = ηyy (A.30)

ρ1 = ηxyνx + ηyz (A.31)

ρ2 = ηxxν
2
x + ηxzνx + ηzz (A.32)

Now νy is given by:

νy =
κ0ρ2 − κ2ρ0

κ1ρ0 − κ0ρ1
(A.33)

The last component νz can be obtained by (A.5). The antineutrino x and y are trivial,
ν̄x = pmiss

x − νx and ν̄y = pmiss
y − νy, the z component is found using (A.6).

83



Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description
of physical reality be considered complete?” In: Physical Review 47.10 (1935),
pp. 777–780. doi: 10.1103/PhysRev.47.777.

[2] J. S. Bell. “On the Einstein Podolsky Rosen paradox.” In: Physics Physique Fizika
1.3 (1964), pp. 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.

[3] Y. Afik and J.R.M. de Nova. Quantum information and entanglement with top
quarks at the LHC. 2020. eprint: http://arxiv.org/abs/2003.02280.

[4] M. Fabbrichesi, R. Floreanini, and G. Panizzo. Testing Bell inequalities at the LHC
with top-quark pairs. 2021. eprint: http://arxiv.org/abs/2102.11883.

[5] Y. Takubo et al. On the Feasibility of Bell Inequality Violation at ATLAS Exper-
iment with Flavor Entanglement of B0 B̄0 Pairs from pp Collisions. 2021. eprint:
http://arxiv.org/abs/2106.07399.

[6] A. Peres. “Separability Criterion for Density Matrices.” In: Physical Review Letters
77 (1996). doi: 10.1103/PhysRevLett.77.1413. eprint: http://arxiv.org/abs/
quant-ph/9604005.

[7] F. Laloe. “Do we really understand quantum mechanics? Strange correlations,
paradoxes, and theorems.” In: American Journal of Physics 69 (2001), pp. 655–
701. doi: 10.1119/1.1356698.

[8] J. Madalcena and L. Susskind. “Cool horizons for entangled black holes.” In:
Fortschritte der Physik 61 (2013). doi: 10.1002/prop.201300020. eprint: http:
//arxiv.org/abs/1306.0533.

[9] A. Einstein and N. Rosen. “The Particle Problem in the General Theory of Rela-
tivity.” In: Physical Review 48.73 (1935). doi: 10.1103/PhysRev.48.73.

[10] C. Cao, S. Carroll, and S. Michalakis. “Space from Hilbert Space: Recovering
Geometry from Bulk Entanglement.” In: Physics Review D 95 (2017). doi: 10.
1103/PhysRevD.95.024031. eprint: http://arxiv.org/abs/1606.08444.

[11] J.F. Clauser et al. “Proposed experiment to test local hidden-variable theories.” In:
Physical Review Letters 23.15 (1969), pp. 880–884. doi: 10.1103/PhysRevLett.
23.880.

[12] B.S. Cirel’son. “Quantum generalizations of Bell’s inequality.” In: Letters in Math-
ematical Physics 4.2 (1980), pp. 93–100. doi: 10.1007/bf00417500.

84

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://arxiv.org/abs/2003.02280
http://arxiv.org/abs/2102.11883
http://arxiv.org/abs/2106.07399
https://doi.org/10.1103/PhysRevLett.77.1413
http://arxiv.org/abs/quant-ph/9604005
http://arxiv.org/abs/quant-ph/9604005
https://doi.org/10.1119/1.1356698
https://doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://arxiv.org/abs/1306.0533
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevD.95.024031
http://arxiv.org/abs/1606.08444
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/bf00417500


[13] L. Hardy. “Quantum mechanics, local realistic theories, and Lorentz-invariant real-
istic theories.” In: Physical Review Letters 68 (1992). doi: 10.1103/PhysRevLett.
68.2981.

[14] S.J. Freedman and J.F. Clauser. “Experimental test of local hidden-variable theo-
ries.” In: Physical Review Letters 28 (1972), pp. 938–941. doi: 10.1103/PhysRevLett.
28.938.

[15] B. Hensen et al. “Loophole-free Bell inequality violation using electron spins sep-
arated by 1.3 kilometres.” In: Nature 526 (2015), pp. 682–686. doi: 10.1038/

nature15759. eprint: http://arxiv.org/abs/1508.05949.

[16] L. K. Shalm et al. “A strong loophole-free test of local realism.” In: Physical
Review Letters 115.25 (2015). doi: 10.1103/PhysRevLett.115.250402. eprint:
http://arxiv.org/abs/1511.03189.

[17] A. Aspect. “Closing the Door on Einstein and Bohr’s Quantum Debate.” In:
Physics Online Journal 8 (Dec. 2015), p. 123. doi: 10.1103/Physics.8.123.

[18] R.A. Bertlmann et al. “Violation of a Bell inequality in particle physics experimen-
tally verified?” In: Physics Letters A 332.5-6 (2004), pp. 355–360. doi: 10.1016/
j.physleta.2004.10.006. eprint: http://arxiv.org/abs/quant-ph/0409051.

[19] S.P. Baranov. “Bell’s inequality in charmonium decays ηc → ΛΛ̄, χc → ΛΛ̄ and
J/ψ → ΛΛ̄.” In: Journal of Physics G 35.7 (2008). doi: 10.1088/0954-3899/35/
7/075002/.

[20] CPCLEAR collaboration. “An EPR experiment testing the nonseparability of the
K0 anti-K0 wave function.” In: Physics Letters B 422 (1998), pp. 339–348. doi:
10.1016/S0370-2693(97)01545-1.

[21] N. Gisin and A. Go. “EPR test with photons and kaons: Analogies.” In: American
Journal of Physics 69.264 (2001). doi: 10.1119/1.1326080. eprint: http://

arxiv.org/abs/quant-ph/0004063.

[22] Belle collaboration. “Observation of Bell Inequality violation in B mesons.” In:
Journal of Modern Optics 51.6-7 (2004), pp. 991–998. doi: 10.1080/09500340408233614.
eprint: http://arxiv.org/abs/quant-ph/0310192.

[23] Belle collaboration. “Measurement of Einstein-Podolsky-Rosen-Type Flavor En-
tanglement in Υ(4S)→ B0B̄0 Decays.” In: Physical Review Letters 99.13 (2007).
doi: 10.1103/PhysRevLett.99.131802. eprint: http://arxiv.org/abs/quant-
ph/0702267.

[24] N. Tornqvist. “Suggestion for Einstein-Podolsky-Rosen Experiments Using Reac-
tions Like e+e− → ΛΛ̄→ π−pπ+p̄.” In: Foundations of Physics 11 (1981), pp. 171–
177. doi: 10.1007/BF00715204.

[25] N. Tornqvist. “The decay J/ψ → ΛΛ → π−pπ+p as an Einstein-Podolsky-Rosen
experiment.” In: Physics Letters A 117 (1986), pp. 1–4. doi: 10.1016/0375-

9601(86)90225-2.

85

https://doi.org/10.1103/PhysRevLett.68.2981
https://doi.org/10.1103/PhysRevLett.68.2981
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
http://arxiv.org/abs/1508.05949
https://doi.org/10.1103/PhysRevLett.115.250402
http://arxiv.org/abs/1511.03189
https://doi.org/10.1103/Physics.8.123
https://doi.org/10.1016/j.physleta.2004.10.006
https://doi.org/10.1016/j.physleta.2004.10.006
http://arxiv.org/abs/quant-ph/0409051
https://doi.org/10.1088/0954-3899/35/7/075002/
https://doi.org/10.1088/0954-3899/35/7/075002/
https://doi.org/10.1016/S0370-2693(97)01545-1
https://doi.org/10.1119/1.1326080
http://arxiv.org/abs/quant-ph/0004063
http://arxiv.org/abs/quant-ph/0004063
https://doi.org/10.1080/09500340408233614
http://arxiv.org/abs/quant-ph/0310192
https://doi.org/10.1103/PhysRevLett.99.131802
http://arxiv.org/abs/quant-ph/0702267
http://arxiv.org/abs/quant-ph/0702267
https://doi.org/10.1007/BF00715204
https://doi.org/10.1016/0375-9601(86)90225-2
https://doi.org/10.1016/0375-9601(86)90225-2


[26] S. Chen, Y. Nakaguchi, and S. Komamiya. “Testing Bell’s inequality using charmo-
nium decays.” In: Progress of Theoretical and Experimental Physics 2013.6 (2013).
doi: 10.1093/ptep/ptt032. eprint: http://arxiv.org/abs/1302.6438.

[27] J. Li and C.F. Qiao. “Testing Local Realism in P → V V Decays.” In: Science
China Physics, Mechanics and Astronomy 53 (2010), pp. 870–875. doi: 10.1007/
s11433-010-0202-2. eprint: http://arxiv.org/abs/0903.1246.

[28] Belle collaboration. Lepton-Flavor-Depedent Angular Analysis of B → K?`+`−.
2016. eprint: http://arxiv.org/abs/1612.05014.

[29] LHCb Collaboration. “Angular analysis and differential branching fraction of the
decay B0

s → φµ+µ−.” In: Journal of High Energy Physics 179 (2015). doi: 10.
1007/JHEP09(2015)179. eprint: http://arxiv.org/abs/1506.08777.

[30] LHCb Collaboration. “Angular analysis of the B0 → K?0µ+µ− decay using 3 fb−1

of integrated luminosity.” In: Journal of High Energy Physics 104 (2016). doi:
10.1007/JHEP02(2016)104. eprint: http://arxiv.org/abs/1512.04442.

[31] LHCb Collaboration. “Measurement of CP -averaged observables in the B0 →
K?0µ+µ− decay.” In: Physical Review Letters 125 (2020). doi: 10.1103/PhysRevLett.
125.011802. eprint: http://arxiv.org/abs/2003.04831.

[32] LHCb Collaboration. Angular analysis of the B+ → K?+µ+µ− decay. 2020. eprint:
http://arxiv.org/abs/2012.13241.

[33] J. Alwall et al. “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations.” In:
Journal of High Energy Physics 79 (2014). doi: 10.1007/JHEP07(2014)079.
eprint: http://arxiv.org/abs/1405.0301.

[34] NNPDF Collaboration. “Parton distributions for the LHC Run II.” In: Journal of
High Energy Physics 40 (2015). doi: 10.1007/JHEP04(2015)040. eprint: http:
//arxiv.org/abs/1410.8849.

[35] G. Mahlon and S. Parke. “Angular Correlations in Top Quark Pair Production
and Decay at Hadron Colliders.” In: Physical Review D 53 (1996). doi: 10.1103/
PhysRevD.53.4886. eprint: http://arxiv.org/abs/hep-ph/9512264.

[36] G. Mahlon and S. Parke. “Spin Correlation Effects in Top Quark Pair Production
at the LHC.” In: Physical Review D 81 (2010). doi: 10.1103/PhysRevD.81.

074024. eprint: http://arxiv.org/abs/1001.3422.

[37] D Bernreuther W. ad Heisler and Z.G. Si. “A set of top quark spin correlation
and polarization observables for the LHC: Standard Model predictions and new
physics contributions.” In: Journal of High Energy Physics (2015). doi: 10.1007/
JHEP12(2015)026. eprint: http://arxiv.org/abs/1508.05271.

[38] W. Bernreuther et al. “Top quark pair production and decay at hadron colliders.”
In: Nuclear Physics B 690.1-2 (2004), pp. 81–137. doi: 10.1016/j.nuclphysb.
2004.04.019. eprint: http://arxiv.org/abs/hep-ph/0403035.

86

https://doi.org/10.1093/ptep/ptt032
http://arxiv.org/abs/1302.6438
https://doi.org/10.1007/s11433-010-0202-2
https://doi.org/10.1007/s11433-010-0202-2
http://arxiv.org/abs/0903.1246
http://arxiv.org/abs/1612.05014
https://doi.org/10.1007/JHEP09(2015)179
https://doi.org/10.1007/JHEP09(2015)179
http://arxiv.org/abs/1506.08777
https://doi.org/10.1007/JHEP02(2016)104
http://arxiv.org/abs/1512.04442
https://doi.org/10.1103/PhysRevLett.125.011802
https://doi.org/10.1103/PhysRevLett.125.011802
http://arxiv.org/abs/2003.04831
http://arxiv.org/abs/2012.13241
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849
http://arxiv.org/abs/1410.8849
https://doi.org/10.1103/PhysRevD.53.4886
https://doi.org/10.1103/PhysRevD.53.4886
http://arxiv.org/abs/hep-ph/9512264
https://doi.org/10.1103/PhysRevD.81.074024
https://doi.org/10.1103/PhysRevD.81.074024
http://arxiv.org/abs/1001.3422
https://doi.org/10.1007/JHEP12(2015)026
https://doi.org/10.1007/JHEP12(2015)026
http://arxiv.org/abs/1508.05271
https://doi.org/10.1016/j.nuclphysb.2004.04.019
https://doi.org/10.1016/j.nuclphysb.2004.04.019
http://arxiv.org/abs/hep-ph/0403035


[39] ATLAS Collaboration. “Observation of spin correlation in tt̄ events from pp colli-
sions at

√
s = 7 TeV using the ATLAS detector.” In: Physical Review Letters 108

(2012). doi: 10.1103/PhysRevLett.108.212001. eprint: http://arxiv.org/
abs/1203.4081.

[40] ATLAS Collaboration. “Measurements of spin correlation in top-antitop quark
events from proton-proton collisions at

√
s = 7 TeV using the ATLAS detector.”

In: Physical Review D 90 (2014). doi: 10.1103/PhysRevD.90.112016. eprint:
http://arxiv.org/abs/1407.4314.

[41] ATLAS Collaboration. “Measurements of top quark spin observables in tt̄ events
using dilepton final states in

√
s = 8 TeV pp collisions with the ATLAS detector.”

In: Journal of High Energy Physics 113 (2017). doi: 10.1007/JHEP03(2017)113.
eprint: http://arxiv.org/abs/1612.07004.

[42] ATLAS Collaboration. “Measurements of top-quark pair spin correlations in the
eµ channel at

√
s = 13 TeV using pp collisions in the ATLAS detector.” In: The

European Physical Journal C 80 (2020). doi: 10.1140/epjc/s10052-020-8181-6.
eprint: http://arxiv.org/abs/1903.07570.

[43] CMS Collaboration. “Measurement of spin correlations in tt̄ production using the
matrix element method in the muon + jets final state in pp collisions at

√
s = 8

TeV.” In: Physics Letters B 758 (2016), pp. 321–346. doi: 10.1016/j.physletb.
2016.05.005. eprint: http://arxiv.org/abs/1511.06170.

[44] CMS Collaboration. “Measurements of tt̄ spin correlations and top quark polar-
ization using dilepton final states in pp collisions at

√
s = 8 TeV.” In: Physi-

cal Review D 93 (2016). doi: 10.1103/PhysRevD.93.052007. eprint: http:

//arxiv.org/abs/1601.01107.

[45] CMS Collaboration. “Measurement of the top quark polarization and tt̄ spin cor-
relations using dilepton final states in proton-proton collisions at

√
s = 13 TeV.”

In: Physical Review D 100 (2019). doi: 10.1103/PhysRevD.100.072002. eprint:
http://arxiv.org/abs/1907.03729.

[46] A. Czarnecki, M. Jezabek, and J. K. Kuhn. “Lepton spectra from decays of po-
larized top quarks.” In: Nuclear Physics B 351 (1991). doi: 10 . 1016 / 0550 -

3213(91)90082-9.

[47] A. Brandenburg, Z. G. Si, and P. Uwer. “QCD-corrected spin analysing power of
jets in decays of polarized top quarks.” In: Physics Letters B 539 (2002). doi:
10.1016/S0370- 2693(02)02098- 1. eprint: http://arxiv.org/abs/hep-

ph/0205023.

[48] R. Horodecki, P. Horodecki, and M. Horodecki. “Violating Bell inequality by mixed
spin-1

2 states: necessary and sufficient condition.” In: Physics Letters A 200 (1995).
doi: 10.1016/0375-9601(95)00214-N.

[49] C. White et al. “Isolating Wt production at the LHC.” In: Journal of High Energy
Physics (2009). doi: 10.1088/1126-6708/2009/11/074. eprint: http://arxiv.
org/abs/0908.0631.

87

https://doi.org/10.1103/PhysRevLett.108.212001
http://arxiv.org/abs/1203.4081
http://arxiv.org/abs/1203.4081
https://doi.org/10.1103/PhysRevD.90.112016
http://arxiv.org/abs/1407.4314
https://doi.org/10.1007/JHEP03(2017)113
http://arxiv.org/abs/1612.07004
https://doi.org/10.1140/epjc/s10052-020-8181-6
http://arxiv.org/abs/1903.07570
https://doi.org/10.1016/j.physletb.2016.05.005
https://doi.org/10.1016/j.physletb.2016.05.005
http://arxiv.org/abs/1511.06170
https://doi.org/10.1103/PhysRevD.93.052007
http://arxiv.org/abs/1601.01107
http://arxiv.org/abs/1601.01107
https://doi.org/10.1103/PhysRevD.100.072002
http://arxiv.org/abs/1907.03729
https://doi.org/10.1016/0550-3213(91)90082-9
https://doi.org/10.1016/0550-3213(91)90082-9
https://doi.org/10.1016/S0370-2693(02)02098-1
http://arxiv.org/abs/hep-ph/0205023
http://arxiv.org/abs/hep-ph/0205023
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1088/1126-6708/2009/11/074
http://arxiv.org/abs/0908.0631
http://arxiv.org/abs/0908.0631


[50] ATLAS Collaboration. “Probing the quantum interference between singly and dou-
bly resonant top-quark production in pp collisions at

√
s = 13 TeV with the ATLAS

detector.” In: Physical Review Letters 121 (2018). doi: 10.1103/PhysRevLett.
121.152002. eprint: http://arxiv.org/abs/1806.04667.

[51] M. Beneke et al. “Hadronic top-quark pair production with NNLL threshold re-
summation.” In: Nuclear Physics B 855 (2012). doi: 10.1016/j.nuclphysb.

2011.10.021. eprint: http://arxiv.org/abs/1109.1536.

[52] ATLAS Collaboration. “Measurement of the tt̄ production cross-section and lepton
differential distributions in eµ dilepton events from pp collisions at

√
s = 13 TeV

with the ATLAS detector.” In: The European Physical Journal C 80 (2020). doi:
10.1140/epjc/s10052-020-7907-9. eprint: http://arxiv.org/abs/1910.
08819.

[53] Particle Data Group. “Review of Particle Physics.” In: Progress of Theoretical
and Experimental Physics 2020.8 (2020). doi: 10.1093/ptep/ptaa104. eprint:
http://pdg.lbl.gov.

[54] ATLAS Collaboration. Luminosity determination in pp collisions at
√
s = 13 TeV

using the ATLAS detector at the LHC. CERN Report number ATLAS-CONF-
2019-021. 2019. eprint: http://inspirehep.net/literature/1737864.

[55] S. P. Alamdari. “First Measurement of σ(gg → tt̄)/σ(pp̄ → tt̄).” PhD thesis.
University of Toronto, 2008. doi: 10.2172/929118. eprint: http://inspirehep.
net/literature/786730.
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