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Our truth is the intersection of independent lies
- Richard Levins



Abstract

The study of the distribution of matter on the largest scales can provide key
information about the origin and the matter-energy content of the Universe,
as well as its expansion rate and amplitude of today matter perturbations.
This information can be interpreted within the standard Λ-cold dark matter
model (ΛCDM), which is described by only six fundamental cosmological
parameters. The latter can nowadays be constrained by means of a combined
analysis of different cosmological probes. Indeed, constraints obtained by
exploiting a single cosmological probe often show some degree of degeneracy,
which can be potentially disentangled by means of the combination technique.
Moreover, in the last decades Cosmology entered in a new precision-era,
in which cosmological parameters are measured with sub-percent accuracy.
Though this has strengthened our confidence about the ΛCDM model, it
also led to some statistical tensions between constraints obtained with some
probes at high and low redshift.

In this Thesis work we exploit the combination between the number
counts of galaxy clusters and cosmic voids, which represent the most ex-
treme objects of the matter density distribution of the today Universe. We
analyse the statistics of these objects using the Magneticum Pathfinder hy-
drodynamical simulations, at redshifts 0.2 ≤ z ≤ 2. Clusters of galaxies have
been identified by means of a halo finder algorithm, which considers clusters
as spherical overdensities. Cosmic voids have been identified in the simulated
galaxy distributions using a geometrical void finder algorithm. Moreover, the
void catalogues have been properly cleaned to match the definition of voids in
the theoretical void size function model considered in this work. We compare
the number counts of galaxy clusters with the theoretical halo mass function
model proposed by Despali et al. (2016) and the number counts of cosmic
voids with the Vdn size function model developed by Jennings et al. (2013),
by performing a Bayesian MCMC analysis. In addition, to accurately com-
pare the data to the theory, we calibrate these models to take into account
the differences between the types of mass tracers used in this work and those
used in the literature. Then we sample the posterior distributions of the



matter density parameter, Ωm, and the today perturbation amplitude, σ8,
marginalising over the nuisance parameters of the considered models. We
also analyse how less restrictive selections of the mass tracers can lead to
biased cosmological constraints.

To obtain the combined constraints we apply three new numerical al-
gorithms, implemented inside the CosmoBolognaLib C++/Python libraries,
which allow us to perform the combination of two, or more, independent
cosmological probes. In particular, we test the hypothesis of probe inde-
pendence, verifying that the correlation between the different data-sets is
statistically negligible. The implemented codes exploit three different algo-
rithms for probe combination: Posterior Product, Importance Sampling and
Posterior as Prior. The first method provides the standard technique for per-
forming such analysis, i.e. by computing the simple product of the individual
posterior distributions associated to each data-set. The second is based on
the importance sampling technique, with which a given posterior distribution
is sampled starting from another distribution (namely the one deriving from
the other probe). According to this method, an importance weight, computed
as the ratio of the given posterior distribution, is associated to each point in
parameter space. In the third method, the combined confidence contours are
obtained by considering the posterior of a given probe as the prior for the
other, and viceversa.

The combined constraints obtained with the described methodologies are
consistent with each other and are perfectly centred on the true cosmological
parameters used to build the analysed simulations. Moreover, we find that
the halo mass function and the void size function can be considered powerful
complementary probes, providing a nearly perpendicular intersection in the
Ωm - σ8 parameter space. This is a desired property in order to extract as
much information as possible from the probe combination. The strongest
constraints are obtained by using either the Posterior Product or the Pos-
terior as Prior method, which both provide an improvement of about 4− 5
times with respect to the individual probe constraints. The Importance Sam-
pling technique provides a slightly weaker constraining power, though totally
in agreement with the other two in terms of posterior mean and standard
deviation. Furthermore, the latter is found to be the fastest method, among
the others, and can be applied to any pair of external cosmological probes.
All the new implemented codes provide simple and flexible tools that will be
soon applied to the data coming from currently available and next-generation
wide-field surveys to perform powerful combined cosmological analyses.



Sommario

Le proprietà della distribuzione della materia su grande scala forniscono in-
formazioni fondamentali sull’origine e sul contenuto di materia e di energia
dell’Universo, così come sul suo tasso di espansione e sull’ampiezza delle per-
turbazioni di materia che osserviamo oggi. Queste informazioni sono inter-
pretabili nel modello standard Λ-cold dark matter (ΛCDM), descritto da sei
parametri cosmologici fondamentali. Questi possono essere efficientemente
vincolati combinando diverse probe cosmologiche, ovvero diversi metodi per
“sondare” il nostro Universo. Infatti, i vincoli ottenuti dall’analisi di singole
probe mostrano spesso un certo livello di degenerazione, che può potenzial-
mente essere attenuato attraverso la tecnica di combinazione. Negli ultimi
decenni, la Cosmologia è entrata in una nuova era in cui i parametri cos-
mologici vengono vincolati con un’accuratezza inferiore all’1%. Anche se da
un lato questo ha rafforzato il modello ΛCDM, dall’altro ha fatto emerg-
ere possibili tensioni statistiche tra i vincoli ottenuti per alcuni parametri
cosmologici quando vengono considerate probe ad alto e basso redshift.

In questo lavoro di Tesi abbiamo studiato la combinazione tra i conteggi
di ammassi di galassie e di vuoti cosmici, che costituiscono gli oggetti più
estremi della distribuzione di materia dell’Universo odierno, sfruttando le
Magneticum Pathfinder, simulazioni cosmologiche idrodinamiche, a redshift
0.2 ≤ z ≤ 2. Gli ammassi di galassie sono stati identificati come sovraden-
sità sferiche da un algoritmo di ricerca interno a queste simulazioni, mentre
i vuoti cosmici sono stati identificati nella distribuzione simulata di galassie
impiegando un algoritmo di selezione basato su principi geometrici. Inoltre,
abbiamo riscalato i cataloghi di vuoti in modo che potessero essere confrontati
con il modello teorico considerato in questo lavoro per la loro distribuzione
in raggio. Abbiamo poi confrontato i conteggi di ammassi di galassie con la
funzione di massa teorica di aloni (Despali et al., 2016) mentre i conteggi di
vuoti sono stati messi a confronto con il modello Vdn (Jennings et al., 2013),
attraverso un’analisi Bayesiana che fa uso di catene di Markov Monte Carlo.
Inoltre, per ottenere un confronto accurato tra dati e modelli teorici, abbiamo
eseguito una calibrazione di questi ultimi, in modo tale da tenere conto della



differenza tra i tipi di traccianti di materia utilizzati in questo lavoro e quelli
usati in letteratura. Abbiamo quindi estratto le distribuzioni a posteriori
del parametro di densità della materia, Ωm, e dell’ampiezza delle pertur-
bazioni locali di materia, σ8, marginalizzando sui restanti parametri interni
ai modelli teorici. I vincoli ottenuti risultano perfettamente in accordo con
il modello cosmologico adottato nelle simulazioni Magneticum. Abbiamo in-
oltre mostrato come possibili selezioni meno restrittive applicate ai traccianti
di massa possano portare a vincoli cosmologici affetti da sistematiche.

Per ottenere i vincoli combinati abbiamo applicato tre nuovi algoritmi nu-
merici, implementati nelle librerie C++/Python CosmoBolognaLib, che per-
mettono di effettuare la combinazione di due o più probe cosmologiche in-
dipendenti. L’ipotesi di indipendenza tra le due probe considerate è stata
testata verificando che la correlazione tra i diversi set di dati utilizzati fosse
trascurabile. I codici implementati sfruttano tre diversi algoritmi per la com-
binazione di probe: Posterior Product, Importance Sampling e Posterior as
Prior. Il primo metodo fornisce la tecnica standard per attuare questo tipo di
analisi, ovvero calcolando il prodotto delle singole distribuzioni a posteriori
associate ai diversi set di dati. Il secondo è basato sulla tecnica di impor-
tance sampling, attraverso la quale una data distribuzione a posteriori viene
estratta a partire da un’altra distribuzione, ovvero quella che descrive l’altra
probe cosmologica. In base a questo metodo, un peso, calcolato attraverso
il rapporto delle differenti distribuzioni a posteriori, viene associato a ogni
punto dello spazio dei parametri. Nel terzo e ultimo metodo, i contorni di
confidenza per la combinazione si ottengono considerando la distribuzione
a posteriori di una data probe come la distribuzione a priori dell’altra, e
viceversa.

I vincoli combinati, ottenuti sfruttando i metodi appena descritti, si sono
rivelati consistenti tra loro, risultando perfettamente centrati sui parametri
cosmologici usati per le simulazioni analizzate. In particolare, abbiamo
mostrato come la funzione di massa degli aloni e la distribuzione in rag-
gio dei vuoti cosmici possano essere considerate probe complementari per
lo studio dei parametri di interesse, fornendo un’intersezione praticamente
perpendicolare nello spazio dei parametri Ωm − σ8. Quest’ultima è una pro-
prietà fondamentale per ottenere la massima informazione proveniente dalla
combinazione. I vincoli più stringenti sono stati ottenuti sia attraverso l’uso
del metodo Posterior Product, sia utilizzando il Posterior as Prior, fornendo
un miglioramento di 4 − 5 volte rispetto ai vincoli delle singole probe. Ab-
biamo anche notato che l’Importance Sampling fornisce vincoli leggermente
meno stringenti, restando comunque in accordo con gli altri metodi in ter-
mini di media e deviazione standard della distribuzione a posteriori. Inoltre,
quest’ultimo metodo si è rivelato essere il più veloce rispetto agli altri, con



l’ulteriore vantaggio di poter essere applicato a una qualsiasi coppia di probe
cosmologiche fornite esternamente.

I nuovi codici implementati forniscono strumenti semplici e flessibili per
effettuare la combinazione di probe cosmologiche, e verranno presto applicati
a dati provenienti da wide-field surveys attualmente disponibili e di futura
generazione.
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Introduction

The discovery of the accelerated expansion of the Universe (Riess et al., 1998;
Perlmutter et al., 1999) has lead to the evidence of a mysterious energy com-
ponent, called dark energy. In addition, several observations suggest that the
most of the matter is in the form of yet another mysterious component, the
cold dark matter (CDM), which interacts only through gravity and, thus,
it is not visible. All this information is encapsulated in the Standard Cos-
mological Model, known as the Λ-cold dark matter (ΛCDM), where Λ is
the so-called cosmological constant, responsible for the current accelerated
expansion of the Universe. This model, based on the General Theory of Rel-
ativity, has been tested so far by several measurements and observations, and
it describes the overall properties of our Universe with only six fundamental
parameters.

According to this framework, the Universe shows an age of approximately
13.8 Gyr and its matter-energy content is composed of about 70% of dark en-
ergy and 25% of dark matter. The remaining ∼ 5% is in the form of baryonic
matter, that is the matter composed of protons, neutrons and electrons, con-
stituting the visible fraction of the matter content, of which stars and galaxies
are made. The present-day large-scale structures (LSS) are supposed to grow
from small density perturbations in the early Universe, as the consequence
of the attractive nature of gravity. As the Universe continues expanding and
cooling down, these fluctuations grow over the cosmic time, giving rise to
collapsed haloes of DM. Then, following the so called bottom-up scenario,
DM haloes evolve hierarchically assembling into larger structures. Their
gravitational potential wells drive the collapse of baryonic matter, which is
characterised also by electro-magnetic interactions and is therefore subject
to radiative cooling. The complex nonlinear physical mechanisms involved in
this process strongly affect the galaxy formation and evolution. Due to this
complexity, there are no exhaustive and complete models yet able to fully
describe these processes, which are indeed commonly investigated with cos-
mological simulations. These simulations follow the evolution of billions of
particles of dark and baryonic matter, and are able to reproduce the observed
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distribution of tracers, like DM haloes, galaxies and clusters.
In Figure 1 we report a representation of the Magneticum Pathfinder sim-

ulations, which are the ones we will analyse in this work. As one can see,
this distribution follows a foam-like pattern, usually called Cosmic Web, in
which galaxies aggregate into filaments, with sizes exceeding 100 Mpc h−1.
This type of pattern has been confirmed by several observation from deep
surveys (York et al., 2000; Peacock et al., 2001; Dark Energy Survey Collab-
oration et al., 2016; Alam et al., 2017; Ivezić et al., 2019). In correspondence
of the filament intersections, we find groups of hundreds up to thousands
of galaxies. The most massive between them - galaxy clusters - represent
the largest virialised and gravitationally-bounded structures in our Universe.
Complementing this fascinating pattern is the presence of vast underdense
regions of space - cosmic voids - which have roundish shapes and occupy the
majority of the volume of the Universe.

This Thesis work concerns the complementary study of the abundance
of galaxy clusters and cosmic voids identified in cosmological simulations,
at different redshifts. In particular, we focus our analyses on the combina-
tion of the cosmological constraints derived from these probes, which can
be considered statistically independent, given the different aspects of Uni-
verse density field they map. Indeed, we aim at showing the orthogonality
of the derived cosmological constraints and the resulting impressive power
of the combination of these probes. To perform this combination we apply
three newly implemented algorithms that allow us to combine independent
probes. These algorithms represent a flexible and user-friendly tool to per-
form different techniques for probe combination and are implemented within
the environment provided by the large set of free software C++/Python
CosmoBolognaLib (Marulli et al., 2016). The usage of the new implemented
codes is not obviously limited to the exploitation of cluster and void abun-
dances presented in this work: they will be applied in the near future to a
vast variety of cosmological probes, extending the analysis also to correlated
probes, as already been done in e.g. Webster et al. (1998), Gawiser & Silk
(1998), Bridle et al. (1999) and DES Collaboration (2019). The probe com-
bination represents indeed a powerful tool to maximise the synergies between
different probes and to possibly shed light on the tensions that are currently
threatening the ΛCDM model (see e.g. Di Valentino et al., 2020a,b,c,d, for
an extended review).

This Thesis is organised as follows:

• in Chapter 1 we introduce the theoretical background upon which the
Standard Cosmological Model is based;

• in Chapter 2 we present the linear growth of perturbations, from which
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galaxy clusters and cosmic voids form and evolve. In this Chapter we
also give a description of the main statistical properties of the LSS as
well as the main numerical algorithms employed to carry out cosmo-
logical simulations;

• in Chapter 3 we present how to exploit galaxy clusters and cosmic voids
as cosmological probes. We present the theoretical models of the halo
mass function and the void size function, with which we can predict
the abundance of clusters and voids, respectively. We introduce then
different finding algorithms for haloes and cosmic voids, describing the
preparation of the catalogues used in this work;

• in Chapter 4 we first introduce the C++/Python libraries CosmoBolog-
naLib, which offer the numerical environment to carry out the en-
tire analysis. Then we describe the fundamental concepts of Bayesian
statistics required for the cosmological parameter estimation. We then
present the methods and the new implemented algorithms to perform
the combination of independent probes. In particular, the exploited
techniques are: the Posterior Product, the Importance Sampling and
the Posterior as Prior method;

• in Chapter 5 we apply and compare the implemented algorithms to
combine the number counts of galaxy clusters and cosmic voids, iden-
tified in the Magneticum Pathfinder simulations, at 0.2 ≤ z ≤ 2. We
present the calibration procedures applied to the theoretical models to
predict correctly the abundance of the analysed objects. By perform-
ing a Bayesian Markov Chain Monte Carlo analysis, we obtain the joint
posterior distributions in the parameter space Ωm − σ8 by exploiting
individually the halo mass function and the void size function. Then
we combine the latter with the proposed algorithms obtaining remark-
ably tighter constraints and showing their effective constraining power
as complementary probes;

• in Chapter 6 we summarise the scientific problem on which this Thesis
is focused and outline the main analyses performed. Also, we discuss
about the different caveats and approximations adopted in this work,
as well as possible future applications of this methodology to wide-field
surveys;

• Finally, in Appendix A we test the hypothesized independence between
the halo mass function and the void size function, by computing their
cross-covariance matrix with a Jackknife resampling technique.

3



Figure 1: The spatial distribution of the baryonic matter at z = 0 in the
simulated comoving cosmological Box1, which represents a total volume of
(896 Mpc/h)3, from the Magneticum Pathfinder Simulation. The image
shows a 100 Mpc h−1 thick and 1300 Mpc wide slice of this box. The colour,
going from dark to light, indicates the gas temperature from cold to hot,
while the stellar component is coloured in white. The typical features of the
large-scale structure can be clearly seen: galaxy clusters, filaments and voids.
Credits to Dolag et al. (2015).
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Chapter 1

Cosmological framework

The study of the physical properties of our Universe is a very wide subject of
research, going from planets in our Solar System, to galaxies orbiting around
clusters of galaxies. Cosmology focuses on the largest scales of our Universe,
considering the latter as a whole. Moreover, thanks to the cosmological
model, that is the framework we are going to describe in this first Chapter,
it is possible to predict how the large-scale structures evolve from an initial
configuration. Until the 18th century, this field of study was only speculative,
since no observational validations were available. Indeed, the first quantita-
tive estimates of the structure of the local Universe were made by William
Herschel in the late 18th century, based on the counts of stars in the sky.
The introduction of the photography to record astronomical images, together
with the advent of bigger and bigger telescopes led to a complete revolution
in Cosmology. With these technologies it has been possible to resolve distant
nebulae and stars, and to study their properties in deep details. The study
of variable Cepheid stars inside globular clusters, that are gravitationally
bounded groups of thousands of stars, led to the observational discovery of
the period-luminosity relation of variable stars by Henrietta Leavitt (Leavitt
& Pickering, 1912), from which it was possible to estimate with high precision
the distances of astronomical objects. In 1926, thanks to the Leavitt’s rela-
tion, Edwin Hubble was able to measure the distance of spiral nebulae (what
we today call galaxies), given the first description of them as extragalactic
objects (Hubble, 1925, 1926).

A decade before, Albert Einstein developed the General Theory of Rel-
ativity, which completely revolutionised our understanding of gravity as a
bending of spacetime due to the presence of massive objects. This theory be-
came the theoretical foundation of Cosmology, and the works of Friedmann,
together with Einstein, de Sitter and Lemaître showed that the Einstein’s
equations, when applied to the study of the Universe, could predict also a
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space in expansion. In 1929, Edwin Hubble discovered the distance-redshift
relation, which led to the discovery of the expansion of the Universe. From
that time Cosmology evolved very rapidly, and today we can analyse the
property of the Universe on very large scales with high precision, both with
data coming from observations of deep surveys, or with large cosmological
simulations.

We start by describing the fundamental principles on which Cosmology
is based. Then we describe in details the Friedmann-Lemaître-Robertson-
Walker metric, which allows to obtain a general solution to the Einstein’s
equations, regarding a theoretical description of our Universe. Finally, we
will describe the standard cosmological model, which is nowadays the most
reliable model to describe the observed properties of the large-scale struc-
tures.

1.1 The cosmological principle
Nowadays we can see that our Universe looks isotropic on scales greater than,
roughly, 100 Mpc (where 1 Mpc = 106pc ≈ 3.09 · 1013 km). This principle
tells us that on large scales there is no preferred directions or locations, and
that does not exist a centre of the Universe. On smaller scales the Universe
manifests itself as clumpy and particularly inhomogeneous. Indeed, let us
grow a sphere of increasing radius around us. Most of the spheres of radius
3 AU (where 1 AU ≈ 1.5 × 108 km, roughly the distance from Earth to the
Sun) will not contain any stars, and most of the spheres 3 Mpc across will not
contain a pair of bright galaxies. Only if we consider spheres having a radius
greater than 100 Mpc, then they will contain statistically the same pattern
of clusters and voids. Due to the symmetries that this principle implies, we
can set a cosmological time which allows us to have a reference time to study
the Universe dynamics.

1.2 Fundamentals of General Relativity
On very large scales the predominant interaction between massive bodies such
as galaxies and galaxy clusters is the gravitational interaction, briefly gravity.
For more than two centuries the theory proposed by Isaac Newton has been
the leading theory in describing gravitation, and even nowadays this theory
is an excellent approximation of gravity in most of the classical applications.
In this fashion, the gravitational force exerted on a body depends only on
its mass and its distance from the gravitational source. Before Newton’s
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discoveries, no one imagined that the force that makes an apple fall to the
ground was the same force that holds planets in orbit around the Sun.

In 1905, the so-called Annus Mirabilis, Albert Einstein, aware of the fact
that the Newtonian mechanics was no longer enough to reconcile the laws
of classical mechanics with the electromagnetic laws, developed the theory
of Special Relativity. In this new theory the speed of light in the vacuum
is the same for all the observers, regardless of the relative motions between
them and light. Another consequence of the Einstein’s theory was that no
information could propagates faster that the speed of light. One particular
characteristic of the gravitational interaction introduced by Newton is that
the force undergone by a body is instantaneous, and that means that the
Newtonian gravity was incompatible with Special Relativity. Einstein took
11 years to develop the General Theory of Relativity, which is nowadays
the best theory that describes gravity, hence the fundamental theory behind
cosmology.

In General Relativity space and time blend together in the concept of
spacetime, and so there is no longer a universal clock that marks the passing
of time. A generic point in spacetime, called event, is described by a 4-vector
x, which in cartesian coordinates is written as

x =


x0

x1

x2

x3

 ≡

ct
x
y
z

 ≡ xµ, for µ = 0, 1, 2, 3 , (1.1)

where x0 = ct it is the time coordinate of the spacetime event and t is the
proper time, i.e. the time measured by a clock that is comoving with the
observer. A trajectory γ of a body in spacetime is called wordline.

The theory of General Relativity totally upset the paradigms on gravity,
in fact the latter is no longer a force, but it is a natural consequence of
the curvature of spacetime. The geometry of spacetime is described by the
metric tensor gµν , which allows to determine the distance ds2 between two
infinitesimal close events labelled xj = (ct, x, y, z) and xj+dxj = (ct+cdt, x+
dx, y + dy, z + dz):

ds2 = gµνdx
µdxν . (1.2)

Applying the principle of least action, one can obtain the laws of motions for
free-particles, called geodesics, which are no longer straight lines due to the
curvature of spacetime. Therefore varying the action S on a worldline γ:

δS[γ] = δ

∫
γ

ds = δ

∫
γ

√
gµνdxµdxν ,
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leads to the geodetic equations:

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 . (1.3)

Here the Γµαβ coefficients are the Christoffel symbols, also known as the Levi-
Civita connections related to the first partial derivative of the metric tensor
components.

The geometry of the spacetime is connected to the content of energy and
matter, which is described by the stress-energy tensor Tµν , in the famous
Einstein field equations (EFE):

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.4)

where G represents the universal gravitational constant, c the speed of light,
while Rµν and R are the Ricci tensor and scalar curvature, respectively,
defined starting from the Riemann tensor :

Rµν = Rδ
µδν ,

R = Rµ
µ = gµνRµν .

The Riemann tensor is related to the first derivative of the Christoffel symbols
and so to the second derivative of the metric tensor components, and describe
the intrinsic curvature of the spacetime.

Regarding the RHS of Eq. (1.4), the Universe can be modelled as a perfect
fluid with pressure p and energy density ρc2, so the energy momentum tensor
can be expressed as:

Tµν = −pgµν + (p+ ρc2)uµuν , (1.5)

where uµ is the generic component of the quadrivelocity, defined as u =
dx

dt
,

with x the 4-position of the relation (1.1).

1.3 The Friedmann-Lemaître-Robertson-Walker
metric

In order to describe our Universe within a physical model, we have to find
a solution to the Einstein field equations that includes all the different as-
pects of the cosmological principle. The different components of the EFE
depend only on the metric of the spacetime, and so giving a solution to these
equations means finding a suitable metric for the problem.
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From the CP, starting with the metric given as Eq. (1.2), the mixed terms
g0i need to be null, so we can write:

ds2 = c2dt2 − gijdxidxj = c2dt2 − dl, i = 1, 2, 3 . (1.6)

In this case gij are the spatial metric tensor components. Any point in space-
time is marked by three comoving spatial coordinates xi for i = 1, 2, 3 and
one comoving time coordinate t, where comoving means at rest with the
expansion of the Universe, so that an observer, placed at the centre of this
reference system, sees the latter expanding uniformly around him.

The only geometrical spaces that satisfy the Cosmological Principle are
the flat Euclidean space, the sphere and the hyperboloid. Let us now con-
sider the spherical coordinates (ρ, θ, φ), related to the Cartesian ones, by the
transformation: 

x1 = ρ sin θ cosφ

x2 = ρ sin θ sinφ

x3 = ρ cos θ ,

(1.7)

where the ranges of values are 0 ≤ ρ <∞, 0 ≤ θ < π and 0 ≤ φ < 2π.
For the case of a flat Euclidean space the distance between two points,

hence the metric, becomes:

dl2 = dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2 . (1.8)

Now let us define the scale factor a as:

ρ ≡ ar , (1.9)

in such a way that a has the dimension of length and r has no dimension.
Therefore Eq. (1.8) reduces to:

dl2 = a2(dr2 + r2dθ2 + r2 sin2 θdφ2) = a2(dr2 + r2dΩ2
2) , (1.10)

where dΩ2
2 = dθ2 +sin2 θdφ2 is the metric of the unitary 2-sphere. In practice

all the 3D space is made by concentric spheres having radius r.
The metric for the 3-sphere, that is a space with a positive intrinsic

curvature, is of the form:

ds2 = a2(dχ2 + sin2 χdΩ2
2) . (1.11)

Now let us define the radial coordinate r ≡ sinχ, so that its differential
becomes dr = cosχdχ. With this substitution, the metric is:

dl2 = a2
( dr2

1− r2
+ r2dΩ2

2

)
. (1.12)

9



The case for the hyperboloid is very similar to the 3-sphere, unless that the
trigonometric functions are hyperbolic, and now r ≡ sinhχ :

dl2 = a2(dχ2 + sinh2 χdΩ2
2) = a2

( dr2

1 + r2
+ r2dΩ2

2

)
. (1.13)

One can easily find the general expression that summarises the three metrics
found in equations (1.10), (1.12) and (1.13):

dl2 = a2
( dr2

1− κr2
+ r2dΩ2

2

)
, (1.14)

where we have introduced the curvature parameter κ, which is constant and
can assume only three values, depending on what the intrinsic curvature is:

κ = 1 positive curvature
κ = 0 zero curvature;
κ = −1 negative curvature.

By adding the time component of the metric, we obtain the functional form
of the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = c2dt2 − a(t)2
( dr2

1− κr2
+ r2dΩ2

2

)
, (1.15)

where a = a(t) is the cosmic scale factor and has the dimensions of a length
and (r, θ, φ) are the comoving dimensionless coordinates. This metric rep-
resents the infinitesimal distance between two events of a perfectly homoge-
neous and isotropic 4D-spacetime.

The scale factor is a dimensional function of time which describes how
distances grow or decrease with time, while the curvature parameter is related
to the Gaussian curvature κG:

κG =
κ

a2
.

The assumptions of homogeneity and isotropy for the metric are very strong
and powerful. Indeed in this case all we have to know about the geometry and
the expansion of the Universe are the scale factor a(t) and the curvature κ.
This clearly represents an approximation, because the CP holds only for the
largest scales in the Universe. At smaller scales, the expansion is not uniform
everywhere and we observe matter lumps held together by the gravitational
force, such as galaxies and clusters of galaxies.
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1.4 The Hubble-Lemaître law
In Cosmology there is no longer a unique way to assign a value for the distance
between two points, because the Universe’s size changes with time. If we want
to measure the distance between us and a given galaxy, we must specify the
time at which the measurement is performed, i.e. we must know the value
of the scale factor at that moment in time. The most simple definition of
it is the proper distance, which is the length of the spatial geodesics passing
between the two points, considering the scale factor fixed at a = a(t). We can
obtain the proper distance between the observer, placed at the origin, and
a galaxy placed at comoving coordinates (r, θ, φ) by integrating the FLRW
metric (1.15) in the case of dt = dθ = dφ = 0:

dpr(t) = a(t)F (r) = a(t)

∫ r

0

dr′√
1− κr′

. (1.16)

Depending on what the curvature is, the value of the integral becomes:

F (r) =


sin−1 r; κ = +1

r; κ = 0

sinh−1 r; κ = −1

(1.17)

Consequently, the proper distance is a simultaneous measure with a chain
of rulers connecting the two points at a given time t, hence it does not take
into account the speed at which information travels.

We can also define a comoving distance, which does not depend on the
expansion of the Universe, as the proper distance computed today (t = t0):

dc = dpr(t0) = a(t0)F (r) =
a(t0)

a(t)
dpr(t) . (1.18)

In order to estimate how fast two points drift apart as a consequence of
the expansion, let us derive the proper distance with respect to the time
coordinate:

v =
ddpr(t)

dt
= F (r)ȧ(t) + a(t)Ḟ (r) = F (r)ȧ(t) ,

since Ḟ (r) = 0. Here the dot notation represents the derivation with respect
to time.

From the definition of proper distance we obtain:

v =
ȧ(t)

a(t)
dpr ≡ H(t)dpr . (1.19)
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The latter equation is called the Hubble-Lemaître law, and determines the
velocity with which different bodies in spacetime drift apart with respect
to each other due to the expansion of the Universe. The proportionality
between the velocity and the proper distance is given by the so-called Hubble
parameter :

H(t) ≡ ȧ(t)

a(t)
. (1.20)

which has the same value for all the points in the Universe at a fixed time.

Figure 1.1: The distance-velocity relation of extragalactic sources originally
obtained by Hubble in 1929 (left panel) and a more modern version of it
obtained by Freedman et al. (2001) (right panel). The latter is achieved
by precisely measuring the distance of Cepheid stars from observations of
the Hubble Space Telescope. Credits to Hubble (1929) and Freedman et al.
(2001).

Its value at the present time, indicated with H0, is called Hubble constant. It
is a fundamental cosmological parameter, because it sets the scales of time
and distance in our Universe. The unit of measure of H0 is s−1, i.e. an inverse
of the time, however it is commonly expressed in terms of km s−1 Mpc−1, so
that a galaxy 1 Mpc distant from us has a recession velocity of H0 km s−1.
The value of H0 is of fundamental importance in Cosmology, and its name
derives from the pioneering works of Edwin Hubble, who in 1929 discovered
the expansion of the Universe from the observations of 34 distant galaxies
for which velocities had been measured, all within 2 Mpc from our Galaxy.
His first estimate of this constant was H0 ' 500 km s−1 Mpc−1, but he was
wrong by about a factor of 7. Indeed, his measurements were done with
many approximations, but still he succeed to obtain the distance-velocity
relation (Hubble, 1929). In Figure 1.1 it can be seen the original plot of this
relation obtained by Hubble, together with a modern version of it obtained
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by Freedman et al. (2001). This relation tells us that the more galaxies are
distant, the more they drift apart from us with greater velocity.

Over the past 25 years many efforts have been made to estimate the
value of H0. However, the precision with which modern measurements are
performed has led to the rise of tensions on the values of H0 between different
type of measurements (see Section 1.10.1). Because of these discrepancies
we will express cosmological quantities as a function of the parameter h(t),
defined as

h(t) =
H(t)

100
km s−1 Mpc−1 , (1.21)

which allows us to set a theoretical model independent of the exact value of
the Hubble constant.

Lastly, the inverse of the Hubble constant H0, known as the Hubble time
τH , provides a rough estimate of the age of the Universe. It reflects the time
since a linear cosmic expansion has begun (extrapolating a linear Hubble
Law back to time t = 0). Setting H0 = 70 kms−1 Mpc−1, the age of the
Universe is approximated as τH ' 14 Gyr (where 1 Gyr = 109 yr).

1.5 The cosmological redshift
The global motion of objects in the Universe with respect to each other, due
to its expansion, is called Hubble flow. One of its consequences is that the
electromagnetic radiation coming to us from very distant objects is reddened,
i.e. it is shifted towards longer wavelengths. This phenomenon, similar to the
Doppler effect of sound waves, is called the redshift of the electromagnetic
spectrum.

Let us consider an electromagnetic source that emits light at a specific
monochromatic wavelength λem. With this value we indicate the value of
the wavelength at rest with respect to the source. Let us indicate the shifted
wavelength of the radiation which arrives to the observer as λobs. The redshift
z of the electromagnetic radiation can be defined as:

z ≡ λobs − λem
λem

=
∆λ

λ
, (1.22)

which in principle can be less than zero (blueshift), indicating that the source
is approaching the observer, or greater than zero (redshift), when the source
is receding.

Now, let us consider tem as the time at which the source emitted the
radiation, and tobs the time at which the observer, at a distance r, received
it. By definition, photons move along null geodesics, which are denoted by
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ds2 = 0. Considering the FLRW metric (1.15) and taking dθ = dφ = 0
(radial motions only), a null geodesics satifies

c2dt2

a(t)2
=

dr2

1− κr2
, (1.23)

which can be integrated along the path followed by the photon:∫ tobs

tem

cdt

a(t)
=

∫ r

0

dr√
1− κr2

= F (r) . (1.24)

Now, let us assume that a second photon is emitted by the same source
at a time t̃em = tem + δtem

1 and that it is received by the observer at the
time t̃obs = tobs + δtobs. By the fact that both the source and the observer
are moving with the cosmological expansion, the integral F (r) stays fixed in
time because r does not change.

From Eq. (1.24) we get

δtobs
a(tobs)

=
δtem
a(tem)

. (1.25)

Since δt = 1/ν and λν = c, we can write

λobs
λem

=
a(tobs)

a(t)
,

which leads to the relation between the redshift and the scale factor:

1 + z =
a0

aem
, (1.26)

where a0 = a(tobs).
Since the Universe is expanding, the scale factor grows, thus the redshift

is positive and the distant galaxies move away from us. This type of redshift
is called cosmological, in order to distinguish it from local phenomena that
contribute to the shift of the electromagnetic radiation, e.g the radial proper
motion of galaxies or the gravitational redshift due to the dilation of time in
the potential wells of massive objects such as black holes and quasars. The
observed redshift is a combination of these three types of redshifts. From the
Doppler effect, we can link the redshift to the radial velocity of the source
with respect to the observer:

z ' vr
c
. (1.27)

1Here with δt we indicate an infinitesimal interval of time, such that δt� t.
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The peculiarity of the cosmological redshift is that z can also be greater than
unity, which is impossible for radial motions because vr < c. This can happen
because the expansion of the spacetime that separates the galaxies can be
faster than the speed of light.

From Eq. (1.27) and considering distances D � c/H0, the Hubble-
Lemaître law results:

z ' H0D

c
, (1.28)

which again tells us that the redshift of distant galaxies increases with their
distance.

1.6 Cosmological distances
We have shown how the comoving coordinates, i.e. the FLRW metric, are
connected to the concept of proper distance. The latter is the measure of
distance between events happening at the same proper time, so it is easy to
realize that this measure is physically impossible to make.

Cosmology is based on observations, therefore it is useful to define a way
to compute distances from the observational properties of galaxies, such as
their redshift, as well as their flux or their angular diameter. One way of us-
ing measured properties to assign a distance is the standard candle method.
A standard candle object is an object with known luminosity L. In princi-
ple, if there exist objects with the same intrinsic luminosity throughout the
spacetime, one can compute their distance, called luminosity distance, by
measuring their flux f , i.e. their luminosity per unit area:

dL =
( L

4πf

)1/2

. (1.29)

The flux of the source, measured by the observer placed at P0 at time t0, can
be expressed as:

f =
Lobs
4πd2

. (1.30)

The denominator is the surface area of a sphere centred in P0. This surface
is dilated by the Universe expansion, so we have to write it as: 4πd2 =
4πa2(t0)r2. Moreover, the light coming from the source is being redshifted,
therefore we have to take it into account in the luminosity calculation. The
emitted luminosity is defined as the rate of change of the energy of the source:

Lem =
dE

dt
. (1.31)
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As one can see from Eq. (1.25), photons emitted by the source in a small
interval δtem arrive to the observer in an interval δtobs = (a0/a)δtem. Taking
these two effects into account we can rewrite Eq. (1.31) as:

Lem = Lobs

( a0

aem

)2

, (1.32)

so that the flux l becomes

f =
Lobs

4πa2
0r

2
=

Lem
4πa2

0r
2

(aem
a0

)2

. (1.33)

In order to preserve the Euclidean inverse-square law for the diminution
of luminosity with distance from a point source, the luminosity distance is
defined as

dL ≡
a2

0r

aem
= a0r(1 + z) . (1.34)

Another method to compute distances from observational properties is the
standard rulers method, in which we observe objects with known intrinsic
dimension ` ≡ Dpr. Suppose the standard ruler is aligned perpendicularly
to the line of sight, and indicating with ∆θ its angular extension, then we
can compute the so-called angular-diameter distance dA as dA = Dpr

∆θ
. The

distance between the two ends of the ruler, at a given time t corrisponding to
the emission of the radiation from the source, can be found with the FLRW
metric as

ds = a(t)r∆θ . (1.35)

From the fact that we know a-priori the length ` of the ruler, we can set
` = ds, and so the latter becomes:

` = a(t)r∆θ , (1.36)

from which it is possible to derive the following expression for the angular-
diameter distance:

dA ≡
`

∆θ
= ar . (1.37)

By comparing the luminosity distance with the angular diameter distance,
we can obtain the duality relation:

dL
dA

= (1 + z)2 . (1.38)

Thus, if one observes an object which is both a standard ruler and a stan-
dard candle, its angular-diameter distance will be smaller than its luminosity
distance.
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Theoretically, this relation could be used to study the deviation of the
metric from the FLRW, and hence to test the Cosmological Principle. The
ideal way to test the duality relation is to work with both standard rulers
and standard candles, without using a specific cosmological model (Holanda
et al., 2012). A prominent approach is the observation of massive galaxy
clusters, which allow to obtain both the angular diameter distance and the
luminosity distance from the Sunyaev-Zel’dovich effect (SZ) 2 and their X-ray
observations (Uzan et al., 2004).

1.7 The deceleration parameter
In order to study the cosmic scale factor as a function of time, we can expand
it in Taylor series around t = t0:

a(t) = a0 + da(t)
dt

∣∣∣
t=t0

(t− t0) +
1

2
d2a(t)

dt2

∣∣∣
t=t0

(t− t0)2 + . . .

= a0

[
1 +

ȧ0

a0

(t− t0) +
ä0

2a0

(t− t0)2 + . . .
]
.

(1.39)

To reproduce exactly the scale factor as a function of time we would need an
infinite number of terms. However, if a(t) does not fluctuate widely with t,
then the Taylor expansion up to the second term will give a good approxi-
mation in the vicinity of t = t0.

In the last expression the Hubble constant is the coefficient of the linear
part of the series. Let us define the dimensionless deceleration parameter as:

q ≡ − äa
ȧ2
. (1.40)

Therefore the Taylor series of a(t) reduces to:

a(t) = a0

[
1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 + . . .

]
, (1.41)

where q0 = q(t0).
The deceleration parameter is another crucial cosmological parameter,

which expresses the second-order derivative w.r.t. time of the scale factor.
2Galaxy clusters contain a large quantity of ionised gas, which emits in the X-ray band

through bremsstrahlung. The interaction between CMB photons with energetic electrons
belonging to this gas can modify the spectral distribution of the CMB, causing a decrement
in the CMB brightness at low frequencies and an increment at high frequencies (Sunyaev
& Zeldovich, 1972).
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It is defined with the minus sign, therefore it has a positive value when the
Universe undergoes a decelerated expansion (ä < 0).

The Taylor expansion of Eq. (1.39) is physics-free, which means that it
is simply a mathematical expression of how the Universe expands at a times
t ∼ t0, and says nothing about the forces that drive this expansion. The
two cosmological parameters H0 and q0, therefore, are only descriptive of the
kinematics of the Universe, regardless of the underlying cosmological model
that describes the expansion of the Universe.

1.8 The Friedmann equations
In their well-known works, Einstein (1917) and de Sitter (1917), starting from
General Relativity, obtained two possibile types of the Universe. Einstein
obtains the so-called cylindrical spacetime, in which space has a constant,
time-independent curvature, where the radius of curvature is connected to
the total mass of matter present in space, while de Sitter obtained a spherical
spacetime in which not only space is curved, but the whole spacetime has its
own constant curvature.

It was already known from 1917 that the EFE (Eq. (1.4)) were not
compatible with the hypothesis of a static Universe. Indeed, starting from
them, choosing the FLRW metric and a perfect-fluid stress-energy tensor,
one finds only two independent equations, called the first and the second
Friedmann equations, which can be expressed as:

I : ä = −4πG

3

(
ρ+

3p

c2

)
a

II : ȧ2 + κc2 =
8π

3
Gρa2 .

(1.42)

The second Friedmann equation can be obtained from the first one the adi-
abatic condition, which in the cosmological context takes the meaning of an
adiabatic expansion of the Universe:

dU = −pdV , (1.43)

where U is the internal energy of the Universe. This latter condition can be
also expressed as:

d(ρc2a3) = −pda3 . (1.44)

In order to have a static Universe, one has to require that ä = 0. From the
first Friedmann equation, this translates into

−4πG

3

(
ρ+

3p

c2

)
a = 0 ,
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which leads to:
ρc2 = −3p . (1.45)

Therefore, to have a static, perfect-fluid, Universe described by the FLRW
metric, the density of energy ρc2 and the pressure must have discordant sign.
This inevitably leads to one of the two having a negative signs, which is
impossible, from the positive definition of these two physical quantities.

Considering ρ+ 3p
c2
> 0 what follows is a negative acceleration of the scale

factor. Therefore the model based only on the classical EFE predicts an
unstable Universe that collapses under its own weight, and this is in contrast
with the astrophysical observations.

1.8.1 The cosmological constant

In order to recover a static Universe following from his equations, Einstein in
1917 introduced a constant Λ, called the cosmological constant, in Eq. (1.4):

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν . (1.46)

With a suitable choice of Λ, which has to be small enough not to change the
planetary motion in our Solar System, one can obtain a static model for our
Universe.

The effect of this additional term in the EFE is repulsive. From a New-
tonian point of view, the cosmological constant leads to a repulsive force on
a test particle proportional to its distance.

Nowadays, we know that our Universe is expanding, therefore the cosmo-
logical constant should not be necessary. However, from the observations of
the flux of distant type Ia supernovae (SNIa) (Riess et al., 1998; Perlmutter
et al., 1999) we know that the expansion of our Universe is now accelerated.
Therefore we need again the cosmological constant in EFE, which takes dif-
ferent meanings depending on its position in the Einstein equations:

• LHS (left hand side): interpretation of Λ as a geometrical modification
of gravity, as described by GR;

• RHS (right hand side): interpretation of Λ as an additional energy
component, called Dark Energy (DE, hereafter), responsible for the
accelerated expansion of our Universe.

The first physicist who studied the dynamical solutions for the EFE with
the addition of Λ was Alexander Friedmann, which described the expansion
or contraction of an isotropic homogenous Universe as a function of time
(Friedman, 1922).
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Considering Λ on the RHS, we can re-write Eq. (1.46) as:

Rµν −
1

2
gµνR =

8πG

c4
T̃µν , (1.47)

where now the effective energy-momentum tensor is

T̃µν = −p̃gµν + (ρ̃c2 + p̃)uµuν , (1.48)

and the effective density and pressure are:
p̃ = p− Λc4

8πG
= p+ pΛ;

ρ̃ = ρ+
Λc2

8πG
= ρ+ ρΛ .

(1.49)

Having EFE expressed as (1.47), the Friedmann equations becomes:

ä = −4πG

3
(ρ̃+

3p̃

c2
)a (1.50)

ȧ2 + κc2 =
8πG

3
ρ̃a2 . (1.51)

This is the so-called Einstein Universe model. Indeed, the addition of Λ
permits a static Universe:

ȧ = 0

ä = 0

⇐⇒ Λ =
κ

a2
.

However this model puts a restriction on the curvature of the spacetime.
Considering the ordinary total density ρ and considering the expression found
for Λ one finds:

ρ = ρ̃− ρΛ =
κc2

4πGa2
. (1.52)

In order to have a positive total ordinary density:

ρ > 0 ⇐⇒ κ > 0⇒ κ = +1 . (1.53)

Therefore, in the Einstein model the curvature is necessarily positive. The
latter fact poses another important restriction on the value of the cosmolog-
ical constant. Recovering a from Eq. (1.52) one finds:

Λ =
4πGρ

c2
. (1.54)
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1.8.2 The density parameter

From the second Friedmann equation (1.42), we can derive the curvature
parameter κ:

κ

a2
=

1

c2
H(t)2

( ρ
ρc
− 1
)
. (1.55)

Here we have defined the critical mass density ρc as:

ρc(t) ≡
3H(t)2

8πG
. (1.56)

The latter corresponds to the value of the mass density required to have a
flat Universe (κ = 0), and can be used to define the dimensionless density
parameter :

Ω(t) ≡ ρ(t)

ρc(t)
. (1.57)

From this definition, considering Eq. (1.55), we find that the curvature κ is
strictly related to the density parameter, therefore the latter determines the
curvature of the Universe:

κ = −1 ⇐⇒ Ω(t) < 1;

κ = 0 ⇐⇒ Ω(t) = 1;

κ = +1 ⇐⇒ Ω(t) > 1 .

(1.58)

The value of the critical density calculated today (t = t0) depends on the
Hubble constant H0. The value for ρc,0 ≡ ρc(t0) is:

ρc,0 ' 1.9 · 10−29 h2 g cm−3 . (1.59)

If the Universe has today a density greater than this value, which means
Ω(t) > 1, then it is positively curved. If ρ0 < ρc,0 then the curvature is
negative and the space is hyperbolic.

From the definition of Ω, the second Friedmann equation can be rewritten
as

1− Ω(t) = − κc2

a2(t)H(t)2
. (1.60)

Note that the right hand side of this equation cannot change its sign during
the expansion of the Universe, thus neither can the left hand side. This
is a fundamental relation, indeed it follows that a Universe governed by
the Friedmann equations cannot change its geometry during its evolution.
Therefore, if we do observe a flat Universe, it is necessary that it was flat
also at very high redshifts with huge precision. Surprisingly, this is our case,
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in fact multiple observations show that |Ω0 − 1| < 0.01 (Komatsu et al.,
2009, 2011; Planck Collaboration et al., 2020). This is the so-called flatness
problem, which is a fine-tuning problem. Among an infinite spectrum of
values for the density parameter of our Universe, it is extremely surprising
to find it so “finely tuned” to the unity. The age of the Universe is so large
that any tiny departure from the perfect flatness at high redshifts would have
produced a huge curvature (open or closed), which would not have allowed
the existence of the large-scale structures that we observe today, together
with our own existence.

From the conservation of the sign of the density parameter, the conditions
of Eq. (1.58) can be expressed in terms of its current value Ω0 ≡ Ω(t =
t0). Consequently, it is of extreme importance having increasingly precise
measurements of this parameter, from which we can understand the overall
curvature of our Universe.

1.9 The general Friedmann model
The Friedmann equations, along with the adiabaticity relation expressed in
Eq. (1.44), describe a perfect fluid and allow to calculate the time evolution of
a(t), as well as ρ(t) and p(t). In order to solve these equations it is necessary
to introduce an equation of state (EoS) for the different fluids composing the
Universe. The two hypotheses we had set are the CP and the perfect fluid
approximation, thus the pressure of the fluid can only be isotropic.

Perfect fluids, at rest, are completely described in terms of their energy
density ρc2 and pressure p, from which we can define a general equation of
state as:

p = wρc2 , (1.61)

where w is related to the sound speed:

cs =
(∂p
∂ρ

)1/2

S
= c
√
w .

Here the subscript S indicates that we are evaluating cs at constant entropy.
The parameter w lies in the so-called Zel’dovich interval :

0 ≤ w < 1 , (1.62)

in which cs maintains a physical sense.
The value of w changes depending on the different components that fill

the Universe. The latter can be divided in two families: relativistic and
non-relativistic components.
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The first is the dust component, and corresponds to a non-relativistic
perfect fluid of matter. Non-relativistic means that the random thermal
motions of the particles have peculiar velocities which are tiny compared to
the speed of light. Such non-relativistic gas is described by the perfect fluid
law:

p =
ρ

µ
kBT ,

where ρ is the mass density of the gas, kB = 1.38 · 10−16 erg K−1 is the
Boltzmann constant, T the temperature and µ is the mean mass of the gas
particles.

Let us consider a perfect gas composed of particles having mass mp. The
thermal energy associated to a single particle is kBT , while its energy, as-
sociated to its rest mass, is mpc

2, which is usually is much larger than the
thermal energy. Thus, the pressure for a such perfect gas is

p =
kBT

mpc2
ρc2 ≈ 0 .

Hence it is described by an EoS with w = 0.
The second case is the radiation component, representing an ultra-relativistic

non-degenerate fluid of massless particles. Although the particles are mass-
less, they exhert a pressure due to their momentum. The equation of state
of photons, or of any other relativistic gas is

pr =
1

3
ρrc

2 =⇒ w =
1

3
,

where pr and ρr are, respectively, the radiative pressure and the radiative
density.

We will refer to the component of the Universe which consists of non-
relativistic particles (and hence has w = 0) as “matter”, while we will refer
to the component which consists of photons and other relativistic particles
(so that w = 1/3) as “radiation”.

The first Friedmann equation, considering p = wρc2, can be rewritten as

ä = −4π

G
ρ
(
1 + 3w

)
a , (1.63)

hence a component having w < −1/3 will provide a positive acceleration.
A component of the Universe having w < −1/3 is generically called “dark
energy”, and may be associated, as we already mentioned, to the cosmological
constant Λ. From the first of Eq. (1.49) we see that the equation of state
associated with the Λ component is:

pΛ = −ρΛc
2 =⇒ w = −1 , (1.64)
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where ρΛ = Λc2

8πG
.

From the combination of the adiabatic condition and the EoS one finds:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w) , (1.65)

which describes how the densities of the different components of the Universe
vary with cosmic time.

For the dust component w = 0, therefore:

ρm = ρ0,m(1 + z)3 , (1.66)

while for the radiation component w = 1/3:

ρR = ρ0,R(1 + z)4 . (1.67)

The Λ-density component is constant in time, as one can clearly see by
replacing w = −1 in (1.65):

ρΛ = ρ0,Λ(1 + z)0 = ρ0,Λ . (1.68)

As we have just seen, the density components evolve differently with cosmic
time. This implies that in the different cosmic epochs there could be a domi-
nating component. Furthermore, by equalizing the different ρw components,
one can compute the specific redshift at which they were balanced. As an
example, at very high redshift the radiation component dominates over mat-
ter and Λ, while nowadays ρr is negligible and the dominant component is
Λ.

Recalling the density parameter, now we can define a total density pa-
rameter for a multi-component Universe as:

ΩTOT (t) = Ωm(t) + Ωr(t) + ΩΛ(t) , (1.69)

where:
Ωm(t) =

8πG

3H2(t)
ρm(t), Ωr(t) =

8πG

3H2(t)
ρr(t) , (1.70)

and:
ΩΛ(t) =

8πG

3H2(t)
ρΛ(t) =

Λc2

3H2(t)
(1.71)

are the density parameters related to the different components.
Now it is useful to re-write the second Friedmann equation in terms of

Ω, H and z, which are more representative parameters of the observable
Universe:

H2(z) = H2
0 (1 + z)2

(
1−

∑
i

Ω0,wi
+
∑
i

Ω0,wi
(1 + z)1+3wi

)
, (1.72)
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where H(z) is the Hubble parameter at a generic redshift,
∑

i Ω0,wi
= ΩTOT,0

is the sum of all the different components density parameters with corre-
sponding parameters wi. The quantity 1−

∑
i Ω0,wi

= Ω0,κ is related to the
curvature of the Universe and it is called curvature density parameter.

Now, let us rewrite the first Friedmann equation, recalling the EoS p =
wρc2:

ä = −4πG

3
(1 + 3w)a . (1.73)

This equation implies that, if w lies in the Zel’dovich interval, the acceleration
of the scale factor is a negative function of time, e.g. ä(t) < 0.

Additionally, we can write Eq. (1.73) for a multi-component Universe,
and find an interesting relation between the deceleration parameter defined
in Section 1.7 and the density parameters. Indeed, by substituting in it the
critical density of Eq. (1.56) we can write

ä

a
= −1

2
H2
∑
i

(
Ωi + 3wi

)
, (1.74)

which can be rewritten in terms of q ≡ − äa
ȧ
≡ ä

H2a
, by dividing each side

of the last equation by H2:

q(z) =
1

2

∑
i

(
Ωi + 3wi

)
. (1.75)

Now, considering the values of wi for the different components, we can make
Eq. (1.75) an explicit relation between q and Ωi:

q = Ωr(z) +
1

2
Ωm(z)− ΩΛ(z). (1.76)

From the latter equation it is clear that ordinary cosmological components,
i.e. matter (w = 0) and radiation (w = 1/3), can only produce a decelerated
expansion of the Universe (q(t) > 0). Considering the last equation for t = t0,
we find that the Universe will currently be accelerating outward only if

Ω0,Λ >
1

2
Ω0,m + Ω0,r. (1.77)

Finally, from the Hubble law we can conclude that a(t) grows monotonically,
given the positivity of H(t). Furthermore, from the concavity of the second
order derivative of a, this implies that there is an instant at which a(t) is
equal to zero, at some finite time in the past. We call this event Big Bang
(BB). Indicating the BB with t = 0, we can easily see that at this instant of
time the density diverges:

lim
t→0

ρ(t) = lim
t→0

(a0

a

)−3(1+w)

→∞ . (1.78)
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1.9.1 The Einstein-de Sitter model

Let us now focus on the solutions of the Friedmann equations, which will
depend on the curvature of the Universe. We will consider first the case of
a flat mono-component Universe (κ = 0, Ω0 = 1), the so-called Einstein-de
Sitter model (EdS). As we already said, the different evolution with time of
the density of the various components is such to have entire cosmic epochs
in which only one component is dominant over the others. Therefore, we
can assume that the Universe in the different epochs is entirely composed by
only one type of fluid. The actual epoch represents an exception, because we
observe two significant matter-energy components, i.e. the DM and DE com-
ponents. This assumption allows us to study the solutions of the Friedmann
equations as component-dependent.

Considering a flat Universe, the second Friedmann equation (1.72) reduces
to:

H(z) = H0(1 + z)
3(1+w)

2 , (1.79)

which can be written in terms of the scale factor and it can be integrated to
obtain its evolution as a function of time:

a(t) = a0

( t
t0

) 2
3(1+w)

. (1.80)

Therefore, the expansion in a flat Universe, both for w = 0 and w = 1/3, is
eternal.

We can also obtain, from the last equation, the relation between time and
redshift:

t = t0(1 + z)−
3
2

(1+w) . (1.81)

From Eqs. (1.79) and (1.81) we find:

H(t) =
2

3(1 + w)t
. (1.82)

Computing this last equation for t = t0, we can derive the relation between
the age of the Universe and the Hubble constant:

t0 =
2

3(1 + w)H0

. (1.83)

Thus, in an EdS model, the age of the Universe is smaller than τH ≡ 1/H0.
Lastly we can obtain the relation between the density and time for an

EdS Universe from the previous relations:

ρ(t) = ρ0,w

(a0

a

)3(1+w)

=
1

6πG(1 + w)2

1

t2
. (1.84)
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A relevant fact about the EdS model is that for a radiative Universe, the
expansion is more decelerated because of the presence of the radiation pres-
sure.

1.9.2 Open and closed models

Let us consider now the case of curved mono-component Universes (κ 6=
0,Ω0,w 6= 1). As we will discuss in more details in Section 3.2, the formation of
galaxy clusters and cosmic voids, starting from small density perturbations,
can be modelled as the evolution of closed and open Universes, respectively,
growing inside a flat Einstein-de Sitter Universe. Therefore, the equations at
the base of these models are crucial in order to understand the evolution of
large-scale structures, on which our Thesis work is based.

Considering again the second Friedmann equation as expressed in (1.72),
the curvature density parameter is constant over time while the second term
is not. Therefore it exists a critical value a∗ such that:

|1− Ω0,w| = Ω0,w

(a0

a∗

)1+3w

, (1.85)

or, in terms of redshift:

|1− Ω0,w| = Ω0,w

(
1 + z∗

)1+3w
. (1.86)

Given the values for w, for high redshifts z � z∗ we can neglect the curvature
term, and so Eq. (1.72) reduces to:

H(z) = H0

√
Ω0,w(1 + z)

3(1+w)
2 , (1.87)

which differs from the relation found for the EdS model by the
√

Ω0,w factor.
From this result we can assume that our Universe is well described by an
EdS model, which carries no curvature, in early cosmological epochs.

Considering z � z∗, the potential curvature of the Universe prevails,
showing the underlying geometry. Moreover the sign of the curvature term
1− Ω0,w depends on the values of Ω0,w, so we will consider open and closed
models separately.

Open model for the Universe

Let us start with the open model κ = −1, Ω0,w < 1. Recalling Eq. (1.72),
we have that the term between square brackets never vanishes. Moreover we
know from observations that ȧ0 > 0, hence ȧ(t) > 0, ∀t.
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For z � z∗ we can neglect the second term in the square brackets of Eq.
(1.72), hence we find the following expression for H(z):

H(z) = H0(1 + z)(1− Ω0,w)1/2 .

We can write this last question in terms of a:

ȧ(t) = a0H0(1− Ω0,w)1/2 .

By integration we can find that a(t) has an asymptotically linear growth with
time:

a(t) = a0H0(1− Ω0,w)1/2t⇒ a(t) ∝ t . (1.88)

As a consequence, the Hubble parameter decreases proportionally with the
inverse of time:

H(t) ∝ t−1 .

Closed model for the Universe

Consider now the case of a closed model (κ = 1,Ω0,w > 1). Now the curvature
term 1 − Ω0,w can be null, hence there exists a time t = tmax such that
ȧ(tmax) = 0. In other words, in this type of model, the Universe reaches a
maximum size amax = a(tmax) given by:

amax = a0

( Ω0,w

Ω0,w − 1

)1/1+3w

. (1.89)

When a = amax the density reaches its minimum value:

ρmin = ρ(amax) = ρ0

(Ω0,w − 1

Ω0,w

) 3(1+w)
1+3w

. (1.90)

For t > tmax the scale factor decreases at the same rate of its increment,
therefore at a time tf = 2tmax the Universe will collapse in another singular-
ity, the Big Crunch.

Once we have set up the models for an open or closed mono-component
Universe, we can find a solution for the different values of the parameter w,
that are dust and radiative curved Universes.

1.9.3 Dust Universe model

Models with w = 0 have an exact analytic solution, even for the case where
Ωw 6= 1.
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In this case Eq. (1.72) can be written as:( ȧ
a0

)2

= H2
0

(
1− Ω0,m + Ω0,m

a0

a

)
. (1.91)

Let us consider first open models (Ω0,m < 1). These models have a solution
in the parametric form:

a(ψ) =
a0

2

Ω0,m

1− Ω0,m

(coshψ − 1)

t(ψ) =
1

2H0

Ω0,m

(1− Ω0,m)3/2
(sinhψ − ψ) ,

where 0 ≤ ψ <∞.
Recovering a0 from the first parametric equation and substituting it in

the second one, we can obtain the expression for the age of the Universe t0:

t0 =
1

2H0

Ω0,m

(1− Ω0,m)3/2)

[ 2

Ω0,m

(1− Ω0,m)1/2 − cosh
( 2

Ω0,m

− 1
)]

>
2

3H0

.

Therefore the age of the Universe for an open dust model is greater than for
the EdS model for a fixed value of H0.

The last equation for t0 has the following limit for Ω0,m � 1:

t0 ' (1 + Ω0,m ln Ω0,m)
1

H0

.

Now let us consider the other case where Ω0,m > 1. For these models the
parametric solutions are:

a(θ) =
a0

2

Ω0,m

Ω0,m − 1
(1− cos θ)

t(θ) =
1

2H0

Ω0,m

(Ω0,m − 1)3/2
(θ − sin θ) ,

(1.92)

where now 0 ≤ θ < 2π.
In this case the age of the Universe is smaller than for the EdS model for

w = 0:
t0 <

2

3H0

.

Deriving the scale factor with respect to the parameter θ, one finds that a(θ)
grows for 0 ≤ θ < π and decreases for π < θ < 2π. The maximum size
reached by the Universe in this model is:

amax = a(π) = a0
Ω0,m

Ω0,m − 1
. (1.93)

29



This status is reached at t = tmax = t(π):

tmax =
π

2H0

Ω0,m

(Ω0,m − 1)3/2
. (1.94)

Figure 1.2: Scale factor as a function of time for different models of the
Universe. The black line represents the scale factor evolution for the Standard
Cosmological Model (ΛCDM), which is described in Section 1.10. The gray
line represents an empty flat Universe (with Ωm = 0), the blue line shows the
evolution for a flat Einstein-de Sitter Universe, while the green and the red
lines represent the evolution of a radiation-dominated Universe and a closed
mono-component Universe, respectively.

1.9.4 Radiative Universe model

Going back to the radiative models, for which w = 1/3, Eq. (1.72) has the
form: (

ȧ

a0

)2

= H2
0

[
1− Ω0,r + Ω0,r

(a0

a

)2
]
, (1.95)
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which has the following solution:

a(t) = a0(2H0Ω
1/2
0,r t)

1/2

(
1 +

1− Ω0,r

2Ω
1/2
0,r

H0t

)1/2

.

It is possible to show that, in open models, the following relation holds for
the present cosmic time t0:

t0 >
1

2H0

,

where t0 = 1
2H0

is the age of the Universe for an EdS model with w = 1/3.
Lastly, closed radiative models predict:

t0 <
1

2H0

.

Finally, in Figure 1.2 it is shown the evolution of the scale factor for some
models of Universe described in the previous Sections. Here the different
models are normalised in such a way that today they have the same value
for a(t) and H0. The intersections of the different solid lines with the x-axis
show how the age of the Universe t0 changes among the different cosmological
model considered.

1.10 The Standard Cosmological Model
From the beginning of the 21st century, the commonly accepted model de-
scribing our Universe is the so-called ΛCDM. The basic idea for it lies in the
Hot Big Bang model (HBB), which is based on the Cosmological Principle
and the Friedmann equations. The evolution of our Universe is described as a
thermal history, which means that its expansion is tightly related to its tem-
perature: going back in time the Universe was much hotter than nowadays.
In particular its temperature at the present time is T = 2.725 ± 0.005 K, a
value that corresponds to the Cosmic Microwave Background (CMB) tem-
perature, the relic radiation from the surface of last scattering happened
only about 400, 000 years after the Big Bang. Before the last scattering, the
Universe was filled by a hot plasma composed by protons and electrons fully
ionised. In this context, electromagnetic radiation was continuously scattered
by matter, so that the Universe was completely opaque and in thermal equi-
librium. Thanks to its expansion, its temperature falls down until electrons
recombine with protons, at z ' 1100. When this process completes, photons
began to freely propagate into the Universe. We observe this radiation as
a background redshifted to the microwave band, distributed in a spherical
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Figure 1.3: All-sky map of the CMB temperature fluctuations, as measured
by the Planck satellite. The range of temperature is very small, going from
−300 µK to 300 µK, highlighting a strong thermal equilibrium. Credits to
Planck Collaboration 2015 (Planck Collaboration et al., 2016a).

surface around us (see Figure 1.3). The most powerful prediction of the HBB
model is the existence of the CMB radiation.
The ΛCDM model establishes that our Universe is flat, and its major mass-
energy components at the present time are the Cosmological Constant (Λ),
necessary to explain the observed accelerated expansion of the Universe
(Riess et al., 1998; Perlmutter et al., 1999), and a dust component called
cold dark matter (CDM). The other mass-energy components of the Uni-
verse are the baryonic matter, which is non-relativistic, and the relativistic
components such as the radiation field. The contribution of the latter is
negligible nowadays and its density parameter, which can be estimated from
the measure of the CMB temperature, has a value of

Ωr,0 ≈ 10−5 . (1.96)

The substantial difference between baryonic and dark matter is their interac-
tions. Indeed both of them interact gravitationally but only baryonic matter
interacts with the observable electromagnetic radiation, hence the “dark” at-
tribute for the CDM component. The first scientist proposing the existence of
a different kind of matter was Fritz Zwicky, in order to explain the dynamics
of galaxies in the Coma cluster (Zwicky, 1937). From the 1970s, astronomers
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and cosmologists began to build an enthralling body of evidence for this elu-
sive component, based on a variety of observations, including temperature
anistropies of the CMB, baryonic acoustic oscillations (BAO)3 (Anderson
et al., 2014; Ross et al., 2015), SNIa, gravitational lensing of galaxy clus-
ters and rotation curves of disk galaxies (Fuchs, 2001; Bosma, 2000). The
standard model of particle physics contains no suitable particle to explain
these observations and nowadays the proposed candidates for DM span 90
orders of magnitude in mass, ranging from ultralight bosons (often referred
as “fuzzy DM”) to massive primordial black holes.

The class of dark-matter candidates that has attracted the most attention
over the past four decades is weakly interacting massive particles (WIMPs),
which are hypotetical particles on the weak-interaction mass scale (between
10 GeV and 1 TeV ) and MACHOs (Alcock et al. (1997); Brandt (2017)),
which stands for massive astrophysical compact halo objects, composed of
ordinary matter but which do not emits significantly light such as neutron
stars, brown and white dwarfs.

There are multiple ways to evaluate the matter density parameter of
the Universe, Ωm,0, such as measuring the radial velocities of galaxies in a
galaxy cluster, or by measuring the amplitude of gravitational lensing on
very distant galaxies caused by the presence of a massive objects interposed
between them and the observer. Also the clustering properties of large-scale
structures (LSS), such as galaxy clusters and galaxies, together with their
abundances are strongly related to this parameter. All these measurements
lead to the same conclusion concerning the total matter density parameter:

Ωm,0 ≈ 0.3 . (1.97)

From the primordial nucleosynthesis and from the study of the CMB ra-
diation one can estimate the density fraction of baryonic matter, which is
approximately

Ωb,0 ≈ 0.04− 0.05 . (1.98)

Hence only a tiny fraction of the total mass is in form of baryonic matter.
The property of dark matter to be “cold” means that at the time of

its decoupling was non-relativistic, and this leads to a particular structure
3BAO refers to acoustic waves propagating before the recombination, which then froze

when the latter took place, leaving an imprint in the matter distribution on large scales.
We observe this imprint as a peak in the two point correlation function of different mass
tracers (see Section 2.4), like galaxies, which correspond to the maximum distance the
acoustic waves could travel in the primordial plasma. This can be considered as a standard
ruler, and thus can provide powerful constraints on the expansion rate of the Universe and
allows to investigate the nature of DE.
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formation scenario, called bottom-up, in which smaller objects formed first
and then they merged forming more massive structures (see Section 2.3.1 for
a detailed description).

Regarding the cosmological constant Λ, as already mentioned in Section
1.8.1, the physical component associated with it is called Dark Energy (DE),
described by an equation of state parameter w = −1. Its nature is still
unknown and understanding its properties and origin is one of the principal
challenges in modern physics.

If the Universe is flat, then the sum of the density parameters of all
the components must be equal to 1. However, if one considers a Universe
composed only by matter and radiation, one gets:

Ωm,0 + Ωr,0 ≈ 0.3 . (1.99)

The remaining 0.7 is the density fraction of the DE component, the most
dominant in the present Universe. This result comes not only by the flatness
of the Universe, but also from the already cited measures (Riess et al. (1998);
Perlmutter et al. (1999)). They estimated the value of the deceleration pa-
rameter using SNIa as standard candles, obtaining q0 ≈ −0.55, which implies
an accelerated espansion for our Universe. By replacing the known values for
Ωm and q in Eq. (1.76), neglecting the contribute of Ωr, again one obtains
ΩΛ = 0.7.

DE leaves imprints on cosmological observations. It modifies the geom-
etry of the Universe, increasing distances and volumes over time via the
accelerated expansion, and it slows down the growth of cosmic structures.
However, these effects can be mimicked by the variation of other cosmolog-
ical parameters, including the DM density and curvature, or other physical
models and systematics that are degenerate within a single probe. Con-
sequently, measuring DE properties requires a combination of cosmological
probes that are sensitive to both classes of effects to break these parameter
and model degeneracies.

After the introduction of a theoretical background, it is necessary to
parametrize the ΛCDM model, which is indeed described by six fundamental
parameters:

• Ωm: total matter density parameter;

• Ωb: baryonic matter density parameter;

• As: normalization of the power spectrum;

• H0: Hubble constant;
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• ns: spectral index of the primordial power spectrum;

• τ : reionization optical depth.

The most strong constraints on the latter derive from the analysis of the CMB
power spectrum from the latest release of the Plack legacy (Planck Collab-
oration et al., 2020) in combination with lensing measurements, although
other cosmological probes are becoming competitive as well. The values for
these six fundamental parameters, as reported in Planck Collaboration et al.
(2020), are Ωm = 0.3153 ± 0.0073, Ωbh

2 = 0.02237 ± 0.00015, ln(1010As) =
3.044 ± 0.014, H0 = 67.36 ± 0.54 km s−1 Mpc−1, ns = 0.9649 ± 0.0042 and
τ = 0.0544± 0.0073.

1.10.1 Statistical tensions in the ΛCDM model

The ΛCDM model successfully describes a wide range of observations, go-
ing from the abundance of elements from primordial nucleosynthesis up to
the present-day accelerated expansion. The astonishing precision coming
from both modern observations and simulations, has led to the rise of few
statistically significant tensions on cosmological parameters between differ-
ent probes. The latter can be divided into two groups, early and late type
probes, according to the range of redshifts to which they are applied. It is
not straightforward that the same cosmological model will fit observations
from widely different cosmological epochs. Although these tensions could be
due to systematic errors, their confirmation during the years seems to suggest
the need for new physics inside the ΛCDM framework.

Among the most effective cosmological probes we find the study of the
anisotropies of CMB, made possible by the data provided by the Planck
satellite (Planck Collaboration et al., 2020), successor of older missions like
the Cosmic Background Explorer (COBE) and the Wilkinson Microwave
Anisotropy Probe (Mather et al., 1994; Komatsu et al., 2009, 2011). Mea-
surements from such a primordial Universe can constraint the mechanism
at the base of the inflation process, and represent a prominent complemen-
tary probe of the low-redshift LSS measurements. Among the latter, an
important probe is the clustering of LSS, which provides constraints on the
growth of cosmic structures by looking at how much these are clustered with
each other (i.e. by studying their correlation function). A powerful appli-
cation of the correlation function of LSS is the measurement of position of
the baryon acoustic oscillation (BAO, see e.g. Seo & Eisenstein, 2003; Blake
& Glazebrook, 2003), that represents the imprint of sound waves in the pre-
recombination plasma. By looking at the correlation function of cosmological
objects like galaxies and clusters, it is also possible to investigate the effects
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of peculiar galaxy velocities and geometrical distortions on the assumed cos-
mological model (see, for example Marulli et al., 2020; Alam et al., 2021). In
this field, also the distortions on average cosmic void shapes have turned out
to be a competitive cosmological probe (Hamaus et al., 2020; Aubert et al.,
2020). We can also investigate the properties of our Universe by looking on
how images of distant galaxies are distorted due to the weak lensing. It has
been demonstrated its strong constraining power on both the total amount
of matter in the Universe, as well on the amount of DE and amplitudes of
today matter perturbations (Kaiser, 1992; Schneider, 2005; Kilbinger, 2015).
Not less powerful and interesting is the study of distant of SNIa as objects of
known luminosity, from which the accelerated expansion of the Universe has
been inferred (Riess et al., 1998; Perlmutter et al., 1999). From the study
of SNIa light-curves, characterised by a well-defined peak of luminosity, it
is possible to extract fundamental constraints on the present-day expansion
rate of our Universe, i.e. the Hubble constant H0.

The most statistically significant tension is in the estimation of the latter
between the analysis of the CMB power spectrum (which is an early type
probe) and late-type probes, which we have just summarised. In particular,
the Planck legacy foundH0 = 67.4±0.5 km s−1 Mpc−1 (Planck Collaboration
et al., 2020), which is in tension at about 4.4σ with the 2019 SH0ES collab-
oration (Riess et al., 2019), which found H0 = 74.22 ± 1.82 km s−1 Mpc−1,
from the analysis of 70 Cepheids in the Large Magellanic Cloud. Other mea-
surements, which can be seen all together in Figure 1.4, obtained slightly
different values for H0. For example, from the observation of SNIa, Dhawan
et al. (2018) obtained H0 = 72.8 ± 2.7 km s−1 Mpc−1, while the CCPH
(Carnegie-Chicago Hubble Program) collaboration obtained H0 = 69.8 ±
1.9 km s−1 Mpc−1 which used Tip of the Red Giant Branch4 (TRGB) mea-
surements in the Large Magellanic Cloud (Freedman et al., 2019).

Another interesting tension in the ΛCDM is the discrepancy of the Planck
data with weak lensing measurements and redshift surveys about the value of
the derived parameter S8, which is a combination of the total matter density
parameter, Ωm, and the amplitude of the growth of structure, σ8, (see Section
2.4 for its formal definition), defined as:

S8 = σ8

√
Ωm

0.3
. (1.100)

4The RGB is a stage of evolution of stars that have exhausted their centre hydrogen
fuel, which turned into helium. When the helium core mass reaches 0.5 M�, massive
stars violently enhance their surface brightness (helium flash), as a consequence of the
beginning of carbon production. We observe this precise stage as a tip-feature in the HR
diagram, i.e. as a fixed luminosity, which can be exploited to measure distances in the
local Universe.
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CMB measurements, considering an underlying ΛCDM model, predicts a
high value of S8, S8 = 0.834±0.016 (Planck Collaboration et al., 2020), which
disagrees at about 2.2σ with cosmic shear measurements such as KiDS-450
(S8 = 0.745 ± 0.039) (Kuijken et al., 2015; Joudaki et al., 2017) and DES
(S8 = 0.773+0.026

−0.020) (Dark Energy Survey Collaboration, 2018).
Many works have been focused on these tensions, and in recent years many
theoretical solutions have been proposed, going from Modified Gravity The-
ories (Di Valentino et al., 2016; Planck Collaboration et al., 2016b), in which
the nature of gravity changes with redshift such that the H0 estimate from
CBM can be larger, to alternative DE theories (Karwal & Kamionkowski,
2016; Poulin et al., 2019; Benevento et al., 2020).
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Figure 1.4: Hubble constant predictions coming from different cosmological
probes. The early type measurements are represented in the top panel, while
the middle panel shows the late type measurements and the bottom panel
presents the combination of late type probes and the comparison with the
early types. Credits to Verde et al. (2019).
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Chapter 2

Formation and evolution of
cosmic structures

In the standard model of large scale structure formation, small perturbations
in the primordial density field evolve in time and collapse into gravitationally
bounded objects, called DM haloes. In modern cosmological models like the
ΛCDM, galaxy clusters as well as galaxies are supposed to grow inside these
haloes (see, for example Wechsler & Tinker, 2018). One can constrain the
expansion rate of the Universe, as well as the most important cosmological
parameters, by observing how many collapsed structures exists at different
times. Indeed the more the expansion is fast, the more the gravitational
collapse will be prevented. Therefore, a theory that can predict the size of
perturbations as today, starting from the very early time, is fundamental.

In this Chapter we briefly describe the origin of primordial fluctuations,
which could be explained through the inflation model (Section 2.1), then we
delineate the Jeans Theory, through which one can describe the evolution of
density perturbations until they remain in the linear regime. We describe
this theory in the classical case of a static Universe (Section 2.2.1), and also
for the expanding case (Section 2.2.2). In this context, the main role of
DM perturbations in the structure formation paradigm is briefly outlined in
Section 2.3. In the following Section 2.4, we describe how it is possible to
perform a statistical analysis of the large scale structures in the Universe,
though the latter is, by definition, a single object. Finally we discuss the
nonlinear evolution of perturbations in Section 2.5, with a brief description
of the cosmological numerical simulations with which one can mimic the real
properties of our Universe on large scales (Section 2.6).
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2.1 Perturbations from Inflation
In the currently accepted models, primordial perturbations originated through
the so-called inflation process, which occurred approximately 10−33 s after
the Big Bang (Starobinskǐi, 1979; Guth, 1981; Guth & Pi, 1982; Mukhanov
et al., 1992). In inflation models, the Universe experienced a period of expo-
nential expansion, reaching a size even greater than the distance that light
could have traveled since the Big Bang. As a consequence, the geometry
of the Universe is forced to be locally flat. This means that inflation does
not change the overall geometry of the Universe, but only that the radius of
curvature is magnified so much that we observe the Universe as locally flat
to a high precision. This could explain our observations about the values for
the density parameters, which show strong evidences for a flat Universe, and
solves the flatness problem briefly summarised in Section 1.8.2.

At the time of the CMB the Universe shows perturbations on large scales
that have already grown, and this is not possible since baryons were still
coupled with the radiation field, which does not allow the formation of per-
turbations on such scales. The inflation process could also solve this problem,
since every quantum inhomogeneities in the energy density field that were
present before inflation would have exceed the size of the observable Universe
(at that time), causing their amplitude to freeze.

From the Friedmann equations we know that the Universe evolves classi-
cally through a decelerated expansion. In order to have an accelerated one
we need a negative pressure. Such a condition can be satisfy with assuming
the presence of a simple scalar field φ, called inflaton, which would have per-
meated the Universe at the time of the inflation (Guth, 1981; Linde, 1983)
Primordial fluctuations then translates into quantum fluctuations δφ of the
inflaton field.

Furthermore, through inflation we are able to solve others problems that
affects the Hot Big Bang model, such as the horizon problem and themonopole
problem, which are beyond the scope of this Chapter (please see Liddle, 1999;
Vázquez et al., 2018, for a comprehensive review of these problems).

2.2 Jeans Theory
From an observational point of view, our Universe appears to be quite in-
homogeneous at scale of Mpc, and shows evidences of a highly nonlinear
evolution with fluctuations of the order of 102 on scales of collapsed objects.
We can determine the perturbation amplitude of the density field at the high-
est observable redshift by analysing the fluctuations of the temperature of

40



the CMB radiation (z ' 1100). The latter are, approximately:

δT

T
' 10−5 , (2.1)

showing a high level of homogeneity at that epoch, where T is the mean black
body radiation of the CMB, measured to be T ≈ 2.725 ± 0.005 K. These
perturbations grow as a consequence of the attractive nature of the gravita-
tional interaction. An excess of density in a given point in the space will pull
the surrounding matter towards it creating larger overdense regions. As we
will describe in this Chapter, these regions eventually form haloes of matter
which, in turn, are able to collapse if larger than a given threshold density.
The same matter falling onto these haloes evacuates from the underdense
regions, which expand creating cosmic voids.

These phenomena can be described analytically adopting the Jeans the-
ory as long as the perturbations remain in the linear regime, which means
that the perturbed quantities are much smaller than their unperturbed coun-
terparts. Indeed, considering a physical field f , this can be expressed as an
unperturbed part f0 combined with a small perturbation δf = δf(~x, t). The
linear regime is maintained until

δf � f0 . (2.2)

It is clear that the behaviour of collapsing objects is highly nonlinear, and for
that we generally rely on numerical simulations, since the analytical solutions
are not possible.

Therefore the aim of Jeans theory is to describe the evolution of these
perturbations in linear regime, for non-relativistic matter on scales not ex-
ceeding the cosmological horizon. The latter is defined as:

RH = a(t)

∫ t

tBB

cdt

a(t′)
, (2.3)

where tBB is the starting time for the expansion of the Universe at the Big
Bang. This quantity represents the points which have had sufficient time
to send information, in the form of photons or other relativistic particles,
at a given time t. Moreover, RH divides the spatial domain in two parts,
and perturbations evolve differently depending on their scale. Indeed on
scales larger than the cosmological horizon only the gravitational interaction
is relevant, but it has to be treated by means of a fully relativistic theory. On
the other hand, at sub-horizon scales, the Jeans approach provides a reliable
theory of perturbations in an expanding Universe.
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2.2.1 Jeans instability in a static Universe

Let us consider a self gravitating fluid, like a cloud of gas in a perfectly flat
and static Universe. When the self-gravitational force balances its pressure,
the cloud is said to be in hydrostatic equilibrium. When this balance fails,
the cloud undergoes instability, leading to a collapse if the gravity prevails,
or to an expansion if the prevailing contribute comes from pressure. One
can show that there exists a scale, called the Jeans scale, at which there
is a perfect (unstable) equilibrium between the gravitational force and the
pressure, and it is

RJ =
cs√
Gρ

, (2.4)

where cs is the sound speed, and ρ is the matter density of the self-gravitating
cloud. Every perturbation larger than this scale generates a collapse.

Let us consider a homogeneous and isotropic background fluid with con-
stant, time-independent matter density ρ(~x, t) = const. One can model the
evolution of such fluid with the following set of hydrodynamic equations:

∂ρ

∂t
+∇ · (ρ~v) = 0 Continuity equation (2.5a)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇ρ−∇φ Euler equation (2.5b)

∇2φ = 4πGρ Poisson equation (2.5c)
p = p(ρ, S) Equation of state (2.5d)
dS

dt
= 0 Adiabatic condition (2.5e)

where ~v is the velocity vector of the fluid element, p the pressure, φ the gravi-
tational potential and S the entropy. From the analysis of CMB anisotropies,
it turned out that the primordial fluctuations can be described as adiabatic,
hence we can consider the conservation of their entropy S, which leads to
the barotropic equation of state p = p(ρ). The Eqs. (2.5) are satisfied for a
background solution (which we indicate with a subscript B):

ρB = const

pB = const

φB = const

~vB = 0

(2.6)

Starting from this solution one can introduce a small perturbation δf where
f is one of the variables that describe the fluid, obtaining a perturbed set of
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equations, which describe the evolution of such perturbation. Defining the
density contrast δ as

δ(~x, t) ≡ δρ( ~x, t)

ρB
, (2.7)

one can consider the perturbations as superposition of Fourier modes, there-
fore as plane waves:

δ = δ~k exp(i~k · ~r + iωt) , (2.8)

where ~k is the wavenumber associated with the Fourier mode, ω is the an-
gular frequency (or pulsation) and δ~k = δ~k(t) is the Fourier transform of the
contrast δ(~x, t).

The system of perturbed equations can be solved for the density contrast,
leading to the following differential equation:

δ̈~k + (k2c2
s − 4πGρB)δ~k = 0 , (2.9)

where k = |~k| is the absolute value of the wavenumber. The latter equation
has two different solutions:

δ~k ∝ exp(±iω(k)t) , (2.10)

where
ω(k) =

√
k2c2

s − 4πGρB . (2.11)

This relation is called the dispersion relation, and describes the behaviour of
the different wavenumber components of the perturbation.

It is easy to see that the sign of the quantity inside the square root in
Eq. (2.11) will determine the evolution of the density contrast fluctuation
of Eq. (2.10). Indeed, ω can be real (ω ∈ R), leading to a perturbation
that oscillates in time with constant phase velocity and constant amplitude
(plane wave), or complex (ω ∈ C), leading to an exponential growth (positive
solutions) or decrease (negative solutions). The transition value for k between
these two conditions is the Jeans wavenumber kJ , for which ω(kJ) = 0:

kJ =
2

cs

√
πGρB . (2.12)

With this quantity it is associated the aforementioned Jeans scale:

λJ =
2π

kJ
= cs

√
π

GρB
. (2.13)

Perturbations having λ > λJ will lead to a gravitational collapse, associated
to the growing solution of the dispersion relation.
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Furthermore, we can define the Jeans mass as the mass of the perturba-
tion contained in a sphere of radius λJ :

MJ =
4

3
πρBλ

3
J . (2.14)

Therefore the Jeans instability criterion, when expressed in terms of the
mass, is:

M > MJ . (2.15)

When this is true, the pressure of the cloud is no longer able to counterbalance
the self-gravitational force, and the collapse begins.

2.2.2 Jeans instability in an Expanding Universe

In the case of an expanding Universe, the hydrodynamic equations need to
be modified properly. First of all, the density field of the background is
now a function of time ρB = ρB(t). Also, the velocity of the unperturbed
fluid is no longer null, on the contrary the fluid is subjected to the Hubble
flow, which contrasts the growth of perturbations. Moreover we need to
distinguish the evolution of perturbations having scale smaller or greater
than the cosmological horizon λH ≡ RH .

Perturbations on scales λ > λH

As previously said, this type of perturbations undergoes only the gravita-
tional interaction, therefore we can consider the effect of the microphysics
as negligible. This means that perturbations that are associated with scales
larger than the horizon scale are not subjected to any kind of radiative pres-
sure. Therefore, these perturbations can grow indefinitely.

To derive the rate of their growth, perturbations can be treated as a small
closed Universe evolving in a background Einstein-de Sitter Universe. There-
fore we have two equations, one for the background (B) Universe and one
for the perturbed Universe (p), deriving directly from the second Friedmann
equation:

H2
B =

8π

3
GρB, H2

p =
8π

3
Gρp −

c2

a2
. (2.16)

The perturbation Universe is totally enclosed in the background one, thus
their scale factors are initially the same. One can synchronize the two Uni-
verses by equating their two Hubble parameters, finding the evolution law
for the constrast δ:

δ(t) =
3c2

8πG

1

ρBa2
∝ ρ−1

B a−2 . (2.17)
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As mentioned in Section 1.9, the different components of the density field
evolves differently with time, letting a given component to dominate over
the others. By equalising Eq. (1.66) and Eq. (1.67) one can find the redshift
at which the matter and radiation components have the same density. This
redshift, called equivalence, which we indicate as zeq, is:

zeq =
ρ0,m

ρ0,R

− 1 ' 3 · 104 . (2.18)

Therefore the background density will be different considering a time before
or after the equivalence time, causing a different evolution for the perturba-
tion. In particular:

ρB ∝ a−4 =⇒ δ(t) ∝ a2 ∝ t, z > zeq

ρB ∝ a−3 =⇒ δ(t) ∝ a ∝ t2/3, z < zeq .
(2.19)

Hence perturbations on scale larger than the cosmological horizon will always
grow.

Perturbations on scels λ < λH

Inside the cosmological horizon also the microphysics, described by the hy-
drodynamic equations, becomes important. The new set of equations is the
following:

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.20a)

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇ρ−∇φ (2.20b)

∇2φ = 4πGρ , (2.20c)

where now ~u = dr
dt

= H~r+~v is the total velocity field, ~v the peculiar velocity
and r = ax the distance in physical units. Considering the perturbed system
of equations, and treating the perturbations as plane waves one can recover
the dispersion relation for an expanding Universe:

δ̈~k + 2H(t)δ̇~k + (k2c2
s − 4πGρB)δ~k = 0 , (2.21)

where 2H(t)δ̇~k is called Hubble friction, which opposes the growth of pertur-
bations, while k2c2

s accounts for the characteristic velocity field of the fluid.
As the dispersion relation found for the static case, the perturbations only
grow (or decrease) for λ > λJ , where now λJ depends also on H(t). Therefore
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one has to take into account the cosmological model, and the specific cosmic
epoch (namely before or after the equivalence).

For example considering an Einstein de Sitter model with w = 0 (after
the equivalence), one can make the following assumption on the solution of
Eq. (2.21):

δ~k ∝ tα . (2.22)

With this choice, the dispersion relation can be written in terms of α, ob-
taining a second order equation in this variable:

3α2 + α +
k2c2

s

4πGρB
− 2 = 0 , (2.23)

which has a solution with positive discriminant only for the case λ > λJ =
cs
5

√
24π
GρB

. The growing mode of this solution can be written as:

δ+(t) ∝ t2/3 ∝ a(t) . (2.24)

For a general cosmology, and considering only z < zeq, one can use the follow-
ing linear approximation for the growing solution of the dispersion relation
(2.21):

δ+ ∝ −H(z)

∫ z

∞

(1 + z′)

a2
0H

3(z)
, (2.25)

which shows that for an open Universe the growth of perturbations is slower
than for an EdS model, while for a closed Universe is faster, as one can expect
from the different rate of expansion.

Finally, during the radiation epoch, in which the radiation component
is dominant over the others, one can show that λJ is always greater than
λH , because the sound velocity has a very high value and perturbations are
dissipated by the radiative pressure. Consequently, during this cosmic epoch,
perturbations cannot grow for λ < λH . In general, the dispersion relation
that we have found is a second order differential equation, hence it has a
solution that can be expressed as the combination of the growing (δ+) and
decaying (δ−) solutions:

δ(~x, t) = A(~x)δ+(t) +B(~x)δ−(t) , (2.26)

where A and B are two functions depending on the comoving coordinates,
while δ+ and δ− are time-dependent. It is possible to derive an approximate
form for the variation of the growing solution, namely the growth factor f :

f ≡ dlnD+

dlna
' Ω0.55

m +
ΩΛ

70

(
1 +

1

2
Ωm

)
. (2.27)
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In this expression we can see how the growth of the perturbations depends
mainly on the value of Ωm, while ΩΛ, which contributes to the Universe
expansion, does not play a crucial role. The growth factor is of fundamental
importance because the exponent of Ωm, γ ' 0.55, comes from the General
Relativity, thus the measure of f can be used to test the underlying gravity
theory of our Universe.

2.3 Dark matter perturbations
The matter perturbations that we described consist of both baryons and DM,
which is assumed to be collisionless. The onset of these instabilities cannot
happen during the cosmological time in which matter and radiation were still
coupled (before the last scattering). In fact, the strong microphysical inter-
actions present during this era would not allow any kind of growth of the
perturbation amplitudes. It is known that the decoupling of DM and radi-
ation happened earlier than the decoupling of baryonic matter. This means
that at the baryon-radiation decoupling, DM already collapsed forming the
first structures, called DM haloes. The presence of DM potential well con-
tributed to the growth of baryonic gravitational instabilities, an effect called
baryon catch-up. Bound in the potential wells of DM haloes, baryons proceed
to cool, condense, and form the first structures like stars and, later, galaxies.
Moreover, to justify the value of density perturbations in formed structures
today, it is crucial to include DM instabilities in our structure formation
model. Let us briefly see why.

In order to reach at least δ ∼ 1 before z = 0, considering an EdS model,
the starting overdensity field of baryonic matter should have been δ ∼ 10−3,
which is in contrast with observations of CMB radiation anisotropies (Eq.
2.1). One might try to solve this problem by considering a closed Universe,
in which perturbations grow faster. However, in a Universe composed only
by baryonic matter the total density parameter should be Ω ∼ 20 in order to
justify the observed collapsed structures at the present time, which again is in
contrast with the commonly accepted values Ω = 1 from CMB observations
(Sievers et al., 2003; Planck Collaboration et al., 2020).

2.3.1 Cold dark matter and hot dark matter

The formation of galaxies and galaxy clusters follows from the collapse of
DM into haloes before the decoupling of baryonic matter and radiation. We
can define two types of DM particles according to their nature at the time
of their decoupling from radiation. Hot dark matter (HDM) is a kind of
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DM which is still relativistic (i.e. hot) at that time, while cold dark matter
(CDM) de-relativised before decoupling. Consequently, CDM particles are
supposed to be more massive than HDM particles.

Critically important is the concept of Jeans mass that discriminates which
perturbations are able to grow and which ones oscillate. We saw that the
Jeans scale is proportional to the velocity of the perturbation. Considering
the velocity dispersion instead of the velocity (for the non-collisionality prop-
erty of DM), what follows is that for HDM the Jeans scale is large, leading
to a greater value for the Jeans mass. The Jeans mass of HDM computed at
matter-radiation equivalence is estimated to be approximately 1015−16 M�,
whereas for CDM MJ is about 105−6 M�. This huge difference implies dif-
ferent scenarios of structure formation. More specifically, HDM favours the
so-called top-down scenario in which large-scale structures form first, and
smaller structures are formed subsequently by fragmentation. On the other
hand, in the CDM model one has that smaller structures form first, and then
larger structures are formed by aggregation through merging (bottom-up sce-
nario). The latter is favoured by observations, since high-z structures tend
to be smaller.

2.4 Statistical properties of the Universe
The Jeans instability theory developed in this Chapter applies only to a sin-
gle perturbation in the density field. In general, every single perturbation
can be expressed as the superposition of multiple Fourier modes, i.e. plane
waves, which evolve independently in time. From the fact that we cannot
know the value of δ(~x) at every position ~x, we need a statistical approach to
this problem. This implies that any comparison between theory and obser-
vations will also have to be statistical. A problem related to this is that the
Universe is a unique object, not reproducible, and this could make difficult
the construction of a meaningful statistical framework. Nevertheless, we can
exploit the ergodic hypothesis, which states that the result of the mean of
many realizations of the Universe is equivalent to the mean obtained consid-
ering separate, but sufficiently large, volumes in the Universe. According to
this, sufficiently distant regions evolve independently with each other. The
cosmological principle combined with the ergodic hypothesis forms the so
called Fair Sample hypothesis (Peebles, 1980; Coles, 2003).

The density contrast δ(~x) can be also expressed as:

δ(~x) =
1

(2π)3

∫ ∞
−∞

δ(~k)e−i
~k·~xd3~k , (2.28)

48



i.e. as the inverse Fourier transform of δ(~k), which has the dimension of a
volume.

Let us consider now two perturbations on different scales δ(~k) and δ(~k′).
One can measure the mean quadratic amplitude of the fluctuations with the
so-called power spectrum P (k), defined through the following formula:

〈δ(~k)δ∗(~k)〉 = 〈|δ(~k)|2〉 = (2π)3P (k)δ
(3)
D (~k − ~k′) , (2.29)

where δ∗(~k) = δ(−~k) is the complex conjugate of δ(~k) while δ(3)
D (~k−~k′) is the

3-dimensional Dirac delta function. The initial shape of the matter power
spectrum is determined by the fluctuations imprinted by inflation (Guth,
1981; Guth & Pi, 1982). Since the accepted inflation scenario states that the
seeds of today’s structures are generated by stochastic quantum fluctuations
in a scalar field (i.e. the inflaton), and that inflation does not predict any
preferred scale, the initial P (k) should have a power-law form:

P (k) = Akn , (2.30)

where the spectral index is generally assumed to be closed to unity n =
1, which corresponds to white noise gravitational, i.e. metric, fluctuations
(Zeldovich, 1972). The normalisation A is not constrained by the inflation
theory and has to be derived from observations. In fact the inflation scenario
predicts a family of parallel lines of logarithmic slope n, but not a preferred
one.

From the definition of the power spectrum descends the Wiener-Khinchin
theorem, which states that the inverse Fourier transform of the power spec-
trum is the two-point correlation function (2PCF), its analogous quantity in
real space:

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 =
1

(2π)3

∫ ∞
−∞

P (k)ei
~k·~xd3~k . (2.31)

The latter measures the auto-correlation of the field δ(~x) in positions at a
distance ~r from ~x, i.e. the spatial clustering of objects. This represents a
double operation of mean, because the mean is evaluated for all the positions
~x in the Universe, and for all points at a distance r from each ~x. The
dependence of ξ on the modulus of ~r is a consequence of the cosmological
principle, i.e. the invariance of ξ for translations and rotations.

The 2PCF can also be defined as the excess probability, with respect to
a random distribution, of finding a pair of objects separated by a comoving
distance r, in two different volume elements dV1 and dV2:

dP12 = n2[1 + ξ(r)]dV1dV2 . (2.32)
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The 2PCF is often measured by employing the so-called estimators, which
are based on the pair counts of objects at different separation r. In order
to estimate the level of clustering of a given galaxy distribution, one has to
compare the latter with a simulated random catalogue, having null clustering.
The most used 2PCF estimator is the Landy-Szalay estimator (Landy &
Szalay, 1993):

ξ̂(r) =
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
+ 1 , (2.33)

where DD(r), RR(r) and DR(r) are the number of pairs of data-data,
random-random and data-random objects with distance r + ∆r, while NRR,
NDD and NDR are the total number of data-data, random-random and data-
random pairs in the catalogues, respectively.

In the real space, the assumption of stochastical generation of fluctuations
from the inflation process implies that their amplitudes have a Gaussian
distribution (Bardeen et al., 1986). A very relevant fact about this property
is that the ergodic hyphotesis becomes a theorem for Gaussian distributed
fields.

The variance σ2 of δ(~x) is defined by:

σ2 = 〈|δ2(~x)|〉 =
∑
~k

〈|δ~k|
2〉 =

1

Vu

∑
~k

δ2
~k
, (2.34)

where the average is taken over an ensemble of realisations of volume Vu.
By considering the limit Vu → ∞ and assuming the validity of the CP, we
obtain:

σ2 → 1

2π2

∫ ∞
0

P (k)k2dk . (2.35)

This relation tells us that the variance of fluctuations is an integrated infor-
mation of the power spectrum.

From an observational point of view, we cannot measure a punctual value
for δ, from the fact that in reality the distribution of mass tracers is discrete,
and there is the necessity of averaging on a scale. Therefore it is convenient
to describe the fluctuation field as a function of some resolution scale R. We
can define a density fluctuation from a discrete tracers distribution as:

δM =
M − 〈M〉
〈M〉

, (2.36)

where 〈M〉 is the average of mass found in a spherical region of radius R.
From this definition one can recover the mass variance using (2.34):

σ2
M = 〈|δ2

M |〉 =
〈(M − 〈M〉)2〉
〈M〉2

. (2.37)
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The fluctuation δM is related to the convolution of the punctual density with
a window function (or filter) W of radius R:

δM(~x) = δ(~x)⊗W (~x,R) . (2.38)

For each filter, one can define a mass M = γf ρ̄R
3, where γf is some constant

that depends on the shape of the filter. Usually W (~x,R) is a top-hat filter:

W (~x,R) =
3

4πR3
Θ
(

1− |~x− ~x
′

R

)
, (2.39)

where Θ is the Heaviside step function.
From the last two equations and using the convolution theorem, it is

possible to express the mass variance, passing in the limit expressed by Eq.
(2.35), as

σ2
M =

1

2π3

∫
d3~kP (~k)Ŵ 2(~k,R) , (2.40)

where Ŵ is the Fourier-transform of the window function.
Though the normalisation of the power spectrum is not predicted by

inflation theory, it is often fixed by using the value at z = 0 of the mass
variance computed at 8 Mpch−1, indicated as σ8:

σ2
8 =

1

2π2

∫
P (k)k2W 2(R = 8 h−1Mpc)dk . (2.41)

This is a key cosmological parameter, useful to predict the phenomenology of
the low-redshift Universe. It has been measured with a variety of cosmologi-
cal probes such as X-ray cluster counts (Pierpaoli et al., 2003), weak lensing
by large scale structures (cosmic shear) (Refregier et al., 2002), CMB tem-
perature (Komatsu et al., 2009, 2011; Planck Collaboration et al., 2020) wich
have constrained it to be in the range σ8 ∈ (0.7−0.9). Also the numer counts
of cosmic voids can provide reliable constraints on this parameter. Though it
has not been exploited as stand-alone probe yet, void number counts will be
soon applied to the upcoming wide-field surveys to derive cosmological con-
straints. Contarini et al. (2019) have indeed demonstrated the constraining
power of this statistics by analysing the abundance of voids identified in DM
haloes mock catalogues. An analogous method will be tested in Chapter 5
using voids identified in simulated galaxy distribution.

From the properties of the window function, one can see that the mass
variance tends to its punctual value when R→ 0, and tends to zero when fil-
tering on large scales (R→∞), because the perturbations are more and more
smoothed. Since the higher values of k tend to be averaged out within the
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window volume, σ2
M is dominated by perturbation components with wave-

length λ ∼ k−1 > R. Note that the Zel’dovich spectrum of Eq. (2.30),
where n = 1, is a growing function of k, so larger wavelenghts contribute
less. Moreover, if δ(~x) is a Gaussian random field, then so it is δ(~x,R), from
the fact that the convolution operation preserves Gaussianity. In particular,
the distribution of values for the smoothed contrast becomes:

P(δM)dδM =
1√

2πσM
exp
[
− δ2

M

2σ2
M

]
dδM , (2.42)

where P(δM)dδM is defined as the probability of having a contrast δM be-
tween δM and δM + dδM .

2.4.1 Evolution of the power spectrum

When perturbations enter inside the horizon in an epoch before the equiva-
lence, the density perturbations are damped by an effect called stagnation, or
Mészáros effect (Mészáros, 1974). This effect is simply a manifestation of the
fact that the Hubble drag term during the radiation dominated era is larger
than during the matter dominated era. Indeed if one compares the free-fall
time, i.e. the characteristic time that would take a perturbation to collapse
under its own gravitational force, and the Hubble time, i.e. the characteristic
time for the expansion of the Universe, one finds:

τH
τff
∝ (ρm/ρR)1/2 � 1, t < teq

τH
τff
∼ 1, t > teq .

(2.43)

Perturbations stay approximately constant in this regime, and this is the
main effect that changes the primordial shape of the perturbations power
spectrum.

Let us consider a perturbation of DM having λ > λH . Since λH ≡ RH

expands with time, larger perturbations will enter the cosmological horizon
at later times, hence they will undergo less stagnation (or zero stagnation,
if they do not enter in λH before teq). On the other hand, the perturbations
on scales bigger than the horizon continue to grow at the same rate, as seen
in Eq. (2.19), independently of the scale or wavenumber. As a consequence,
the power spectrum at the moment of the equivalence has a peak in corre-
spondence of kH,eq, that is the wavenumber associated with the cosmological
horizon at the equivalence time. The overall evolution of the primordial
power spectrum P (k) can be summarised defining a transfer function T (k).
This function gives the fraction of the power spectrum that is not affected
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by the microphysical effects inside the horizon. Considering a generic cosmo-
logical time represented by ai and the equivalence aeq, the transfer function
is defined as follows:

P (k, teq) = P (k, ai)T
2(k) . (2.44)

For the CDM/bottom-up scenario, one has:

T (k) =

{
k0, k < kH,eq,

k−2, k > kH,eq .
(2.45)

This function therefore acts as a filter that blocks larger wavenumbers. The
position of kH,eq corresponds to a physical scale determined by the matter
(Ωmh

2) and radiation densities (Ωrh
2). Moreover, the shape of the observed

power spectrum P (k) depends on the amount and the nature of the matter
in the Universe, providing powerful constraints for Cosmology. For example,
if the DM were totally hot, then the matter power spectrum would fall off
sharply to zero to the right of the peak, as it can be seen in Figure 2.1.

Figure 2.1: The power spectrum at the equivalence time for CDM (solid line)
and HDM (dotted line). The dashed line represents the primordial Zel’dovich
power spectrum. Credits to Ryden (2003).

Figure 2.2 shows the matter power spectrum as measured using different
tracers at the present time. According to the theory, the power spectrum on
large scales still has its primordial power-law shape and galaxy clusters trace
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Figure 2.2: The matter power spectrum P (k) as a function of wave-number
k at the present time. Note the turnover at kH,eq ∼ 0.01h−1Mpc. The plot
combines data from different scales: CMB, large galaxy surveys, weak lensing
and Lyα forest, in order of decreasing co-moving wavelength. In addition,
there is a single data point for galaxy clusters. Figure from Tegmark et al.
(2004).
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the linear domain of the matter fluctuations. As shown in the same figure,
there are various probes that can be used to constrain the power spectrum
shape. CMB temperature fluctuation observations provides constraints on
large scales, while large galaxy surveys predict the shape at the turnover
up to 0.1 h−1Mpc. Cosmic shear measurements can also be used for this
aim, as shown e.g. in Lewis & Challinor (2006). Finally, the absorption
features of the Lyman-α emission line in the spectra of high-redshift quasars
are widely used as biased tracers of the density fluctuations of a photo-ionised
warm intergalactic medium, and are collectively known as the Lyman-α forest
(Croft et al., 2002; Viel et al., 2004).

2.4.2 Bias parameter

A fundamental problem in Cosmology is to understand how the spatial dis-
tribution of tracers is related to that of the underlying mass. If one counts
galaxies in a volume V , one can still define an overdensity field as

δgal =
Ngal(V )− N̄gal(V )

N̄gal(V )
, (2.46)

where Ngal is the number counts and N̄gal the mean number counts insed a
volume V .

However, one can not know in principle how the galaxy distribution re-
flects the distribution of the total matter in the Universe. The simplest
model to parametrise the relation between δgal and δM is the linear, local,
non-stochastic bias model:

δM = bδgal , (2.47)

where b is the linear bias factor, which depends on Cosmology, and on galaxy
properties such as luminosity, morphology, colour and redshift. The Eq.
(2.47) was proposed by Kaiser (1984) considering galaxy clusters, which are
still in a linear regime, as discussed in the previous Section. This does not
hold for smaller scales, where the relation becomes very complex due to the
nonlinear evolution of galaxies. The bias does not only affect galaxies. Also
the distribution of DM haloes is biased, because they form from the total
matter distribution via collapse, only when a specific contrast threshold is
exceeded (see Section 3.2.1).

One can use the analytical bias parameter proposed by Mo & White
(1996) for the DM halo bias, which was found appliying the so-called Excursion-
set (ES) formalism (see Section 3.4 for details):

b(M, z) = 1 +
1

δc

( δ2
c

σ2
Mδ

2
+(z)

− 1
)
. (2.48)
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Eq. (2.48) implies that massive haloes are positively biased, as also confirmed
by simulations (e.g. Hu & Kravtsov, 2003). Moreover the bias factor grows
with redshift.

One has to take into account the bias effect also for the observations of
the 2PCF of galaxies. It can be inferred by computing the square root of the
ratio of the galaxy 2PCF relative to that of DM particles:

b =

√
ξgal
ξDM

. (2.49)

The same can be defined for the ratio between DM haloes and DM particles,
thus massive haloes are more clustered. Similarly, also the observed power
spectrum allows to constrain both the amplitude and the scale dependence
of the galaxy bias (Padmanabhan et al., 2007).

2.5 Nonlinear evolution of perturbations
Up to now we described the evolution of perturbations and their power spec-
trum in the linear regime, i.e. as long as δ � 1. As the density contrast δ
approaches unity, the evolution of the density fluctuations becomes nonlin-
ear. During the nonlinear evolution, overdensities contract, causing matter
to flow from larger to smaller scales causing the power spectrum to deform.
When the variance of the perturbation distribution reaches the value σ2 ' 1,
the structures can be considered as formed and the nonlinear regime is es-
tablished.

Consider the mass variance as expressed in Eq. (2.40) and a power-law
shape for P (k). Neglecting the effect of the window function one can find
that

σ2
M ∝ δ2

+(t)kn+3 , (2.50)
where we have used δM(t) = δM,inδ+(t). Moreover, the mass is dimensionally
proportional to the cube of R, that implies:

σ2
M ∝ δ2

+(t)M−n+3
3 . (2.51)

Let us associate the formation of a structure of mass M∗ to σ2
M = 1, which

happens at a given time t = t∗. One has that

M∗ ∝ δ
6/(n+3)
+ . (2.52)

For an EdS Universe, which is a good approximation for our Universe when it
began to be nonlinear, we know that δ+(t) ∝ a ∝ t2/3. Thus we can express
the time t∗ as

t∗ ∝ (1 + z)−3/2 ∝M (3+n)/4
∗ . (2.53)
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In a hierarchical model (bottom-up), the formation time must be smaller for
lighter objects, therefore n > −3. In addition the energetic of the systems
should increase with the mass, so that n < 1. Therefore the hierarchical
scenario predicts a range for the spectral index n, which is:

− 3 < n < 1 . (2.54)

Data from Planck 2018 release, put a constraint of n ' 0.96 (Planck Collab-
oration et al., 2020).

As one can see from Eq. (2.51), the mass variance grows as the mass
decreases. Therefore, at any fixed moment in time, a perturbation having
mass M1 will have grown more with respect to a perturbation of mass M2 >
M1. This latter fact is true only for n > −3, and tells us that structures with
lower masses reach nonlinearity earlier. As a consequence, the probability
distribution of the density contrasts, δ, on small scales becomes larger with
time first, until the shape of the distribution deviates completely from a
Gaussian. From the definition of density contrast we find that the latter is
limited in its negative part:

δ =
ρ− ρ̄
ρ̄

=
ρ

ρ̄
− 1 > −1 , (2.55)

which implies that P(δ < −1) = 0. This causes a non-Gaussian evolution for
P(δM), hence it will become asymmetrical, tending to privilege the formation
of underdense regions and leading to the formation of the cosmic web pattern
observed in large galaxy surveys (see Figure 2.3 for an example). This is due
both to the fact that it meets the barrier at δM = −1 and to the fact that
the area subtended by the curve P(δM) must remain constant during its
evolution, being a normalised probability.

Even though the linear perturbation theory fails for |δ| ≥ 1, the onset
of nonlinear evolution can still be described analytically with approximate
models such as the spherical collapse which leads to the Press-Schechter
formalism (see Section 3.2.1). In general, however, it is necessary to use
numerical methods in order to follow the nonlinear evolution of the struc-
tures in the Universe. Therefore, the exploitation of N-body simulations is
mandatory, and typically the initial conditions are set through the use of the
Zel’dovich approximation.

2.5.1 The Zel’dovich approximation

The transition for the density contrast between linear and nonlinear regime
can be described analitically by the Zel’dovich approximation (Zel’Dovich,
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Figure 2.3: The distribution of galaxies in two slices of the Sloan Digital
Sky Survey (SDSS). Every dot is a galaxy containing about 100 billion stars.
Redder colours represent galaxies made of older, more clustered stars. Our
own Galaxy is in the centre of this image, and the galaxies at the outer circle
are approximately 600 Mpc far away from us. Credits to Mr. Blanton and
the Sloan Digital Sky Survey (http://www.sdss3.org/science/).
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1970) (see the review by Shandarin & Zeldovich (1989), for an exhaustive
description). The Zel’dovich approximation is particularly simple in comov-
ing coordinates ~r = ~x/a(t), where a(t) is the scale factor and ~x are physical
coordinates. It relates the initial Lagrangian coordinates ~q at t→ 0 and ~r at
time t by an explicit relation:

~r(~q, t) = ~q + δ+(t)~s(~q) , (2.56)

where the vector field ~s(~q) is called the initial displacement field and it is
determined by the initial density perturbations, while δ+(t) is the linear
density growth factor fully specified by the cosmological parameters. The
Zel’dovich approximation assumes that ~s(~q) is a potential vector field:

~s(~q) = −∇qΨ(~q) . (2.57)

The main limit of this approach is that the particles feel only the initial force,
which causes their displacement, but at later times there are no additional
interactions. This implies that two particles can cross each other without any
interaction, giving rise to the so-called shell-crossing problem. However these
problems affect mainly the modelling of the small scales, where nonlinearity
develops first.

An additionally important aspect of the Zel’dovich approximation, re-
flecting its Lagrangian nature, is the deformation of mass elements. The
deformation is specified by the following tensor:

dij = − ∂2Ψ

∂qi∂qj
. (2.58)

From Eq. (2.56) one may easily infer an explicit expression for the density as a
function of Lagrangian coordinates and time. If we consider the conservation
of mass in differential form:

ρ(~r, t)d3~r = ρ̄(t)d3~q , (2.59)

the density evolution directly follows from:

ρ(~x, t) = ρ̄
[
δij + δ+(t)dij

]
= ρ̄[1− δ+(t)λ1]−1[1− δ+(t)λ2]−1[1− δ+(t)λ3]−1 ,

(2.60)

where λ1 > λ2 > λ3 are the eigenvalues of the symmetric deformation tensor
dij. On the basis of the second equation of (2.60), we may immediately
infer two key features of structure formation described by the Zel’dovich
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approximation. The first one is that the density becomes infinite as soon
as δ+(t)λi = 1. In addition, this collapse is nearly always anisotropic as in
general the eigenvalues λ1 6= λ2 6= λ3.

The general idea is that the bracket containing the largest λi tends to
zero first, and this means that the minor axis collapses earlier. On the other
hand, if the eigenvalues are negative, the brackets can not be null at any
time, and a dilatation takes place, instead of a collapse. Therefore different
combinations of positive and negative eigenvalues lead to different evolution
of large scale structures.

2.6 Numerical simulations in Cosmology
So far we have seen how the structure formation can be treated analytically
both in the linear and in the mild nonlinear regime. However, galaxies form
in a strong nonlinear regime, which has very complex dynamics. There-
fore, numerical simulations are required in order to properly model the main
properties of the large scale structure properties of our Universe and their
cosmological evolution. The first studies in which numerical simulations were
employed are Aarseth (1963), Peebles (1970) and Press & Schechter (1974),
in which simple N-body problems have been solved using N-body codes with
few hundred particles. Nowadays we can make reliable predictions about a
very large range of phenomena, using simulations having billions of parti-
cles. Especially, the last years have seen enormous progress on two fronts:
large volume simulations modeling large samples of galaxies, and zoomed
simulations with refined galaxy formation models that resolve the physical
processes in more detail. Moreover, cosmological simulations are typically
performed with periodic boundary conditions in order to mimic the large
scale homogeneity and isotropy of the matter distribution in the Universe,
i.e. the cosmological principle.

There exist two main kinds of numerical simulations, depending on the
type of study we want to carry out:

• N-body simulations : they are used to simulate the DM distribution
through particles from small scales to large scales. Only the gravita-
tional interaction is involved;

• Hydrodynamic simulations : they involve also hydrodynamics, and so
they can be used to describe the baryonic matter density field. Among
others, these simulations describe the cooling of gas, the formation of
stars, and the energy and momentum injection caused by supermassive
black holes and supernovae.
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In this Thesis work, in order to test the algorithms we implemented on the
combination of multiple probes, we will use a set of cosmological and hy-
drodynamical simulations. In particular, these simulations are based on a
specific type of algorithm, the tree-particle-mesh combined with a smoothed-
particle-hydrodynamics code (see later), but we provide as well, in the fol-
lowing sections, a general description of the main numerical algorithms that
are commonly used in Cosmology.

2.6.1 N-body simulations

Having a set of N particles with mass mi, for i = 1, . . . , N , the simplest kind
of N-body simulations, which considers only gravitational effects, solves the
Newtonian system of dynamical equations:

~Fi = Gmi

∑
i 6=j

mj

r2
ij

r̂2
ij

~̈xi =
d~vi
dt

=
~Fi
mi

~̇xi =
d~xi
dt

= ~vi ,

(2.61)

where ~Fi is the gravitational force acting on the i-th particle, ~xi and ~vi are
respectively the comoving coordinates and the velocity of the i-th particle,
rij is the comoving distance between i-th and j-th particles, and r̂ij is the
related unitary vector. The main challenge of the N-body simulations is to
efficiently calculate the gravitational force that governs the motion of the
sample of particles. Given the system (2.61), the fundamental equations
that has to be considered for the gravitational interactions are, in comoving
coordinates, the Euler equation:

d~vi
dt

+ 2
ȧ

a
~vi = − 1

a2
∇φ = −G

a3

∑
i 6=j

mj
~xi − ~xj
|~xi − ~xj|3

=
~Fi
a3

(2.62)

and the Poisson equation:

∇2φ = 4πGρ̄a2δ =
3

2
H2

0 Ω0
δ

a
, (2.63)

where we used the second Friedmann equation (1.42). The Poisson equation
can be written also in its integral form:

φ(r) = −G
∫

ρ(~x)

|~x′ − ~x|
d~x′ (2.64)
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The simplest method to calculate the gravitational force acting on the i-th
particle is the Particle-Particle method (PP), which is also the most accu-
rate. This method consists in the evaluation of ~Fi acting on each particle
at any time step. However it is the most expensive in terms of computa-
tional time, because for each time step it requires the computation of the
N(N − 1)/2 distances between the particles, i.e. the number of operations
scales as O(N2)1. Moreover, the nature of the gravitational force leads to
the fact that in the limit r → 0 the force, and so the potential, would grow
to infinity. Therefore it is necessary to introduce a softening length, below
which the gravitational force is set to zero.

Other methods to calculate gravitational forces of the N-body system,
that are more efficients than PP, are described below:

• Hierarchical Tree (HT). This method consists in the division of the
simulated volume of the Universe in cells, characterised by a proper
centre of mass, whose sizes follow a hierarchy based on the spatial
distribution of the particles. The volume of the simulation (root) is
iteratively divided into smaller cells (branches) until each cell contains
at most one particle (leaves). Given a particle P , then the gravitational
force acting on it is computed with the PP method if the particles with
which it interacts are sufficiently close. On the other hand, for distant
clumps of particles it is sufficient to compute the force produced by the
biggest cell containing the clump, with total mass equal to the sum of
the clump’s masses and position equal to their centre of mass. This is
the most common method used to accelerate the PP method, and the
number of operations involved with this method scales as O(N logN).
(Barnes & Hut, 1986)

• Particle-Mesh (PM). While PP and tree method solve the integral
form of the Poisson equation, mesh-based methods aim at solving the
differential form of Poisson’s equation (2.63). This can be done effi-
ciently through Fast Fourier Transform-based methods (FFT), with
Poisson’s equation written in Fourier space: ~k2φ̂(~k) = −4πGρ̂(~k),
where φ̂ and ρ̂ are, respectively, the Fourier transforms of the gravi-
tational potential and density field, leading the so called particle-mesh
method (PM) (Hockney & Eastwood, 1981). Here the computation of
the forces is performed by implementing a regular grid, from which the
density field is computed by interpolation. With FFT methods one

1This notation, known as the asymptotic notation, is used in computer science to
classify algorithms according to how their run time or requirements of space grow as the
input size grows.
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can compute the FT of the density field and then calculate φ̂. Conse-
quently the forces are obtained from the differentiation of the potential
and then brought back to real space by applying an inverse FT. This
method is faster than PP, indeed it scales as O(N logN), where here N
is the number of cells in the grid. However, this method is less accurate,
because the resolution depends on the size of the cells.

• Hybrid methods. A variety of schemes combine direct summation-
based techniques (such as PP), for short range forces, with FFT meth-
ods, for long range forces. The most basic example of this is the
particle-particle plus particle-mesh method (P3M) (Efstathiou et al.,
1985). This algorithm is more accurate than the PM: particles directly
interact with each other in presence of zones with strong clustering.
However, it implies an increasing of computational cost, which locally
tends to be proportional to O(N2). Assuming a scale Rk that discrimi-
nates these two regimes, with k a factor that depends on that scale, the
number of operation scales as O(kN logN). Another common hybrid
scheme is the tree-particle-mesh (TPM) method, which combines the
PM method on large scales with a tree code to handle particle-particle
interactions at small separations.

Once the method used for the computation of the gravitational force is cho-
sen, the system (2.61) has to be updated in order to obtain the time evolution,
hence the orbits, of the particles. Given the time interval ∆t, for each time
step tj one can update the positions and the velocities of the particles by
using the so-called leapfrog method, in which spatial coordinates are com-
puted at half time step (tj+1/2) in order to ensure a better accuracy for the
velocity computation at tj+1. Consequently, one has to update the spatial
coordinates at tj+1 using the latter value of velocity:

~x(tj+1/2) = ~x(tj) +
1

2
~v(tj)∆t

~v(tj+1) = ~v(tj) + ~g[~x(tj+1/2)]∆t

~x(tj+1) = ~x(tj+1/2) +
1

2
~v(tj+1)∆t ,

(2.65)

where ~g = −∇φ(x) is the gravitational vector field.
There exist other methods for the time integration, such as the Runge-

Kutta methods or the Euler method, however the leapfrog presents several
desirable properties: it is accurate at the second order, it is time reversible,
it preserves phase-space density (i.e. it is symplectic) and for a spherically-
symmetric potential, it conserves angular momentum exactly.
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2.6.2 Hydrodynamic simulations

DM and DE dominate the energy budget of the Universe, but the visible com-
ponent of galaxies consists of baryons. The latter can be heated or cooled
in a variety of ways, and the modelling of these processes is a very complex
task, because of both the computational limitations of present day machines,
and of our lack of knowledge of the physics involved. Moreover, baryonic
interactions are important only on relatively small scales, hence the study of
structure formation at scales larger than few Mpc can be considered suffi-
ciently accurate even without accounting for the baryonic interactions. How-
ever, when studying smaller scales, the radiative processes related to baryons
are fundamental in order to properly model the formation and evolution of
galaxies, as well as to being able to link the matter distribution to the light
distribution that we actually observe in the Universe.

The physics of this component can be included by making use of the exact
solution of the set of Eqs. (2.5). Also, the hydrodynamic equations have to
be complemented by various astrophysical processes that shape the galaxy
population. Among these there are: the cooling of gas, the impact of the
interstellar medium, the star formation process, stellar radiative feedbacks,
supermassive black hole feedbacks and AGN feedback.

The hydrodynamical equations can be discretized in different ways em-
ploying methods that roughly fall into two classes: Lagrangian and Eulerian
methods.

• Eulerian methods. These are the traditional methods to solve the
system of hyperbolic partial differential equations that constitute ideal
hydrodynamics. In these methods the mean values of the hydrody-
namic variables are calculated at the nodes of one (or more) spatial
grids, that could be fixed or adaptive. The latter have the advantage
of being able to be refined in the regions where we want to study the
phenomenon in greater detail. The advantage of using eulerian meth-
ods is that they allow to describe in more details shock events, i.e.
phenomena that cause a steepening in the physical variables gradients.
The major problem of these methods is the resolution, problem which
arises from the fact that they deal with grids.

• Lagrangian methods. In these methods the fluid is modelled as an
ensemble of particles, in analogy with the N-body simulations. The ref-
erence system moves with the flow of variables to be obtained (e.g. gas
density, temperature, ..) and the hydrodynamic quantities are calcu-
lated at the position of particles. The advantage in using these methods
lies in the fact that we are able to follow the evolution of the fluid de-
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pending on the density. The code considers spatial accuracy greater
in overdense regions than in underdense regions. However one needs
to introduce an artificial viscosity in order to deal with steep gradi-
ents. The most used lagrangian algorithm is the Smoothed-Particle-
Hydrodynamics (SPH). In this type of algorithm the fluid’s properties
are computed, at every positions, as the weighted average of the vari-
ables around that position. The fluid is discretised in a finite number
of particles, in order to perform integrals as summations, and the hy-
drodynamical interactions are computed between a restricted group of
closest particles, hence the total ensemble of particles is not considered.

The choice of the most efficient method depends on the type of problem to
solve. Typically, if we want to simulate objects having high density (galaxies,
clusters of galaxies) Lagrangian methods are recommended, since they do
not have spatial resolution problems. On the other hand, if we want to do
cosmological simulations, in which we simulate both overdense regions as well
as underdense regions, Eulerian methods are better.

As for N-body simulations, also hydrodinamic simulations could be built
to cover large scales or to cover only "small" environments like a single galaxy
+ interstellar medium around it. The results of hydrodynamical simulations
can be directly compared with observational data providing important tests
for galaxy formation models. Despite the differences in the methods and im-
plementations of the galaxy formation, these simulations have now converged
on a wide range of predictions for the evolution of galaxies. It therefore seems
that the basic physical mechanisms that shape the galaxy population have
been identified, and that their current modeling is sufficient to produce real-
istic galaxy populations. However, there is also a wide range of predictions
that diverge among different simulations. For example, the characteristics of
gas around galaxies are very sensitive to the feedback implementations used
in the different galaxy formation models. This can lead to rather different
outcomes for the thermodynamic structure of gas around galaxies.
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Chapter 3

Statistical properties of galaxy
clusters and cosmic voids

When we observe the properties of our Universe on large scales, what we
see is a filamentary pattern traced by matter. This structure is composed by
galaxies, which attract each other due to gravitational interactions and group
together in galaxy clusters in the most overdense zones. Departing from these
filaments and high-density nodes, luminous objects become increasingly dif-
ficult to find. Cosmic voids, the most wide and underdense regions of our
Universe, fill the remaining volume of this intricate web of matter. Statistical
properties of galaxy clusters and cosmic voids, like number counts and den-
sity profiles, can be exploited to test the underlying cosmological model and
represent powerful probes to bind the fundamental cosmological parameters.

In this Thesis work, we implement new algorithms for probe combination,
and investigate th constraining power of a joint analysis of the mass function
of galaxy clusters and the size function of cosmic voids, considering these
two as independent probes (see Chapter 4). In this Chapter we introduce
the theoretical background for the evolution of both over- and under-dense
perturbations of matter, starting from the spherical collapse model, that
describes the formation and evolution of both DM haloes and cosmic voids.
From this theoretical modelling we will derive an analytic expression for the
mass function of DM haloes, inside which galaxy clusters form, following
the Press & Schechter formalism (Press & Schechter, 1974). Then, we will
present an extension of this formalism, called excursion-set, to derive also
the size function of cosmic voids, as proposed by Sheth & van de Weygaert
(2004). We will describe in details the models we will use in the next two
Chapters, together with the prescriptions to properly obtain the abundance
of galaxy clusters and voids from a catalogue of galaxies.
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3.1 Galaxy clusters and cosmic voids
The evolution of the DM density fluctuations gives rise to the formation of
deep potential wells inside which DM haloes form. The baryonic matter falls
into these haloes, cools down, and collapses forming stars and galaxies, which
will then cluster inside the most massive haloes. The way in which galaxy
clusters build up from the interactions of baryonic matter inside DM haloes
is a very complex and fascinating subject of study, and nowadays is mostly
analysed using cosmological hydrodynamical simulations. Galaxy clusters
represent the principal tracers of the matter distribution, being placed at the
highest density peaks of the DM distribution.

From an observational point of view, galaxy clusters have masses between
1013 M� and 1015 M�, and are typically composed by 102 − 103 galaxies,
having velocity dispersion around 103 km s−1. Though their mass budget
is dominated by DM (∼ 80% − 90%), the majority of the baryonic mass in
these systems is represented by the hot plasma, called IntraCluster Medium
(ICM), which is heated up to Tgas = 108 K, and is observable in the X-ray
band. The strong X-ray emission of the ICM makes galaxy clusters one of
the brightest class of objects that we observe in this spectroscopic band. At
different wavelengths, one can study very disparate phenomena associated
to galaxy clusters. For example, in the visible part of the light spectrum we
observe the light coming from the star component, while at radio frequencies
we can study the magnetic fields within the ICM, together with shocks caused
by the interactions of galaxies with the hot gas. Moreover, the CMB photons
interact with energetic electrons of the ICM and gain energy, leading to a
distortion of the observed CMB spectrum in correspondence of clusters, the
SZ effect. Galaxy clusters are not randomly distributed, but they group
in even larger superclusters, having scales of hundreds of Mpc. Moreover,
they are not isolated structures. Indeed, they are connected into a complex
network by filaments of galaxies in the so-called supercluster-voids network
(Einasto et al., 1980; Zeldovich et al., 1982; Einasto et al., 2011). In this
network, galaxies and galaxy clusters constitute the high-density boundaries
of cosmic voids. The latter can span a wide range of sizes, going from radii
of few Mpc (mini-voids) to hundreds of Mpc (super-voids) (Tikhonov &
Karachentsev, 2006; Granett et al., 2008). Thanks to the advancement of
spectroscopic and photometric surveys, in the recent years cosmic voids have
become a powerful probe to constrain cosmological parameters (see Pisani
et al., 2019, for a comprehensive review). Indeed, their abundance and their
internal density profiles and shapes, as well as their clustering properties,
are strongly dependent on the underlying cosmological scenario. Moreover,
being voids large regions nearly devoid of matter, they represent excellent
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laboratories to test alternative gravity theories, as well as to study in details
the effects of massive neutrinos (Villaescusa-Navarro et al., 2013; Schuster
et al., 2019; Contarini et al., 2020) and non-standard DE models (Bos et al.,
2012; Pisani et al., 2015; Verza et al., 2019).

According to the ΛCDM model, galaxies formed in voids should have
different observational properties than those found in denser environments.
For example, from cosmological simulations we see the evidence for lower
mass haloes inside cosmic voids, with masses not high enough to trigger the
star formation (Tikhonov & Klypin, 2009; Einasto et al., 2011). In general,
it has been found that void galaxies have lower stellar mass (Croton et al.,
2005), are more gas-rich (Kreckel et al., 2012) and are bluer than galaxies in
denser environments (Hoyle et al., 2012).

One problem related to the observation and the analysis of galaxy clusters
is the effect of redshift-space distorsions (RSD) caused by the peculiar mo-
tions of galaxies around and inside clusters. The latter cause a shift in galaxy
observed positions along the line-of-sight, leading to a distortion in their spa-
tial distribution. Since galaxies tend to fall inwards towards the cluster centre
of gravity, we observe a fictitious squashing of the cluster shape. Modelling
RSD is a very complex task, in particular on small scales, where perturbative
models cannot precisely reproduce the nonlinear behaviour of the growth of
cosmic structures (R < 20 Mpc h−1). The effect of RSD is present also in
cosmic voids, however their shapes and statistics are easier to model since
voids remain in a mildly nonlinear regime during their evolution. Moreover,
the galaxies inside them show coherent single-stream motions (Shandarin,
2011) from the centre towards the edge of these objects. We expect therefore
an opposite effect with respect to the one observed for galaxy clusters: in this
case the projection of the galaxy peculiar motions will produce an elongation
of the void shape along the line-of-sight. The study of the phenomenon of
the RSD in both clusters and voids is left as future improvement of this work,
since these effects are not included in the analysed data-sets.

3.2 Spherical evolution
We are going now to describe the models at the base of DM halo and void
formation and evolution from the growth of the density fluctuations.

Though numerical simulations are needed to study in details the growth
of cosmic structures, we can learn about the evolution of perturbations in
the nonlinear regime by making use of some assumptions. In the following,
we consider a simple analytical model to describe the isolated formation of
collapsed objects from overdensities, the so-called top-hat model, also known
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as the spherical evolution model (Gunn & Gott, 1972), which has also been
applied in theoretical studies of voids, which evolve from underdensity regions
(Gunn & Gott, 1972; Peebles, 1980; Sheth & van de Weygaert, 2004). This
model considers the nonlinear evolution of an initially spherical perturbation,
which can be positive or negative, described as a closed or open Universe that
evolves in an EdS background. We consider an initial time ti > teq, where
teq is the matter-radiation equivalence time, thus we study the evolution of
perturbations in the matter-dominated cosmic epoch, but at redshifts high
enough for assuming an EdS model for the background.

3.2.1 Overdensities

Dealing with overdensities, we expect that, if a perturbation has a sufficiently
high density contrast, it will decouple from the Hubble flow and collapse. We
know that the growing and decaying mode of perturbations in a dust EdS
Universe are δ+ ∝ t2/3 and δ− ∝ t−1, respectively. Therefore the density
contrast can be expressed as the combination of these two modes:

δ = δ+(ti)
( t
ti

)2/3

+ δ−(ti)
( t
ti

)−1

. (3.1)

Assuming a null initial velocity of perturbations, we can derive with respect
to the time the latter relation for δ, considering t = ti, finding:

2

3
δ+(ti)− δ−(ti) = 0 =⇒ δ−(ti) =

2

3
δ+(ti) . (3.2)

Therefore, Eq. (3.1) can be written, for t = ti, as:

δi =
5

3
δ+(ti) . (3.3)

Hence 3/5 of the initial perturbation is represented by the growing mode,
while the remaining 2/5 decays with time, tending to become negligible.

Now, let us consider the density parameter of the perturbation Universe
Ωp. The perturbation is described in terms of a closed Universe, which we
know, from Section 1.9.3, that will undergo to a collapse. Consequently, we
have Ωp > 1, since:

Ωp(ti) ≡
ρp(ti)

ρcrit(ti)
=
ρb(ti)(1 + δi)

ρcrit(ti)
= Ω(ti)(1 + δi) > 1 , (3.4)

where Ω(ti) is the initial density parameter of the background Universe, and
ρcrit is the critical density. Thus, we find that for a closed Universe, it
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is necessary that (1 + δi) > Ω(ti)
−1. By considering a mono-component

Universe with w = 0, we can use the equation for the evolution of the density
parameter Eq. (1.60) in order to find the threshold for δ+(ti) that will lead
to the collapse:

δ+(ti) =
3

5
δi >

1− Ω0,b

Ω0,b(1 + z)
. (3.5)

Here we clearly see that for closed and flat background Universes (i.e. for
Ω0,b ≥ 0) the collapse is achieved for any positive values of the initial density
contrast, while for open Universes (i.e. for Ω0,b < 0) the expansion inhibits
the collapse if δi is not sufficiently greater.

In Section 1.9.3 we obtained the parametric solution for a dust Universe,
and we saw that this kind of Universe reaches its maximum size for θ = π
at t = tmax, a status called turn around, after which it collapses under its
own gravity. It is possible to show that the density of the perturbation at
the turn around (i.e. for t = tmax) is:

ρp(tmax) =
3π

32Gt2max
. (3.6)

We can calculate the density contrast at the turn around by computing the
background density at tmax from Eq. (1.84). We obtain:

δ+(tmax) '
ρp(tmax)

ρb(tmax)
− 1 =

(3π

4

)2

4.6− 1 ' 4.6 , (3.7)

therefore the perturbation is already in the nonlinear regime before the col-
lapse. The same quantity obtained with the linear theory, described in Sec-
tion 2.2.2, would be instead:

δ+(tmax) = δ+(ti)
(tmax

ti

)2/3

' 1.062 . (3.8)

After the turn-around, the physical scale of the perturbation decreases until
t = 2tmax, time at which the full collapse would be reached, leading to the
formation of a black hole. However, it is much more likely that collapse stops,
forming bounded objects in a way we have summarised in Section 2.3. The
temperature of the gaseous baryonic matter increases until the internal pres-
sure gradients become sufficient to balance the gravitational force. The cold
DM component, during collapse, fragments into sub-units. Then, through
the process of violent relaxation, these regions come to a dynamical equi-
librium under the influence of large-scale gravitational potential gradients.
In particular, from numerical simulations we know that the virialisation is
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reached at a time tvir = 3tmax, at which the size of the perturbation becomes
stable, at the virialisation radius Rvir.

Let us assume that the perturbation system has kinetic energy T (or
internal thermal energy, associated with motions of particles) and gravita-
tional potential energy V . The final result is a system which satisfies the
virial theorem, which states that:

2T + V = 0 . (3.9)

Considering the potential energy of a self-gravitating sphere of mass M

V = −3

5

GM2

R
, (3.10)

the total energy of the system becomes:

E = T + V =
1

2
V = − 3

10

GM2

R
. (3.11)

Let us assume the absence of any mass or energy losses since the turn-around,
therefore:

E(tvir) = E(tmax) (3.12)

which leads to 2Rvir = Rmax. From the fact that ρp(tvir) ∝ R−3
vir, it follows

that
ρp(tvir) = 8ρp(tmax). (3.13)

Therefore we can now compute the density contrast at tcoll = 2tmax and
tvir = 3tmax:

δ+(tcoll) =
8ρp(tmax)

ρb(tmax)

(
tcoll
tmax

)2

' 180 ,

δ+(tvir) =
8ρp(tmax)

ρb(tmax)

(
tvir
tmax

)2

' 400 .

(3.14)

While the same quantities extrapolated from the linear theory are:

δ+(tcoll) =
8ρp(tmax)

ρb(tmax)

(
tcoll
tmax

)2/3

' 1.686 ,

δ+(tvir) =
8ρp(tmax)

ρb(tmax)

(
tvir
tmax

)2/3

' 2.2 .

(3.15)

We stress the fact that these values represent the initial thresholds. Therefore
one has to take into account also the growth factor in order to compute the
desired collapse barrier at different redshifts, accordingly to the linear theory.
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The quantities in Eq. (3.14) depend strongly on the cosmological model
assumed for the background Universe, hence on its curvature. On the other
hand, though the linearly extrapolated values for δ+ are very different with
respect to their nonlinear counterpart, the dependence of these quantities on
the given cosmological model is much weaker (Jenkins et al., 2001; Kitayama
& Suto, 1996). For example, in the ΛCDM model these become δmax =
1.303 and δc = 1.674, for turn-around and collapse at z = 0. This kind of
independence for δc of the Cosmology will be useful in the derivation of the
Press-Schechter formalism (Section 3.4).

3.2.2 Underdensities

We will now turn to the description of the evolution of underdense perturba-
tions, following the same underlying spherical model used for overdensities.

Let us consider an inverse top-hat spherically symmetric underdense per-
turbation as a set of concentric shells, uniform and without substructures.
The evolution of each radius r is determined by the total mass M contained
within R via the acceleration equation in the Newtonian regime (i.e. ṙ � c
and r � rc ∼ c/H):

d2r

dt2
= −GM

r
= −4πG

3
ρb(1 + ∆)r , (3.16)

where, at the initial time

M =
4π

3
ρbr

3
i (1 + ∆i) ,

∆i =
3

r3
i

∫ ri

0

δi(r)r
2dr .

(3.17)

The same equation, applied to an unperturbed region, is the first Friedmann
equation, which yields the expansion history of the Universe. The Eq. (3.16)
can be solved analytically and the solution for the size of the radius as a
function of time takes the following parametric form when applied to voids
(Gunn & Gott, 1972; Lilje & Lahav, 1991; Sheth & van de Weygaert, 2004):

R = A(cosh θ − 1) ,
t+ T = B(θ − sinh θ) ,
A3 = GMB2 ,

(3.18)

which, not surprisingly, are the same kind of solutions found in Section 1.9.3
for the parametric evolution of open dust Universes. Here A, B and T are
constants that can be fixed once the initial conditions have been fixed.
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In the case of an EdS model for the background Universe, the density
deficit evolves as

1 + ∆(r, t) =
ρ(r, t)

ρb(r, t)
=

9

2

(sinh θ − θ)2

(cosh θ − 1)3
, (3.19)

The constants in Eq. (3.18) are:

A =
ri

2∆i

,

B =
3

4

ti

∆
3/2
i

,

T = 0 ,

(3.20)

where ri and ti represent the initial coordinates of the perturbation at (Blu-
menthal et al., 1992). One can show that the linear initial density deficit
is:

∆L
i (θ) = −

(
3

4

)2/3
3

5
(sinh θ − θ)2/3 . (3.21)

The low-density environment expands faster than the Hubble flow, thus more
rapidly with respect to the background Universe. As matter streams out of
the voids, the value of density decreases asymptotically to δ = −1. Since
the density gradually decreases going towards the centre of a void, the mat-
ter near the centre moves outward faster than matter in proximity of the
external boundaries. Shells that were initially close to the centre will ulti-
mately catch up the shells further outside, until they eventually pass them.
This phenomenon is called shell-crossing, and brings to the tendency of as-
trophysical objects to accumulate around voids, leading to the formation of
sheets and filaments. From the shell-crossing, the evolution of the void can
be described by a self-similar outward moving shell (Suto et al., 1984).

The solutions in Eq. (3.18) represent a family of trajectories labeled by
ri and parametrized by θ. We can find out when and where shell-crossing
phenomenon first occurs by differentiating the parametrized solutions with
respect to r and θ, and requiring that dr and dt vanish:[

A11 A12

A21 A22

][
dr/r
dθ

]
= 0 , (3.22)

where Aij are functions of ∆i and θ. To obtain non-zero solutions from this
homogeneous system of linear equations, we must have detA = 0 (Jennings
et al., 2013). Thus we derive the shell-crossing condition:

sinh θsc(sinh θsc − θsc)
(θsc − 1)2

=
8

9
. (3.23)
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From the latter equation we obtain the angle θsc of the shell-crossing, which
is:

θsc ' 3.49 . (3.24)

Moreover, we can show that, at shell-crossing event, the void has a precisely
determined excess Hubble expansion rate (Sheth & van de Weygaert, 2004):

Hsc =
4

3
H(tsc) , (3.25)

where H(tsc) is the Hubble parameter of the background Universe. Now,
substituting θsc in Eq. (3.21) we find that at the shell-crossing event, the
void interior has a relative density

1 + δNLv ' 0.2047 , (3.26)

which implies that the void has expanded by a factor of (1+δNLv )−1/3 = 1.697
in comoving radius. Note that these numbers do not depend on the size of
the void. Moreover, from the latter relation we see that voids are only nearly
nonlinear objects, since |∆sc| ' 0.8 < 1.

The linear extrapolated quantity of Eq. (3.26) is:

δLv ' −2.71 . (3.27)

This is the underdense counterpart of the critical density contrast δc found
in Eq. (3.15). We can conclude that in the evolution of spherical voids, an ex-
pansion occurs, in contrast with the collapse for an overdensity. During this
evolution, void borders become denser and the central parts reach lower den-
sity contrasts. Moreover, the outward expansion makes voids evolve towards
a spherical geometry. As their nature to be emptier than the background
Universe, voids experience super-Hubble expansion. The shell-crossing phe-
nomenon is usually associated to the formation of a void and marks the
transition from a quasi-linear towards a mildly nonlinear stage. All of these
properties for the evolution of a spherical void are shown in Figure 3.1, which
shows the evolution of a top-hat void density profile.

3.3 Press-Schechter formalism
The statistical description of the distribution of structures in the Universe has
been developed by Press & Schechter (1974) (PS, hereafter), which considers
DM haloes as spherically symmetric collapsed objects. This work has been
extended then by Sheth & Tormen (2002) and Sheth et al. (2001), which
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Figure 3.1: Spherical evolution of a void up to the shell-crossing time (solid
line) in the case of a pure “top-hat” depression. Note how the void becomes
emptier as it evolves. Credits to Sheth & van de Weygaert (2004).

included also the modelling of ellipsoidal DM haloes. Also, Lacey & Cole
(1993) provided an analytical description, derived from PS formalism, for
the merging rate of virialized haloes.

According to the spherical collapse model, regions with linear density
contrast δ(~x, t) ≥ δc ' 1.686 will collapse to produce DM haloes by the
time t. Considering δ(~x, t) = δin(~x)δ+(t), we can also interpret this concept
differently: regions with δin(~x) ≥ δc/δ+(t) will collapse to produce DM haloes
by the time t. In the latter case we can consider the density field to be static
(fixing its value to the one linearly extrapolated to our reference time), while
the collapse barrier evolves with time. The aim is now to associate a mass
to those haloes, and to use the statistics of the linear density field to infer
the halo mass function, i.e. the (comoving) number density of haloes as a
function of halo mass.

A possible strategy to achieve this goal is to assess that the number den-
sity of haloes with mass greater than some value M is equal to the comoving
number density of peaks in the smoothed density field, thus:

nh(> M) = npk(δM) , (3.28)

where npk(δM) represents the number density of peaks above δc in the density
field, smoothed on mass scale M .

This idea, firstly proposed by Doroshkevich (1970), was explored in Bardeen
et al. (1986), a seminal paper known as “BBKS”. Using elegant, clever math-
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ematics they were able to compute the number density, clustering properties,
shapes and density profiles of peaks in a smoothed Gaussian random field,
all as a function of the peak height. However, this formalism leads to the
so-called peak-in-peak problem. In few words, peaks that are part of higher
peaks when filtering the density field with a greater radius are associated
with those higher peaks, loosing the corresponding peak (i.e. halo). Because
of this problem, the peak formalism of BBKS has largely been abandoned in
favor of the less rigorous, but more successful PS formalism. The latter is
based on the following postulate (PS ansatz ):

The probability that δM > δc(t) is the same as the mass fraction that at time
t is contained in haloes with mass greater than M .

We will indicate this probability as F (> M). Considering Eq. (2.42) as the
Gaussian probability distribution for the filtered density contrast δM , which
in linear theory remains Gaussian as it evolves, we can express the PS ansatz
as:

F (> M) ≡ P>δc(M) =

∫ ∞
δc

P(δM)dδM

=
1√

2πσM

∫ ∞
δc

exp
[
− δ2

M

2σ2
M

]
dδM =

1

2
erfc
[ δc√

2σM

]
,

(3.29)

which directly depends on the mass M defined by the filter and also on the
redshift, since σM is time-dependent. Here erfc is the complementary error
function erfc(x) = 1− erf(x).

Since limM→0 σM = ∞ and erfc(0) = 1, we see that the PS ansatz pre-
dicts that only 1/2 of all matter in the Universe is locked-up in collapsed
haloes. This may seem logical because only the regions that are initially
overdense end up in collapsed objects. However, underdense regions can be
enclosed within larger overdense regions, giving them a finite probability of
being included in some larger collapsed object. This is the so-called cloud-
in-cloud problem, and PS accounted for it by introducing an ad-hoc factor of
2, representing the accretion from underdense regions onto the overdensities:

F (> M) = 2P>δc(M) (3.30)

Though Press & Schechter did not give a rigorous proof, it is possible to
obtain analytically this forcing factor with the use of the Extended PS for-
malism, also known as Excursion set formalism (Bond et al., 1991), which
we will describe in details in the Section 3.4.
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3.3.1 The PS halo mass function

We are now ready to define the halo mass function (HMF, hereafter) in the
PS formalism. Let us define it as the number of haloes with mass between
M and M + dM per unit of comoving volume, which can be written as:

n(M, t)dM =
ρ̄

M

∂F (> M)

∂M
dM , (3.31)

where ∂F (>M)
∂M

dM is equal to the fraction of mass that is locked up in haloes
with masses in the range [M,M + dM ]. Therefore we obtain the desired
number density by multiplying it for ρ̄/M .

Using the PS ansatz and accounting for the additional factor given by
the cloud-in-cloud problem we obtain the expression for the PS halo mass
function:

n(M)dM = 2
ρ̄

M

∂P>δc(M)

∂M
dM

=

√
2

π

ρ̄

M2

δc
σM

∣∣∣d lnσM
d lnM

∣∣∣ exp
(
− δ2

c

2σ2
M

)
dM .

(3.32)

We stress again the fact that this expression for the HMF holds only for
structures formed through a spherical collapse.

A more general and compact way to write the HMF is through its loga-
rithmic differential:

dn(M, z)

d lnM
=

ρ̄

M
flnσ(σM , z)

d lnσ−1
M

d lnM
. (3.33)

where flnσ(σM , z) is the so-called multiplicity function, which depends on the
assumptions of a given mass function model. For the PS mass function it is
defined as:

flnσ(σM , z) =
dσM

d lnM
=

√
2

π

δc
σM

exp
(
− δ2

c

2σ2
M

)
. (3.34)

Let us consider now a power-law power spectrum, written as Eq. (2.30).
As we already saw, this yelds to Eq. (2.51) for the mass variance and to
Eq. (2.52) for the mass M∗ that is formed when nonlinear regime is reached.
Writing Eq. (2.52) in terms of δ+(t) it is possible to obtain a new form for
the mass variance:

σM ∝
(M∗
M

)(3+n)/6

=
(M∗
M

)α
, (3.35)
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where n is the spectral index of the power spectrum, and α ≡ (3 + n)/6.
The latter relation for σM simplifies the logarithmic derivative in Eq. (3.32),
which becomes: ∣∣∣d lnσM

d lnM

∣∣∣ = α . (3.36)

With few simple mathematical steps, it is possible to show that the PS halo
mass function becomes:

n(M)dM = α

√
2

π

ρ̄

M2
c

(M
Mc

)α−2

exp
[(
−M
Mc

)2α]
dM , (3.37)

where we defined the characteristic mass as Mc ≡ M∗

(
2
δ2c

)1/2α

. This mass
represents the transition between two different trends of the HMF. Indeed
for M � Mc the mass function scales as Mα−2, hence it shows a linear
proportionality with the logarithm of this quantity. On the other hand, the
MF possesses an exponential cut-off for M �Mc.

3.4 Excursion-set formalism
Considering the explicit dependence on the filter scale R in the smoothed
density contrast δM(~x) ≡ δ(~x,R), we can see the main weakness of the PS
formalism: δ(~x,R) can be smaller or larger than the collapse barrier δc accord-
ing to the considered smoothing scale R. Therefore the more diffuse patches
(those that arise when filtering with smaller radii) may disappear due to
the collapse of larger volumes. This is the already mentioned cloud-in-cloud
problem, and can be solved analytically with the following excursion-set (ES)
formalism (Bond et al., 1991).

Let us consider again the evaluation of the smoothed field δ(~x,R) at
different filtering scales R, at the same point ~x. To emphasize the fact that
the variation is only considered on R, let suppress for now the dependence
on the point ~x, therefore δ = δ(R). The idea behind the ES formalism is to
find the largest scale Rmax, for which no region crosses the collapse barrier,
and then gradually to decrease the filtering radius until the highest peak of
δ touches the barrier. To the latter we can associate a mass enclosed to that
specific filter scale. Next, we reduce again the size of the filter until the next
peak reaches the threshold, but only if it crosses it for the first time, so that
the associated mass has not already been counted.

It is common to relate the filter scale R to the variance of the contrast
density field, which is expressed as in Eq. (2.40). Let us adopt the following
notation

S ≡ σ2(R) =
1

2π3

∫
d3~kP (~k)Ŵ 2(~k,R) , (3.38)
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as our radius variable, which can be associated also with the filtering mass
M using the relation between mass and radius (M ∝ R3). For a hierarchical
cosmological model such as the bottom-up scenario, we have that S is a
monotonically decreasing function of R, so there is a clear, one-to-one relation
between S and R. Also, decreasing R corresponds to increasing S.

The problem is to compute the probability that the first up-crossing of
the barrier δc occurs on a specific scale R, i.e. the probability that the first
up-crossing occurs between a value S and S + dS. For each value of the
filtering size R, i.e. for each value of S, the smoothed contrast will have
a different value, when computed at the same point ~x. Therefore to each
point ~x corresponds a trajectory in the (S, δ(S)) plane. Now, for R → ∞,
the variance, and hence S, tends to zero, thus all trajectories start from
the same point (S, δ(S)) = (0, 0), the origin. It can be shown that these
trajectories are purely markovian when a k-space top-hat filter is used. This
means that the next step in the trajectory does not depends on the previous
one, leading to a random walk.

As a result of their markovian nature, each trajectories has a mirrored
version with respect to the collapse barrier, which is equally likely. Therefore,
by double counting each trajectories, we can account naturally for the missing
2 factor of the PS formalism, solving the cloud-in-cloud problem. From these
markovian trajectories we can infer the PS halo mass function, following the
ES formalism ansatz:

The fraction of trajectories that crosses for the first time the collapse
barrier δS = δc at S > S ′ = σ2(R′), is equal to the mass fraction that at

time t resides in haloes with masses M < M ′.

3.5 Modern mass function models
The HMF provides the link between cosmological model and the number
density of clusters. It essentially bundles the complicated nonlinear physics
of halo formation into a simple analytical formula involving only the lin-
ear power spectrum and other linear-theory quantities. There are numerous
mass function models in the literature, both analytical and semi-analytical,
hence calibrated by means of cosmological simulations. In general, analytical
models modify the PS mass function in order to make it more accurate by
improving it over its approximations. Indeed the main approximation of the
PS formalism is the spherical assumption for the halo collapse. This also
leads to fewer high-mass objects and more low-mass objects with respect
to those seen in numerical simulations. As already mentioned, Sheth et al.
(2001) and Sheth & Tormen (2002) considered an ellipsoidal collapse, which
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is thought to be closer to the reality. Indeed, DM haloes are modelled to take
into account also tidal forces to which they are initially subject, according
to the Zel’dovich approximation. In this case the critical (linear) overdensity
for collapse can be computed by solving:

δec
δc
≈ 1 + 0.47

[
5(e2 ± p2)

δ2
ec

δ2
c

]0.615

, (3.39)

where δec is the (linear) overdensity for an ellipsoidal collapse, δc ' 1.686 is
the spherical collapse threshold, while the parameters e and p characterise
the asymmetry of the initial tidal field, and are functions of the tensor de-
formation’s eigenvalues λi (see Section 2.5.1).

Other models consider more realistic profiles for the initial overdensity
perturbation (secondary infall models), or a non-Gaussian distribution for the
initial perturbations (Achitouv & Corasaniti, 2012), or a spherical collapse
with non-radial orbits, hence by introducing an angular momentum in the
collapse phase (White & Zaritsky, 1992).

3.5.1 Halo finder methods

The majority of HMF models are obtained through cosmological simulations,
given the complexity of finding an analytical rigorous theory that describes
the formation of nonlinear objects. In this latter case, a method to find
bound gravitational structures in a system of particles is necessary in order
to obtain a DM halo sample. This goal is achieved by means of specifi-
cally designed codes called halo finders, and the resulting halo catalogues
may vary depending on the chosen method used to identify these structures
(Knebe et al., 2013). The two standard techniques for finding haloes are the
Spherical Overdensity (SO) method, firstly proposed by Press & Schechter
(1974) and the Friend-of-Friend (FoF) method (Davis et al., 1985). Though
other types of codes have been developed in the last decade, these two remain
the foundation of nearly every finding code. The former is based on the def-
inition of a spherical overdensity around density peaks, which are found by
sorting particles by density. Considering a density peak, we can find haloes
by growing a sphere around it, and stop when the mean density within the
sphere is equal to a specific value of ∆. ∆ indicates the overdensity within
a sphere of radius R∆ with respect to the mean density of the Universe at a
given epoch:

∆ =
M∆

(4/3)πR3
∆ρ̄m

. (3.40)

The overdensity threshold could be given also in terms of ρb or ρc, and typical
values considered in the literature are ∆ = 200, 500, 1000.
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On the other hand, in FoF method particles are “linked” together if their
distance is smaller than a given value, called linking length b, typically ex-
pressed in units of the mean separation between particles. The value usually
used for the latter is b = 0.2 (Frenk et al., 1988).

Moreover, since DM haloes formed through a hierarchical scenario, we
expect a lot of substructures within them, called subhaloes. These structures
can be examined in high-resolution N-body simulations. Finding these sub-
structures is not trivial, mostly for the FoF algorithm. A related question is
whether or not the particles belonging to a subhalo should also be associated
to the host halo. This essentially leads to a decision on whether or not any
single particle can be in more than one object at the same time.

3.5.2 Universality of the halo mass function

Although many works parametrise the HMF in terms of the mass variance
σ, as we saw in Eq. (3.33), Sheth & Tormen (1999) and Courtin et al.
(2011) showed that the HMF, for any time and for every cosmological model,
assumes a universal functional form when mass and variance are parametrised
by the use of the following scaled variable ν:

ν =
δc(z)2

σ2
M(M)

, (3.41)

where δc(z) is the critical overdensity threshold computed in the linear theory,
divided by the growth factor. With this parameterisation the HMF can be
written as:

νf(ν) =
M2

ρ̄

dn

dM

d lnM

d ln ν
, (3.42)

where:

νf(ν) = A

(
1 +

1

ν ′p

)(
ν ′

2π

)1/2

e−ν
′/2 , (3.43)

with ν ′ = aν. The parameters of this model are (a, p, A), calibrated using
cosmological simulations, and they define the mass function cut-off at high
masses, its form in the low mass range and its normalisation, respectively.

With the massive increase of available cosmological simulations, it has
become possible to test the universality of these parameterisations (Tinker
et al., 2008; Crocce et al., 2010; Watson et al., 2013). In particular, Despali
et al. (2016) investigated whether the different halo definitions, i.e. the meth-
ods used to identify DM haloes, could lead to different calibrations of the
mass function parameters. They used a halo finder based on the SO method,

81



Figure 3.2: Universality of the halo mass function, when parametrised in
terms of the variable ν and using a virial spherical overdensity ∆vir to iden-
tify the DM haloes. The symbols represent the data coming from multiple
simulations, evolved at different redshifts (z = 0, 1, 2, 5) and with different
cosmologies ( WMAP7, Planck13). The lower sub-panel show the residuals
between these data and the best-fit model (black solid line), which is cali-
brated using all the sets of simulations having z ≤ 1.25. Credits to Despali
et al. (2016).

82



considering different density thresholds for the definition of haloes and study-
ing the HMF from a set of 6 DM-only cosmological simulations (called Le
SBARBINE), having different mass and spatial resolutions. These simula-
tions are evolved with a Planck13 Cosmology (Planck Collaboration et al.,
2014), though Despali et al. (2016) tested also the universality of the cali-
brated mass function parameters with different cosmological models. They
made use of another set of simulations, ran assuming the WMAP7 cosmo-
logical parameters and characterised by lower resolution. They found that
only if the threshold is set to be equal to the virial overdensity ∆vir (consid-
ering tvir = 2tmax, see Section 3.2.1) the universality is maintained, i.e. the
independence of the model parameters of the simulation redshift and of the
assumed cosmological model. This is no longer the case when the haloes are
found with other overdensity thresholds. The best-fit values for parameters
at z = 0 succeeded to model also higher redshifts data. Moreover, they pro-
vide best-fit values to the combination of data from Planck13 Cosmology up
to z = 1.25. They showed that the latter are able to fit to an even greater
level of accuracy also the mass function at high-redshift. The relation found
for Planck13 Cosmology holds also for WMAP7 Cosmology, highlighting the
HMF universality when considering different cosmological models. Finally,
they obtained the best-fit values by fitting all the catalogues obtained from
the different available cosmological simulations, with different redshifts and
different cosmologies. In Figure 3.2 it is shown the mass function for the lat-
ter case, in which all the simulations are fitted simultaneously with a single
best-fit model.

As already said, these universal properties for the HMF are obtained only
when considering ∆vir as the spherical overdensity threshold set in the halo
finder algorithm. However, Despali et al. (2016) showed also an innovative
method that allows to derive the HMF of halo catalogues build with different
thresholds by rescaling the virial HMF. They provided fitting functions for
the HMF parameters as a function of the overdensity ∆ used, in order to
predict the halo abundance for a wide range of halo definitions. In particular,
they fitted the model parameters as a function of x, where the latter is defined
as

x = log(∆(z)/∆vir(z)) , (3.44)

obtaining the following relations for (a, p, A):

a = 0.4332x2 + 0.2263x+ 0.7665

p = −0.1151x2 + 0.2554x+ 0.2488

A = −0.1362x+ 0.3292 .
(3.45)

These relations can be used therefore to predict the HMFs at overdensity
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thresholds different from ∆vir.

3.5.3 The halo mass function as a cosmological probe

The HMF universality highlighted by Despali et al. (2016) is a fundamental
feature to exploit in cosmological analyses. Indeed, its universal shape can
be used to derive unbiased cosmological constraints by modelling data at any
redshift and for any cosmological scenario.

The HMF is nowadays a powerful probe of Cosmology, notably for the
high constraining power on the growth of cosmic structures. Large multi-
wavelength surveys have been already exploited indeed to derive cluster num-
ber counts (or number density) and obtain constraints on the different cosmo-
logical parameters (Vikhlinin et al., 2009; Planck Collaboration et al., 2016c;
Bocquet et al., 2019; Costanzi et al., 2019, 2021; Lesci et al., 2020), like Ωm

and σ8. The dependence on Ωm comes directly by the presence of ρ̄m in the
general form of the HMF. Moreover, the latter depends on the filtered mass
variance σ2

M , which is an integral of the power spectrum P (k) = δ2
+k

nT 2(k).
The presence of δ+, i.e. the growth factor (Eq. 2.27), introduces another de-
pendence on Ωm. Furthermore, the transfer function T (k) and the spectral
index n of the primordial fluctuation power-law, are integrated over the mass
variance, hence the HMF does not depend strongly on them. On the other
hand, the power spectrum normalisation, which is parametrised by σ8 as ex-
plained in Section 2.4, and the growing mode δ+ are not integrated, causing a
strong dependency on them. Also, the two cosmological parameters Ωm and
σ8 are degenerate, meaning that their variations cause similar effects to the
HMF, and they will be the main focus of the analysis described in Chapter
5. Figure 3.3 shows the cosmological dependence of the HMF. In this case
we considered, as an example, the most general fitting case of the Despali
model, as a function of Ωm and σ8, at z = 0.

The expansion rate of the Universe could be also constrained, i.e. the
value of the Hubble constant H0, as well as the properties of the DE, such
as its density parameter ΩΛ as well as its equation of state wDE. Indeed
there are different models for the dark energy EoS, which could be constant
in time as it is in the ΛCDM model, or could vary (quintessence models)
(Chevallier & Polarski, 2001; Linder, 2003; Yoo &Watanabe, 2012). Having a
Λ-density component that varies with redshift means that also the ΩΛ varies,
contributing to the inhibition of the structure growth. However, the variation
of ΩΛ could be due also to the variation of the critical density, which depends
onH0. Moreover, ifH0 increases, also the angular diameter distances increase
and the number of galaxy clusters at a given redshift changes, causing other
degeneracies between these parameters. Furthermore, the HMF shape is also
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affected by the neutrino mass (Brandbyge et al., 2010; Marulli et al., 2011).
One way to disentangle this set of degeneracies is by combining different
probes, that are sensitive to the same parameters in different ways.

Figure 3.3: Dependence of the HMF model on the cosmological parameters
Ωm and σ8 at z = 0. The parameters are considered in the range Ωm ∈
[0.2, 0.4] and σ8 ∈ [0.6, 1].

3.6 The void size function
In this section we will show how the same excursion-set theory described in
Section 3.4 can be applied to the underdensity case, demonstrating that it is
possible to obtain the size function of voids identified in the DM distribution
(Sheth & van de Weygaert, 2004; Jennings et al., 2013), that is the comoving
number density of voids as a function of their size.

For the overdensity case, the HMF is obtained by determining the frac-
tion of trajectories that cross the collapse barrier for the first time. We
can extend the excursion-set formalism to underdensities by considering a
two-barrier problem: one barrier is necessary to take into account the void
formation and merging (δv ≈ −2.7), and the other one the void collapse
(δc ≈ 1.69). This formalism, which for the overdensity case solved the cloud-
in-cloud problem, aims in this case at solving the void-in-void problem, in
which underdensities identified with a certain filtering radius may be embed-
ded in other underdensities on larger scales. However, other phenomena may
occur, such as the void-in-cloud scenario. According to the latter, a void
may vanish due to the collapse of an ovederdense region on larger scales. In
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other words, for the formation of a void it is necessary not only to reach a
density contrast below a specific underdensity threshold, crossing the barrier
δv, but also to avoid being extinguished by a larger collapsing overdensity,
crossing the barrier δc. From now on we will refer to this model, proposed
by Sheth & van de Weygaert (2004), as the SVdW model.

By the analogy between overdensities and underdensities described in
this chapter, the void size function (VSF, hereafter) in linear theory can be
written as Eq. (3.33) by replacing ρ̄/M = 1/V (rL):(

dn

d ln r

)
L

=
flnσ

V (rL)

d lnσ−1

d ln rL
, (3.46)

where V (rL) = 4
3
πr3

L is the volume of a spherical region of radius rL, while
the subscript L indicates that the quantities are obtained in linear theory.
We can show that flnσ gives the fraction of random walks that cross δv, the
threshold for the void formation, and have never crossed δc, the barrier for
the overdensity collapse, at any scale larger than R. Following the SVdW
model, the latter results in the following infinite series

flnσ = 2
∞∑
j=1

jπx2 sin(jπD) exp

[
−(jπx)2

2

]
, (3.47)

where
D ≡ |δv|

δc + |δv|
and x ≡ D

|δv|
σ . (3.48)

Here we can see how the SVdW model takes into account the void-in-cloud
problem by expressing D as a function of both δc and δv.

Jennings et al. (2013) provided an approximation for the infinite series
flnσ, accurate at the 0.2% level:

flnσ(σ) =


√

2
π
|δv |
σ

exp
(
− δ2v

2σ2

)
, x ≤ 0.276

2
∑4

j=1 jπx
2 sin(jπD) exp

[
− (jπx)2

2

]
, x > 0.276 .

(3.49)

From Eq. (3.26), we know that the void has expanded by a factor of ∼ 1.7
when the shell-crossing occurs, therefore the void abundance becomes:(

dn

d ln r

)
SVdW

=
dnL

d ln rL

∣∣∣∣
rL=r/1.7

. (3.50)

This translates into a shift of the linear model towards larger radii, without
any change in amplitude, which means that in the SVdWmodel the comoving
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number density of voids is conserved by passing to the nonlinear regime. This
property is derived directly from the spherical evolution model, in which it
is assumed that voids evolve as isolated objects.

3.6.1 The volume-conserving model

The assumption that voids only evolve in radius keeping their comoving
number density fixed is invalid considering large voids. In contrast to haloes,
which tend to collapse towards a confined configuration, voids tend to expand
and overlap with each other, changing their abundance with time. We can
compute the cumulative fraction F(R) of volume occupied by voids having
a radius greater than R as:

F(R) =

∫ ∞
R

dr

r
V (r)

dn

d ln r
. (3.51)

This quantity exceeds unity for the radii of interest, meaning that the fraction
of volume occupied by voids in nonlinear theory exceeds the total volume of
the Universe, which is clearly an unphysical condition.

In order to account for this problem, Jennings et al. (2013) considered
instead the conservation of both the volume fraction and the shape of the
void abundance function in the transition from the linear to the nonlinear
regime. This can be achieved by considering Eq. (3.51) in the linear theory
and imposing it to be equal to the same quantity computed in the nonlinear
regime:

V (r)dn = V (rL)drL(r) . (3.52)

As result, the nonlinear VSF obtained is the following:(
dn

d ln r

)
V dn

=
V (rL)

V (r)

dnL
d ln rL

d ln rL
d ln r

. (3.53)

The latter is the so-called volume-conserving model (Vdn, hereafter), in which
the void abundance varies in the transition between rL to r as they blend to-
gether expanding towards larger scales, conserving their total volume instead
of the number density.

As already mentioned, the model depends on two thresholds δv and δc.
The former can be fixed to the shell-crossing value while the latter is usually
left to vary between the turn-around and the collapse values 1.06 ≤ δc ≤ 1.69,
since both can be considered acceptable assumptions for the void-in-cloud
scenario. Figure 3.4 shows the comparison between the VSF models de-
scribed in these last two sections, with the explicit dependency on the col-
lapse barrier δc, which affects significantly the VSF only for r . 1 Mpc/h.
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Figure 3.4: Different models for the VSF, computed at z = 0. The shaded
area are obtained by considering the dependency on the linear collapse thresh-
old, which is allowed to vary in the range 1.06 ≤ δc ≤ 1.69. The cosmological
parameters used in this plot are those of WMAP7 Cosmology.
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These scales that are commonly excluded from the analysis of the void abun-
dance and profiles, given the extremely high spatial resolution required to
model accurately voids in this radius range. Therefore the dependency of
the VSF model on the overdensity threshold δc can be neglected when con-
sidering voids traced by biased tracers like galaxies or clusters, which are
indeed characterised by larger sizes.

In Figure 3.5 we compare the VSF models previously described with void
abundance measured in the Coupled Dark Energy Cosmological Simulations
(CoDECS) (Baldi et al., 2010; Baldi, 2012), at redshift z = 0. The simulation
box analysed has a side length of 103 Mpc/h and is evolved with a ΛCDM
Cosmology. Note how the SVdW model predicts an over-abundance of voids
for all the void radii considered. A possible strategy to obtain a better agree-
ment with the measured abundances using the SVdW model is to consider
δv as a free parameter, fine-tuning its value by means of cosmological sim-
ulations. However, this severally affects the possibility of using the VSF as
a cosmological probe. On the contrary, Jennings et al. (2013) showed that
the Vdn model does not require this fine-tuning, as long as the void sample
is prepared through a proper selection and re-shaping of the underdensities
identified by means of the void finding algorithm.

Finally, the VSF models shown in this chapter are effective to predict the
abundance of voids detected in the distribution of simulated DM particles.
In order to analyse more realistic void samples, we have to consider voids
identified in the distribution of biased tracers such as DM haloes and galax-
ies. In this case we have to take into account the bias of the mass tracers,
parametrising its effects in the theoretical model (see Chapter 3.6.4).

3.6.2 Void finders

Given a model that can accurately predict the abundances of voids identified
in the matter distribution, this has to be compared to the measured void
number counts coming from cosmological simulations or observed data cat-
alogues. However, the detection of cosmic voids is not trivial, for two main
reasons. First, being voids essentially regions devoid of matter, their position
and shape have to be reconstructed by using luminous tracers, that in turn
are difficult to find in the most underdense zones. Second, since there is not
a unique way to define what a cosmic void is, different algorithms of void
finding have been proposed during the years, without following a common
prescription to assign the centre and the radius of each void.

Therefore, a variety of different void finders have been implemented in
the last decade, following different definitions of void (Colberg et al., 2008).
Following the classification proposed by Lavaux & Wandelt (2010), void find-
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Figure 3.5: Comparison between the measured void abundance (red dots) and
different theoretical VSF models (solid lines). The data are obtained extract-
ing cosmic voids from the Coupled Dark Energy Cosmological Simulations
(CoDECS) (Baldi, 2012), considering a ΛCDM model at redshift z = 0. The
parameters of the models are set to δv = −0.795 and δc = 1.686. We note
how only the Vdn model, represented with a green line, can accurately pre-
dict the size distribution of the detected void sample, while the linear and
the SVdW models, in blue and grey respectively, are not in agreement with
the measured abundances.
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ers can be divided into three main categories, based on density, geometrical
and dynamical criteria. The first includes void finder algorithms that iden-
tify cosmic voids as underdense regions with central density lower than a
given fraction of the mean cosmic density, ρ̄. Such algorithms are extensively
tested in the past, for example in Elyiv et al. (2013) and Micheletti et al.
(2014), but are currently rarely used. The second class considers cosmic
voids as composed of underdense geometrical patches of similar shapes, such
as spheres or polyhedra, detected in the 3D distribution of tracers (Shan-
darin et al., 2006; Neyrinck, 2008; Platen et al., 2007; Sutter et al., 2015).
The third class of void finders, instead, identifies voids dynamically by find-
ing the gravitationally unstable points in the distribution of tracers. In this
case, matter tracers are not used to reconstruct the underlying distribution
of matter, but as test particles of the cosmic velocity field (Forero-Romero
et al., 2009; Lavaux & Wandelt, 2010; Elyiv et al., 2015). The first two
classes of void finders suffer from large shot-noise errors, caused by the few
objects used to identify voids as underdense volumes. The third class of void
finders, instead, has the advantage that tracers are defined in Lagrangian
coordinates, which remarkably reduces the shot noise.

In order to extract void catalogues from the distribution of galaxies,
we make use of the publicly available Void IDentification and Examination
toolkit (VIDE) code (Sutter et al., 2015), a void finder based on geometrical
criteria, which implements an enhanced version of the ZOnes Bordering On
Voidness (ZOBOV) algorithm (Neyrinck, 2008). The latter finds voids in a
3D distribution of particles, without introducing any free parameter or as-
sumptions about the shape of voids. It consists of three main steps, which
are also illustrated in Figure 3.6:

1. Density field estimation. In this first step, ZOBOV associates to every
particle in the tracer distribution a Voronoi cell, consisting of all the
points in the space closest to that particle than to any other. The whole
set of cells is called Voronoi tasselation. The value of the density in a
specific point can be computed as the inverse of the cell’s volume V (i)
surrounding the i-th particle;

2. Partition of particles into zones. The Voronoi tasselation gives a nat-
ural set of neighbours for each particle. In this step, density minima
are found, that are given by the Voronoi cells whose density is lower
than all the respective neighbours. Consecutively, starting from den-
sity minima, cells are merged together until a cell with lower density
with respect to the previous merged cells is encountered;

3. Merging of zones into voids. Although the zones found with the previ-
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ous steps could be considered already as voids, ZOBOV also performs
the so-called watershed technique (Platen et al., 2007), to construct a
hierarchy of voids and sub-voids. Following this technique, a void is
defined in analogy to a catchment basin in the density field. The water
level of a given basin is left to rise until a saddle point is encountered,
eventually causing the water to flows into deeper basins. If this maxi-
mum is below a certain fraction of the average density of tracers, then
the two zones are considered substructures of the same void, else they
will be considered as two separate voids.

Since voids are not perfectly spherical by nature, there is not a unique def-
inition of their centre. In practice, there are two main options: to define
the centre as the lowest density minimum point inside the void, or through
the barycentre obtained from the distribution of tracers present within the
void. VIDE follows the latter option, by associating to each of them a centre
defined by means of the following volume-weighted barycentre:

~Xc =

∑N
i=1 ~xiVi∑N
i=1 Vi

. (3.54)

Here the summation is computed over the N cells that define each void and
~xi are the coordinates of the i-th tracer inside its corresponding Voronoi cell.
In addition, VIDE associates an effective radius to every void as the radius
of a sphere having as volume the summation of each Voronoi-cell composing
the void:

Rv =

(
3

4π

N∑
i=1

Vi

)1/3

. (3.55)

The void catalogues we will consider in this work are then composed of the
3D comoving coordinates of the centres of voids, computed as Eq. (3.54),
along with their effective radius.

3.6.3 Cleaning algorithm

The void size functions described in the previous sections model the size dis-
tribution of voids considering them as underdense, spherical, non-overlapped
regions that have gone through shell-crossing (or, more in general, with a spe-
cific internal density contrast). It is therefore necessary to adopt the same
void definition when building the void catalogue or to clean properly the void
sample detected with whatever method of void finding, as firstly proposed
by Jennings et al. (2013). Following the latter approach, Ronconi & Marulli
(2017) implemented a cleaning algorithm in the CosmoBolognaLib (Section
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Figure 3.6: Representation of ZOBOV’s steps applied to a distribution of
galaxies in a 2D slice of the Millennium simulation (Springel et al., 2005).
The upper-left panel shows the spatial 2D distribution of galaxies, represented
with black dots. The upper-right panel shows the Voronoi tessellation, with
colours shaded accordingly to the area of the Voronoi cells. The lower-left
panel represents the second step of ZOBOV, which groups cells together,
forming assembled zones. Here the density minima are marked with black
crosses. Lastly, in the lower-right panel it is shown the result of the watershed
technique for the void marked with “1”, with zone colours going from darkest
to lightest according to the step at which they are added to the void. Credits
to Neyrinck (2008).
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4.1) that selects and rescales the detected underdense regions in order to
ensure a proper comparison with the model predictions. The algorithm is
divided in three main steps:

1. Removing non-relevant objects. The algorithm starts by removing those
underdensities that have an effective radius outside a range [rmin, rmax],
selected by the user. Also, underdensities having a central contrast
greater than (1 + δNLv )ρ̄ can be removed from the catalogue, where δNLv
is a nonlinear underdensity threshold given as input and ρ̄ is the mean
density of the tracer catalogue;

2. Rescaling voids. The second step is aimed at rescaling the effective
radius of the underdensities to make them embedding a specific density
contrast, thus the same threshold considered in the Vdn model (see
Section 3.6.1). By treating voids as growing spheres, the effective radius
obtained after this step corresponds to the largest distance from the
void centre enclosing an underdensity contrast of δNLv , selected by the
user;

3. Checking for overlaps. The rescaled voids obtained with the previous
step are then scanned one-by-one, checking for overlaps. When two
voids do overlap, i.e. when the distance between their centres is less
then the sum of their effective radii, the one with highest central density
is rejected.

The impact of the cleaning procedure on the void abundances can be seen
in Figure 3.7. Here the data are obtained from a ΛCDM N-body simulation
with 2563 DM particles and a boxside length of 128 Mpc/h and are compared
to the Vdn model (Ronconi et al., 2019). This procedure has been tested
systematically in Ronconi et al. (2019), which furthermore applied it to a set
of cosmological simulations having different spatial resolutions and boxside
lengths, considering also different redshifts. The same cleaning procedure
will be applied in this work to the void catalogues obtained from VIDE, built
upon the galaxy distribution given by the Magneticum simulation.

3.6.4 The bias inside cosmic voids

As already mentioned, the theoretical VSF models described up to now con-
sider only the abundance of voids, as a function of their radius, detected in
an unbiased tracer distribution, namely using DM particles catalogues. How-
ever, dealing with real data catalogues coming from redshift surveys we rarely
have access to the total matter distribution of the Universe. We can in gen-
eral study voids traced by the distribution of biased tracers, like galaxies and
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Figure 3.7: Cleaning procedure effects on the measured size function of voids
identified in a ΛCDM N-body simulation. The different symbols show the
VSF after each step of the procedure, as indicated by the labels, while the
Vdn model is represented with a solid black line. Credits to Ronconi et al.
(2019).
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galaxy clusters. Understanding the link between the statistical properties of
voids identified in the DM particle field and those found in a biased tracer
field is therefore of fundamental importance to extract reliable cosmological
constraints.

In order to measure the VSF from a biased tracer distribution it is nec-
essary to rescale the threshold δNLv,DM, by means of the bias measured inside
voids. We follow the same procedure described in Contarini et al. (2019,
2020), which measured the size function for voids identified in the distribu-
tion of DM haloes, which are biased tracers of the DM particle field, using a
set of cosmological simulations. They first made the assumption that voids
identified in the biased tracer distribution have the same centre with respect
to those identified in the total density field. From the definition of bias
described in Section 2.4.2, we can deduce then that voids identified in the
biased distribution have an embedded density contrast higher (i.e. closer to
positive values) with respect to the contrast of those found in the unbiased
one. It follows then that the radii of the spherical voids predicted by the Vdn
model can be rescaled in order to match the radii of voids identified in the
biased tracer distribution. As a consequence, the characteristic threshold of
the Vdn model can be modified to encapsulate the expected variation of the
density contrast inside voids that, in nonlinear theory is simply expressed by:

δNLv,tr = b δNLv,DM , (3.56)

where δNLv,DM represents the density contrast embedded by voids identified
in the DM particle field, while δNLv,tr is the density contrast inside voids in
the biased tracer field and b is the bias characterising the tracers located
within these voids. With this prescription, it is evident that considering the
theoretical shell-crossing event, thus fixing δNLv,DM = −0.795, and values b > 1
for the bias factor, the corresponding threshold δNLv,tr could easily becomes less
than −1. This leads to the fact that the shell-crossing may not even occur
for voids traced by biased objects. Following Contarini et al. (2019) and
Contarini et al. (2020) we adopted therefore the approach to fix the value of
δNLv,tr to an arbitrary negative density contrast and to compute consistently
the value of δNLv,DM, that will be inserted in the Vdn model. In particular,
we rescale the voids found in tracer catalogues by means of the cleaning
algorithm (see Section 3.7), such that the spherically-averaged contrast that
they contain is δNLv,tr = −0.7. This value is chosen to be not too negative, in
order to avoid rescaling too many underdensities to radii below the spatial
resolution of the tracer catalogue and, at the same time, not too close to
0 so that the identified underdense regions can be still classified as voids.
Consequently, we re-parametrise the Vdn model using a different value for the
threshold δNLv,DM, computed as −0.7/b. However, we recall that the theoretical
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VSF requires this threshold to be expressed in linear theory. This can be
obtained with the following fitting formula provided by Bernardeau (1994):

δLv,DM = C[1− (1 + δNLv,DM)−1/C] , (3.57)

with C = 1.594, which is exact for cosmologies with Λ = 0, and very precise
also for other values of Λ, especially applied to the negative density contrasts.
The resulting outcome of this procedure is equivalent to expand the radii of
voids predicted by the Vdn model, so identified in the unbiased distribution,
in order to make them match the same radius of the ones identified in the
tracer field (all embedding the same density contrast −0.7 by construction).
With this re-parameterisation of the threshold δv we are in practice modifying
the Vdn model to predict the VSF of voids identified in the distribution of
tracers having whatever bias factor.

Contarini et al. (2019) showed that the bias b, characterising the tracers
inside cosmic voids, does not coincide with the one computed on large scales
beff. The latter is the linear effective bias and can be inferred, for example,
by measuring the 2PCF. The former, instead, can be estimated, as done by
these authors, as the ratio between δNLv,tr and δNLv,DM:

bpunct =

〈
δNLv,tr(R = Reff)

δNLv,DM(R = Reff)

〉
, (3.58)

whose name is related to its peculiarity of being computed punctually, at a
distance R = Reff from the void centres. Since we have generally not access to
the total matter density field when analysing real data catalogues, the value
of bpunct is directly measurable only using cosmological simulations. There-
fore it is useful to search for a relation between the latter and the effective
bias on large scales, beff. This relation, which we will denote as F(beff), has
been calibrated by means of ΛCDM simulations at different redshifts in Con-
tarini et al. (2019) and Contarini et al. (2020) using different types of mass
tracers: FoF DM haloes (identified with a FoF halo finder) in the former, and
considering 200c and 500c haloes (identified with a SO halo finder, fixing the
overdensity to the values ∆ = 200ρc and 500ρc, respectively) in the latter.
The results of their analysis are shown in Figure 3.8, and the resulting linear
relations are:

F(beff) = (0.85± 0.01) beff + (0.42± 0.01), for FoF haloes
F(beff) = (0.87± 0.02) beff + (0.36± 0.03), for 200c haloes
F(beff) = (0.82± 0.02) beff + (0.37± 0.02), for 500c haloes .

(3.59)

Since in this work we will analyse cosmic voids traced by different objects
(i.e. galaxies and not DM haloes) we will perform a new calibration of the
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Figure 3.8: Linear relations between the effective bias (beff) and the punctual
bias computed inside voids (bpunct), at different redshifts, calibrated using
DM halo catalogues built with different halo finders. The orange and violet
markers represent the data obtained in Contarini et al. (2020) for 200c and
500c haloes, respectively, and the solid lines represent the associated relations
found with a linear fit of these data. The dashed gray line represents the
relation calibrated in Contarini et al. (2019) using haloes identified by means
of a FoF method. Credits to Contarini et al. (2020).
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relation F(beff). Contarini et al. (2020) also demonstrated the negligible
dependence of this calibration on the considered cosmological model, that is
a fundamental prerogative to exploit the VSF as cosmological probe.

3.6.5 The void size function as a cosmological probe

Cosmic voids, the most large underdense regions of space in the Universe,
are promising laboratories to extract cosmological constraints. Their unique
low density interiors and very large sizes make them powerful tools to inves-
tigate elusive components as massive neutrinos (Villaescusa-Navarro et al.,
2013; Massara et al., 2015; Schuster et al., 2019; Kreisch et al., 2019; Con-
tarini et al., 2020), which are predominant in these regions, or to study the
properties of the DE (Bos et al., 2012; Pisani et al., 2015; Verza et al., 2019)
and the effects of modified gravity theories (Spolyar et al., 2013; Barreira
et al., 2015; Contarini et al., 2020), to which they are very sensitive, as well
as to test primordial non-Gaussianity (Chan et al., 2019) and physics beyond
the standard model (Peebles, 2001; Yang et al., 2015; Baldi & Villaescusa-
Navarro, 2016). In the previous sections we saw how the VSF, as well as
the HMF, is defined through the mass variance σM . For the same arguments
described in Section 3.5.3, we find that the VSF is particularly sensitive to
the total matter content of the Universe, Ωm, and the amplitude of the power
spectrum, σ8. These parameters are characterised by strong degeneracy, and
their variation rules the growth of cosmic structures, causing the damping
or the enhancement of the evolution of cosmic voids. In this work we will
indeed exploit the VSF to derive constraints on these cosmological parame-
ters, showcasing its constraining power in combination with the HMF, with
the aim of providing a powerful tool to test the cosmological scenario. The
dependence of the Vdn size function model on Ωm and σ8, at z = 0 is shown
in Figure 3.9.
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Figure 3.9: Dependence of the VSF model on the cosmological parameters Ωm

and σ8 at z = 0. The considered parameters are in the range Ωm ∈ [0.2, 0.4]
and σ8 ∈ [0.6, 1].
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Chapter 4

Algorithms for independent probe
combination

In the previous chapter we described how the HMF and the VSF can provide
constraints on the cosmological parameters. In general, different probes con-
strain the cosmological model differently, and a simultaneous analysis may
help breaking the degeneracies between cosmological parameters constraints.
Therefore, by properly combining different cosmological probes we can obtain
more precise and accurate constraints, which is of fundamental importance
for solving the current tensions in the ΛCDM framework (see Section 1.10.1).
Previous works focused on the combination of different cosmological data-
sets considering, for example, observations of CMB anisotropies with LSS
surveys (Webster et al., 1998; Gawiser & Silk, 1998; Bridle et al., 1999), SN
Ia with Cepheids distance measurements and CMB (Lahav, 2001), as well as
SN Ia, BAO feature, weak gravitational lensing and galaxy clustering (see
e.g. DES Collaboration, 2019).

In this chapter we present the implementation of new codes in the Cos-
moBolognaLib C++/Python libraries (see Section 4.1), aimed at providing
new numerical tools to perform a joint cosmological analysis on different
data-sets, i.e the probe combination. The cosmological parameter estimation
that will be performed applying the presented codes is based on Bayesian
statistics, which will be described in Section 4.2. In particular, we imple-
mented three different algorithms for the probe combination, described in
Sections 4.3.1, 4.3.2 and 4.3.3. These new implemented codes will be applied
for the study of the mass function of galaxy clusters and the size function of
cosmic voids, that will be presented in the next chapter.
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4.1 CosmoBolognaLib
The CosmoBolognaLib (CBL, hereafter) is a large set of free software nu-
merical libraries, specifically designed for cosmological calculations (Marulli
et al., 2016). They are based on a object-oriented programming and are to-
tally written in C++, but they offer also a wrapped Python version. The
CBL are well suited for working with extragalactic source catalogues, both
real and simulated, as well as for performing statistical analyses and extract-
ing cosmological constraints. They provide a useful tools to compute all the
HMF and all the VSF models described in Section 3.6. All of these models
are implemented as public members of the internal class cbl::Cosmology,
where cbl is the general namespace. With this class, the user can easily
define a cosmological model, setting the values for each cosmological param-
eter, with which it is possible to compute the theoretical number densities for
DM haloes and voids. Furthermore, in the CBL are implemented different
Bayesian inference methods (see Section 4.2), as well as methods to perform
the Markov Chain Monte Carlo (MCMC) posterior sampling (Section 4.2.2).

The CBL is a living project, constantly extended and optimised, and has
already been used by several astrophysicists and cosmologists around the
world. One of the main goal of this Thesis work is to improve these libraries
by adding new codes for probe combination, providing a publicly available
and user-friendly tool to perform joint cosmological analyses.

4.2 Bayesian parameter estimation
One of the main goals of observational Cosmology is to use astronomical
information, i.e. measurements of physical properties of our Universe, to
derive precise constraints on the parameters of the cosmological model.

Since every measure of the statistical proprieties our Universe (see Sec-
tion 2.4) is necessarily referred to a single realisation of the Universe, every
prediction in Cosmology is essentially based on the statistical inference. The
statistical “world” is indeed divided in frequentists, which conceive probabil-
ity as the frequency of occurrence of some events, and Bayesians that define
probability as the degree of belief in a certain hypothesis.

Let us assume that we collect some data, D, and we want to interpret
them in terms of a model M, dependent on a set of parameters ~θ, which
we want to estimate. Through the Bayesian inference approach we can de-
termine, given the observation of the data, the whole underlying probability
distribution of ~θ: the so-called posterior distribution, P(~θ|D), which repre-
sents our degree of belief about the value of the parameters given a specific
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data-set. We can express it by means of the Bayes Theorem:

P(~θ|D) =
L(D|~θ)Pr(~θ)
P(D)

. (4.1)

This theorem relates the posterior distribution of ~θ to the likelihood distribu-
tion, L(D|~θ), the prior distribution, Pr(~θ), and finally the evidence, P(D).
The likelihood represents the probability to obtain the observed data, given
a certain value of the parameters, while the prior is our initial degree of belief
in the value of ~θ, without having information on the data. The prior is often
set to be flat, thus non-informative, by specifying a physical-motivated range
of values for the parameters that we want to determine. In these cases the
posterior distribution will be directly proportional to the likelihood. Lastly,
the evidence is a normalising constant that ensures that the posterior distri-
bution is normalised to unity:

P(D) =

∫
L(D|~θ)Pr(~θ)d~θ . (4.2)

The evidence plays an important role in model selection when more than one
underlying theoretical model is being considered and one wants to choose
which model gives the most reasonable representation of the data. The data
will be much more likely to be explained by a model having a higher value of
the evidence, with respect to a different one. For example, one can consider,
in addition to the ΛCDM framework, the free-variation of the DE equation of
state parameter wDE (a model indicated as wCDM), and then consider if this
inclusion represent the data more accurately. In this fashion, the evidence
incorporates the Occam’s razor concept, i.e. that a simpler theory having
a more compact parameter space will generally have a larger evidence with
respect to a more complicated theory, unless the latter is significantly better
in explaining the data. However, in this Thesis work we are not interested
in the comparison of different cosmological models on the same data-set, but
on the joint analysis of different data-sets with distinct models within the
same cosmological framework. For this reason, we can neglect the evidence
in Eq. (4.1), and consider the non-normalised posterior distribution.

In a general case, we have a vector of parameters ~θ = {θ1, . . . , θN} for
a given model, hence the posterior distribution expressed as in Eq. (4.1) is
a multivariate probability distribution, i.e. the joint distribution of two or
more parameters. It is possible to derive the probability distribution of a
single parameter θ1, regardless of the value of the others, by integrating the
posterior distribution over them:

p(θ1|D) =

∫
p(~θ|D)dθ2 . . . dθN , (4.3)
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where p(θ1|D) is called the marginal posterior and the process is called
marginalisation. The latter is equivalent to the projection of the posterior
distribution in the parameter space onto the direction of θ1, thus the param-
eter about which we want to know the probability distribution. This process
is frequently applied to the so-called nuisance parameters, which are param-
eters that we must take into account for the statistical analysis, but of which
we are not directly interested. Indeed we can described the overall properties
of our Universe with a very compact set of cosmological parameters, though
we might need to include a number of nuisance parameters (such as the bias
of galaxies inside cosmic voids, as well as internal parameters calibrated for a
given physical model) which could be highly correlated with the cosmological
ones.

4.2.1 The Gaussian likelihood

The parameter estimation that we described so far is presented in a general
form, which can then be applied to a wide range of cosmological problems.
However, it is common to consider a Gaussian form for the likelihood func-
tion L(D|~θ). In this sense, the underlying process with which the data are
generated it is considered as random. Having a data-set D = {d1, . . . , dN}
and a set of parameters of interest ~θ, the likelihood can be written as a multi-
variate Gaussian distribution, denoted as G(D|µ,Σ), which is the probability
that the first element of the data-set has the value d1 and the second has the
value d2 and so on:

L(D|~θ) ≡ G(D|µ,Σ) =
1

(2π)n/2
√
|Σ|

exp
(
−1

2
χ2
)
, (4.4)

where
χ2 = (D − µ)TΣ−1(D − µ) . (4.5)

In Eq. (4.4), n is the number of items in the data-set, µ ≡ E[D] is their
expectation value and Σ is their covariance matrix. The latter reduces to the
variance σ2 ≡ E[(di − µ)2] for the one-dimensional case (n = 1). Indeed, a
generic element of the matrix Σ is defined as

Σij = E
[
(di − µ)(dj − µ)T

]
. (4.6)

The covariance matrix is a fundamental tool that has to take into account
the correlation between the items in the data-set. In general, both µ and Σ
may depend on the parameters of interest ~θ, and this dependence could be
very complex to model.
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4.2.2 Markov Chain Monte Carlo

We note that the likelihood function can be represented by a non-trivial
mathematical expression, therefore the posterior distribution cannot always
be computed analytically. The latter can be indeed very difficult to ob-
tain in some cosmological applications, since the parameter space is typically
multi-dimensional and the likelihood function has a complex form. For these
reasons, in the last decades the parameter estimation has generally been
computed by means of numerical algorithms. To construct the posterior
it is necessary to map the likelihood distribution in the parameter space,
sampling with great accuracy especially the most peaked regions of the dis-
tribution. An algorithm specifically designed to accomplish this task relies
in the Markov Chain Monte Carlo method (MCMC, hereafter).

With the MCMC method we aim at building a map of the posterior
distribution drawing a sequence (or chain) of points (or samples) in the
parameter space. There are many algorithms that can be implemented to
compute the chains, but the general idea is that the sequence has to follow a
Markovian trajectory in parameter space, such that each point in the chain
X(t) = ~θ(t) depends only on the previous one. In other words, the probability
of the t–th element in the chain only depends on the value of (t − 1)–th
element. A fundamental property for these chains is the convergence to a
stationary state (i.e. stable with the variation of t).

The probability of moving from ~θ(t) to ~θ(t+1) is described by a transition
probability T (~θ(t), ~θ(t+1)), which has to satisfy the following detailed balance
condition:

T (~θ(t), ~θ(t+1))

T (~θ(t+1), ~θ(t))
=
p(~θ(t+1)|D)

p(~θ(t)|D)
, (4.7)

i.e. the ratio of the transition probabilities has to be inversely proportional
to the ratio of the posterior probabilities at the two points.

As already mentioned, the CBL provide methods to perform the MCMC
posterior sampling. In particular two algorithms have been implemented:

• The Metropolis-Hastings algorithm (Hastings, 1970). This is the sim-
plest and widely used MCMC algorithm. During the parameter-space
sampling, a candidate point ~θ(t) is drawn from a proposal distribution
q(~θ(t−1)|~θ(t)), that could be for example Gaussian, centred on the cur-
rent point and having a fixed variance. In this algorithm, the proposal
distribution is considered symmetric. Then the point is accepted with
probability

α = min

{
ptq(~θ

(t)|~θ(t−1))

pt−1q(~θ(t−1)|~θ(t))
, 1

}
= min

{
pt
pt−1

, 1

}
, (4.8)
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where pt = p(~θ(t)|D) is the posterior distribution computed at the can-
didate point. The second equality derives from the symmetric property
of q. If the candidate point is accepted, then the algorithm will move at
that position adding it to the chain, else it will stay on the old point,
double counting it. The process is iteratively repeated, by drawing
another candidate point until a convergence is reached.

• The Stretch-Move algorithm (Goodman &Weare, 2010; Foreman-Mackey
et al., 2013). This algorithm follows the simultaneous evolution of an
ensemble of K walkers S = {Xk}. The position Xk of a given walker
k is updated to Y by drawing randomly another walker Xj ∈ S[k] ≡
{Xj, j 6= k}

Xk(t)→ Y = Xj + Z[Xk(t)−Xj], (4.9)

where Z is a random variable drawn from a distribution g(z):

g(z) =


1√
z
, if z ∈

[1

a
, a
]
,

0, otherwise,
(4.10)

where a is a constant which is generally set to 2. Then, the new position
is accepted with probability:

q = min

{
ZN−1 p(Y |D)

p(Xk|D)
, 1

}
, (4.11)

where N is the dimension of the parameter space. The process is then
repeated for each walker in the ensemble S. In the CBL the whole
procedure is parameterised by means of OpenMP Application Program
Interface (OpenMP API), assigning the evolution of each walker to a
different CPU and running the tasks in parallel.

4.3 Combination of independent probes
The advent of the wide field surveys marked in the last decade an unprece-
dented evolution in observational Cosmology and will led to a deeper under-
standing of our Universe in the next years. The huge amount of information
coming from survey such as the SDSS1 (Sloan Digital Sky Survey) (York
et al., 2000; Eisenstein et al., 2011; Blanton et al., 2017a), and DESI (Dark
Energy Spectroscopic Instrument) (Hang et al., 2021; Besuner et al., 2021),

1https://www.sdss.org/
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together with data expected from the Vera C. Rubin Observatory LSST2

(LSST Dark Energy Science Collaboration, 2012) and the ESA Euclid mis-
sion3 (Laureijs et al., 2011; Amendola et al., 2018), will shed new light on
the underlying cosmological scenario, testing the standard ΛCDM model. It
will allow indeed to achieve tighter constraints on the expansion history of
the Universe, together with a better understanding of the nature of the DE.
Furthermore, we will have the opportunity to study in details the effective
mass of neutrinos and the problem of the initial condition of our Universe.
Cosmological probes like weak lensing, galaxy clustering, number counts of
both galaxy clusters and cosmic voids will be exploited thanks to these new
available data-sets to test the cosmological scenario. Their complementary
study will lead to even tighter constraints on cosmological parameters, and
their combination will possibly break the degeneracies between them.

As an example, Figure 4.1 reports the combination performed in Suzuki
et al. (2012), in which the constraints have been derived from different probes:
using the luminosity distance measurements of SNe Ia detected at 0.623 <
z < 1.415 with the Hubble Space Telescope, the CMB analysis with WMAP7
data and the BAO measurement from the combined analysis of the 7-th
data release of SDSS and the 2dFGRS data. From this plot we can clearly
see the great constraining power achieved with the combination of different
probes, fundamental to break the strong degeneracies between cosmological
parameters.

In the last decade, thanks to the remarkable achievements obtained by
the CMB experiments (see e.g. Komatsu et al., 2011; Planck Collaboration
et al., 2020), as well as by the Dark Energy Survey (DES) Dark Energy Sur-
vey Collaboration et al. (2016); Dark Energy Survey Collaboration (2018),
by high-resolution spectroscopic and optical surveys (Blanton et al., 2017b;
Ivezić et al., 2019), and deep galaxy surveys (Alam et al., 2017), Cosmology
has entered in a new precision era, in which we are able to constrain cosmo-
logical parameters with sub-percent accuracy. This has led to the rise of the
so-called tensions between different estimates of the same parameter, such as
the Hubble constant tension, which we saw in Section 1.4. Combination of
different experiments, when performed properly between compatible probes,
can represent a very powerful tool in shedding light on these tensions. In
particular, given the Bayesian framework described in the previous sections,
one can perform a joint analysis on an ensemble of different experiments by
setting a unique data vector d̂ = d̂1 ∪ d̂2 ∪ . . . d̂N as the concatenation of
all the different data-sets. Writing the parameters of interest as ~θ and the

2Legacy Survey of Space and Time; http://www.lsst.org
3http://www.euclid-ec.org
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Figure 4.1: Combination of different cosmological probes (black contour) in
the Ωm − ΩΛ parameter plane. The blue contours represent the constraints
derived from the study of the distance modulus of a sample of SNe Ia in the
redshift range 0.623 < z < 1.415. The orange and green contours represent
the constraints derived from the CMB data (WMAP7) and the study of the
BAO position peak, respectively. The black solid line represents the equation
ΩΛ + Ωm = 1, and delineates the transition between an open and a closed
Universe. Credits to Suzuki et al. (2012).
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nuisance parameters as ~n, we can compute the joint posterior probability
by comparing the data vector d̂ with the theoretical model vectorM(~θ, ~n),
which will include all the different models, and marginalising over nuisance
parameters:

P(~θ|d̂) ∝ Pr(~θ)
∫
L(d̂|M(~θ, ~n), C)Pr(~n)d~n . (4.12)

Here C is the cross-covariance matrix, which has to be taken into account
in order to model properly the correlation between the different data-sets, L
is the joint likelihood, and Pr(~θ) and Pr(~n) are the prior distributions on
the parameters of interest and the nuisance parameters, respectively. Ob-
taining the cross-covariance matrix is not always an easy task: an option is
to compute it from theoretical models, but it is usually not trivial primarily
because of the poorly understanding of the statistical properties of the data,
such as the nonlinear regime for galaxy redshift surveys and weak lensing
or the galaxy bias in redshift surveys. Another option is to estimate it from
simulations or from observations directly, using resampling methods (see Ap-
pendix A). We note that valuating the cross-covariance matrix from the data
leads generally to high levels of noise in the estimate. To improve the signal
to noise ratio it is possible to use different realisations of the same simula-
tion, lowering statistical uncertainty related to this measure. However, this
method is generally computationally expensive even for single probe analy-
ses (Taylor et al., 2013; Taylor & Joachimi, 2014; Krause et al., 2017). The
main advantage of this method is related to the possibility of including in the
estimate of cross-covariance matrix all the expected observational effects, by
adding for instance flux limits and survey masks to the analysed simulations.

In this Thesis work, we focus on how to properly perform the combina-
tion of independent cosmological probes, where “independent” means that we
make the assumption that the different probes are not statistically correlated.
More precisely, we consider null off-diagonal terms for both the covariance
matrix associated with the data-sets at different redshifts and for the cross-
covariance matrix relative to the different cosmological probes. In Appendix
A we discuss these assumptions by estimating the covariance matrix between
galaxy cluster and void number counts from the analysed mock catalogues,
performing a Jackknife resampling.

The combination of different probes will be effective whenever different
cosmological constraints overlap in parameter space (like the contours rep-
resented in Figure 4.1). A contour is a set of points {~θi} in the parameter
space, which gather in the regions where the posterior probability distri-
bution p(~θ|D) is peaked. One of the most common methods to combine
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different independent probes is through the product of their likelihood func-
tions, or more generally their posterior product (PP). In the following sec-
tions we will present other two combination techniques: the Importance Sam-
pling (IS) method and the Posterior as Prior (PaP) method. Both the PP
and the IS methods have been implemented in the new CBL’s class called
CombinedPosterior, belonging to the statistics namespace, with which it
is possible to manage different objects of the parent class Posterior. In par-
ticular, an object of the class Posterior is built passing to its constructor4
a Likelihood object and a Prior object, in agreement with the definition
of the Bayes theorem in Eq. (4.1). All these classes follow the hierarchy
represented in Figure 4.2. The PaP method can be performed by the user by
properly specifying the prior distribution of the free parameters by means of
a new implemented constructor of the class PriorDistribution.

Figure 4.2: Hierarchy diagram of the Likelihood class. In this scheme
Chi2 and Posterior are directly connected to the parent class Likelihood,
from which they inherit the public attributes and functions. An analo-
gous inheritance scheme is followed for the Posterior and its derived class
CombinedPosterior.

4.3.1 Posterior product combination

The first method we present is the product of the different posterior proba-
bility distributions (reported also with the acronym PP). Let us assume to

4A constructor is a special member function of a C++ class. Constructors build the
objects of the class they belong to, generally setting the values of the fundamental variables
of the class.
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have a set {D1, . . . ,DN} of N data-sets, with which we want to test N differ-
ent models. We can compute the single posterior distributions via the Bayes
theorem expressed in Eq. (4.1), by specifying a likelihood function L(Dj|~θ)
for each of them and a unique prior distribution Pr(~θ) for the parameters of
the models. For each point ~θi obtained during the sampling of the parameter
space, the associated value of the un-normalised combined posterior distri-
bution in that point will be the product of the different likelihood functions,
times the value of the prior, both computed at ~θ = ~θi:

P (~θi|(D1, . . . ,DN)) = Pr(~θi)
N∏
j=1

L(Dj|~θi). (4.13)

Before the implementation of the new codes for probe combination, it
was possible to perform the PP method with the CBL by joining manually
the data-sets of interests and by building a vector of modelsM, specifying
then the association of each model to each data bin. The main advantage
of the new CombinedPosterior class for this type of combinatio is that
the code automatically manages all the data-sets and the models in input.
Indeed, until the hypothesis of independence between the different data-sets
holds, the CombinedPosterior class allows to create N different Posterior
objects, given a unique prior distribution for the parameters of interest, and
to combine them with a more user-friendly structure.

In the following Listing we show an example of such combination consid-
ering N = 2 independent cosmological probes:

1 # import the CosmoBolognaLib and the Python modules
2 import CosmoBolognaLib as cbl
3 import numpy as np
4

5 # construct the data -sets by reading input files
6 dataA = cbl.Data1D(path_datasetA)
7 dataB = cbl.Data1D(path_datasetB)
8

9 # set the Likelihood and the Prior type
10 LikeType = cbl.LikelihoodType__Gaussian_Error_
11 PriorType = cbl.DistributionType__Uniform_
12

13 # construct the likelihood objects
14 likelihoodA = cbl.Likelihood(dataA , modelA , LikeType)
15 likelihoodB = cbl.Likelihood(dataB , modelB , LikeType)
16

17 # define the priors for the parameters
18 #(here uniform prior for two parameters)
19 prior_theta1 = cbl.PriorDistribution(PriorType , min_theta1 ,

max_theta1)
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20 prior_theta2 = cbl.PriorDistribution(PriorType , min_theta2 ,
max_theta2)

21

22 # put the priors in a single pointer vector
23 prior_distribution = cbl.PriorDistributionPtrVector ([

prior_theta1 , prior_theta2 ])
24

25 # construct the posterior objects
26 PostA = cbl.Posterior(prior_distribution , likelihoodA , seed1)
27 PostB = cbl.Posterior(prior_distribution , likelihoodB , seed2)
28

29 # put them into a pointer vector
30 ptr_posteriors = cbl.PosteriorPtrVector ([PostA , PostB])
31

32 # construct the combination object by passing the pointer
vector

33 CombPost = cbl.CombinedPosterior(ptr_posteriors)
34

35 # initialize the chains
36 CombPost.initialize_chains(chain_size , nwalkers , 1.e-5, start

)
37

38 # combine by sampling the posterior distribution (Stretch
Move algorithm)

39 CombPost.sample_stretch_move (2)

Listing 4.1: Python example of how to perform the Posterior Product
combination between two different independent probes.

Here, we start preparing two generic data-sets to be used as inputs for the
two distinct probes. Then we build two objects of the Likelihood class by
using the CBL constructor. It requires to define also a theoretical model for
each probe (modelA and modelB), that can be set by the user also as an ex-
ternal function, and a likelihood type (Gaussian_Error in this case). Then
we define the priors for the parameters of interest, that here are generically
called theta1 and theta2. In this example we set a flat prior distribution
for both the parameters, for which we set only the minimum and the max-
imum values acceptable for our analysis. Finally, we build the Posterior
objects required for the combined analysis. To do this, we provide to the
constructor a vector of pointers to the Prior objects, then the Likelihood
objects prepared to each probe and a seed used to initialise the MCMC.
In the end we construct an object of the new class CombinedPosterior by
giving a pointer vector with the Posterior objects. Thanks to this, we can
call the functions responsible for the running of the MCMC. chain_size and
nwalkers are the parameters used to set the posterior sampling, while start
is a vector of values at which the chain will start. The resulting combination,
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i.e. the product of the likelihoods times the prior, is performed inside the
sample_stretch_move function, that has been re-implemented within the
CombinedPosterior class. The final result of this code will be an output
file containing the steps performed by the MCMC for the two parameters of
interest, together with other files specifying some characteristics of the sam-
pled combined posterior distribution (e.g. mean, median, standard deviation,
quartiles and covariance matrix).

In order to take into account the possible correlations between the param-
eters of a given model, the user can also exploit this method in combination
with a correlated prior distribution. For instance, supposing to know the cor-
relation between the analysed parameters, we can set a multivariate Gaussian
distribution as unique prior for these parameter, by specifying their covari-
ance matrix and the vectors of mean values inside the PriorDistribution
constructor. This method will be applied to perform a different type of probe
combination in Section 4.3.3.

4.3.2 Importance sampling combination

The second method we present for the combination of independent probes is
the Importance Sampling (reported also with the acronym IS). Importance
sampling refers to a general technique to extract properties of an underlying
distribution p(x), often called nominal or target, for a random variable X
by sampling from another distribution q(x), i.e. X ∼ q,5 called proposal or
importance distribution. The expected value of a given function f(X), under
the distribution p, indicated as Ep[f(X)], is:

µ ≡
∫
f(x)p(x)dx = Ep[f(X)]. (4.14)

The Importance Sampling is based on the following fundamental identity:

Ep[f(X)] =

∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx

=

∫
w(x)f(x)q(x)dx = Eq[w(X)f(X)],

(4.15)

where w(x) ≡ p(x)/q(x) is called importance weight and Eq[·] denotes the
expectation value with respect to the importance distribution. Eq. (4.15)
holds for any probability function q that has its support including the support

5with this notation we indicate that the random variable X is distributed following the
probability distribution function q.
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of p. Therefore, one can estimate the expectation value µ̂q for the function
f by drawing x1, . . . , xN independent samples from q:

µ̂q =
1

n

N∑
j=1

w(xj)f(xj), xj ∼ q. (4.16)

One can show that Eq[µ̂q] = µ (directly from Eq. 4.15), and that the estimate
of the variance is Varq[µ̂q] = σ2

q/N . Here σ2
q is the variance associated to the

importance distribution, which has the following form:

σ2
q =

∫
(f(x)p(x))2

q(x)
dx− µ2 =

∫ (
f(x)p(x)− µq(x)

)2

q(x)
dx. (4.17)

In the case of cosmological calculations, we deal with a set of parameters ~θ
which follow a posterior distribution, constructed from data-sets, models and
priors. The IS combination is performed by considering the posterior of one
probe as the importance distribution for the other, and viceversa. During
the MCMC, one has to compute the importance weight w for each sampled
point in the parameter space. For example, having two data-sets, A and B,
the normalised importance weights wi = w(~θi) computed for each point ~θi
during the sampling of the posterior of A (hence by considering pA as the
importance distribution) results:

wi =
max{PA(~θA)}
max{PB(~θA)}

PB(~θi)

PA(~θi)
, (4.18)

where max{Px(~θA)} indicates the maximum value of the posterior px in the
points sampled by the probe A. Doing the same procedure considering pB as
the importance distribution, we will finally obtain a value w for each point
in the parameter space, thus for each step of the MCMC computed for both
A and B. By concatenating the output chains obtained in the two cases, one
can compute the final (combined) expectation value of the posterior following
the Eq. (4.16).

This procedure is totally performed inside the importance_sampling()
function, implemented within the CombinedPosterior class. This function
takes as input the paths at which the user wants to store the final output
chains and the parameters required for the MCMC sampling. It provides
in output the MCMC produced from the sampling of the posterior of each
probe, together with the concatenated chains with the importance weight
computed to each step.
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A-posteriori importance sampling

To combine two posterior distributions with the IS method described above,
one has to provide the data-sets for each probe, as well as their models. How-
ever, the user may want to combine the posterior distribution obtained from
other experiments (e.g. combining with Planck18 or WMAP constraints,
as well as with other probes for which public results have been provided),
without the need to re-run the chains. For this reason we implemented an-
other importance_sampling() function, which can compute the importance
weights for two external, pre-ran chains. In order to calculate the importance
weights wi, we need to evaluate the posterior of the first probe in the points
of the parameter space sampled for the second probe.

To accomplish this task, we implemented a function that performs a N -
dimensional interpolation, by means of a chain mesh. This function is indeed
implemented inside the cbl::chainmesh::ChainMesh class, which provides
optimised tools to construct a mesh grid starting from an N -dimensional
distribution of points. The implemented interpolate() function is able
to adapt the target distribution to a regular grid (i.e. having cells of the
same size for the different sides), assigning each point of the distribution to
a given cell. The interpolation at each point of the importance distribution
is performed by the interpolate() function by computing the average of
the closest points belonging to the target distribution. The search for closest
points is performed by the close_objects() function, which allows to speed
up the computation by considering only the objects belonging to the cells that
fall inside a given radius, centred on the considered point of the parameter
space. The value of this radius is specified by the parameter rMAX, which
can be set by the user. Other parameters required for the interpolate()
function are cell_size and distNum, representing the grid cell side and
the number of the closest points used to perform the average operation,
respectively.

Figure 4.3 shows an example of this procedure. The two distributions of
points are obtained from external chain files, which sample the parameter
space given by the generic parameters {θ1, θ2}. In this example the points
reported in orange represent the importance distribution and the points in
blue the target distribution. We choose the point of the importance distri-
bution marked with a “X” and we search for the closest points belonging to
the target distribution, by means of a chain mesh. We consider in particular
rMAX = 3 and cell_size = 2, building a 100× 100 grid (100 cells for each
side). The insert in the corner shows a zoom of the points involved in the
computation of the close objects. The searching region is reported with a red
circle and the big points are those selected by the algorithm. In particular,
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Figure 4.3: Example of analysis of two contours in the parameter space.
During the sampling of the orange contour, the interpolated posterior value
of the blue contour at a given point (black cross) is the average between
the posterior values computed at the closest points (red dots) inside a circle
of radius rMAX. The points found by the close_objects() function are
represented as blue dots in the insert in the top-left corner. Among these
points, the red ones are those selected to perform the average operation.
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these are the points belonging to the grid cells included or intersected by the
searching radius. Finally, the big red points are the ones selected, among all
the close objects, to perform the average operation required for the interpo-
lation procedure. The number of points selected among the close objects is
given by the parameter distNum.

Once we have the interpolated values for one posterior distribution at
each point of the other, the importance weights are computed by the
importance_sampling() function as in Eq. (4.18). However, since the im-
portance weight is defined as a ratio, and the posteriors distribution can show
some noise in the sampled values, it is possible to encounter numerical fluc-
tuations in the weight distribution. The user can therefore choose to remove
the outlayers in the obtained distribution of weights thanks to the parameter
cut_sigma. With this parameter we set the number of standard deviations
that have to be kept in the analysis, starting from the mean value of the
distribution (e.g. cut_sigma= 5 implies to discard the values over the 5σ of
the weight distribution).

The Importance Sampling method is the fastest among the methods im-
plemented in this Thesis work, but it is restricted only to N = 2 different
cosmological probes. Moreover, it has the downside of being dependent on
the parameters set to perform the interpolation (rMAX, distNum, cut_sigma),
even if in many cases it does not show relevant modifications with the varia-
tion of these parameters. Nevertheless, it is also the only method that does
not require in input the analysed data-sets and neither theoretical models,
but only the resulting MCMC. This allows, in principle, to combine any
publicly available chain relative to independent probes.

4.3.3 Posterior as Prior combination

The last method we implemented is the Posterior as Prior combination (PaP,
hereafter). In this method we consider the posterior distribution of a given
cosmological probe as the prior distribution for the other. One can easily
show that this procedure, also known as Bayes update, is equivalent to the
Posterior Product combination described in Section 4.3.1. Indeed, let us
consider the parameter set ~θ we want to constrain by testing two models on
two different data-sets D1 and D2. Considering the result of the sampling of
second posterior as the prior for the sampling of the first posterior p(~θ) =

p(~θ|D2), it follows from the Bayes theorem Eq. (4.1) that:

p(~θ|D1) =
p(D1|~θ)p(D2|~θ)p(~θ)

p(D1)p(D2)
≡ p(~θ|(D1,D2)). (4.19)
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As a consequence of this, the Posterior as Prior combination method is
symmetric, meaning that it is equivalent to consider the posterior 1 as a
prior for the model 2 or the posterior 2 as the prior for the model 1 (with
the proper likelihood function specified for the posterior sampling).

With this method, we want to encapsulate the information achieved by
a different experiment in the prior set for the analysed parameters. Let
us assume that we want to constrain a set of N different cosmological pa-
rameters ~θ, and that we previously sampled a posterior distribution for that
parameters using a given cosmological probe. To use the constraints obtained
from a different cosmological probe as priors for another Bayesian analysis
we implemented two techniques, by means of two new PriorDistribution
constructors. With the first method, we read the MCMC output given by
another probe, exploiting the interpolate() function presented in the pre-
vious section to have access to the points of the parameter space that are
not covered by the sampling procedure. With the second, we approximate
the posterior distribution that we want to use as a prior with a multivariate
Gaussian.

The former method is in general very convenient since one can consider as
prior any type of posterior distribution, not necessarily Gaussian or described
by analytical functions. However, this method is affected by the same issues
related to the interpolate() function described before. In particular, it can
be subject to numerical fluctuations given by the scatter of the points which
constitute the read posterior distribution. Moreover, it slightly depends on
the parameters set for the interpolation procedure, even if the results ob-
tained with this algorithms are fully consistent even for large variations of
these parameters.

The second method is based on the assumption that the distribution used
as prior can be represented by a multivariate Gaussian. This hypothesis holds
for the majority of the cosmological cases, but it is not always appropriate
or precise. This method is faster with respect to the former, since it does not
require to perform the interpolation procedure for each step of the MCMC,
and it is more accurate than considering N independent Gaussian prior dis-
tributions for the parameters, since it takes into account also the correlation
between the latter. Let us assume of having the data coming from the sam-
pling of the posterior distribution of the first probe. These may be provided
by a different experiment or may have been produced by the user. In the
latter case, running the MCMC with the CBL, we will also have as out-
put the covariance matrix, Σ, for the different parameters ~θ, which will be
used to build the prior we are interested in. With the new implemented
version of PriorDistribution constructor we can build a prior represented
by a multivariate distribution, thus p(~θ) = G(~θ|~µ,Σ). This form is the same

118



reported in Eq. (4.4): in this case the parameters ~θ are specified at the
first entry, and ~µ and Σ are the expectation values vector of the parameters
~µ = {E[θ1], . . . ,E[θN ]} and their N ×N covariance matrix, respectively.

In the Listing 4.2 we report an example of the usage of this typology of
combination.

1 from CosmoBolognaLib import DoubleVector as dv
2 from CosmoBolognaLib import DoubleVectorVector as dvv
3

4 # read the distribution of parameters from the external chain
5 theta1 , theta2 = np.genfromtxt(file_chain , usecols =(0,1),

unpack=True)
6

7 # compute the average vector
8 Mean = np.median(list(zip(theta1 , theta2)), axis =0)
9

10 # compute the covariance matrix
11 cov = np.cov(np.stack((theta1 , theta2), axis =0))
12

13 # store the cov. matrix in a vector of vectors
14 covM = dvv([list(cov [0]),list(cov [1])])
15

16 # set the prior as multivariate Gaussian distributed
17 prior = cbl.PriorDistribution(cbl.DistributionType__Gaussian_

, dv(Mean), covM , dv([ min_theta1 ,min_theta2 ]), dv([
max_theta1 ,max_theta2 ]))

18

19 # put the prior into a single pointer vector
20 prior_distribution = cbl.PriorDistributionPtrVector ([prior ])
21

22 # construct the Posterior object by passing the prior pointer
vector and the likelihood

23 Post = cbl.Posterior(prior_distribution , likelihood , 696)
24

25 # initialize chains by choosing a starting point
26 Post.initialize_chains(chain_size , nwalkers , 1.e-5, start)
27

28 # sample the posterior with the Stretch Move algorithm
29 Post.sample_stretch_move (2)

Listing 4.2: Python example on how to consider an external posterior
distribution as the prior for a given cosmological probe.

We first read the MCMC relative to the sampling of the posterior distribution
of a probe, in which theta1 and theta2 are the free parameters of the model.
We then compute the mean and the covariance matrix of these parameters
from the chains. With these values we can now build a PriorDistribution
object, which will constitute the multivariate Gaussian distribution used as
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prior. Consequently, the statistical Bayesian can proceed as described in the
Listing 4.3.1, by defining the Likelihood object for the second probe by
means of a data-set, a model and a likelihood type, and finally running the
posterior sampling method.

All the algorithms implemented in this Thesis work are described in de-
tails and applied to a general example in the following jupyter notebook,
which can also be found inside the CosmoBolognaLib C++/Python libraries.
Moreover we present a further application of the a-posteriori importance
sampling technique in this jupyter notebook, by combining publicly avail-
able data obtained from the WMAP experiment (Komatsu et al., 2011) and
from the analysis of the BAO peak.
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Chapter 5

Cosmological constraints from the
combination of cluster and void
number counts

In this Chapter we shall apply the algorithms implemented in this Thesis
work and presented in Chapter 4, to combine galaxy cluster and void num-
ber counts. The data-sets are extracted from simulated catalogues, which
are obtained from the Magneticum Pathfinder simulations, described in Sec-
tion 5.1. In order to extract constraints from these cosmological probes,
we compare the simulated galaxy cluster number density with the Despali
model described in Section 3.5.2, and the void number density with the Vdn
model described in Section 3.6.1. We perform a Bayesian statistical MCMC
analysis by sampling the posterior distribution of the parameters Ωm and σ8.
The considered models will have to be calibrated to match the halo finder
assumptions. Moreover, it will be necessary to take into account the bias
of galaxies inside and around cosmic voids (see Section 3.6.4). The calibra-
tions are described in Section 5.2 for the HMF model and in Section (?) for
the VSF, while in Section 5.4 we present the constraints obtained from each
probe alone. Finally, in Section 5.5 we apply and compare the combina-
tion methods described in the previous Chapter on the constraints obtained
independently from the two considered cosmological probes.

5.1 The Magneticum simulations
In this Thesis work we make use of simulated galaxy and galaxy cluster
catalogues extracted from the Magneticum Pathfinder Simulations1 (Dolag

1http://www.magneticum.org/
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Figure 5.1: Evolution of large-scale structures in the Magneticum Pathfinder
simulations, from redshift z = 2 to z = 0.2. Blue dots represent the distribu-
tion of (simulated) galaxies having stellar mass M∗ ≥ 1010 M� h

−1, inside a
comoving box of volume (896 Mpc h−1)3 (Box1). The yellow dots represent
galaxy clusters with mass M500c ≥ 5 × 1013 M� h−1, while yellow empty
circles represent the cosmic voids identified in the distribution of galaxies.
The axes are expressed in comoving coordinates, and the Z-coordinate is
represented as a slice that ranges from 520 Mpc h−1 to 580 Mpc h−1.
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et al., in preparation), a large set of cosmological, hydrodynamical simula-
tions, having box volumes going from (12 Mpc/h)3 (Box6) to (2688 Mpc/h)3

(Box0). These boxes have different resolutions, and thus allow us to study
the formation and evolution of both large-scale structures as well as phenom-
ena that occur on smaller scales, from the motion of galaxies to the physics
of gas inside them. The Magneticum simulations have been run with the
parallel code P-GADGET3, which is an updated version of the TreeSPH
GADGET-2 code presented in Springel (2005). In the latter, gravitational
forces are computed through a TreePM algorithm, while the hydrodynamics
is modelled through a an SPH algorithm (see Section 2.6).

For our analysis we consider Box1, which is a large simulation that follows
the evolution of 2× 15263 particles in a comoving volume of (896 Mpc/h)3,
with which it is possible to make a detailed statistical analysis of galaxy clus-
ters and cosmic voids. Furthermore the main baryonic physics phenomena
are implemented in these hydrodynamic simulations, following the methods
presented in Springel & Hernquist (2003), such as the cooling of gas, the star
formation and supernovae feedback. In addition, black holes and AGN feed-
back are included (Di Matteo et al., 2008), as well as thermal conduction,
stellar population and chemical enrichment models (Tornatore et al., 2003;
Tornatore & Borgani, 2007).

The simulation outputs, from which cluster and void catalogues are con-
structed, are selected at four redshift bins, z = (0.2, 0.52, 1, 2), based on the
spatially-flat ΛCDM model, with parameters fixed to the seven-year Wilkin-
son Microwave Anisotropy Probe (WMAP7) data (Komatsu et al., 2011),
with matter density Ωm = 0.272, power spectrum normalisation σ8 = 0.809,
Hubble constant H0 = 70.4 km s−1Mpc−1, DE density ΩΛ = 0.728 and pri-
mordial spectral index ns = 0.963. Figure 5.1 shows the evolution of the
large-scale distribution of galaxies inside a slice of thickness 60 Mpc h−1,
extracted from the comoving cosmological boxes we considered for the anal-
ysis. We also report the galaxy clusters identified in these simulation boxes
by means of the SUBFIND algorithm, i.e. the SO halo finder (see Section
3.5) employed inside the Magneticum and the cosmic voids identified with
the void finder VIDE (see Section 3.6.2) in combination with the cleaning
procedure (see Section 3.7).

5.2 Calibration of the halo mass function
Before comparing the number density of clusters and the HMF model de-
scribed in Section 3.5.2, a calibration of the latter is necessary, because of
the differences in the halo definitions between the Magneticum simulations

123



and that of the theoretical Despali model. Indeed, in the former, DM haloes
are detected with the SUBFIND algorithm (Springel et al., 2001; Dolag et al.,
2009) which finds haloes through a SO halo finder, considering an overdensity
threshold of ∆ = 500ρc, after having assembled DM particles together with a
FoF algorithm with a linking length b = 0.16. As described in Section 3.5.2,
the Despali model has been calibrated, instead, on haloes detected with a SO
method considering overdensities equal to ∆vir. Despali et al. (2016) provided
fitting formulae, Eq. (3.45), for the parameters of their model in order to
predicts the HMF at different thresholds with respect to ∆vir. Nevertheless,
the calibration performed by the authors considered DM-only cosmological
simulations, while the Magneticum simulations also follow the baryonic com-
ponent. For these reasons, we re-calibrate the parameters of the HMF model,
by assuming the validity of the functional relation given by Eq. (3.45). This
translates into finding other coefficients for the relations a = a(x), p = p(x)
and A = A(x), where x ≡ log(∆(z)/∆vir(z)).

As shown in Despali et al. (2016), while the parameters A and a exhibit a
very regular trend, described by Eq. (3.45), the behaviour of p is very uncer-
tain. Moreover, the HMF results more sensitive to the variation of a and A,
with respect to the variation of p. For these reasons, we choose to consider
p as fixed to the value obtained by the authors in the most general fitting
case, that is p = 0.2536. Lastly, we test the calibration with two different
minimum masses for the galaxy cluster catalogues: M500c ≥ 5× 1013 M�h

−1

and M500c ≥ 1014 M�h
−1. This acts as a simplified selection function, which

we adopted in order to mimic the range of masses for galaxy clusters in real
surveys, and because for smaller masses we verified the presence of incom-
pleteness in the cluster counts. We do not focus on any observable-mass
relation in this work, and we consider cluster masses as a direct observable.
The first minimum mass cut is applied to all the 4 redshift snapshots, while
for the other selection no clusters were found at z = 2. Hence we decided to
remove the latter from our analysis.

Writing the general form of the fitting formula (3.45) as:

a = a1x
2 + a2x+ a3

A = −A1x+ A2

p = 0.2536 ,
(5.1)

we calibrate the new relations for the model parameters by performing a
Bayesian statistical MCMC analysis on the simulated HMF, by sampling the
posterior distribution of the ai and Ai coefficients, fixing the cosmological
parameters to the WMAP7 results. In particular, we consider flat priors
for these coefficients and a Gaussian likelihood function (Section 4.2.1) for
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the fitting. The result of the calibration for the two different mass cuts is
presented in Figure 5.2, where it is shown the posterior distribution for the
coefficients of Eq. (5.1). We recover the Despali ai parameters values within
the 95% confidence regions, while the Ai parameters are consistent with those
found by the authors within the 68% confindence regions. However, for all
the parameters, the errors, as well as the degeneracies between them, are very
high. Moreover, the posterior distribution for the parameters are Gaussian
for the lowest mass cut, while this no longer holds for the highest mass cut.
Indeed the ai parameters show a slight level of asymmetry.

Considering clusters having mass M500c ≥ 5× 1013 M�h
−1, we found the

following fitting relations for the Despali parameters:

a = (5± 2) x2 − (5± 2) x+ (2.1± 0.6)

A = (−0.1± 0.1) x+ (0.27± 0.09)

p = 0.2536 ,
(5.2)

while for M500c ≥ 1014 M�h
−1 we found:

a = (7± 4) x2 − (7± 4) x+ (3± 1)

A = (−0.2± 0.4) x+ (0.3± 0.2)

p = 0.2536 .
(5.3)

Considering the latter as our new fitting formulae for the Despali pa-
rameters, we can compare the simulated numerical densities, extracted from
the Magneticum simulation, with the theoretical Despali HMF, for the 4
different redshifts considered. The number counts are divided into equidis-
tant logarithmic mass bins, with a Poissonian error associated for each of
them. The comparison between model and simulated data, before and after
the re-calibration, can be seen for the two mass cuts in Figures 5.3 and 5.4.
From the residuals, which are computed as the ratio between the difference
data-model and the data errors, one can clearly see how the re-parameterised
model fits better the simulated data, particularly at low redshift.

5.3 Calibration of the void size function
The other observable we considered is the abundance of cosmic voids as a
function of their radius. We considered voids identified in the simulated
galaxy catalogues. We consider only galaxies having a stellar mass M∗ ≥
1010 M� h

−1, following the choice made in Marulli et al. (2017) who analysed
the same cosmological simulations. We apply the VIDE void finder described
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Figure 5.2: Posterior probability distribution of the coefficients of the fitting
relation between the Despali parameters (a,A) and x = log10(∆(z)/∆vir(z)),
for two different mass cuts (red contours for M500c ≥ 5 × 1013 M�h

−1, blue
contours for M500c ≥ 1014 M�h

−1). Dark and light areas show the 68% and
95% confidence regions, while the solid gray lines represent the values for the
coefficients found in Despali et al. (2016). The top of each column states
the mean and standard deviation of the 1D marginal distributions of the
parameters for the lowest mass cut.
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Figure 5.3: The measured mass function of galaxy clusters (blue dots) identi-
fied in the Magneticum Simulation (Box1), having M500c ≥ 5× 1013 M�h

−1,
at redshifts z = 0.2, 0.52, 1, 2. Upper sub-panels : the red dashed line repre-
sents the theoretical HMF with model parameters expressed with the fitting
formula provided by Despali et al. (2016), while the green solid line repre-
sents the HMF after the model parameters re-calibration. Lower sub-panels :
the residuals of the cluster counts, computed as the ratio between the differ-
ence data - model and the data errors. The different colours represent the
residuals with respect to the two models considered in the upper sub-panels.
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Figure 5.4: As in Fig. 5.2 but for galaxy clusters havingM500c ≥ 1014 M�h
−1.
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in Section 3.6.2 in order to extract the void catalogues, and we cleaned them
with the algorithm described in Section 3.7 and exploited in other recent
works (Ronconi & Marulli, 2017; Ronconi et al., 2019; Contarini et al., 2019,
2020).

As did for the HMF, also the VSF model has to be calibrated in order to
allow a comparison to the simulated data. We make use of the Vdn model
described in Section 3.6, which predicts only the number densities of voids,
as a function of their radius, in an un-biased DM distribution. However,
we deal with voids detected from galaxy catalogues, thus it is necessary to
take into account the bias of galaxies inside them, as described in Section
3.6.4, by modifying properly the shell-crossing threshold that enters in the
model. The procedure described in Section 3.6.4, and exploited in Contarini
et al. (2019, 2020), considers DM haloes as biased tracers of the matter
distribution. Therefore we need to re-calibrate the F(beff) relation between
the effective bias computed at large scales (beff) and the bias computed inside
cosmic voids (bpunct, Eq. 3.58).

Let us write this relation in a general linear form:

bpunct ≡ F(beff) = bslope · beff + boff , (5.4)

where bslope and boff are the slope and the offset of this relation, and beff =
beff(z), where z is the redshift. Similarly to what we have done with the
Despali parameters, here the re-calibration consists into finding new values
for the parameters bslope and boff in the above relation.

In order to do this, we have to measure beff from the galaxy distribution of
our catalogues. We follow the same prescriptions as in Marulli et al. (2018)
and Contarini et al. (2019), measuring the 2PCF of galaxies in our simulated
catalogues and performing a Bayesian statistical analysis in order to infer
the value of beff at different redshifts.

In order to estimate the 2PCF of galaxies we use the Landy-Szalay es-
timator given by Eq. (2.33), which provides an un-biased estimator of
ξ(r) in the limit of NR → ∞, where NR is the total number of objects
in the random catalogues. We constructed the latter to be three times
larger than the Magneticum galaxy catalogues, preserving their geometry
and their three-dimensional coverage, in order to limit the poissonian er-
ror in the data-random counts with respect to the errors from the data-
data counts. We divided the data of the 2PCF in 20 comoving separation
bins, considering them to be inside the range of interest for voids, that is
10 Mpc h−1 < r < 60 Mpc h−1, at all the redshifts considered.

We finally performed a Bayesian MCMC analysis on the 2PCF, consid-
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ering the following Gaussian likelihood function L:

− 2 lnL =
N∑
i=1

N∑
j=1

(ξdi − ξmj )C−1
i,j (ξdj − ξmj ) , (5.5)

where Ci,j is the covariance matrix, which measures the correlation between
the different bins of the 2PCF, N is the number of bins and the superscripts
d and m stand for data and model, respectively. The covariance matrix
is computed with the Bootstrap method (Efron, 1979), by dividing each
data catalogues in 125 sub-catalogues, constructing nR = 100 realisations by
resampling from the sub-catalogues. Specifically, it is defined as

Ci,j = F
nR∑
k=1

(ξki − ξ̂i)(ξkj − ξ̂j) , (5.6)

where k runs over the different realisations while i and j run over the 2PCF
bins. Here ξ̂ represents the average of the 2PCF of the nR samples and F is
the normalisation factor, necessary in order to take into account the possible
correlation between the different nR realisations (Norberg et al., 2009), which
is F = 1/(nR − 1) for the Bootstrap method.

The 2PCF model of galaxies ξm(r) is computed as

ξm(r) = b2
effξDM(r) , (5.7)

where ξDM(r) is the DM 2PCF, which we computed by Fourier transforming
the DM power spectrum PDM(k), measured using the Code for Anisotropies
in the Microwave Background (CAMB)2. The results are shown in Figure 5.5,
where the data points represent the square root of the ratio between the 2PCF
of galaxies and that of DM. The values of beff used for the VSF calibration
are estimated as the best-fit values obtained in the range 20 Mpc h−1 <
r < 40 Mpc h−1, where the data are more stable. These are beff = {1.32 ±
0.02, 1.54± 0.02, 1.98± 0.02, 3.16± 0.04} for the four redshifts considered.

We can now move to the re-calibration of the F(beff) relation, which
can be performed by sampling the posterior distribution of the parameters
bslope and boff via a Bayesian statistical analysis. We tested three differ-
ent effective radius cuts: Reff ≥ 2.5λmps(z), Reff ≥ 2.75λmps(z) and Reff ≥
3λmps(z), where λmps is the mean particle separation of galaxies in the
catalogues, which depends on the given redshift. In particular, we found
λmps = 6.55, 6.92, 7.81, 10.52 Mpc h−1. We let bslope and boff to vary freely be-
tween flat priors, considering a Gaussian likelihood function. All the data-sets

2For information about CAMB: https://camb.info/
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Figure 5.5: The large-scale bias measured in the galaxy catalogues, having
minimum mass Mmin = 1010 M�h

−1, extracted from the Magneticum simu-
lation Box1 at redshift z = 0.2, 0.52, 1, 2. The black dots represent the square
root of the ratio between the 2PCF of galaxies, obtained with the Landy-
Szalay estimator, and the 2PCF of the underlying DM matter distribution,
computed with CAMB. The errorbars correspond to the diagonal elements of
the covariance matrix (Eq. 5.6). The dashed red lines represent the best-fit
obtained by fitting the data between r = 20 Mpc h−1 and r = 40 Mpc h−1,
while the dashed red areas represent the 1σ uncertainties of each best-fit.
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Figure 5.6: Posterior probability distribution of bslope and boff, coefficients of
the relation F(beff) (Eq. 5.4), for the three different minimum radii consid-
ered. Here λmps(z), which depends on redshift, represents the mean particle
separation of galaxies in the simulated catalogues. Dark and light areas show
the 68% and 95% confidence regions, while at the top of each column we re-
port the mean and the standard deviation of the 1D marginal distribution
for the strongest radius cut.
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at different redshifts have been treated as independent, and we marginalised
over the uncertainty of beff. As done for the HMF re-calibration, in this proce-
dure we fix the underlying cosmological model at the WMAP7 cosmological
parameters. The results of the re-calibration are shown in Figure 5.6. The
new bias relations found with this calibration, depending on the low radii
cut, are:

F(beff) = (0.80± 0.02)beff + (0.28± 0.03), Reff ≥ 2.5λmps(z)

F(beff) = (0.78± 0.02)beff + (0.34± 0.04), Reff ≥ 2.75λmps(z)

F(beff) = (0.77± 0.02)beff + (0.36± 0.04), Reff ≥ 3λmps(z) .

As one can see, the slope of the relation grows for higher cuts, while the offset
decreases. Nevertheless, the uncertainties on the two parameters remain the
same for every cut. Even if the parameters are all consistent with each other
in all the three cases, we found a strong dependence on the radius cut for the
F(beff) relation.

5.4 Constraints from cluster counts and void
counts

Comparing the HMF and VSF models with the simulated data-sets, we can
finally extract constraints on the cosmological parameters Ωm and σ8. As
already explained, numerical densities as a function of the mass, for the
HMF, and the radius, for the VSF, are considered as statistically indepen-
dent, meaning that we do not take into account the cross-covariance matrix
between the two probes (see Appendix A for the estimation of the cross-
covariance matrix). The constraints are obtained by concatenating the data-
sets at different redshifts into a unique vector. Consequently, we perform a
Bayesian MCMC analysis on it, considering flat priors on Ωm and σ8, and
marginalising over the non-cosmological parameters, considering them as nui-
sances. Regarding the latter, i.e. (ai, Ai) for the HMF model and (bslope, boff)
for the VSF model, we consider a multivariate normal distribution as their
prior, centred on their average values obtained from the calibrations, speci-
fying their covariance matrix. In this way, we are able to take into account
all the correlations between the nuisance parameters, which arise in the cal-
ibration procedure.

We consider the errors on our data as Gaussian distributed, and we run
the MCMC in order to sample the joint posterior distribution of Ωm and
σ8. We show the resulting contours for the HMF model for the two different
minimummass considered,M500c ≥ 5×1013 M�h

−1 andM500c ≥ 1014 M�h
−1,
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Figure 5.7: Constraints on Ωm and σ8 from the HMF, considering two differ-
ent minimum masses for the clusters in our simulated catalogues. The red
contour shows the posterior probability, marginalised over the Despali pa-
rameters (a,A), for M500c ≥ 5× 1013 M�h

−1, while the posterior probability
in the case ofM500c ≥ 1014 M�h

−1 is represented in blue. The solid gray lines
correspond to Ωm = 0.272 and σ8 = 0.809, representing the truth underlying
cosmological model of the simulations (WMAP-7).
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Figure 5.8: The measured size function of voids (blue dots) identified in the
distribution of galaxies, from the Magneticum Simulation (Box1) at redshifts
z = 0.2, 0.52, 1, 2, for Reff ≥ 3.0 · λmps(z), where λmps(z) is the mean particle
separation of the simulated galaxies. The green lines represent the Vdn
model, properly re-scaled in order to compare it with the data. The dashed
red lines represent the Vdn model rescaled using the calibration performed
in Contarini et al. (2019) for DM haloes. The lower sub-panels report the
residuals of the void counts, computed as the ratio between the difference
data - model and the data errors, which are Poissonian.

in Figure 5.7, while in Figure 5.9 are shown the different contours obtained
for the three cuts described above. Unlike the HMF contours, which remain
centred on the truth values for Ωm and σ8, the VSF contours approach the
latter when considering the highest radius cut. Indeed, only the Reff ≥
3.0 · λmps(z) cut presents a good centring, while for the others the truth
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values lie outside the 95% confidence regions, though they shrink up to a
factor of 2.

In our case we know a-priori the truth values for the cosmological pa-
rameters, therefore we choose to keep only the strongest cut, in order to
properly compare it with the HMF contour. The comparison between the
re-scaled VSF model and the simulated numerical densities of voids for
Reff ≥ 3.0 · λmps(z) can be seen in Figure 5.8. The two final contours,
which can be seen together in Figure 5.10, show different type of degen-
eracies, demostrated by the fact that they have different orientations in the
Ωm−σ8 parameter plane. In particular, they are almost perpendicular, which
is a powerful feature when we consider their combination. The parameter
values obtained by marginalising over the Despali parameters, constraining
the HMF alone, are:

Ωm = 0.273± 0.007,

σ8 = 0.808± 0.006,
(5.8)

for the weakest mass selection (M500c ≥ 5× 1013 M�h
−1) and

Ωm = 0.270± 0.013,

σ8 = 0.810± 0.009
(5.9)

for the strongest one (M500c ≥ 1014 M�h
−1).

The constraints obtained by exploiting the VSF alone for voids having
radius Reff ≥ 3.0 · λmps(z), marginalising over bslope and boff, are:

Ωm = 0.266± 0.016,

σ8 = 0.803± 0.015 .
(5.10)

For both models the truth values Ωm = 0.272 and σ8 = 0.809 are recovered
within 1σ. The VSF contour is marginally decentred in Ωm, even though it
is broader than the HMF contours. The uncertainties on the two cosmologi-
cal parameters are comparable for the strongest mass cut applied, while for
clusters having massM500c ≥ 5×1013 M�h

−1, the VSF contour is 2−3 times
broader than the HMF one.

5.5 Constraints from the probe combinations
Finally, we are ready to combine the two cosmological probes applying the
three methods implemented in this Thesis work and described in the previous
Chapter: Posteriors Product, Importance Sampling and Posterior as Prior
methods. All the results of the combination methods can be seen together
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in Figure 5.11, for clusters with M500c ≥ 5 × 1013 M�h
−1, and in Figure

5.12 for the other mass selection. Starting with the classic Posterior Product
method, we sample the posterior distribution of Ωm and σ8 by considering flat
priors on them, and marginalising over all the nuisance parameters for the
two models, that are Despali post-calibration and Vdn post-calibration. For
each point of the parameter space in the sampling procedure, the combined
posterior value in that point is the product of the likelihood functions of
the two models, times the prior, following Eq. (4.13). For the Importance
Sampling method, we compute the importance weight for each point of the
sampling procedure by considering firstly the VSF posterior distribution as
the importance distribution and then we repeat for the HMF posterior. By
concatenating these distributions along with the importance weights specified
for each point, we are able to compute the average of the weighted points in
the parameter space as well as the weighted standard deviation. Even though
the combination methods are all consistent with each other, the standard
deviation for the IS results slightly wider than that of the posteriors product,
although the difference is in the fourth digit. Lastly, the Posterior as Prior
method is performed by considering multivariate Gaussian priors for the joint
distribution of Ωm and σ8, specifying their covariance matrix which derives
from the calibration procedures, first in the case of the VSF and then for
the HMF calibration. The parameters of the model does not enter in the
multivariate prior are considered as nuisance, and we marginalise on them
in order to obtain the final constraints. This method is applicable in two
directions, by considering one probe’s posterior as the prior of the other and
vice-versa. However, this method is symmetric, and the final constraints
are practically the same, as one can see in Figure 5.13 where we compare
the methods performed in the two directions for the highest mass cut. The
results are well consistent with the Posterior Product method, and with the
latter they represent the methods with the most strong constraining power.
Our best guess for the constraints, thus, are the following:

Ωm = 0.271± 0.004

σ8 = 0.809± 0.003 .
(5.11)

Considering the different mass cuts for the galaxy clusters, the overall com-
bination contours are well placed in the concordance region of the two cos-
mological probes, and they are very well centred on the truth values of the
simulation. Moreover, the average posterior values as well as their standard
deviations for the combination contours in the two cases are consistent with
each other. Comparing the last results with those obtained by exploiting
individually the HMF and VSF models, the combined constraints show a
relative improvement of about 4− 5 times in terms of standard deviation.
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Figure 5.9: Constraints on Ωm and σ8 from the VSF, considering three dif-
ferent minimum effective radii.

138



Figure 5.10: Comparison of the constraints on Ωm and σ8 obtained by
marginalising over the nuisance parameters of the HMF and VSF models.
The left contour plot shows in red the constraints for the HMF considering a
minimum mass for the clusters sample of M500c ≥ 5× 1013 M�h

−1, while for
the right panels the minimum mass considered is M500c ≥ 1014 M�h

−1. For
the VSF contour, which is shown in blue, the effective radius considered is
Reff ≥ 3λmps(z) Mpc h−1 for both plots. Dark and light areas show the 68%
and 95% confidence regions.
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Figure 5.11: Combination contours for the methods implemented in this The-
sis work, for the lowest mass cut considered (M500c ≥ 5× 1013 M�h

−1). The
green contour represents the posterior distribution obtained with the Impor-
tance Sampling method (read from external chains), while the Posterior as
Prior and the posteriors product methods are represented by orange and
black contours, respectively. The blue contour represents the VSF posterior
distribution while the HMF one is represented in red.
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Figure 5.12: As Fig. 5.11 but for the case M500c ≥ 1014 M�h
−1.
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Figure 5.13: Comparison between the results obtained with the Posterior as
Prior (PaP) methods. The green contour represents the PaP method when
considering the HMF posterior probability distribution on Ωm − σ8 as the
prior for the VSF probe. The orange contour shows the same method but in
the opposite direction, i.e when considering the VSF posterior as the HMF
prior.
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Chapter 6

Discussion and conclusions

6.1 The scientific problem
The last decades have seen enormous advances in the study of the large-scale
structures, which have deepened our knowledge of the spatial properties of
the Universe and their evolution with cosmic time. Deep cosmological sur-
veys have mapped, with an astonishing precision, the distribution of visible
matter in the local Universe, allowing for high-accuracy measurements of
the cosmological parameters. Among the most famous achievements, there
are the results from the Planck mission (Planck Collaboration et al., 2020).
This satellite investigated the Universe when it was only 400’000 years old,
analysing in great details the cosmic microwave background anisotropies,
shedding light on the mechanism that initially generated the cosmic-web
pattern that we observe today. Moreover, large cosmological simulations,
realised thanks to the increasing power of modern computers, are capable to
produce more and more realistic representations of our Universe. Being able
to build these simulations with different sizes allows us to study in details the
astrophysical processes that are at the base of the formation and evolution of
galaxies, as well as to perform accurate statistical analyses of the distribution
of large-scale structures.

The model that better predicts the properties of our Universe on large
scales is nowadays the ΛCDM, which has been continuously tested with in-
creasingly precise measurements, becoming the most popular and widespread
model in Cosmology. In this framework, the Universe is modelled as a
Friedmann-Lemaître-Robertson-Walker expanding spacetime, in which early
density perturbations grow as a consequence of the attractive nature of grav-
ity, leading to the formation of haloes, i.e. clumps of matter, inside which
stars, as well as galaxies, form and evolve. The latter, over cosmic time,
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create the most massive, gravitationally bounded objects that we observe
today, i.e. galaxy clusters. These structures usually contain thousands of
galaxies in a compact volume of few Mpc. Being the most massive virialised
objects in the Universe, galaxy clusters can be exploited in order to put tight
constraints on the main cosmological parameters, to better understand both
the expansion history of our Universe and its matter content. Indeed, this
can be achieved by studying their number counts as well as their clustering
properties and density profiles over different redshifts.

While galaxy clusters are associated with the growth of posiive perturba-
tions of the spacetime, the growth of depressions in it leads to the formation
of cosmic voids, i.e. the most underdense regions of our Universe. These
objects, having radii up to tens of Mpc, fill the remaining volume of the
Universe, and are becoming a competitive cosmological probe when studying
their number counts, their density profiles, or the redshift-space distortions
of galaxies within them. Moreover, as being limited to the physical minimum
for the density contrast δ = −1, these objects remain mildly nonlinear dur-
ing their evolution, in contrast with their overdense counterpart (dark matter
haloes) which can reach extremely nonlinear amplitudes. Being objects al-
most empty, voids are very sensitive to the effect of dark energy and the most
elusive kind of matter such as neutrinos. Indeed, voids are also considered to
be promising laboratories for testing alternative models of dark energy and
modified gravity theories. Nonetheless, a complete theoretical understanding
about their life-cycle still lacks. In fact, we do not know how to model their
growth rates as well as their formation and merger history. Moreover, though
void size function (VSF) models have been proposed during the years (see
Section 3.6), they are only applicable to un-biased distributions of matter,
and iare inadequate when predicting the number counts of voids identified in
biased tracers distributions, like e.g. galaxies. In order to exploit the VSF
as a cosmological probe, we have to re-scale the VSF consistently with the
bias of the tracers, as show by Contarini et al. (2019).

In this Thesis work we presented the implementation of new codes in-
side the publicly available C++/Python libraries CosmoBolognaLib, which
allow the user to perform a combined analysis of multiple independent cos-
mological probes. The combination analysis is a very powerful tool, useful to
achieve strong constraints on cosmological parameters, and has been widely
performed in the last decades in several works. The great precision in mea-
suring cosmological parameters has led to some observational tensions in the
ΛCDM between the estimated values of the same parameters from different
probes (see Section 1.10.1). In particular, these tensions arise by compar-
ing measurements of the early Universe, such as the data coming from the
CMB anisotropies, and low-z cosmological probes, paving the way for the
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requirement to include new physics in the Standard Cosmological Model. In
this context, the combination technique can shed new light on these tensions,
disentangling the degeneracies between parameters by providing tighter con-
straints on them. In addition, since the ΛCDM model is dominated by dark
components, most of the fundamental questions of Cosmology remain unan-
swered. Probably, the biggest problem on which we still have to investigate is
the evidence for the presence of a dark field, which contributes to about 70 %
of the Universe’s content, responsible for its present accelerated expansion.

6.2 Procedure and results
In this work, we exploited the combination of two cosmological probes: the
mass function of galaxy clusters and the size function of cosmic voids. The
data have been obtained by analysing a simulated volume of (896 Mpc h−1)3

from the Magneticum Pathfinder simulations at 4 different redshifts in the
range 0.2 < z < 2.0. The simulated galaxy cluster number densities have
been compared to the theoretical halo mass function (HMF) model described
in Section 3.5.2 and presented in Despali et al. (2016). The theoretical
model has been previously calibrated using the Magneticum simulations,
given the differences between the halo finder algorithms employed to cali-
brate the model presented in the literature and the one used to detect clus-
ters in these simulations. We presented our analysis by considering two mass
cuts for the clusters in our catalogues, specifically M500c ≥ 5× 1013 M� h

−1

and M500c ≥ 1014 M� h
−1, which act as simplified selection functions, since

no observable-mass relations have been considered in this work. Regarding
voids, we identified them in the simulated distributions of galaxies, by con-
sidering the latter having stellar mass M∗ ≥ 1010 M� h−1. We built the
void catalogues by running the void finder algorithm VIDE, in combination
with the cleaning procedure described in Ronconi & Marulli (2017) and in-
troduced in Jennings et al. (2013), aimed at preparing these catalogues to
match the theoretical definition used to develop the void size function model.
We considered only voids having an effective radius 3 times larger than the
mean particle separation of galaxies in our catalogues, and we show how a
different choice for this minimum radius could give biased constraints for the
cosmological parameters. We compared the cleaned void number densities
with the theoretical Vdn model developed in Jennings et al. (2013) and de-
scribed in Section 5.8. As did for the HMF, we calibrated the VSF model
in order to take into account the effect of the tracer bias on the void abun-
dance. For this purpose, we followed the prescriptions presented in Contarini
et al. (2019, 2020): we measured the effective large-scale bias of galaxies in

145



our catalogues, beff , and computed a re-parameterisation of the characteris-
tic underdensity threshold of the Vdn model, by means of a linear function
of the bias beff . This new calibration of the model allows us to predict the
abundance of voids traced by galaxies unlike the one proposed in Contarini
et al. (2019, 2020), who performed the same calibration for void identified in
the DM halo distribution.

Then, by performing a Bayesian MCMC analysis, we obtained the poste-
rior probability distributions for the matter density parameter Ωm and the
today perturbation amplitude, σ8, marginalising over the nuisance parame-
ters of the considered models. We showed that the HMF and the void size
function can be considered as complementary probes, providing a nearly per-
pendicular intersection in the Ωm − σ8 parameter space, which is a desired
property when we want to extract as much information as possible from the
probe combination. During this analysis, we considered the and the VSF as
independent probes, since they model the peaks and the depths of the mat-
ter density field, respectively. This hypothesis has been tested in Appendix
A by estimating the cross-covariance matrix between the different data-sets
analysed.

In order to obtain the final combined contours in parameter space, we
applied three new numerical methods, implemented inside the CosmoBolog-
naLib C++/Python libraries. In particular, the most tight constraints are
those deriving from the application of the Posterior Product and Posterior as
Prior methods. Following the former, the final posterior distribution for the
parameter of interest is computed as the product of the single likelihood func-
tions times a unique prior vector (see Eq. 4.13). In the latter, instead, the
posterior distribution obtained by exploiting one cosmological probe is used
as the prior distribution for the other. We implemented also a third method,
the Importance Sampling technique, in which one extracts information about
a given probability distribution, for a certain set of parameters, by sampling
from another distribution. Following this procedure, we obtain the com-
bined posterior distributions of two probes by performing a concatenation of
their resulting MCMC chains, with specific weights. In particular, with this
method we associate to each step of the chains an importance weight, defined
as the ratio of the two un-normalised posterior distributions in the corre-
sponding point of the parameter space. Though the latter method presents
a weaker constraining power, it is totally in agreement with the others in
terms of posterior mean and standard deviation. Moreover, the Importance
Sampling is the fastest among the methods presented, and it can be applied
to whatever external posterior distributions.

All the implemented methods gave consistent results and, by combining
number counts of galaxy clusters and cosmic voids, we achieved significantly
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tighter constraints on the cosmological parameters, with respect to those
obtained with the single cosmological probes.

6.3 Future perspectives
Beyond the independence assumptions we have described so far, there are
several caveats in this work. Firstly, we assumed a perfect knowledge about
the distribution of tracers in the simulated catalogues. Dealing with real data
catalogues we have to take into account the errors associated to the mass and
the position of the tracers, as well as the effects of peculiar velocity of the
these objects and the uncertainties related to the cosmological parameters
used to compute cosmological distances, thus redshift-space and geometrical
distortions. In addition, we do not take into account any observable-mass
scaling relation for the mass of the considered simulated tracers (both galaxies
and galaxy clusters), as if it were perfectly measured. We also neglected the
super-sample covariance. The latter concerns the fact that our simulations or
observations map a limited portion of the Universe, from which the measure
of the background density of matter can be intrinsically biased. This is caused
by the fact that one usually does not consider perturbations having Fourier
modes larger than the size of the simulation/survey, potentially causing a
change in the relative improvements of the combination analysis. Finally,
despite our study was limited to the constraints on Ωm and σ8, it will be
fundamental to consider all the remaining cosmological parameters on which
the analysed models strongly depend. We will address all these issues in
future works.

In order to obtain well grounded statistical results from the analysis of
large-scale structures, it would be interesting to search for galaxy clusters and
cosmic voids in much larger cosmological volumes. Upcoming galaxy surveys
like Euclid and DESI will map a very large fraction of our Universe, with
volumes of the order of 102 Gpc h−1, improving our knowledge about the
underlying cosmological model. Moreover, in order to improve the combina-
tion analysis of multiple cosmological probes, it will be necessary to add the
possibility of setting the cross-covariance matrix to the implemented codes
presented in this work, in order to extend the combination analysis also to
dependent cosmological probes.

147



Appendix A

Estimation of cross-correlations
between galaxy cluster and void
number counts

In this Thesis work, we based our combined analysis on two assumptions, the
independence of the data-sets between the redshifts, and the independence
between the number densities of galaxy clusters and cosmic voids. These
assumptions can be tested by estimating their cross-covariance matrix and
check whether its off-diagonal elements are consistent with zero.

Instead of computing the covariance matrix theoretically, one can opt
for two alternative ways. The first concerns the estimation from a number
of independent realisations of the same cosmological simulation, while the
second concerns the Jackknife or Bootstrap re-sampling of the observed (or
simulated) data itself. These latter methods can be used to generate new
hypothetical samples that are representative of an underlying population, i.e.
the analysed catalogues in this work, whose statistics we want to estimate.
In this Appendix we make use of the Jackknife technique, which we are going
to describe.

Let us assume to divide the catalogue volume into Nsub equally sized sub-
regions, where α ∼ (iM , iz) is defined as the generic bin in mass and redshift,
obtained from cluster catalogues, and β ∼ (iR, iz) is the generic bin in radius
and redshift, obtained from the void catalogues. A value for the number
densities is associated for each of these bins, as well as the pure number
counts, of clusters (Nα) and voids (Nβ). The Jackknife technique works by
sequentially deleting one sub-sample from the entire data-set, re-computing
the desired statistic on the remaining samples. To do so, we can define a
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Jackknife sample to be the total simulated volume minus one subsample:

N jk
α (i) = N tot

α −Nα(i). (A.1)

Consequently, the Jackknife covariance matrix between two generic bins can
be estimated as follows:

Cjk(Nα, Nβ) =
Nsub

Nsub − 1

Nsub∑
i=1

(
N jk
α (i)− N̄ jk

α

)(
N jk
β (i)− N̄ jk

β

)
, (A.2)

where:

N̄ jk
α =

1

Nsub

Nsub∑
i=1

N jk
α (i) (A.3)

is the average of the Jackknife counts in a specific bin.
The cross-covariance matrix, as expressed in Eq. (A.2), is a block-matrix,
i.e. it is subdivided in submatrices. It takes into account all the correlations
between cluster counts and void counts at different redshifts. Consequently,
the total cross-covariance matrix can be written as:

Cjk(Nα, Nβ) =

(
CH,H CV,H
CH,V CV,V

)
, (A.4)

where CH,H , CV,H , CH,V and CV,V are the covariance matrices between mass
bins, mass bins and radius bins (and viceversa) and radius bins at all redshifts
(z = 0.2, 0.52, 1, 2), respectively. All these matrices are themselves block
matrices, with the different elements representing the covariances between
different redshift data-sets. For example, considering CH,H , this is:

CH,H =


C0.2,0.2

HMF C0.52,0.2
HMF C1,0.2

HMF C2,0.2
HMF

C0.2,0.52
HMF C0.52,0.52

HMF C1,0.52
HMF C2,0.52

HMF

C0.2,1
HMF C0.52,1

HMF C1,1
HMF C2,1

HMF

C0.2,2
HMF C0.52,2

HMF C1,2
HMF C2,2

HMF

 , (A.5)

where all these sub-matrices are computed with the Jackknife resampling of
Eq. (A.2).
The assumption about the independence of the different data-sets across the
redshifts can be tested by checking if the off-diagonal matrices CV,H and CH,V
are zero matrices (i.e. with null entries). For a graphic reason, we choose to
represent the Pearson correlation coefficients, denoted as ρij, computed from
the covariance matrix elements Cij as

ρij =
Cij√
Cii × Cjj

, (A.6)
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and we refer to the matrix composed by the ρij elements as the correlation
matrix. These coefficients can only assume values in the (−1,+1) range, and
measure the linear correlation between two different variables, in our case
mass bins and radius bins.

We present the internal correlation matrices for the cluster counts (CH,H),
computed with the two mass cuts considered in this Thesis work (M500c ≥
5× 1013 M�h

−1 and M500c ≥ 1014 M�h
−1) in Figure A.1, while the internal

correlation matrix for the void counts is shown in Figure A.2. For both cases
we consider Nsub = 125 sub-samples.

As one can clearly see, the internal correlation matrix of galaxy cluster
counts, for both the mass cuts, present non-vanishing off-diagonal elements.
This tells us that the assumption of total independence of redshift for these
number counts could be incorrect and groundless. These features, however,
are probably due to the fact that we are considering the same sub-samples
for the different redshifts so that we are considering always the same objects
that evolve with time. In order to check this hypothesis, we computed again
the covariance matrix for cluster number counts by considering, for each
redshift, a different cosmological sub-box. In particular, we divided the native
cosmological box in 4 blocks. The results are shown in Figure A.3, and would
seem to validate our hypothesis. Though this procedure permits us to check
for non-spurious covariances, it highly reduces the statistic of our galaxy
cluster sample. The fact that we do not see evident correlation features in
the void count correlation matrix could be due to the fact that the data
are noisier and, maybe, that the procedure of cleaning of the void catalogues
reduces the possibility of following the evolution of the same void with cosmic
time.

Finally, we present the total cross-correlation matrix, for both the mass
selections considered, in Figure A.4 and A.5. The left upper blocks represent
the internal correlation matrix for cluster counts, while the right lower blocks
represent the one associated with void counts. The other two off-diagonal
blocks are the ones that can be used to check for eventual correlation be-
tween the two cosmological probes at different redshifts. As one can see the
level of correlation of these two matrices is lower than the diagonal matri-
ces, therefore the assumption of independence between the two cosmological
probes seems to hold. About the absence of correlation features in the void
count correlation matrix, one can see that it presents, nevertheless, a slightly
higher correlation factor with respect to the off-diagonal matrices.
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Figure A.1: Jackknife correlation matrices for the cluster counts at different
redshifts, considering the two mass cuts exploited in this Thesis work. The
solid black lines separate data-sets at different redshifts.

Figure A.2: Jackknife correlation matrix for void counts at different redshifts.
The solid black lines separate data-sets at different redshifts.
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Figure A.3: Jackknife Correlation matrix for cluster counts considering dif-
ferent sub-boxes for each redshift.
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Figure A.4: Jackknife cross-correlation matrix for cluster counts and void
counts, considering clusters having mass M500c ≥ 5× 1013 M�h

−1. data-sets
at different redshifts are separated by black solid lines, while mass bins and
radius bins are divided by solid red lines.
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Figure A.5: As Fig. A.4 but for M500c ≥ 1014 M�h
−1.
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