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Abstract

In the last years, the standard model of cosmology has been corroborated by a wide

number of astrophysical observations. Despite its undeniable success, nowadays there

is little knowledge about the true nature of dark matter and dark energy. In this the-

sis we use a different approach to give an intriguing answer to these open problems, in

the light of the corpuscular model of gravity. We give a general overview on the rea-

sons behind the need for a corpuscular theory of the gravitational interaction. Then,

we show that if the same picture is extended to cosmological spaces, dark energy nat-

urally emerges as a quantum state of the gravitational dynamics, and it is described

as a Bose-Einstein condensate of very soft and virtual gravitons without the necessity

of introducing an exotic dark fluid. Besides, the cosmic condensate responds locally

to the presence of baryonic matter, and the back-reaction manifests itself in the emer-

gence of a dark force that mimics a dark matter behavior. In particular, at galactic

scales the MOND formula for the acceleration is recovered. Then, a first attempt of

estimating the back-reaction is proposed within the framework of Bootstrapped New-

tonian gravity, that allows for an effective field description where Newtonian theory

is “bootstrapped” introducing post-Newtonian corrections, providing a useful tool for

calculations. Finally, we show that a logarithmic potential arises as a solution of the

Bootstrapped field equation, in accordance with MOND prediction.



Sommario

Negli ultimi anni, il modello standard della cosmologia è stato corroborato da un am-

pio numero di osservazioni astrofisiche. Nonostante il suo innegabile successo, ancora

oggi la vera natura della materia oscura e dell’energia oscura appare poco chiara. In

questa tesi abbiamo usato un approccio differente per dare una risposta intrigante a

questi problemi aperti, alla luce del modello corpuscolare della gravità. Qui diamo

una panoramica generale sulle ragioni che stanno dietro alla necessità di una teoria

corpuscolare per l’interazione gravitazionale. Successivamente, mostriamo che se la

stessa prospettiva è estesa a spazi cosmologici, l’energia oscura emerge naturalmente

come uno stato quantistico della dinamica gravitationale, ed è descritta come un con-

densato di Bose-Einstein di gravitoni virtuali, senza il bisogno di introdurre un fluido

oscuro esotico. Inoltre, il condensato cosmico risponde localmente alla presenza di

materia barionica, e questa reazione si manifesta nell’emergenza di una forza oscu-

ra che imita un comportamento tipico della materia oscura. In particolare, a scale

galattiche si ritrova la formula dell’accelerazione MOND. In seguito, viene proposto

un primo tentativo di stimare la forza di reazione utilizzando la teoria Newtoniana

Bootstrapped, che permette una descrizione di campo effettiva in cui la teoria New-

toniana è modificata introducendo correzione post-Newtoniane, e fornisce un utile

strumento di calcolo. Infine, viene mostrato che dall’equazione di campo Bootstrap-

ped è possibile ritrovare un potenziale logaritmico, in accordo con le previsioni della

teoria MOND.
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Chapter 1

Introduction

In the first part of this thesis we will present the main motivation underlying the quest

for a quantum theory of the gravitational interaction. After a quick review of Ein-

stein’s theory of gravity, we will address the problem of finding a quantum realization

of General Relativity, that inevitably leads to the perturbative non-renormalizability

of the theory. In this context the corpuscular model of gravitational interaction takes

its place, since it offers a fascinating and intriguing perspective. In the last part of

the chapter, the fundamental aspects of the model will be presented.

1.1 Einstein’s General Relativity

The gravitational interaction is successfully described by Einstein’s theory of General

Relativity (GR). GR is a metric theory of gravity, delineating how the geometry of

a four-dimensional pseudo-Riemannian space-time metric manifold is determined by

the presence of energy-momentum. The extraordinary intuition of Einstein was that

gravity is not a force acting on objects, as the Newtonian model prescribes. All

the objects always follow a straight path, but the presence of mass-energy curves

the space-time geometry itself. In Einstein’s theory of gravity the gravitational field

is represented by a symmetric rank-2 tensor gµν . The formalism is based on the

definition of the Einstein-Hilbert action,

SEH =

∫
M

d4x
√
−g

[
− R

16πGN

]
, (1.1)

where GN = 6.67 × 10−11 m3kg−1s−2 is Newton’s gravitational constant, the integral

covers a region M of the space-time manifold, we indicate by g the determinant of

the metric, and R = gµνRµν is the Ricci scalar. Moreover one introduces a matter
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action SM for non-gravitational fields that gives rise to the energy-momentum tensor

defined as

Tµν =
2√
−g

δSM

δgµν
. (1.2)

The energy-momentum tensor acts as a source for the gravitational field. The total

action has the form

S = SEH + SM , (1.3)

and from its variation with respect to the metric tensor the Einstein’s field equations

are obtained,

Rµν −
1

2
Rgµν = 8πGNTµν . (1.4)

The left-hand side of (1.4) is also denoted as the Einstein tensor Gµν , and it is

constructed entirely with the metric tensor and its first and second derivatives, and is

linear in the second derivatives. While in Newton’s gravity the gravitational potential

is described by a single scalar function, in the Einstein’s formulation there are 10

independent components for a tensor potential to be found. We expect that the field

equations in General Relativity comprise 10 algebraically independent equations, at

least in principle. Besides, the Einstein tensor satisfies four Bianchi identities,

∇µG
µν = 0 . (1.5)

As a consequence, there are not 10 independent equations for the field, but only

6. We are left with four degrees of freedom, corresponding to the fact that General

Relativity is a generally covariant theory. As a matter of fact, if gµν(x) is a solution

of the field equations, another solution g′µν(x) can always be found by performing a

general coordinate transformation

xµ −→ x′µ = x′µ(xν) (1.6)

involving four arbitrary functions. Since Einstein’s equations are highly non-linear,

finding out an exact solution for the space-time metric is not an easy task. One usually

tries to impose symmetry conditions to the metric a priori , related to the physical

system to be studied. The first exact solution was discovered by Schwarzschild in

1916, who proposed a solution of the vacuum Einstein’s equations (where T µν = 0)

for the space-time metric in the region outside a point-like source under the hypothesis

of spherical symmetry. The assumption of spherical symmetry reduces the unknown

independent functions to be determined to only 2. The Schwarzschild metric in

standard coordinates reads,

ds2 = −
(

1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.7)
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where M is the mass of the source and r is the areal radius, defined such that the

physically measured area of a surface of constant r and t is given by A = 4πr2. The

Schwarzschild or gravitational radius is defined as

RS = 2GNM . (1.8)

Although it corresponds to a coordinate singularity of (1.7), the gravitational field is

regular in RS. The gravitational radius represents the location of the event horizon of

a Schwarzschild black hole. Once a test particle has crossed the surface r = RS, the

only allowed physical trajectories are those that involve a decrease of the coordinate

r. Therefore the test particle has no other possibility but to fall towards r = 0, which

corresponds to a true gravitational singularity.

At the present GR has the best agreement with experiments and observations. In the

last century a plethora of experimental tests have been passed by the theory, starting

from the first measurement of the bending of light in 1919 by Eddington. One of the

most recent and striking evidence was the detection of gravitational waves [11].

1.2 Motivation for a quantum theory of gravity

Despite the success of Einstein’s theory of gravity, nowadays it is clear that GR cannot

be a valid description of gravitational interactions at the most fundamental level.

The singularity theorems by Hawking and Penrose [36] state that, under very general

conditions, singularities in space-time are unavoidable, and this signals the breakdown

of the theory. Moreover, it should be noticed that GR remains a classical theory, which

is not unified in a consistent way within a quantum framework. We know that the

success of quantum theories in describing Nature at fundamental scales is supported

by a huge number of experimental tests with very high precision. As an example,

Quantum Electrodynamics (QED) is one of the most accurate physical theory of the

history of science: the agreement between measurements and calculations for the

anomalous magnetic dipole moment of the electron is around 1 part in 1 billion [23].

Different motivations for quantizing gravity can be identified. First of all, there are

conceptual reasons. From a historical point of view, in several cases the evolution of

physical theories has led to the unification of different models into a unique framework.

All the non-gravitational interactions, for example, are united in the Standard Model

of Particle Physics, which is a quantum field theory. The quantization of gravity can

certainly pave the way for a “theory of everything”, so that a complete unification of

all fundamental interactions could be achieved.
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In addition, Quantum Gravity should be able to remove inconsistencies between quan-

tum physics and GR. In General Relativity the gravitational field is represented by

the space-time metric. Therefore, a quantization of the gravitational field would cor-

respond to a quantization of the space-time metric itself. The quantum dynamics

of the gravitational field would correspond to a dynamical quantum space-time. But

Quantum Field Theories presuppose a fixed, non-dynamical background space for the

dynamics of quantum fields. In particular, the problem of time arises: in quantum

theories, time is an external parameter not described by any operator. In GR space-

time is a dynamical object. The two concepts are incompatible, so one expects that a

fully quantum gravity theory must lead to modifications in the way we conceive time.

Besides, there are unsolved problems. The existence of astrophysical black holes is

one of the most famous predictions of General Relativity. However, what happens in

the vicinity of the singularity is not clear yet. One could expect that quantum effects

show up leading to a general avoidance of space-time singularities [13]. Furthermore,

the final stages of the black hole evolution requires a more general theory. Singulari-

ties are also present in cosmological models, and a quantum theory of gravity should

allow us to achieve a fundamental understanding of the early Universe. It must be

noticed that if gravity is quantized, this implies that the whole Universe must be

described in quantum terms, leading to the concept of quantum cosmology.

In addition, astrophysical observations show that a large part of our Universe is

not completely understood yet. The explanation of galaxy rotation curves requires

the existence of an exotic form of non-baryonic matter known as dark matter; the

accelerated cosmological expansion is provided by dark energy. Since a conclusive

answer is not achieved yet, this can be interpreted as a hint that a more fundamental

theory of gravity is necessary, and can hopefully enlighten the true nature of the dark

sector of the Universe. In this thesis dark matter and dark energy have a central role,

and will be discussed extensively in Chapters 3 and 4.

1.2.1 The scale of Quantum Gravity

In a quantum theory of gravity, quantum effects arise at any scale, since classical

properties are only an emergent phenomenon. However, there exists a scale at which

we expect a quantum behavior of the gravitational interaction to be non-negligible

with respect to other interactions. In 1899 Planck introduced his famous Planck units,

that are unique combinations of the fundamental constants (c,GN, ~) that yield the
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Planck mass, length and time,

mP =

√
~c
GN

≈ 1.22× 1019 GeV , (1.9)

`P =

√
~GN

c3
≈ 1.62× 10−35 m , (1.10)

tp =

√
~GN

c5
≈ 5.40× 10−44 s . (1.11)

For an elementary particle whose mass is mP, its Compton length `p is equal (apart

from a factor of 2) to its Schwarzschild radius. Therefore the space-time curvature of

that particle is no longer negligible. If the Planck scale truly represents the minimal

length of Nature or not depends on the approach of quantum gravity one prefers the

most. In causal set theory and Loop Quantum Gravity the existence of a minimal

scale is a consequence of spacetime discreteness. The Planck scale is understood most

generally as an operational limit, meaning nothing smaller can be probed.

Performing an experiment at the Planck scale would mean to investigate physical

phenomena far beyond the current accepted models. The Standard Model of particle

physics is in very good agreement with experiments at the particle accelerators. The

LHC at CERN is the biggest and most effective particle accelerator, it has a diameter

of ∼ 27 km and reaches an energy for particle collisions in the center of mass of

∼ 14 TeV. Investigating that energy scale led to the discovery of the Higgs boson in

2012 [1]. However, in order to probe the Planck energy, an accelerator with the size

of several thousand light years would be needed.

The major task is to build up a consistent quantum theory of gravity that can be

subjected to experimental tests. The experimental inaccessibility of the Planck scale

does not imply that every possible fundamental theory cannot produce observational

predictions. The trans-Planckian collision picture is only one way for introducing

a quantum gravity phenomenology, but other possible means can be afforded: for

example high-precision low-energy measurements involving cold atoms [29].

1.2.2 Semi-classical gravity

Since the major part of the experimental results leads to a confirmation of classical

GR as a good theory of gravity, one can argue that the gravitational field could

remain classical, while the matter fields should obey quantum mechanical equations.

Therefore one can look for a semi-classical theory of gravity, that is an exact theory

in which quantum degrees of freedom are coupled to classical degrees of freedom.
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In principle, in a fully quantum description, one expects that all observable quantities

are given by the expectation values of a suitable operator Ô acting on a quantum state

|ψ〉. Since many such observables appear to satisfy classical equations to a very good

approximation, the quantum state |ψ〉 must be such that

〈ψ|Ô|ψ〉 ' Ocl , (1.12)

where Ocl satisfies the classical equations. Let us assume that all the observables can

be written as the sum of a background part and a perturbation,

O = Ocl + o , (1.13)

where the perturbation o is assumed to be “small” compared to the background. In

the semi-classical theory, the perturbation part alone will be promoted to an operator,

while the background remains classical, namely

O −→ Ocl + ô . (1.14)

This procedure is known as the background field method, and once accepted it can

be applied to all the fields. In particular, the metric tensor can be split into

gµν −→ gcl
µν + ε ĥµν , (1.15)

while for matter fields,

φ −→ φcl + ε φ̂ , (1.16)

where we introduced the parameter ε in order to formally keep track of the expansion.

The next assumption we make is that the classical parts of the metric and of the

matter fields satisfy the Einstein’s field equations. This will generate an external and

fixed classical space-time as a background for the quantum fields ĥµν and φ̂. In this

case the quantum gravitational perturbations ĥµν do not affect the causal structure of

space-time, which is completely determined by the classical background metric, but

it simply interacts with the other matter fields.

Quantum field theories on a fixed curved space-time have been extensively studied

starting from the middle of the last century. Their development is not only of funda-

mental theoretical interest, but could also lead to observational consequences. The

presence of quantum fields modifies the notions of vacuum and particles [32]. Since

the vacuum is only invariant with respect to Poincaré transformations, observers that

are not related by inertial motion refer to different types of vacua. As a consequence,
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the particle creation phenomenon can occur. A significant example is the result ob-

tained by Hawking: a late time observer detects a thermal flux of particles radiated

by a black hole, with a temperature given by

TBH =
~k

2πkBc
, (1.17)

where k is the surface gravity of the black hole. Through the Hawking mechanism,

the black hole loses mass because of the emission of radiation, until it reaches a

mass comparable to mP. Since Hawking radiation was found in the semi-classical

approximation, at this point the derivation itself breaks down, and cannot be trusted

anymore.

Another notable problem with semi-classical theories of gravity is the co-existence of

quantum and classical systems, coupled together in a hybrid dynamics. It is not so

clear if this approach can lead to internal inconsistencies [25].

1.3 Linearized gravity and the graviton

Let us proceed with the attempt of quantizing the metric theory following the back-

ground field procedure. Consider a suitable choice of reference frame such that the

metric tensor is decomposed into a fixed non-dynamical background and a perturba-

tion,

gµν = ηµν + hµν , (1.18)

where we choose ηµν = diag(−1,+1,+1,+1) as the Minkowski metric. The perturba-

tion hµν is supposed to be small, in the sense that its components are small compared

to the flat metric ones in standard Cartesian coordinates. Neglecting terms of higher

order than the linear one in the perturbations, the linearized version of the Ricci

tensor is obtained,

Rµν =
1

2

(
−2hµν − ∂µ∂νh+ ∂σ∂µh

σ
ν + ∂σ∂νh

σ
µ

)
+O(h2) , (1.19)

where h = ηµνh
µν because the indices are raised and lowered by means of the flat

metric. Every equation for hµν will not determine it in a unique way, because any

solution can always generate other solutions by performing an infinitesimal change of

coordinates of the form

xµ −→ x′µ = xµ + εµ(x) . (1.20)

The invariance of the full theory under general coordinate transformations leads to

the invariance of the linear theory under the gauge transformation of the field, namely

hµν −→ h′µν = hµν − ∂νεµ − ∂µεν . (1.21)
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In order to simplify the expressions, one can fix the gauge by introducing the harmonic

condition (or the de Donder gauge), that is

∂µh
µ
ν =

1

2
∂νh . (1.22)

It should be underlined that this corresponds to the choice of a particular class of

reference frames. Using (1.19) together with (1.22) in Einstein’s equations (1.4), one

obtains the linearized Einstein’s field equations,

2hµν = −16πGN

(
Tµν −

1

2
ηµνT

)
, (1.23)

where T = ηµνTµν is the trace of the energy-momentum tensor. One usually defines

the transverse and traceless perturbation

h̄µν = hµν −
1

2
ηµνh

λ
λ , (1.24)

so that (1.23) simply assumes the form

2h̄µν = −16πGNTµν . (1.25)

Notice that the harmonic condition now reads ∂ν h̄
ν
µ = 0 in direct analogy to the

Lorenz gauge condition for the electromagnetic vector potential ∂µA
µ = 0. In partic-

ular, the harmonic gauge condition is consistent with the vanishing of the derivative

of the energy-momentum tensor ∂νT
µν = 0, but not with the vanishing of its covari-

ant derivative ∇νT
µν = 0. Therefore, although Tµν acts as a source for hµν , in the

linear approximation there is no exchange of energy between matter and the gravita-

tional field. In other words, at the linear level we are completely neglecting the back

reaction of the gravitational field onto matter, as expected.

In the vacuum case, imposing Tµν = 0, the simplest solutions to (1.23) are plane

waves,

hµν(x) = eµν eikαx
α

+ e∗µν e−ikαx
α

, (1.26)

introducing eµν as the symmetric polarization tensor, and kµ as the light-like wave

vector. With hµν still obeying the de Donder gauge (1.22) one is free to perform

another coordinate transformation of the form (1.20) by fixing the four functions

εµ(x) in such a way that the additional condition 2 εµ(x) = 0 is satisfied, and the

harmonic gauge still holds. At the end of the story, we start with 10 components of

the symmetric rank-2 tensor hµν , then we impose 4 conditions introducing a gauge

fixing, and 4 more conditions that leave the gauge fixing condition invariant. We are
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left with only 2 independent degrees of freedom for the gravitational field in the linear

approximation. This is equivalent to say that gravitational waves carry 2 transverse

polarizations, as it happens for electromagnetic waves.

Moreover, if a plane wave Ψ transforms as Ψ −→ Ψ′ = eihθ Ψ under a rotation, one

defines h as the wave helicity. It can be shown that the helicity of a gravitational wave

is equal to ±2. The absolute value of the helicity represents the spin for a massless

particle. In the quantum theory, these states will correspond to the helicity states of

the graviton.

It is worth noting that the field equations of linearized gravity can be obtained through

the Euler-Lagrange field equations from the Fierz-Pauli action,

SFP =
1

32πGN

∫
d4x

(
1

2
∂µh∂

µh− 1

2
∂λhµν∂

λhµν + ∂λhµν∂
νhµλ − ∂µhµν∂νh

)
+

1

2

∫
d4xhµνT

µν .

(1.27)

The first line describes pure linear gravity, while the last part contains the coupling

with the source. The action (1.27) is gauge invariant up to a total derivative. For the

interaction sector, the invariance is guaranteed by the continuity equation for T µν .

It is now clear that a helicity-2 field theory with the Fierz-Pauli action cannot be a

candidate for a fundamental theory of gravity, for the simple reason that it doesn’t

account for the back reaction of the gravitational field, as mentioned before. One could

try to artificially insert the canonical energy-momentum tensor of gravity, defined as

tµν =
δL

δ ∂µhαβ
∂νhαβ − ηµνL , (1.28)

by adding it to the right-hand side of linearized Einstein equations (1.25). This mod-

ification would, however, lead to a Lagrangian cubic in the fields, which in turn would

give a new contribution to tµν and so on. This series continues indefinitely, and sums

exactly to the Einstein’s equations, and to the full Einstein-Hilbert action [14]. Once

the iteration is begun it must be continued to all orders, since conservation only holds

for the full series. Thus, the theory is either left in its free linear form, or it must

be an infinite series. This argument shows that at the classical level the Fierz-Pauli

action (1.27) inevitably leads to General Relativity.

Let us proceed with the quantization of the theory. One starts form a superposition
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of plane-wave solutions (1.26) and formally turns this into an operator,

ĥµν(x) =
∑
σ=±2

∫
d3k√
2|k|

[
â(k, σ) eµν(k, σ) eikαx

α

+ â†(k, σ) e∗µν(k, σ) e−ikαx
α]
k0=|k|

(1.29)

The operators â(k, σ) and â†(k, σ) are interpreted as annihilation/creation operators:

they respectively annihilate/create a particle called graviton, with momentum ~k and

helicity σ. They obey the usual canonical commutation relations,[
â(k, σ), â†(k′, σ′)

]
= δσ,σ′ δ(k− k′) (1.30)

while the other commutators vanish. The graviton is the analogous of the photon

for the electromagnetic field. It is a massless spin-2 particle, whose concept depends

on the presence of a flat Minkowski space-time as a background, so that Poincaré

symmetry is ensured. The concept of a particle itself is strictly related to the classifi-

cation of irreducible representations of the Poincaré group. The vanishing mass of the

graviton is a consequence of the infinite range nature of the gravitational interaction,

and of the fact that gravitational waves in vacuum propagates at the speed of light

(being kµk
µ = 0).

1.3.1 The Newtonian limit

Every theory of gravity must reproduce the Newtonian dynamics in the appropriate

Newtonian limit. The first step is to consider a weak gravitational field, or equiv-

alently the case of small curvature, in the sense that the curvature radius is much

larger than the characteristic wavelength of the test particle. As a matter of fact,

Newtonian gravity is a very good approximation far from strong gravitational fields.

Once again we assume there exists a reference frame such that the full metric is writ-

ten as a Minkowskian background plus a small perturbation hµν , as we introduced

in (1.18). By substituting in Einstein’s equations, we obtained the linearized form of

the field equations (1.23).

In addition to the weak field limit, we assume that all matter in the system is non-

relativistic, moving with a characteristic velocity much slower than the speed of light

in the chosen coordinate frame xµ = (t, ~x). Therefore the time-time component of

the metric h00 is dominant. Moreover, we suppose a static gravitational field, so that

∂th00 = 0 . (1.31)

Looking at the harmonic gauge (1.22), for a static configuration h00 = h00(~x), and

the condition (1.31) is automatically satisfied . One has to attain a non-relativistic
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version of the energy momentum tensor. Since it is defined as

Tµν =
2√
−g

δSM

δgµν
= 2

δLM

δgµν
− gµνLM , (1.32)

the only contribution we need to consider in the Newtonian limit is the mass density

of the source ρ(~x). The energy-momentum tensor is approximated by

Tµν ' uµuν ρ(~x) . (1.33)

The four-velocity of the source is given by

uµ =

(
1√

1− v2
,

~v√
1− v2

)
. (1.34)

In the non-relativistic limit |v| � 1, and uµ ' δµ0. The time-time component of the

linear equation (1.23) now reads

4h00(~x) = −8πGNT00 ' −8πGNρ(~x) . (1.35)

where 4 is the Laplace operator. The last expression must be compared with the

Newton equation for the gravitational potential V sourced by a density ρ through the

Poisson equation

4V (x) = 4πGN ρ(x) . (1.36)

The comparison leads to identify h00 = −2V + const. The integration constant is

uniquely fixed by the boundary conditions. In particular, if the space-time is asymp-

totically flat, the Newtonian potential vanishes at infinity, and so does h00, therefore

the constant vanishes. Thus the curved space-time metric and the Newtonian poten-

tial are related by

g00 = −(1 + 2V ) . (1.37)

1.4 Non renormalizability of General Relativity

Starting from the Fierz-Pauli action (1.27) one can ask whether it could be quantized

in a way similar to electrodynamics, where one arrives to a very successful theory like

QED. In the framework of Quantum Field Theory, the standard way of proceeding is

to perform a quantum perturbation theory of General Relativity.

Let us review some notions of quantum theories of fields. Such theories use local field

operators φ(x), where x is a point in the background (flat) space-time. This leads

to the occurrence of arbitrarily small distances, that translate to arbitrarily large
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momenta in the momentum space. In particular, in computing transition amplitudes

in perturbation theory using Feynman diagrams, it is not surprising that integrating

all the way up to infinity in momentum space, divergences can show up. This is

not a problem of a restricted class of theories: even one of the simplest model one

can formulate, the self-interacting scalar theory λφ4, seems to be useless because the

answer to almost any calculation is infinity.

A theory is called renormalizable if these divergences can all be removed by a redef-

inition of a finite number of physical constants (mass, charges, etc.) and fields. The

value of these constants can only be determined experimentally. A non-renormalizable

theory needs an infinite number of parameters to be determined by the experiments,

which corresponds to a complete lack of predictability.

It turns out that the mass dimensionality of the coupling constant for the interaction

(in natural units ~ = c = 1) decides about renormalizability. This is also known as

the power-counting criterion. The dimension is given by a coefficient called superficial

degree of divergence, defined as

∆ = 4− d−
∑
f

nf (sf + 1) , (1.38)

where d is the number of derivatives, nf the number of fields of type f , and sf =

0, 1/2, 1, 0 for scalars, fermions, massive vector fields, and photons and gravitons,

respectively. A theory is renormalizable only if the superficial degree of freedom is

non negative.

Let us see what happens for GR. Considering once again the expansion of the general

curved metric into a flat background plus a small perturbation (1.18), if one proceeds

in a perturbative expansion of the Einstein-Hilbert action (1.1), the first non-vanishing

contributions are schematically given by

SEH ∼
1

16πGN

∫
d4x

[
(∂h)2 + (∂h)2h+ · · ·

]
(1.39)

where the first order is represented by the Fierz-Pauli action (1.27) in the case of pure

gravity, while all the other infinite terms contain 2 derivatives of h because the Ricci

scalar contains 2 derivatives of the metric. Let us rescale h =
√

8πGN h̃ so that the

field has the usual canonical dimensions, and the previous expression reads

SEH ∼
1

2

∫
d4x

[
(∂h̃)2 +

√
8πGN (∂h̃)2h̃+ · · ·

]
(1.40)

Each interaction vertex brings a factor of
√
GN. Considering the first interaction

term in (1.40) the superficial degree of freedom is ∆ = 4− 2− 3(0 + 1) = −1, that is
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negative. This is consistent with the fact that in natural units (~ = c = 1) Newton’s

constant is

GN =
1

m2
P

. (1.41)

We conclude that General Relativity is a perturbatively non-renormalizable theory.

Having a closer look to the action (1.40), the first term in the expansion gives rise to

the linear theory, described by the introduction of gravitons. The successive terms in

the expansion are a manifestation of the non-linearity of the full Einstein’s theory of

gravity, which in turn is interpreted as a self-interaction between gravitons.

As a final remark, it should be underlined that the non-renormalizability of GR in

the perturbative approach does not imply that GR is non-renormalizable in a non-

perturbative way. In other words, one could not exclude that the incurable presence

of divergences is an artifact only of the perturbative method. One might think that

objects like black holes or the Universe should not be treated perturbatively.

1.4.1 General Relativity as an Effective Field Theory

A non-renormalizable theory must not be discarded as useless. In a sense, the non-

renormalizability implies that the quantum field theory should break down at some

energy scale, which in general is higher enough with respect to the scale we can probe

with experiments. One is led to the introduction of a high energy cut-off scale where

we think the theory stops being valid, and consequently we allow only for momenta

smaller than the cut-off to run in the Feynman integrals.

The low energy behavior of many systems in Nature turns out to be mostly inde-

pendent from higher energy scales. In the description of the propagation of waves

in water, for example, one can largely ignore the underlying theory of molecules and

atoms. The actual physical theory describing interactions and constituents at small

scales would be useful in determining various coefficients in the low energy theory,

such as the viscosity coefficient. However, once this quantity has been measured, the

low energy theory is enough for making predictions for the phenomena it refers to, as

long as one focuses on the correct energy scale. We refer to the descriptions applicable

at low energies as effective field theories. In general, non-renormalizable theories are

considered effective theories, valid far below a certain high energy scale cut-off, and

thus evading the problem of infinitely many loop contributions. In other words, they

are predictive as long as low energy scales are considered.

For such theories one could search for a ultraviolet (UV) completion. An UV-complete

theory is formally predictive up to all possible high energies. As we have pointed

out, perturbative quantum General Relativity falls into the not-UV-complete class of
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theories, with the cut-off in energy equal to the Planck energy. The effective grav-

itational coupling in the graviton-graviton scattering increases with the energy as

GNE
2 = E2/m2

P in natural units: while approaching the Planck scale, the coupling

becomes of order 1, and since the scattering amplitude increases in the trans-Planckian

region (E � mP) the violation of unitarity is an inevitable consequence.

It is useful to define a dimensionless quantum self-coupling of gravitons. In the follow-

ing, we will use Planck units with c = 1, so that ~ = `PmP and GN = `P/mP. Let us

start from the well-known Newtonian potential energy that describes the gravitational

attraction of 2 bodies with same mass m,

UN(r) = −GNm
2

r
= −`P m

2

mP r
. (1.42)

Introducing the characteristic wavelength λ = ~/m = `PmP/m, the potential is

rewritten as,

UN(r) = −`PmP
αgr

r
, (1.43)

where the gravitational coupling is defined

αgr =
`2

P

λ2
. (1.44)

From a relativistic generalization of the formula above, one is led to interpret (1.44)

as the strength of graviton-graviton interaction, but since gravitons are massless, the

role of the Compton wavelength is replaced by the actual wavelength.

The coupling is equal the ratio between the quantum Planck length and the classical

wavelength. If the wavelength is far from the Planck scale (λ � `P) the coupling is

very small and the theory is in a weakly coupled regime. But approaching the Planck

scale (λ ∼ `P) we enter a strongly coupled regime (αgr ∼ 1) and GR is no longer

valid.

The standard approach to fix the issue is the Wilsonian UV completion. The idea is to

integrate-in new weakly coupled degrees of freedom above the breakdown threshold.

One hopes that the introduction of new physics is enough to allow the calculations

of gravitational amplitudes at arbitrarily energy scales.

1.4.2 Self-completeness of gravity

In this section we shall review the main aspects of a non-Wilsonian approach to UV-

completion of gravity and, more generally, a class of perturbatively non-renormalizabile
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theories, first introduced by Dvali and Gomez. The following sections refer to the main

concepts of [19], [20] and [16].

The starting point is that in Einstein’s theory of gravity below the Planck scale the

only propagating degree of freedom is the massless spin-2 graviton. In the Wilsonian

view, new degrees of freedom in the trans-Planckian region (E � mP) should be

introduced to restore perturbative unitarity. However, it seems that in General Rel-

ativity the Planck length `P has the characteristics of the shortest length in Nature,

and is the lower bound on any distance that can be resolved.

Let us suppose to perform an experiment in order to probe a distance L � `P. The

measurement can be thought to be a scattering process, in which one has to localize

an energy at the order of E ∼ 1/L into a small portion of space of radius L. The

Schwarzschild radius corresponding to the localized energy is

RS(L) ∼ GNE ∼
`2

P

L
. (1.45)

In the trans-Planckian region L � `P, and one can easly see that the Schwarzschild

radius is bigger than the distance we want to probe, and it also exceeds the Planck

length. Any attempt of probing a length scale beyond the Planck length will require

the localization of energy within a smaller radius than the corresponding Schwarzschild

radius. Therefore, the measurement should lead to the formation of a macroscopic

black hole. Once a black hole is formed, the maximal information that can be ex-

tracted is equal to the information encoded at the black hole horizon, preventing any

measurement in the trans-Planckian scale.

Equivalently, according to Dvali and Gomez, the physics at sub-Planckian distances

is equal to the physics at macroscopic distances, that manifests itself in the corre-

spondence

L⇐⇒ `2
P

L
. (1.46)

Black holes are classical objects, entirely governed by the infrared (IR) sector of

the theory. Dvali and Gomez claim a correspondence between UV gravity and IR

gravity. The previous argument shows that, as opposed to the Wilsonian point of

view, propagating degrees of freedom in the trans-Planckian region cannot exist,

on the contrary they are mapped onto non-propagating classical states, that are

fully described in terms of IR propagating degrees of freedom, the gravitons. This

immediately restores unitarity, since the probability for a scattering involving an

exchange in momentum of the order of ~/`P is exponentially suppressed, and the

scattering amplitude is dominated by the black hole formation.
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In this sense, General Relativity is self-complete in the UV sector. The procedure of

solving the unitarity violation by means of the formation of classical configurations

is called classicalization. A classical state in a quantum field theory is no longer

an independent entity, and from the quantum point of view it can be described as

a coherent superposition of fundamental degrees of freedom with large occupation

numbers.

1.5 Black hole quantum picture

Let us consider a spherically symmetric source of a gravitational field, with mass

M , homogeneous density and a characteristic radius R. Suppose that the source is

static, thus its radius is much bigger than the Schwarzschild radius RS = 2GNM . At

this level the gravitational field is considered weak, and the approximation of linear

gravity is valid everywhere. The time-time component of the metric is dominant and

outside the source it gives rise to the Newtonian potential,

φN(r) = −GNM

r
(1.47)

From a quantum field theory point of view, the linearized metric represents a super-

position of quantum states, that are non-propagating longitudinal gravitons. One

can introduce a measure of the classicality of a system: a configuration is said to be

classical if the occupation number of gravitons is very high,

N � 1 . (1.48)

An estimate of the occupation number proceeds as follows. The gravitational part of

the energy is

Egrav '
GNM

2

R
=
`PM

2

mPR
. (1.49)

and it can be interpreted as the sum of the energies of the individual gravitons with

wavelength λ and occupation number Nλ,

Egrav '
∑
λ

Nλελ , (1.50)

where the Compton-de Broglie relation yields the energy for a single graviton,

ελ =
`PmP

λ
. (1.51)
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The reason why the total gravitational energy is well approximated by a simple sum of

energies is that, first of all, we expect the wavelength distribution to be peaked on the

value λ = R, corresponding to the characteristic size of the system. The contribution

from the shorter wavelengths is exponentially suppressed. Since R� `P the graviton-

graviton coupling (1.44) is very small, and the gravitons should be considered as

weakly interacting. We therefore neglect the interactions between individual gravitons

in the calculation of the energy.

Besides, gravitons couple to all sources of energy, and in particular to (1.50). But

since R� RS, the gravitational energy is negligible with respect to the mass-energy

of the source, thus for the moment we can forget about the interaction between each

individual graviton and the collective gravitational energy. The graviton occupation

number N is roughly given by the total gravitational energy divided by the charac-

teristic energy of a single quantum, and it scales as

N ∼ M2

m2
P

. (1.52)

Gravitons are bosons, therefore their occupation number can be very high and they

can condensate. One can suppose that the ensemble of gravitons composing the

system represents a Bose-Einstein condensate. However, if we neglect gravitational

self-sourcing, the condensate cannot be self-sustained. The situation changes dramat-

ically if, instead of a static source, one studies a gravitational collapse. In this case the

radius of the source decreases until it reaches the Schwarzschild radius R = RS. As it

was pointed out before, since R� `P the gravitons are weakly interacting once again,

and we don’t account for the graviton-graviton interaction. But now the gravitational

energy (1.50) is of the same order of magnitude of the mass-energy of the source, in

fact Egrav ∼M . At this point the self-sourcing by the collective gravitational energy

becomes important and the condensate becomes self-sustained.

It is worth noting that even when the radius of the system is equal to the Schwarzschild

radius, the length scale of the source is far from the Planck scale, and RS � `P. Thus,

the scaling of the occupation number (1.52) still holds.

The situation we have just delineated corresponds to the formation of a classical black

hole. In this view the classical geometric interpretation is completely discarded, and

black holes appear intrinsically quantum. The usual background geometry should be

an emergent property of the system, which is represented at the fundamental level as

a Bose-Einstein condensate of weakly interacting gravitons with occupation number
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N . The latter quantity can be recast as the inverse of the graviton coupling,

N ∼ λ2

`2
P

=
1

αgr

. (1.53)

The previous relation defines the critical occupation number at which the gravi-

ton condensate becomes self-sustained. From this perspective, since the system

is described as a self-sustained bound state which exhibits all the properties of a

Bose-Einstein gas at the critical point of a quantum phase transition, the condition

αgrN = 1 defines the criticality [17]. As a matter of fact, for αgrN < 1 the gravi-

tational attraction would not be strong enough to keep the gravitons together. On

the contrary, for αgrN > 1 the gravitational attraction among the constituents would

induce instability producing a collapse. The criticality condition can be obtained by

the balance of the kinetic energies of individual gravitons and the collective binding

potential, that is

KG(R) + UG(R) ' (1− αgrN)
`PmP

R
= 0 . (1.54)

It turns out that among all possible sources of given characteristic size R, the oc-

cupation number N is maximized by a black hole. In other words, for maximal N

the wavelength of the occupying quanta λ saturates the length that classically would

be defined as the gravitational Schwarzschild radius of the configuration. This is the

reason why the critical point coincides with the maximal packing : once the gravitons

are overpacked, increasing N would necessarily mean increasing the characteristic

length R.

1.5.1 Universality of the occupation number

The occupation number does not depend on the physical composition of the source,

and this gives to N the attribute of universality. If the presented picture is correct,

all the properties of black holes should be related to the occupation number, in such

a way that the number N is the unique characteristic of a black hole. As a matter of

fact, from the considerations above, the following scaling law have been presented,

� mass: M ∼ mP

√
N ,

� interaction coupling: αgr ∼ N ,

� wavelength: λ ∼ `P

√
N ,

� characteristic length: R ∼ `P

√
N .
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The universality of N plays a central role in the classicalization of gravity in the

trans-Planckian regime. In fact, let us propose once again the ideal experiment of

probing a distance comparable to the Planck length: the scattering will produce a

black hole, which is understood as a N -particle state. Therefore, for any high energy

scattering process involving two particles with an energy in the center of mass of the

order of mP,

2 −→ black hole , (1.55)

and from a quantum point of view,

2 −→ N . (1.56)

We conclude that all gravitational states with a trans-Planckian energy in the center

of mass are actually N -particle states. Now, since the composition of the source

is not important in determining the occupation number of gravitons, for classi-

cal/semiclassical sources composed by a large amount of particles of relatively long

wavelength particles, and for quantum sources composed by few highly energetic par-

ticles, in the deep UV the result will be always a large-N state. Regardless whether in

the absence of gravity the source would be quantum or classical, with gravity it always

classicalizes as long as M � mP , and R ∼ RS. At this point, any source becomes a

gravitationally self-sustained N -particle bound state, or equivalently a Bose-Einsteins

condensate of N soft weakly interacting gravitons.



Chapter 2

Bootstrapped Newtonian gravity

Up to this point, we have discussed general information about the non renormalizabil-

ity of General Relativity, and we have underlined the main aspects of UV completion

of gravity via classicalization. This allows us to introduce the corpuscular model

of gravity. The underlying idea is that the classical geometric description of gravi-

tational interaction emerges from a fundamental fully quantum picture in terms of

constituent self-interacting gravitons. Black holes represent in this sense an inter-

esting arena for testing the model, since they appear naturally composed by a large

number of gravitons, which superimpose in the same quantum state and realizing a

critical Bose-Einstein condensate on the verge of a quantum phase transition. The

aim of this Chapter is to extend and formalize the corpuscular picture beginning with

the study of a gravitational collapse, which represents the physical process that can

eventually lead to a black hole formation. Following the work of Casadio at al. [6,

7, 8, 9], we will review the derivation of “bootstrapped Newtonian gravity”, an effec-

tive non-linear scalar theory for the gravitational field that includes post-Newtonian

corrections to the usual Newtonian behavior.

2.1 The gravitational collapse from a corpuscular

perspective

Suppose to consider an isolated compact source composed by NB identical compo-

nents, that we shall call baryons with an individual mass µ. Let us assume spherical

symmetry, and let R be the radius of the object. Neglecting radiative emissions, the

total energy is conserved and equals the Arnowitt-Deser-Misner (ADM) mass M of

the system. This is always true in the Newtonian description, since the notion of en-
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ergy is well-defined. However, the same result can be achieved in General Relativity,

where time reparametrization invariance leads to the Hamiltonian constraint, that in

an asymptotically flat space-time reads

H = HB +HG = M , (2.1)

where HG and HB are the Hamiltonians of gravity and baryonic matter respectively.

In order to get an energy balance of the system, suppose that in the initial state the

baryons are very far apart at infinity so that they do not interact at all. Thus, the

total energy corresponds to the baryonic rest mass,

EB = µNB 'M . (2.2)

Afterwards, the baryons become closer and closer and the radius of the system de-

creases. When the NB constituents start interacting, one needs to take into account

their gravitational interaction, which is always attractive. Moreover, since the fi-

nal configuration is supposed to be at equilibrium, an additional interaction among

baryons must be introduced. The baryon-baryon interaction must be repulsive in

such a way that the gravitational attraction is compensate, and the collapse can end.

The baryons acquire kinetic energy KB as well. The baryon energy at a given radius

R is given by

EB(R) = M +KB(R) + UBG(R) + UBB(R) , (2.3)

where UBG < 0 is the gravitational potential energy for the baryons, and UBB ≥ 0

accounts for the repulsive baryonic interaction. In the classical theory the right-hand

side of (2.3) contains all the energy contributions and, because of energy conservation,

it must be equal to the mass M . We therefore find the condition

KB(R) + UBG(R) + UBB(R) = 0 , (2.4)

from which one recovers the classical equations of motion. Supposing that the classical

dynamics is well approximated by the Newtonian theory, the field VN has the usual

Newtonian form (1.47), and the baryonic gravitational energy coincides with

UBG(R) ' NB µVN(R) = −`PM
2

mPR
, (2.5)

which is negative as expected and falls like 1/R. However, in a quantum theory the

classical field can be seen as emergent from an underlying corpuscular description in

terms of gravitons. Discussing the quantum corpuscular picture of black holes, we
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introduced the graviton occupation number NG, and we found a quadratic scale with

the source mass, namely

NG '
M2

m2
P

. (2.6)

In addition, let us assume a typical energy of a graviton given by the Compton-de

Broglie relation, with a wavelength coinciding to the size R of the system,

εG(R) ' −`PmP

R
, (2.7)

which is negative. It is an indication that the gravitons of a static potential are

off-shell. The expression (2.5) has a straightforward interpretation in terms of the

corpuscular model. As a matter of fact, one can write

UBG(R) ' NG εG(R) . (2.8)

It is well known that gravitons self-interact, therefore a term describing the graviton-

graviton interaction should be added to the energy balance. The graviton self-

interaction potential has the form

UGG(R) ' NG εG(R)VN(R) ' M2`2
P

m2
PR

2
. (2.9)

The latter quantity is positive and depends on the size of the source like 1/R2. It is

worth noting that these are characteristics typical of the post-Newtonian correction

to the Newtonian potential. This establishes a connection between the corpuscular

model and the standard post-Newtonian expansion of the Schwarzschild metric. The

equation (2.4) now yields,

KB(R) + UBG(R) + UBB(R) + UGG(R) = 0 . (2.10)

Comparing the graviton-graviton energy to the gravitational baryon energy, and in-

troducing the Schwarzschild radius RS = 2`PM/mP, one finds that∣∣∣∣UGG

UBG

∣∣∣∣ ' RS

R
. (2.11)

For non-marginally bound object, such as compact stars, the radius is much grater

than the Schwarzschild radius, and the graviton self-interaction is negligible. However,

the situation changes if the collapse continues until R ' RS, and classically a black

hole forms. When the radius of the object reaches its Schwarzschild radius, the
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contributions of UBG and UGG become at the same order of magnitude of the mass-

energy of the source, since

UGG(RS) ' −UBG(RS) 'M . (2.12)

Here we recover the maximal packing condition (1.54) first introduced in the black

hole quantum portrait, corresponding to the criticality condition for a Bose-Einstein

condensate. The remarkable difference is that in the above description we considered

baryonic matter in addition to the gravitons, although the effective number of soft

gravitons in the black hole is much larger than the number of baryons. For example,

for a solar mass black hole (M = M� ' 1038mP) made of neutrons (µ = 10−19mP),

the number of baryons in the system is NB = M/µ ' 1057, while the gravitons are

NG ' M2/m2
P ' 1076 � NB. This is consistent with the corpuscular model of

gravitons.

However, taking into account baryonic matter has a notable consequence. The Hamil-

tonian constraint for the baryonic source now reads

KB(RS) + UBB(RS) ' 0 , (2.13)

and since we assumed UBB ≥ 0, the only possible solution for (2.13) allowing a black

hole formation is

KB(RS) ' UBB(RS) ' 0 . (2.14)

This somehow signals a possible end of the collapse. This first result shall be handled

carefully, since a more detailed model is needed, that, for example, considers the

spatial distribution of the source.

2.2 Quantum origin of the classical field

We shall deal with the problem of finding the connection between the classical New-

tonian potential and its quantum interpretation in terms of gravitons. In order to set

the topic, we can refer to an useful analogy concerning a static electric field. In partic-

ular, the Coulomb potential generated by an electric charge is conceptually equivalent

to the Newtonian gravitational potential sourced by a massive object, whose mass

defines its “gravitational charge”. In the same way, one can address the question of

interpreting the electric potential in the light of the quantum theory, in other words,

photons. It has been shown [2] that the Coulomb potential can be described in terms

of a coherent state of virtual photons. Coherent states are eigenstates of field an-

nihilation operators, and in general are those states that most closely correspond to

classical field configurations.
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Going back to gravity, one can reasonably assume that the Newtonian potential can

be represented by the expectation value of a suitable real quantum scalar field Φ̂ on

a coherent state |g〉 of virtual scalar gravitons, namely

VN ∼ 〈 g | Φ̂ | g 〉 . (2.15)

As a matter of fact, the Newtonian potential for a spherically symmetric static source

is a solution of the Poisson equation,

4VN(r) = 4π
`P

mP

ρ(r) , (2.16)

where ρ(r) represents the matter density. Let us rescale the field and the source in

such a way that they have the usual canonical dimensions,

Φ(r) ≡
√
mP

`P

V (r) , J(r) ≡ 4π

√
`P

mP

ρ(r) , (2.17)

so that [Φ] = [mass]
1
2 [length]−

1
2 and [J ] = [mass]

1
2 [length]−

5
2 . The Poisson equation

for the field now yields

4ΦN(r) = J(r) , (2.18)

and in the momentum space the classical solution is

Φ̃N(k) = − J̃(k)

k2
. (2.19)

Introducing a suitable set of normal modes, the quantum field Φ̂ can be split into a

negative and a positive frequency part, and an appropriate set of annihilation/creation

operators {âk , â†k} can be introduced, satisfying the usual bosonic commutation rela-

tions. A coherent state |g〉 is defined as follows,

âk |g〉 = eiγk(t)gk |g〉 . (2.20)

If one chooses the state in such a way that

gk =

√
k

2 `P mP

Φ̃N(k) = − J̃(k)√
2 `P mP k3

, γk(t) = −kt , (2.21)

and assuming the normalization 〈g|g〉 = 1, the classical solution of the Poisson equa-

tion is recovered exactly as

ΦN(r) = 〈 g | Φ̂ | g 〉 . (2.22)
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Moreover, the form of the coherent state in terms of the vacuum of the model, defined

as the state annihilated by any annihilation operator, reads

|g〉 = e−NG/2 exp

{∫ ∞
0

k2dk

2 π2
gk â

†
k

}
|0〉 . (2.23)

The normalization factor NG turns out to be the total occupation number of the

scalar gravitons in the state |g〉, and imposing the state normalization one finds

NG =

∫ ∞
0

k2dk

2π2
g2
k . (2.24)

The latter quantity is usually ill-defined. It should be regularized by means of suit-

able cut-offs in order to remove the divergences. In the case of a source with finite

size R and mass M , the assumption that the volume of the universe is infinite or,

equivalently, that the source is eternal and its static gravitational field extends to

infinite distances, produces an infrared divergence. One is led to bring in a finite

length R∞ representing the size of the universe within which the gravitational field is

static. At the end of the calculation [9], one finds that the occupation number scales

quadratically with the source mass in accordance with (2.6), with a weak logarithmic

dependence on the ratio R/R∞. This last correction disappears in the ideal limit

where R∞ →∞.

2.3 Effective scalar theory

In the following, we are going to derive an effective field theory for the gravitational

potential up to the first post-Newtonian correction in terms of a scalar field. For the

sake of simplicity we assume a static and spherically symmetric configuration. One

starts from the classical Einstein-Hilbert action coupled with matter,

S = SEH + SM =

∫
d4x
√
−g

(
− mP

16 π `P

R + LM

)
, (2.25)

where R is the Ricci scalar and LM is the Lagrangian for the baryonic matter that

sources the field.

The first step consists in performing an expansion of the action in the weak field

limit, that is assuming an appropriate reference frame in which the metric can be

decomposed as gµν = ηµν+hµν , where ηµν is the flat Minkowski metric, and |hµν | � 1.

If the characteristic velocity of matter is many orders of magnitude smaller than the

speed of light, the energy-momentum tensor for the non-relativistic matter component
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is given in terms of the energy density by Tµν ' uµuν ρ. One can show that this tensor

follows from the simple Lagrangian

LM ' −ρ . (2.26)

The only relevant component of the metric is h00 = −2VN, where the Newtonian

potential VN is known to satisfy the Poisson equation,

4VN(r) = 4π
`P

mP

ρ(r) . (2.27)

Here r denotes the radial coordinate, and both the density and the potential depend

only on r because of spherical symmetry. It is now straightforward to introduce an

effective scalar field theory for the gravitational potential. In the formulation of the

model we will start from the massless Fierz-Pauli action, that replaces the Einstein-

Hilbert action to avoid inconsistencies in the matter coupling. Thus,

LN[V ] =

∫
d3x (LFP + LM)

' 4π

∫ ∞
0

r2dr

(
mP

32π `P

h004h00 +
1

2
h00 T00

)
= 4π

∫ ∞
0

r2dr

(
mP

8 π `P

V4V − ρ V
)

= −4π

∫ ∞
0

r2dr

[
mP

8π `P

(V ′)2 + ρ V

]
,

(2.28)

where the prime denotes differentiation with respect to r, and in the last line we

integrated by part. The variation of the previous Lagrangian with respect to the field

VN entails exactly the Poisson equation (2.27). However, let us modify the effective

model in order to go beyond the Newtonian level. The idea is to add non-linear terms

for taking into account the gravitational self-interaction. From (2.28) we derive the

Hamiltonian,

HN[V ] = −LN[V ] ' 4π

∫ ∞
0

r2dr

(
− mP

8π `P

V4V + ρ V

)
. (2.29)

Evaluating the expression on-shell employing the equation of motion (2.27), the New-

tonian potential energy is obtained,

UN(R) = 2π

∫ R

0

r2dr ρ(r)VN(r)

= −mP

2 `P

∫ R

0

r2dr [V ′N(r)]
2
,

(2.30)
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where we used once again the Poisson equation and an integration by part. This

represents the interaction energy of the matter distribution with the gravitational

field inside a sphere of radius R. We can now define a self-gravitational source JV

proportional to the gravitational energy UN per unit volume, namely,

JV(r) =
4

4πr2

dUN(r)

dr
= − mP

8π `P

[V ′(r)]
2
. (2.31)

The appearance of the above contribution can in fact be found at the next-to-leading

order (NLO) in the expansion of the full relativistic theory. Proceeding in the expan-

sion of the matter Lagrangian, the analogous higher order term for the coupling with

matter yields the current

Jρ(r) = −2V 2(r) . (2.32)

Moreover, one is led to introduce the inner pressure of the source. As a matter of fact,

in absence of pressure the system is necessarily collapsing and a stable configuration

cannot be reached. Besides, for compact sources the pressure can be very large,

and can become the dominant contribution. We must therefore add a corresponding

potential energy UB, associated with the work done by the force responsible for the

pressure p, so that

p ' 1

4πr2

dUB(r)

dr
= JB(r) . (2.33)

The total Lagrangian must contain the couplings of the potential field with the afore-

mentioned currents JV, Jρ and JB. Introducing three apposite dimensionless coupling

parameters qV, qρ and qB to keep track of the coupling strength, we are left with the

Bootstrapped Newtonian Lagrangian,

L[V ] = LN[V ]− 4π

∫ ∞
0

r2dr [ qV JV V + qB JB V + qρ Jρ (ρ+ p)]

= −4π

∫ ∞
0

r2dr

[
mP

8π `P

(1− 4qVV ) (V ′)2 + V (ρ+ qB p)− 2 qρV
2 (ρ+ p)

]
.

(2.34)

Considering the expression of the Laplace operator in the case of spherical symmetry,

that is 4f(r) = r−2 (r2f ′)′, the corresponding Euler-Lagrange equation for the field

V is given by

(1− 4qV V )4V =
4π `P

mP

(ρ+ qB p)−
16 π `P

mP

qρ V (ρ+ p) + 2 qV (V ′)2 . (2.35)

A closer look to the previous equation shows that, with the presence of non-linear

terms, the freedom to shift the potential by an arbitrary constant, as it happens in
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the Newtonian theory, is lost. In addition, the source conservation equation must be

considered,

p′ = −V ′ (ρ+ p) , (2.36)

which in turn allows for the determination of the pressure. It can be seen as a correc-

tion to the usual Newtonian formula that accounts for the contribution of the pressure

to the energy density, or as an approximation for the Tolman-Oppenheimer-Volkoff

equation in General Relativity. Furthermore, it is useful noticing that the Lagrangian

(2.34) and the field equation (2.35) reduce to the usual Newtonian ones if all the cou-

pling parameters are set to zero, namely qV = qρ = qB = 0.

Before going forward and presenting possible solutions of the field equation, some

conceptual considerations should be underlined. The Bootstrapped Newtonian La-

grangian (2.34) stems from a truncation of the full Einstein-Hilbert action up to a

post-Newtonian order. The introduction of non-linearities will eventually lead to a

modification of the usual Newtonian behavior, and one expects that the well-known

post-Newtonian corrections are recovered. Since including those non-linear terms

shall be viewed as the first step in the perturbative reconstruction of General Rel-

ativity, the main assumption is that the post-Newtonian perturbations are small

compared to the Newtonian leading order. This consistency condition imposes a lim-

itation on the physical systems one is allowed to study. Very compact objects and,

in particular, black holes fall outside the domain of validity of the model.

Inspired by the link between the corpuscular model and the post-Newtonian cor-

rections, the authors proceeded in studying the non-linear equation of the effective

theory at face value, without requiring that the corrections it introduces with respect

to the Newtonian potential remain small. This provides an extension of the Newto-

nian theory that, at least in principle, should apply to stronger field regimes. This is

what the authors called ”bootstrapping” the Newtonian gravity. In other words, one

shall disregard the geometric origin of the Bootstrapped potential, and look at it as

an effective field theory in a flat space-time.

2.4 Vacuum solution

Finding a solution for the Bootstrapped Newtonian field equation (2.35) for a generic

source is not an easy task. Detailed calculations for the inner potential in the case

of simple source models, such as homogeneous or Gaussian matter distributions, can

be found in [8]. The important result we want to stress is that no equivalent of the
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Figure 2.1: Potential VBN (solid line) vs Newtonian potential (dashed line) vs order G2
N

expansion of VBN (dotted line) for r > 0 (in units of GNM).

Buchdahl limit is found for an isotropic and homogeneous star, so that the source can

be at equilibrium for any value of compactness, thus preventing the collapse and the

singularity formation.

Besides, in absence of matter and pressure (ρ = p = 0) the equation can be easly

integrated. The vacuum field equation for the Bootstrapped potential V reads,

4V (r) =
2 qV [V ′(r)]2

1− 4 qV V (r)
. (2.37)

The general vacuum solution assumes the following form,

VBN(r) =
1

4 qV

[
1− c1

(
1 +

c2

r

)2/3
]
. (2.38)

The integration constants are fixed by requiring that the solution reproduces the usual

Newtonian behavior for the mass M in the limit r →∞. One finds that c1 = 1 while

c2 = 6 qV GNM , yielding the vacuum Bootstrapped potential,

VBN(r) =
1

4qV

[
1−

(
1 +

6qVGNM

r

)2/3
]
. (2.39)

As a matter of fact, if we take the large r expansion of the potential, and considering

for the moment qV = 1, the first terms read

VBN(r) ' −GN M

r︸ ︷︷ ︸
Newtonian

+
G2

N M
2

r2︸ ︷︷ ︸
post-Newtonian

−8G3
N M

3

3 r3
. (2.40)



2.4 Vacuum solution 30

At the order G2
N we recover the expected post-Newtonian correction to the Newtonian

potential. The behavior of the vacuum potential VBN is not so different from the

Newtonian one. As one can infer from (2.1), VBN is an increasing function of the

distance, but it remains negative. The two curves distance themselves more evidently

in the limit r → 0, and since in this limit

VBN(r)

VN(r)
'
(

r

GNM

)1/3

, (2.41)

the Bootstrapped potential diverges slowly, showing that the presence of a non-linear

term in the right-hand side behaves as a partial regulator.



Chapter 3

Corpuscular cosmology

So far, the discussion focused on systems involving collapsing matter and black holes,

characterized by a strong regime of gravity. This is not by chance, since the existence

of a singularity in the interior of a black hole is considered a problematic prediction

of classical General Relativity. Therefore, one hopes that in the view of the cor-

puscular model, a general avoidance of a full gravitational collapse is achieved. In

particular, the Bootstrapped Newtonian effective theory shows interesting results in

that direction. Our next step will be to extend the microscopic picture for describing

gravitational interaction at large scales. In this Chapter we will briefly review the

standard cosmological model. Specifically, we will show that there are hints that the

corpuscular model can give a simple explanation to the existence of a “dark sector”

in our Universe.

3.1 The ΛCDM model

Einstein’s theory of gravity can be used to build up a cosmological model. We refer

to the cosmological problem as the issue of determining a large-scale metric and

a corresponding large-scale mass-energy distribution satisfying Einstein’s equations

(1.4). Once the problem is resolved, it will give the boundary conditions to be used

at large distances for local models, like Schwarzschild solution.

There is little hope that the entire universe can be described by an exact mass-energy

and momentum distribution Tµν . One usually employs the reasonable assumption

that, on sufficiently large scales, matter distribution is homogeneous and isotropic.

This statement is known as the Cosmological Principle, an extension of the Coperni-

can Principle stating that all spatial positions in the Universe are essentially equiva-

lent. Homogeneity and isotropy allow us to describe the geometry and the evolution
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of the Universe in terms of two cosmological quantities: the spatial curvature param-

eter k and the scale factor a, accounting for the expansion (or contraction) of the

Universe. These simple assumptions uniquely identify a 4-dimensional metric with

a 3-dimensional maximally symmetric subspace, know as the Friedmann-Robertson-

Walker-Lemâıtre (FRWL) metric,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (3.1)

where the coordinates employed are the comoving coordinates, and in particular t

denotes the cosmic time. With a suitable rescaling of the radial coordinate, the

curvature parameter can be chosen to have the value 0,+1,−1, corresponding to a

flat, closed and open Universe respectively. All the astronomical observations agree

with the fact that, since the distance between galaxies increases in time, the Universe

is undergoing a cosmological expansion. The expansion rate depends on the present-

day value of the Hubble constant, one of the last estimates yieldsH0 = 67.4 km/s/Mpc

[10].

The cosmological equations of motion are derived from Einstein’s equations. Taking

a closer look to the field equations (1.4), one notices that, actually, the most general

form of Einstein’s field equations reads

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν . (3.2)

where Λ is an arbitrary constant with dimension of the square of an inverse length,

usually indicated as cosmological constant. It was originally introduced by Einstein

with the motivation to allow for a static homogeneous universe in the presence of

matter. Immediately after the first astronomical observations proving that our Uni-

verse is expanding, the cosmological constant term became unnecessary, until it was

redeemed in the modern cosmological model, as we shall see further on.

The standard cosmological model considers the Universe as filled with a homogeneous

perfect fluid of matter and energy described in terms of its energy density ρ = ρ(t)

and its pressure p = p(t), with energy-momentum tensor given by

Tµν = (ρ+ p)uµuν + p gµν , (3.3)

where uµ is the fluid 4-velocity, and equation of state of the form

p = ωρ , (3.4)

where ω is a constant. Requiring that the FRWL space-time is a solution of Ein-

stein’s field equations with cosmological constant, the latter reduce to two Friedmann

equations, namely
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(
ȧ

a

)2

=
8πGN

3
ρ− k

a2
+

Λ

3
, (3.5a)

ä

a
=

Λ

3
− 4πGN

3
(ρ+ 3p) , (3.5b)

where the dot indicates the total time derivative. Since the first Friedmann equation

(3.5a) contains only first order time derivatives, it is not dynamical, rather it rep-

resents a constraint. A third equation comes from the covariant conservation of the

energy-momentum tensor and reads,

ρ̇ = −3H(ρ+ p) , (3.6)

where the Hubble parameter is defined as H(t) = ȧ/a. Introducing the density

parameter,

Ω =
8πGN

3H2
ρ =

ρ

ρcritical
, (3.7)

and substituting into the first Friedmann equation, a strict relation between the

curvature parameter k and the Universe density ρ can be found. In particular, for a

spatially flat Universe (k = 0) the density coincides with the critical value ρ = ρcritical.

From recent observations it turns out that the current average density of the Universe

is estimated at

ρ0 ' 10−29 g/cm3 = ρcritical , (3.8)

leading us to picture a flat Universe, with the total density parameter that almost

equals the unity and it’s expressed as the sum of the density parameters of each

species composing our Universe,

Ωtot =
∑

species

Ωi ' 1 . (3.9)

The currently accepted concordance cosmological model is the ΛCDM model, that

states the existence of three main contributions to the Universe density:

� Ordinary matter (Ωb ' 0.05), comprising everything made up of baryonic mat-

ter like stars, planets, gas, galaxies.

� Cold dark matter (Ωc ' 0.26), a form of non-baryonic, non-relativistic and

almost neutral matter necessary in order to account for gravitational effects

observed in large-scale structures, such as galaxy rotation curves.

� Dark energy (ΩΛ ' 0.69), introduced to explain the direct evidence of an accel-

erating cosmic expansion, and composing the larger part of the Universe.
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3.1.1 Dark energy and the cosmological constant

Let us discuss the Einstein’s equations (3.2) in the vacuum, imposing Tµν = 0. The

equations can be suitably recast as

Rµν = Λgµν . (3.10)

In the following we assume Λ > 0. The first important feature is that there is no flat

space solution for such an empty universe. In other words, if the cosmological constant

does not vanish, in absence of matter Minkowski metric is no longer a solution of

Einstein’s equations. Imposing spherical symmetry and staticity a priori for the

metric, the most general line element reads

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θ dφ2) , (3.11)

where the functions ν(r) and λ(r) has to be determined. Substituting in the field

equations, at the end of the calculations one finds that

eν(r) = e−λ(r) = 1− Λr2

3
+
c

r
, (3.12)

where c is an arbitrary integration constant. If we set c = 0 de Sitter solution in

static coordinates is obtained,

ds2 = −
[
1− Λr2

3

]
dt2 +

[
1− Λr2

3

]−1

dr2 + r2dΩ2 , (3.13)

where dΩ2 = dθ2 + sin2 θ dφ2. The cosmological horizon is located at

rH =

√
3

Λ
≡ L . (3.14)

Since the metric (3.13) is static, it is not modified by the transformation t→ t+ ε. In

terms of differential geometry, there exists a Killing vector associated to time trans-

lational invariance, whose coordinate representation is ξµ = (1, 0, 0, 0). Considering

that the norm of the latter vector is gµν ξ
µ ξν = −1+ Λ

3
r2, we conclude that the Killing

vector is space-like in the region r > L, time-like for r < L, and null when r = L.

In the region r > L trajectories with constant radial coordinate are not allowed: an

observer that crosses the cosmological horizon is dragged away by the accelerating

expansion of the universe, with no hope of coming back.

In de Sitter spacetime L, which is proportional to 1/
√

Λ, represents a characteristic

length, that one can interpret as the radius of the observable universe. As a matter of
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fact, any signal emitted outside the cosmological horizon can only move at increasing

r, so that an observer inside the horizon will never receive any information from the

outside.

In view of the fact that in GR we have the freedom of choosing any suitable set of

coordinates, one can employ a particular coordinate transformation [34],

r′ =
r e−t/R√

1− r2

L2

, t′ = t+
L

2
log

(
1− r2

L2

)
, (3.15)

for rewriting the de Sitter metric in a different fashion, namely

ds2 = −dt′ 2 + e2Ht′ (dr′ 2 + r′ 2dΩ2) , (3.16)

where H = 1/L is the inverse of the Hubble radius. Comparing (3.16) with (3.1) one

realizes that the de Sitter metric can be recast in a FRWL form. In particular, it

is equivalent to a spatially flat FRWL space-time with an exponential scale factor,

thus describing an exponentially expanding Universe. Besides, the inverse of the

cosmological horizon coincides with the Hubble constant. Same results are achieved

by solving the two Friedmann equations for the scale factor in the case of a flat

Universe filled only with a cosmological constant.

In the standard model of cosmology, dark energy is fully accounted for by the cos-

mological constant Λ. In particular, dark energy is modeled as a an exotic cosmic

fluid fulfilling a vacuum equation of state, the energy density being constant and the

pressure being negative,

ρΛ = −pΛ =
Λ

8πGN

, ω = −1 . (3.17)

The current best estimate of the cosmological constant is Λ0 = 2.84× 10−122 `−2
P [10].

One shall notice that the conclusion that the accelerated expansion requires a new

energy component beyond matter and radiation relies on the assumption that General

Relativity is the correct description of gravity on cosmological scales.

3.1.2 Schwarzschild-de Sitter space-time

It is now clear that de Sitter space-time does not describe our Universe. The de

Sitter universe in completely empty of matter, and dark energy fills all space. Let

us consider a slightly different physical situation: suppose that a point-like matter

source with mass M is located in the origin r = 0 of our coordinate reference frame

inside a de Sitter universe. Once more we impose spherical symmetry and staticity.



3.1 The ΛCDM model 36

The gravitational field generated by the spherical source in the vacuum is given by

a metric tensor gµν solution of the Einstein’s equation (3.10). One can notice that if

Λ = 0 (or analogously in the limit L→∞) the solution must reproduce Schwarzschild

space-time. The integration constant in Eq. (3.12) is now fixed in such a way that

c = −2GNM , and the Schwarzschild-de Sitter solution is obtained,

ds2 = −
(

1− 2GNM

r
− r2

L2

)
dt2 +

(
1− 2GNM

r
− r2

L2

)−1

dr2 + r2dΩ2 . (3.18)

The metric represents the gravitational field outside a point-like source that, at large

distances, recovers a cosmological behavior typical of the de Sitter space-time. On

the contrary, at small distances the cosmological term is negligible, thus retrieving

a Schwarzschild-like behavior. Actually, there exists a generalization of Birkhoff’s

theorem which states that any spherically symmetric solution of Einstein’s equations

with cosmological constant in absence of other stress-energy sources is isometric to

Schwarzschild-de Sitter spacetime [37].

The condition grr = 0 allows us to study the eventual presence of horizons. Schwarzschild-

de Sitter space-time contains two separate horizons only if

M <
L

3
√

3GN

. (3.19)

As a consequence, the mass of a black hole in a de Sitter universe has an upper limit,

depending on the value of the cosmological constant. The explicit expressions for the

horizons are,

RH/L =
2L√

3
cos

[
π

3
± 1

3
arccos

(
3
√

3GNM

L

)]
. (3.20)

Since RH < RL, one identifies RH as the black hole horizon and, with the assumption

that GNM � L, one finds that it is not so different from the usual Schwarzschild

radius,

RH ' 2GNM

[
1 +

(
GNM

L

)2
]
. (3.21)

Moreover, RL is the cosmological horizon, that in the same limit approaches the de

Sitter Hubble radius,

RL ' L

(
1− GNM

2L

)
. (3.22)
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3.2 Corpuscular picture of de Sitter space-time

In Chapter 1 we discussed how the classical geometry of space-time could be conceived

as an emerging property of a coherent state of a very large number of gravitons.

Since gravitons are bosons and owing to the self-interacting nature of gravity, the

system of gravitons can eventually lead to the formation of a condensate. We have

seen that black holes have a relatively simple interpretation in terms of N gravitons

composing a self-sustained Bose-Einstein condensate at the critical point. In this

perspective, all the classical geometric properties characterizing a black hole in GR

emerge from a single quantum feature, that is the graviton occupation number. In

this section we are going to discuss the possibility that not only black holes, but also

other configurations such as cosmological spaces, and in particular de Sitter space,

represent composite entities of quantum constituent gravitons, whose wavelength is

set by the characteristic classical size of the system.

Let us start by considering the first Friedmann equation (3.5a) for a spatially flat

space in the sole presence of a cosmological constant, that is

H2 =
Λ

3
=

8πGN

3
ρΛ , (3.23)

where we used the expression (3.17) for the vacuum energy density. One can now

integrate on the volume inside the Hubble radius L = 1/H obtaining

L ' GNL
3ρΛ '

`P

mP

MΛ , (3.24)

where MΛ should be interpreted as a sort of energy contribution of the cosmological

constant inside a sphere with the size of the Hubble radius. The previous relation that

correlates the Hubble radius with MΛ resembles very closely the well-known relation

between the Schwarzschild radius of a black hole and its ADM mass. The suggestion

is to extend the quantum picture from black holes to de Sitter space-time, and that

can eventually lead to a fundamental quantum interpretation of de Sitter geometry

in the context of the corpuscular model of gravity.

Tracing back the argument for the description of a gravitational collapse, we recall

that starting from the Hamiltonian constraint and the subsequent energy balance one

recovers interesting results such as the maximal packing condition for black holes.

Accordingly, let us consider the Hamiltonian constraint in FRWL cosmology, that

can be separated into a contribution from the purely gravitational part of the system,

plus a matter term,

H = HG +HM = 0 . (3.25)



3.2 Corpuscular picture of de Sitter space-time 38

In an Universe filled only with the cosmological constant, the matter content is absent,

and therefore we set HM = 0. The Universe is a classical object, the most classical of

all in some sense, but one expects that the underlying description is fully accounted

by a fundamental quantum theory. The main purpose is to interpret dark energy as

a result of the self-interaction of virtual and very soft gravitons only, with occupation

number NΛ and eventually forming a Bose-Einstein condensate. The typical energy

of a single graviton in the condensate is approximately constant and given by the

usual de Broglie-Compton relation,

εΛ '
mP `P

L
. (3.26)

Following the classicality criterion, one expects NΛ � 1, and that the classical be-

havior is recovered as a coherent state of the constituent quanta. This gives rise to a

Newtonian potential energy of the form

UN = MΛ φN(LΛ) ' NΛεΛ . (3.27)

Since the graviton wavelength is of the order of the cosmological horizon, the graviton

self-interaction is negligible, while from the interaction between each graviton with

the collective state, a post-Newtonian contribution to the energy follows,

UPN ' NΛ εΛ φN(LΛ) ' N
3/2
Λ

mP `
2
P

L2
, (3.28)

where we used the Newtonian potential φN in (3.27). The Hamiltonian constraint

now reads

HG = UN + UPN = 0 , (3.29)

and after the substitutions one directly finds the scaling law for the graviton occupa-

tion number, that is

NΛ ∼
L2

`2
P

=
m2

Λ

m2
P

. (3.30)

This shows that for describing the whole Universe a very large number of gravitons

is necessary. Moreover, one gets

MΛ ' mP

√
NΛ . (3.31)

One is tempted to compare these results to the typical corpuscular scaling laws met

in the black hole quantum picture, therefore we will pursue the analogy and interpret

the de Sitter universe as a Bose-Einstein condensate of NΛ soft and weakly-interacting

gravitons with characteristic wavelength λ ' L. This corresponds to an intriguing
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picture, since in the view of the corpuscular model of gravity, the underlying quantum

description in terms of microscopic constituent gravitons is sufficient to give an expla-

nation to the behavior commonly attributed to dark energy, with the main advantage

being that the introduction of a cosmological constant, as well as the assumption of

an exotic cosmic dark fluid, turn out to be unnecessary.

3.2.1 Emergence of a curved geometry

In the corpuscular model of gravity the classical notion of curved geometry is substi-

tuted by the quantum notion of large graviton occupation number on a flat space-

time. Therefore, the curved metric must appear as an effective emerging description.

Considering a free falling test particle in a gravitational field sourced by a generic

energy-momentum source, in a geometric perspective the particle follows a geodesic

motion in the background field. One should address the problem of interpreting the

same phenomenon in the framework of the underlying quantum theory, that is a cor-

puscular description in which the constituent microscopic quanta are gravitons. In

particular, the aim is to show how a graviton Bose-Einstein condensate can reproduce

de Sitter space-time in the classical limit.

Let us consider a metric tensor gµν representing a gravitational field sourced by the

energy-momentum tensor Tµν via classical Einstein’s equations. For the sake of sim-

plicity, let us assume the case of small curvature, taking up the weak field limit of

the metric in the form of

gµν = ηµν + ε hµν + ε2 h′µν +O(ε3) , (3.32)

where we introduced a flat Minkowski background and a suitable small parameter ε for

formally proceed in the expansion. The leading order perturbation hµν corresponds to

the linear level hµν , the successive sub-leading term h′µν is instead the first non-linear

correction, and so on.

In Section (1.3) we pointed out that the metric perturbation hµν is a solution of the

linearized Einstein’s equations, while h′µν shall be obtained by iteration introducing

in the right-hand side of the equations of linear gravity the canonical gravitational

energy-momentum tensor evaluated on the first order perturbation. This leads to the

first correction to the linear level, stemming from a gravitational cubic self-interaction.

The process could be continued to arbitrarily high order, recovering conclusively the

fully non-linear Einstein field equations.

Besides, assume that a probe of energy-momentum τµν is in motion in the classical

gravitational field generated by Tµν . The probe can in principle be a classical or
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a quantum particle: in the latter case the whole system would be treated as semi-

classical. At first linear order in the perturbation, the geodesic motion of the probe

can be evaluated from its coupling in the action, that at linear level reads

Sint =

∫
d4xhµντ

µν . (3.33)

In an iterative way, the non-linear corrections to the motion are attained at each

order in the weak field expansion.

However, the underlying description of the theory shall be quantum. We therefore

promote the metric perturbation into a quantum field, after a suitable rescaling for

canonical dimensionality,

hµν −→
√

`P

mP

ĥµν . (3.34)

A quantum way for treating the problem of the motion of the probe particle is to

imagine graviton exchanges between the probe source τµν and the field source Tµν .

Thus, the process shall involve the absorption or the emission of microscopic quanta.

The leading order corresponds to the exchange of a single graviton, and the related

scattering amplitude at the linear level yields

S(1) =
`P

mP

∫
d4x1

∫
d4x2 τ

µν(x1) ∆µν,αβ(x1 − x2)Tαβ(x2) , (3.35)

where ∆µν,αβ(x1 − x2) is the graviton propagator, and we notice that the amplitude

is first order in Newton’s constant. Again, one can proceed in the same way at every

order in the weak field expansion, obtaining subsequent corrections to the motion as-

sociated to different order scattering amplitude S(n) at increasing order n in Newton’s

constant.

Suppose that the probe particle is quantum, and it is associated to a quantum field

φ. This can be a matter field, or the electromagnetic field for photons. In order to

study the transition amplitude for the scattering, the needful tools are the matrix

elements

〈 f | S(n) | i 〉 , (3.36)

where |i〉 and |f〉 are the initial and the final states in which the probe is prepared,

respectively.

The remarkable point is that both perspectives, one purely classical and the other

one concerning the scattering with constituent quanta, are equivalent for the purpose

of describing the motion of the probe particle. The equivalence holds to all orders in

the weak field expansion.
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Let us use this argument in the particular case of de Sitter geometry. Classical de

Sitter space-time is a solution of the field equations (3.10), where the source of the

gravitational field is now the cosmological constant Λ. Since L = 1/H =
√

3/Λ is

the cosmological horizon, it represents the characteristic curvature radius, therefore

for the sake of a weak field expansion we shall consider the evolution of a probe with

wavelength smaller that the Hubble radius. The linearized equations read

R (1)
µν = Λ ηµν , (3.37)

where in the left-hand side there is the linearized version of Ricci tensor. The latter

equation admits several gauge-equivalent solutions for describing de Sitter space in

the case of short distances and short time scales. One possible choice is

h00 = h0i = 0 , hij = H2 (t2δij + ninjr
2) , (3.38)

where ni = xi/r and r =
√∑

k x
2
k. This corresponds to the linearized de Sitter

metric in closed slicing form up to a numerical factor set to one. In other words, we

are considering an approximation of the full non-linear metric

ds2 = −dt2 + cosh(Ht)

(
dr2

1−H2r2
+ r2dΩ2

)
, (3.39)

when Hr � 1 and Ht� 1. The classical metric perturbation can be expanded as

hij(x) =

∫
d4k

[
uij (bu,k e

ikµxµ + b∗u,k e
−ikµxµ) + vij (bv,k e

ikµxµ + b∗v,k e
−ikµxµ)

]
, (3.40)

where the orthogonal projectors uij = δij−ninj and vij = ninj have been introduced,

while b, b∗ are complex coefficients. It shall be stressed that the field hij does not

satisfy any free wave equation, and as a consequence the dispersion relation for the

wave vector kµ is not the massless one, but it is determined by the source, in this

case the cosmological constant.

In the quantum version of the theory the field is promoted to an operator. In de-

tails, the expansion coefficients become a set of creation {â†u,k , â
†
v,k} and annihilation

{âu,k , âv,k} operators fulfilling the usual bosonic commutation relations[
âu,k , â

†
u,k′

]
= δ4(k − k′) ,

[
âv,k , â

†
v,k′

]
= δ4(k − k′) , (3.41)

and the other commutators vanish. One can proceed in the construction of the Fock

space: each vector corresponds to a state with a given occupation number of longi-

tudinal off-shell gravitons. Instead of using a description in terms of coherent states,
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as we did in the discussion on the Newtonian potential, here we shall employ the

number-eigenstate representation, so that |Nk〉 is the quantum state of N quanta

with four-momentum k. Thus, classical weak-field de Sitter space-time must be in-

terpreted as a quantum state with a very large occupation number of gravitons whose

wavelength distribution is strongly peaked at the characteristic curvature radius of

the system. This allows us to write

|de Sitter〉 = |NH〉 . (3.42)

Consider once again a probe particle φ with energy-momentum τµν(φ). As we pointed

out, at the classical level the propagation of the particle in de Sitter space-time follows

from the coupling with the metric perturbation in the form∫
d4xhµντ

µν(φ) . (3.43)

However, in the quantum picture the particle evolution is interpreted as the inter-

action between the probe and the graviton condensate. Moreover, the classical pic-

ture should emerge as a large-N limit of a quantum transition from an initial state

|φin, NH〉 to a final state |φf , NH ± 1〉 in which the occupation number of gravitons in

the condensate (with wavelength L) changes by one. These correspond to scattering

processes where a graviton is emitted or exchanged so that the probe evolves from the

initial to the final state. The matrix elements that enter the scattering description

are

〈NH + 1|â†k|NH〉 , 〈NH − 1|âk|NH〉 . (3.44)

The explicit calculation can be found in [18]. Comparing the amplitudes from the

scattering processes with (3.43) one recovers the following effective classical metric,

hij '
`P

√
NH

L
[uij r

2 + vij (t2 + r2) ]H2 . (3.45)

Now, since the condensate is on the verge of a phase transition, the criticality con-

dition corresponds to the scaling law (3.30) for the occupation number up to 1/N

corrections, in such a way that the prefactor in (3.45) is one, and the previous ex-

pression reproduces the weak-field de Sitter metric (3.38) in the large-N limit.

3.3 Corpuscular dark force

The standard ΛCDM cosmological model offers an acceptable explanation for a wide

range of astrophysical observations, including the CMB spectrum and the formation
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of large-scale cosmic structures, and there is little doubt on the accordance between

the model calculations and the experimental data.

However, the agreement comes with the cost of supposing the existence of a “dark

sector”, composing around 95% of our Universe. One of the problems of this well-

established approach is that it fits the phenomenological data extremely fine as long

as one does not presuppose anything about the true physical nature of the exotic

components. As we have seen, dark energy turns out to be necessary in order to

account for the accelerated expansion of the Universe. A complete satisfactory jus-

tification for the presence of such an energy is not achieved yet. For example, the

interpretation in terms of a vacuum energy appears in contrast with the calculations

of zero-point energy of quantum fields from QFT: the gap between the measured

value of the cosmological constant and the theoretical prediction is enormous, more

than 120 orders of magnitude [33]. A similar argument arises for dark matter, com-

posing more than 83% of matter in the Universe according to the standard model.

After a brief review of the phenomenological origin of the dark matter hypothesis and

alternative descriptions in the framework of modified gravity, in this Section we will

address the problem in the corpuscular model of gravity.

3.3.1 Dark matter and MOND theories

What astronomical observations tell us is that the dynamics of galactic and extra-

galactic structures do not correspond to the observed visible matter and energy. The

most significant piece of evidence concerns rotation curves of spiral galaxies [27]. A

rotation curve consists in a plot of the velocities of visible matter (mostly stars and

gas) as a function of the distance from the galaxy center. Most of the stars are located

in the inner part of the galaxy, in a region around 10 kpc from the center. A system

obeying Newton’s law of gravity should exhibit a rotation curve that, after having

reached a maximum, declines in a Keplerian manner, as it happens for example in

the Solar system: in this case the rotation velocity decreases as r−1/2.

On the contrary, observations suggest that the rotation velocity tends to remain

approximately constant at large radii, far outside the central core of galaxies. Since

the total mass inside a radius R of a spiral galaxy is approximately given by Mtot =

v2
rotR/GN where vrot is the rotation velocity, we infer that at large radii the expected

mass that gives rise to the measured rotation speed is much larger than the observed

mass. This gives rise to the missing mass problem.

The flatness of rotation curves is a common characteristic of spiral galaxies and was

measured for a wide number of cosmic structures, such as dwarf spheroidal galaxies,
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giant elliptical galaxies and clusters of galaxies, although the amount of missing mass

can be very different for dissimilar systems. The possible solutions to the missing

mass problem fall in one of the following approaches:

� the introduction of an unseen and yet unknown form of matter-energy;

� the failure of our current theory of gravity;

� both possibilities.

The most popular explanation, and thus included in the concordance model, relies

on the assumption that a non-baryonic and electromagnetic close-to-neutral form of

matter exists. For these reasons it is known as dark matter, and in principle it should

supply for the missing mass. There are strong evidences that dark matter should exist

indeed, including cosmic structure formation, observations of the anisotropy power

spectrum of the CMB and galaxy clusters. However, from a theoretical perspective

the introduction of a new exotic matter contribution seems unnatural. In addition,

the question on what are the microscopic components of dark matter remains open:

in spite of a huge number of possible theoretical candidates (WIMPs, axions, sterile

neutrinos, dark photons, primordial black holes,...) at the present the quest for a

laboratory evidence or an astrophysical detection hasn’t led to significant results.

It cannot go unnoticed that the ΛCDM model is not completely satisfactory: the

missing satellite problem, the cusp-core issue and the too-big-too-fail problem repre-

sent open questions. One of the challenges for the standard approach is to explain

the baryonic Tully-Fisher relation [28]: a strong empirical correlation can be found

connecting the amount of visible baryonic matter mB with the measurable asymptotic

rotation velocity vf of galaxies,

mB =
v4
f

GN a0

, (3.46)

where a0 ' 1.2× 10−10 m s−2 has the dimension of an acceleration. The concordance

model cannot furnish a complete explication, since it predicts a different exponent

for the rotation velocity and a different normalization. The disagreement can be

solved only by a fine tuning of the parameter, supposing for example that, because

of an unknown mechanism, the detected baryonic mass is only a fraction of the total

baryonic mass available in the galaxy [21].

A second line of thought paves the way for some kind of modification in the gravita-

tional theory. This is the case of modified Newtonian dynamics (MOND) [30]. The
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central point is that the standard description of the gravitational interaction in terms

of GR is modified when the acceleration of the system falls below a0. It is various

orders of magnitude smaller that the typical accelerations of planets in the Solar sys-

tem, but it becomes comparable with the acceleration of stars in the external region

of a galaxy.

In MOND, a0 is promoted to a fundamental physical constant, and its value is sur-

prisingly related to the cosmological constant, since a0 ' H/6 = 1/6L. Then, for

baryonic matter in the inner core of a galaxy, Newtonian gravity is still valid and the

acceleration at a given distance r is

aB(r) =
GN mB(r)

r2
, (3.47)

where mB(r) is the amount of matter enclosed in a sphere of radius r. Differently, in

the region outside the core the gravitational acceleration is modified with respect to

the Newtonian form and reads

aMOND(r) =
√
a0 aB(r) '

√
aB(r)

6L
. (3.48)

This simple formula is in excellent agreement with galaxy rotation curves, although it

cannot provide a complete description for all the observations for which dark matter

is invoked: for example it fails when used for the missing mass of galaxy clusters.

Despite the difficulties, the MOND framework fits perfectly with the idea that the

current theory of gravity, in particular General Relativity, is not a fundamental the-

ory of Nature and should be modified. It shall not be surprising that in the last years

many attempts of reproducing a MOND-like behavior in terms of emerging theories

of gravity have been proposed. An important contribution follows from Verlinde’s en-

tropic approach [41], that interprets the laws of gravity as an emergent phenomenon

whose origin lies in quantum entanglement of microscopic degrees of freedom. Fol-

lowing the argument, it can be shown that an additional gravitational force pops up

at galactic scales, so to explain the MONDian acceleration.

Besides, let us underline a curious coincidence that establishes an unexpected link

between MOND theories, and thus dark matter phenomenology, and dark energy in-

terpreted as a cosmological constant. Since a0 ∼
√

Λ, this gives rise to the question

if it is a numerical coincidence or it’s physically relevant. In the latter case, a funda-

mental theory should be able to explain such a relation between the two constants.

As we shall see in the following, a connection between the two main components of

the Universe dark sector, as well as a possible explanation for the MOND behavior

at galactic scales can be found in the corpuscular model of gravity.
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3.3.2 Emergence of a dark force

Seemingly different systems such as black holes and de Sitter space-time are character-

ized by several orders of magnitude of difference in their typical size. If RS = 2GNmB

is the Schwarzschild radius of a black hole with mass mB and L is the cosmological

horizon, we identify the hierarchy RS � L. Nevertheless, in the framework of corpus-

cular gravity both systems have a fundamental quantum interpretation in terms of

very soft and virtual constituent gravitons that form a Bose-Einstein condensate at

the critical point. As we have seen, the criticality condition implies a definite scaling

law of graviton occupation number, that is very similar in both cases and depends

on the characteristic curvature radius or length scale. In the study of a gravitational

collapse from a corpuscular perspective the scaling relation (2.6), first found for black

holes, was shown to hold with a good approximation for a general compact source

with typical size RB, whose gravitational field outside the matter distribution is well

described by Newtonian theory. In this case, the hierarchy one should consider is

RS . RB � L.

We can summarize the results by noticing that for r ' L, defining the cosmological

scale, and for r ' RB, that is associated to the Newtonian scale, the graviton scaling

reads

NG(r) ∼ m2(r)

m2
P

∼ r2

`2
P

, (3.49)

where m(r) gives the mass (with the appropriate definition depending on the system)

inside a sphere of radius r. For example, m(L) = mΛ representing the total mass-

energy enclosed in the Hubble horizon, and NG(L) can be interpreted, in a sense, as

the total number of gravitons inside the visible universe. Besides, NG(RB) represents

the number of gravitons that react locally to the presence of the baryonic source, and

from which the usual Newtonian dynamics emerges. It is important to stress that

the graviton number is not a measurable physical quantity, since all the gravitons are

off-shell and thus non-propagating.

The scaling law defines two holographic regimes of gravity, one at small scales and the

other at very large length scales, since the number of gravitons depends on the square

of the characteristic size. Although the cosmological and the Newtonian regimes are

similar according to this point of view, there are significant differences between them.

The Newtonian potential energy is indeed negative,

UN(r) = −GN m
2
B

r
' NG εG(r) , (3.50)
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and implies a negative typical energy for single gravitons, namely

εG(r) ' −mP `P

r
. (3.51)

On the contrary, the cosmological mass-energy is positive, and since

mΛ =
mP L

`P

' NΛ εΛ , (3.52)

one can infer a positive typical energy for a graviton in the cosmological condensate,

that is

εΛ '
mP `P

L
. (3.53)

The switch in sign for the graviton energy in the two holographic regimes is a strong

indication that they are indeed different. Ultimately, this is not so surprising, since

the small scale regime is related to objects at astrophysical size, while the large scale

regime describes the expansion of the Universe. Moreover, one expect that they must

be connected by a mesoscopic regime, in which the gravitational interaction is no

longer holographic, but deviates in a new dissimilar behavior.

For this purpose let us consider an empty de Sitter universe whose dynamics is driven

only by dark energy. From a corpuscular point of view, it emerges from the underlying

cosmological Bose-Einstein condensate that we shall call DEC (abbreviation for dark

energy condensate). However, locally, the DEC cannot be considered as a whole,

but just as a background medium with positive constant energy density ρΛ given by

(3.17). The total graviton energy in a spherical region of radius r is then,

M(r) ' 4π

3
ρΛr

3 ∼ mP

L2`P

r3 ' NG(r) εΛ . (3.54)

One directly deduces that the scaling law for the graviton occupation number becomes

NG(r) ' r3

L `2
P

. (3.55)

This shows that in the intermediate region between the Newtonian and the cosmolog-

ical ones, and neglecting any presence of baryonic matter, the graviton number scales

as the cube of the characteristic length, and thus proportional to the volume. In this

region, gravity manifests its extensive behavior, that in turn must be interpolated

somehow between the two holographic regimes.

Now, let us suppose to introduce NB baryonic particles, each one with mass µ, in

the cosmic condensate. As a first approximation, suppose that the introduced matter
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is very diluted, in the sense that the DEC does not react locally to its presence.

Moreover, let us assume that baryonic matter is in very small quantity compared to

cosmological mass-energy. In classical geometric terms, the original de Sitter space

turns into a Schwarzschild-de Sitter space-time, whose metric is thus given by (3.18),

where the source mass is now mB = NB µ. In Section (3.1.2) it is shown that the

dimension of the visible Universe for a Schwarzschild-de Sitter solution decreases. In

fact, imposing the condition for calculating the cosmological horizon, and denoting it

with LH , one finds

H2L2
H = 1− 2GNmB

LH
= 1− mB

mtot

, (3.56)

where the ADM mass of the whole Universe mtot = LH/2GN has been defined. If

mB � mtot the location of the horizon, according to (3.20) as well, reads

LH ' L−GNNB µ . (3.57)

The effect of the baryonic source is to reduce the size of the cosmological horizon

with respect to a pure de Sitter case, although the correction is small in general.

In the corpuscular model, this implies that baryonic matter influences the graviton

condensate, in the sense that a fraction of gravitons in the DEC responds locally to the

presence of matter by modifying their energy and thus dropping off the condensate.

As a result, the number of gravitons in the DEC decreases and the cosmological

horizon shrinks.

Furthermore, let us consider the next step in the subsequent approximations. Assume

that baryonic matter starts to gather together in a clumped distribution of mass

mB(r) = NB(r)µ that, for the sake of simplicity, we suppose spherically symmetric.

Since mB � mtot as well, the major part of gravitons remains in the condensate

phase. If NΛ is the graviton occupation number in the DEC, then

NΛ ∼
(mtot −mB)2

m2
P

=
m2

tot

(
1− mB

mtot

)2

m2
P

=

=
m2
totH

4L4
H

m2
P

∼ H4L6
H

`2
P

.

(3.58)

The latter quantity is indeed different from the total number of gravitons, that is,

Ntot ∼
m2

tot

m2
P

. (3.59)

This implies that Ntot − NΛ gravitons are not in the condensate phase, and their
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number amounts to,

δN = Ntot −NΛ ∼
m2

tot − (mtot −mB)2

m2
P

=

=
2mBmtot

m2
P

− m2
B

m2
P

∼ mB LH
mPlp

− m2
B

m2
P

.

(3.60)

At this point it shall be noticed that the occupation number of gravitons no longer in

the DEC is bigger than the simple number of gravitons closely bound to the source,

that enforce the usual Newtonian dynamics and reads

NB ∼
m2

B

m2
P

. (3.61)

In fact, only a small fraction of the DEC gravitons is affected by local matter. In

particular, the cosmic condensate does not react to matter at the full cosmological

scale, but only at a local scale.

Now, we are led to identify three classes of gravitons: NΛ quanta compose the DEC

and reproduce the behavior that classically is described by the cosmological con-

stant; NB gravitons are not in the condensed phase and are strictly connected to the

baryon matter source reproducing the local Newtonian dynamics; the remaining non-

condensed gravitons have been interpreted as the constituent quanta that mediate

the interaction between baryonic matter and the dark energy condensate. From the

hierarchy RS � LH it follows that the contribution of the negative term in the last

line of (3.60) is negligible, and the number of gravitons responsible for the mediation

is approximately

NDF ∼
mB LH
`P mP

. (3.62)

The authors in [5] claim that the main effect of the gravitons (3.62) is the emergence

of a dark force, at which one associates a dark acceleration that can mimic MOND

acceleration at galactic scales and thus dark matter phenomenology.

First of all, one has to interpret the radial acceleration felt by a test particle at a

distance r from the center of the baryonic source, that we suppose to be a galaxy,

in terms of the effective number of gravitons that contribute to the aforementioned

acceleration. In [4] the following formula for the corpuscular acceleration (in modulus)

has been proposed,

a(r) ∼ ε2G(r)

m2
P `P

√
Neff(r) . (3.63)

This expression was first obtained for the non-condensed gravitons which generate the

Newtonian acceleration, but it will be taken for granted for all kinds of gravitons pre-

viously mentioned. Therefore, for every population of gravitons, an effective number
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of gravitons Neff(r) with interaction energy εG(r) contribute with a radial acceleration

a(r) given by (3.63) to the total acceleration of a test particle. At galactic scales,

observations of flat rotation curves allow us to write down the total acceleration as

the sum of three contributions,

a(r) = aB(r) + aDE(r) + aDF(r) , (3.64)

each one associated to a different behavior of constituent gravitons. In particular, aB

is the usual Newtonian acceleration while aDE is the acceleration felt by the particle

because of the accelerated expansion of the Universe,

aB(r) = −`PmB

mP r2
, aDE(r) = H2 r . (3.65)

Before using the corpuscular acceleration formula for evaluating the dark force ac-

celeration, one has to estimate the number of effective gravitons producing the dark

force. A detailed derivation follows from an energy balance argument, and can be

found in [5]. Here we notice that, if the dark force arises from the gravitational in-

teraction between baryonic matter of mass mB and the gravitons in the DEC only

contained inside a sphere of a given radius r, the dark force energy contribution can

be evaluated as

HDF = −GN mBM(r)

r
= −GN m

2
DF

r
, (3.66)

where in the first equality M(r) is the dark mass-energy enclosed in the sphere,

already introduced in (3.54), while in the right-hand side the expression of the energy

can be recast as a function of an effective dark mass mDF. It is worth noticing that

we are considering the extensive gravitational regime, so that the graviton occupation

number scales as (3.55). Assuming an interaction energy for the gravitons in the form

εG ∼ mP`P/r, from M(r) = NGεG(r) it follows that,

M(r) ' mP r
2

`P L
. (3.67)

At the end of the calculation one finds that the effective dark force gravitons are

NDF(r) ∼ m2
DF

m2
P

=
mBM(r)

m2
P

=
mB r

2

`P mP L
. (3.68)

In conclusion, from (3.63) the acceleration provided by the gravitons that mediate

the interaction of baryonic matter and cosmic condensate is,

aDF(r) ∼ ε2G(r)

m2
P `P

√
NDF(r) =

√
`P mB

mP r2 L
=

√
aB(r)

L
. (3.69)
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A part of a numerical factor, the result reproduces the MOND formula (3.48). In

[5] this result is claimed to be a consequence of the tension between the holographic

regime and the extensive behavior of gravity, that leads to deviations from the local

Newtonian dynamics, so that the response of the graviton condensate to the presence

of baryonic matter makes both regimes important at galactic scales.

3.4 Long-range Quantum Gravity

We began this thesis by introducing motivations for the need of a fundamental quan-

tum theory of the gravitational interaction. In all successive chapters the construction

of a possible model has been shown, relying on the corpuscular gravity. However, as

we pointed out in Section (1.2.1), a common shared starting point is that gravity

should manifest its quantum nature at the Planck scale. This brings together a no-

table series of problems, starting from the fact that building up a real experiment

which can probe `P is almost an impossible task at the present. Nevertheless, the

corpuscular model of gravity provides a different perspective concerning the scale of

Quantum Gravity. Dark matter phenomenology has a natural explanation as a dark

force emerging from virtual and very soft gravitons pulling out from the cosmic dark

condensate, therefore the description of gravity at galactic scales becomes a mea-

surable quantum phenomenon. In other words, in the corpuscular approach a dark

matter behavior is interpreted as a long-range quantum gravity effect [40].

To clarify the point, let us consider once again a de Sitter universe with cosmological

horizon L, in which we introduce a baryonic source of mass mB that, for simplicity,

is assumed point-like. Considering that pure de Sitter space-time geometry has an

intrinsic scale invariance, the presence of matter generates a characteristic length

scale r0. A natural choice is to identify the new scale with the Schwarzschild radius

of the source r0 = RS = `PmB/mP. Whether quantum effects emerge or not at the

scale length r0 strictly depends on the de Broglie-Compton characteristic wavelength

of matter distribution, that is

λ ' mP `P

mB

. (3.70)

In close analogy with optics, we can infer that quantum effects are completely neg-

ligible if the considered wavelength is much smaller than the scale (λ � r0), while

they become important in the case both quantities are comparable (λ ' r0). It is

now clear that if r0 coincides with the gravitational radius of the source, Quantum

Gravity shows up when mB ' mP, thus recovering the usual Planck scale, with the

inevitable conclusion that quantum effects are confined in the microscopic realm.
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However, in the previous section it was shown that, according to the corpuscular

model, the cosmic graviton condensate reacts to the presence of matter. In this

case it seems reasonable that r0 will also depend on the cosmological scale L, thus

becoming macroscopic. To evaluate the de Broglie-Compton wavelength associated

to the baryonic mass, one shall consider a test particle of mass m at distance r and

its classical Newtonian energy,

UN(r) = −GNmmB

r
. (3.71)

The typical scale of quantum gravity effects is now determined by the condition

λ ' ~
|UN|

' r0 . (3.72)

This implies that r ' r0RSm/~, and therefore quantum effects become relevant at

r0 when the test particle has m ∼ ~/RS, that is of the same order of the Compton

mass of a black hole with mass mB. As a consequence, quantum gravity effects can

arise at mesoscopic and macroscopic scales, for example of the order of magnitude of

galactic radii. A good estimate for r0 can be guessed in different ways depending on

the particular model one is referring to.

It is fascinating that the competition between the holographic and the extensive

regimes of gravity leads to an interesting prediction for r0. As we have seen, one

can identify two regimes: the baryonic matter dominated regime and a dark energy

dominated regime. For the first one, the graviton scaling law is holographic, and

from (3.60) one can guess the number of gravitons subtracted to the cosmological

condensate in a sphere of radius r,

δN(r) ∼ mB r

mP`P

=
RS r

`2
P

. (3.73)

In fact, for r = L (3.62) is recovered. The second regime exhibits an extensive

behavior, as it is shown in (3.55). Looking at the transition region, imposing that the

respective numbers of gravitons become comparable, one finds that

r0 '
√
RS L , (3.74)

that is, the geometric mean of the black hole horizon and the cosmological horizon.

For a given mass distribution, the previous formula sets the scale at which dark

matter phenomena are no longer negligible, and thus quantum gravity effects become

macroscopic. For example, for a typical spiral galaxy with mB = 1011M� one finds

r0 ' 6 Kpc, whereas for a typical dwarf galaxy with mB = 107M� if follows that

r0 ' 80 pc.



Chapter 4

Cosmological Bootstrapped

Newtonian potential

4.1 Motivation

The corpuscular model of gravitational interaction provides an intriguing point of view

on the fundamental quantum nature of gravity. The idea that gravitational systems

are interpreted as quantum systems of microscopic gravitons finds a first possible

realization in the interpretation of black holes as quantum composite self-sustained

condensates at the critical point. In the previous Chapter it has been shown that

the corpuscular interpretation also extends to cosmological spaces. In particular dark

energy arises naturally as a quantum state of the gravitational dynamics, and the

cosmological acceleration has its justification in terms of the interaction with the soft

gravitons of the cosmological condensate. In other words, there is no need of an exotic

cosmic fluid, since the accelerated expansion is fully accounted by the self-interacting

gravitons in the DEC.

Another interesting prediction of the model comes up with the introduction of bary-

onic matter: the local back-reaction of the cosmic condensate to the matter source

seems to reproduce a dark matter behavior. The response to the presence of matter

emerges as a dark force that produces a modification of the Newtonian dynamics at

galactic scales, thus recovering the MOND acceleration.

The aim of this Chapter is to formally evaluate the back-reaction, that mimics a dark

matter behavior, by means of the Bootstrapped Newtonian gravity. We have seen

that the Bootstrapped Newtonian theory allows for an effective field description of

the gravitational potential that can be interpreted as a modification of the Newtonian

dynamics, encoded in Poisson equation, with the introduction of post-Newtonian
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order terms. It provides an useful tool for calculations, and our target is to extend

the same model to the cosmological systems, and then a MOND-like potential is

expected to arise.

Let us remember that, assuming staticity and spherical symmetry, the Bootstrapped

Newtonian potential in the region outside a source with (ADM) mass M is

VBN(r) =
1

4qV

[
1−

(
1 +

6 qVGNM

r

)2/3
]
, (4.1)

and we recall that qV is a dimensionless coupling constant. As we have seen, for

qV = 1 the classical Newtonian potential and its post-Newtonian correction are re-

covered. Since the Bootstrapped Newtonian potential (4.1) was derived in the case

of asymptotically flat space, it vanishes in the limit r → ∞, and cannot describe

a cosmological behavior at large distances. The aforementioned potential is valid

only locally, in the range of distances at which any cosmological expansion can be

neglected. Besides, the corrections to the Newtonian potential becomes significant

only in the vicinity of the black hole horizon.

First of all, the question we are going to address is to find a possible solution of

the field equation (2.35) of Bootstrapped Newtonian gravity that can reproduce a de

Sitter regime at distant r, and at the same time that reproduces the local dynamics by

means of a potential of the form (4.1). This is similar to the Einstein-Straus problem

in General Relativity, that consists in finding a continuous matching between the

local metric and the cosmological regime.

In GR the space-time metric in the neighborhood of a static spherically symmetric star

coincides with the Schwarzschild one. For a real star in our Universe, since space-time

undergoes a cosmological expansion, far from the source mass one expects to recover

a FRWL cosmology. The boundary conditions on which the original Schwarzschild

solution is obtained, in particular the asymptotic flatness, are not valid anymore. For

the sake of simplicity let us assume that the cosmological metric coincides with de

Sitter solution (3.13). If 2m is the Schwarzschild radius of the mass distribution M ,

with m = GNM , and L the Hubble horizon, the outside gravitational potential is now

described by the Schwarzschild-de Sitter metric,

ds2 = −
(

1− 2m

r
− r2

L2

)
dt2 +

(
1− 2m

r
− r2

L2

)−1

dr2 + r2dΩ2 . (4.2)

The field is sourced by the baryonic mass and by a dark fluid with vacuum equation

of state, with cosmological constant Λ = 3/L2. For a realistic source, the strong
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gravity regime near the black hole horizon weakens increasing the distance and when

r � 2m the gravitational field is described quite well by Newtonian gravity. The

turnaround radius RT ∼ (L2m)1/3 represents the radius where the repulsive effect

of the cosmological constant starts to be relevant. Near the cosmological horizon

the gravitational effects become stronger, space-time curvature is no longer negligible

since the Universe is described as a whole system, and the Newtonian limit looses its

validity. Therefore one identifies two regimes of strong gravity near the two horizons,

when r ∼ 2m and r ∼ L. The Newtonian regime corresponds to a length scale R

satisfying the hierarchy

2m� R� L. (4.3)

4.2 Harmonic coordinates

In the derivation of the Newtonian limit for a metric theory of gravity the first step

consists in the choice of a suitable reference frame. The identification of a scalar

potential V as the Newtonian limit of a metric potential follows from the selection

of a coordinate system, associated to a particular physical observer. As we have

pointed out, the basic ingredients consist in the non-relativistic motion of matter

together with the weak stationary field approximation. Then one sets a gauge fixing

condition. In Section 1.3.1 the harmonic gauge was employed. A set of space-time

coordinates Xµ are said to be harmonic if

2Xλ = gµν∇µ∇νX
λ = 0 , (4.4)

where the covariant derivative∇ has been introduced. Let us restrict to the particular

case of a static and isotropic gravitational field. This means that there exists a set

of space-time coordinates (t,x) in such a way that the metric tensor representing the

field does not depend on the coordinate t and the invariant line element contains

only spatial rotational invariant forms constructed with x and dx. The assumption

of spherical symmetry leads naturally to set aside the spatial coordinate x in favor

of polar coordinates (r̄, θ, φ) where the usual angular coordinates are introduced, and

r̄ has the meaning of the areal coordinate: the physically measured area of a surface

of constant r̄ and t is given by A = 4πr̄2. We refer to this set of coordinates as the

standard one, and the generic metric has the form

ds2 = −A(r̄) dt2 +B(r̄) dr̄2 + r̄2(dθ2 + sin2 θ dφ2) . (4.5)
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A line element in standard coordinates is said to be in a Schwarzschild-like form if

A(r̄)B(r̄) = 1. Setting A(r̄) = f(r̄),

ds2 = −f(r̄) dt2 +
dr̄2

f(r̄)
+ r̄2 dΩ2 . (4.6)

Starting from the standard static coordinates, one can construct a new set of coordi-

nates (t,X) that fulfill the harmonic condition (4.4). By parametrizing

X1 = r(r̄) sin θ cosφ , X2 = r(r̄) sin θ sinφ , X3 = r(r̄) cos θ , (4.7)

we introduce r as the harmonic radius, or harmonic coordinate. Imposing (4.4) one

finds that the harmonic radial coordinate, as a function of the areal coordinate, must

satisfy a second order differential equation [42] that reads,

d

dr̄

[
r̄2f(r̄)

dr(r̄)

dr̄

]
− 2 r(r̄) = 0 . (4.8)

Once a solution of (4.8) is found and assuming that r(r̄) is invertible, at least in

the domain of interest, the metric function f(r̄) can be expressed in terms of the

harmonic radius, and we denote it with F (r). Finally, the general metric in harmonic

coordinates yields,

ds2 = −F (r) dt2 +
r̄2

r2
dX2 +

1

r2

[
1

F (r) r′ 2
− r̄2

r2

]
(X · dX)2 , (4.9)

where the prime denotes differentiation with respect to the areal coordinate.

The equation (1.37) expresses the connection between the Newtonian potential and

the time-time component of the metric tensor. Since it is derived from the assumption

of a harmonic reference frame, the correct definition of the Newtonian limit must refer

to the metric (4.9) in harmonic coordinates. We therefore set

V (r) = −1

2
[1− F (r)] . (4.10)

A very simple case is Schwarzschild space-time outside a source of mass M , whose

metric function is f(r̄) = 1−2m/r̄. Solving (4.8) reveals that the harmonic coordinate

is related to the areal coordinate by a linear relation,

r(r̄) = r̄ −m. (4.11)

Therefore, far from the black hole horizon the areal and the harmonic coordinates are

essentially the same. The corresponding scalar potential reads,

V (r) = −m
r

(
1 +

m

r

)−1

= −m
r

+
m2

r2
+ · · · (4.12)
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The potential we obtain contains the usual Newtonian potential as a first order term

in Newton’s constant 1, but shows an infinite series of post-Newtonian corrections.

Thus, the choice of the correct reference frame is an unavoidable step in the derivation

of the Newtonian limit: adopting the standard form of Schwarzschild metric, instead

of the harmonic one, would produce a different potential 2. In the following we will

repeat the same reasoning for cosmological spaces.

4.2.1 de Sitter

Let us start by considering de Sitter space-time. Denoting with L the Hubble radius

of the de Sitter universe, the second order differential equation for the harmonic

coordinate has the form,

d

dr̄

[
r̄2

(
1− r̄2

L2

)
dr(r̄)

dr̄

]
− 2 r(r̄) = 0 . (4.13)

The general analytic solution reads,

r(r̄) = a1

[
L

r̄
+

(
1 +

L2

r̄2

)(
a2 − arctanh

r̄

L

)]
, (4.14)

where a1, a2 are two integration constants. Let us fix the constants with the follow-

ing argument. In close analogy with the Schwarzschild case, one expects that the

harmonic coordinate r should almost coincide with the areal coordinate r̄ at large

distance from the horizon. Therefore we investigate the case r̄ � L, or equivalently,

introducing the dimensionless parameter y = r̄/L, in the limit y � 1. The solution

(4.14) is singular for y = 0. However, the limit for y → 0 of the harmonic coordinate

exists and it is finite at the condition that the constant a2 vanishes. In fact, setting

a2 = 0 one finds that

lim
y→0

r(y) = 0 . (4.15)

The first derivative in the same limit is constant,

lim
y→0

r′(y) = −4 a1

3
. (4.16)

This uniquely allows us to choose a1 = −3L/4. In fact the relation between the

harmonic coordinate and the areal one for de Sitter space assumes now the form

r(r̄) =
3L

4

[
−L
r̄

+

(
1 +

L2

r̄2

)
arctanh

r̄

L

]
. (4.17)

1since the quantity m is first order in GN.
2Considering Schwarzschild metric in standard coordinates, which depends on the areal radius,

one obtains the usual result of a potential V = −m/r without post-Newtonian corrections.
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The first terms of a series expansion around the coordinate origin of the solution

yields,

r ' r̄

[
1 +

2 r̄2

5L2
+O

(
r̄4

L4

)]
. (4.18)

The result explicitly shows that the two coordinates are indeed different only if r̄

approaches the Hubble horizon. Let us proceed in the derivation of the Newtonian

limit for de Sitter metric. Although the inverse function of (4.17) has no closed form,

from its series expansion one deduces that

r̄ ' r

[
1− 2 r2

5L2
+O

(
r4

L4

)]
. (4.19)

Then, we use the relation just found to recast the de Sitter metric function f(r̄) =

1− r̄2/L2, originally containing the areal coordinate, in the form

F (r) = 1− r2

L2

[
1− 2 r2

5L2
+O

(
r4

L4

)]2

. (4.20)

Finally, the scalar potential corresponding to the Newtonian limit of de Sitter metric

is now,

V (r) ' − r2

2L2

(
1− 2 r2

5L2

)2

' − r2

2L2
+

2 r4

5L4
(4.21)

up to r4/L4 terms. It is worth noting that the result (4.21) contains a quadratic

potential, which is usually referred to when dealing with the Newtonian limit of de

Sitter. This allows for a Newtonian interpretation of the accelerated expansion of

the universe: a test particle in such a universe is subjected to a force that increases

linearly with the distance, and that pushes the particle towards the cosmological

horizon. However, the same result contains also a quartic post-Newtonian correction

that becomes dominant near the Hubble horizon, when r ∼ L.

4.2.2 Schwarzschild-de Sitter

The situation changes in the Schwarzschild-de Sitter case. The corresponding dif-

ferential equation for the harmonic radius depends on two length scales, defined by

the Schwarzschild radius 2m and the Hubble radius L. The second order differential

equation for the harmonic coordinate now reads,

d

dr̄

[
r̄2

(
1− 2m

r̄
− r̄2

L

)
dr(r̄)

dr̄

]
− 2r(r̄) = 0 . (4.22)
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Let us introduce the dimensionless quantities

x =
r̄

m
, λ =

L

m
. (4.23)

The equation (4.22) can be recast in a different fashion, namely,[
−x+

x2

2
− x4

2λ2

]
d2r(x)

dx2
+

[
−1 + x− 2x3

λ2

]
dr(x)

dx
− r(x) = 0 . (4.24)

We obtain a second order linear differential equation with polynomial coefficients, a

particular case of a class of differential equations of the following form,

p(x)F ′′(x) + p′(x)F ′(x) + µF (x) = 0 , (4.25)

where the prime is a derivative with respect to the variable x, F (x) is the unknown

function, µ is a real constant and p(x) is a polynomial in x with real coefficients and

degree n,

p(x) =
n∑
j=0

bjx
j . (4.26)

It seems natural to find a power series representation of F (x) by assuming the exis-

tence of a set of real coefficients {ak} such that

F (x) =
∞∑
k=0

akx
k , (4.27)

and subsequently its derivatives read,

F ′(x) =
∞∑
k=1

k akx
k−1 , F ′′(x) =

∞∑
k=2

k(k − 1) akx
k−2 . (4.28)

After the substitution in the general equation (4.25) and equating terms with same

power of x, one can find a set of recursive relations that allows for the determination

of the coefficients ak, given the coefficients bj. Then, one compares (4.25) with (4.24)

and, after setting the polynomial degree n = 4 and noticing that

b0 = b3 = 0 , b1 = µ = −1 , b2 = −1

2
, b4 = − 1

2λ2
, (4.29)

the calculation yields,

ak =
1

2

(
1− k − 2

k2

)
ak−1 +

(
3− k
2kλ2

)
ak−3 , (4.30)
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and we use the assumption a−2 = a−3 = 0. The coefficient a0 remains arbitrary and

must be fixed with an additional condition in order to select the more convenient

solution. Using the recursive formula for the equation (4.24) one is left with the

following power series of x,

r(x) = a0

[
1− x+

x4

8λ2
+O(x5)

]
. (4.31)

One expects that in the limit λ → ∞, corresponding to the vanishing of the cos-

mological constant, the Schwarzschild harmonic coordinate (4.11) is recovered. We

therefore choose a0 = −m and,

r(x) = −m
[
1− x+

x4

8λ2
+O(x5)

]
' −m+ r̄ − r̄4

8L2m
+ · · · (4.32)

The first two terms of the expansion reproduces the Schwarzschild case, then we find

a series of corrections. Looking at the first x4 correction, it becomes comparable with

the preceding one when x ∼ λ2/3. For a typical spiral galaxy, like the Milky Way, one

can reasonably assume λ ∼ 1012, so that the harmonic radius deviates considerably

from the Schwarzschild one for x ∼ 108. Since the radius of the Milky Way is around

x ∼ 104, we conclude that as long as one is dealing with systems at galactic scales,

the harmonic radius is almost equal to the areal one.

Differently from Schwarzschild and de Sitter case, here there is no closed solution in

terms of a finite polynomial. In fact, the necessary condition for a polynomial solution

of degree N > 0 can be found to be

N(N + 3) b4 = 0 , (4.33)

and since b4 6= 0 there is no natural non-trivial solution for the polynomial degree.

For the sake of completeness, one is free to introduce a different rescaled variable in

terms of the Hubble horizon,

y =
r̄

L
. (4.34)

The differential equation for the harmonic radius now reads,[
−y
λ

+
y2

2
− y4

2

]
d2r(y)

dy2
+

[
−1

λ
+ y − 2y3

]
dr(y)

dy
− r(y) = 0 . (4.35)

Making use of the Ansatz r =
∑

k cky
k, with the same argument of this Section one

arrives to the very same solution (4.32).
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4.3 Bootstrapped potential with cosmological con-

stant

Let us start from the Bootstrapped Newtonian equation (2.35) for an effective grav-

itational field V (r). We make use of the assumption that the field is sourced by a

dark energy perfect fluid with constant energy density,

ρ =
mP Λ

8π `P

. (4.36)

The non-linear field equation assumes the following form,

4V = −Λ +
2 qV (V ′)2

1− 4 qV V
. (4.37)

One can perceive that incorporating the dimensionless parameter qV into the defini-

tion of the field by means of a transformation qV V → V , the field equation is recast

as

4V = −qVΛ +
2 (V ′)2

1− 4V
, (4.38)

and this results in a rescaling of Λ by the same factor. It should be noticed that if

the coupling parameter qV is set to zero, the equation reduces to Poisson equation in

the present of a cosmological constant with no matter density,

4V0 = −Λ . (4.39)

Let us recall that the general solution of (4.39) for a spherically symmetric system is

V0(r) = −Λ

6
r2 − c1

r
+ c2 . (4.40)

with c1, c2 integration constants. Then, the equation must be supplied with suitable

boundary conditions in order to fix the constants, according to the physical system

under study. In particular we can distinguish two cases of interest:

� an universe in which matter is completely absent, and the only source of the

gravitational field is the constant Λ. In this case the field diverges when r →∞
but it remains regular in r = 0. Given that an observer in the origin of the

coordinate frame r = 0 experiences no acceleration, we can safely choose c1 =

c2 = 0, and

V0(r) = −Λr2

6
. (4.41)
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� the gravitational field outside a spherically symmetric source of mass M . The

condition we currently impose is that, turning off the cosmological term, the

field has the usual Newtonian behavior. In other words, in the limit Λ→ 0 the

r−1 Newtonian potential is recovered. Thus, we choose c1 = GNM, c2 = 0, and

V0(r) = −GNM

r
− Λr2

6
. (4.42)

The Bootstrapped equation (4.37) appears as a non-linear modification of the Poisson

equation, and one expects that it can describe both the two aforementioned different

cases. In this Section we will set the boundary conditions accurately in order to derive

the Bootstrapped gravitational potential for an universe empty of matter first, then

we will focus on the Bootstrapped potential in the region external to a matter source.

4.3.1 Absence of matter

For reproducing the gravitational field responsible for an accelerated expansion in an

empty universe, we use the conditions

V (0) = 0 , V ′(0) = 0 . (4.43)

The solution can be found numerically and it is shown in Figure 4.1 for qV = 1. The

field reproduces the Newtonian behavior almost precisely for small r, while, increasing

the distance, the Bootstrapped potential diverges more slowly.

We can introduce a Newtonian definition of cosmological horizon according to a notion

analogous to the escape velocity. A test particle at a distance R is subjected to a

force F = −dV/dr pointing in the direction of increasing r. The minimum speed that

the test particle must possess in order to move from its location and reaching r = 0

against the cosmological expansion is calculated from energy conservation,

1

2
v2

min + V (R) = V (0) = 0 . (4.44)

Since the particle speed cannot exceed the speed of light c = 1, there exists a distance

r = LH such that, if the test particle is located outside this radius, the minimum speed

for escaping from the expansion in bigger than c. If one defines LH as the cosmological

horizon, the condition

2V (LH) = −1 (4.45)

allows us of to determine such horizon. Figure 4.2 shows how the ratio LH/L varies

as a function of different values of the constant Λ. The cosmological horizon for the
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Figure 4.1: Comparison between numerical solution of Bootstrapped Newtonian field equa-

tion (4.37) in the case of an empty universe (solid line) and the quadratic potential V0 in

(4.41) (dashed line), in units of Hubble radius L and qV = 1.

Bootstrapped potential appears to slightly overcome the de Sitter horizon L. One

finds that

L ' 0.95LH . (4.46)

4.3.2 Exterior region of a static source

Consider now the solution outside a source of mass M . As we have pointed out, locally

the Bootstrapped potential should reproduce the vacuum solution (4.1). Therefore,

one expects that at a fairly short length scale r∗ � L the following equalities are

fulfilled with good approximation,

V (r∗) = VBN(r∗) , V ′(r∗) = V ′BN(r∗) . (4.47)

If RS = 2GNM is the Schwarzschild radius of the source, a reasonable choice is

r∗ = 10RS. In Figure 4.3 numerical solutions with these conditions are presented, for

different values of Λ and, equivalently, of the Hubble radius L.

Although the field equation has no closed solution, we will try to obtain an analytic

approximation of the potential under some particular limits. Let us introduce the

following Ansatz,

V (r) ≡ V0(r) + ψ(r) , (4.48)
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Figure 4.2: Ratio between the cosmological horizon LH (qV = 1) and the de Sitter Hubble

radius L as a function of the constant Λ. We take as a reference value the current best

estimate for the cosmological constant Λ0 = 2.84× 10−122 `−2
P [10].

where V0 is a solution of modified Poisson equation (4.39) and ψ(r) is an unknown

function. One should notice that if Λ→ 0 the solution potential must show the usual

Newtonian behavior at large distances. This is equivalent of looking for a solution

V (r) that satisfies the following boundary condition,

lim
r→+∞

V (r)

∣∣∣∣
Λ=0

= 0 . (4.49)

Making use of the Ansatz, the boundary condition on V (r) implies two requirements

which must hold together, namely,

lim
r→+∞

V0(r)

∣∣∣∣
Λ=0

= 0 and lim
r→+∞

ψ(r)

∣∣∣∣
Λ=0

= 0 . (4.50)

By choosing V0(r) as (4.41), the first condition is automatically fulfilled. Therefore,

in the following, we impose that, in the large r limit and having set aside the cosmo-

logical constant, the function ψ(r) alone reproduces the Newtonian potential. The

substitution of the Ansatz in the field equation (4.37) leads to a differential equation

for ψ,

4ψ =
2 qV (V ′0 + ψ′)2

1− 4 qV (V0 + ψ)
, (4.51)
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(a) (b)

(c) (d)

(e)

Figure 4.3: Numerical solutions for the Bootstrapped potential outside a static source of

mass M with qV = 1 (solid line) compared to Newtonian potential (4.42) (dashed line) in

units of gravitational radius RS = 2GNM for different values of the Hubble horizon in units

of RS.
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(a) (b)

(c) (d)

Figure 4.4: Ratios between the potential V0 and the function ψ1 in absolute value with

qV = 1 as a function of the radial distance r, in units of gravitational radius RS = 2GNM

for different values of the parameter: (a) L = 103RS, (b) L = 106RS, (c) L = 107RS, (d)

L = 109RS.

where we make use of the fact that V0 solves the modified Poisson equation. We

investigate two possible cases. In the small distance limit one has |V0(r)| � |ψ(r)|
and the equation (4.51) reduces to

4ψ =
2 qV (ψ′)2

1− 4 qV ψ
. (4.52)

Therefore, ψ(r) satisfies the very same equation for the Bootstrapped Newtonian

vacuum potential in the asymptotically flat case, presented in (2.37). Since the general

integral is known,

ψ1(r) =
1

4 qV

[
1− c1

(
1 +

c2

r

)2/3 ]
, (4.53)
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one can fix the integration constants by comparing the behavior at infinity to the

Newtonian potential, giving c1 = 1 and c2 = 6 qVGNM . Finally the Bootstrapped

potential in this limit reads,

V1(r) ' ψ1(r) + V0(r) =
1

4 qV

[
1−

(
1 +

6 qV GNM

r

)2/3 ]
− r2

2L2
. (4.54)

The potential appears as a sort of modification of the Schwarzschild-de Sitter New-

tonian potential: the quadratic term enforces the cosmological expansion, but far

away from the cosmological horizon the first term dominates. Performing the expan-

sion in r under the condition that GNM � r � L, one finds the expected positive

post-Newtonian contribution to the Newtonian potential for qV = 1, namely

V1(r) ' −GNM

r
− r2

2L2
+ qV

G2
NM

2

r2
+ · · · (4.55)

The proposed solution V1(r) was found assuming that the ratio between V0 and ψ1

(in absolute value) remains very small. In Figure 4.4 the latter ratio has been plotted

for different values of L.

Let us analize a second possibility, that is the large r limit corresponding to the

asumption that |V0(r)| � |ψ(r)|. The vacuum field equation now reads,

4ψ =
2 qV (V ′0)2

1− 4 qV V0

. (4.56)

The equation can be easly integrated and the general solution yields,

ψ2(r) = c1 −
c2

r
+

r2

6L2
− 1

4qV

[
log

(
1 + qV

2r2

L2

)
+

√
2

qV

arctan
(√

2 qV r/L
)

r/L

]
.

(4.57)

Form the boundary condition (4.50) we deduce that c1 = 1/2 and c2 = GNM . The

Bootstrapped potential in this case is

V2(r) ' −GNM

r
− r2

3L2
− 1

4qV

[
−2 + log

(
1 + qV

2r2

L2

)
+

√
2

qV

arctan
(√

2 qV r/L
)

r/L

]
.

(4.58)

A series expansion for r � L reveals that,

V2(r) ' −GNM

r
− r2

2L2
+ qV

r4

10L4
+ · · · (4.59)
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4.3.3 Expansion in terms of the coupling parameter

The Bootstrapped equation (4.37) contains the dimensionless coupling parameter qV,

which in turn implements the gravitational self-coupling of the field. We introduce

an expansion of the solution potential in terms of the self-interaction parameter qV,

V (r) = V (0)(r) + qVV
(1)(r) . (4.60)

After a substitution in the field equation, we can separate it into an equation for the

zero order potential

4V (0) + Λ = 0 , (4.61)

and a second equation for the first order potential,

4V (1) = 2
[
V (0) ′]2 . (4.62)

From (4.61) one exactly recovers the modified Poisson equation. Making use of (4.42),

the first order equation can be integrated,

V (1)(r) = c1 −
c2

r
+
G2

NM
2

r2
+

r4

10L4
− 2GNMr

L2
. (4.63)

The overall potential up to first order contributions in qV can be written as

V (r) = −GNM + qV c2

r
− r2

2L2
+ qV

(
c1 +

G2
NM

2

r2
+

r4

10L4
− 2GNMr

L2

)
. (4.64)

In the 1/r term the mass of the source appears shifted by an arbitrary constant. This

is not problematic, since one can redefine GNM+qV c2 → GNM and then one neglects

higher order than one in qV. Besides, we fix c1 = 0 for the boundary conditions. In

conclusion the Bootstrapped potential reads,

V (r) = −GNM

r
− r2

2L2
+ qV

(
r4

10L4
− 2GNMr

L2
+
G2

NM
2

r2

)
. (4.65)

The solution (4.65) shows that at order zero in the coupling parameter the poten-

tial concides with the Poissonian one. The first order terms have the form of post-

Newtonian corrections: by a comparison with (4.21) we identify a r4 correction to

the de Sitter potential, as well as the already mentioned r−2 second order in GN

correction.



Conclusion and outlook

In this work an approach to Quantum Gravity based on the corpuscular model of

gravitational interaction was presented. After an introduction on the problem of a

quantum theory of gravity, paying particular attention to the non-renormalizability

of General Relativity, beginning with Section 1.5 we discussed the main motivation

underlying the corpuscular interpretation of gravitational systems. The fist interest-

ing results were found in the context of black hole physics. The corpuscular picture

of a black hole has the merit of describing it in pure quantum terms, as a critical

Bose-Einstein condensate of microscopic self-interacting gravitons, whose wavelength

distribution is peaked on the characteristic length of the system. This picture is nat-

urally extended to a cosmological context. In fact, the relation (3.24) between the

cosmological horizon and the mass-energy enclosed in the de Sitter horizon shows an

analogy with the definition of a Schwarzschild radius of a black hole. This leads to a

corpuscular interpretation of de Sitter space-time, and gives a quantum description

of dark energy in terms of a critical Bose-Einstein condensate of gravitons. The cor-

puscular model predicts that the presence of baryonic matter causes the dark energy

condensate to respond locally, since a small part of cosmic gravitons modify their

interaction energy and are pulled out of the condensate. One can distinguish three

populations of quanta: the gravitons that remain in the condensate phase, responsible

for the accelerated cosmic expansion; the gravitons that interact with the baryonic

source, enforcing the Newtonian gravitational dynamics; the gravitons that give rise

to a dark force. Using (3.63) the contribution to the radial acceleration from these

dark gravitons has been calculated, and reproduces the MOND result (3.48) up to a

numerical factor. To be more precise, MOND theory predicts that at galactic scales

the gravitational acceleration is no longer the Newtonian one (that scales as r−2) but

goes like r−1. This indicates that the gravitational potential manifests a logarithmic

behavior. In Chapter 4 we presented a possible approach for the derivation of the grav-

itational potential that can encode the back-reaction of the dark energy condensate

to local matter. In particular we made use of the Bootstrapped Newtonian gravity,
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that has been presented as an effective field theory of the gravitational potential in

Chapter 2. The Bootstrapped vacuum solution (4.1) refers to an asymptotically flat

space and cannot include a cosmological behavior. We considered the Boostrapped

Newtonian field equation in the case the field is sourced by a constant vacuum en-

ergy density and assuming staticity and spherical symmetry. The resulting equation

(4.37) can be interpreted as a non-linear extension of the classical Poisson equation

with cosmological constant. We found that the Bootstrapped potential shows a cos-

mological behavior at large distances, and with a suitable choice of the boundary

conditions, it can describe two different systems: an expanding universe completely

empty of matter, and the gravitational field outside a massive source.

The first result follows from the condition that the solution potential and its derivative

are regular on r = 0, and that an observer in the coordinate origin is not subjected

to the cosmological acceleration. The numerical solution (Figure 4.1) differs from the

Newtonian solution in the vicinity of the Hubble horizon. In addition, a Newtonian

definition of the cosmological horizon was introduced, thus the Bootstrapped universe

is found to be slightly larger than the de Sitter one.

For the potential in the presence of matter we evaluated the numerical solution (Figure

4.3) and we propose two analytic forms. With the function (4.54) we recover the local

Bootstrapped potential plus a quadratic de Sitter-like contribution. Besides, the

most interesting result follows from the solution (4.58), which shows that from the

Bootstrapped field equation a logarithmic potential can arise. This result is significant

since, according to MOND theory, in order to mimic a dark matter phenomenology

the gravitational potential should scale logarithmically. In the light of the corpuscular

model, the presence of a logarithmic expression for the potential can be interpreted

as a dark matter behavior that emerges from the back-reaction of the dark energy

condensate.

One weakness of the result found in this work is that it is not clear if the logarithmic

potential can be the dominant contribution at galactic scales. Although it is interest-

ing that a suitable choice of the source in Bootstrapped Newtonian theory eventually

leads to the desired form of the potential, one future challenge will concern a deep

analysis of the non-linear Bootstrapped field equation. Moreover, one has to link the

effective field description of the potential to the corpuscular model by performing a

quantum uplifting of the classical theory. In particular, the classical potential should

come up as the expectation value of a suitable scalar quantum field on a coherent

state.
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