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Sommario

I sistemi concorrenti e distribuiti, a partire da piccoli progetti fatti in casa fino a backend estremamente complessi
basati su microservizi, compongono la maggior parte dei prodotti software odierni. Ci sono qualità rilevanti che
li distinguono e ne fanno un interessante oggetto di studio: ogni sistema è composto da una serie di unità più
piccole, ciascuna delle quali esegue delle computazioni locali senza che le altre possano prendervi parte, e che
possono cooperare (di solito attraverso meccanismi di sincronizzazione) o competere per le risorse. La teoria
della concorrenza mostra che non è facile definire quando due sistemi sono equivalenti: alcune nozioni, come
l’isomorfismo, sono troppo restrittive ed altre, come l’equivalenza di tracce, troppo lasche. In ambito distribuito
il problema peggiora ulteriormente perché, ad esempio, non è possibile interagire con un sottoinsieme del sistema
per inferirne il comportamento globale.

Tra i vari modelli matematici proposti, le reti di Petri finite sono uno dei più studiati ed adatti alla descrizione
di questo tipo di sistemi, poiché ne ricalcano le qualità più distintive. Infatti, lo stato globale di una Rete di Petri
è formato da una collezione (detta marking) di stati locali (detti token). L’esecuzione di una transizione è una
trasformazione locale che riguarda solo una parte dei token in un marking. Pertanto, è semplice interpretare un
token come un processo sequenziale ed un marking come un sistema distribuito che porta avanti una computazione
più complessa all’interno della quale i processi possono cooperare o competere. Le equivalenze interessanti su
reti di Petri quindi devono considerare vari aspetti del modello, quali concorrenza (e relazioni di causalità), scelte
e ramificazioni, invarianti. Queste non sono considerate dalla maggior parte delle equivalenze per altri modelli,
ad esempio interleaving bisimilarity. Dalla loro introduzione del 1962 da parte di C.A. Petri, sono state studiate
diverse varianti e classi di reti, ciascuna con differente potere espressivo.

Nella prima parte del lavoro, si studiano equivalenze su reti Place/Transition (finite) safe e bounded, i.e. reti
composte solo da posti e transizioni, nelle quali il numero massimo di token in ogni posto è rispettivamente 1
oppure finito. Sono riportati o provati alcuni risultati riguardanti due equivalenze simili tra loro, fully-concurrent
bisimilarity e causal-ney bisimilarity, che posseggono buona parte (o tutte, nel caso della seconda) le proprietà
elencate sopra. Queste equivalenze considerano ogni diversa esecuzione concorrente della rete come un oggetto
matematico a sè stante, detto processo. Le prove sono basate su una generalizzazione, per mezzo di indici, della
tecnica di prova a marking ordinati usata da Vogler per dimostrare la decidibilità di fully-concurrent bisimilarity
su reti safe.

Nella seconda parte del lavoro, si studiano equivalenze su reti Place/Transition (finite) ma con archi inibitori
e senza limiti al numero di token che possono occupare un posto, dette reti PTI. In questo modello, i token
possono non solo permettere l’esecuzione di una transizione, ma anche bloccarla. Si formula una equivalenza
per reti PTI, chiamata pti-place bisimilarity, che estende in modo conservativo place-bisimilarity (una equivalenza
decidibile per reti Place/Transition, proposta recentemente), e se ne prova la decidibilità. Questa è la prima
volta che una equivalenza è provata essere decidibile per reti PTI. Il risultato è rilevante per due ragioni: la
prima è che le reti PTI sono un modello Turing-completo, dove molte altre proprietà (ad esempio, la reachability)
sono indecidibili; la seconda è che pti-place-bisimilarity è più discriminante di causal-net bisimilarity ma meno
dell’isomorfismo, consentendo per esempio lo svolgimento dei loop o la condivisione di risorse. Tuttavia, rispetto
alle altre equivalenze note, ha la particolarità di non essere coinduttiva: non è detto che l’unione di pti-place
bisimilarity sia a sua volta una pti-place bisimilarity.
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Abstract

Distributed and concurrent systems, ranging from small-sized hobby projects to extremely complex application
backends based on microservices, are arguably the largest part of present-day software artifacts. These are defined
by distinctive features: the system is composed by a collection of smaller units, each one performing local compu-
tations and executing as a black-box to others, which can cooperate (usually, by synchronization) or compete for
resources. When studying concurrency, it is not easy to define what does it mean for two systems to be equivalent:
some notions, such as isomorphism, are too fine to be useful and others, such as trace equivalence, might be too
abstract and consider equivalent systems which intuitively should not be. In a distributed setting, the scenario gets
even worse, because it is not possible to, e.g., interact with a part of the system to infer the general behavior.

Among many mathematical modeling languages, finite Petri Nets are one of the most studied and suitable
for the description of distributed and concurrent systems, as they mirror the two former features. Indeed, a Petri
Net describes the global state of a system as composed of a collection, called marking, of local states, called
tokens. The execution of a transition is a local transformation involving some tokens of a marking. A token can
thus be interpreted as a sequential process and a marking as a distributed system where a complex task is being
executed, with possibility of cooperation or competition between processes. Sensible equivalences on Petri Nets
must then take into account many aspects of the model, such as concurrency (causality relations), choices and
branching, inevitability of transitions, invariants (w.r.t. substitutions or execution time). Indeed, most of the usual
equivalences on other concurrency models, such as interleaving bisimilarity, do not hold a number of the former
properties. Since the introduction of the model in 1962 by C.A. Petri, many different flavors and classes of nets
have been studied, each with different expressiveness and properties.

The first part of this work is concerned with equivalences on safe and bounded finite Place/Transition nets, i.e.
nets composed only of places and transitions where the number of tokens in each place can be at most 1 or finite
respectively. Some results are adapted or proved for two similar equivalences, namely fully-concurrent bisimilarity
and causal-net bisimilarity, holding most (even all, in the case of the second) of the interesting properties from
above. These equivalences take into account a different object, called process, for each possible concurrent run of
the net. The proofs are developed using an index-based generalization of the ordered marking proof technique that
Vogler used to demonstrate that fully-concurrent bisimilarity (or, equivalently, history-preserving bisimilarity) is
decidable on finite safe nets.

In the second part of this work, finite Place/Transition Petri nets with inhibitor arcs (PTI nets for short) and
without bound on the number of tokens are studied. In this model, tokens can not only allow a transition to
execute, but also inhibit it. PTI nets are equipped with a behavioral equivalence, called pti-place bisimilarity,
that conservatively extends place bisimilarity (a decidable Place/Transition net equivalence, recently proposed),
and is the first decidable equivalence for this model. The decidability result is truly relevant for two reasons: first,
PTI nets are a Turing-complete model of computation and many properties, such as reachability, are not decidable;
second, pti-place-bisimilarity is finer than causal-net bisimilarity but coarser than isomorphism, allowing e.g. loop
unwinding and resource sharing, thus being an actually sensible and useful equivalence. However, differently from
standard concurrent equivalences, it is not coinductive: the union of pti-place bisimilarities might not be a pti-place
bisimilarity.
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Chapter 1

Introduction

Petri nets are one one of the most studied and largely used mathematical modeling languages for the description of
concurrent and distributed systems. The model was first proposed in 1962 by C. A. Petri [Pet62] as a generalization
of automata, where the basic idea is to describe the global state of a system as composed of a collection, called
marking, of local states, called tokens. The execution of a transition is a local transformation involving some
tokens of a marking. A token can thus be interpreted as a sequential process and a marking as a distributed system
where a complex task is being executed, with possibility of cooperation or competition between processes.

This work focuses on two types of Petri nets: the original place/transition (P/T) nets [Pet62] and P/T nets with
inhibitor arcs (PTI), first introduced in [AF73]. The latter is an extension of the former, where a token (actually,
the presence of it) may not only allow, but also prevent the execution of a transition. Despite the seemingly
small difference, the introduction of inhibitor arcs greatly increase the expressive power of P/T nets by reaching
Turing-completeness [Age74]. However, both these flavors of Petri nets have been extensively used in the study
of concurrent and distributed systems, e.g. in [Gor17; Rei85; Pet81] for P/T nets and in [Hac76; Mar+98; BG09]
for PTI nets.

As stated above, P/T nets are not Turing complete, and indeed, not surprisingly, the reachability problem (i.e.,
checking whether a given marking is reachable from the initial one) is decidable. Nonetheless, only recently the
decidability of place bisimilarity [Old91; ABS91; Gor21], a behavioral equivalence, coarser than net isomorphism
(which is decidable but too discriminating) and finer than interleaving bisimilarity (which is undecidable [Jan95])
has been proved [Gor21]. Yet, interleaving bisimilarity is decidable for finite bounded nets (i.e. nets with a
finite number of reachable markings) and it has been conjectured (e.g., in [Vog91]) that also truly concurrent
behavioral equivalences are decidable for this restricted class of P/T nets. Truly concurrent equivalences are
”truly” concurrent in the sense that they capture all causal links between actions, and thereby all concurrency.
While some decidability results [Vog91; JM96] for these are available in the setting of finite safe nets (i.e., nets
that can hold one token at most in any place), to the best of our knowledge, very little decidability proofs were
provided for the case of bounded nets [MP97; Val93].

In [Gla15] some interesting properties of a ”good” equivalence are outlined, such as:

• concurrency: the equivalence should fully capture causality relations and concurrency (and the interplay
between causality and branching time);

• being a branching time equivalence: the equivalence should take into account at which point the choice
between two executions is made, and not only consider the set of possible executions of a process. This
allows to capture phenomena like deadlock behaviour;

• preserving inevitability: if two nets are equivalent, and in one the occurrence of a certain action is inevitable,
then so is it in the other;

• being preserved under action refinement: if in two equivalent nets the same substitutions of nets for actions
are made, the resulting nets are still equivalent;

• being real-time consistent: for every association of execution times to actions, assuming that actions happen
as soon as they can, the running times associated with computations in equivalent systems are the same.

There are many equivalences (e.g., trace equivalence, interleaving bisimilarity, partial order trace equivalence)
which do not hold a relevant number of these properties [Gla15]. In the first part of this work, we will focus on
equivalences that hold most of the five: causal-net bisimilarity and fully-concurrent bisimilarity.
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Both equivalences are based on the notion of process of a net, which is essentially a way to model a run of
the net using a new, conflict-free, acyclic net (called causal net) together with a mapping function to the original
one. Given a net, a process can be obtained by unrolling it, choosing one of the alternatives in case of conflict:
as a matter of fact, conflicts in the original are represented by the existence of multiple processes, each of which
models a different run. Note that this notion of process differs from the one used in process algebra, where a
“process” refers to the entire behaviour of a system, including all its choices. The acyclic nature of the process net
gives rise to a preorder on its transitions (called events).

Causal-net bisimilarity, proposed in [Gor20a], coincides with structure-preserving bisimilarity [Gla15] and
holds all of the five former properties. Intuitively, two marked nets are causal-net equivalent if their processes
share the same causal net. Moreover, nets that differ only in their unreachable parts are nonetheless considered
causal-net equivalent.

Fully-concurrent bisimilarity was defined in [Bes+91], and it is an adaptation to P/T nets of history-preserving
bisimilarity, defined in [GG89] over event structure [Win87], but first proposed in [RT88] under the name of
behavior-structure bisimilarity, and independently defined also by [DDM89] (who named it mixed ordering bisim-
ilarity). The definition of fully-concurrent bisimilarity we actually use is that in [Gor20a], which is a slight adap-
tation of the original one in [Bes+91]. It holds most of the properties stated above (including, ça va sans dire,
being truly concurrent), but does not preserve inevitability (see [Gla15]). However, it has been longer studied (e.g.
[Vog91; JM96]) and is slightly coarser than causal-net bisimilarity, taking into account only the ordering of events
and not the whole causal net. As a matter of fact, decidability of fully-concurrent bisimilarity on bounded nets
was proved by Montanari and Pistore in [MP97]; however we use a different approach, defined directly on the net,
and argue that this leads to a better complexity in the general case, thus making it an interesting addition to this
work.

For the decidability of fully-concurrent and causal-net bisimilarity on finite safe nets, we follow the approach
used by Vogler in [Vog91] and [Vog95], i.e. defining a preorder that keeps information on the most recently
generated tokens. Then the same proof technique is generalized to bounded nets by providing a refined semantics
based on the individual, rather than collective, token interpretation [Gla05]. This refined semantics is, to the best
of our knowledge, new. A similar idea was followed in [Val93]; however, some significant details of that work are
wrong, first and foremost the individual treatment of tokens.

On the other hand, also PTI nets are a well-known (see, e.g., [Bus02; JK95; Pet81]) distributed model of
computation, and moreover a Turing-complete one [Age74]. They have been largely exploited, e.g., for modeling
systems with priorities [Hac76], for performance evaluation of distributed systems [Mar+98] and to provide π-
calculus [MPW92; SW01] with a net semantics [BG09].

As finite PTI nets constitute a Turing-complete model of computation, essentially all the properties of interest
are undecidable, notably the reachability problem, and so even termination: it is undecidable whether a deadlock
marking is reachable from the initial one. Also interleaving bisimulation equivalence is undecidable for finite
PTI nets, as it is already undecidable [Jan95] on the subclass of finite P/T nets [Rei85]. Similarly, one can prove
that also well-known truly-concurrent behavioral equivalences, such as fully-concurrent bisimilarity [Bes+91], are
undecidable [Esp98] for finite PTI nets. Despite this, in the second part of this work, we show that it is possible to
define a sensible, behavioral equivalence which is actually decidable on finite PTI nets. This equivalence, we call
pti-place bisimilarity, is a conservative extension of place bisimilarity on finite P/T nets, introduced in [ABS91]
as an improvement of strong bisimulation [Old91], and recently proved decidable in [Gor21].

Place bisimilarity is an equivalence over markings, based on relations over the finite set of net places, rather
than over the (possibly infinite) set of net markings. This equivalence is very natural and intuitive: as a place can
be interpreted as a sequential process type (and each token in this place as an instance of a sequential process
of that type), a place bisimulation states which kinds of sequential processes (composing the distributed system
represented by the finite P/T net) are to be considered as equivalent. Moreover, this equivalence does respect
the expected causal behavior of P/T nets, as it is slightly finer than causal-net bisimilarity and fully-concurrent
bisimilarity.

We extend this idea in order to be applicable to PTI nets. Informally, a binary relation R over the set S of
places is a pti-place bisimulation if for all markings m1 and m2 which are bijectively related via R (denoted by
(m1,m2) ∈ R⊕, where R⊕ is called the additive closure of R), if m1 can perform transition t1, reaching marking
m′1, then m2 can perform a transition t2, reaching m′2, such that

• the pre-sets of t1 and t2 are related by R⊕, the label of t1 and t2 is the same, the post-sets of t1 and t2 are
related by R⊕, and also (m′1,m

′
2)∈R⊕, as required by a place bisimulation [ABS91; Gor21], but additionally

it is required that

• the inhibiting sets of t1 and t2 are related by R⊕, and, finally, that whenever (s,s′) ∈ R, s belongs to the
inhibiting set of t1 if and only if s′ belongs to the inhibiting set of t2;
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and symmetrically if m2 moves first. Two markings m1 and m2 are pti-place bisimilar, denoted by m1 ∼p m2, if a
pti-place bisimulation R exists such that (m1,m2) ∈ R⊕.

We prove that pti-place bisimilarity is an equivalence, but it is not coinductive as the union of pti-place bisim-
ulations may be not a pti-place bisimulation; so, in general, there is not the largest pti-place bisimulation, rather
many maximal pti-place bisimulations. In fact, pti-place bisimilarity is the relation on markings given by the
union of the additive closure of each maximal pti-place bisimulation. We also prove that ∼p is sensible, as it
respects the causal semantics of PTI nets. As a matter of fact, following the approach in [BP99; BP00], we define
a process-oriented, bisimulation-based, behavioral semantics for PTI nets, called causal-net bisimilarity, and we
prove that this is slightly coarser than pti-place bisimilarity.

We also show that ∼p is decidable for finite PTI nets. As a place relation R ⊆ S× S is finite if the set S of
places is finite, there are finitely many place relations for a finite net. We can list all these place relations, say
R1,R2, . . .Rn. It is possible to decide whether Ri is a pti-place bisimulation by checking two finite conditions
over a finite number of marking pairs: this is a non-obvious observation, as a pti-place bisimulation requires that
the pti-place bisimulation game holds for the infinitely many pairs (m1,m2) belonging to R⊕i . Hence, to decide
whether m1 ∼p m2, it is enough to check, for i = 1, . . .n, whether Ri is a pti-place bisimulation and, in such a case,
whether (m1,m2) ∈ R⊕i .

The work is organized as follows: in Chapter 2, some basic definitions about P/T nets are recalled, together
with some from the causality-based sematics known in literature; in Chapter 3, we provide an ordered marking
semantics for safe nets and relate it to the causal one, leading to some decidability results for safe nets (this chapter
is only partially original: we adapt Vogler’s work [Vog91] and provide a new result for causal-net bisimilarity);
in Chapter 4, we refine the classic and ordered marking semantics by means of indexing, to show that results of
Chapter 3 can be generalized to the class of bounded nets; in Chapter 5, we recall basic definitions about PTI nets
and introduce a causality-based semantics and PTI causal-net bisimilarity; in Chapter 6, we introduce pti-place
bisimilarity and prove that it is finer than PTI causal-net bisimilarity; in Chapter 7 we prove the decidability of
pti-place bisimilarity; finally, in Chapter 8 we discuss related works and some possible further developments.
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P/T Nets
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Chapter 2

Basic Definitions

2.1 Petri nets
Definition 2.1.1. (Multiset) Let N be the set of natural numbers. Given a finite set S, a multiset over S is a
function m : S→ N. Its support set dom(m) is {s ∈ S

∣∣ m(s) 6= 0}. The set M (S) of all multisets over S is ranged
over by m. We write s ∈ m if m(s) > 0. The multiplicity of s in m is the number m(s). The size of m, denoted by
|m|, is the number ∑s∈S m(s), i.e., the total number of its elements. A multiset m such that dom(m) = /0 is called
empty and is denoted by θ . We write m⊆ m′ if m(s)≤ m′(s) for all s ∈ S.

Multiset union ⊕ is defined as follows: (m⊕m′)(s) = m(s) +m′(s); it is commutative, associative and
has θ as neutral element. Multiset difference 	 is defined as follows: (m1	m2)(s) = max{m1(s)−m2(s),0}.
The scalar product of a number j with m is the multiset j ·m defined as ( j ·m)(s) = j · (m(s)). By si we also
denote the multiset with si as its only element. Hence, a multiset m over S = {s1, . . . ,sn} can be represented as
k1 · s1⊕ k2 · s2⊕ . . .⊕ kn · sn, where k j = m(s j)≥ 0 for j = 1, . . . ,n. 2

Definition 2.1.2. (Finite P/T net) A labeled finite P/T net is a tuple N = (S,A,T ), where

• S is the finite set of places, ranged over by s (possibly indexed),

• A is the finite set of labels, ranged over by ` (possibly indexed), and

• T ⊆ (M (S)\{ /0})×A×M (S) is the finite set of transitions, ranged over by t (possibly indexed).

The size of a net is the total number of its places and transitions.
Given a transition t = (m, `,m′) we use the notation:

• •t to denote its pre-set m (which is a nonempty multiset) of tokens to be consumed;

• l(t) for its label `, and

• t• to denote its post-set m′ (which is a multiset) of tokens to be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. We also define pre-sets and post-sets for places as follows:

•s = {t ∈ T
∣∣ s ∈ t•} and s• = {t ∈ T

∣∣ s ∈ •t}. Note that the pre-set (post-set) of a place is a set. 2

Remark 1. The definition of T as a set of triples ensures that the net is transition simple, i.e., for any t1 , t2, ∈ T ,
if •t1 = •t2 and t•1 = t•2 and l(t1) = l(t2), then t1 = t2 . Note also that we are assuming that each transition has
a nonempty pre-set: in our interpretation of net models a transition can only be performed by some sequential
processes. For the same reason we assume that a transition can have an empty post-set: some sequential process
might terminate its execution successfully, modelled as the elimination of the token.

Definition 2.1.3. (Marking, net system) A multiset over S is called a marking. Given a marking m and a place s,
we say that the place s contains m(s) tokens, graphically represented by m(s) bullets inside place s. A net system
N(m0) is a tuple (S,A,T,m0), where (S,A,T ) is a net and m0 is a marking over S, called the initial marking. We
also say that N(m0) is a marked net. 2

In the graphical description of finite P/T nets, places (represented as circles) and transitions (represented as
boxes) are connected by directed arcs. The arcs may be labeled with the natural number representing the number
of tokens of that type that are to be removed from (or produced into) that place; no label on the arc is interpreted
as the number one, i.e., one token flowing on the arc. This numerical label of the arc is called its weight.

11
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Static properties of a net can be computed by just considering its definition (e.g. its size, defined as |S |+ |T |),
whereas dynamic properties, such as reachability, can be determined only when a net is marked.

The sequential semantics of a marked net is defined by the so-called token game representing the flow of
tokens through it. There are several possible variants and interpretations (see [Gla05]); in the following we
present the collective interpretation i.e., tokens are not treated as individual units. According to this interpretation,
multiple tokens on the same place are indistinguishible. Moreover, we use an interleaving semantics: only a single
transition at a time can fire.

Definition 2.1.4. (Token game) A transition t is enabled at m, denoted m[t〉, if •t ⊆ m. The execution, or firing,
of t enabled at m produces the marking m′ = (m	 •t)⊕ t•, written m[t〉m′. 2

Definition 2.1.5. (Firing sequence, reachable marking) A firing sequence starting at m is defined inductively as
follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions) and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

If σ = t1 . . . tn (for n≥ 0) and m[σ〉m′ is a firing sequence, then there exist m1, . . . ,mn+1 such that m=m1[t1〉m2[t2〉 . . .
. . .mn[tn〉mn+1 = m′, and σ = t1 . . . tn is called a transition sequence starting at m and ending at m′. The set of
reachable markings from m is [m〉= {m′

∣∣ ∃σ .m[σ〉m′}. Note that the set of reachable markings may be countably
infinite for finite P/T nets. 2

Definition 2.1.6. (Classes of finite P/T Nets) A finite marked P/T net N = (S,A,T,m0) is:

• safe if every place contains at most one token under every reachable marking, i.e. ∀s ∈ S , m(s)≤ 1 for all
m ∈ [m0〉.

• bounded if the number of token in any place is bounded by some k for any reachable marking, i.e. ∃k ∈
N,∀s ∈ S such that m(s)≤ k for all m ∈ [m0〉. If this is the case, we say that the net is k-bounded.

Note that a safe net is just a 1-bounded net. Thus, rather than a multiset, a marking of a safe net can be written a
set, namely the set of places containing a token. 2

In [Gor20a] is defined a place-counting multiset lifting of a relation on places, called additive closure, and some
of its properties, which will be used in the next chapters.

Definition 2.1.7. (Additive closure) Given a net N = (S,A,T ) and a place relation R⊆ S×S, we define a mark-
ing relation R⊕ ⊆ M (S)×M (S), called the additive closure of R, as the least relation induced by the following
axiom and rule.

(θ ,θ) ∈ R⊕
(Emp)

(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
(Clo)

2

Remark 2. Note that:

• two markings are related by R⊕ only if they have the same size;

• R is an equivalence relation, then its additive closure R⊕ is also an equivalence relation;

• if R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotonic.

An alternative way to define that two markings m1 and m2 are related by R⊕ is to state that m1 can be represented
as s1⊕ s2⊕ . . .⊕ sk, m2 can be represented as s′1⊕ s′2⊕ . . .⊕ s′k and (si,s′i) ∈ R for i = 1, . . . ,k.

2.2 Causality-based semantics
We outline some definitions, adapting them from literature (cf. e.g. [GR83; BD87; Vog91; Gor20a]).

Definition 2.2.1. (Acyclic net) A net N = (S,A,T ) is acyclic if there exists no sequence x1x2 . . .xn such that n≥ 3,
xi ∈ S∪T for i = 1, . . . ,n, x1 = xn, x1 ∈ S and xi ∈ •xi+1 for i = 1, . . . ,n− 1, i.e., the arcs of the net do not form
any cycle. 2
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The concurrent semantics of a transition sequence in a marked net is defined by a class of particular safe nets
where places are not branched (therefore they are essentially deterministic) and all arcs have weight 1. This type
of net is called causal net [BD87; Old91; Gla15; Gor20a]. We use B to denote its places (called conditions), E to
denote its transitions (called events), and L to denote its labels.

Definition 2.2.2. (Causal net) A causal net is a finite marked net C(m0) = (B,L,E,m0) satisfying the following
conditions:

1. C is acyclic;

2. ∀b ∈ B |•b| ≤ 1 ∧ |b•| ≤ 1 (i.e., the places are not branched);

3. ∀b ∈ B m0(b) =

{
1 if •b = /0
0 otherwise;

4. ∀e ∈ E •e(b)≤ 1 ∧ e•(b)≤ 1 for all b ∈ B (i.e., all the arcs have weight 1).

We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B
∣∣ b• = /0}.

A sequence of events σ ∈ E∗ is maximal (or complete) if it contains all events in E, each taken once only. 2

Note that a causal net is finite; since it is acyclic, it represents a finite computation.
Note also that any reachable marking of a causal net is a set, i.e., this net is safe; in fact, the initial marking

is a set and, assuming by induction that a reachable marking m is a set and enables e, i.e., m[e〉m′, then also
m′ = (m	 •e)⊕ e• is a set, because the net is acyclic and because of the condition on the shape of the post-set of
e (weights can only be 1).

As the initial marking of a causal net is fixed by its shape (according to item 3 of Definition 2.2.2), in the
following, in order to make the notation lighter, we often omit the indication of the initial marking (also in their
graphical representation), so that the causal net C(m0) is denoted by C.

Definition 2.2.3. (Moves of a causal net) Given two causal nets C = (B,L,E,m0) and C′ = (B′,L,E ′,m0), we
say that C moves in one step to C′ through e, denoted by C[e〉C′, if •e ⊆Max(C), E ′ = E ∪{e} and B′ = B∪ e•;
in other words, C′ extends C by one event e. 2

Definition 2.2.4. (Folding and Process) A folding from a causal net C = (B,L,E,m0) into a net system N(m0) =
(S,A,T,m0) is a function ρ : B∪E → S∪ T , which is type-preserving, i.e., such that ρ(B) ⊆ S and ρ(E) ⊆ T ,
satisfying the following:

• L = A and l(e) = l(ρ(e)) for all e ∈ E;

• ρ(m0) = m0, i.e., m0(s) = |ρ−1(s)∩m0|;

• ∀e ∈ E,ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s)∩ •e| for all s ∈ S;

• ∀e ∈ E, ρ(e•) = ρ(e)•, i.e., ρ(e•)(s) = |ρ−1(s)∩ e•| for all s ∈ S.

A pair (C,ρ), where C is a causal net and ρ a folding from C to a net system N(m0), is a process of N(m0), written
also as π . 2

Definition 2.2.5. (Partial orders of events from a process) From a causal net C = (B,L,E), we can extract
the partial order of its events EC = (E,�), where e1 � e2 iff there exists a sequence x1x2x3 . . .xn such that n ≥ 3,
xi ∈ B∪E for i = 1, . . . ,n, e1 = x1,e2 = xn, and xi ∈ •xi+1 for i = 1, . . . ,n−1; in other words, e1 � e2 if there is a
path from e1 to e2. Given a process π = (C,ρ), we denote � as ≤π , i.e. given e1,e2 ∈ E, e1 ≤π e2 if and only if
e1 � e2. 2

Definition 2.2.6. (Moves of a process) Let N(m0) = (S,A,T,m0) be a net system and let (Ci,ρi), for i = 1,2, be
two processes of N(m0). We say that (C1,ρ1) moves in one step to (C2,ρ2) through e, denoted by (C1,ρ1)

e−→ (C2,ρ2),
if C1[e〉C2 and ρ1 ⊆ ρ2.
If π1 = (C1,ρ1) and π2 = (C2,ρ2), we denote the move as π1

e−→π2. 2

Proposition 2.2.7. Assume π = (C,ρ) a process of N such that π
e−→π ′ = (C′,ρ ′). Then ∀b ∈Max(C) , ∃b′′ ∈

Max(C) , ∀b′ ∈Max(C′), where b′ ∈ e• and b′′ ∈ •e, it is true that if •b≤π ′
•b′, then •b≤π

•b′′.

Proof. By Definition 2.2.5, •b≤π ′
•b′ means that there exists a path in C′ starting from •b and ending at •b′. Let

us choose b′′ to be the condition immediately before •b′ in that path. It follows that there exists a path in C starting
from •b and ending at •b′′: then, by Definition 2.2.5, we get the thesis.

Note that, given a complete transition sequence of C′ containing •b and •b′, then also •b′′ is contained in the
sequence and the relative position of these three events respects the preorder ≤π ′ .



14 CHAPTER 2. BASIC DEFINITIONS

2.2.1 Causal-net bisimilarity
Causal-net bisimilarity [Gor20a; Gla15] is defined in terms of processes of a net. Intuitively, two markings of a
net are causal-net bisimilar if two processes based on the same associated causal net are bisimilar.

Definition 2.2.8. (Causal-net bisimulation) Let N = (S,A,T ) be a finite P/T net. A causal-net bisimulation is a
relation R, composed of triples of the form (ρ1,C,ρ2), where, for i = 1,2, (C,ρi) is a process of N(m0i) for some
m0i , such that if (ρ1,C,ρ2) ∈ R then

i) ∀t1,C′,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1), where ρ ′1(e) = t1, ∃t2,ρ ′2 such that (C,ρ2)

e−→ (C′,ρ ′2), where
ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R;

ii) symmetrically, ∀t2,C′,ρ ′2 such that (C,ρ2)
e−→ (C′,ρ ′2), where ρ ′2(e)= t2, ∃t1,ρ ′1 such that (C,ρ1)

e−→ (C′,ρ ′1),
where ρ ′1(e) = t1, and (ρ ′1,C

′,ρ ′2) ∈ R.

Two markings m1 and m2 of N are cn-bisimilar (or cn-bisimulation equivalent), denoted by m1 ∼cn m2,
if there exists a causal-net bisimulation R containing a triple (ρ0

1 ,C
0,ρ0

2 ), where C0 contains no events and
ρ0

i (Min(C0)) = ρ0
i (Max(C0)) = mi for i = 1,2. 2

In [Gor20a] it is proved that causal-net bisimulation has the following properties, shared also by other good
equivalences. Let us denote by ∼cn

R = {(m1,m2)
∣∣ m1 is cn-bisimilar to m2 thanks to R}:

• cn-bisimilarity ∼cn can be seen as
⋃
{∼cn

R

∣∣ R is a causal-net bisimulation}=∼cn
R , where R =

⋃
{R
∣∣ R is

a
causal-net bisimulation} is the largest causal-net bisimulation.

• the identity relation is a causal-net bisimulation;

• the inverse relation of a causal-net bisimulation is a causal-net bisimulation;

• the relational composition, up to net isomorphism, of two causal-net bisimulations is a causal-net bisimula-
tion;

• the union of causal-net bisimulations is a causal-net bisimulation.

The following lemma shows a property of causal-net bisimulation that will be used in the next chapters.

Lemma 2.2.9. Given two markings m1 and m2 of N, if m1 ∼cn m2 then |m1 |= |m2 |.

Proof. If m1 ∼cn m2, then there exists a causal-net bisimulation R such that (ρ0
1 ,C

0,ρ0
2 ) ∈ R, where where C0

contains no events and ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = mi for i = 1,2. Then, since ρ0
i maps conditions to places,

|m1 |= |m2 |.

2.2.2 Fully-concurrent bisimilarity
Fully-concurrent bisimilarity, also known as history-preserving bisimilarity, was first introduced in [RT88], adapted
to Petri Nets in [Bes+91] and independently defined in [DDM89]. It is similar to causal-net bisimilarity but slightly
coarser: two nets are said to be fully-concurrent bisimilar if their causal nets have isomorphic event structures. In
the following, we outline the definition given in [Gor20a].

Definition 2.2.10. (Fully-concurrent bisimilarity) Given a finite P/T net N = (S,A,T ), a fully-concurrent bisim-
ulation is a relation R, composed of triples of the form (π1, f ,π2) where, for i = 1,2, πi = (Ci,ρi) is a process of
N(m0i) for some m0i and f is an isomorphism between EC1 and EC2 , such that if (π1, f ,π2) ∈ R then:

i) ∀t1,π ′1 such that π1
e1−→π ′1, where ρ ′1(e1) = t1, there exist e2, t2,π ′2, f ′ such that

1. π2
e2−→π ′2 where ρ ′2(e2) = t2,

2. f ′ = f ·∪{e1 7→ e2},
3. (π ′1, f ′,π ′2) ∈ R;

ii) symmetrically, if π2 moves first.

Two markings m1,m2 of N are fc-bisimilar (or fc-bisimulation equivalent), denoted by m1 ∼ f c m2 if a fully-
concurrent bisimulation R exists, containing a triple (π0

1 , /0,π0
2 ) where π0

i = (C0
i ,ρ

0
i ) such that C0

i contains no
events and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = mi for i = 1,2. 2
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In [Gor20a] it is proved that also fully-concurrent bisimilarity has the following properties. Let us denote by
∼ f c

R = {(m1,m2)
∣∣ m1 is fc-bisimilar to m2 thanks to R}:

• fc-bisimilarity ∼ f c can be seen as
⋃
{∼ f c

R

∣∣ R is a fully-concurrent bisimulation} = ∼ f c
R , where R =⋃

{R
∣∣ R is a fully-concurrent bisimulation} is the largest fully-concurrent bisimulation.

• the identity relation is a fully-concurrent bisimulation;

• the inverse relation of a fully-concurrentbisimulation is a fully-concurrent bisimulation;

• the relational composition, up to net isomorphism, of two fully-concurrent bisimulations is a fully-concurrent
bisimulation;

• the union of fully-concurrent bisimulations is a fully-concurrent bisimulation.

N)

s1

a

s2

s3

a

C1)

b1

a

b2

C2)

b3

a

Figure 2.1: A finite P/T net N and two causal nets: C1 corresponds to the maximal process of N(s1) and C2
corresponds to the maximal process of N(s3).

Example 1. In Figure 2.1 a simple finite P/T net N is given. It is easy to see that C1 (resp. C2) corresponds to a
process π1 (resp. π2) of N(s1) (resp. N(s3)), where ρ1 (resp. ρ2) maps each condition net to place net having same
subscript and each event to the transition having same label.
Consider places s1 and s3: we have s1 ∼ f c s3 and this is proved by relation

R = {(((b1,{a}, /0,b1),b1 7→ s1), /0,((b3,{a}, /0,b3),b3 7→ s3))),(π1,ea1 7→ ea2 ,π2)}.

Indeed, ((b1,{a}, /0,b1),b1 7→ s1) is a process of N(s1) and ((b3,{a}, /0,b3),b3 7→ s3) is a process of N(s3), as both
processes contain no events and are such that minimal and maximal conditions are the same and mapped on the

right initial markings. If ((b1,{a}, /0,b1),b1 7→ s1) moves first by ((b1,{a}, /0,b1),b1 7→ s1)
ea1−→π1, ((b3,{a}, /0,b3),b3 7→

s3) can respond with ((b3,{a}, /0,b3),b3 7→ s3)
ea2−→π2, and (π1,ea1 7→ ea2 ,π2)∈R. The case where ((b3,{a}, /0,b3),b3 7→

s3) moves first is symmetrical.
However, it is not true that s1 ∼cn s3, because C1 and C2 are not isomorphic and therefore it is not possible to
build a causal-net bisimulation. This example shows how causal-net bisimilarity is finer than fully-concurrent
bisimilarity. 2



Chapter 3

Decidability Results for Finite Safe Petri
Nets

In this chapter, in order to prove that some truly concurrent bisimilarities are decidable for safe nets, we adapt a
proof technique developed by Vogler in [Vog91] that he used to prove that history-preserving bisimilarity ([RT88;
GG89; DDM89]) is decidable for safe nets. This technique is based on the concept of ordered marking, i.e., a
safe marking (hence a set) equipped with a preorder on its elements (i.e., places) that reflects the precedence in
the generation of the tokens. We define some bisimulations on ordered markings which are clearly decidable, and
prove that they coincide with the corresponding truly concurrent bisimulation.

3.1 Ordered marking semantics
We outline some definitions from [Vog91].

Definition 3.1.1. (Ordered marking) Given a safe net N = (S,A,T,m0), a safe ordered marking is a pair (m,≤)
such that m ⊆ S and ≤⊆ m×m is a preorder, i.e. a reflexive and transitive relation. The set of all safe ordered
markings of N is denoted by OM(N). If N(m0) is a safe net, we define the initial ordered marking init(N) as
(m0,m0×m0). If the initial marking is not clear from the context, we write init(N(m0)) instead, to denote the
initial ordered marking. 2

Definition 3.1.2. (Token game with OM) Let N = (S,A,T,m0) be a safe net, let m be a reachable safe marking
and t ∈ T a transition enabled at m. Given the ordered marking (m,≤) we say that t is enabled at (m,≤), denoted
(m,≤)[t〉. The firing of t produces the ordered marking (m′,≤′) where m′ = m	 •t⊕ t• and ≤′ is defined by:
for all s,s′ ∈ m′, we have s≤′ s′ if and only if:

1. s,s′ ∈ m	 •t and s≤ s′, or

2. s,s′ ∈ t•, or

3. s ∈ m	 •t, s′ ∈ t• and there exists s′′ ∈ •t with s≤ s′′.

This is denoted as (m,≤)[t〉(m′,≤′). 2

Definition 3.1.3. (Firing sequence with OM) Given a safe net N(m0) and a reachable marking m, a firing
sequence starting at (m,≤) is defined inductively as follows:

• (m,≤)[ε〉(m,≤) is a firing sequence (where ε denotes an empty sequence of transitions) and

• if (m,≤)[σ〉(m′,≤′) is a firing sequence and (m′,≤′)[t〉(m′′,≤′′), then (m,≤)[σt〉(m′′,≤′′) is a firing se-
quence.

If σ = t1 . . . tn (for n ≥ 0) and (m,≤)[σ〉(m′,≤′) is a firing sequence, then there exist (m1,≤1), . . . ,(mn+1,≤n+1)
such that (m,≤) = (m1,≤1)[t1〉(m2,≤2)[t2〉 . . . . . .(mn,≤n)[tn〉(mn+1,≤n+1) = (m′,≤′), and σ = t1 . . . tn is called
a transition sequence starting at (m,≤) and ending at (m′,≤′).
The set of reachable ordered markings from (m,≤) is [(m,≤)〉= {(m′,≤′)

∣∣ ∃σ .(m,≤)[σ〉(m′,≤′)}. We denote
by [init(N)〉 the set of all the ordered markings reachable from (m0,m0×m0). 2

Proposition 3.1.4. Given a safe net N = (S,A,T,m0), the set OM(N) and the set [init(N)〉 are finite.

16
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Proof. In finite safe nets, a marking is a subset of S, which is finite by definition. Therefore P(S) is finite i.e.,
the set of safe markings of N is finite. Since there is at most one token in every place s ∈ S, the set of possible
preorders for a safe marking is finite, because ≤⊆ S×S. Therefore OM(N) is finite.
Since [init(N)〉 ⊆ OM(N), also [init(N)〉 is finite.

3.2 Ordered marking and causality-based semantics
Again inspired by [Vog91], in the following we offer a preliminary result to the decidability proof: the link
between ordered markings and causal nets. It is possible to establish a partial order based on processes, and that
partial order is coherent with the one generated from the token game semantics on ordered markings.

Lemma 3.2.1. (A minimality condition for≤) Given π = (C,ρ) a process of N(m0) and σ a complete transition
sequence of C (i.e., such that π is obtained by extending the causal net with a transition in σ at a time), and
init(N)[ρ(σ)〉(m,≤). Then, ∀b,b′ ∈Max(C), if b ∈Min(C) then ρ(b) is minimal for≤, i.e. ∀ρ(b′)∈ ρ(Max(C)),
ρ(b)≤ ρ(b′).

Proof. By induction on |σ |.

• Case 0: π = (C0,ρ0), where C0 contains no transitions and ρ0(Max(C0) = ρ0(Min(C0)) = m0.
Since init(N)[(C0,ρ0)〉init(N), then ≤= m0×m0; therefore ∀ρ0(b′) ∈ ρ0(Max(C)) , ρ0(b)≤ ρ0(b′).

• Case n+1: The inductive hypotesis is π = (C,ρ) and init(N)[π〉(m,≤), where the thesis holds. The induc-
tive step is π

e−→π ′ = (C′,ρ ′) where C[e〉C′, ρ ′(e) = t and (m,≤)[t〉(m′,≤′).
By cases on ρ ′(b′):

– if ρ ′(b′) ∈ m′	 •t: then ρ ′(b′) = ρ(b′), the thesis follows from the inductive hypotesis on (m,≤).
– if ρ ′(b′)∈ t•: then, since transitions have nonempty pre-set, there exists ρ ′(b′′)∈ •t, meaning ρ ′(b′′)≤′

ρ ′(b′). Since ρ ′(b′′) ∈ m, it is true that ρ ′(b′′) = ρ(b′′). By inductive hypotesis on (m,≤), we
have ρ(b) ≤ ρ(b′′). By conservative extension of ρ ′ w.r.t ρ , ρ ′(b) ≤′ ρ ′(b′′), and by transitivity
ρ ′(b)≤′ ρ ′(b′).

– if ρ ′(b′) ∈ •t: absurd, because ρ ′(b′) ∈ ρ ′(Max(C′)) and π
e−→π ′ with ρ ′(e) = t.

Proposition 3.2.2. Given a net N = (S,A,T ) such that N(m01) and N(m02) are both safe nets, two processes
πi = (C,ρi) of N(m0i) for i = 1,2, a complete transition sequence σ of C and two markings m1,m2 such that
init(N(m0i))[ρi(σ)〉(mi,≤i) for i = 1,2, we have that |m1 |= |m2 |.

Proof. By induction on the length of σ .

• Case 0: σ = ε .
The two processes are π0

i = (C0,ρ0
i ) where C0 contains no events and ρ0

i (Min(C0)) = ρ0
i (Max(C0)) = mi

for i = 1,2. Then, since ρ0
i maps conditions to places, |m01 |= |m02 |.

• Case n+1 : σ = δ e.
The inductive hypotesis is init(N(m0i))[ρi(σ))〉(mi,≤i), such that |m1 | = |m2 |, for i = 1,2. The induc-
tion step is (C,ρi)

e−→ (C′,ρ ′i ) for i = 1,2. Since each ρ ′i maps e to a transition ti, |•t1 | = |•e | = |•t2 |
and | t•1 | = |e• | = | t•2 |. By inductive hypotesis, |m1 | = |m2 |; since |m′1 | = |m1 |− |•t1 |+ | t•1 | and |m′2 | =
|m2 |− |•t2 |+ | t•2 |, by transitivity we get |m′1 |= |m′2 |.

Definition 3.2.3. (≤ from process) Let N(m0) be a safe net. Consider π = (C,ρ) a process of N(m0) and
an ordered marking (m,≤). We write init(N)[π〉(m,≤) if ρ is a bijection from Max(C) to m such that for all
b,b′ ∈Max(C):

ρ(b)≤ ρ(b′) ⇐⇒

{
b ∈Min(C) (1), or
•b 6= /0∧ •b′ 6= /0∧ •b≤π

•b′ (2)
2

The following lemma, a slight modification of Lemma 3.4 in [Vog91], shows the relation between the order
derived from a process and the operational preorder.
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Lemma 3.2.4. (Link between process and operational preorder) Let N(m0) be a safe net and let π = (C,ρ)

be a process of N(m0) such that init(N)[π〉(m,≤). Then (m,≤)[t〉(m′,≤′) if and only if π
e−→π ′ where ρ ′(e) = t

and init(N)[π ′〉(m′,≤′).

Proof =⇒). By induction on the length of σ , complete transition sequence of C such that init(N)[(ρ(σ)〉(m,≤).

• Case 0 : σ = ε .
Then π = π0 = (C0,ρ0) where C0 contains no transitions and ρ0(Max(C0) = ρ0(Min(C0)) = m0, and
init(N)[π0〉init(N). Extend C0 with e = (•e, l(t),e•) such that ρ ′(e) = t and C0[e〉C′. Then by definition
π0 e−→π ′.

Now we prove that ∀b,b′ ∈Max(C′), ρ ′(b)≤′ ρ ′(b′) =⇒ (b ∈Min(C′))∨ (•b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′
•b′)

by cases on the definition of ρ ′(b)≤′ ρ ′(b′).

- if ρ ′(b),ρ ′(b′) ∈ m0	 •t and ρ ′(b)≤ ρ ′(b′):
then since m0 = ρ0(Min(C0)) and ρ ′(b) = ρ0(b), by transitivity ρ ′(b) ∈ ρ ′(Min(C′)) and therefore
b ∈Min(C′), satisfying condition 1 of Definition 3.2.3.

- if ρ ′(b),ρ ′(b′) ∈ t•:
then ρ ′(b),ρ ′(b′) ∈ ρ ′(e)•, thus b,b′ ∈ e•; this means that •b = •b′ 6= /0 and, since they are generated
from the same event e, e = •b≤π ′

•b′ = e, satisfying condition 2 of Definition 3.2.3.

- if ρ ′(b) ∈ m0	 •t and ρ ′(b′) ∈ t• and ∃ρ ′(b′′) ∈ •t such that ρ ′(b)≤π0 ρ ′(b′′):
then since m0 = ρ0(Min(C0)) and ρ ′(b) = ρ0(b), by transitivity ρ ′(b) ∈ ρ ′(Minc(C′)) and therefore
b ∈Min(C′), satisfying condition 1 of Definition 3.2.3.

• Case n+1 : σ = δ e.
The inductive hypotesis is that there exist π = (C,ρ) and (m,≤) such that the thesis holds. The induction
step is (m,≤)[t〉(m′,≤′).
By definition, C = (B,L,E) and ρ(Max(C)) = m. We extend C and ρ by an event e = (•e, l(t),e•) such that
ρ ′(e)= t. Since (m,≤)[t〉, ρ(Max(C))=m ⊇ ρ ′(•e) = •t. Let C[e〉C′, since ρ ′(Max(C′)) = ρ ′(Max(C))	
•ρ ′(e)⊕ρ ′(e)• = ρ(Max(C))	ρ ′(•e)⊕ρ ′(e•) = m	 •t⊕ t• = m′, then π

e−→π ′.

Now we prove that ∀b,b′ ∈Max(C′), ρ ′(b)≤′ ρ ′(b′) =⇒ (b ∈Min(C′))∨ (•b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′
•b′)

by cases on the definition of ρ ′(b)≤′ ρ ′(b′).

- if ρ ′(b),ρ ′(b′) ∈ m	 •t and ρ ′(b)≤ ρ ′(b′):
then since ρ ′(b),ρ ′(b′) ∈ m	 •t, this follows from the inductive hypotesis on (m,≤).

- if ρ ′(b),ρ ′(b′) ∈ t•:
then ρ ′(b),ρ ′(b′) ∈ ρ ′(e)•, thus b,b′ ∈ e•; this means that •b = •b′ 6= /0 and, since they are generated
from the same event e, e = •b≤π ′

•b′ = e, satisfying condition 2 of Definition 3.2.3.

- if ρ ′(b) ∈ m	 •t and ρ ′(b′) ∈ t• and ∃ρ ′(b′′) ∈ •t such that ρ ′(b)≤ ρ ′(b′′):

+ if b ∈Min(C′): trivially from condition 1 of Definition 3.2.3;
+ if b 6∈Min(C′): then •b 6= /0, and since ρ ′(b′) ∈ t• then b′ ∈ e•, meaning •b′ 6= /0. Also, ρ ′(b′′) ∈ •t

implies b′′ ∈ •e. Since b,b′′ ∈Max(C) and ρ(b)≤ ρ(b′′), then by inductive hypotesis •b≤π
•b′′.

Then •b′′ ≤π ′
•b′ and by transitivity •b≤π ′

•b′, satisfying condition 2 of Definition 3.2.3.

Therefore, init(N)[π ′〉(m′,≤′).

Proof⇐=). By induction on the length of σ , complete transition sequence of C such that init(N)[π〉(m,≤).

• Case 0 : σ = ε .
Then π = π0 = (C0,ρ0) where C0 contains no transitions and ρ0(Max(C0) = ρ0(Min(C0)) = m0, and
init(N)[π0〉init(N). Since π0 e−→π ′ with ρ ′(e) = t, then m0 ⊇ •t, i.e. m0[t〉. Since ρ ′(Max(C′)) =
ρ0(Max(C0))	 •ρ ′(e)⊕ρ ′(e)• = ρ0(Max(C0))	ρ ′(•e)⊕ρ ′(e•) = m0	 •t⊕ t• = m′, then m0[t〉m′.
Now we prove that ∀b,b′ ∈Max(C′), (b ∈Min(C′))∨ (•b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′

•b′) =⇒ ρ ′(b)≤′ ρ ′(b′)
by enumeration.

- if b ∈Min(C′):
then, by Lemma 3.2.1, ρ ′(b) is minimal for ≤ and by transitivity it is minimal for ≤′. Therefore
condition 1 of Definition 3.1.2 is satisfied.
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- if •b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′
•b′:

Then there are four possible combinations of ρ ′(b),ρ ′(b′):

+ if ρ ′(b),ρ ′(b′) ∈ t•: trivially by condition 2 of Definition 3.1.2.
+ other cases : absurd, since •b 6= /0 and •b′ 6= /0, so neither ρ ′(b) nor ρ ′(b′) can be an element of

m0.

• Case n+1 : σ = δ e.
The inductive hypotesis is that there exist π = (C,ρ) and (m,≤) such that the thesis holds. The induction
step is π

e−→π ′ with init(N)[π ′〉(m′,≤′).

By definition, ρ ′(Max(C′)) = m′ and ρ(Max(C)) = m; since π
e−→π ′ where ρ ′(e) = t, m⊇ •t i.e., m[t〉. For

the same reasons, ρ ′(Max(C′)) = ρ ′(Max(C))	ρ ′(•e)⊕ρ ′(e•) = m	 •t⊕ t• = m′ thus m[t〉m′.
Now we prove that ∀b,b′ ∈Max(C′), (b ∈Min(C′))∨ (•b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′

•b′)) =⇒ ρ ′(b)≤′ ρ ′(b′)
by inspection of the condition.

- if b ∈Min(C) then:

+ if ρ ′(b),ρ ′(b′) ∈m	 •t: then ρ ′(b) = ρ(b) and ρ ′(b′) = ρ(b′). By Lemma 3.2.1 ρ(b) is minimal
for ≤ and therefore ρ(b) ≤ ρ(b′); since ρ ′(b),ρ ′(b′) ∈ m	 •t, condition 1 of Definition 3.1.2 is
satisfied;

+ if ρ ′(b),ρ ′(b′) ∈ t•: trivially by condition 2 of Definition 3.1.2.
+ if ρ ′(b) ∈ m	 •t and ρ ′(b′) ∈ t•: since ρ ′(b) = ρ(b) because ρ ′(b) ∈ m	 •t, by Lemma 3.2.1

there exists s′′ ∈ •t such that ρ(b) ≤ s′′, and thus ρ ′(b) ≤′ ρ ′(b′) by condition 3 of Definition
3.1.2.

+ if ρ ′(b′) ∈ m	 •t and ρ ′(b) ∈ t•: absurd, since b ∈Min(C).

- if •b 6= /0 ∧ •b′ 6= /0 ∧ •b≤π ′
•b′ then:

+ if ρ ′(b),ρ ′(b′)∈m	•t: by inductive hypotesis, ρ ′(b)= ρ(b)≤ ρ(b′)= ρ ′(b′) and, since ρ ′(b),ρ ′(b′)∈
m	 •t, condition 1 of Definition 3.1.2 is satisfied.

+ if ρ ′(b),ρ ′(b′) ∈ t•: trivially by condition 2 of Definition 3.1.2.

+ if ρ ′(b) ∈ m	 •t and ρ ′(b′) ∈ t•: since ρ ′(b) = ρ(b) ∈ m	 •t and π
e−→π ′, By Proposition

2.2.7, there exists b′′ ∈ •e such that •b≤π
•b′′. Since ρ(b′′) ∈ ρ ′(•e) = •ρ ′(e) = •t ⊇ m, then by

inductive hypotesis ρ(b)≤ ρ(b′′) and thus ρ ′(b)≤′ ρ ′(b′) by condition 3 of Definition 3.1.2.
- if ρ ′(b′) ∈ m	 •t and ρ ′(b) ∈ t•: absurd, since •b≤π

•b′.

Therefore, (m,≤)[t〉(m′,≤′).
2

Example 2. In Figure 3.1(a) a simple finite P/T net N is given, with initial marking m0 = s1⊕ s2. Figure 3.1(b,c,d)
shows how the process corresponding to the transition sequence t1 t2 t3 grows. For simplicity’s sake, in the fol-
lowing each condition will be mapped to the place having same subscript and each event will be mapped to the
transition having same label. We will denote each process πi as the one thus corresponding to causal net Ci.

Before any transition fires, we have init(N) = (m0,≤0) where ≤0= {(s1,s1),(s2,s2),(s1,s2),(s2,s1)} by Def-
inition 3.1.1. Not surprisingly, both b1 (mapped to s1) and b2 (mapped to s2) are minimal for ≤π0 .

After the firing of transition t1, labeled by t, we have ≤1= {(s3,s3),(s2,s2),(s2,s3)} because s2 ≤0 s1 and s1
is deleted when the transition generates s3. At the same time, we have that b2 is minimal for ≤π1 , but b3 is not.

After the firing of transition t2, labeled by u, we have ≤1= {(s3,s3),(s4,s4)} because there is no causal rela-
tionship between s3 and s4. Indeed, b3 and b4 are not related by ≤π2 , but neither of them is minimal.

Finally, after the firing of transition t3, labeled by c, we have ≤2= {(s5,s5)} because it is a generated token.
As expected, b5 ≤π2 b5 because it is maximal. 2
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Figure 3.1: Execution of the transitions labeled by t, u and v on a safe finite net with initial marking m0 = s1⊕ s2
and corresponding process (only the mapping of maximal conditions to tokens is displayed).
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3.3 Decidability of causal-net bisimilarity for safe nets
We define a new bisimulation based on orderd markings, OMC-bisimulation. Intuitively, two ordered markings
are related by an OMC-bisimulation if the corresponding markings are bisimilar and the places of each preorder
have the same history (starting from the initial configuration).

Definition 3.3.1. (OMC-bisimulation) Let N = (S,A,T ) be a net. An OMC-bisimulation is a relation B ⊆
OM(N)×OM(N)×P(S×S) such that if ((m1,≤1),(m2,≤2),β )∈B, then:

• |m1|= |m2|;

• ∀t1 such that (m1,≤1)[t1〉(m′1,≤′1), there exist t ′2,m
′
2,≤′2 such that

for β ′ defined as ∀s1 ∈ m′1,∀s2 ∈ m′2:

s1 β
′ s2 ⇐⇒


s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2

or
s1 ∈ t•1 , s2 ∈ t•2

the following hold:

- •t1 β⊕ •t2,

- (m2,≤2)[t2〉(m′2,≤′2) where ((m′1,≤′1),(m′2,≤′2),β ′)∈B and l(t1) = l(t2);

• symmetrically, if (m2,≤2) moves first.

If N(m1) and N(m2) are both safe nets, we say that m1,m2 are OMC-bisimilar, denoted by m1 ∼omc m2, if there
exists an OMC-bisimulation B containing the triple (init(N(m1)), init(N(m2)),m1×m2). 2

Next, we show that causal-net bisimilarity and OMC-bisimilarity coincide on finite safe nets.

Theorem 3.3.2. (CN-bisimilarity implies OMC-bisimilarity) Let N(m01) and N(m02) be safe nets. If m01 ∼cn
m02, then m01 ∼omc m02.

Proof. If m01 ∼cn m02, then there exists a CN-bisimulation R1 containing the triple (ρ0
1 ,C

0,ρ0
2 ), where C0 con-

tains no events and ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = m0i for i = 1,2. Let us consider

R2
de f
= {((m1,≤1),(m2,≤2),β )|(ρ1,C,ρ2) ∈ R1 and

init(N(m01))[(C,ρ1)〉(m1,≤1) and
init(N(m02))[(C,ρ2)〉(m2,≤2) and
∀s1 ∈ ρ1(Max(C)),∀s2 ∈ ρ2(Max(C)),

s1β s2 iff ρ
−1
1 (•s1) = ρ

−1
2 (•s2)}.

If we prove that R2 is an OMC-bisimulation, then since init(N(m0i))[(C0,ρ0
i )〉init(N(m0i)) and ρ0

i (Min(C0)) =
= ρ0

i (Max(C0)) = m0i for i = 1,2, it follows that (init(N(m01)), init(N(m02)),m01×m02) ∈ R2 and so m01 ∼omc
m02.

We consider a tuple ((m1,≤1),(m2,≤2),β ) ∈ R2. If init(N(m01))[(C,ρ1)〉(m1,≤1), and (m1,≤1)[t1〉(m′1,≤′1)
then by Lemma 3.2.4 (C,ρ1)

e−→ (C′,ρ ′1) with ρ ′1(e) = t1 and init(N(m01))[(C′,ρ ′1)〉(m′1,≤′1). Since (ρ1,C,ρ2)∈
R1, it is also true that (C,ρ2)

e−→ (C′,ρ ′2) with ρ ′2(e)= t2 and (ρ ′1,C
′,ρ ′2)∈R1. Then, since by definition init(N(m02))[(C,ρ2)〉

(m2,≤2) and init(N(m02))[(C′,ρ ′2)〉(m′2,≤′2), by Lemma 3.2.4 (m2,≤2)[t2〉(m′2,≤′2).
Now we prove that the definition of β ′ arising from R2 is coherent with the one of Definition 3.3.1, i.e. it

implies both

1. ∀s1 ∈ m′1 .s2 ∈ m′2

s1 β
′ s2 ⇐⇒


s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2 (i)
or
s1 ∈ t•1 , s2 ∈ t•2 (ii)

and
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2. •t1 β⊕ •t2.

Proof 1) The two implications are proved separately.

- If s1β ′s2 iff ρ
′−1
1 (•s1) = ρ

′−1
2 (•s2):

Consider the event e such that ρ ′1(e) = t1 and ρ ′2(e) = t2:

+ if s1 ∈ t•1 and s2 ∈ t•2 : (ii) is trivial.
+ if s1 ∈ m1	 •t1 and s2 ∈ m2	 •t2: then since ((m1,≤1),(m2,≤2),β ) ∈ R2, the hypotesis s1 β s2

holds. Moreover, since s1 and s2 don’t move, (i) holds.
+ other cases: absurd, since ρ

−1
1 (•s1) = ρ

−1
2 (•s2).

- If (i) or (ii) holds:
Consider the transitions t1, t2 such that ρ ′1(e) = t1 and ρ ′2(e) = t2:

+ if (i): then since ((m1,≤1),(m2,≤2),β ) ∈ R2, the hypotesis s1 β s2 holds. Moreover, since s1 and
s2 don’t move, s1 β ′ s2.

+ if (ii): then ρ
′−1
1 (•s1) = ρ

′−1
1 (t1) = e, and ρ

′−1
2 (•s2) = ρ

′−1
2 (t2) = e, therefore by transitivity

s1 β ′ s2.

Proof 2) Since by definition ρ
−1
1 (•s1) = ρ

−1
1 (t1) = e = ρ

−1
2 (t2) = ρ

−1
2 (•s2), then | t•1 |= |e• |= | t•2 |.

The proof of •t1 β⊕ •t2 is done by induction on |•t1 |: note that the base case is 1, because transitions have
nonempty preset.

– Case |•t1 | = |•t2 | = 1: let •t1 = s′1 and •t2 = s′2.
For i = 1,2, s′i ∈ ρi(Max(C)), and since t1 and t2 are mapped by ρ1 and ρ2 respectively on the same
event e, s′1 and s′2 are mapped on the same place s ∈ B. Therefore s′1β s′2 and By rule (Clo), •t1 β⊕ •t2.

– Case |•t1 | = |•t2 | = n+1: let •t1 = s′1⊕n1 and •t2 = s′2⊕n2.
By inductive hypotesis, n1β⊕n2. For i = 1,2, s′i ∈ ρi(Max(C)), and since t1 and t2 are mapped by ρ1
and ρ2 respectively on the same event e, s′1 and s′2 are mapped on the same place s ∈ B. Therefore
s′1β s′2. By rule (Clo), •t1 β⊕ •t2.

Thus ((m′1,≤′1),(m′2,≤′2),β ′) ∈ R2.
Next, we prove that |m′1 |= |m′2 |. We know that, with the definitions from above, (ρ1,C,ρ2) , (ρ

′
1,C
′,ρ ′2) ∈ R1

and ((m1,≤1),(m2,≤2),β ) , ((m′1,≤′1),(m′2,≤′2),β ′)∈R2. Then, since for i= 1,2 it is true that init(N(m0i))[(C,ρi)〉
(mi,≤i) and init(N(m0i))[(C,ρi)〉(m′i,≤′i), by Proposition 3.2.2, |m′1 |= |m′2 |.

The case in which (m2,≤2) moves first is symmetrical.
Therefore, R2 is an OMC-bisimulation and m01 ∼omc m02.

Theorem 3.3.3. (OMC-bisimilarity implies CN-bisimilarity) Let N(m01) and N(m02) be safe nets If m01 ∼omc
m02, then m01 ∼cn m02.

Proof. If m01 ∼omc m02 there exists an OMC-bisimulation R1 containing the tuple (init(N(m01)), init(N(m02)),m01×
m02). Let us consider

R2
de f
= {(ρ1,C,ρ2)|((m1,≤1),(m2,≤2),β ) ∈ R1 and

for i = 1,2, (C,ρi) is a process of N(M0i)and

for i = 1,2, init(N(M0i))[(C,ρi)〉(mi,≤i) and
∀s1 ∈ ρ1(Max(C)),∀s2 ∈ ρ2(Max(C)),

s1β s2 iff ρ
−1
1 (•s1) = ρ

−1
2 (•s2)}.

If we prove that R2 is a CN-bisimulation, then we have that m01 ∼cn m02, because (ρ0
1 ,C

0,ρ0
2 )∈ R2, where C0 con-

tains no transitions and, for i= 1,2, ρ0
i (Min(C0))= ρ0

i (Max(C0))=m0i. Indeed, since (init(N(m01)), init(N(m02)),m01×
m02) ∈ R1 and (C0,ρ0

i ) is a process of N(m0i) and init(N(m0i))[(C0,ρ0
i )〉init(N(m0i)), we have (ρ0

1 ,C
0,ρ0

2 ) ∈ R2,
and therefore m01 ∼cn m02.

Assume (ρ1,C,ρ2) ∈ R2. If (C,ρ1)
e−→ (C′,ρ ′1) where ρ ′1(e) = t1, since by hypotesis init(N(m01))[(C,ρ1)〉

(m1,≤1) and init(N(m01))[(C′,ρ ′1)〉(m′1,≤′1), by Lemma 3.2.4 (m1,≤1)[t1〉(m′1,≤′1). Since we have ((m1,≤1
),(m2,≤2),β ) ∈ R1 then there exist t ′2,m

′
2,≤′2 such that (m2,≤2)[t2〉(m′2,≤′2) where ((m′1,≤′1),(m′2,≤′2),β ′) ∈

R1. By hypotesis init(N(m02)) [(C,ρ2)〉(m2,≤2), so by Lemma 3.2.4, (C,ρ2)
e−→ (C′,ρ ′2) where ρ ′2(e) = t2 and

init(N(m02))[(C′,ρ ′2)〉(m′2,≤′2). Note that, for i = 1,2, (C,ρi) is a process of N(m0i).
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Now we prove that the definition of β ′ specified in R2 is coherent with the one induced by Definition 3.3.1,
i.e. ∀s′1 ∈ ρ ′1(Max(C′)) ∀s′2 ∈ ρ ′2(Max(C′)) we have s′1 β ′ s′2 if and only if ρ

′−1
1 (•s1) = ρ

′−1
2 (•s2). By induction

on the length of σ , complete transition sequence of C such that init(N(m01)[(C′,ρ ′1〉(m′1,≤′1). Note that also
init(N(m02)[(C′,ρ ′2〉
(m′2,≤′2) with the same complete transition sequence.

• Case 1 : σ = e.

Proof =⇒) by cases on the definition of s′1 β ′s′2:

- if s′1 ∈ t•1 and s′2 ∈ t•2 :
By hypotesis we know that •s′1 = t1 and •s′2 = t2. Since (C,ρi)

e−→ (C′,ρ ′i ) where ρ ′i (e) = ti for
i = 1,2, then t1 and t2 are mapped on the same transition e. Therefore ρ

−1
1 (•s′1) = ρ

−1
1 (t1) = e

and ρ
−1
2 (•s′2) = ρ

−1
1 (t2) = e, and by transitivity we get ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2).

- if s′1 ∈ m1	 •t1 and s′2 ∈ m2	 •t2 and s′1 β s′2:
then ρ

−1
1 (•s′1) = /0 and ρ

−1
2 (•s′2) = /0. Since the tokens did not move, ρ ′i (s

′
i) = ρi(s′i) for i = 1,2

and by transitivity ρ
−1
1 (•s′1) = ρ

−1
2 (•s′2).

Proof⇐=) Consider the event e: we know that e is a transition of C′ and not of C, such that ρ ′1(e) = t1
and ρ ′2(e) = t2. there are four possibilities for s′1,s

′
2:

- if s′1 ∈ t•1 and s′2 ∈ t•2 :
then s′1 β ′ s′2 by the second condition of β ′.

- if s′1 ∈ m1	 •t1 and s′2 ∈ m2	 •t2:
We know that ρ

′−1
1 (•s1) = ρ

′−1
2 (•s2); since the tokens did not move, ρ ′i (s

′
i) = ρi(s′i) for i = 1,2

and therefore ρ
−1
1 (•s′1) = ρ

−1
2 (•s′2). Moreover, because σ = e it must be that •s′1 = /0 and •s′2 = /0.

By the fact that, at the beginning, β = k01× k02, we have that s′1 β s′2. Thus, the first condition of
β ′ holds.

- other cases:
absurd since ρ

′−1
1 (•s′1) = ρ

′−1
2 (•s′2).

• Case n+1: σ = δ e.

Proof =⇒) by cases on the definition of s′1 β ′ s′2:

- if s′1 ∈ t•1 and s′2 ∈ t•2 :
By hypotesis we know that •s′1 = t1 and •s′2 = t2. Since (C,ρi)

e−→ (C′,ρ ′i ) where ρ ′i (e) = ti for
i = 1,2, then t1 and t2 are mapped on the same transition e. Therefore ρ

−1
1 (•s′1) = ρ

−1
1 (t1) = e

and ρ
−1
2 (•s′2) = ρ

−1
1 (t2) = e, and by transitivity we get ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2).

- if s′1 ∈ m1	 •t1 and s′2 ∈ m2	 •t2 and s′1 β s′2:
By inductive hypotesis on (m1,≤1) and (m2,≤2), we have s′1 β s′2 =⇒ ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2).

Since the tokens did not move, ρ ′i (s
′
i) = ρi(s′i) for i = 1,2; therefore by transitivity ρ

′−1
1 (•s′1) =

ρ
′−1
2 (•s′2).

Proof⇐=) Consider the event e: we know that e is a transition of C′ and not of C, such that ρ ′1(e) = t1
and ρ ′2(e) = t2. there are four possibilities for s′1,s

′
2:

- if s′1 ∈ t•1 and s′2 ∈ t•2 :
then s′1 β ′ s′2 by the second condition of β ′.

- if s′1 ∈ m1	 •t1 and s′2 ∈ m2	 •t2:
By inductive hypotesis on (m1,≤1) and (m2,≤2), we have ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2) =⇒ s′1 β s′2 Since

the tokens did not move, ρ ′i (s
′
i) = ρi(s′i) for i = 1,2; therefore, the first condition of β ′ holds.

- other cases:
absurd since ρ

′−1
1 (•s′1) = ρ

′−1
2 (•s′2).

Thus (ρ ′1,C
′,ρ ′2) ∈ R2.

The case in which (C2,ρ2) moves first is symmetrical.
Therefore, R2 is a CN-bisimulation and m01 ∼cn m02.

Corollary 3.3.4. (OMC-bisimilarity and CN-bisimilarity coincide) Let N(m01) and N(m02) be safe nets.
m1 ∼omc m2 if and only if m1 ∼cn m2.
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Proof. By theorems 3.3.2 and 3.3.3, we get the thesis.

Corollary 3.3.5. (CN-bisimilarity is decidable for finite safe nets) Given N(m1) and N(m2) safe nets, it is
decidable to check whether m1 ∼cn m2.

Proof. By Corollary 3.3.4 we have to check whether there exists an OMC-bisimulation B for the given net N and
marking m1,m2. By Proposition 3.1.4, OM(N), [init(N(m1))〉 and [init(N(m2)〉 are finite. Since S is finite, also
P(S×S) is finite, thus there are only finitely many objects that are possible elements of B.

Since OM(N) is finite, the set of all possible tuples ((m1,≤1),(m2,≤2),β ) is finite. Since B is a set of said
tuples, there are only finitely many possible sets B. Therefore we can check by exhaustive search whether one of
them is an OMC-bisimulation.

Note that in general the complexity of this decision procedure is prohibitive. Already the number of reachable
markings of a safe net can be exponential in the size of the net. It could be conjectured that the complexity is
complete for DEXPTIME, since this equivalence is similar to history-preserving bisimilarity (i.e. fully-concurrent
bisimilarity), which (as shown in [JM96]) is in that class.

3.4 Decidability of fully-concurrent bisimulation for safe nets

In the following chapter we will extend the work of [Vog91] by showing that fully-concurrent bisimilarity is
decidable for finite bounded nets, too. In order to help the reader with the (rather complicated) bounded net proof,
we display also a proof for the safe case which is slightly different and more detailed than Vogler’s sketched one
in [Vog91].

We outline the definition of OM-bisimilarity from [Vog91]. Intuitively, two ordered markings are related by an
OM-bisimulation if the corresponding markings are bisimilar and the places of each preorder related. Note that we
do note require that tokens produced/consumed by a transition are bijectively related to those consumed/produced
by the corresponding transition, as in OMC-bisimulation (cf. Definition 3.3.1). It is enough that a token s1
precedes some s′1, which is consumed by t1, and that s′1 is related to some token s′2 consumed by t2.

Definition 3.4.1. (OM-bisimulation) Let N =(S,A,T ) be a net. An OM-bisimulation is a relation B⊆OM(N)×
OM(N)×P(S×S) such that if ((m1,≤1),(m2,≤2),β ) ∈B, then:

• ∀t1 such that (m1,≤1)[t1〉(m′1,≤′1), there exist t ′2,m
′
2,≤′2 such that

for β ′ defined as ∀s1 ∈ m′1,∀s2 ∈ m′2:

s1 β
′ s2 ⇐⇒


s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2

or
s1 ∈ t•1 , s2 ∈ t•2

the following hold:

- (m2,≤2)[t2〉(m′2,≤′2) where ((m′1,≤′1),(m′2,≤′2),β ′)∈B and l(t1) = l(t2);

- ∀s1 ∈ •t1, ∃s′1 ∈ •t1 , s′2 ∈ •t2 such that s1≤1 s′1 ∧ s′1 β s′2 , and symmetrically ∀s2 ∈ •t2, ∃s′2 ∈ •t2 , s′1 ∈ •t1
such that s2 ≤2 s′2 ∧ s′1 β s′2.

• symmetrically, if (m2,≤2) moves first.

If N(m1) and N(m2) are both safe nets, we say that m1,m2 are OM-bisimilar, denoted by m1 ∼om m2, if there
exists an OM-bisimulation B containing the triple (init(N(m1)), init(N(m2)),m1×m2). 2

This definition is aimed at relating ∼ f c and ∼om so that tokens are related by β if the transition generating
one is mapped to the transition generating the other by f . Next, we show that fully-concurrent bisimilarity and
OM-bisimilarity coincide on finite safe nets.

Theorem 3.4.2. (FC-bisimilarity implies OM-bisimilarity) Let N(m01) and N(m02) be safe nets. If m01 ∼ f c
m02, then m01 ∼om m02.
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Proof. If m01 ∼ f c m02, then there exists a FC-bisimulation R1 containing the triple (π0
1 ,π

0
2 , f ), where C0

i contains
no events and ρ0

i (Min(C0
i )) = ρ0

i (Max(C0
i )) = m0i for i = 1,2. Let us consider

R2
de f
= {((m1,≤1),(m2,≤2),β )|(π1, f ,π2) ∈ R1 and

init(N(m01))[π1〉(m1,≤1) and
init(N(m02))[π2〉(m2,≤2) and
∀s1 ∈ S,∀s2 ∈ S :
s1β s2 iff

s1 ∈ m1,s2 ∈ m2,

∃b1 ∈Max(C1) such that ρ1(b1) = s1,

∃b2 ∈Max(C2) such that ρ2(b2) = s2,

either b1 ∈Min(C1)∧b2 ∈Min(C2)

or •b1 6= /0∧ •b2 6= /0∧ f (•b1) =
•b2}.

If we prove that R2 is an OM-bisimulation, then since init(N(m0i))[(C0
i ,ρ

0
i )〉init(N(m0i)) and ρ0

i (Min(C0
i )) =

= ρ0
i (Max(C0

i )) = m0i for i = 1,2, it follows that (init(N(m01)), init(N(m02)),m01×m02) ∈ R2 and so m01 ∼om
m02.

We consider a tuple ((m1,≤1),(m2,≤2),β ) ∈ R2. If init(N(m01))[π1〉(m1,≤1), and (m1,≤1)[t1〉(m′1,≤′1) then
by Lemma 3.2.4 π1

e−→π ′1 with ρ ′1(e1) = t1 and init(N(m01))[π
′
1〉(m′1,≤′1). Since (π1, f ,π2) ∈ R1, it is also true

that π2
e2−→π ′2 with ρ ′2(e2) = t2 and (π ′1, f ′,π ′2) ∈ R1. Then, since by definition init(N(m02))[π2〉(m2,≤2) and

init(N(m02))[π
′
2〉

(m′2,≤′2), by Lemma 3.2.4 we have (m2,≤2)[t2〉(m′2,≤′2).
Now we prove that the definition of β ′ arising from R2 is coherent with the one of Definition 3.4.1, i.e. it

implies both

1. ∀s1 ∈ m′1 , s2 ∈ m′2

s1 β
′ s2 ⇐⇒


s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2 (i)
or
s1 ∈ t•1 , s2 ∈ t•2 (ii)

and

2. ∀s1 ∈ •t1, ∃s′1 ∈ •t1 , s′2 ∈ •t2 such that s1 ≤1 s′1 ∧ s′1 β s′2 and symmetrically ∀s2 ∈ •t2, ∃s′2 ∈ •t2 , s′1 ∈ •t1
such that s2 ≤2 s′2 ∧ s′1 β s′2.

Proof 1) The two implications are proved separately.

Proof =⇒: assume s1 = ρ ′(b1) and s2 = ρ ′(b2). Then:

- If b1 ∈Min(C′1) and b2 ∈Min(C′2):
then for i = 1,2, si ∈ ρ ′i (Min(C′i)) = m0i and si ∈ mi	 •ti. Since the initial β is m01×m02, we
have s1β s2, satisfying condition (i).

- if •b1 6= /0∧ •b2 6= /0∧ f (•b1) =
•b2:

Let us consider events e′1,e
′
2 such that b1 ∈ e′•1 and b2 ∈ e′•2 . There are four possible cases:

+ if e′1 = e1 and e′2 = e2: since s1 = ρ ′1(b1) and t1 = ρ ′1(e1) = ρ ′1(e
′
1), we have s1 ∈ t•1 . For the

same reason, s2 ∈ t•2 and therefore condition (ii) holds.
+ if e′1 6= e1 and e′2 6= e2: then s1 = ρ ′1(b1) = ρ1(b1) ∈ m1	 •t1 because e′1 has occurred before

e1. For the same reason, s2 ∈ m2	 •t2. Since ((m1,≤1),(m2,≤2),β ) ∈ R2 and f (•b1) =
•b2,

then s1β s2, therefore condition (i) holds.
+ other cases: absurd since f ′(e1) = e2.

Proof ⇐=: Since s1 ∈ m′1 and s2 ∈ m′2, there exist b1 and b2 such that s1 = ρ ′1(b1) and s2 = ρ ′2(b2).

Consider the complete transition sequence σ1 = δ1 e1 such that init(N(m01))[ρ
′
1(σ1)〉(m′1,≤′1), and the

complete transition sequence σ2 = δ2 e2 such that init(N(m02))[ρ
′
2(σ2)〉(m′2,≤′2), and f ′(σ1) = σ2. It

is easy to see that |σ1 |= |σ2 |; we prove the thesis by induction on the length of σ1:

+ Case 1: σ1 = e1 and σ2 = e2. By cases on the condition:
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- if s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2 :
then s1 ∈ m01 and since m01 = ρ ′1(Min(C′)) we have •b1 = /0. For the same reason, also
•b2 = /0.

- if s1 ∈ t•1 , s2 ∈ t•2 :
then •b1 = e1 and •b2 = e2: therefore, we have by construction that f ′(•b1) =

•b2.
+ Case n+1: σ1 = δ1 e1 and σ2 = δ2 e2. The inductive hypotesis is init(N(m0i))[ρi(δi)〉(mi,≤i)

where the thesis holds and the inductive step is (mi,≤i)[ρ
′
i (ei)〉(m′i,≤′i), where ρ ′i (ei) = ti, for

i = 1,2. By cases on the condition:
- if s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2:

We need to separate two cases for s1.
+ If s1 ∈ m01: since s1 = ρ ′1(b1) we have b1 ∈Min(C′1); moreover since s1β s2, it is true that

s2 ∈ m02, and the same reasoning applies, therefore b1 ∈Min(C′1) and b2 ∈Min(C′2).
+ If s1 6∈ m01: then •b1 6= /0 and •b2 6= /0. Since s1 ∈ m1	 •t1, s2 ∈ m2	 •t2, and

((m1,≤1),(m2,≤2),β ) ∈ R2, then by inductive hypotesis we have f (•b1) =
•b2, and by

conservative extension of f we get the thesis.
- if s1 ∈ t•1 , s2 ∈ t•2 :

then s1 ∈ t•1 and so •b1 = e1, therefore •b1 6= /0. The same applies to s2, and since f ′(e1) = e2,
we have f ′(•b1) =

•b2.

Proof 2) Let us consider events e1,e2 such that π1
e1−→π ′1 with ρ ′(e1) = t1, π2

e2−→π ′2 with ρ ′(e2) = t2, and
f ′(e1) = e2. We assume s1 ∈ •t1 where there exists b1 such that ρ1(b1) = s1. Note that, since π1

e1−→π ′1 with
ρ ′(e1) = t1, it is true that b1 ∈ Max(C1). We are to prove that ∃s′1 ∈ •t1 , ∃s′2 ∈ •t2 such that s1 ≤1 s′1 and
s′1 β s′2. In the following, in some cases we have s1 = s′1: if that is true, then s1 ≤1 s′1 by reflexivity of ≤1.

There are two possible cases for b1:

- if b1 ∈Min(C1):
There are two possible subcases:

+ ∃b′2 ∈ ρ
−1
2 (•t2) such that b′2 ∈Min(C2):

Then by definition of ρ2 there exists s′2 = ρ2(b′2), and by definition of β we have s1 β s′2.
+ otherwise:

Since π2
e2−→π ′2 with ρ ′(e2) = t2, there exists b′2 ∈Max(C2) such that ρ2(b′2) = s′2 and s′2 ∈ •t2.

Let us consider t ′2 = •s′2 and the related event e′2 ∈ EC2 such that ρ2(e′2) = t ′2. Since f is an
isomorphism between EC1 and EC2 , there exists event e′1 ∈ EC1 such that f (e′1) = e′2. Then, by
definition of ρ1, there exists t ′1 such that ρ1(e′1) = t ′1. Therefore there exists s′1 such that t ′1 =

•s′1
and a b′1 such that ρ1(b′1) = s′1, i.e. e′1 =

•b′1. Since b1 ∈Min(C1), by Lemma 3.2.1 it is true that
s1 is minimal for ≤1, and therefore s1 ≤1 s′1.
Finally, since e′1 =

•b′1, e′2 =
•b′2 and f (e′1) = e′2, we have s′1 β s′2.

- if b1 6∈Min(C1):
Assume t ′1 =

•s1 and e′1 ∈ EC1 such that ρ1(e′1) = t ′1. Since f is an isomorphism between EC1 and EC2 ,
there exists e′2 ∈ EC2 such that e′2 = f (e′1). Then, by definition of ρ2, there exists also t ′2 such that
ρ2(e′2) = t ′2.
From this, we get that there exists s′2 such that t ′2 =

•s′2 and b′2 such that ρ2(b′2) = s′2. Since e′1 is an
immediate predecessor of e1 in EC1 , by definition of f it is true that e′2 is an immediate predecessor of
e2 in EC2 . Therefore it is possible to choose s′2 not only such that t ′2 =

•s′2, but also s′2 ∈ •t2.
Finally, we have that e′1 =

•b1, e′2 =
•b′2 and f (e′1) = e′2, therefore s1 β s′2.

The proof of the case for s2 ∈ •t2 is symmetrical and therefore omitted.

Thus, (π ′1, f ′,π ′2) ∈ R2.
The case in which π2 moves first is symmetrical.
Therefore, R2 is an OM-bisimulation and m01 ∼om m02.

Theorem 3.4.3. (OM-bisimilarity implies FC-bisimilarity) Let N(m01) and N(m02) be safe nets. If m01 ∼om
m02, then m01 ∼ f c m02.
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Proof. If m01 ∼om m02 then there exists an OM-bisimulation R1 containing the tuple (init(N(m01)), init(N(m02)),m01×
m02). Let us consider

R2
de f
= {(π1, f ,π2)

∣∣ ((m1,≤1),(m2,≤2),β ) ∈ R1 and
for i = 1,2, πi = (Ci,ρi) is a process of N(M0i) and
init(N(M0i))[πi〉(mi,≤i) and
f is an isomorphism EC1 −→ EC2 and
∀b1 ∈Max(C1),∀b2 ∈Max(C2),

ρ1(b1) β ρ2(b2) iff
either •b1 = /0∧ •b2 = /0
or •b1 6= /0∧ •b2 6= /0∧ f (•b1) =

•b2}.

If we prove that R2 is a FC-bisimulation, then we have that m01 ∼ f c m02, because (π0
1 , /0,π0

2 ) ∈ R2, where, for
i= 1,2, each π0

i =(C0
i ,ρ

0
i ) is such that C0

i contains no transitions and ρ0
i (Min(C0

i ))= ρ0
i (Max(C0

i ))=m0i. Indeed,
since (init(N(m01)), init(N(m02)),m01×m02) ∈ R1 and (C0

i ,ρ
0
i ) is a process of N(m0i) and init(N(m0i))[(C0

i ,ρ
0
i )〉

init(N(m0i)), we have (π0
1 , /0,π0

2 ) ∈ R2, and therefore m01 ∼ f c m02.
Assume (π1, f ,π2) ∈ R2. If π1

e1−→π ′1 where ρ ′1(e1) = t1, since by hypotesis init(N(m01))[π1〉(m1,≤1) and
init(N(m01))[π

′
1〉(m′1,≤′1), by Lemma 3.2.4 (m1,≤1)[t1〉(m′1,≤′1). Since ((m1,≤1),(m2,≤2),β ) ∈ R1 then there

exist t ′2,m
′
2,≤′2 such that (m2,≤2)[t2〉(m′2,≤′2) where ((m′1,≤′1),(m′2,≤′2),β ′)∈R1. Since by hypotesis init(N(m02))[π2〉

(m2,≤2), then by Lemma 3.2.4, π2
e2−→π ′2 where ρ ′2(e2) = t2 and init(N(m02))[π

′
2〉(m′2,≤′2). Note that, for

i = 1,2, (C′i ,ρ
′
i ) is a process of N(m0i).

We extend f with the mapping f ′(e1) = e2: since inductively f is an isomorphism between EC1 and EC2 , and
π1

e1−→π ′1, π2
e2−→π ′2, then f ′ is an isomorphism between EC′1

and EC′2
.

Now we need to check that the definition of β ′ from Definition 3.4.1 is coherent with the one obtained from
R2, i.e. the following condition holds:
∀b1 ∈Max(C′1) , b2 ∈Max(C′2),∀s1 ∈ m′1 , s2 ∈ m′2 such that ρ ′1(b1) = s1 and ρ ′2(b2) = s2,

ρ
′
1(b1) β

′
ρ
′
2(b2) ⇐⇒


s1 ∈ m1	 •t1 , s2 ∈ m2	 •t2 and s1 β s2 (i)
or
s1 ∈ t•1 , s2 ∈ t•2 (ii)

Let us consider the complete transition sequence σ1 = δ1 e1 of C′1, where:

• init(N(m01))[ρ
′
1(σ1)〉(m′1,≤′1), and

• there exists σ2 = δ2 e2 obtained by mapping each event in σ1 with f ′, such that
init(N(m02))[ρ

′
2(σ2)〉(m′2,≤′2).

It is trivial that |σ1 |= |σ2 |, therefore we prove the thesis by induction on the length of σ1:

• Case 1: σ1 = e1 , σ2 = e2. We prove the two implications separately.

Proof =⇒) by cases on the definition of β ′:

- if •b1 = /0∧ •b2 = /0 :
then tokens b1,b2 did not move, so neither s1,s2 did. Therefore s1 ∈ m1	 •t1 and s2 ∈ m2	 •t2,
i.e. s1 ∈ m01 and s2 ∈ m02. Since the initial β is m01×m02, we have s1 β s2, satisfying condition
(i).

- if •b1 6= /0∧ •b2 6= /0∧ f ′(•b1) =
•b2:

then •b1 = e1 and •b2 = e2, therefore s1 ∈ t•1 and s2 ∈ t•1 , satisfying condition (ii).

Proof⇐=) by cases:

- if s1 ∈ m1	 •t1 and s2 ∈ m2	 •t2 and s1 β s2:
then since the only events in σ1,σ2 are respectively e1,e2 and ρ ′1(e1) = t1,ρ ′2(e2) = t2, we have
•b1 = /0 and •b2 = /0 because each si ∈ ρ ′i (Min(C′i).

- if s1 ∈ t•1 and s2 ∈ t•2 :
then since the only events in σ1,σ2 are respectively e1,e2 and ρ ′1(e1) = t1,ρ ′2(e2) = t2, and for
each si ∈ ρ ′i (Max(C′i) we have •b1 = e1 and •b2 = e2. Moreover, f ′(e1) = e2.
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• Case n+1: σ1 = δ1 e1 and σ2 = δ2 e2. We prove the two implications separately.

Proof =⇒) by cases on the definition of β ′:

- if •b1 = /0∧ •b2 = /0 :
Then b1 ∈ Min(C′1) and b2 ∈ Min(C′2). For this reason, s1 ∈ m01 and s2 ∈ m02, therefore s1 ∈
m1	 •t1 and s2 ∈ m2	 •t2, i.e. s1 ∈ m01 and s2 ∈ m02. Since the initial β is m01×m02, we have
s1 β s2, satisfying condition (i).

- if •b1 6= /0∧ •b2 6= /0∧ f ′(•b1) =
•b2:

There are two cases for the event which generates b1:
+ if •b1 = e1: then since f ′(•b1) = e2, we have •b2 = e2; therefore s1 ∈ t•1 and s2 ∈ t•2 , satisfying

condition (ii).
+ if •b1 6= e1: then since •b1 6= /0, there exists e′1 ∈ δ1 such that •b1 = e′1. By the fact that f ′ is

an isomorphism between EC′1
and EC′2

, and that f ′(e1) = e2, there exists also e′2 ∈ δ2 where
f−1(e′1) = e′2 such that •b2 = e′2. By inductive hypotesis on δ1 we have s1 β s2, satisfying
condition (i).

Proof⇐=) by cases:

- if s1 ∈ m1	 •t1 and s2 ∈ m2	 •t2 and s1 β s2:
then there are two possible cases for b1:

+ if b1 ∈Min(C′1):
then, since Min(C′1) = Min(C1) and Min(C′2) = Min(C2), the same reasoning of the base case
of induction applies.

+ if b1 6∈Min(C′1):
then •b1 6= /0; since however b1 does not move, because s1 ∈m1	•t1, it is possible to apply the
induction hypotesis on δ1, therefore •b2 6= /0 and f (•b1) =

•b2, and by conservative extension
of f , f ′(•b1) =

•b2.
- if s1 ∈ t•1 and s2 ∈ t•2 :

then since ρ ′1(e1) = t1,ρ ′2(e2) = t2, and for each si ∈ ρ ′i (Max(C′i) we have •b1 = e1 and •b2 = e2.
Moreover, f ′(e1) = e2.

Thus (π ′1, f ′,π ′2) ∈ R2.
The case in which π2 moves first is symmetrical.
Therefore, R2 is an FC-bisimulation and m01 ∼ f c m02.

Corollary 3.4.4. (OM-bisimilarity and FC-bisimilarity coincide) Let N(m01) and N(m02) be safe nets. m1 ∼om
m2 if and only if m1 ∼ f c m2.

Proof. By theorems 3.4.2 and 3.4.3, we get the thesis.

Corollary 3.4.5. (FC-bisimilarity is decidable for finite safe nets) Given N(m1) and N(m2) safe nets, it is
decidable to check whether m1 ∼ f c m2.

Proof. By Corollary 3.4.4 we have to check whether there exists an OM-bisimulation B for the given net N and
marking m1,m2. By Proposition 3.1.4, OM(N), [init(N(m1))〉 and [init(N(m2)〉 are finite. Since S is finite, also
P(S×S) is finite, thus there are only finitely many objects that are possible elements of B.

Since OM(N) is finite, the set of all possible tuples ((m1,≤1),(m2,≤2),β ) is finite. Since B is a set of said
tuples, there are only finitely many possible sets B. Therefore we can check by exhaustive search whether one of
them is an OM-bisimulation.

Note that also in this case the complexity of this decision procedure is prohibitive. Already the number of reach-
able markings of a safe net can be exponential in the size of the net. However, in [JM96] it is shown that the
complexity of checking whether two safe markings are history-preserving bisimilar (i.e. fully-concurrent bisim-
ilar) is complete for DEXPTIME. This is done using a proof technique which keeps a preorder of most recently
fired transitions instead of most recent tokens.

Example 3. Consider again the simple finite P/T net net N in Figure 2.1. As expected, we have s1 ∼om s3 and this
is proved by relation

R = {((s1,s1 ≤ s1),(s3,s3 ≤ s3),s1 β s3),((s2,s2 ≤ s2),(θ , /0), /0)}.
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Indeed, the two initial ordered markings are related by R and, since they are initial, tokens s1 and s3 are related by
β . If (s1,s1 ≤ s1) moves first by (s1,s1 ≤ s1)[ta1〉(s2,s2 ≤ s2), (s3,s3 ≤ s3) can respond with (s3,s3 ≤ s3)[ta2〉(θ , /0),
and ((s2,s2 ≤ s2),(θ , /0), /0) ∈ R. Note that, since θ is empty, also relation β in the final OM-triple is empty. The
case where (s3,s3 ≤ s3) moves first is symmetrical.
Not surprisingly, s1 6∼omc s3, because |s2 | 6= |θ | and therefore an OMC-bisimulation cannot be built. 2



Chapter 4

Decidability Results for Finite Bounded
Petri Nets

For bounded nets, we cannot assume the useful coincidence between a token and its current place, because there
can be a (bounded) set of tokens in each place. The use of ordered markings makes sense on sets, but not on
multisets: for that reason we distinguish each individual token by introducing indexed markings, which are sets
that can be abstracted to multisets by forgetting the indexing information. The index, unique for every token in a
place, allows tokens to be treated as a single individual unit: this leads us to define a token game according to the
individual token philosophy in a way that is, to the best of our knowledge, original. Since multisets are turned into
sets, Vogler’s proof technique [Vog91] can be generalized to bounded nets by using ordered indexed markings.

4.1 Indexed marking semantics

Definition 4.1.1. (Indexed marking) Given a finite net N = (S,A,T ) and a marking m of N, an indexed marking
is a function k : S−→P(N) such that the associated (de-indexed) marking m is obtained as m(s) = |k(s) | for each
s ∈ S. In this case, we write α(k) = m. The support set dom(k) is {s ∈ S

∣∣ k(s) 6= /0}.
The set of the indexed markings with support set S is denoted K(S).
We define the set of indexed places as {(s1, i1), . . . ,(sn, in)} ∈P(S×N) where each s j ∈ S, i j ∈ N and 6 ∃ j1, j2
such that s j1 = s j2 ∧ i j1 = i j2 (this last condition guarantees that each token on a place s has an index different
from the index of any other token on s). Note that an indexed marking can also be represented as a set of indexed
places, i.e. a subset of S×N. In the same fashion, the set of all indexed marking K(S) can also be seen as a subset
of the set of indexed places, i.e. K(S)⊆P(S×N). Each element of an indexed marking, i.e. each indexed place,
is a token.
An indexed marking k ∈ K(S) is closed if k(s) = {1, . . . , |k(s) |} for all s ∈ dom(k). If there exists a bounded
marked net N(m0) and a closed indexed marking k0 such that α(k0) = m0, we say that k0 is an initial indexed
marking of N. The application of such marking k0 to N is denoted by N(k0).
We define the difference between an indexed marking and a marking with same support as � : K(S) −→M (S) −→
P(K(S))

k�θ ={k}
k� (s⊕m) =(k� s)�m

{k1, . . .kn}�m =k1 �m∪ . . .∪ kn �m

k� s = {k′
∣∣ k′(s′) = k(s′) if s′ 6= s ,or

= k(s)\{n} if s′ = s and n ∈ k(s)}

And the union of an indexed marking and a marking with same support as � : K(S)−→M (S)−→ K(S)

k�θ = k

k� (s⊕m) = (k� s)�m

k� s = k′

30
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where for all s′ ∈ S , k′(s′) is defined as:

k′(s′) =

{
k(s′) if s′ 6= s
k(s)∪{n} if s′ = s, n = min(k(s)) where k(s) = N\ k(s)

Note that we use min(H), where H ∈P(N), to denote the least element of H.
2

Note that the difference between an indexed marking and a marking is a set of indexed markings: since it
makes no sense to prefer a single possible execution over another, all possible choices for n are to be considered.

The token game is modified accordingly, taking into account the individual token interpretation.

Definition 4.1.2. (Token game with indexed markings) Given a net N = (S,A,T ) and an indexed marking
k ∈ K(S) such that m = α(k), we say that a transition t ∈ T is enabled at k if •t ⊆ m, denoted kJt〉. If t occurs, the
firing of t enabled at k produces the indexed marking k′, denoted kJt〉k′, if

- ∃k′′ ∈ k� •t and

- k′ = k′′� t•.

Note that there can be more than a single marking produced from the firing of t (the transition relation is
nondeterministic), but for all k′ such that kJt〉k′, it is true that α(k′) = m	 •t⊕ t•. Therefore, if m[t〉m′ then kJt〉k′,
where α(k′) = m′. 2

In the following, we prefer to use the interpretation of indexed markings as set of indexed places i.e., we denote
an indexed marking k ∈ K(S) as the set {(s1,n1) . . .(si,ni)} where |k |= i.
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Figure 4.1: Execution of the transition labeled by v, then of the transition labeled by u, on a bounded net with
initial marking m0 = s1⊕3s2. Tokens to be consumed are in red, generated ones in blue.

Example 4. In Figure 4.1(a) a simple net N is given. The initial marking is m0 = s1⊕ 3s2, therefore the marked
net N(m0) is 5-bounded. The initial indexed marking is k0 = {(s1,1),(s2,1),(s2,2),(s2,3)}.
Let us suppose that transition t2, labeled by v, occurs. There are three possible ways to remove a token from s2: re-
moving (s2,1), or removing (s2,2), or removing (s2,3). Indeed, the operation k0�•t2 yields a set of three possible
indexed markings, each one a possible result of the difference: {{(s1,1),(s2,2),(s2,3)},{(s1,1),(s2,1),(s2,3)},
{(s1,1),(s2,1),(s2,2)}}. Let us choose, for the sake of the argument, that the token deleted by t2 is (s2,2), i.e.
choose k′= {(s1,1),(s2,1),(s2,3)}. The union k′�t•2 easily yields the indexed marking k1 = {(s1,1),(s2,1),(s2,3),(s3,1)},
as depicted in Figure 4.1(b). Note that this choice was arbitrary and two other values of k1 are possible. Indeed,
from Definition 4.1.2, we know that the transition relation on indexed markings is nondeterministic. However, the
resulting marked net is the same for all three cases, that is, the same of Figure 4.1(b) without indexes.
Now we suppose that (given the indexed marking k1 from above) transition t1, labeled by u, occurs. In that case,
k1�•t1 yields the singleton set {{(s2,1),(s2,3),(s3,1)}}, therefore we choose k′′ = {(s2,1),(s2,3),(s3,1)}. Since
t•1 = s2⊕s2, we show in detail how k′′� t•1 is computed. First, we apply the definition for union with non-singleton
multisets: k′′�(s2⊕s2) = (k′′�s2)�s2. Then, we compute k′′�s2: since the least free index for the place s2 is 2,
k′′� s2 = {(s2,1),(s2,2)(s2,3),(s3,1)}. Now we apply again the definition: note that this time the least free index
for s2 is 4, and the final result is k2 = {(s2,1),(s2,2)(s2,3),(s2,4),(s3,1)}. The resulting marked net is depicted
in Figure 4.1(c). 2
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generated deleted untouched
m[t〉m′ t• •t m	 •t
kJt〉k′ k′ \ k′′ k \ k′′ k′′

Table 4.1: Different notation for tokens in the token game. On the first line, the collective case. On the last, the
individual case.

The notation for tokens in the token game has become slightly more unintuitive, so in Table 4.1 we provide a
comparison between the one displayed in previous sections and the one we will use in the following part of this
work. Given a transition t such that kJt〉k′ and m[t〉m′, assume k′′ ∈ k� •t such that k′ = k′′� t•.

Definition 4.1.3. (Firing sequence with IM) Given a finite net N = (S,A,T ) and an indexed marking k, a firing
sequence starting at k is defined inductively as follows:

• kJε〉k is a firing sequence (where ε denotes an empty sequence of transitions) and

• if kJσ〉k′ is a firing sequence and k′Jt〉k′′, then kJσt〉k′′ is a firing sequence.

If σ = t1 . . . tn (for n≥ 0) and kJσ〉k′ is a firing sequence, then there exist k1, . . .kn+1 such that k = k1Jt1〉k2 . . .
. . .knJtn〉kn+1 = k′ and σ = t1 . . . tn called a transition sequence starting at k and ending at k′. The set of reachable
indexed markings from k is Jk〉= {k′

∣∣ ∃σ .kJσ〉k′}. Given a bounded net N(k0), we call Jk0〉 the set of reachable
indexed marking of N, denoted by IM(N). 2

Proposition 4.1.4. Given a finite bounded net N = (S,A,T,m0), the set IM(N) ⊆ K(S) of reachable indexed
markings is finite.

Proof. By definition, S is finite and since N(m0) is bounded, there exists a h ∈ N such that ∀s ∈ S , ∀m ∈
[m0〉 , m(s) ≤ h, i.e. the net is h-bounded. The set of all indexed markings of N is infinite, because P(S×N)
is infinite. However, the index of each token (s,n) ∈ K(S) in a reachable indexed marking cannot grow infinitely.
Indeed, for all s ∈ S and for all m ∈ [m0〉, the initial index of a token is at most |m(s) | because the initial indexed
marking is closed, and since N(m0) is h-bounded, by definition of � (we choose always the least possible one),
the index of a token in a reachable indexed marking is always less or equal than h. Therefore, IM(N) is finite.

If N(m0) is h-bounded, we have that IM(N)⊆P(S×1, . . . ,h), i.e. all reachable indexed markings are finitely
many.
To define some of the bisimulations used in the following proofs, a generalization of the ones from Chapter 3
using ordered indexed markings, a generalization of additive closure [Gor20a] is needed. Instead of places, we
use tokens.

Remark 3. (Additive closure on tokens) In the following, we will use the definition of additive closure [Gor20a]
also on token relations. Note that, since the indexed marking semantics considers sets of tokens, it would make no
sense to consider multisets obtained by additive closure of tokens, even if technically possible.

As in the safe case, two indexed markings are related by R⊕ only if they have the same size.

4.2 Ordered indexed marking semantics
Following the approach of the previous chapter, we define a semantics based on ordered indexed markings, where
the preorder reflects the precedence in the generation of tokens.

Definition 4.2.1. (Ordered indexed marking) Given a net N = (S,A,T ) and an indexed marking k ∈ K(S), the
pair (k,≤) is an ordered indexed marking if ≤⊆ k×k is a preorder, i.e. a reflexive and transitive relation. The set
of all possible ordered indexed markings of N is denoted by OIM(N). If k0 is the initial marking of N, which is
assumed to be closed (cf. Definition 4.1.1) we define the initial ordered indexed marking init(N) as (k0,k0×k0). If
the initial indexed marking is not clear from the context, we write init(N(k0)) to denote the initial ordered indexed
marking. 2

Definition 4.2.2. (Token game with ordered indexed markings) Given a net N = (S,A,T ) and an ordered
indexed marking (k,≤), we say that a transition t ∈ T is enabled at (k,≤) if kJt〉; this is denoted by (k,≤)Jt〉.

The firing of t enabled at (k,≤) may produce an ordered indexed marking (k′,≤′) - and we denote this by
(k,≤)Jt〉(k′,≤′) - where:
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• k′′ ∈ k� •t such that k′ = k′′� t•

• for all (sh, ih),(s j, i j) ∈ k′ , (sh, ih)≤′ (s j, i j) if and only if:

– (sh, ih),(s j, i j) ∈ k′′ and (sh, ih)≤ (s j, i j), or

– (sh, ih),(s j, i j) ∈ k′ \ k′′, or

– (sh, ih) ∈ k′′ , (s j, i j) ∈ k′ \ k′′ and there exists (sl , il) ∈ k \ k′′ such that (sh, ih)≤ (sl , il).

Note that, as for indexed markings, many different ordered indexed markings are produced from the firing of t.
This means that also the transition relation for ordered indexed markings is nondeterministic. 2

Example 5. Consider again the net in Figure 4.1 and the first part of the execution of Example 4, i.e. k0Jt2〉k1.
According to Definition 4.2.1, the initial ordered indexed marking is (k0,≤0), where ≤0= k0× k0. When t2 fires,
token (s2,2) is removed and token (s3,1) is generated, while all other tokens are untouched. Let us denote the
preorder induced by the firing of t2 as ≤1. According to the first item of Definition 4.2.2, since (s3,1) is generated
by the firing of t2, we have (s3,1) ≤1 (s3,1). According to the second item of Definition 4.2.2, the preorder
on all tokens untouched by t2 remains the same, therefore e.g. (s2,3) ≤1 (s1,1) and viceversa. Furthermore,
consider (s1,1) and (s3,1): we have that t2 generates (s3,1), deletes (s2,2) and leaves (s1,1) untouched. Since
(s1,1)≤0 (s2,2), by the third item of Definition 4.2.2 we have (s1,1)≤1 (s3,1). The same reasoning applies to all
untouched tokens. Summing up, we have (k0,≤0)Jt2〉(k1,≤1) where ≤1=≤0 \{((si,ni),(s j,n j)) ∈ k0

∣∣ (si,ni) =
(s2,2)∨ (s j,n j) = (s2,2)}∪{((s1,1),(s3,1)),((s2,1),(s3,1)),((s2,3),(s3,1)),((s3,1),(s3,1))}. 2

Definition 4.2.3. (Firing sequence with OIM) A firing sequence starting at (k,≤) is defined inductively as
follows:

• (k,≤)Jε〉(k,≤) is a firing sequence (where ε denotes an empty sequence of transitions) and

• if (k,≤)Jσ〉(k′,≤′) is a firing sequence and (k′,≤′)′Jt〉(k′′,≤′′), then (k,≤)Jσt〉(k′′,≤′′) is a firing se-
quence.

If σ = t1 . . . tn (for n≥ 0) and (k,≤)Jσ〉(k′,≤′) is a firing sequence, then there exist (k1,≤1), . . . ,(kn+1,≤n+1)
such that (k,≤) = (k1,≤1)Jt1〉(k2,≤2) . . .(kn,≤n)Jtn〉(kn+1,≤n+1) = (k′,≤′) and σ = t1 . . . tn called a transition
sequence starting at (k,≤) and ending at (k′,≤′). The set of reachable ordered indexed markings from (k,≤) is
J(k,≤)〉= {(k′,≤′)

∣∣ ∃σ .(k,≤)Jσ〉(k′,≤′)}.
Given a closed indexed marking k0, the set of all the reachable ordered indexed markings of N(k0) is denoted by
Jinit(N)〉. 2

Proposition 4.2.4. Given a bounded net N = (S,A,T,m0), Jinit(N)〉 is finite.

Proof. The set IM(N) ⊆ K(S) of reachable indexed markings is finite because of Proposition 4.1.4. The set of
possible preorders for a reachable indexed marking k = {(s1,n1) . . .(sm,nm)} ∈ IM(N) is finite, because≤⊆ k×k.
Therefore, Jinit(N)〉 is finite.

4.3 Ordered indexed marking and causality-based semantics
In Chapter 3, given a process π = (C,ρ), the preorder induced on a net N by π , i.e. the preorder on tokens of
a marking derived by applying ρ to Max(C), was obtained just by looking at the structure of C, because tokens
were identified with their respective places. Since on bounded nets it is possible to have more than one token in a
place, the dynamics of the causal net must be taken into consideration to compute the correct index for each token
in the current marking.

Given a transition sequence σ , there is an operational preorder on tokens obtained by Definition 4.2.3, and a
preorder derived from the process ≤π obtained from the causal net C corresponding to the transition sequence σ .
In the following, we relate the two.

If π = (C,ρ) is a process of a marked net N(m0) and k0 is the initial indexed marking for N(m0), i.e. α(k0) =
m0 (cf. Definition 4.1.1), we say that π is a process of N(k0) as a shorthand for π is a process of N(α(k0)).

Lemma 4.3.1. (A minimality condition for≤) Let π = (C,ρ) be a process of N(k0) and σ a complete transition
sequence of C such that init(N)Jρ(σ)〉(k,≤). For all b ∈Max(C) such that (ρ(b), i) ∈ k, if b ∈Min(C), then:

i) (ρ(b), i) ∈ k0; and

ii) for all b′ ∈Max(C) such that (ρ(b′), i′) ∈ k, (ρ(b), i)≤ (ρ(b′), i′).
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In other words, if b ∈Max(C) and also b ∈Min(C), then the current token (ρ(b), i) ∈ k was actually already
present in the initial indexed marking k0 and is also minimal for the preorder ≤.

Proof. By induction on the length of σ .

• Case 0: σ = ε .
For the first statement, we have that since Min(C) = Max(C) = α(k0) because the causal net does not
contain any event, then (ρ(b), i) ∈ k0.

For the second statement, since for all (ρ(b), i) ∈ k0 it is true that •b = /0, and ≤= k0× k0, then (ρ(b), i)≤
(ρ(b′), i′).

• Case n+1: σ = α e where e 6∈ α .
The induction hypotesis is init(N)Jρ(α)〉(k,≤) where the thesis holds for (k,≤).
The step is (k,≤)Jρ ′(e)〉(k′,≤′) and (C,ρ)

e−→ (C′,ρ ′). Assume k′′ ∈ k� •ρ ′(e) such that k′ = k′′�ρ ′(e)•.
For the first statement, consider the token (ρ ′(b), i):

- if (ρ ′(b′), i′) ∈ k′′: then (ρ ′(b), i) = (ρ(b), i) because it has not been touched by transition t; by induc-
tive hypotesis (ρ(b), i) ∈ k0 and therefore (ρ ′(b), i) ∈ k0.

- if (ρ ′(b′), i′) ∈ k′ \ k′′: absurd, because it would mean that •b 6= /0, and a causal net cannot be cyclic
(cf. Definition 2.2.2), contradicting the hypotesis b ∈Min(C).

- (ρ ′(b′), i′) ∈ k \ k′′: absurd, because b ∈Max(C′) by hypotesis.

Note that this means that token (ρ(b), i) - which is the same as (ρ ′(b), i) - never moved.

For the second statement, consider the token (ρ ′(b′), i′):

- if (ρ ′(b′), i′) ∈ k′′: since the inductive hypotesis on (k,≤) holds, i.e. (ρ(b), i) ≤ (ρ(b′), i′) and b,b′

are not touched by event e, i.e. (ρ(b), i) = (ρ ′(b), i) and (ρ(b′), i′) = (ρ ′(b′), i′), then
(ρ ′(b), i)≤′ (ρ ′(b′), i′);

- if (ρ ′(b′), i′) ∈ k′ \ k′′: then (ρ ′(b′), i′) must have been generated from a (ρ(b′′), i′′) ∈ k \ k′′. Since the
inductive hypotesis on (k,≤) holds for all (ρ(b′′), i′′) ∈ k \ k′′, then (ρ ′(b), i)≤′ (ρ ′(b′), i′).

- if (ρ ′(b′), i′) ∈ k \ k′′: absurd, because b′ ∈Max(C′).

Proposition 4.3.2. Given a net N = (S,A,T ) such that N(k01) and N(k02) are both bounded nets, two processes
πi = (C,ρi) of N(k0i) for i = 1,2, a complete transition sequence σ of C and two indexed markings k1,k2 such
that init(N(k0i))Jρi(σ)〉(ki,≤i) for i = 1,2, we have that |k1 |= |k2 |.

Proof. Analogous to Proposition 3.2.2, as indexing and net boundedness do not change the argument.

In order to state the next theorem, we use the following notation: given a transition sequence δ = t1, . . . ti−1, ti, . . . , tn,
we denote the cut of δ at ti as δ \ ti = t1, . . . , ti−1.

Theorem 4.3.3. (Coherence of ≤ and process)
Let π = (C,ρ) be a process of N(k0) and σ a complete transition sequence of C such that init(N)Jρ(σ)〉(k,≤).

∀b,b′ ∈Max(C) , ∀(ρ(b), i),(ρ(b′), i′) ∈ k we have:

(ρ(b), i)≤ (ρ(b′), i′) ⇐⇒


b ∈Min(C)∧ (ρ(b), i) ∈ k0 (1)
or
•b 6= /0∧ •b′ 6= /0∧ •b≤π

•b′∧Φ (2)

where

Φ =



init(N)Jρ(σ)\ρ(•b)〉(H,≤H)Jρ(•b)〉(J,≤J),

where (ρ(b), i) ∈ J and let L ∈ H � •ρ(•b) , (ρ(b), i) 6∈ L,
such that J = L�ρ(•b)• ∧

init(N)Jρ(σ)\ρ(•b′)〉(H ′,≤H ′)Jρ(•b′)〉(J′,≤J′),

where (ρ(b′), i′) ∈ J′ and let L′ ∈ H ′� •ρ(•b′) , (ρ(b′), i′) 6∈ L′,
such that J′ = L′�ρ(•b′)•

Proof. We prove the implication in the two directions.
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Proof =⇒). By induction on the length of σ .

• case 0: σ = ε .
Since init(N)Jε〉init(N), (ρ(b), i) ∈ k0. Moreover since ρ(Max(C0)) = ρ(Min(C0)) = k0 and b did not
move because σ = ε , then b ∈Min(C0). The condition (1) is satisfied.

• case n+1: σ = δ .e where e 6∈ δ .
The induction hypotesis is init(N)Jρ(δ )〉(k,≤) where the thesis holds for (k,≤).
The step is (k,≤)Jρ ′(e)〉(k′,≤′) and π = (C,ρ)

e−→ (C′,ρ ′) = π ′.
Let k′′ ∈ k� •ρ ′(e) such that k′ = k′′�ρ ′(e)•, then, by cases on the definition of (ρ ′(b), i)≤′ (ρ ′(b′), i′):

- if (ρ ′(b), i),(ρ ′(b′), i′) ∈ k′′ and (ρ ′(b), i)≤ (ρ ′(b′), i′):
then (ρ ′(b), i),(ρ ′(b′), i′) are not touched by transition ρ ′(e), therefore the thesis follows from induc-
tive hypotesis on (k,≤).

- if (ρ ′(b), i),(ρ ′(b′), i′) ∈ k′ \ k′′:
then •b = •b′ = e 6= /0 and thus •b≤π ′

•b′. Φ is trivial since (ρ ′(b), i) and (ρ ′(b′), i′) are generated by
the same transition ρ ′(e) and (k,≤)Jρ ′(e)〉(k′,≤′). Condition (2) is satisfied.

- if (ρ ′(b), i) ∈ k′′ , (ρ ′(b′), i′) ∈ k′ \ k′′ and there exists (ρ ′(b′′), i′′) ∈ k \ k′′ such that (ρ ′(b), i) ≤
(ρ ′(b′′), i′′):

+ if (ρ ′(b), i) is such that ρ ′(b) ∈ ρ ′(Min(C′)):
then b ∈Min(C′) and (ρ ′(b), i) ∈ k0, therefore the condition (1) is satisfied.

+ if (ρ ′(b), i) is such that ρ ′(b) 6∈ ρ ′(Min(C′)):
then •b′ 6= /0 by hypotesis, •b 6= /0 because (ρ ′(b), i) 6∈ ρ ′(Min(C)) and, since (ρ ′(b), i)≤ (ρ ′(b′′), i′′),
by induction we have •b≤π

•b′′. Since b′′ ∈ •e and b′ ∈ e•, it is true that •b′′ ≤π ′
•b′, and by tran-

sitivity •b≤π ′
•b′. In the case of (ρ ′(b), i), Φ is trivial as in the case above.

In the case of (ρ ′(b′), i′), since ρ ′(•b′) = •ρ ′(b′), we have init(N)Jρ(δ )〉(k,≤)Jρ ′(•b′) = ρ ′(e)〉
(k′,≤′) and (ρ ′(b′), i′)∈ k′\k′′, i.e. given any k′′ ∈ k�•ρ ′(b′) such that k′= k′′�ρ ′(b′)• (ρ ′(b′), i′) 6∈
k′′. Therefore, condition (2) is satisfied.

Proof⇐=). By induction on the length of σ .

• case 0: σ = ε .
Since (ρ(b), i) ∈ k0 and •b = /0, then by Lemma 4.3.1, (ρ(b), i) ≤ (ρ(b′), i′) for all (ρ(b′), i′) ∈ k0, i.e.
≤= k0× k0.

• case n+1: σ = δ .e where e 6∈ δ .
The induction hypotesis is init(N)Jρ(δ )〉(k,≤) where the thesis holds for (k,≤).
The step is (k,≤)Jρ ′(e)〉(k′,≤′) and π = (C,ρ)

e−→ (C′,ρ ′) = π ′.
Let k′′ ∈ k� •ρ ′(e) such that k′ = k′′�ρ ′(e)•, then by inspection on the hypotesis:

- if condition (1) holds:
since for Lemma 4.3.1 (ρ ′(b), i) is minimal for ≤′, the thesis follows.

- if condition (2) holds:
there are 4 possible combinations of (ρ ′(b), i),(ρ ′(b′), i′):

+ if (ρ ′(b), i),(ρ ′(b′), i′) ∈ k′′:
The inductive hypotesis on (k,≤) holds, i.e. (ρ ′(b), i)≤ (ρ ′(b′), i′) and since b,b′ are not touched
by event e, (ρ ′(b), i)≤′ (ρ ′(b′), i′).

+ if (ρ ′(b), i),(ρ ′(b′), i′) ∈ k′ \ k′′:
Then, since the two tokens are generated by the same transition ρ ′(e), (ρ ′(b), i)≤′ (ρ ′(b′), i′).

+ if (ρ ′(b), i) ∈ k′′ and (ρ ′(b′), i′) ∈ k′ \ k′′:
Then, since (ρ ′(b′), i′) ∈ k′ \ k′′, by Proposition 2.2.7, it is true that there exists b′′ ∈ •e such that
•b≤π

•b′′, and by Φ we have that (ρ ′(b′′), i′′) ∈ k \ k′′. Note that Φ holds for (ρ ′(b′′), i′′), too.
Then, by inductive hypotesis, (ρ ′(b), i) ≤ (ρ ′(b′′), i′′). Therefore, since (ρ ′(b′), i′) ∈ k′ \ k′′ and
(ρ ′(b′′), i′′) ∈ k \ k′′, we have (ρ ′(b), i)≤′ (ρ ′(b′), i′).

+ if (ρ ′(b′), i′) ∈ k′′ and (ρ ′(b), i) ∈ k′ \ k′′:
absurd, since •b≤π ′

•b′.
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Now we introduce the following notation as a shorthand: given a process π = (C,ρ) of a net N(k0) and σ

a complete transition sequence of C, we denote init(N)Jπ〉(k,≤) if init(N)Jρ(σ)〉(k,≤). Note that this is just
notation, whereas in Chapter 3 we had Definition 3.2.3. The equivalent of Lemma 3.2.4 follows directly from
Theorem 4.3.3.

Lemma 4.3.4. Let π = (C,ρ) a process of N(k0) such that init(N)Jπ〉(k,≤). Then (k,≤)Jt〉(k′,≤′) if and only if
π

e−→π ′ where ρ ′(e) = t and init(N)Jπ ′〉(k′,≤′).

Proof. Consider the sequence σ .e where σ is a complete transition sequence of C. The thesis follows from
Theorem 4.3.3.

Example 6. In Figure 4.2(a), the same 5-bounded P/T net N as Figure 4.1 is depicted, together with its empty
process. Figure 4.2(b,c) shows how the process corresponding to the transition sequence t2 t1 grows. We consider
the same execution as Example 4, i.e. k0Jt2〉k1Jt1〉k2. For simplicity’s sake, in the following each condition will
be mapped to the place having same subscript and each event will be mapped to the transition having same label.
We will denote each process πi as the one thus corresponding to causal net Ci.

Before any transition fires, we have init(N)= (k0,≤0) where≤0= k0×k0 by Definition 4.2.1. Not surprisingly,
all conditions b j

i are minimal in the causal net C0 and mapped to tokens in the initial indexed ordered marking.
The firing of t2 deletes token (s2,2) and generates token (s3,1); moreover, since (s2,1) ≤0 (s2,2) we have

(s2,1)≤1 (s3,1). Note that b1
2 ∈Min(C1) but b3 6∈Min(C1).

After the firing of t1, there are four tokens in place s2. However, since (s2,2) and (s2,4) are generated by t1,
they are greater in ≤2 than (s2,1) and (s2,3). This can also be seen at the process level: b1

2 and b3
2 are minimal

conditions of C2, while b4
2 and b5

2 are not. On the other hand, note that, just as b4
2 and b3 are not minimal in C2 but

also not related by ≤π2 , also (s2,2) and (s3,1) are not related by ≤2. 2
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Figure 4.2: Execution of the transition labeled by v, then u, on the net of Figure 4.1 and corresponding process
(only the mapping of maximal conditions to tokens is displayed). Tokens to be consumed are red, generated ones
blue.
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4.4 Decidability of causal-net bisimilarity for bounded nets
We adapt the theorems of Section 3.3 to the bounded case.

Definition 4.4.1. (OIMC-bisimulation) Let N = (S,A,T ) be a net. An OIMC-bisimulation is a relation B ⊆
OIM(N)×OIM(N)×P((S×N)× (S×N)) such that if ((k1,≤1),(k2,≤2),β ) ∈B, then:

• |k1 |= |k2 |

• ∀t1 k′1,≤′1 such that (k1,≤1)Jt1〉(k′1,≤′1) (where we assume that k′′1 ∈ k1 � •t1 such that k′1 = k′′1 � t•1 ),
then there exist t ′2,k

′
2,≤′2 (where we assume k′′2 ∈ k2 � •t2 such that k′2 = k′′2 � t•2 ),

and for β ′ defined as ∀(s1,n1) ∈ k′1,∀(s2,n2) ∈ k′2:

(s1,n1) β
′ (s2,n2) ⇐⇒


(s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2)

or
(s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2

the following hold:

- (k1 \ k′′1) β⊕ (k2 \ k′′2),

- (k2,≤2)Jt2〉(k′2,≤′2) where ((k′1,≤′1),(k′2,≤′2),β ′) ∈B and l(t1) = l(t2).

• symmetrically, if (k2,≤2) moves first.

Two markings m1 and m2 of N are OIMC-bisimilar, denoted m1 ∼oimc m2, if there exists an OIMC-bisimulation B
containing the triple (init(N(k1)), init(N(k2),k1× k2) where, for i = 1,2,, ki is the closed indexed marking such
that mi = α(ki). 2

Theorem 4.4.2. (CN-bisimilarity implies OIMC-bisimilarity) Let N = (S,A,T ) be a net. Given two markings
m01,m02 of N, if m01 ∼cn m02, then m01 ∼oimc m02.

Proof. If m01 ∼cn m02, then there exists a CN-bisimulation R1 containing a triple (ρ0
1 ,C

0,ρ0
2 ), where C0 contains

no events and ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = m0i for i = 1,2. Given k0i closed indexed marking such that
m0i = α(k0i) for i = 1,2, let us consider

R2
de f
= {((k1,≤1),(k2,≤2),β )|(ρ1,C,ρ2) ∈ R1 and

init(N(k01))[(C,ρ1)〉(k1,≤1) and
init(N(k02))[(C,ρ2)〉(k2,≤2) and
∀s1 ∈ ρ1(Max(C)) , (s1,n1) ∈ k1,

∀s2 ∈ ρ2(Max(C)) , (s2,n2) ∈ k2,

(s1,n1)β (s2,n2) iff ρ
−1
1 (•s1) = ρ

−1
2 (•s2)}.

If we prove that R2 is an OIMC-bisimulation, then since init(N(k0i))J(C0,ρ0
i )〉init(N(k0i)) and ρ0

i (Min(C0))=
ρ0

i (Max(C0)) = m0i and m0i = α(k0i) for i = 1,2, it follows that (init(N(k01)), init(N(k02)),k01× k02) ∈ R2 and
therefore m01 ∼oimc m02.

Assume ((k1,≤1),(k2,≤2),β ) ∈ R2. If (k1,≤1)Jt1〉(k′1,≤′1), since init(N(k01))J(C,ρ1)〉(k1,≤1), by Lemma
4.3.4 (C,ρ1)

e−→ (C′,ρ ′1) where ρ ′1(e) = t1 and init(N(k01))J(C′,ρ ′1)〉(k′1,≤′1). Since ((k1,≤1),(k2,≤2),β ) ∈ R1,
it’s also true that (C,ρ2)

e−→ (C′,ρ ′2) where ρ ′2(e) = t2 and ((k′1,≤′1),(k′2,≤′2),β ′) ∈ R1. Then, since
init(N(k02))J(C,ρ2)〉(k2,≤2) and init(N(k02))J(C′,ρ ′2)〉(k′2,≤′2) because (C,ρ2) and (C′,ρ ′2) are processes of N,
by Lemma 4.3.4, (k2,≤2)Jt2〉(k′2,≤′2).

Now we prove that the definition of β ′ arising from R2 is coherent with the one of Definition 4.4.1: denoting
k′′1 ∈ k1 � •t1 such that k′1 = k′′1 � t•1 and k′′2 ∈ k2 � •t2 such that k′2 = k′′2 � t•2 , we prove that it implies the following
two propositions.

1. ∀(s1,n1) ∈ k′1 , ∀(s2,n2) ∈ k′2

(s1,n1) β
′ (s2,n2) ⇐⇒


(s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2) (i)
or
(s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2 (ii)

and
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2. (k1 \ k′′1) β⊕ (k2 \ k′′2).

Proof 1)
The two implications are proved separately.

– if (s1,n1)β ′ (s2,n2) ⇐⇒ ρ
′−1
1 (•s1) = ρ

′−1
2 (•s2):

Consider the event e such that ρ ′1(e)= t1 and ρ ′2(e)= t2. There are four possibilities for (s1,n1),(s2,n2):

- if (s1,n1) ∈ k′1 \ k′′1 and (s2,n2) ∈ k′2 \ k′′2 : condition (ii) is trivial.
- if (s1,n1)∈ k′′1 and (s2,n2)∈ k′′2 : since ((k1,≤1),(k2,≤2),β )∈ R2, the hypotesis (s1,n1) β (s2,n2)

holds. Then, condition (i) is satisfied.
- other cases: absurd, because ρ

′−1
1 (•s1) = ρ

′−1
2 (•s2).

– if (i) or (ii) hold:
Consider the transitions t1, t2 such that ρ ′1(e) = t1 and ρ ′2(e) = t2:

- if (i) holds: then since ((k1,≤1),(k2,≤2),β ) ∈ R2, (s1,n1)β (s2,n2) holds; since (s1,n1),(s2,n2)
don’t move, (s1,n1)β ′ (s2,n2).

- if (ii) holds: then ρ
′−1
1 (•s1)= ρ

′−1
1 (t1)= e, and ρ

′−1
2 (•s2)= ρ

′−1
2 (t2)= e, therefore (s1,n1)β ′ (s2,n2).

Proof 2)
Since by definition ρ

−1
1 (•s1) = ρ

−1
1 (t1) = e = ρ

−1
2 (t2) = ρ

−1
2 (•s2), then |•t1 | = |•e | = |•t2 | and

| t•1 |= |e• |= | t•2 |. Therefore, since |k1 \k′′1 |= |•t1 | and |k2 \k′′2 |= |•t2 |, by transitivity |k1 \k′′1 |= |k2 \k′′2 |.
The proof of (k1 \ k′′1) β⊕ (k2 \ k′′2) is then done by induction on |k1 \ k′′1 |. Note that the base case is 1, since
transitions have nonempty preset.

– Case |k1 \ k′′1 |= |k2 \ k′′2 |= 1:
Assume {(s1,n1)} = k1 \ k′′1 , {(s2,n2)} = k2 \ k′′2 . Since s1 ∈ ρ1(Max(C)), s2 ∈ ρ2(Max(C)) and
ρ ′1(t1) = e = ρ ′2(t2), then s1,s2 are mapped on the same b ∈ B: therefore, ρ

−1
1 (•s1) = ρ

−1
2 (•s2) and

thus (s1,n1)β (s2,n2). By rule (Clo), (s1,n1) β⊕ (s2,n2).

– Case |k1 \ k′′1 |= |k2 \ k′′2 |= n+1:
Assume k1 \ k′′1 = (s′1,n

′
1)∪ kn

1 and k2 \ k′′2 = (s′2,n
′
2)∪ kn

2. By inductive hypotesis, kn
1 β⊕ kn

2. Since
s′1 ∈ ρ1(Max(C)), s′2 ∈ ρ2(Max(C)) and ρ ′1(t1) = e= ρ ′2(t2), then s′1,s

′
2 are mapped on the same b′ ∈ B:

therefore, ρ
−1
1 (•s′1) = ρ

−1
2 (•s′2) and thus (s′1,n

′
1)β (s′2,n

′
2). By rule (Clo), k1 \ k′′1 β⊕ k2 \ k′′2 .

Thus ((k′1,≤′1),(k′2,≤′2),β ′) ∈ R2.
Next, we prove that |k′1 |= |k′2 |. We know that, with the definitions from above, (ρ1,C,ρ2) , (ρ

′
1,C
′,ρ ′2) ∈ R1

and ((k1,≤1),(k2,≤2),β ) , ((k′1,≤′1),(k′2,≤′2),β ′) ∈ R2. Then, since for i = 1,2 by definition init(N(k0i))J(C,ρi)〉
(ki,≤i) and init(N(k0i))J(C′,ρ ′i )〉(k′i,≤′i), by Lemma 4.3.2, |m′1 |= |m′2 |. Moreover, since α(k′1)=m′1 and α(k′2)=
m′2, we have |k′1 |= |k′2 |.

The case in which (k2,≤2) moves first is symmetrical.
Therefore, R2 is an OIMC-bisimulation, and thus m01 ∼oimc m02.

Theorem 4.4.3. (OIMC-bisimilarity implies CN-bisimilarity) Let N = (S,A,T ) be a net. Given two markings
m01,m02 of N, if m01 ∼oimc m02, then m01 ∼cn m02.

Proof. If m01 ∼oimc m02 there exists an OIMC-bisimulation R1 containing the tuple (init(N(k01)), init(N(k02)),k01×
k02), where α(k01) = m01, α(k02) = m02, and k01,k02 are closed.

Let us consider

R2
de f
= {(ρ1,C,ρ2)|((k1,≤1),(k2,≤2),β ) ∈ R1 and

(C,ρ1) is a process of N(m01) and
(C,ρ2) is a process of N(m02) and
init(N(k01))[(C,ρ1)〉(k1,≤1) and
init(N(k02))[(C,ρ2)〉(k2,≤2) and
∀s1 ∈ ρ1(Max(C)) , (s1,n1) ∈ k1,

∀s2 ∈ ρ2(Max(C)) , (s2,n2) ∈ k2,

(s1,n1)β (s2,n2) iff ρ
−1
1 (•s1) = ρ

−1
2 (•s2)}.
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If we prove that R2 is a CN-bisimulation, then we prove that (ρ0
1 ,C

0,ρ0
2 )∈R2, where C0 contains no transitions

and, for i = 1,2, ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = m0i, because (init(N(m01)), init(N(m02)),m01×m02) ∈ R1 and
(C0,ρ0

i ) is a process of N(m0i) and init(N(m0i))[(C0,ρ0
i )〉init(N(m0i)). Then, since (ρ0

1 ,C
0,ρ0

2 ) ∈ R2, we have
m01 ∼cn m02.

Assume (ρ1,C,ρ2)∈R2. If (C,ρ1)
e−→ (C′,ρ ′1) where ρ ′1(e)= t1, since by hypotesis init(N(k01))J(C,ρ1)〉(k1,≤1

) and init(N(k01))J(C′,ρ ′1)〉(k′1,≤′1), then by Lemma 4.3.4, (k1,≤1)Jt1〉(k′1,≤′1). Since ((k1,≤1),(k2,≤2),β )∈R1,
it’s also true that (k2,≤2)Jt2〉(k′2,≤′2) where ((k′1,≤′1),(k′2,≤′2),β ′)∈R1; because by hypotesis init(N(k02))J(C,ρ2)〉
(k2,≤2), then by Lemma 4.3.4, init(N(k02))J(C′,ρ ′2)〉(k′2,≤′2) and (C,ρ2)

e−→ (C′,ρ ′2) where ρ ′2(e) = t2. Note that
each (C′,ρ ′i ) is a process of N.

Now we prove that the definition of β ′ of R1 is coherent with the one specified in R2, i.e. ∀s′1 ∈ ρ ′1(Max(C′)),
(s′1,n

′
1)∈ k′1 ,∀s′2 ∈ ρ ′2(Max(C′)) , (s′2,n

′
2)∈ k′2, we have s′1 β ′ s′2 if and only if ρ

′−1
1 (•s1)= ρ

′−1
2 (•s2). This is proved

by induction on the length of σ , complete transition sequence of C′ such that init(N(k01))J(C′,ρ ′1)〉(k′1,≤′1). Note
that also init(N(k02))J(C′,ρ ′2)〉(k′2,≤′2) with the same complete transition sequence.

• Case 1 : σ = e.

Proof =⇒) by cases on the definition of (s′1,n
′
1) β ′(s′2,n

′
2):

- if (s′1,n
′
1) ∈ k′1 \ k′′1 and (s′2,n

′
2) ∈ k′2 \ k′′2 :

By hypotesis we know that •s′1 = t1 and •s′2 = t2. Since (C,ρi)
e−→ (C′,ρ ′i ) where ρ ′i (e) = ti for

i = 1,2, then t1 and t2 are mapped on the same transition e. Therefore ρ
−1
1 (•s′1) = ρ

−1
1 (t1) = e

and ρ
−1
2 (•s′2) = ρ

−1
1 (t2) = e, and by transitivity we get ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2).

- if (s′1,n
′
1) ∈ k′′1 and (s′2,n

′
2) ∈ k′′2 and (s′1,n

′
1) β (s′2,n

′
2):

then ρ
−1
1 (•s′1) = /0 and ρ

−1
2 (•s′2) = /0. Since the tokens did not move, ρ ′i (s

′
i) = ρi(s′i) for i = 1,2

and by transitivity ρ
−1
1 (•s′1) = ρ

−1
2 (•s′2).

Proof⇐=) Consider the event e: we know that e is a transition of C′ and not of C, such that ρ ′1(e) = t1
and ρ ′2(e) = t2. there are four possibilities for (s′1,n

′
1),(s

′
2,n
′
2):

- if (s′1,n
′
1) ∈ k′1 \ k′′1 and (s′2,n

′
2) ∈ k′2 \ k′′2 :

then (s′1,n
′
1) β ′ (s′2,n

′
2) by the second condition of β ′.

- if (s′1,n
′
1) ∈ k′′1 and (s′2,n

′
2) ∈ k′′2 :

We know that ρ
′−1
1 (•s′1) = ρ

′−1
2 (•s′2); since the tokens did not move, ρ ′i (s

′
i) = ρi(s′i) for i = 1,2

and therefore ρ
−1
1 (•s′1) = ρ

−1
2 (•s′2). Moreover, because σ = e it must be that •s′1 = /0 and •s′2 = /0.

By the fact that, at the beginning, β = k01× k02, we have that (s′1,n
′
1)β (s′2,n

′
2). Thus, the first

condition of β ′ holds.
- other cases:

absurd since ρ
′−1
1 (•s′1) = ρ

′−1
2 (•s′2).

• Case n+1: σ = δ e.

Proof =⇒) by cases on the definition of (s′1,n
′
1) β ′ (s′2,n

′
2):

- if (s′1,n
′
1) ∈ k′1 \ k′′1 and (s′2,n

′
2) ∈ k′2 \ k′′2 :

By hypotesis we know that •s′1 = t1 and •s′2 = t2. Since (C,ρi)
e−→ (C′,ρ ′i ) where ρ ′i (e) = ti for

i = 1,2, then t1 and t2 are mapped on the same transition e. Therefore ρ
−1
1 (•s′1) = ρ

−1
1 (t1) = e

and ρ
−1
2 (•s′2) = ρ

−1
1 (t2) = e, and by transitivity we get ρ

−1
1 (•s′1) = ρ

−1
2 (•s′2).

- if (s′1,n
′
1) ∈ k′′1 and (s′2,n

′
2) ∈ k′′2 and (s′1,n

′
1) β (s′2,n

′
2):

By inductive hypotesis on (k1,≤1) and (k2,≤2), we have (s′1,n
′
1) β (s′2,n

′
2) =⇒ ρ

−1
1 (•s′1) =

ρ
−1
2 (•s′2). Since the tokens did not move, ρ ′i (s

′
i) = ρi(s′i) for i = 1,2; therefore by transitivity

ρ
′−1
1 (•s′1) = ρ

′−1
2 (•s′2).

Proof⇐=) Consider the event e: we know that e is a transition of C′ and not of C, such that ρ ′1(e) = t1
and ρ ′2(e) = t2. there are four possibilities for (s′1,n

′
1),(s

′
2,n
′
2):

- if (s′1,n
′
1) ∈ k′1 \ k′′1 and (s′2,n

′
2) ∈ k′2 \ k′′2 :

then (s′1,n
′
1) β ′ (s′2,n

′
2) by the second condition of β ′.

- if (s′1,n
′
1) ∈ k′′1 and (s′2,n

′
2) ∈ k′′2 :

By inductive hypotesis on (k1,≤1) and (k2,≤2), we have ρ
−1
1 (•s′1)= ρ

−1
2 (•s′2) =⇒ . (s′1,n

′
1) β (s′2,n

′
2)

Since the tokens did not move, ρ ′i (s
′
i) = ρi(s′i) for i= 1,2; therefore, the first condition of β ′ holds.
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- other cases:
absurd since ρ

′−1
1 (•s′1) = ρ

′−1
2 (•s′2).

Thus (ρ ′1,C
′,ρ ′2) ∈ R2.

The case in which (C2,ρ2) moves first is symmetrical.
Therefore, R2 is a CN-bisimulation and m01 ∼cn m02.

Theorem 4.4.4. (OIMC-bisimilarity and CN-bisimilarity coincide) Let N = (S,A,T ) be a net and m1,m2 two
markings of N. m1 ∼oimc m2 if and only if m1 ∼cn m2.

Proof. By theorems 4.4.2 and 4.4.3, we get the thesis.

Corollary 4.4.5. (CN-bisimilarity is decidable for finite bounded nets) Given N(m1) and N(m2) bounded nets,
it is decidable to check whether m1 ∼cn m2.

Proof. By Theorem 4.4.4 we have to check whether there exists an OIMC-bisimulation B for the given net N and
initial markings m1,m2.

If we restrict B to B′ = {((k1,≤1),(k2,≤2),β ) ∈B
∣∣ (ki,≤i) ∈ Jinit(N(k0i))〉, where k0i is closed and

α(k0i) = mi for i = 1,2}, we have that B′ is still an OIMC-bisimulation for m1,m2.
Indeed, by definition init(N(k0i))∈ Jinit(N(k0i))〉; if ((k1,≤1),(k2,≤2),β )∈B′ and (k1,≤1)Jt1〉(k′1,≤′1), then

it is true that (k2,≤2)Jt2〉(k′2,≤′2) and (k′i,≤′i) is reachable from init(N(k0i)) for i = 1,2, and since k′i is reachable
from k0i, it is also true that β ′ relates only tokens reachable from k01 and k02.

Then, to state that m1∼oimc m2, it is enough to consider the ordered indexed markings contained in Jinit(N(k01))〉
and Jinit(N(k02))〉 and by Proposition 4.2.4 these are finitely many.

By Proposition 4.1.4, the reachable indexed marking from k01 and k02 are finite, and therefore there are finitely
many relations β to consider.

Therefore we can check by exhaustive search whether one of the finitely many possible sets of triples is an
OIMC-bisimulation.

We conclude this section with some comments on the complexity of the decision procedure. Assume that the
considered net has (less than) s places, t transitions and it is h-safe. Then there will be at most hs tokens in every
reachable marking, and since the possible preorders on hs elements are 2O(hs·log(hs)), there are at most 2O(hs·log(hs))

ordered indexed markings. Since β is a binary relation on tokens, it contains at most O((hs)2) elements; therefore
there are at most 2O(hs·log(hs)) possible elements of B. Note that, according to Definition 4.2.2, it is possible
to construct a labeled transition system where states are ordered indexed markings and transitions are derived
from T . Therefore, it is possible to construct an OIMC-bisimulation starting from the labeled transistion system
containing init(N(k01)) and init(N(k02)). The algorithm consumes all reachable states of the transition system; for
each pair of triples, it requires scanning O(t2(hs)2) transitions for the bisimulation game (because the transition
relation on ordered indexed markings is nondeterministic) and O((hs)2) tokens for the condition on β . Therefore
the upper bound for our decision procedure is 2O(hs·log(hs)+log(t)). Thus, our proposed algorithm has complexity in
DEXPTIME, just as known algorithms to decide fully-concurrent bisimilarity on safe and bounded nets [JM96;
MP97].

4.5 Decidability of fully-concurrent bisimulation for bounded nets
In the following we extend the work of [Vog91] by using the ordered indexed marking proof technique to show
that fully-concurrent bisimilarity is decidable for finite bounded nets, in the same fashion as what we did for
causal-net bisimilarity in Section 4.4.

Definition 4.5.1. (OIM-bisimulation) Let N = (S,A,T ) be a net. An OIM-bisimulation is a relation B ⊆
OIM(N)×OIM(N)×P((S×N)× (S×N)) such that if ((k1,≤1),(k2,≤2),β ) ∈B, then:

• ∀t1,k′1,≤′1 such that (k1,≤1)Jt1〉(k′1,≤′1), (where we assume that k′′1 ∈ k1 � •t1 such that k′1 = k′′1 � t•1 ), there
exist t ′2,k

′
2,≤′2 (where we assume k′′2 ∈ k2 � •t2 such that k′2 = k′′2 � t•2 ),

and for β ′ defined as ∀(s1,n1) ∈ k′1,∀(s2,n2) ∈ k′2:

(s1,n1) β
′ (s2,n2) ⇐⇒


(s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2)

or
(s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2
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the following hold:

- (k2,≤2)Jt2〉(k′2,≤′2) where ((k′1,≤′1),(k′2,≤′2),β ′) ∈B and l(t1) = l(t2);

- ∀(s1,n1) ∈ k1 \ k′′1 , ∃(s′1,n′1) ∈ k1 \ k′′1 , (s
′
2,n
′
2) ∈ k2 \ k′′2 such that (s1,n1) ≤1 (s′1,n

′
1) ∧ (s′1,n

′
1) β

(s′2,n
′
2) and symmetrically ∀(s2,n2)∈ k2 \k′′2 , ∃(s′2,n′2)∈ k2 \k′′2 , (s

′
1,n
′
1)∈ k1 \k′′1 such that (s2,n2)≤2

(s′2,n
′
2) ∧ (s′1,n

′
1) β (s′2,n

′
2)

• symmetrically, if (k2,≤2) moves first.

Two markings m1 and m2 of N are OIM-bisimilar, denoted m1 ∼oim m2, if there exists an OIM-bisimulation B
containing the triple (init(N(k1)), init(N(k2),k1× k2) where, for i = 1,2, ki is the closed indexed marking such
that mi = α(ki).

As for safe nets (cf. Section 3.4.5), this definition is aimed at relating ∼ f c and ∼oim so that tokens are related
by β if the transition generating one is mapped to the transition generating the other by f . Next, we show that
fully-concurrent bisimilarity and OIM-bisimilarity coincide on finite bounded nets.

Theorem 4.5.2. (FC-bisimilarity implies OIM-bisimilarity) Let N = (S,A,T ) be a net. Given two markings
m01,m02 of N, if m01 ∼ f c m02, then m01 ∼oim m02.

Proof. If m01 ∼ f c m02, then there exists a FC-bisimulation R1 containing the triple (π0
1 , /0,π0

2 ), where π0
i =

(C0
i ,ρ

0
i ) is such that C0

i contains no events and ρ0
i (Min(C0

i )) = ρ0
i (Max(C0

i )) = m0i for i = 1,2. Given k0i closed
indexed marking such that m0i = α(k0i) for i = 1,2, let us consider

R2
de f
= {((k1,≤1),(k2,≤2),β )|(π1, f ,π2) ∈ R1 and

init(N(k01))[π1〉(k1,≤1) and
init(N(k02))[π2〉(k2,≤2) and
∀(s1,n1) ∈ k1,∀(s2,n2) ∈ k2 :
(s1,n1) β (s2,n2) iff
∃b1 ∈Max(C1) such that ρ1(b1) = s1,

∃b2 ∈Max(C2) such that ρ2(b2) = s2,

either b1 ∈Min(C1)∧b2 ∈Min(C2)

or •b1 6= /0∧ •b2 6= /0∧ f (•b1) =
•b2}.

If we prove that R2 is an OIM-bisimulation, then since init(N(k0i))Jπ0
i 〉init(N(k0i)) and ρ0

i (Min(C0
i )) =

= ρ0
i (Max(C0

i )) = k0i where α(k0i) = m0i for i = 1,2, it follows that (init(N(k01)), init(N(k02)),k01× k02) ∈ R2
and therefore m01 ∼oim m02.

Assume ((k1,≤1),(k2,≤2),β ) ∈ R2. If init(N(k01))Jπ1〉(k1,≤1), and (k1,≤1)Jt1〉(k′1,≤′1) then by Lemma
4.3.4 π1

e−→π ′1 with ρ ′1(e1) = t1 and init(N(k01))Jπ ′1〉(k′1,≤′1). Since (π1, f ,π2) ∈ R1, it is also true that π2
e2−→π ′2

with ρ ′2(e2) = t2 and (π ′1, f ′,π ′2) ∈ R1. Then, since by definition init(N(k02))Jπ2〉(k2,≤2) and init(N(k02))Jπ ′2〉
(k′2,≤′2), by Lemma 4.3.4 we have (k2,≤2)Jt2〉(k′2,≤′2).

Now we prove that the definition of β ′ arising from R2 is coherent with the one of Definition 4.5.1, i.e. it
implies both

1. ∀(s1,n1) ∈ k′1 , (s2,n2) ∈ k′2

(s1,n1) β
′ (s2,n2) ⇐⇒


(s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2) (i)
or
(s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2 (ii)

and

2. ∀(s1,n1) ∈ k1 \ k′′1 , ∃(s′1,n′1) ∈ k1 \ k′′1 , (s
′
2,n
′
2) ∈ k2 \ k′′2 such that (s1,n1) ≤1 (s′1,n

′
1) ∧ (s′1,n

′
1) β (s′2,n

′
2),

and symmetrically ∀(s2,n2) ∈ k2 \ k′′2 , ∃(s′2,n′2) ∈ k2 \ k′′2 , (s
′
1,n
′
1) ∈ k1 \ k′′1 such that (s2,n2) ≤2 (s′2,n

′
2) ∧

(s′1,n
′
1) β (s′2,n

′
2) .

Proof 1) The two implications are proved separately.

Proof =⇒: assume s1 = ρ ′(b1) and s2 = ρ ′(b2). Then:
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- If b1 ∈Min(C′1) and b2 ∈Min(C′2):
then for i = 1,2, si ∈ ρ ′i (Min(C′i)) = m0i, therefore (si,ni) ∈ k0i, thus (si,ni) ∈ k′′i . Since the initial
β is k01× k02, and k01,k02 are closed, we have (s1,n1)β (s2,n2), satisfying condition (i).

- if •b1 6= /0∧ •b2 6= /0∧ f (•b1) =
•b2:

Let us consider events e′1,e
′
2 such that b1 ∈ e′•1 and b2 ∈ e′•2 . There are four possible cases:

+ if e′1 = e1 and e′2 = e2: since s1 = ρ ′1(b1) and t1 = ρ ′1(e1) = ρ ′1(e
′
1), we have (s1,n1) ∈ k′1 \k′′1 .

For the same reason, (s2,n2) ∈ k′2 \ k′′2 and therefore condition (ii) holds.
+ if e′1 6= e1 and e′2 6= e2: then s1 = ρ ′1(b1) = ρ1(b1) and therefore (s1,n1) ∈ k′′1 because e′1 has

occurred before e1. For the same reason, (s2,n2) ∈ k′′2 . Since ((k1,≤1),(k2,≤2),β ) ∈ R2 and
f (•b1) =

•b2, then (s1,n1)β (s2,n2), therefore condition (i) holds.
+ other cases: absurd since f ′(e1) = e2.

Proof⇐=: Since (s1,n1) ∈ k′1 and (s2,n2) ∈ k′2, there exist b1 and b2 such that s1 = ρ ′(b1) and s2 =

= ρ ′(b2). Consider the complete transition sequence σ1 = δ1 e1 such that init(N(k01))Jρ ′1(σ1)〉
(k′1,≤′1), and the complete transition sequence σ2 = δ2 e2 such that init(N(k02))Jρ ′2(σ2)〉(k′2,≤′2), and
f ′(σ1) = σ2. It is easy to see that |σ1 |= |σ2 |; we prove the thesis by induction on the length of σ1:

+ Case 1: σ1 = e1 and σ2 = e2. By cases on the condition:
- if (s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2) :

then (s1,n1) ∈ k01, where α(k01) = m01, and since m01 = ρ ′1(Min(C′)) we have •b1 = /0. For
the same reason, also •b2 = /0.

- if (s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2 :
then •b1 = e1 and •b2 = e2: therefore, we have by construction that f ′(•b1) =

•b2.
+ Case n+1: σ1 = δ1 e1 and σ2 = δ2 e2. The inductive hypotesis is init(N(k0i))Jρi(δi)〉(ki,≤i) where

the thesis holds and the inductive step is (ki,≤i)Jρ ′i (ei)〉(k′i,≤′i), where ρ ′i (ei) = ti, for i = 1,2. By
cases on the condition:

- if (s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2) :
We need to separate two cases for s1.
+ if (s1,n1) ∈ k01: since α(k01) = m01 and s1 = ρ ′1(b1), then b1 ∈Min(C′1); moreover since

(s1,n1) β (s2,n2), it is true that (s2,n2) ∈ k02, and the same reasoning applies, therefore
b1 ∈Min(C′1) and b2 ∈Min(C′2).

+ if (s1,n1) 6∈ k01: then •b1 6= /0 and •b2 6= /0. Since (s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 , and
((k1,≤1),(k2,≤2),β ) ∈ R2, then by inductive hypotesis f (•b1) =

•b2, and by conservative
extension of f we get the thesis.

- if (s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2 :
then since ρ ′1(b1) = s1 we have •b1 = e1, therefore •b1 6= /0. The same applies to s2, and since
f ′(e1) = e2, we have f ′(•b1) =

•b2.

Proof 2) Let us consider events e1,e2 such that π1
e1−→π ′1 with ρ ′(e1) = t1, π2

e2−→π ′2 with ρ ′(e2) = t2, and
f ′(e1) = e2. We assume a token (s1,n1) ∈ k1 \ k′′1 where s1 ∈ •t1 and there exists b1 such that ρ1(b1) = s1.
Note that, since π1

e1−→π ′1 with ρ ′(e1) = t1, it is true that b1 ∈ Max(C1). We are to prove that ∃(s′1,n′1) ∈
k1 \ k′′1 , ∃(s′2,n′2) ∈ k2 \ k′′2 such that (s1,n1) ≤1 (s′1,n

′
1) and (s′1,n

′
1) β (s′2,n

′
2). In the following, in some

cases we have (s1,n1) = (s′1,n
′
1): if that is true, then (s1,n1)≤1 (s′1,n

′
1) by reflexivity of ≤1.

There are two possible cases for b1:

- if b1 ∈Min(C1):
There are two possible subcases:

+ ∃b′2 ∈ ρ
−1
2 (•t2) such that b′2 ∈Min(C2):

Then by definition of ρ2 there exists s′2 = ρ2(b′2), and a token (s′2,n
′
2). By definition of β we have

(s1,n1) β (s′2,n
′
2).

+ otherwise:
Since π2

e2−→π ′2 with ρ ′(e2) = t2, there exists b′2 ∈Max(C2) such that ρ2(b′2) = s′2 and (s′2,n
′
2) ∈

k2 \ k′′2 .
Let us consider t ′2 = •s′2 and the related event e′2 ∈ EC2 such that ρ2(e′2) = t ′2. Since f is an
isomorphism between EC1 and EC2 , there exists event e′1 ∈ EC1 such that f (e′1) = e′2. Then, by
definition of ρ1, there exists t ′1 such that ρ1(e′1) = t ′1. Therefore there exists (s′1,n

′
1) such that

t ′1 =
•s′1 and a b′1 such that ρ1(b′1) = s′1, i.e. e′1 =

•b′1. Since b1 ∈Min(C1), by Lemma 4.3.1 it is
true that (s1,n1) is minimal for ≤1, and therefore (s1,n1)≤1 (s′1,n

′
1).
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Finally, since e′1 =
•b′1, e′2 =

•b′2 and f (e′1) = e′2, we have (s′1,n
′
1) β (s′2,n

′
2).

- if b1 6∈Min(C1):
Assume t ′1 =

•s1 and e′1 ∈ EC1 such that ρ1(e′1) = t ′1. Since f is an isomorphism between EC1 and EC2 ,
there exists e′2 ∈ EC2 such that e′2 = f (e′1). Then, by definition of ρ2, there exists also t ′2 such that
ρ2(e′2) = t ′2.
From this, we get that there exists (s′2,n

′
2) such that t ′2 =

•s′2 and b′2 such that ρ2(b′2) = s′2. Since e′1 is
an immediate predecessor of e1 in EC1 , by definition of f it is true that e′2 is an immediate predecessor
of e2 in EC2 . Therefore it is possible to choose (s′2,n

′
2) not only such that t ′2 =

•s′2, but also s′2 ∈ •t2.
Finally, we have that e′1 =

•b1, e′2 =
•b′2 and f (e′1) = e′2, therefore (s1,n1) β (s′2,n

′
2).

The proof of the case for (s2,n2) ∈ k2 \ k′′2 is symmetrical and therefore omitted.

Thus, (π ′1, f ′,π ′2) ∈ R2.
The case in which π2 moves first is symmetrical.
Therefore, R2 is an OIM-bisimulation and m01 ∼oim m02.

Theorem 4.5.3. (OIM-bisimilarity implies FC-bisimilarity) Let N = (S,A,T ) be a net. Given two markings
m01,m02 of N, if m01 ∼oim m02, then m01 ∼ f c m02.

Proof. If m01 ∼oim m02 there exists an OIM-bisimulation R1 containing the tuple (init(N(k01)), init(N(k02)),k01×
k02), where α(k01) = m01, α(k02) = m02, and k01,k02 are closed.

Let us consider

R2
de f
= {(π1, f ,π2)

∣∣ ((k1,≤1),(k2,≤2),β ) ∈ R1 and
for i = 1,2, πi = (Ci,ρi) is a process of N(k0i) and
init(N(k0i))Jπi〉(ki,≤i) and
f is an isomorphism EC1 −→ EC2 and
∀b1 ∈Max(C1),b2 ∈Max(C2) such that
(ρ1(b1),n1) ∈ k1,(ρ2(b2),n2) ∈ k2,

(ρ1(b1),n1) β (ρ2(b2),n2) iff
either •b1 = /0∧ •b2 = /0
or •b1 6= /0∧ •b2 6= /0∧ f (•b1) =

•b2}.

If we prove that R2 is an FC-bisimulation, then we have that m01 ∼ f c m02, because (π0
1 ,π

0
2 , /0) ∈ R2, where, for

i= 1,2, each π0
i =(C0

i ,ρ
0
i ) is such that C0

i contains no transitions and ρ0
i (Min(C0

i ))= ρ0
i (Max(C0

i ))=m0i. Indeed,
since (init(N(k01)), init(N(k02)),k01×k02) ∈R1 and (C0

i ,ρ
0
i ) is a process of N(k0i) and init(N(k0i))J(C0

i ,ρ
0
i )〉init(N(k0i)),

and α(k0i) = m0i we have (π0
1 ,π

0
2 , /0) ∈ R2, and therefore m01 ∼ f c m02.

Assume (π1, f ,π2) ∈ R2. If (C1,ρ1)
e1−→ (C′1,ρ

′
1) where ρ ′1(e1) = t1, since by hypotesis init(N(k01))Jπ1〉

(k1,≤1) and init(N(m01))Jπ ′1〉(k′1,≤′1), by Lemma 4.3.4 (k1,≤1)Jt1〉(k′1,≤′1). Since ((k1,≤1),(k2,≤2),β ) ∈ R1
then there exist t ′2,k

′
2,≤′2 such that (k2,≤2)Jt2〉(k′2,≤′2) where ((k′1,≤′1),(k′2,≤′2),β ′) ∈ R1. Since by hypotesis

init(N(k02))Jπ2〉(k2,≤2), then by Lemma 4.3.4, π2
e2−→π ′2 where ρ ′2(e2) = t2 and init(N(k02))Jπ ′2〉(k′2,≤′2). Note

that, for i = 1,2, (C′i ,ρ
′
i ) is a process of N(k0i).

We extend f with the mapping f ′(e1) = e2: since inductively f is an isomorphism between EC1 and EC2 , and
π1

e1−→π ′1, π2
e2−→π ′2, then f ′ is an isomorphism between EC′1

and EC′2
.

Now we need to check that the definition of β ′ from Definition 4.5.1 is coherent with the one obtained from
R2, i.e. the following condition holds:
∀b1 ∈Max(C′1) , b2 ∈Max(C′2) such that (s1,n1) ∈ k′1 , (s2,n2) ∈ k′2 where ρ ′1(b1) = s1 and ρ ′2(b2) = s2,

(s1,n1) β
′ (s2,n2) ⇐⇒


(s1,n1) ∈ k′′1 , (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2) (i)
or
(s1,n1) ∈ k′1 \ k′′1 , (s2,n2) ∈ k′2 \ k′′2 (ii)

Let us consider the complete transition sequence σ1 = δ1 e1 of C′1, such that:

• init(N(k01))Jρ ′1(σ1)〉(k′1,≤′1), and
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• there exists σ2 = δ2 e2 obtained by mapping each event in σ1 with f ′, where init(N(k02))Jρ ′2(σ2)〉(k′2,≤′2).

It is trivial that |σ1 |= |σ2 |, therefore we prove the thesis by induction on the length of σ1:

• Case 1: σ1 = e1 , σ2 = e2. We prove the two implications separately.

Proof =⇒) by cases on the definition of β ′:

- if •b1 = /0∧ •b2 = /0 :
then b1,b2 did not move, so neither tokens (s1,n1),(s2,n2) did. Therefore (s1,n1) ∈ k′′1 and
(s2,n2) ∈ k′′2 . Since the initial β is k01 × k02, we have (s1,n1) β (s2,n2), satisfying condition
(i).

- if •b1 6= /0∧ •b2 6= /0∧ f ′(•b1) =
•b2:

then •b1 = e1 and •b2 = e2, therefore (s1,n1) ∈ k′1 \ k′′1 and (s2,n2) ∈ k′2 \ k′′2 , satisfying condition
(ii).

Proof⇐=) by cases:

- if (s1,n1) ∈ k′′1 and (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2):
then since the only events in σ1,σ2 are respectively e1,e2 and ρ ′1(e1) = t1,ρ ′2(e2) = t2, we have
•b1 = /0 and •b2 = /0 because each si ∈ ρ ′i (Min(C′i).

- if (s1,n1) ∈ k′1 \ k′′1 and (s2,n2) ∈ k′2 \ k′′2 :
then since the only events in σ1,σ2 are respectively e1,e2 and ρ ′1(e1) = t1,ρ ′2(e2) = t2, and for
each si ∈ ρ ′i (Max(C′i) we have •b1 = e1 and •b2 = e2. Moreover, f ′(e1) = e2.

• Case n+1: σ1 = δ1 e1 and σ2 = δ2 e2. We prove the two implications separately.

Proof =⇒) by cases on the definition of β ′:

- if •b1 = /0∧ •b2 = /0 :
Then b1 ∈Min(C′1) and b2 ∈Min(C′2). For this reason, (s1,n1) ∈ k01 and (s2,n2) ∈ k02, therefore
(s1,n1)∈ k′′1 and (s2,n2)∈ k′′2 . Since the initial β is k01×k02, we have (s1,n1) β (s2,n2), satisfying
condition (i).

- if •b1 6= /0∧ •b2 6= /0∧ f ′(•b1) =
•b2:

There are two cases for the event which generates b1:
+ if •b1 = e1: then since f ′(•b1) = e2, we have •b2 = e2; therefore (s1,n1) ∈ k′1 \ k′′1 and

(s2,n2) ∈ k′2 \ k′′2 , satisfying condition (ii).
+ if •b1 6= e1: then since •b1 6= /0, there exists e′1 ∈ δ1 such that •b1 = e′1. By the fact that f ′ is

an isomorphism between EC′1
and EC′2

, and that f ′(e1) = e2, there exists also e′2 ∈ δ2 where
f−1(e′1) = e′2 such that •b2 = e′2. By inductive hypotesis on δ1 we have (s1,n1) β (s2,n2),
satisfying condition (i).

Proof⇐=) by cases:

- if (s1,n1) ∈ k′′1 and (s2,n2) ∈ k′′2 and (s1,n1) β (s2,n2):
then there are two possible cases for b1:

+ if b1 ∈Min(C′1):
then, since Min(C′1) = Min(C1) and Min(C′2) = Min(C2), the same reasoning of the base case
of induction applies.

+ if b1 6∈Min(C′1):
then •b1 6= /0; since however b1 does not move, because (s1,n1)∈ k′′1 , it is possible to apply the
induction hypotesis on δ1, therefore •b2 6= /0 and f (•b1) =

•b2, and by conservative extension
of f , f ′(•b1) =

•b2.
- if (s1,n1) ∈ k′1 \ k′′1 and (s2,n2) ∈ k′2 \ k′′2 :

then since ρ ′1(e1) = t1,ρ ′2(e2) = t2, and for each si ∈ ρ ′i (Max(C′i) we have •b1 = e1 and •b2 = e2.
Moreover, f ′(e1) = e2.

Thus (π ′1, f ′,π ′2) ∈ R2.
The case in which π2 moves first is symmetrical.
Therefore, R2 is an FC-bisimulation and m01 ∼ f c m02.

Corollary 4.5.4. (OIM-bisimilarity and FC-bisimilarity coincide) Let N = (S,A,T ) be a net and m1,m2 two
markings of N. m1 ∼oim m2 if and only if m1 ∼ f c m2.
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Proof. By theorems 4.5.2 and 4.5.3, we get the thesis.

Corollary 4.5.5. (FC-bisimilarity is decidable for finite bounded nets) Given N(m1) and N(m2) bounded nets,
it is decidable to check whether m1 ∼ f c m2.

Proof. By Corollary 4.5.4 we have to check whether there exists an OIM-bisimulation B for the given net N and
initial markings m1,m2. The proof is then analogous to the one outlined in Corollary 4.4.5, and therefore omitted.

As in Section 4.4, we conclude with some remarks on the complexity of this decision procedure. The reasoning
of OIMC-bisimilarity can be adapted to OIM-bisimilarity, yielding a DEXPTIME complexity.

4.5.1 Related work on fully-concurrent bisimilarity
Decidability of fully-concurrent bisimilarity for bounded nets was already proved by Montanari and Pistore
[MP97]. However, thir approach is not defined directly on Petri nets, rather it exploits an encoding of Petri nets
into so-called causal automata, a model of computation designed for handling dependencies between transitions
by means of names. In addition to this, the encoding in [MP97] works modulo isomorphisms, so that, in order to
handle correctly the dependency names, at each step of the construction costly renormalizations are required. On
the contrary, our construction is very concrete and works directly on the net. Thus, we conjecture that, even if the
worst-case complexity is roughly the same, our algorithm performs generally better.

During the review process of a paper based on our work, an anonymous referee suggested that decidability
of fully-concurrent bisimilarity for bounded nets using the ordered indexed marking idea was already proved by
Valero-Ruiz in his PhD thesis [Val93]. However, Valero-Ruiz’s approach differs from ours both in how the proof
is conducted and, most importantly, in accuracy.

In his work, ordered indexed markings are defined in such a way that they are always closed. Even if the
definition of token game admits that one can choose an arbitrary token (i.e. a token with an arbitrary index), the
indexing of the target ordered marking is not clear. Depending on the chosen token to remove, there may appear
an hole in the indexing (cf. Example 5), and therefore it is stated that the resulting ordered indexed marking may
be subject to renaming to be again closed. This definition does not ensure the individuality of tokens: one token
not used in a transition can be renamed, so that (even if it is not taking part to the transition) its index before
and after the transition is different. Moreover, isomorphism of ordered indexed marking is defined only on closed
ones, therefore is not clear how the renaming is carried on. Also the proof of the foundational theorem relating the
operational preorder on tokens obtained by the ordered indexed marking semantics and the preorder derived by a
process (similar to Lemma 4.3.4) is flawed. Despite allowing arbitrary tokens to be choosen when performing a
transition, it is assumed that for each place the chosen token is always the one with index 1, as if there is some form
of renormalization applied at some point to ensure that one can simply choose always that token. However, it is
not clarified why the chosen token must always have index 1, and, if a renormalization is applied, it is not defined
nor stated explicitly. Moreover, in the proof of that theorem, the author does not consider the case of a transition
that needs more than one token on the same place to fire. In the same fashion, the definition of token game with
ordered indexed markings does not consider the case of transitions generating more than one token on the same
place. Another critical point is in the definition of the indexed ordered marking-based bisimulation (similar to
Definition 4.5.1), where the possible renaming of tokens between transition steps is not taken into account.

These reasons are enough to conclude that Valero-Ruiz’s proof of decidability of fully-concurrent bisimilarity
for bounded nets is deeply flawed. Therefore our work can be considered the first one to have proved it using the
ordered indexed marking approach.
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It is not the present which influences the future,
thou fool, but the future which forms the

present. You have it all backwards. Since the
future is set, an unfolding of events which will

assure that future is fixed and inevitable.

LETO II ATREIDES



Chapter 5

Basic Definitions

5.1 Petri nets with inhibitor arcs
Definition 5.1.1. (Place/Transition net with inhibitor arcs) A finite Place/Transition net with inhibitor arcs (PTI
net for short) is a tuple N = (S,A,T, I), where

• (S,A,T ) is a finite P/T net where •t 6= /0 for all t ∈ T ;

• I ⊆ S×T is the inhibiting relation.

Given a transition t ∈ T , we use the notation ◦t to denote its inhibiting set {s∈ S
∣∣ (s, t)∈ I} of places to be tested

for absence of tokens. 2

We assume the usual graphical convention for Petri nets (see Section 2.1). In particular, the inhibiting relation
I is graphically represented by arcs ending with a small circle on the transition side.

Definition 5.1.2. (Marking, PTI net system) A PTI net system N(m0) is a tuple (S,A,T, I,m0), where (S,A,T, I)
is a PTI net and m0 is a multiset over S, called the initial marking. We also say that N(m0) is a marked net. 2

Definition 5.1.3. (Token game) A transition t is enabled at m, denoted m[t〉, if •t ⊆ m and ◦t ∩dom(m) = /0. The
execution, or firing, of t enabled at m produces the marking m′ = (m	 •t)⊕ t•, written m[t〉m′. 2

Definition 5.1.4. (Firing sequence, reachable marking, safe net) A firing sequence starting at m is defined
inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions) and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

The set of reachable markings from m is [m〉= {m′
∣∣ ∃σ .m[σ〉m′}. A PTI system N = (S,A,T, I,m0) is safe if for

each marking m ∈ [m0〉, we have that m(s)≤ 1 for all s ∈ S. 2

5.2 Causality-based semantics
Following [BP99; BP00], we define here a possible causal semantics for PTI nets. In order to maintain the
pleasant property that a process univocally determines the causal dependencies among its event, it is not enough
to just enrich causal P/T nets with inhibitor arcs. Indeed, the reason why a condition is empty may influence the
causal relation of events. To solve the problem, in [BP99; BP00] inhibitor arcs are partitioned into two sets: before
inhibitor arcs and after inhibitor arcs. If a condition is connected to an event by a before inhibitor arc, the event
fires because the condition has not held yet; if they are connected by an after inhibitor arc, the event fires because
the condition does not hold anymore.

Definition 5.2.1. (Causal PTI net) A causal PTI net is a tuple C(m0) = (B,L,E,Y be,Y a f ,m0) satisfying the
following conditions, denoting the flow relation of C by F:

1. (B,L,E,m0) is a causal P/T net;

2. (B,L,E,Y be∪Y a f ,m0) is a marked PTI net;
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3. before and after requirements are met, i.e.

(a) If b Y be e, then there exists e′ ∈ E such that e′ F b, and
(b) If b Y a f e, then there exists e′ ∈ E such that b F e′;

4. the relation F∪ ≺a f ∪ ≺be is acyclic, where ≺a f= F−1 ◦Y a f and ≺be= (Y be)−1 ◦F−1.

We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B
∣∣ b• = /0}. 2

Relation ≺a f⊆ E×E states that e ≺a f e′ if e consumes the token in a place b inhibiting e′: this is clearly a
casual dependency. Instead, relation ≺be⊆ E×E states that e≺be e′ if e′ produces a token in a place b inhibiting
e: this is clearly a temporal precedence, because the two events can be causally independent, yet they cannot occur
in any order, as if e′ occurs, then e is disabled.

Definition 5.2.2. (Folding and PTI process) A folding from a causal PTI net C = (B,L,E,Y be,Y a f ,m0) into a
PTI net system N(m0) = (S,A,T, I,m0) is a function ρ : B∪E → S∪T , which is type-preserving, i.e., such that
ρ(B)⊆ S and ρ(E)⊆ T , satisfying the following:

• ρ is a P/T folding from (B,L,E,m0) into (S,A,T,m0);

• for all s ∈ S and e ∈ E, if (s,ρ(e)) ∈ I then for all b ∈ B such that ρ(b) = s, it holds (b,e) ∈Y be∪Y a f ∪F−1,
and
for all b ∈ B and e ∈ E, if (b,e) ∈ Y be∪Y a f then (ρ(b),ρ(e)) ∈ I.

A pair (C,ρ), where C is a causal PTI net and ρ a folding from C to a PTI net system N(m0), is a PTI process of
N(m0). 2

Each inhibitor arc in the causal net has a corresponding inhibitor arc in the net system. The only case where
a condition b is not connected to an event e is when b is in the post-set of e: as b starts to hold only after e
occurs, the only possibility is to put a before arc. This would make the relation ≺be reflexive, invalidating item 4
of Definition 5.2.1. However, since b is in the post-set of e, we are sure that e happens before b is fulfilled, hence
making useless the presence of a before inhibitor arc. For this reason, with the requirement (b,e)∈Y be∪Y a f ∪F−1,
we ask for the presence of an inhibitor arc only if there exists no flow from e to b.

Definition 5.2.3. (Moves of a PTI process) Let N(m0) = (S,A,T, I,m0) be a PTI net system and let (Ci,ρi), for
i = 1,2, be two PTI processes of N(m0), where Ci = (Bi,L,Ei,Y be

i ,Y a f
i ,m0). We say that (C1,ρ1) moves in one

step to (C2,ρ2) through e, denoted by (C1,ρ1)
e−→ (C2,ρ2), if the following hold:

• •e ⊆ Max(C1), E2 = E1 ∪{e}, B2 = B1 ∪ e•, ρ1 ⊆ ρ2, i.e. the P/T process of (C1,ρ1) moves in one step
through e to the P/T process of (C2,ρ2).

• Given two relations B and A , defined as

- ∀b ∈ e•, ∀e′ ∈ E1 we have b B e′ if and only if (ρ2(b),ρ2(e′)) ∈ I,
- ∀b ∈ B2 such that b• 6= /0, we have b A e if and only if (ρ2(b),ρ2(e)) ∈ I,

we have {b ∈ B2
∣∣ b A e}∩Max(C1) = /0.

• Finally, Y be
2 = Y be

1 ∪B and Y a f
2 = Y a f

1 ∪A . 2

The item {b ∈ B2
∣∣ b A e}∩Max(C1) = /0 models the fact that a transition can fire only if all its inhibiting

places are free. Indeed, an event can fire only if its (so far known) inhibiting conditions are not maximal. Note that,
by construction, before arcs can connect only new inhibiting conditions to past events and in particular we do not
allow before arcs connecting a condition in the post-set of a newly added event e with the event e itself. Moreover,
after arcs can only connect old inhibiting conditions to the new event e and since {b∈ B2

∣∣ b A e}∩Max(C1) = /0,
the old inhibiting conditions cannot be in the pre-set of the newly added event e. Therefore, both relations ≺be

2
and ≺a f

2 are acyclic, and since F2 is acyclic too, (C2,ρ2) is truly a process of N(m0).

Example 7. Consider the three nets in Figure 5.1, where we use the graphical convention that before inhibitor arcs
and after inhibitor arcs are represented by lines between a condition and an event: the former labeled by b, the latter
labeled by a. The initial marking of N is m0 = s1⊕ s3. The shape of a process generated by N(m0) may depend
on the order of transitions in a given transition sequence. As a matter of fact, transition sequences containing the
same transitions but in a different order may generate different processes, e.g. C1 and C2. Indeed, C1 represents
the transition sequence t1 t3 t2, while C2 represents the transition sequence t2 t1 t3. Note that the underlying causal
P/T net of these two processes is the same, but before and after inhibitor arcs are different.
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Figure 5.1: A marked PTI net and two PTI causal nets corresponding to its two maximal processes.

5.2.1 Causal-net bisimilarity for PTI nets
Definition 5.2.4. (Causal-net bisimulation) Let N = (S,A,T, I) be a PTI net. A causal-net bisimulation is a
relation R, composed of triples of the form (ρ1,C,ρ2), where, for i = 1,2, (C,ρi) is a process of N(m0i) for some
m0i, such that if (ρ1,C,ρ2) ∈ R then

i) ∀t1,C′,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1), where ρ ′1(e) = t1, ∃t2,ρ ′2 such that

(C,ρ2)
e−→ (C′,ρ ′2), where ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R;

ii) symmetrically, ∀t2,C′,ρ ′2 such that (C,ρ2)
e−→ (C′,ρ ′2), where ρ ′2(e)= t2, ∃t1,ρ ′1 such that (C,ρ1)

e−→ (C′,ρ ′1),
where ρ ′1(e) = t1, and (ρ ′1,C

′,ρ ′2) ∈ R.

Two markings m1 and m2 of N are cn-bisimilar (or cn-bisimulation equivalent), denoted by m1 ∼cn m2,
if there exists a causal-net bisimulation R containing a triple (ρ0

1 ,C
0,ρ0

2 ), where C0 contains no events and
ρ0

i (Min(C0)) = ρ0
i (Max(C0)) = mi for i = 1,2. 2

If m1 ∼cn m2, then these two markings have the same causal PTI nets, so that the executions originating from
the two markings have the same causal dependencies (determined by F and ≺a f ) and the same temporal depen-
dencies (determined by ≺be). Causal-net bisimilarity ∼cn is an equivalence relation, as proved in the following
propositions.

Proposition 5.2.5. For each PTI net N = (S,A,T, I), the following hold:

1. the identity relation I = {(ρ,C,ρ)
∣∣ ∃m ∈M (S).(C,ρ) is a process of N(m)} is a causal-net bisimula-

tion;

2. the inverse relation R−1 = {(ρ2,C,ρ1)
∣∣ (ρ1,C,ρ2) ∈ R} of a causal-net bisimulation R is a causal-net

bisimulation;

3. the relational composition, up to net isomorphism, R1◦R2 = {(ρ1,C,ρ3)
∣∣ ∃ρ2. (ρ1,C,ρ2)∈R1∧(ρ2,C,ρ3)∈

R2∧ (C,ρ2) and (C,ρ2) are isomorphic processes via f ∧ ρ3 = ρ3 ◦ f} of two causal-net bisimulations R1
and R2 is a causal-net bisimulation;

4. the union
⋃

i∈I Ri of causal-net bisimulations Ri is a causal-net bisimulation.

Proof. Trivial for 1, 2 and 4. For case 3, assume that (ρ1,C,ρ3) ∈ R1 ◦ R2 and that (C,ρ1)
e−→ (C′,ρ ′1) with

ρ ′1(e) = t1. Since R1 is a causal-net bisimulation and (ρ1,C,ρ2) ∈ R1, we have that there exist t2,ρ ′2 such that
(C,ρ2)

e−→ (C′,ρ ′2), with ρ ′2(e) = t2, and (ρ ′1,C
′,ρ ′2) ∈ R1. Since (C,ρ2) and (C,ρ2) are isomorphic via f , it

follows that (C,ρ2)
e′−→ (C′,ρ ′2), with ρ

′
2(e
′) = t2, where (C′,ρ ′2) and (C′,ρ ′2) are isomorphic via f ′, where f ′

extends f in the obvious way (i.e., by mapping event e to e′).

As (ρ2,C,ρ3) ∈ R2 and R2 is a causal-net bisimulation, for (C,ρ2)
e′−→ (C′,ρ ′2), with ρ

′
2(e
′) = t2, there exist

t3,ρ ′3 such that (C,ρ3)
e′−→ (C′,ρ ′3), with ρ

′
3(e
′) = t3, and (ρ ′2,C

′
,ρ ′3) ∈ R2. As ρ3 = ρ3 ◦ f , it follows that (C,ρ3)

and (C,ρ3) are isomorphic via f . Therefore, (C,ρ3)
e−→ (C′,ρ ′3) is derivable, too, where ρ ′3(e) = t3 and ρ ′3 =

ρ
′
3 ◦ f ′, so that (C′,ρ ′3) and (C′,ρ ′3) are isomorphic via f ′.

Summing up, if (ρ1,C,ρ3)∈R1◦R2 and (C,ρ1)
e−→ (C′,ρ ′1), with ρ ′1(e)= t1, then ∃t3,ρ ′3 such that (C,ρ3)

e−→ (C′,ρ ′3),
with ρ ′3(e) = t3, and (ρ ′1,C

′,ρ ′3) ∈ R1 ◦R2.
The symmetric case when (C,ρ3) moves first is analogous, hence omitted. Therefore,
R1 ◦R2 is a causal-net bisimulation, indeed.
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Proposition 5.2.6. For each PTI net N = (S,A,T, I), relation ∼cn ⊆M (S)×M (S) is an equivalence relation.

Proof. Standard, by exploiting Proposition 5.2.5.



Chapter 6

Pti-place bisimilarity

We now present pti-place bisimilarity, which conservatively extends place bisimilarity [ABS91; Gor21] to the
case of PTI nets. First, we list some more auxiliary properties of additive closure [Gor20b].

6.1 Additive closure and its properties
As PTI nets are P/T nets extended with a set of inhibitor arcs, the definition of additive closure still applies. We
add some remarks to Definition 2.1.7, which we will use in the following chapters.

Remark 4. [Gor20b](Some properties of additive closure) For each place relation R ⊆ S× S, the following
hold:

1. If R is an equivalence relation, then R⊕ is an equivalence relation.

2. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone.

3. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕, i.e., the additive closure is additive.

Now we list some useful, and less obvious, properties of additively closed place relations that will be useful in
the following.

Proposition 6.1.1. [Gor20b](Some more properties of additive closure) For each family of place relations
Ri ⊆ S×S, the following hold:

1. /0⊕ = {(θ ,θ)}, i.e., the additive closure of the empty place relation yields a singleton marking relation,
relating the empty marking to itself.

2. (IS)
⊕ = IM , i.e., the additive closure of the identity relation on places IS = {(s,s)

∣∣ s ∈ S} yields the
identity relation on markings IM = {(m,m)

∣∣ m ∈M (S)}.

3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R equals the additive closure of its inverse
R−1.

4. (R1 ◦R2)
⊕ = (R⊕1 ) ◦ (R

⊕
2 ), i.e., the additive closure of the composition of two place relations equals the

compositions of their additive closures. 2

Finally, we consider the problem of checking if (m1,m2) ∈ R⊕ [Gor20b; Gor21]. The naive algorithm for
checking whether (m1,m2) ∈ R⊕ would simply consider m1 represented as s1⊕ s2⊕ . . .⊕ sk, and then would scan
all the possible permutations of m2, each represented as s′1⊕ s′2⊕ . . .⊕ s′k, to check that (si,s′i) ∈ R for i = 1, . . . ,k.
Of course, this algorithm is in O(k!), but a computationally better algorithm can be adapted from graph theory.

Definition 6.1.2. (Bipartite graph) A bipartite graph G = (V,E) is a graph with at least two vertices such that V
can be split into two disjoint subsets V1 and V2, both nonempty, where every edge uv ∈ E is such that u ∈ V1 and
v ∈V2, or v ∈V1 and u ∈V2. 2

Definition 6.1.3. (Matching, maximum matching, perfect matching) Given a bipartite graph G = (V1∪V2,E),
a set of edges M ⊆ E is a matching if no vertex v ∈ V is incident with more than one edge e ∈ M, i.e. there do
not exist two distinct edges vu,vw ∈M where u 6= w. A matching of maximum cardinality is called a maximum
matching. A matching is perfect if every vertex of the graph is incident to an edge of the matching.
Note that checking if a maximum matching is perfect reduces to checking whether the size of the matching equals
the number of nodes in each partition. 2

53
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The algorithm proposed by Hopcroft, Karp and Karzanov [HK73] computes the maximum matching in a
bipartite graph in O(h

√
k), where h is the number of edges in the bipartite graph and k is maximum number of

nodes in a partition (therefore, h≤ k2).
Given two markings m1,m2 and a place relation R, checking whether (m1,m2)∈R⊕ can be reduced to checking

if there exists a perfect matching in a bipartite graph in a straightforward way.
First of all, a bipartite graph must be generated from m1,m2,R:

• Define an indexing i for each token in m1 (resp. m2) in such a way that each pair (sn, i(sn)) is unique for m1
(resp. m2).

• Define V1 (resp. V2) as the set of resulting tokens, each tagged with l (resp. r);

• Define E = {((s1,n1, l),(s2,n2,r))
∣∣ s1 R s2∧ (s1,n1, l) ∈V1∧ (s2,n2,r) ∈V2}.

As V1 ∩V2 = /0 because of the tags, (V1 ∪V2,E) is a bipartite graph. For the sake of simplicity, we will drop the
tags if clear from the context.

The application of the Hopcroft-Karp-Karzanov algorithm [HK73] on the resulting graph yields a maximum
matching M; moreover, if each vertex is incident to an edge of M, the matching is perfect.

If M is a perfect matching and |M |= |m1 |= |m2 |, then by construction each arc m∈M relates two individual
tokens, one from m1 and one from m2, which are not related by any other arc m′ ∈M. Therefore, each arc in the
matching can also be seen as an application of the additive closure rule (Clo) in the derivation of (m1,m2) ∈ R⊕

(see Definition 2.1.7).
The definition of the bipartite graph takes O(k2) time (where k is the maximum number of tokens), then,

since |E | ≤ k2, we have that the maximum matching algorithm requires O(k2
√

k), and finally, checking whether
the matching M is perfect and if |M | = |m1 | = |m2 | takes linear time. To sum up, the complexity of checking
whether (m1,m2) ∈ R⊕ is in O(k2

√
k).

Example 8. Consider two markings m1 = s1⊕2 ·s2, m2 = s1⊕s2⊕s3 and a place relation R= {(s1,s1),(s2,s2),(s2,s3)}.
Figure 6.1 shows the bipartite graph derived from m1,m2,R. Note that, for the sake of simplicty, tags are left im-
plicit: vertices tagged with l are displayed on the left and the ones tagged with r on the right. To uniquely identify
each token, two closed indexed markings (see Definition 4.1.1) are used. In red, we show a perfect matching
corresponding to a proof of (m1,m2) ∈ R⊕.

s1,1

s2,1

s2,2

s1,1

s2,1

s3,1

Figure 6.1: Checking (s1⊕2 · s2,s1⊕ s2⊕ s3) ∈ R⊕ as maximum matching (in red) on a bipartite graph.

6.2 Pti-place bisimulation and its properties
We are now ready to introduce pti-place bisimulation, which is a non-interleaving behavioral relation defined over
the net places. Note that for P/T nets, place bisimulation [ABS91; Gor21] and pti-place bisimulation coincide
because I = /0.

Definition 6.2.1. (Pti-place bisimulation) Let N = (S,A,T, I) be a PTI net. A pti-place bisimulation is a relation
R⊆ S×S such that if (m1,m2) ∈ R⊕ then

1. ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 and

(a) (•t1,•t2) ∈ R⊕, (◦t1,◦t2) ∈ R⊕, (t•1 , t
•
2 ) ∈ R⊕, l(t1) = l(t2), (m′1,m

′
2) ∈ R⊕,

(b) ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2).

2. ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 and

(a) (•t1,•t2) ∈ R⊕, (◦t1,◦t2) ∈ R⊕, (t•1 , t
•
2 ) ∈ R⊕, l(t1) = l(t2), (m′1,m

′
2) ∈ R⊕,
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s8
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Figure 6.2: Two PTI nets, whose transitions are labeled either by a or by b.

(b) ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2).

Two markings m1 and m2 are pti-place bisimilar, denoted by m1 ∼p m2, if there exists a pti-place bisimulation
R such that (m1,m2) ∈ R⊕. 2

Conditions 1(b) and 2(b) make sure that the relation R respects the inhibiting behavior of places. Thus, not
only the sets ◦t1 and ◦t2 must be bijectively related, but also an inhibiting place for one of the two transitions
cannot be related via R to a non-inhibiting place for the other transition.

Example 9. Consider the PTI net N1 in Figure 6.2, where the right part is an unwinding of the left one. The
relation R = {(s1,s′1),(s2,s′2),(s3,s′3),(s4,s′4),(s2,s′5)} is a pti-place bisimulation; and so, e.g., 2 · s2⊕ 2 · s3 ∼p
s′2⊕ s′5⊕2 · s′3.

Now consider the PTI net N2 in Figure 6.2. Not only the loop labeled by b on the left is unwinded on the
right, but also the a-labeled transition on the left is replicated three times on the right. The relation R′ = {(s0,s5),
(s1,s11),(s2,s4),(s2,s7),(s3,s6),(s3,s8),(s3,s9),(s3,s10)} is a pti-place bisimulation and so, e.g., 2 · s2⊕ s3 ∼p
s4⊕ s7⊕ s9.

In order to prove that∼p is an equivalence relation, we now list some useful properties of pti-place bisimulation
relations.

Proposition 6.2.2. For each PTI net N = (S,A,T, I), the following hold:

1. The identity relation IS = {(s,s)
∣∣ s ∈ S} is a pti-place bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a pti-place bisimulation R is a pti-place bisimulation;

3. the relational composition R1 ◦R2 = {(s,s′′)
∣∣ ∃s′.(s,s′)∈ R1∧(s′,s′′)∈ R2} of two pti-place bisimulations

R1 and R2 is a pti-place bisimulation.
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Proof. The proof is almost standard, due to Proposition 6.1.1.
(1) IS is a pti-place bisimulation as for each (m,m) ∈ I ⊕S whatever transition t the left (or right) marking

m performs a transition (say, m[t〉m′), the right (or left) instance of m in the pair does exactly the same transition
m[t〉m′ and, of course, (•t,•t) ∈ I ⊕S , (◦t,◦t) ∈ I ⊕S , (t•, t•) ∈ I ⊕S , l(t) = l(t), (m′,m′) ∈ I ⊕S , by Proposition
6.1.1(2), and, also, ∀s ∈ S.(s,s) ∈IS⇒ (s ∈ ◦t⇔ s ∈ ◦t), as required by the pti-place bisimulation definition.

(2) Suppose (m2,m1) ∈ (R−1)⊕ and m2[t2〉m′2. By Proposition 6.1.1(3) (m2,m1) ∈ (R⊕)−1 and so (m1,m2) ∈
R⊕. Since R is a pti-place bisimulation, item 2 of the bisimulation game ensures that there exist t1 and m′1
such that m1[t1〉m′1, with (•t1,•t2) ∈ R⊕, (◦t1,◦t2) ∈ R⊕, l(t1) = l(t2), (t•1 , t

•
2 ) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕; moreover,

∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2). Summing up, if (m2,m1) ∈ (R−1)⊕, to the move m2[t2〉m′2, m1 replies
with the move m1[t1〉m′1, such that (by Proposition 6.1.1(3)) (•t2,•t1) ∈ (R−1)⊕, (◦t2,◦t1) ∈ (R−1)⊕, l(t2) = l(t1),
(t•2 , t

•
1 ) ∈ (R−1)⊕, (m′2,m

′
1) ∈ (R−1)⊕ and, moreover, ∀s,s′ ∈ S.(s′,s) ∈ R−1 ⇒ (s′ ∈ ◦t2 ⇔ s ∈ ◦t1), as required.

The case when m1 moves first is symmetric and so omitted.
(3) Suppose (m,m′′) ∈ (R1 ◦R2)

⊕ and m[t1〉m1. By Proposition 6.1.1(4), we have that (m,m′′) ∈ R⊕1 ◦R⊕2 , and
so there exists m′ such that (m,m′) ∈ R⊕1 and (m′,m′′) ∈ R⊕2 . As (m,m′) ∈ R⊕1 and R1 is a pti-place bisimulation, if
m[t1〉m1, then there exist t2 and m2 such that m′[t2〉m2 with (•t1,•t2)∈R⊕1 , (◦t1,◦t2)∈R⊕1 , l(t1) = l(t2), (t•1 , t

•
2 )∈R⊕1

and (m1,m2) ∈ R⊕1 ; moreover, ∀s,s′ ∈ S.(s,s′) ∈ R1⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2). But as (m′,m′′) ∈ R⊕2 and R2 is a pti-
place bisimulation, we have also that there exist t3 and m3 such that m′′[t3〉m3 with (•t2,•t3) ∈ R⊕2 , (◦t2,◦t3) ∈ R⊕2 ,
l(t2) = l(t3), (t•2 , t

•
3 )∈ R⊕2 and (m2,m3)∈ R⊕2 ; moreover, ∀s′,s′′ ∈ S.(s′,s′′)∈ R2⇒ (s′ ∈ ◦t2⇔ s′′ ∈ ◦t3). Summing

up, for (m,m′′)∈ (R1 ◦R2)
⊕, if m[t1〉m1, then there exist t3 and m3 such that m′′[t3〉m3 and (by Proposition 6.1.1(4))

(•t1,•t3) ∈ (R1 ◦R2)
⊕, (◦t1,◦t3) ∈ (R1 ◦R2)

⊕, l(t1) = l(t3), (t•1 , t
•
3 ) ∈ (R1 ◦R2)

⊕ and (m1,m3) ∈ (R1 ◦R2)
⊕; more-

over, ∀s,s′′ ∈ S.(s,s′′) ∈ R1 ◦R2⇒ (s ∈ ◦t1⇔ s′′ ∈ ◦t3), as required. The case when m′′ moves first is symmetric
and so omitted.

Proposition 6.2.3. For each PTI net N = (S,A,T, I), relation ∼p ⊆M (S)×M (S) is an equivalence relation.

Proof. Direct consequence of Proposition 6.2.2.

By Definition 6.2.1, pti-place bisimilarity can be defined in the following way:
∼p=

⋃
{R⊕

∣∣ R is a pti-place bisimulation}.
By monotonicity of the additive closure (Remark 4(2)), if R1 ⊆ R2, then R⊕1 ⊆ R⊕2 . Hence, we can restrict our
attention to maximal pti-place bisimulations only:
∼p=

⋃
{R⊕

∣∣ R is a maximal pti-place bisimulation}.
However, it is not true that
∼p= (

⋃
{R
∣∣ R is a maximal pti-place bisimulation})⊕

because the union of pti-place bisimulations may be not a pti-place bisimulation (as already observed for place
bisimulation in [ABS91; Gor21]), so that its definition is not coinductive.

Example 10. Consider the net in Figure 6.3. Clearly, R and R′, defined as follows, are both pti-place bisimulations.

R = {(s1,s1),(s2,s2),(s3,s3),(s4,s4),(s5,s5)}
R′ = {(s1,s1),(s2,s3),(s3,s2),(s4,s4),(s5,s5)}

It would be easy to make R,R′ maximal by adding all possible combinations of s1,s4,s5 (since they are all stuck
places), however it would not be meaningful for this example, so we prefer to keep it simple.

Note that the union R∪R′ is not a pti-place bisimulation as, for example, 2 ·s2 6∼p s2⊕s3. Indeed, if 2 ·s2 moves
first by 2 · s2[t1〉s1⊕ s2, then s2⊕ s3 can only respond with s2⊕ s3[t2〉s5 since t1 and t3 are inhibited. However,
s1⊕ s2 6∼p s5, because the former can perform transition t1, while the latter is stuck. 2

s2
a

s3

as1 a s4

s5

Figure 6.3: A PTI net.
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6.3 Pti-place bisimilarity is finer than causal-net bisimilarity

Theorem 6.3.1. (Pti-place bisimilarity implies causal-net bisimilarity) Let N = (S,A,T, I) be a PTI net and
m1,m2 two of its markings. If m1 ∼p m2, then m1 ∼cn m2.

Proof. If m1 ∼p m2, then there exists a pti-bisimulation R1 such that (m1,m2) ∈ R⊕1 . Let us consider

R2
de f
= {(ρ1,C,ρ2)|(C,ρ1) is a PTI process of N(m1) and

(C,ρ2) is a PTI process of N(m2) and
∀b ∈ B (ρ1(b),ρ2(b)) ∈ R1}.

We want to prove that R2 is a causal-net bisimulation. First of all, consider a triple of the form (ρ0
1 ,C

0,ρ0
2 ), where

C0 is the causal PTI net without events and ρ0
1 ,ρ

0
2 are such that ρ0

i (Min(C0)) = ρ0
i (Max(C0)) = ρ0

i (B
0) = mi for

i = 1,2, and (ρ0
1 (b),ρ

0
2 (b)) ∈ R1 for all b ∈ B0. Then (ρ0

1 ,C
0,ρ0

2 ) must belong to R2, because (C0,ρ0
i ) is a process

of N(mi), for i = 1,2 and, by hypothesis, (m1,m2) ∈ R⊕1 . Hence, if R2 is a causal-net bisimulation, then the triple
(ρ0

1 ,C
0,ρ0

2 ) ∈ R2 ensures that m1 ∼cn m2.
Assume (ρ1,C,ρ2) ∈ R2. In order for R2 to be a cn-bisimulation, we must prove that

1. ∀t1,C′,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1), where ρ ′1(e) = t1, ∃t2,ρ ′2 such that

(C,ρ2)
e−→ (C′,ρ ′2), where ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R2;

2. symmetrical, if (C,ρ2) moves first.

Assume (C,ρ1)
e−→ (C′,ρ ′1) with ρ ′1(e) = t1. Since (ρ1,C,ρ2) ∈ R2, for all b ∈Max(C) we have (ρ1(b),ρ2(b)) ∈

R1 and therefore (ρ1(Max(C)),ρ2(Max(C))) ∈ R⊕1 . As ρ1(Max(C))[t1〉
ρ ′1(Max(C′)) and R1 is a pti-place bisimulation, there exist t2,m2 such that ρ2(Max(C))[t2〉m2 with (•t1,•t2)∈ R⊕1 ,
(◦t1,◦t2) ∈ R⊕1 , l(t1) = l(t2), (t•1 , t

•
2 ) ∈ R⊕1 , (ρ ′1(Max(C′)), m2) ∈ R⊕1 and, moreover, ∀s,s′ ∈ S.(s,s′) ∈ R1⇒ (s ∈

◦t1⇔ s′ ∈ ◦t2).
Therefore, since t1 and t2 have the same pre-sets/post-sets up to R1, it is possible to derive (C,ρ2)

e−→ (C′′,ρ ′2),
where ρ ′2 is such that ρ ′2(e) = t2 and (ρ ′1(b),ρ

′
2(b))∈ R1 for each b∈ e• (which is really possible because (t•1 , t

•
2 )∈

R⊕1 ). Now we prove that C′ = C′′. The underlying P/T parts of C′ and C′′ are obviously the same (so C′ and C′′

have the same events, the same conditions and the same flow relation), therefore we have to check that also the
newly added (after/before) inhibitor arcs are the same, i.e.,

• ∀b ∈ B′ such that b• 6= /0 we have b A1 e ⇐⇒ b A2 e , and

• ∀b ∈ e• ∀e′ ∈ E we have b B1 e′ ⇐⇒ b B2 e′,

where we denote A1 (resp. B1) the after (before) inhibitor arcs obtained by extending C to C′ and A2 (resp. B2)
the after (before) inhibitor arcs obtained by extending C to C′′. However, these additional requests are trivially
satisfied because we know that ∀s,s′ ∈ S.(s,s′) ∈ R1 ⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). In fact, if b A1 e, then, by Defini-
tion 5.2.2, there is an inhibitor arc from ρ1(b) to t1, i.e., ρ1(b) ∈ ◦t1. Since (ρ1(b),ρ2(b)) ∈ R1, this implies that
ρ2(b) ∈ ◦t2 and so b A2 e. The implication on the other side is symmetrical, and therefore omitted. The argument
for relations B1,B2 is the same, and therefore omitted.

To conclude, we have that C′ = C′′. Thus, (C,ρ2)
e−→ (C′,ρ ′2) with ρ ′2(e) = t2 and (ρ ′1(b),ρ

′
2(b)) ∈ R1 for

each b ∈ e•. Therefore, for all b′ ∈ B′ it holds that (ρ ′1(b
′),ρ ′2(b

′)) ∈ R1, because for all b′ ∈ B this holds by
hypothesis and for all b′ ∈ e• this follows by construction (thanks to the fact that (t•1 , t

•
2 ) ∈ R⊕1 ). As a consequence

(ρ ′1,C
′,ρ ′2) ∈ R2.

The case where (C,ρ2) moves first is symmetrical and therefore omitted. Thus, R2 is a causal-net bisimulation
and, since (ρ0

1 ,C
0,ρ0

2 ) ∈ R2, we have m1 ∼cn m2.

There are at least the following three important technical differences between causal-net bisimilarity and pti-
place bisimilarity.

1. A causal-net bisimulation is a very complex relation – composed of cumbersome triples of the form (ρ1,C,ρ2)
– that must contain infinitely many triples if the net system offers a never-ending behavior. On the contrary,
a pti-place bisimulation is always a very simple finite relation over the finite set S of places.
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Figure 6.4: Two PTI nets.

2. A causal net bisimulation proving that m1 ∼cn m2 is a relation specifically designed for showing that m1 and
m2 generate the same causal nets, step by step. If we want to prove that, e.g., n ·m1 and n ·m2 are causal-net
bisimilar (which may not hold!), we have to construct a new causal-net bisimulation to this aim. Instead, a
pti-place bisimulation R relates those places which are considered equivalent under all the possible R-related
contexts. Hence, if R justifies that m1 ∼p m2 as (m1,m2) ∈ R⊕, then for sure the same R justifies that n ·m1
and n ·m2 are pti-place bisimilar, as also (n ·m1,n ·m2) ∈ R⊕.

3. Finally, while pti-place bisimilarity is decidable (see the next section), it is not known whether causal-net
bisimilarity is decidable on finite PTI nets.

However, these technical advantages of pti-place bisimilarity over causal-net bisimilarity are balanced by an in-
creased discriminating power of the former over the latter, that, in a few cases, might appear even excessive, as
the following intriguing example shows.

Example 11. Consider the net in Figure 6.4. First of all, note that s2 ∼cn s′2, because both are stuck markings.
However, we have that 2 · s2 �cn 2 · s′2 because 2 · s2 is stuck, while 2 · s′2 can perform b. This observation is enough
to conclude that s2 �p s′2, because a pti-place bisimulation R relates places that are equivalent under any R-related
context: if (s2,s′2) ∈ R then (2 · s2,2 · s′2) ∈ R⊕, but these two markings do not satisfy the pti-place bisimulation
game, so R is not a pti-place bisimulation.

Nonetheless, it is interesting to observe that s1 ∼cn s′1, because they generate the same causal PTI nets, step by
step; moreover, even for any n≥ 1 we have n · s1 ∼cn n · s′1. However, s1 �p s′1 because it is not possible to build a
pti-place bisimulation R containing the pair (s1,s′1). The problem is that it would be necessary to include, into the
candidate pti-place relation R, also the pair (s2,s′2), which is not a pti-place bisimulation pair, as discussed above.
Therefore, no pti-place bisimulation R can relate s1 and s′1.



Chapter 7

Pti-place bisimilarity is decidable

In order to prove that ∼p is decidable, we first need a technical lemma which states that it is decidable to check
whether a place relation R⊆ S×S is a pti-place bisimulation.

Lemma 7.0.1. Given a finite PTI net N = (S,A,T, I) and a place relation R⊆ S×S, it is decidable whether R is
a pti-place bisimulation.

Proof. We want to prove that R is a pti-place bisimulation if and only if the following two finite conditions are
satisfied:

1. ∀t1 such that •t1[t1〉, ∀m such that (•t1,m) ∈ R⊕, ∃t2 such that •t2[t2〉 and

(a) •t2 = m,

(b) (◦t1,◦t2) ∈ R⊕, (t•1 , t
•
2 ) ∈ R⊕, l(t1) = l(t2),

(c) ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2).

2. ∀t2 such that •t2[t2〉, ∀m such that (m,•t2) ∈ R⊕, ∃t1 such that •t1[t1〉 and

(a) •t1 = m,

(b) (◦t1,◦t2) ∈ R⊕, (t•1 , t
•
2 ) ∈ R⊕, l(t1) = l(t2),

(c) ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1⇔ s′ ∈ ◦t2).

First we prove the implication from left to right, only for condition 1, as the other is symmetrical. If R is a
pti-place bisimulation and (•t1,m) ∈ R⊕, then from •t1[t1〉t•1 it follows that there exists t2 such that •t2[t2〉t•2 with
•t2 = m, (◦t1,◦t2) ∈ R⊕, (t•1 , t

•
2 ) ∈ R⊕, l(t1) = l(t2) and, moreover, ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2).

Therefore, conditions (a), (b) and (c) are trivially satisfied.
Now we prove the implication from right to left, i.e., if conditions 1 and 2 hold for R, then R is a pti-place bisim-

ulation. Suppose (m1,m2) ∈ R⊕ and m1[t1〉m′1. Let q = {(s1,s′1),(s2,s′2), . . . , (sk,s′k)} be any set of associations
that can be used to prove that (m1,m2)∈ R⊕. So this means that m1 = s1⊕s2⊕ . . .⊕sk, m2 = s′1⊕s′2⊕ . . .⊕s′k and
that (si,s′i) ∈ R for i = 1, . . . ,k. If m1[t1〉m′1, then m′1 = m1	 •t1⊕ t•1 . Consider the set of associations p = {(s1,s′1),
. . . ,(sh,s′h)} ⊆ q, with {s1, . . . ,sh} = •t1.

Note that (•t1,{s′1, . . . ,s′h}) ∈ R⊕ and that •t1[t1〉. Hence, by condition 1, there exists a transition t2 such that
•t2[t2〉, •t2 = {s′1, . . . ,s′h}, (◦t1,◦t2)∈ R⊕, l(t1) = l(t2), (t•1 , t

•
2 )∈ R⊕, and ∀s,s′ ∈ S.(s,s′)∈ R⇒ (s∈ ◦t1⇔ s′ ∈ ◦t2).

By hypothesis, ◦t1∩dom(m1) = /0, so since (m1,m2)∈R⊕ and condition (c) holds, we have that ◦t2∩dom(m2) = /0.
Therefore, since •t2 ⊆ m2, also m2[t2〉m′2 is firable, where m′2 = m2	 •t2⊕ t•2 , and we have that (•t1,•t2) ∈ R⊕,
(◦t1,◦t2)∈R⊕, (t•1 , t

•
2 )∈R⊕, l(t1) = l(t2), (m′1,m

′
2)∈R⊕ and, moreover, ∀s,s′ ∈ S.(s,s′)∈R⇒ (s∈ ◦t1⇔ s′ ∈ ◦t2),

as required, where (m′1,m
′
2)∈ R⊕ holds as, from the set q of matching pairs for m1 and m2, we have removed those

in p and we have added those justifying (t•1 , t
•
2 ) ∈ R⊕.

If m2[t2〉m′2, then we have to use an argument symmetric to the above, where condition 2 is used instead.
Hence, we have proved that conditions 1 and 2 are enough to prove that R is a pti-place bisimulation.

Finally, the complexity of this procedure is as follows. For condition 1, we have to consider all the net
transitions, and for each t1 we have to consider all the markings m that (•t1,m) ∈ R⊕i , and for each pair (t1,m)
we have to check whether there exists a transition t2 such that m = •t2, l(t1) = l(t2), (◦t1,◦t2) ∈ R⊕i , (t•1 , t

•
2 ) ∈ R⊕i

and, moreover, that ∀s,s′ ∈ S.(s,s′) ∈ R⇒ (s ∈ ◦t1 ⇔ s′ ∈ ◦t2). And the same for condition 2. Therefore, this
procedure has worst-case time complexity O(q · (n+p−1)!

(n−1)!·p! · p
2√p ·q · (p2 ·√p+n2 · p)), where q = |T |, n = |S|, p

59



60 CHAPTER 7. PTI-PLACE BISIMILARITY IS DECIDABLE

is the least number such that |•t| ≤ p, |◦t| ≤ p and |t•| ≤ p for all t ∈ T . As a matter of fact, the distribution of p
tokens over n places is given by the binomial coefficient

(n+p−1
p

)
= (n+p−1)!

(n−1)!·p! ; the size of R is at most n2; checking

Subcondition (a) is in O(p2√p · q); checking Subcontidion (b) is in O(p2 ·√p); finally, checking Subcondition
(c) is in O(n2 · p).

Theorem 7.0.2. (Pti-place bisimilarity is decidable) Given a PTI net N = (S,A,T, I), for each pair of markings
m1 and m2, it is decidable whether m1 ∼p m2.

Proof. If |m1| 6= |m2|, then m1 �p m2 by Proposition 2. Otherwise, we can assume that |m1| = k = |m2|. Since
S is finite, the set of all the place relations over S is finite as well. Let us list all the place relations as follows:
R1,R2, . . . ,Rn. Therefore, for i = 1, . . . ,n, by Lemma 7.0.1 we can decide whether the place relation Ri is a pti-
place bisimulation and, in such a case, we can check whether (m1,m2) ∈ R⊕i in O(k2

√
k) time. As soon as we

have found a pti-place bisimulation Ri such that (m1,m2) ∈ R⊕i , we stop concluding that m1 ∼p m2. If none of the
Ri is a pti-place bisimulation such that (m1,m2) ∈ R⊕i , then we can conclude that m1 �p m2.

Remark 5. (Time complexity of the decision procedure) First of all, we note that if |S|= n, then the set of all the
place relations over S has cardinality 2n2

. Moreover, the procedure for checking if a place relation Ri in this set
is a pti-place bisimulation has worst-case complexity O(q · (n+p−1)!

(n−1)!·p! · p
2√p ·q · (p2 ·√p+n2 · p)), Finally, if Ri is

a place bisimulation, the cost of checking if (m1,m2) ∈ R⊕i is O(k2
√

k) if the two markings have size k. Summing
up, the procedure is exponential in the size of the net n.



Chapter 8

Conclusions

Petri nets are one one of the most studied and largely used mathematical modeling languages for the description of
concurrent and distributed systems. The main advantage of the model is is to describe the global state of a system
as composed of a collection of local states, where the execution of a transition is a local transformation.

The focus of this work was on two types of Petri nets: the original place/transition (P/T) nets [Pet62] and P/T
nets with inhibitor arcs (PTI), first introduced in [AF73]. The latter is an extension of the former, where local
state may also disallow execution, leading (somewhat surprisingly) PTI nets to be a Turing-complete model of
computation.

In the first part of this work, we have extended Vogler’s proof technique in [Vog91], based on ordered markings,
that he used to prove decidability of (strong) fully-concurrent bisimilarity for safe nets, to bounded nets by means
of indexed ordered markings. The extension is flexible enough to be applicable also to another similar equivalence,
namely causal-net bisimilarity. While decidability of fully-concurrent bisimilarity for bounded nets was already
proved by Montanari and Pistore [MP97], our result for causal-net bisimilarity is new. However, the approach
of [MP97] is not defined directly on Petri nets, rather it exploits an encoding of Petri nets into so-called causal
automata, a model of computation designed for handling dependencies between transitions by means of names. In
addition to this, their encoding works modulo isomorphisms, so that, in order to handle correctly the dependency
names, at each step of the construction costly renormalizations are required. On the contrary, our construction
is very concrete and works directly on the net. Thus, we conjecture that, even if the worst-case complexity is
roughly the same, our algorithm performs generally better. Decidability of fully-concurrent bisimilarity using
indexed ordered markings was claimed to be proved also by Valero-Ruiz [Val93], however some significant flaws
and inaccuracies in his work (which was never published in English) regarding the individual handling of tokens
are enough to invalidate such a claim.

A possible extension of this work regards unbounded P/T nets. While Esparza proved [Esp98] that all be-
havioral equivalences ranging from interleaving bisimilarity to fully-concurrent bisimilarity are undecidable on
unbounded P/T nets, the proof of undecidability by Janc̆ar [Jan95] does not apply to causal-net bisimilarity, so
that the problem of its decidability over unbounded P/T nets is open. However, one may conjecture that since
infinitely many tokens in a net are mapped to infinitely many maximal conditions in a process, also causal-net
bisimilarity might be undecidable on unbounded P/T nets.

As a future work, we plan to extend Vogler’s results in [Vog95] about decidability of weak fully-concurrent
bisimilarity on safe nets with silent moves, to bounded nets with silent moves. As Vogler’s approach in that case
relies on ordering of transitions instead of places, it could be possible to generalize our idea to sets of indexed
transitions. However, the work presents some non-trivial technical details.

In the second part of this work, we introduced pti-place bisimilarity, a decidable and sensible behavioral
equivalence for finite PTI nets. The decidability result is based on the fact that the net is finite, even if the
associated reachability graph may not be so. To decide pti-place bisimilarity one has to check a large (but finite!)
number of local conditions, which are surprisingly enough sum up the (possibly infinite) behavior of the net. As a
matter of fact, those local conditions can be checked on finite elements of the net, namely places and transitions.
When the checking is done, the combination of conditions is sufficient to express the net’s whole behavior.

Future work will be devoted to see whether the pti-place bisimulation idea can be extended to other, even
larger classes of nets, such as lending Petri nets, where transitions are allowed to consume tokens from a place
even if it does not contain enough tokens (thus enabling negative-valued markings) [BCP15].

To the best of our knowledge, the decidability of a behavioral equivalence for a Turing-complete formalism
has been proved only once before. In fact, in [Lan+11] it is proved that (interleaving) bisimilarity is decidable
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for a small process calculus, called HOcore, with higher-order communication (but without restriction), that is,
nonetheless, Turing-complete.

Turing-completeness of HOcore is proved by providing an encoding of Minsky machines, which are a model
based on increment and test for zero of registers. The ability to increment and test for zero are the key also to
show Turing-completeness of PTI nets. Moreover, it is well-known that another process calculus, the π-calculus,
is Turing-complete and can encode higher-order behavior [MPW92; SW01]; it is also possible to provide a PTI
semantics for it [BG09]. These three facts lead to a suggestive question: in a concurrent or distributed setting,
are higher-order capabilities and test-for-zero on the same level, or is one more foundational than the other? Petri
nets have often been called ”the assembly language of concurrency”: which higher-order process calculus is ”the
λ -calculus of concurrency”, and is it possible to encode one in the other?
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