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”Dai che ti accompagno”



Estratto

Nel cervello di un mammifero sono presenti più di 1010 neuroni strettamente im-

pacchettati e connessi a comporre una fitta rete. Per meglio renderci conto della com-

plessità del problema basta provare a pensare che in ogni piccolo millimetro cubo di

tessuto corticale sono contenuti circa 105 neuroni, e dunque da esso si dipartono migliaia

di impulsi elettrici ogni millisecondo. Il desiderio di indagare la struttura e il funzio-

namento di un’organizzazione cos̀ı complessa ha suscitato molte domande affascinanti

tra i neuroscienziati: quali sono le informazioni contenute in questo schema di impulsi

spazio-temporale? Come possono gli altri neuroni decodificare il segnale? Potrebbe es-

sere possibile per noi leggere questo codice e capire il messaggio in esso contenuto? Il

problema comune soggiacente a tutte queste domande è quello della codifica neurale, uno

dei quesiti fondamentali della neuroscienza. Purtroppo, al momento non sappiamo dare

una risposta chiara a queste domande, ma è opinione comune che la maggior parte, se non

tutte, le informazioni rilevanti siano contenute nell’indice di fuoco medio di un neurone.

Ma il fatto è che non esiste un concetto unico e ben definito di indice medio di fuoco;

sperimentalmente possiamo distinguerne almeno tre nozioni che si differenziano per la

quantità su cui viene calcolata la media: sul tempo, su più ripetizioni dell’esperimento,

o sulla popolazione di neuroni.

Per poter comprendere le ragioni che motivano le ipotesi di lavoro che faremo nella

nostra analisi, dobbiamo osservare due evidenze biologiche riguardanti la struttura del-

le popolazioni di neuroni e la loro attività. In molte aree del cervello i neuroni sono

organizzati in gruppi di numerose unità con proprietà simili e che sono connesse per

mezzo di forti legami eccitatori. Questi cluster sono denominati assembramenti neurali,

ed esempi di rilievo sono le ipercolonne nella corteccia visiva e i fasci di motoneuroni



che si trovano nel sistema nervoso centrale. Abbiamo voluto notare innanzitutto questo

fatto perché, a causa della loro forte interconnessione, se anche solo una parte delle cellu-

le che compongono l’assembramento viene stimolata, l’intero insieme si attiva, e questo

legittima la scelta di considerarlo come un’unica unità operativa. Ma questo in realtà

significa che stiamo operando una media, perchè consideriamo un intero ammasso come

una singola cellula, e cos̀ı facendo possiamo descrivere l’attività dell’intera popolazione

neuronale anzichè limitarci a quella dei singoli neuroni. In secondo luogo è bene eviden-

ziare una caratteristica chiave nella codifica neurale, e cioè il fatto che la forma delgli

impulsi emessi dai neuroni varia leggermente durante le scariche. Questo implica che

descrivendo la loro attività, la principale fonte di informazioni è costituita dai tempi di

scarica o da alcune statistiche su di essi. Questo fatto è cos̀ı rilevante che molti modelli

neuronali trascurano addirittura il meccanismo alla base della generazione degli impulsi,

e scelgono di descrivere la dinamica della rete in termini di tempi di scarica.

Una volta delineate le caratteristiche principali di cui è bene essere consapevoli per

parlare di neuroni, dobbiamo valutare il ruolo delle connessioni che intercorrono tra essi.

Ponendoci al livello di un assembramento osserviamo che i forti legami di interazione

tra le unità determinano una rete omogenea. Per essere più precisi, una tale rete è una

situazione in cui tutti i neuroni 1 ≤ i ≤ N sono identici e ricevono lo stesso segnale dal-

l’esterno Iexti (t) = Iext(t); inoltre, in una popolazione omogenea la forza di interazione

tra i neuroni è considerata uniforme, wij = J0
N

, dove J0 è un parametro di connettivtà.

Per J0 = 0 tutti i neuroni sono indipendenti, mentre un valore J0 > 0 (J0 < 0) implica

un legame eccitatorio (inibitorio) tra tutti i neuroni. Ma se facessimo una tale sup-

posizione cambiando la prospettiva e guardando alla rete neuronale nel suo complesso,

dove i cluster sono considerati come le unità neuronali, perderemmo molto in termini

di realismo. In questo caso è più coerente con l’evidenza biologica considerare la rete

come non omogenea, una situazione in cui si presume che gli assembramenti adattino

progressivamente i collegamenti reciproci. Il modo un cui queste interconnessioni variano

nel tempo è stato studiato a lungo da diversi scienziati e oggi ci riferiamo al processo di

adattamento dei parametri di interazione chiamandolo apprendimento, e alla procedura

per regolare i pesi wij come a una regola di apprendimento. Esistono numerose regole di

apprendimento diverse in letteratura, ma uno degli insiemi più semplici è composto delle



regole di apprendimento di Hebbian, le quali presuppongono che sia la correlazione tra

i neuroni pre- e post-sinaptici a determinare i cambiamenti nei canali di comunicazione

tra i neuroni.

Fatte queste considerazioni abbiamo gli strumenti per introdurci all’analisi del model-

lo che verrà studiato in questo lavoro di tesi. In particolare, ci concentreremo sul recente

lavoro di Torres e Salort [36], nel quale gli autori descrivono la dinamica di una rete di

cluster connessi, modellati tramite il tempo trascorso dall’ultima scarica, e che interagi-

scono reciprocamente tenendo conto di processi di apprendimento. Ovviamente questo

studio si inserisce in una già ampia letteratura riguardante l’analisi e la modellazione di

reti neurali, che specialmete in tempi recenti ha conosciuto una significativa espansione.

Nel caso di reti omogenee, i modelli per l’attività elettrica di un singolo neurone sono

la base su cui sono costruiti tutti i modelli di campo medio proposti per comprendere

l’attività elettrica di una rete di neuroni interagenti. Questi modelli differiscono l’uno

dall’altro nella quantità studiata che, in molti casi, è la densità di neuroni n(·, t), dove ·
è una quantità che varia nel tempo t e, nel nostro caso, è il tempo s trascorso dall’ultima

scarica del neurone. Se tuttavia il primo modello di questo tipo che è stato proposto era

stato costruito adattandolo ai dati sperimentali, nelle sue versioni successive il modello

di popolazione analizzato utilizzando il tempo trascorso ha via via considerato solo ipo-

tesi minime, mirando a riprodurre i seguenti aspetti del comportamento neuronale: in

primo luogo il fatto che molti neuroni generano impulsi in risposta agli stimoli in arrivo;

in secondo luogo il fatto che, dopo ogni scarica, il neurone è soggetto a un periodo di

refrattarietà prima di recuperare la sua eccitabilità, il che significa che vive una fase in

cui è meno sensibile agli stimoli ricevuti.

Inserendosi in una tradizione cos̀ı ampia, il modello proposto da Torres e Salort si

distingue comunque dagli altri per alcune scelte originali volte ad aumentarne la coerenza

con l’evidenza biologica. Infatti, la prima novità che si può riscontrare nella loro analisi

è la scelta di includere anche la dimensione spaziale come variabile del modello. Ogni

posizione corrisponde ad un assembramento che, come detto sopra, è visto come un unico

neurone, in cui il recupero post-scarica della membrana è modellato attraverso una indice

di fuoco istantaneo che dipende dal tempo trascorso dall’ultima scarica, dagli impulsi

ricevuti dai neuroni vicini e la forza delle sue interconnessioni con la rete. Il secondo



contributo significativo che apportano alla tradizione è il fatto di considerare una rete

non omogenea in cui i cluster adattano i loro canali di comunicazione attraverso le regole

di apprendimento di Hebbian.

Nel corso del presente lavoro di tesi ho condotto un’analisi puntuale di questo modello,

curandomi innanzitutto di fornire gli strumenti necessari alla comprensione dell’elabo-

rato, per poi procedere allo studio della buona posizione del modello, alla ricerca dei

suoi stati stazionari e alla prova della convergenze esponenziale del modello stesso al-

l’equilibrio. La prefazione, nata in realtà a ricerche ultimate, ha un ruolo prettamente

divulgativo. Ho infatti desiderato fornire al lettore un quadro più generale sul ruolo della

matematica nella formulazione dei modelli e soprattutto sul valore fisico e fattuale dei

risulati provati sul modello nel corso dell’elaborato, mossa dal desidero di raggiungere e

accattivare un più vasto pubblico di lettori.
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Preface

At the end of this work, I found myself thinking about what was the factual, physical

meaning of what I had studied. So I have decided to expose the reflections and the

investigations raised by this question in this preface that, driven by the desire and the

duty of reaching and directly involve the majority of public opinion, I have designed to

be understood by anyone, even non-specialist in the mathematical field.

Mathematical theories of populations have affected several form of existence and

dynamics of growth. Human population as well as populations of animal, viruses and

cells as neurons are just a sample of the various fields in which those theories have been

applied. Furthermore, when approaching the study of a population, there are several

features we could be interested in. As an example, one might want to investigate the

factors determining its age distribution when we are interested in studying the long time

behaviour of the population and its sensitivity to changes in birth and death rates. But

this is not the only application; as probably everyone had the opportunity to observe

in recent times, we can investigate the spread of a contagious phenomenon, and that

not only for critical situations like the spread of a virus, but even for the diffusion of

a trend, or information. In fact, all these infectious manifestations have in common an

indicator that is interesting to deepen, that is the dependence of contagion on parameters,

such as contact and quarantine rates. Moreover, the increasingly complex dynamic of

ecological systems, economic structures and social apparatus have emphasized the need

of encompass in the analysis the interactions that inevitably characterize these systems

and shape their developments. In this work, in which we analyse the dynamics of groups

of neurons that, as all we know, are linked forming a net, we had to consider this aspect,

and we have counted for the interactions evaluating their role through learning rules that

i



PREFACE ii

effectively keep track of the contacts and the ”feeling” between the assemblies themselves.

But once we have shaped a system of equations that effectively reproduce the dynam-

ics of the neurons, counting for the role of the stimulus received and the total activity

at a fixed time, there is a stimulating question to muse with. During this work we have

mathematically tackled the problem of determining what the neurons population, mod-

elled through the time elapsed since the last discharge, does after a long time; we have

seen that it stabilizes to a steady state. But what does that actually mean? This is a

very challenging question. Trying to answer it, I have kept in mind that these thoughts

could be extended to a wider range of populations such those we listed before, not only

to neurons, and an help in finding a possible answer has come from the volume by Coale

about the growth and the structure of human populations, see [6].

There the author has considered a population that neither gains nor loses members

by migration, an assumption that is realistically true also for a group of neurons. He

claims that at a given moment, the age composition of such a population is determined

by the recent sequence of fertility and mortality risk at each age to which the composition

has been subject and that, knowing those data, we are able to determine the population

overall birth rate, death rate, and rate of increase at each moment. In principle, then,

both age composition and vital rates can be determined from the knowledge of the present

and past values of fertility and mortality schedules. The real key passage in his argument

is determined by the theorem of ”weak ergodicity” by Alvaro Lopez. This result states

that two arbitrarily chosen age distribution, no matter how different, subject to identical

sequences of fertility and mortality, ultimately generate populations with the same age

composition. That means that age composition gradually forgets the past and thus that

we can effectively reproduce the current age composition of a population even if we

don’t know its initial age distribution, based only on the recent history of its fertility

and mortality. Here comes the point where the steady population plays a crucial role.

In his work, through a clever deduction which makes use of Lopez’s Theorem, Coale

illustrates the interplay between the stability of the age structure and the necessity for

the corresponding rates of fertility and mortality to be constant. In fact, we call stable a

population that is established by a prolonged regime of unchanging fertility and mortality

schedule, and from the previous assertion we can say that it is characterized by a fixed
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age composition, constant birth and death rates, and constant rate of increase.

That’s what a steady population let us to do, and this is true for human as well

for neuron population. Moreover, speaking about neurons things are slightly simplified

from a certain point of view, because there are less variables to think about. In fact,

we don’t have to count for the difference of sex in the composition of the population,

which means that all the individuals can reproduce, i.e. fire. Another aspect that

generalises the previous analysis is that the fertility and the mortality rates for neurons

are identical because we make the fundamental assumption that a neuron immediately re-

enter its life cycle after firing. This fact bring us to deduce that the neuron population

we consider in our analysis remains constant, without effective looses or gains. We

know that, realistically, neurons actually dies, but this aspect is not encompassed in the

current version of the model; to count for it, we should assume the density of population

to be constant with respect to the variable s counting for the time elapsed, but we

should abandon the assumption of the mass-conservation with respect to the variable x

of the spatial distribution. So, what can we effectively observe in our model when the

population achieve a steady state? From the physical point of view, the important and

observable part is the activity of neurons from which, at the equilibrium, we can see some

patterns as synchronization phenomena in the activity itself. It is indeed complicated to

measure the probability of finding a neuron: the density of the population is too abstract.

The only observable variables in the model are N and S, which are the activity of the

neuron in position x at time t and the amplitude of the stimulus it receives. This means

that, for example, the activity of the neurons are synchronizing according to the activity

N of the neuron in x, and synchronous regular or irregular activities are ubiquitous in

nervous systems, so they are very interesting to be understood. Indeed, they can be at

the basis of physiological functions such as respiration, cognitive function or pathological

conditions such as, for example, epilepsy. The fact is that these synchronous patterns

reflect simultaneous and repetitive discharges of large numbers of neurons in specific

assemblies (i.e. positions x) at the level of the brainstem, the cortex, etc, and this could

help us in understanding their link with the manifestations just mentioned. Moreover, if

we want to go deeper, we can explore how such a coherence, that we can observe in the

activity of these neurons, arise from the interplay between the intrinsic neural properties
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and the coupling principles underlying the network. But this is a wild field to investigate,

so we just stop here and admire so much synergy.

I sincerely hope I have achieved the goal stated at the opening to affect everyone who

desires to understand what I have done in this work of thesis. To anyone who wants to

continue reading, I hope you find it interesting.

Campagnola Emilia

January, 2021



Introduction

A mammalian brain counts more than 1010 densely packed neurons, smartly con-

nected to compose an intricate network. For better understanding the complexity of the

problem we can try thinking that in every small cubic millimetre of cortex tissue there

are about 105 neurons, so thousands of spikes are emitted each millisecond from there.

The craving to investigate the structure and the functioning of such an organization has

aroused many fascinating questions between neuroscientists: what is the information

contained in such a spatio-temporal pattern of pulses? How might other neurons decode

the signal? Is it possible for us to read the code and understand the message of the

neural activity pattern? These are all questions that refer to the same problem of neural

coding, one of the most challenging topic in neuroscience. Actually, at present, there is

not a clear answer to these questions, although it is common opinion that most, if not all,

of the relevant information is carried by the mean firing rate of the neuron. But the fact

is that there is not a unique and well-defined concept of ’mean firing rate’; experimen-

tally we can divide at least three notions of rate that differ in the averaging procedures:

either an average over time, or an average over several repetition of the experiment, or

an average over a populations of neurons.

To give reason to the working hypothesis that we will do in our analysis, we have

to notice two biological evidence concerning the structure of the populations of neurons

and their activity. In many areas of the brain, the neurons are organized in groups of

numerous units with similar features and strong mutual excitatory connections. These

clusters are named neural assemblies, and notable examples are hypercolumns in the

visual cortex and pools of motor neurons in the central nervous system. This is the first

fact that we have to notice because due to this dense connectivity, once a subset of its

1
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cells is stimulated the entire assembly tends to be activated, so that we can consider it

as a single operational unit. This actually means that we are operating an averaging

procedure, because we consider a whole cluster as a single cell, and thus we are able to

describe the main activity of the neuronal population rather than the spiking of indi-

vidual neurons. The second aspect to outline is actually a key feature in neural coding,

namely that the shape of the spikes emitted by the neurons varies a little throughout the

discharges. This implies that, describing their activity, the most relevant information is

contained in the discharge times or in some statistics over them. This fact is so relevant

that many neuronal and networks models even ignore the mechanism at the base of spike

generation and choose to describe the neuronal dynamics in terms of discharge times.

Once outlined the main features to be aware of while speaking about neurons, we have

to asses the role of the connections within the neurons themselves. Looking at the level of

a cell assembly we observe that the strong interaction links between the units determine

a sort of all-to-all coupling, which is called homogeneous network. To be more precise,

a homogeneous network is a situation in which all neurons 1 ≤ i ≤ N are identical

and receive the same external input Iexti (t) = Iext(t); moreover, for an homogeneous

population it is assumed that the interaction strength between the neurons is uniform,

wij = J0
N

, where J0 is a connectivity parameter. For J0 = 0 all neurons are independent,

while a value J0 > 0 (J0 < 0) implies excitatory (inhibitory) interactions. However, we

would lose realism if we made such an assumption generalizing our point of view and

looking at the neuronal network as a whole, where the assemblies are considered as the

neuronal units. In this case it is more consistent with the biological evidence to consider

the network to be non-homogeneous, a situation where it is assumed that the assemblies

are subjected to an adaptation in their communication links. The way in which these

interconnections varies over time have been long investigated by different scientists, and

today we refer to the process of ”interaction parameter adaptation” as learning, and to

the procedure for adjusting the weights wij as a learning rule. There are many different

learning rules, but one of the simpler set is composed by those known as the Hebbian

learning rules, which assume that synaptic adjustments are led by correlated activity of

pre- and post-synaptic neurons.

After these considerations we have the tools to enter into the presentation of the



INTRODUCTION 3

model that will be studied in this thesis. In particular, we will focus on the seminal

work by Torres and Salort [36], where the authors describe the dynamic of a network

of connected assemblies that are modelled with the time elapsed since last discharge

and interacts with each other considering learning processes. Obviously this study fits

into an already wide literature about the analysis and modelling of neural networks,

that particularly in the past years have known a significant broadening. In the case of

homogeneous networks, models for the electrical activity of a single neuron have been

the basis for several mean-field models, proposed to understand the electrical activity

of a group of interacting neurons. These models differ from each other in the quantity

under study that, in most cases, is given by the density of neurons n(·, t), where · is a

quantity varying over the time t and, in our case, is the time s elapsed since the last

discharge of the neurons. This latter type of model was originally based on stochastic

simulations done in Pham et al. [40], and then has been studied by several authors

such as Cañizo et al. [2], Chevalier et al. [3], Ly et al. [21], Mischler et al. [26] and

Pakdaman et al. [29], [30], [31]. However, while the first model was initially shaped to

fit with the experimental data, in its later versions the population model analysed using

the elapsed time has encompassed minimal assumptions and reproduces only a minimal

set of physiological neuronal properties, which are aimed to reproduce the following

aspects of neuronal behaviour: firstly the fact that many neurons generate trains spikes in

response to incoming stimulations; secondly, the evidence that, following each discharge,

the neuron undergoes a period of refractoriness before recovering its excitability, meaning

a phase it is less responsive to inputs [15].

Within such a vast tradition, the model of Torres and Salort sill differs from the

others for some original choices aimed at increasing the consistency of the model with

biological evidence. In fact, the first novelty they propose in their paper is to encompass

also the spatial dimension as a parameter in their analysis. Each position corresponds

to an assembly that, as said above, is considered as a neuron whom membrane post-

discharge recovery is modelled through an instantaneous firing rate that depend on the

time elapsed since the last discharge, the inputs by other neighbouring neurons and the

strength of interconnections in the network. The second significant contribution they

bring to the tradition is the fact of considering a non-homogeneous network where the
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assemblies adapt their communications links through Hebbian learning rules.

The puntual analysis of the Neuron Elapsed Time model with spatial dimension

introduced by Torres and Salort will be developed in three chapters in this thesis. In

Chapter 1 we present some preliminary concepts that it is important to know to have

a good understanding of for the further analysis. Firstly, we introduce the elapsed time

model structured without the spatial dimension and we show that it is a nonlinear version

of the conservative renewal equation, which has been well-studied by many authors [32],

[10], [7], [14], [23], [44], [41] in the past as a model for a broad range of biological

phenomena like epidemic spread and cell division. Next we proceed with a brief overview

of the learning rule adopted in the model and, finally, we introduce the Doeblin’s theory

that we will use in the final part of this work to study the convergence of the model in

the asymptotic limit. In Chapter 2 we focus on the Neuron Elapsed Time model and

we prove its well-posedness for the weak interconnection case both for the linear and the

non-linear problem. In Chapter 3 we find the stationary states of the problem and, to

conclude, we show the convergence to equilibrium following the ideas of Cañizo et al. in

[2], by means of Doeblin’s theory.



Chapter 1

Preliminary concepts

1.1 Elapsed Time Model and Renewal Equation

In this section we introduce the Conservative Renewal Equation, an usual tool to

describe a model of an age structured population, arising in several different contexts.

As an example the equation can be used to describe cell proliferation and thus tumour

growth. It can be written as a Partial Differential Equation (PDE) on the unknown

function n(t, a) ≥ 0, representing the population density of individuals that at time t are

aged a. Historically, this is the first PDE introduced in biology.

To acquire a gradual understanding of the model, we start by presenting it in its

linear form. This is usually known after the names of McKendrick and Feller, two

pioneers in studying it: the former introduced it for epidemiology, while the latter made

an extensive study of it through Markov processes. It is also known as the VonFoerster

equation because he was the first one to use it for modelling cell cultures. As a standard

model of population dynamics, we present an example of its applications for describing

cell division processes. Imagine we are observing a cell line over time and whenever a

cell divides, we follow only one of the two daughter cells. Based on this equation we are

able to describe the time evolution of the population density n(t, a) of cells of age a at

time t, considering n0 as initial density and the term age meaning the time elapsed since

5



1.1. ELAPSED TIME MODEL AND RENEWAL EQUATION 6

the mitosis of the cell’s mother. We obtain
∂n

∂t
(t, a) +

∂n

∂a
(t, a) + β(a)n(t, a) = 0 t, a > 0

n(t, 0) =
∫∞

0
β(a)n(t, a) da t > 0

n(0, a) = n0(a) a > 0

(1.1)

where the population is structured by an age variable a > 0 which grows at the same

speed as time and is reset to zero according to the rate β(a). The boundary condition

ensures that the population re-enter the cycle immediately after realizing the activity

counted by the variable a.

We can observe that this equation satisfy the conservative property: if integrated

with respect to age, we get∫ ∞
0

∂n(t, a)

∂t
da+

∫ ∞
0

∂n(t, a)

∂a
da+

∫ ∞
0

β(a)n(t, a) da = 0

d

dt

∫ ∞
0

n(t, a) da+ lim
a→∞

n(t, a)− n(t, 0) + n(t, 0) = 0

d

dt

∫ ∞
0

n(t, a) da = 0

which is just the conservation property, and ensures that, if the density of neurons n0

is a probability distribution initially, i.e. if
∫∞

0
n0(a) da = 1, then it remains so for

subsequent times, i.e. n(t, ·) is a probability distribution too, for any time t ≥ 0. Here,

in the computation of the limit of n as a tends to infinity, we can assume that the

population density goes to 0 because it is assumed that the distribution vanishes at

infinity. In fact, if it is true initially, then it is true for all times, and we assume the

initial condition to be compactly supported. Moreover, it is also reasonable biologically

since a is supposed to be the age of a cell.

If we want to deepen the reason why that is effectively the equation that models the

population density, we can follow this reasoning. Assumed n(t, a) to be the function that

specifies the age distribution of the population at time t; the number of individuals in

the age range (a1, a2) at time t is given by

N

∫ a2

a1

n(t, a) da ,
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where N is a scaling factor, such as the size of the population at time t = 0. At this

point it is necessary to make two basic assumptions about the population to prescribe

the death and the birth of individuals in the population.

We firstly assume that the change due to the losses that occur in a time interval of length

h in a population aged a at time t is proportional to the size of the population and the

time interval itself. Thus, the balance of population leads to

n(t+ h, a+ h)− n(t, a) = −d(t, a)n(t, a)h ,

where d ≥ 0 is the age-specific death rate of the population. Dividing both sides of this

equation by h and passing to the limit for h→ 0, we have

∂n

∂t
+
∂n

∂a
= −d(t, a)n .

The second assumption specifies the relation between the birth rate and the age structure

of the population. It states that the number of new born into a population in a time

interval of length h is given by

Nh

∫ ∞
0

b(t, a)n(t, a) da ,

where Nhb(t, a) is the number of new born by an individual of age a in the time interval

(t, t + h) and b is the fertility rate. It follows from this assumption that the density of

new born at time t (boundary condition of our system) is given by

n(t, 0) =

∫ ∞
0

b(t, a)n(t, a) da ,

while the initial distribution (initial condition of our system) is assumed to be known

n(0, a) = n0(a) .

In the specific case of a cell division presented previously, as well as in the one we

analyse in this thesis, we have assumed that the death and the birth rates are the same,

because a neural cell re-enters a new life cycle immediately after firing.

Switching now to the nonlinear models, the most famous one was proposed by Ker-

mack and McKendrick for epidemiology with continuous state, where the variable a rep-

resents the age in the disease [17]. Nowadays these models find an application in a wide
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range of domains spanning from epidemiology to ecology, medicine and cell cultures. In

1974, Gurtin and MacCamy [11] proposed the first mathematical study of such nonlinear

equations; afterwards it has been vastly studied by several mathematicians using vari-

ous techniques such as semigroup theory, entropy GRE methods, Laplace transforms or

applying the method of characteristics to convert the problem into a system of Volterra

integral equations [11], [13], [14], [44]. As an example for the nonlinear system we present

the integro-differential equation describing the dynamics of an age-structured interacting

neuron population. We can see this system as an initial stage formulation of the problem

subsequently analysed in this thesis: this one with the addition of the spatial dimension

and learning processes. Consider a population of neurons described by the probability

density n(t, s) of finding a neuron in state s at time t, where s represents the time elapsed

since the last discharge. The evolution of the neuron population density runs as follows:
∂n

∂t
(t, s) +

∂n

∂s
(t, s) + p(X(t), s)n(t, s) = 0 t, s > 0

N(t) := n(t, 0) =
∫∞

0
p(X(t), s)n(t, s) ds t > 0

n(0, s) = n0(s) s > 0

(1.2a)

where n0 is supposed to satisfy

0 6 n0(s) 6 1 ,

∫ ∞
0

n0(s) ds = 1 . (1.2b)

The nonlinearity of the system is due to the coefficient p(X(t), s) representing the

firing rate of neurons. In fact, it is assumed to depend not only on the state s of the

neuron, but also on the environment X, which is the result of the global neural activity

and takes into account the interactions between the neurons. When p does not depend

on X, we say the network is disconnected, and equation (1.2a) reduces to be linear.

N(t), then, denotes the density of neurons which are undergoing a discharge at time t.

Observing the boundary condition we can deduce that neurons, which randomly fire at

a rate p per unit of time, re-enter the cycle from s = 0 immediately after they fire. That

is also the reason why the variable s can be regarded as the ’age’ of neurons, that is the

time elapsed since its last discharge.

Here, as for the linear case of the conservative renewal equation, we can observe that

solutions to (1.2a) satisfies two remarkable properties: a conservative law that guarantees
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n(t, ·) to be interpreted as a probability density and an a priory bound reflecting the

normalization p(x, s) 6 1; we write∫ ∞
0

n(t, s) ds =

∫ ∞
0

n0(s) ds = 1 ∀t > 0 ,

0 6 n(t, s) 6 1 , 0 6 N(t) 6 1 , ∀t > 0 , ∀s > 0 .

Studying the elapsed-time neural model equation (1.2a) many properties of neural

networks have been investigated, but in this thesis we don’t want to go further in the

analysis of this model since we are interested in a later version encompassing also the

spatial dimension.

1.2 Learning Rule

In the elapsed time neuron models discussed so far by neuroscientist, as we said, the

networks are assumed to be homogeneous, which means that each synapse is character-

ized by a single constant parameter wij that determinates the amplitude of post-synaptic

response to an incoming action potential. However, in the model presented by Torres

and Salort, the network is supposed to be non homogeneous. This is a further step in

shaping a model increasingly consistent with the physical behaviour of the neurons, in

fact it reflects some observations made by electrophysiological experiments that reveal

that the response amplitude is not fixed, but varies over time due to appropriate stim-

ulation paradigms. These changes may last for hours or days; in case of a persistent

changing of the synaptic transmission efficacy, we call this effect long-term potentiation

of synapses (LTP) if the stimulation paradigm leads to an increase of the synaptic effi-

cacy, conversely, we call it long-term depression (LTD) if it leads to a decrease. For our

goals, the relevant aspect of this study is that these persistent changes are thought to

be the neuronal equivalent of ’learning’ and ’memory’.

Formally, in the theory of neural networks, the weight wij of a connection between

neuron i and neuron j is considered as a parameter, and it can be adjusted in order

to optimize the performance of a network for a given task. This process of parameter

tailor is called learning, and it may refer to a wide class of adaptation processes: from

the synaptic changes that occur over the development, to the specific changes that are
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necessary for us to memorize a visual pattern, even to the process of learning a motor

task. We refer to the procedure for adjusting the weights as a learning rule: different

ones can be proposed, but that of interest in this thesis belongs to the class of learning

rules named Hebbian learning because they can be motivated by Hebb’s principle.

Figure 1.1: The changes at the synapse wij depend on the state of the presynaptic neuron j,

the postsynaptic neuron i and the present efficacy wij , but not on the state of other neurons k.

In 1949, the psychologist Donald Hebb published his opera The Organization of Be-

havior, aimed to present a theory of behaviour that was based as far as possible on the

physiology of the nervous system. In his book he tried to make a sedulous attempt to find

some common aspects between the neurological and the psychological conceptions of the

behaviour. His discussion takes origin from some clinical facts: he observed the effects of

some operations on the human brain, like a clearcut removal of cortex outside a specific

area, that in certain cases can have puzzling effects. His goal was to find an anatomical

and physiological understanding of what was known psychologically as a concept. The

postulate expressed by Hebb describes how the connection from presynaptic neuron A to

a postsynaptic neuron B should be modified [Figure 1.1]. For exposing Hebb’s principle

and formulate a learning rule that follows this criterion we will base on [9].

Hebb’s principle When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic changes takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Today this postulate is rephrased meaning that the correlations in the firing activity of

pre- and post-synaptic neurons are responsible of the modifications in the synaptic trans-

mission efficacy. That is the reason why today we refer to correlation-based learning as

Hebbian learning ; he realized that such a mechanism would help to stabilize specific
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neuronal activity patterns in the brain. In fact, if we have said that neuronal activity

patterns correspond to behaviour, then we can understand that stabilization of specific

patterns implies learning of specific types of behaviours.

We now want to focus on how to formulate Hebb’s postulate in a mathematical

way. We consider a single synapse that transmits signals from a presynaptic neuron j

to a postsynaptic neuron i with efficacy wij. We denote by νj the activity of the presy-

naptic neuron, and by νi that of the postsynaptic one. For this purpose, we have to take

into account two particularly relevant aspects in Hebb’s postulate, that are locality and

cooperativity. It is necessary we deepen these to gain awareness of how synapses interact

and for trying to describe their behaviour through equations.

Locality means that the change of the synaptic efficacy can only depend on local

variables, that is to say that depends on information that is available at the site of

the synapse, but not on the activity of other neurons. Prominent examples are pre- and

post- synaptic firing rate or the actual value of synaptic efficacy. Thanks to this property

of Hebbian plasticity, we can make a rather general ansatz for the change of synaptic

efficacy,
d

dt
wij = F (wij; νi, νj) (1.3)

where dwij/ dt is the rate of change of the synaptic coupling strength and F is a so far

undetermined function [1], [37], [19]. We can assert that, a part from those considered,

there are not others local variables that should be included as additional arguments of

F .

As we have highlighted previously, the second aspect of Hebb’s postulate we need to

explore is cooperativity. It means that for a synaptic weight change to occur, pre- and

post- synaptic neuron have to be active simultaneously. This feature allows us to say

something more about the function F . If F is sufficiently smooth, we can expand F in

a Taylor series about νi = νj = 0,

d

dt
wij = c0(wij)+c

post
1 (wij)νi+c

pre
1 (wij)νj+c

post
2 (wij)ν

2
i +cpre2 (wij)ν

2
j+ccorr2 (wij)νiνj+O(ν3) .

(1.4)

We are particularly interested in the term containing ccorr2 in (1.4): it is bilinear in pre-

and post- synaptic activity and it implements the condition of simultaneity necessary
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for cooperativity in Hebbian learning rules. In fact, if we had a learning rule with only

first order terms, we would have a so called non-Hebbian plasticity, because a change

in the synaptic plasticity would be induced by the pre- or post- synaptic activity alone.

Instead, considering the correlation term ccorr2 we have cooperativity, and with respect

to it we can choose different function F . To set ourselves in the simplest case, we take

ccorr2 as a fixed positive constant and all the other terms of the Taylor expansion equal

to zero. With this choice we obtain the following Hebbian learning

d

dt
wij = ccorr2 νiνj . (1.5)

Observing this equation, we can notice that taking ccorr2 < 0, if pre- and post- synaptic

neuron are active simultaneously, then the learning rule weakens the synaptic transmis-

sion efficacy, so it is usually called anti-Hebbian.

Another relevant aspect that needs to be highlighted is a consequence of the fact that

the synaptic efficacy wij is bounded; a reasonable assumption, if we look at wij from a

physiological point of view. This evidence implies that F needs to depend on the wij

itself. In fact, if F was independent of wij, then applying the same stimulus over and

over again, F would grow without limit and the same would do the synaptic efficacy wij

because of the meaning of the function F expressed in (1.3), but this is not possible.

Observing equation (1.4), one possibility for reaching a saturation of synaptic weights,

would be to choose ccorr2 as follows:

ccorr2 (wij) = γ2(1− wij) , (1.6)

where γ2 is a positive constant. In this way, while wij approaches to its maximum value,

say wmax = 1, the parameter ccorr2 tends to zero, and so the network looses its correlation.

What is crucial to note is that in Hebb’s original proposal it is not encompassed

the case of decreasing of the synaptic weights. In these conditions, system’ synapses

can only be strengthened, and this means that all efficacies will finally saturate at their

upper maximum value. However, for any effective learning rule it is essential to require

that the weights could eventually decrease, that is what is called a synaptic depression.

A possible choice to achieve this result can be enforced in equation (1.4) by setting

c0(wij) = −γ0wij (1.7)
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where γ0 is a small positive constant representing the rate of decaying to zero of the

weight wij in case of absence of stimulation.

Combining equation (1.6) and (1.7) in (1.4), we obtain a sufficiently general learning rule

that reflects the properties discussed so far about the function F encompassing synaptic

potentiation and depression:

d

dt
wij = γ2(1− wij)νiνj − γ0wij . (1.8)

The last property of learning rules that need to be highlighted to complete our analysis

is competition. It could be reasonable to be understood that within a fully connected

network, if a neuron strengthens its communication link with a postsynaptic neuron, then

the latter has to weaken its communication channels with other neurons it is connected to.

Generally speaking, this is a crucial property for any form of self-organization and pattern

formation, and in our context can be summarized by saying that synaptic weights can

only grow at the expenses of others. From an operative point of view, we can implement

competition by normalizing the sum of all weights converging into the same postsynaptic

neuron [25]. This operation can be physiologically motivated by a limitation of common

synaptic resources; however, it apparently conflicts with the previous analysis, because it

violates locality of synaptic plasticity. In fact, normalizing on the connection with neuron

i, we not only consider neuron j, but also neuron k connected with i. Nevertheless, this

discrepancy can be solved realizing competition of synaptic weight changes using purely

local learning rules, see [39], [18], [38], [16].

1.3 The Doeblin’s Theory

In this section we briefly present the version of Doeblin’s theorem that we use in

this thesis, that is the theorem applied to stochastic semi-groups defined in a space of

measures or in a L1 space, i.e. mass- and positivity-preserving semi-groups. We are

concerned to illustrate this theory because it allows us, in the last chapter of this thesis,

to obtain exponential convergence to equilibrium results for booth the linear and the

nonlinear formulation of our model. We will firstly study the linear problem; proving

that for any initial probability distribution the solution has a positive lower bound after a
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fixed time, we will be sure that the associated stochastic semi-group satisfies the Doeblin

condition. This latter result ensures us an exponential convergence for the linear problem.

After studying the linear case, we prove exponential relaxation to steady state for the

nonlinear model by a perturbation argument based on the linear theory, which naturally

takes care of the boundary conditions and mass conservation property of our population

density function.

There are two main reasons which justify the choice of studying solutions to our

problem in the sense of measure. Firstly, the fact that it fits well with the linear theory;

secondly, because in this way it is possible to consider the weakly nonlinear case as

a perturbation of the linear one. Other two important aspects to note while we are

presenting this approach are the fact that, for our problem equation (2.1), the difference

between the weakly nonlinear case and the linear one is in the boundary condition,

and this is handily rendered through a difference in a measure source term. This is an

intuition that we will use to prove the convergence for the nonlinear case in Theorem

4.0.2.. The last aspect is that with measures solutions we can remember that a Delta

function represents an initial population whose age (or structuring variable) is known

precisely, as we have in our problem.

We now proceed by exposing the technical definitions and results of this theory which

we will use in the convergence to equilibrium results, in the last chapter of this thesis.

For doing so we follow [2] and [36].

Definition 1.1 (Linear Semi-group). Let X be a measure space and L(X) the algebra

of the linear and continuous operators in X, meaning P : X → X. We say that a family

of operators in L(X), meaning F = {Pt = P (t) : t ≥ 0} is a semi-group (or a semi-group

of linear and continuous operators) if Pt+s = PtPs , ∀t, s ≥ 0 and P0 = I.

Definition 1.2 (Stochastic Semi-group). Let X be a measure space and Pt : L1(X) →
L1(X) be a linear semi-group. We say that Pt is a stochastic semi-group if Ptf ≥
0 ,∀f ≥ 0 and

∫
X
Ptf =

∫
X
f , ∀f ∈ L1(X). In other words, (Pt) preserves the subset of

probability densities P(X).

Definition 1.3 (Doeblin’s Condition). Let Pt : L1(X) → L1(X) be a stochastic semi-

group. We say that (Pt) satisfies Doeblin’s condition if there exists t0 > 0 , α ∈ (0, 1)
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and ν ∈ P(X) such that

Pt0f ≥ αν , ∀f ∈ P(X) .

Once we have introduced these definitions, we can get into the Doeblin’s theorem result

applied to semi-groups.

Theorem 1.3.1 (Doeblin’s Theorem). Let Pt : L1(X) → L1(X) be a stochastic semi-

group that satisfies Doeblin’s condition. Then the semi-group has a unique equilibrium

n∗ in P(X). Moreover, for all n ∈ P(X) we have

‖Pt(n− n∗)‖L1(X) ≤
1

1− α
e−λt‖n− n∗‖L1(X) ∀t ≥ 0 ,

with λ = − log(1−α)
t0

.

After presenting these results, specifically exposed for our future purpose, we could

may desire to get a greater awareness of what is lying under this theory and its major

result, the Doeblin’s theorem. To gain this understanding, we briefly present the meaning

of semi-groups in Markov processes following [35]. To simplify the comprehension we

assume that the processes that we are dealing with in this analysis take only countably

many values and have a discrete time parameter. The fundamental rule underlying

this processes is that for proceeding, they have a distribution of their increments that

depends on where they are at the time of the increment, but not on where they were

in the past. This loose of memory property is said Markov property, and the process is

called a Markov chain. We denote with S, for state space, the set in which the process

takes its values. For our previous hypothesis, our processes will have state spaces which

are either finite or countably infinite, thus we can suppose, without loss of generality

that S is the set {1, ..., N} if it is finite, or Z+ if it is countably infinite.

Before proceeding, we better introduce these concepts presented about Markov chains

and loose of memory in a mathematically more precise expression.

Definition 1.4 (Markov chain). A Markov chain on a finite or countably infinite state

space S is a family of S-valued random variables {Xn : n ≥ 0} with the property that,

for all n ≥ 0 and (i0, ..., in, j) ∈ Sn+2,

P(Xn+1 = j|X0 = i0, ..., Xn = in) = (P )inj ,
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where P is a matrix called probability transition matrix whose entries are non-negative

and each of whose rows sums to 1. In fact, the (in, j) element of the matrix is the

probability that X passes from the value at state in to that in state j.

We also notice that the use of matrix notation here is clever; in fact, if we call µ the row

vector of the initial distribution, naming the vector with ith entry (µ)i = P(X0 = i),

then we have

(µP n)j = P(Xn = j) , n ≥ 0 , j ∈ S

where we have adopted the convention that P 0 is the identity matrix and P n = PP n−1,

n ≥ 1 .

Usually, speaking about Markov chain we are interested in knowing its distribution

after a long time. What we want to do here is to introduce a simple technique which

allows us to reach this goal; it is due to Doeblin, and is particularly effective with

Markov chains on a finite state space. The emphasis we placed on the finiteness of the

space is due to the fact that, at least when the state space is finite, it is reasonable to

think that the distribution of the chain will stabilize. To justify this assertion we use

a pigeonhole argument: if our chain can go in a single step from a state i to another

state j with positive probability, then, since the number of eligible states is finite, a

pigeonhole argument shows that this state is going to visited again and again and that,

after a while, the chain’s initial distribution is going to get ”forgotten”. To say it in a

mathematical way, we are asserting that for a Markov chain and for sufficiently large

n, µP n will be nearly independent of the initial distribution µ. This reasoning has a

fundamental implication: we have that, when m is large, µP n = (µP n−m)Pm is very

nearly equal to µPm. This allows us to apply Cauchy’s convergence criterion to deduce

that π = limn→∞ µP
n exists. If this were the case, than we would have that π =

limn→∞ µP
n+1 = limn→∞(µP n)P = πP . The probability vector π is called a stationary

distribution for the semi-group P if π = πP .

Although at the beginning of this discussion we have said to think about finite state

spaces, there are situations in which these arguments apply even to those that are infinite.

We can say that, if the chain starts somewhere, no matter what the initial state is; then

it has a positive probability of visiting some fixed state, and we can assert that it will

stabilize. That is the inner meaning of the following
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Theorem 1.3.2 (Doeblin’s Theorem). Let P be a transition probability matrix with the

property that, for some state j0 ∈ S and ε > 0, (P )ij0 ≥ ε for all i ∈ S. Then P has a

unique stationary probability vector π, (π)j0 ≥ ε, and, for all initial distribution µ,

‖µP n − π‖V ≤ 2(1− ε)n , n ≥ 0



Chapter 2

The model

2.1 Neuron Elapsed Time model with spatial dimen-

sion

We consider a population of neurons distributed in packages that are called the

assemblies. For simplicity, we assume that each assembly of neural cells occupies a

position x ∈ Ω, where Ω is a bounded domain of Rd which models the neural cortex.

In this way, we can find an homogeneous network that is considered as a single neuron

in each location of the cortex. We can describe the evolution of the assemblies saying

that the neurons experience some charging process and, in response to certain stimulus,

they undergo a sudden discharge. In response to this happening, other neighboring

neurons have their discharge, and this cause-effect process depends on the strength of

interconnections in the network since, as we said, it is supposed to be non-homogeneous,

so that the interconnections varies along time.

We describe the population of neurons by the probability density n = n(t, s, x) of

finding a neuron that at time t, has a time elapsed since its last discharge s ≥ 0 and

occupies the position x ∈ Ω. Since the network is not considered to be homogeneous,

then not all the neurons in it are governed by the same dynamics, and this implies that,

after introducing the equation describing the behaviour of the assemblies, we have to

include in the system a learning rule that maps and regulates their interactions.

The neural network we consider is modelled through a non-linear renewal system,

18
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where the nonlinearity is given by the rate factor that multiplies the probability density

n(t, s, x), since it depends upon the environmental factor S. The laws governing the be-

haviour of the network are expressed through the following integro-differential equations’

system

∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(t, x))n(t, s, x) = 0 t > 0 , s > 0 , x ∈ Ω

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))n(t, s, x) ds t > 0 , x ∈ Ω

n(t = 0, s, x) = n0(s, x) ≥ 0 s ≥ 0 , x ∈ Ω

S(t, x) =
∫

Ω
w(t, x, y)N(t, y) dy + I(t, x) t > 0 , x ∈ Ω

∂tw(t, x, y) = −w(t, x, y) + γG(N(t, x), N(t, y)) t > 0 , x, y ∈ Ω

w(t = 0, x, y) = w0(x, y) ≥ 0 x, y ∈ Ω

(2.1)

In this system, the first three equations, meaning (2.1)1 that describes the evolution of

n, its initial data (2.1)3 and the integral boundary condition (2.1)2, correspond to the

renewal equation. Here, the function p : [0,∞]×R represents the firing rate of neurons;

it depends on the time elapsed s and the function S(t, x), which is the amplitude of

stimulation received by the network at time t and position x. Because of the role it

covers, we say that the system is inhibitory if p is decreasing with respect to S, otherwise

if it is increasing the system is said to be excitatory. In our analysis we consider two

cases for the firing rate p:

p∗ ≤ p ≤ p∞ , for some constants p∗ , p∞ > 0 (2.2a)

p∗1s>s∗ ≤ p ≤ p∞ , for some constants p∗ , p∞ , s∗ > 0 . (2.2b)

The hypothesis (2.2b) is a more general case with respect to (2.2a), because it allows

p to vanish for values of s within a small interval immediately following a discharge.

Indeed, it means that forthwith after a discharge, the neuron undergoes a certain period

of refractoriness, during which it does not fire; passed this period, that is, when s > s∗,

the neuron regains its susceptibility.

Remark 1. It is important to note that (2.1)2 is not required to hold at t = 0. Indeed,

by (2.1)3 this relation will be satisfied at t = 0 if and only if n0(s, x) satisfies the
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compatibility condition

N(0, x) = n0(0, x) =

∫ ∞
0

p(s, S(0, x))n(0, s, x) ds ,

which is simply the requirement that the initial data be consistent with the birth process.

We do not impose this restriction, because we envisage situations in which the initial

age distribution n0(s, x) is completely arbitrary.

About the function N(t, x), in (2.1)2, it is the activity of a neuron (i.e. assemblage) at

time t and position x. This equation means that this activity corresponds to integrate

with respect to s the term with firing rate in the transport equation (2.1)1, and here we

see the fundamental hypothesis we have made that the neurons fire instantaneously. In

fact, by defining N(t, x) := n(t, s = 0, x) as the integral boundary condition, we imply

that the neuron re-enters the cycle at ’age s = 0’ immediately after firing.

The function w ∈ Cb([0,∞) × Ω × Ω) is the so called connectivity kernel, a function

that accounts how the system is connected related to where the neurons are located. As

we have supposed, the network is not homogeneous, and the equation (2.1)5 for w reflects

exactly this property. Describing the evolution of the kernel, this equation states that w

varies following a learning rule that depends on a smooth function G : R2 → R and on

the activity N at locations x, y. This function is multiplied by a parameter γ > 0, named

connectivity parameter. If γ and ‖ ∂p
∂S
‖∞ are small, we say that the system (2.1) is under

a weak interconnection regime; in fact γ has the above meaning, while the infinity norm

is to say that the probability of discharging varies little by changing the amplitude of the

received stimulus, so the reader can understand the reason why those hypothesis imply a

weak interconnection regime. To get an idea of a learning rule inspired from the Hebbian

learning we can take G(N(t, x), N(t, y)) = N(t, x)N(t, y). This choice means that if two

neurons have simultaneously high activity, their interconnection becomes stronger. The

first term of the equation, i.e. −w, is an inhibitory term. It means that in absence of

the term in G, the kernel can simply decrease to no connectivity. This is the simpler

choice for the inhibitory term and it is also biologically reasonable, because it is logical

to think that a network could lose as many connections as it has, in a linear relation.
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Without loss of generality, we assume for making the further calculation simpler, that

the function G satisfies the following estimate:

‖G‖∞ + ‖∇G‖∞ ≤ 1 . (2.3)

With these premises we are able to explain the meaning of the equation (2.1)4 of the

system, that describe S(t, x). The integral on y establishes that the amplitude of stim-

ulation received by the neuron in position x is the result of connectivity among all the

discharging neurons linked with it. Additionally, the same neuron in x can receive an

external input I ∈ Cb([0,∞)×Ω) that need to be summed to the integral [Figure 2.1].

Figure 2.1: A neuron located at position x, at time t discharges and sends N(t, x) to the rest

of the network. At the same time this neuron in x receives I(t, x) from the external input and

w(t, x, y)N(t, y) dy from a discharging neuron located at y.

To complete the presentation of the system then, we have to say that the couple (n0, w0)

represents the initial configuration of the system, and the assumptions we make on its

components are

n0 ∈ Cb(Ω, L
1
s) , w0 ∈ Cb(Ω× Ω) . (2.4)

With this hypothesis on the initial data n0, we can observe that for each x ∈ Ω the

L1-norm of n(t, ·, x) is formally1 preserved, that is to say that there exists a non-negative

1Here formally means that we can heuristically prove the mass conservation of n as shown in Chapter

1 referring to the conservative renewal equation. The conservation property confirms that the equation

(2.1)1 provides the evolution of a probability measure; indeed, although it is expected from modelling

considerations, it needs to be checked mathematically on the equation for supporting the validity of the

model.
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function g ∈ Cb(Ω) such that

g(x) :=

∫ ∞
0

n0(s, x) ds =

∫ ∞
0

n(t, s, x) ds ≥ 0 , ∀t > 0 , x ∈ Ω∫
Ω

g(x) dx = 1 .

(2.5)

2.2 Well-posedness for the weak interconnection case

Assuming to be under the weak interconnection regime, in this section we prove that

system (2.1) is well-posed. We approach the study starting from an auxiliary linear

problem, where we make the assumption that the amplitude of stimulation is fixed,

and then we proceed to the general non-linear case. In both cases we conduct the

demonstrations based on a contraction argument.

Before to start the analysis we need to set the stage with some mathematical concepts

[2].

Definition 2.1 (Mild measure solution). Assume p ∈ W 1,∞((0,+∞) × Ω
)

and is non-

negative. A function n ∈ C ([0, T ) × Ω, L1
s) defined on an interval [0, T ) for some

T ∈ (0,+∞], is called a mild measure solution to (2.1) with initial data n0 ∈ L1
s if

it satisfies n(0, s, x) = n0(s, x) ≥ 0, and the Duhamel’s variation of constants formula

n(t, s, x) = Ttn0(s, x)−
∫ t

0

Tt−τ
(
p(s, S(τ, x))n(τ, s, x)

)
dτ +

∫ t

0

Tt−τ
(
N(τ, x)δ0(s)

)
dτ

(2.6)

for all t ∈ [0, T ), with

N(t, x) :=

∫ ∞
0

p(s, S(t, x))n(t, s, x) ds , t ∈ [0, T ) , (2.7)

where Ttn(s) := n(s− t) with the understanding that n is zero on (−∞, 0).

Remark 2. We notice that the second term in (2.6) can be rewritten as∫ t

0

Tt−τ
(
N(τ, x)δ0(s)

)
dτ =

∫ t

0

N(τ, x)δt−τ (s) dτ

= N(t− s)1[0,t](s)

= N(t− s)1[0,∞)(t− s) .
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Definition 2.2 (Weak measure solution). Assume p ∈ W 1,∞([0,+∞) × Ω
)

and is

nonnegative. A function n ∈ C ([0, T ) × Ω, L1
s) defined on an interval [0, T ) for some

T ∈ (0,+∞], is called a weak measure solution to (2.1) with initial data n0 ∈ L1
s if it sat-

isfies n(0, s, x) = n0(s, x) ≥ 0, and for each ϕ ∈ C∞0 the function t 7→
∫∞

0
ϕ(s)n(t, s, x) ds

is absolutely continuous and

d

dt

∫ ∞
0

ϕ(s)n(t, s, x) ds

=

∫ ∞
0

∂sϕ(s)n(t, s, x) ds−
∫ ∞

0

p(s, S(t, x))n(t, s, x)ϕ(s) ds+

∫ ∞
0

N(t, x)δ0(s)ϕ(s) ds

(2.8)

for almost all t ∈ [0, T ), and

N(t, x) =

∫ ∞
0

p(s, S(t, x))n(t, s, x) ds , ∀t ∈ [0, T ) . (2.9)

These two definitions are based upon two different mathematical principles, the first

is motivated by the Duhamel formula, the latter relies on integration against a test

function. Equivalence results between these two definitions are fairly common, but we

cite a theorem of Ball (1977) which implies that mild solutions of our equation are

equivalent to weak solutions.

Theorem 2.2.1 (Ball). Assume p ∈ W 1,∞([0,+∞) × Ω
)

and is nonnegative. Take

T ∈ (0,+∞]; a function n ∈ ([0, T ] × Ω, L1
s) is a weak measure solution (cf. Definition

2.1) to (2.1) if and only if it is a mild measure solution (cf. Definition 2.2).

2.2.1 Well-posedness of the linear problem

Set S ∈ Cb([0,∞)× Ω) be a given function; we proceed in our analysis considering the

following linear problem
∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(t, x))n(t, s, x) = 0 t > 0 , s > 0 , x ∈ Ω

N(t, x) := n(t, s = 0, x) =
∫∞
o
p(s, S(t, x))n(t, s, x) ds t > 0 , x ∈ Ω

n(t = 0, s, x) = n0(s, x) ≥ 0 s ≥ 0 , x ∈ Ω

(2.10)
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Our problem is to find a solution that is a weak solution and that satisfies n ∈ Cb([0,∞)×
Ω, L1

s). In doing so, from this request and from the definition, it readily follows that

N ∈ Cb([0,∞)×Ω). Furthermore we notice that, since there is no derivative or integral

term involving the position, here the variable x is just a parameter.

Definition 2.3 (weak measure solution). Assume p : [0,∞) → [0,∞) is a bounded

measurable function. A function n ∈ C ([0, T ) × Ω, L1
s) defined on an interval [0, T ) for

some T ∈ (0,+∞], is called a weak measure solution to (2.10) with initial data n0 ∈ L1
s

if it satisfies n(0, s, x) = n0(s, x) ≥ 0, and

n(t, s, x) = Ttn0(s, x)−
∫ t

0

Tt−τ
(
p(s, S(τ, x))n(τ, s, x)

)
dτ +

∫ t

0

Tt−τ
(
N(τ, x)δ0(s)

)
dτ

(2.11)

for all t ∈ [0, T ), with

N(t, x) :=

∫ ∞
0

p(s, S(t, x))n(t, s, x) ds , t ∈ [0, T ) , (2.12)

Now, before proceeding to state and prove the Lemma for the well posedness of the

model (2.10), we present the procedure to find the explicit solution of this population

model up to time T > 0. In order to do that, we use the Method of characteristics. We

consider the initial data (t0, s0) ∈ [0, T ]×R+ and we associate to the partial differential

equation of our problem the following system of ordinary differential equationṫ(h) = 1

ṡ(h) = 1

The curves who solves this system are the so called characteristics, and they are described

by t(h) = h+ t0

s(h) = h+ s0

Now, consider the differential operator working on n, it is such that Dn = ∂tn+ ∂sn, so

Dn(t, s, x) = limh→0
n(t+h,s+h,x)−n(t,s,x)

h
. In this way our problem turns into

Dn(t, s, x) + p(s, S(t, x))n(t, s, x) = 0 .
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Transposing now our problem on the characteristic, so considering

n̄(h) = n(t0 + h, s0 + h)

p̄(h) = p(s0 + h, S(t0 + h, x) ,

it becomes
dn̄

dh
+ p̄(h)n̄ = 0 ,

which is solved by

dn̄
n̄

+ p̄(h) dh = 0

log(n̄)
∣∣h
0

= −
∫ h

0
p̄(z) dz

n̄(h) = n̄(0)e−
∫ h
0 p̄(z) dz

n(t0 + h, s0 + h, x) = n(t0, s0, x)e−
∫ h
0 p̄(z) dz

Now, found this solution giving the values of n at all the points on the characteristic

through (t0, s0), we made explicit the parameter.

If h = t, then substituting in the characteristic equation we find (t0, s0) = (0, s − t) so,

remembering that the age has to be positive, i.e. it has to be s > t, the solution becomes

n(t, s, x) = n(0, s− t, x)e−
∫ t
0 p(s−t+τ,S(τ,x)) dτ1{s>t}

= n0(s− t) exp
(
−
∫ t

0
p(s− t+ τ, S(τ, x)) dτ

)
1{s>t}

If h = s, then substituting in the characteristic equation we find (t0, s0) = (t − s, 0) so,

remembering that the time has to be positive, i.e. it has to be 0 < s < t, the solution

becomes

n(t, s, x) = n(t− s, 0, x)e−
∫ s
0 p(τ,S(t−s+τ,x)) dτ1{0<s<t}

= N(t, x) exp
(
−
∫ s

0
p(τ, S(t− s+ τ, x)) dτ1{0<s<t} .

To conclude, the solution of system (2.10) is given by

n(t, s, x) = n0(s− t) exp

(
−
∫ t

0

p(s− t+ τ, S(τ, x)) dτ

)
1{s>t}+

N(t, x) exp

(
−
∫ s

0

p(τ, S(t− s+ τ, x)) dτ

)
1{0<s<t} .

We are now ready to enunciate and prove the following Lemma for the well posedness

of the linear model.
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Lemma 2.2.2. Assume that n0 ∈ Cb(Ω, L
1
s) and that p ∈ W 1,∞((0,∞) × R) satisfies

(2.2b). Then, for a given S ∈ Cb([0,∞) × Ω), the equation (2.10) has an unique weak

solution n ∈ Cb([0,∞) × Ω, L1
s) with N ∈ Cb([0,∞) × Ω). Moreover n is non-negative

and mass conservative, i.e.∫ ∞
0

n0(s, x) ds =

∫ ∞
0

n(t, s, x) ds ∀t > 0, x ∈ Ω .

Proof. We start by noticing that a solution of the linear system (2.10) satisfies the

following fixed point equation

n(t, s, x) = Ψ[n](t, s, x) := n0(s− t, x) exp
(
−
∫ t

0
p(τ + s− t, S(τ, x)) dτ

)
1{s>t}

+N(t− s, x) exp
(
−
∫ s

0
p(τ, S(t− s+ τ, x)) dτ

)
1{0<s<t} ,

(2.13)

with N(t, x) =
∫∞

0
p(u, S(t, x))n(t, u, x) du, which depends on n.

Now, let T > 0 and XT := {n ∈ Cb([0, T ] × Ω, L1
s) : n(0) = n0}; it readily follows that

Ψ maps XT → XT , and since L1 endowed with its norm is a complete space, then also

Cb([0, T ] × Ω, L1
s) is, and this implies that we can apply the Banach-Cacioppoli fixed

point theorem on Ψ defined on XT .

Step 1. We start by proving that, for T > 0 small enough, Ψ has a unique fixed point in

XT , i.e. there exists an unique weak solution of (2.10) defined on [0,T]. In order to do

so, we use the contraction principle, so consider n1, n2 ∈ XT ; we have

∫∞
0
|Ψ[n1]−Ψ[n2]| (t, s, x) ds =

=
∫∞

0
|n0(s− t, x)e−

∫ t
0 p(τ+s−t,S(τ,x)) dτ1{s>t} +N1(t− s, x)e−

∫ s
0 p(τ,S(t−s+τ,x)) dτ1{0<s<t}−

−n0(s− t, x)e−
∫ t
0 p(τ+s−t,S(τ,x)) dτ1{s>t} −N2(t− s, x)e−

∫ s
0 p(τ,S(t−s+τ,x)) dτ1{0<s<t}| ds

=
∫ t

0
|N1(t− s, x)−N2(t− s, x)|

∣∣∣∣ exp

(
−
∫ s

0

p(τ, S(t− s+ τ, x)) dτ

) ∣∣∣∣︸ ︷︷ ︸
<1

ds

≤
∫ t

0
|N1(t− s, x)−N2(t− s, x)|ds

substitute t − s = k

=
∫ 0

t
|N1(k, x)−N2(k, x)|(−1) dk

=
∫ t

0
|N1(k, x)−N2(k, x)| dk

≤ T sup(t,x)∈[0,T ]×Ω |N1 −N2|(t, x) .

(2.14)
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Estimating the argument of the sup in the former expression and remembering that

S(t, x) is fixed, we get

|N1 −N2|(t, x) =
∣∣∫∞

0
[p(u, S)n1(t, u, x)− p(u, S)n2(t, u, x)] du

∣∣
=
∣∣∫∞

0
p(u, S)[n1(t, u, x)− n2(t, u, x)] du

∣∣
≤ p∞

∫∞
0
|n1(t, u, x)− n2(t, u, x)| du

≤ p∞‖n1(t, x)− n2(t, x)‖L1
S
,

(2.15)

so we can substitute (2.15) in (2.14) obtaining∫ ∞
0

|Ψ[n1]−Ψ[n2]| (t, s, x) ds ≤ Tp∞ sup
(t,x)∈[0,T ]×Ω

‖n1(t, x)− n2(t, x)‖L1
S
, (2.16)

thus for T < 1
p∞

, we have proved that Ψ is a contraction and therefore there is a unique

n ∈ XT such that Ψ[n] = n. Since the choice of T is independent on n0, we can reiterate

this argument to get a unique solution of the linear problem (2.10), which is defined for

all t ≥ 0.

Step 2. We now prove the mass conservation property. Since n satisfies the fixed point

equation (2.13) and it is a weak solution, it also verifies the following equality

n(t, s, x) = n0(s− t, x)1{s>t} −
∫ t

0

p(s− t+ τ, S(τ, x))n(τ, s− t+ τ, x)

1{s>t−τ} dτ +N(t− s, x)1{0<s<t} ,

(2.17)

hence we get the property of mass conservation by integrating with respect to s on (0,∞)

as follows∫∞
0
n(t, s, x) ds =

∫∞
0
n0(s− t, x)1{s>t} ds−
−
∫∞

0

∫ t
0
p(s− t+ τ, S(τ, x))n(τ, s− t+ τ, x)1{s>t−τ} dτ ds+

+
∫∞

0
N(t− s, x)1{0<s<t} ds

substitute s − t = y in the first term and rewrite the second one

=
∫∞

0
n0(y, x) dy −

∫∞
0
N(t− s, x)10<s<t ds+

∫∞
0
N(t− s, x)1{0<s<t} ds

replace y with s and simplify

=
∫∞

0
n0(s, x) ds

(2.18)

Step 3. We now conclude the proof showing that the solution is non-negative. Since n0

is non-negative, then Ψ preserves positivity, because it sends n0 to n0. By uniqueness of
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fixed point then, since n(t, s, x) associated to n0 = 0 in the starting space is a population

density and therefore it is non-negative, then also the corresponding solution n(t, s, x)

in the arrival space must be non-negative.

2.2.2 Well-posedness of the non-linear problem

After presenting the linear problem, we are ready to prove that also the nonlinear system

(2.1) is well-posed in the case of weak interconnections2.

Theorem 2.2.3 (Well-posedness for weak interconnections). Assume (2.4)-(2.5) and

that p ∈ W 1,∞((0,∞)× Ω) satisfies (2.2b). Then for

‖g‖∞ |Ω| ‖
∂p

∂S
‖∞max

{
‖w0‖∞, γ‖G|[0,p∞‖g‖∞]2‖∞

}
< 1 ,

the system (2.1) has a unique weak solution with n ∈ Cb([0,∞)×Ω, L1
s), N ∈ Cb([0,∞)×

Ω), S ∈ Cb([0,∞) × Ω) and w ∈ Cb([0,∞) × Ω × Ω). Moreover, the system (2.1) is

mass-conservative and n is non-negative for all t > 0.

Proof. Consider T > 0 and a function S ∈ Cb([0,∞)× Ω) fixed. Based on the previous

Lemma 2.2.2 , we can define the functions n ∈ Cb([0,∞)×Ω, L1
s) and N ∈ Cb([0,∞)×Ω)

to get the solution of (2.10). Moreover, we have already proved that the solution of this

linear system is mass-conservative and preserves positivity. In order to complete the

solution for (2.1), we have then to find a form for w and, hence, for S. The most relevant

part of the proof consists in dealing with some estimates to prove a fixed point condition

on S, aimed by the same intentions as in Lemma 2.2.2..

2Here, as in all the rest of the thesis, we use the notation ‖g‖1 although it is supposed to be 1, in

order to outline the dependence of g on x. A posteriori the author of the article [36] has noted that this

is not relevant for the analysis, and in a subsequent review has abandoned this notation, which we still

retain for a greater clarity [T].

Moreover, we keep the notation ‖G‖∞ and ‖∇G‖∞, but we observe from estimate (2.21) that we

only need the function G to be bounded on the set [0, p∞‖g‖∞]2. That justifies the choice of normalizing

G according to (2.3) and thus to assume those infinity norms less-equal than 1, as the author has done

in the last version of his article. Again here and in the rest of the thesis we leave these notations for a

greater clarity [T].
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Step 1. We complete the solution. We find the solution w ∈ Cb([0,∞) × Ω × Ω) by

solving the Cauchy problem formed by the last two equations in system (2.1).

∂tw(t, x, y) + w(t, x, y) = γG (N(t, x), N(t, y))

et[∂tw + w] = et [γG (N(t, x), N(t, y))]∫ t
0

(eτ∂τw + eτw) dτ =
∫ t

0
eτγG (N(τ, x), N(τ, y)) dτ

etw(t, x, y)− w0(x, y) =
∫ t

0
eτγG (N(τ, x), N(τ, y)) dτ

w(t, x, y) = e−t
[
w0(x, y) +

∫ t
0
eτγG (N(τ, x), N(τ, y)) dτ

]
w(t, x, y) = e−tw0(x, y) + γ

∫ t
0
e−(t−τ)G (N(τ, x), N(τ, y)) dτ

(2.19)

It follows that we have a solution of system (2.1) defined on [0, T ] if S satisfies the

following fixed point condition for all 0 ≤ t ≤ T and x ∈ Ω

S(t, x) = T[S](t, x) :=

∫
Ω

w(t, x, y)

(∫ ∞
0

p(s, S(t, y))n(t, s, y) ds

)
dy + I(t, x) , (2.20)

obtained by substituting the equation for n(t, x) in that for S(t, x).

Step 2. Now we want to prove that, for all T > 0, T defines an operator mapping

XT → XT with XT := Cb([0, T ]×Ω). In order to do so, we need to prove some estimates

that then will occur to achieve this result.

First, we observe the following estimate for the activity N(t, x):

|N(t, x)| ≤
∣∣∫∞

0
p∞n(t, s, x) ds

∣∣
= p∞

∣∣∫∞
0
n(t, s, x) ds

∣∣
= p∞|g(y)|
≤ p∞‖g‖∞ ∀(t, x) ∈ [0, T ]× Ω

(2.21)

and this allows us to restrict the domain of G and its derivatives to the set [0, p∞‖g‖∞]2.

Next, we can get the following estimates for w from equation (2.19)

|w(t, x, y)| =
∣∣∣e−tw0(x, y) + γ

∫ t
0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ

∣∣∣
≤ |e−tw0(x, y)|+ γ

∣∣∣∫ t0 e−(t−τ)G(N(τ, x), N(τ, y)) dτ
∣∣∣

≤ e−t|w0(x, y)|+ γ
∫ t

0

∣∣e−(t−τ)G(N(τ, x), N(τ, y))
∣∣ dτ

≤ e−t‖w0‖∞ + γ
∫∞

0
e−(t−τ)‖G‖∞

= e−t‖w0‖∞ + γ(1− e−t)‖G‖∞
≤ max {‖w0‖∞, γ‖G‖∞} ∀(t, x, y) ∈ [0, T ]× Ω× Ω

(2.22)
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With this result it readily follows that for any S ∈ XT we have:

‖T[S]‖∞ = sup |T[S]| = sup
∣∣∫

Ω
w(t, x, y)

(∫∞
0
p(s, S(t, y))n(t, s, y) ds

)
dy + I(t, x)

∣∣
≤ sup

∣∣∫
Ω
w(t, x, y)

(∫∞
0
p(s, S(t, y))n(t, s, y) ds

)
dy
∣∣+ sup |I(t, x)|

≤ sup
∫

Ω

∣∣w(t, x, y)
∫∞

0
p(s, S(t, y))n(t, s, y) ds

∣∣ dy + sup |I(t, x)|
≤ max {‖w0‖∞, γ‖G‖∞} p∞ sup

∫
Ω

∣∣∫∞
0
n(t, s, y) ds

∣∣ dy + ‖I(t, x)‖∞
≤ max {‖w0‖∞, γ‖G‖∞} p∞‖g‖1 + ‖I(t, x)‖∞

(2.23)

from which we deduce that T[S] is a continuous and bounded function, which means

T[S] ∈ XT .

Step 3. Our further goal is proving that, for T small enough, T is a contraction. Consider

S1, S2 ∈ XT ; we start by observing that, using (2.19), the difference between w1 and w2

fulfils the following inequality:

|w1 − w2| =
∣∣∣e−tw0(x, y) + γ

∫ t
0
e−(t−τ)G(N1(τ, x), N1(τ, y)) dτ−

−e−tw0(x, y)− γ
∫ t

0
e−(t−τG(N2(τ, x), N2(τ, y)) dτ

∣∣∣
=
∣∣∣γ ∫ t0 e−(t−τ) [G(N1(τ, x), N1(τ, y))−G(N2(τ, x), N2(τ, y))] dτ

∣∣∣
= γ

∣∣∣∫ t0 e−(t−τ) < ∇G , (N1 −N2) > dτ
∣∣∣

≤ 2 γ‖∇G‖∞‖N1 −N2‖∞
∣∣∣∫ t0 e−(t−τ) dτ

∣∣∣
≤ 2 γ‖∇G‖∞‖N1 −N2‖∞|1− e−t|
≤ 2 γ‖∇G‖∞‖N1 −N2‖∞|1− 1 + t+ o(t2)|
≤ 2 γT‖∇G‖∞‖N1 −N2‖∞ ,

(2.24)

and then that the difference between N1 and N2 can be estimated by

|N1 −N2|(t, x) ≤
∫∞

0
|p(s, S1(t, x))n1(t, s, x)− p(s, S2(t, x)n2(t, s, x)| ds

adding and subtracting p(s, S2(t, x))n1(t, s, x)

≤
∫∞

0
|p(s, S1(t, x))− p(s, S2(t, x)|n1(t, s, x) ds+

∫∞
0
p(s, S2(t, x))|n1 − n2|(t, s, x) ds

applying the mean value inequality

≤
∫∞

0

∣∣ ∂p
∂S

(S1 − S2)
∣∣n1(t, s, x) ds+

∫∞
0
p(s, S2(t, x))|n1 − n2|(t, s, x) ds

≤ ‖g‖∞‖
∂p
∂S
‖∞‖S1 − S2‖∞ + p∞‖n1 − n2‖L∞t,xL1

s
.

(2.25)

Now, using (2.17) and (2.25) we get the following estimate for the difference between n1

and n2
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‖n1 − n2‖L∞t,xL1
s

=

= supt,x
∣∣ ∫∞

0
n0(s− t, x)1{s>t} ds−

∫ t
0

∫∞
0
p(s− t+ τ, S1)n1(τ, s− t+ τ, x)·

·1{s>t−τ} ds dτ +
∫∞

0
N1(t− s, x) · 1{0<s<t} ds−

∫∞
0
n0(s− t, x)1{s>t} ds+

+
∫ t

0

∫∞
0
p(s− t+ τ, S2)n2(τ, s− t+ τ, x)1{s>t−τ} ds dτ+

+
∫∞

0
N2(t− s, x)1{0<s<t} ds

∣∣
≤ supt,x

∣∣ ∫ t
0

∫∞
t−τ

[
− p(s− t+ τ, S1)n1(τ, s− t+ τ, x) + p(s− t+ τ, S2)·

·n1(τ, s− t+ τ, x)
]

ds dτ +
∫ t

0

∫∞
t−τ

[
p(s− t+ τ, S2)n2(τ, s− t+ τ, x)−

−p(s− t+ τ, S2)n1(τ, s− t+ τ, x)
]

ds dτ +
∫ t

0
(N2 −N1) (t− s, x) ds

∣∣
≤ supt,x

∣∣ ∫ t
0

∫∞
t−τ

[
∂p
∂S

(S2 − S1)n1(τ, s− t+ τ, x)
]

ds dτ+

+
∫ t

0

∫∞
t−τ

[
p(s− t+ τ, S2)(n2 − n1)(τ, s− t+ τ, x)

]
ds dτ+

+
∫ t

0
(N2 −N1) (t− s, x) ds

∣∣
≤ ‖ ∂p

∂S
‖∞‖S2 − S1‖∞ supt,x

∣∣ ∫ t
0

∫∞
t−τ n1(τ, s− t+ τ, x) ds dτ

∣∣+
+p∞‖n2 − n1‖L∞t,xL1

s
supt,x

∣∣ ∫ t
0

dτ
∣∣+ supt,x

∣∣ ∫ t
0

(N2 −N1) (t− s, x) ds
∣∣

≤ ‖ ∂p
∂S
‖∞‖S2 − S1‖∞‖g‖∞ supt,x

∣∣ ∫ t
0

dτ
∣∣+ p∞‖n2 − n1‖L∞t,xL1

s
supt,x

∣∣ ∫ t
0

dτ
∣∣+

+
[
‖g‖∞‖

∂p
∂S
‖∞‖S2 − S1‖∞ + p∞‖n2 − n1‖L∞t,xL1

s

](
supt,x

∣∣ ∫ t
0

ds
∣∣)

≤ T‖ ∂p
∂S
‖∞‖S2 − S1‖∞‖g‖∞ + Tp∞‖n2 − n1‖L∞t,xL1

s
+

+T‖g‖∞‖
∂p
∂S
‖∞‖S2 − S1‖∞ + Tp∞‖n2 − n1‖L∞t,xL1

s

≤ 2T‖ ∂p
∂S
‖∞‖S2 − S1‖∞‖g‖∞ + 2Tp∞‖n2 − n1‖L∞t,xL1

s

from which, assuming T < 1
2p∞

, it follows that

‖n2 − n1‖L∞t,∞L1
s
≤

2T‖ ∂p
∂S
‖∞‖g‖∞

1− 2Tp∞
‖S1 − S2‖∞ (2.26)
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Finally, considering all the estimates (2.21)-(2.24), we find that the operator T fulfils

|T[S1]− T[S2]|(t, x) =
∣∣∫

Ω
w1

(∫∞
0
p1n1 ds

)
dy + I −

∫
Ω
w2

(∫∞
0
p2n2 ds

)
dy − I

∣∣
=
∣∣∫

Ω
w1N1 dy −

∫
Ω
w2N1 dy +

∫
Ω
w2N1 dy −

∫
Ω
w2N2 dy

∣∣
=
∣∣∫

Ω
N1(w1 − w2) dy +

∫
Ω
w2(N1 −N2) dy

∣∣
≤
∫

Ω
|N1(w1 − w2)| dy +

∫
Ω
|w2(N1 −N2)| dy

≤
∫

Ω
|N1||w1 − w2| dy +

∫
Ω
|w2||N1 −N2| dy

≤
∫

Ω
|N1| dy 2γT‖∇G‖∞‖N1 −N2‖∞+

+ max {‖w0‖∞, γ‖G‖∞} ‖N1 −N2‖∞
∫

Ω
dy

≤ p∞
∫

Ω
|g(y)| dy 2γT‖∇G‖∞‖N1 −N2‖∞+

+ max {‖w0‖∞, γ‖G‖∞} ‖N1 −N2‖∞
∫

Ω
dy

≤ p∞‖g‖1 2γT‖∇G‖∞‖N1 −N2‖∞+

+ max {‖w0‖∞, γ‖G‖∞} ‖N1 −N2‖∞|Ω|
≤ C‖S1 − S2‖∞ ,

(2.27)

where C is a positive constant given by

C := ‖g‖∞‖
∂p

∂S
‖∞
(
2γTp∞‖g‖1‖∇G‖∞+ |Ω| max {‖w0‖∞, γ‖G‖∞}

)(
1 +

2Tp∞
1− 2Tp∞

)
.

Under the conditions ‖g‖∞ |Ω| ‖
dp
dS
‖∞max {‖w0‖∞, γ‖G‖∞} < 1 and T small enough, we

get C < 1, and this proves that T is a contraction.

Step 4. Now we can prove the uniqueness of the solution. Having proved that T maps

XT → XT and since XT is a complete space, from Picard’s fixed point argument we get

a unique S ∈ XT such that T[S] = S. It follows from this argument that there exists a

unique solution of (2.1) defined on [0,T]. Furthermore, we can iterate this argument to

get an unique solution of (2.1) defined for all t > 0, because the estimates (2.21) and

(2.22) are uniform in T .

Step 5. To conclude, we can assert that the nonlinear system (2.1) is mass-conservative

and preserves positivity as the linear one (2.10), because of the construction we have

done.



Chapter 3

Asymptotic behaviour

In this chapter we are interested in investigating the behaviour of our model in the

limit t → ∞. To this end, we firstly study the stationary states of the model, proving

the existence of a steady state and its uniqueness. Subsequently, we concentrate in

exposing a result of convergence to equilibrium about system (2.1) after a long time. As

we claimed at the beginning of our analysis, we set in the weak interconnection case, i.e.

with γ and ‖ ∂p
∂S
‖∞ small enough, and we suppose p satisfying (2.2b).

3.1 Stationary states

For proceeding in looking for the stationary states, we assume that the external input

function I depends only on position; otherwise, it wouldn’t allow for stationary states.

We say that (n,N, S, w) is a stationary solution to (2.1) if it satisfies

∂sn(s, x) + p(s, S(x))n(s, x) = 0 s > 0 , x ∈ Ω

N(x) := n(s = 0, x) =
∫∞

0
p(s, S(x))n(s, x) ds x ∈ Ω

S(x) =
∫

Ω
w(x, y)N(y) dy + I(x) x ∈ Ω

w(x, y) = γG(N(x), N(y)) x, y ∈ Ω

(3.1)

where n ∈ L1
s,x, N,S ∈ Cb(Ω) and w ∈ Cb(Ω× Ω).

If the amplitude S is given, it is possible to calculate n , N and w as follows.

33
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We find the function n by solving the Cauchy problem formed by the first two equations

in system (3.1),

∂sn(s, x) + p(s, S(x))n(s, x) = 0
∂n(s,x)
∂s

+ p(s, S(x))n(s, x) = 0
∂n(s,x)
∂n(s,x)

= −p(s, S(x))

log(n(s, x))− log(n(0, x)) = −
∫ s

0
p(σ, S(x)) dσ

n(s, x) = n(0, x) e−
∫ s
0 p(σ,S(x)) dσ

n(s, x) = N(x) e−
∫ s
0 p(σ,S(x)) dσ .

(3.2)

Furthermore, as condition (2.5) needs to be satisfied, we impose for normalization

N(x) = g(x)

(∫ ∞
0

e−
∫ s
0 p(σ,S(x)) dσ ds

)−1

, (3.3)

in fact, substituting (3.3) in (3.2) results

n(s, x) =
g(x)∫∞

0
e−

∫ s
0 p(σ,S(x)) dσ ds

e−
∫ s
0 p(σ,S(x)) dσ

and it means ∫
Ω

∫∞
0
n(s, x) ds dx =

∫
Ω

∫∞
0

g(x)∫∞
0 e−

∫ s
0 p(σ,S(x)) dσ ds

e−
∫ s
0 p(σ,S(x)) dσ∫

Ω

∫∞
0
n(s, x) ds dx =

∫
Ω

g(x)∫∞
0 e−

∫ s
0 p(σ,S(x)) dσ ds

∫∞
0

e−
∫ s
0 p(σ,S(x)) dσ∫

Ω

∫∞
0
n(s, x) ds dx =

∫
Ω
g(x) = 1 .

Finally, by defining a function F : R→ R+ such that F (S) :=
(∫∞

0
e−

∫ s
0 p(τ,S) dτ ds

)−1
,

we get

w(x, y) = γG(N(x), N(y))

= γG (g(x)F (S(x)), g(y)F (S(y))) .
(3.4)

So (3.2), (3.3) and (3.4) form the stationary solution (n,N, S, w) to (3.1) if S satisfies

the following fixed point condition

S(x) = T[S](x) := γ

∫
Ω

G(g(x)F (S(x)), g(y)F (S(y))) dy + I(x) , (3.5)

obtained by substituting (3.3) and (3.4) in the equation for S.

We will proceed now by presenting a result about the function F that is necessary

for proving the main result about the stationary states.
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Lemma 3.1.1. Assume that p ∈ W 1,∞((0,∞)×Ω) satisfies (2.2b). Under these hypoth-

esis, the function F : R→ R+ defined above is bounded and Lipschitz continuous.

Proof. It is immediate to demonstrate that F is bounded, in fact the following estimate

holds:

0 < F (S) ≤
(∫ ∞

0

e−p∞s ds
)−1

= p∞ ,

where the last equality is obtained by solving the integral.

Next, we see that F ′ is given by the expression

F ′(S) = −
( ∫∞

0
e−

∫ s
0 p(τ,S(x)) dτ

)−2[ ∫∞
0
e−

∫ s
0 p(τ,S(x)) dτ

(
−
∫ s

0
∂p
∂S

(τ, S) dτ
)

ds
]

= F (S)2
[ ∫∞

0
e−

∫ s
0 p(τ,S(x)) dτ

(
−
∫ s

0
∂p
∂S

(τ, S) dτ
)

ds
]
,

So, remembering that p satisfies (2.2b), we have the following estimate:

|F ′(S)| ≤ p2
∞‖

∂p
∂S
‖∞
[ ∫∞

0
e−

∫ s
0 p(τ,S(x)) dτs ds

]
≤ p2

∞‖
∂p
∂S
‖∞
[ ∫∞

0
e−p∗(s−s∗)+s ds

]
= p2

∞‖
∂p
∂S
‖∞
[
s e
−p∗(s−s∗)+

−p∗ −
∫∞

0
e−p∗(s−s∗)+

−p∗ ds
]∞

0

= p2
∞‖

∂p
∂S
‖∞

e−p∗(s−s∗)+

−p2∗

∣∣∞
0

= p2
∞‖

∂p
∂S
‖∞

ep∗s∗

p2∗

calculate the exponential with Tayolor series expansion

= p2
∞‖

∂p
∂S
‖∞

1
p2∗

[
1 + p∗s∗ + p2∗s

2
∗

2
+ o(p2

∗s
2
∗)
]

≤ p2
∞‖

∂p
∂S
‖∞
[

1
p2∗

+ s∗
p∗

+ s2∗
2

]
.

Hence the function F is Lipschitz.

Now we are ready to state and prove the theorem that assures us that, in the weak

interconnection regime, given g ∈ Cb(Ω), there exists a unique steady state for our

system (2.1).

Theorem 3.1.2. Assume that the function p ∈ W 1,∞((0,∞) × Ω) and satisfies (2.2b),

that g ∈ Cb(Ω) and I ∈ Cb(Ω). For γ small enough, the system (2.1) has a unique sta-

tionary state (n∗, N∗, S∗, w∗), with n∗ ∈ Cb(Ω, L
1
s) satisfying

∫∞
0
n∗(s, x) ds = g(x) and

N∗ ∈ Cb(Ω), w∗Cb(Ω × Ω), which are determined by a unique amplitude of stimulation

S∗ ∈ Cb(Ω) satisfying T[S∗] = S∗.
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Proof. First we notice that the operator T[S](x) defined in (3.5) maps Cb(Ω)→ Cb(Ω).

In fact, T[S](x) is continuous and bounded because g ∈ Cb by hypothesis, F is Lipschitz

continuous, thus continuous, as proved in Lemma 3.0.1. and is bounded as proved at

the beginning of the proof of the same Lemma; G is a smooth function, composed by

continuous and bounded functions, so G ∈ Cb itself; then I ∈ Cb for hypothesis, and

from this follows our initial assertion. Furthermore, (Cb(Ω), ‖·‖∞) is a complete metric

space, so we can apply the contraction theorem on it.

Our goal now is proving that T is a contraction. Consider S1, S2 ∈ Cb(Ω); since F is

bounded and Lipschitz, it follows that

|T[S1]− T[S2]|(x) =

=
∣∣γ ∫

Ω
G
(
g(x)F (S1(x)), g(y)F (S1(y))

)
g(y)F (S1(y)) dy + I(x)−

−γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S2(y)) dy − I(x)

∣∣
≤
∣∣γ ∫

Ω
G
(
g(x)F (S1(x)), g(y)F (S1(y))

)
g(y)F (S1(y)) dy−

−γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S1(y)) dy+

+γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S1(y)) dy−

−γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S2(y)) dy

∣∣
≤
∣∣γ ∫

Ω
G
(
g(x)F (S1(x)), g(y)F (S1(y))

)
g(y)F (S1(y)) dy−

−γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S1(y)) dy

∣∣+
+
∣∣γ ∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S1(y)) dy−

−γ
∫

Ω
G
(
g(x)F (S2(x)), g(y)F (S2(y))

)
g(y)F (S2(y)) dy

∣∣
≤ γ

∫
Ω

∣∣[G(g(x)F (S1(x)), g(y)F (S1(y))
)
−G

(
g(x)F (S2(x)), g(y)F (S2(y))

)]
g(y)

F (S1(y))
∣∣ dy + γ

∫
Ω

∣∣G(g(x)F (S2(x)), g(y)F (S2(y))
)
g(y)[F (S1(y))− F (S2(y))]

∣∣ dy
≤ γ

∫
Ω

∣∣ < ∇G, (g(x)(F (S1(x))− F (S2(x)), g(y)F (S1(y))− F (S2(y))
)
> g(y)

F (S1(y))
∣∣ dy + γ

∫
Ω
|G(g(x)F (S2(x)), g(y)F (S2(y)))||g(y)||F (S1(y))− F (S2(y))| dy

F is bounded and Lipschitz

≤ γ
∫

Ω

∣∣ < ∇G, (g(x)F ′(S)(S1(x)− S2(x)), g(y)F ′(S)(S1(y)− S2(y))
)
>
∣∣|g(y)|

|F (S1(y))| dy + γ
∫

Ω
|G(g(x)F (S2(x)), g(y)F (S2(y)))||g(y)||F ′(S)||S1(y)− S2(y)| dy

use Cauchy-Schwarz inequality

≤ 2γ‖∇G‖∞‖g‖∞‖F ′‖∞‖S2 − S1‖∞
∫

Ω
|g(y)| dy ‖F‖∞+

+γ‖G‖∞
∫

Ω
g(y) dy ‖F ′‖∞‖S2 − S1‖∞

≤ 2γ‖∇G‖∞‖g‖∞‖F ′‖∞‖S2 − S1‖∞‖g‖1‖F‖∞ + γ‖G‖∞‖g‖1‖F ′‖∞‖S2 − S1‖∞ ,
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where ‖G‖∞, ‖∇G‖∞ are considered on the set [0, p∞‖g‖∞]2.

We have proved that, for γ satisfying γ‖g‖1‖F ′‖∞(2‖g‖∞‖F‖∞‖∇G‖∞ + ‖G‖∞) < 1 ,

the operator T is a contraction on Cb(Ω) and so there exists a unique S∗ ∈ Cb(Ω) such

that T[S∗] = S∗.

To conclude, it follows from this result that, using this S∗ in the formulas (3.2), (3.3)

and (3.4), we get a unique stationary state for system (2.1).

3.2 Model convergence in the weak interconnection

case

In order to prove model convergence to the stationary state in the weak intercon-

nection case, we make use of the theory of Doeblin applied to stochastic semi-groups.

We rely on the concepts we briefly presented in the third section of Chapter 1 and we

proceed by steps as we have already done, analysing the linear case first, and then by

extending the analysis to the nonlinear one.

3.2.1 Model convergence in the linear case

Given a function S ∈ Cb(Ω) we consider the linear problem given by
∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(x))n(t, s, x) = 0 t > 0 , s > 0 , x ∈ Ω

N(t, x) := n(t, s = 0, x) =
∫∞
o
p(s, S(x))n(t, s, x) ds t > 0 , x ∈ Ω

n(t = 0, s, x) = n0(s, x) s ≥ 0 , x ∈ Ω ,

(3.6)

In Chapter 2 we have proved that this system has an unique solution n ∈ Cb([0,∞) ×
Ω, L1

s), and we have noticed that the variable x is simply a parameter, since there is no

derivative or integral term involving the position. This allows us to associate a stochastic

semi-group Pt : L1
s → L1

s to equation (3.6); for a fixed x ∈ Ω it is given by

Ptn0(s, x) = n(t, s, x) . (3.7)

What we want to prove with the following theorem is a pivotal property on the

solution of the system, that is the fact that it exponentially converges to equilibrium.
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To complete the proof, which follows the ideas of Cañizo et al. in [2], Torres and Salort

apply the Doeblin’s Theorem that we have exposed in Theorem 1.3.1. . We will firstly

give a positive lower bound for the solution, that exists after a fixed time and for any

initial distribution. This evidence will be the main part of the demonstration, but then it

lets us to prove the convergence directly, because it ensures that the associated stochastic

semi-group verifies the Doeblin condition.

Theorem 3.2.1. Consider n0 ∈ Cb(Ω, L
1
s) with its corresponding g ∈ Cb(Ω) and suppose

that p satisfies (2.2b). Then there exists a unique stationary solution n∗ for equation (3.6)

satisfying
∫∞

0
n∗(s, x) ds = g(x). Moreover, the solution of (3.6) satisfies

‖n(t, ·, x)− n∗(·, x)‖L1
s
≤ 1

1− α
e−λt‖n0(·, x)− n∗(·, x)‖L1

s
∀t ≥ 0 , x ∈ Ω

with α = p∗s∗e
−2p∞s∗ and λ = − log(1−α)

2s∗
> 0.

Proof. Consider the linear problem (3.6), that we rewrite as follows∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(x))n(t, s, x) = N(t, x)δ0(s) t > 0 , s ≥ 0 , x ∈ Ω

n(t = 0, s, x) = n0(s, x) s ≥ 0 , x ∈ Ω .

(3.8)

Let n be its solution; for fixed x ∈ Ω, we assert that n fulfils the following inequality

n(2s∗, s, x) = P2s∗n0(s, x) ≥ p∗e
−2p∞s∗1[0,s∗](s)g(x) ∀(s, x) ∈ (0,∞)× Ω , (3.9)

and it is the goal of the main part of this proof to demonstrate it.

Step 1. The first step is to find a solution to the linear problem (3.8). To do so we will

use Duhamel’s formula, so we will firstly find a solution for the homogeneous problem

associated to (3.8), and then we will rewrite the solution of the non homogeneous one

as a chain of solutions of homogeneous problems as a consequence of the superposition

principle.

We set the initial condition data at t = 0 and fix x ∈ Ω; in this way the homogeneous

problem becomes∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(x))n(t, s, x) = 0 t > 0 , s ≥ 0 , x ∈ Ω

n(t = 0, s, x) = n0(s, x) s ≥ 0 , x ∈ Ω .
(3.10)
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Considering the semi-group P̃t : L1
s → L1

s associated with this homogeneous problem, we

find that its solution is given by

ñ(t, s, x) = P̃tn0(s, x) = n0(s− t) exp

(
−
∫ t

0

p(s− t+ τ, S(τ, x)) dτ

)
1{s>t} (3.11)

Remark 3. This result readily follows from the equation for the solution of (2.10) that

we found in Chapter 2. Since we have assumed that the problem is homogeneous, the

condition on N in system (3.10) becomes N(t, x) = 0, and this let the second addendum

of the equation for the solution to (2.10) to disappear. This fact has also a biological

interpretation; since the equation for N is equal to 0, the cells lose their property of re-

enter the circle after a discharge, that is to say that the age of the cells s only increases.

This means that s is always greater than t, and, as we could expect, this is the only part

of the solution of (2.10) that we consider for solving (3.10).

After considering the homogeneous problem for t = 0, we solve another problem with

initial condition for t = τ > 0, that is to say∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(x))n(t, s, x) = 0 t > 0 , s ≥ 0 , x ∈ Ω

n(t = τ, s, x) = N(τ, x)δ0(s) s ≥ 0 , x ∈ Ω
(3.12)

The initial condition for (3.12) is the equivalent to say n(t− τ = 0, s, x) = N(τ, x)δ0(s)

so, using the previous result (3.11), we can assert that the solution for (3.12) is given by

ñ(t, s, x) = P̃t−τ
(
N(τ, x)δ0(s)

)
. (3.13)

This allows us to conclude that, for Duhamel’s formula, the solution to the non homo-

geneous problem (3.6) is given by

n(t, s, x) = Ptn0(s, x) = P̃tn0(s, x) +

∫ t

0

P̃t−τ
(
N(τ, x)δ0(s)

)
dτ . (3.14)

Step 2. Now that we have found the solution of (3.6), using (3.11) and (3.14) we can

prove the following inequality:

n(t, s, x) ≥ P̃tn0(s, x) = n0(s− t) exp

(
−
∫ t

0
p(s− t+ τ, S(τ, x)) dτ

)
1{s>t}

≥ n0(s− t)e−p∞t1{s>t} ,
(3.15)
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and, translating of a value τ , this implies

P̃t−τn0(s, x) ≥ n0(s− t+ τ)e−p∞(t−τ)1{s>t−τ} . (3.16)

Thus, for t > s∗ we get

N(t, x) =
∫∞

0
p(s, S(x))n(t, s, x) ds

≥ p∗
∫∞
s∗
n(t, s, x) ds

≥ p∗
∫∞
t
n(t, s, x) ds

use (3.15)

≥ p∗e
−p∞t

∫∞
t
n0(s− t, x) ds

≥ p∗e
−p∞tg(x) .

(3.17)

In this case, using (3.14) we have that, for any s > 0 and t > s+ s∗:

n(t, s, x) ≥
∫ t

0
P̃t−τ

(
N(τ, x)δ0(s)

)
dτ

≥
∫ t
s∗
P̃t−τ

(
p∗e
−p∞τg(x)δ0(s)

)
dτ

≥ p∗
∫ t
s∗
δ0(s− t+ τ)e−p∞τe−p∞(t−τ)g(x)1{s−t+τ>0} dτ

≥ p∗e
−p∞t1{0<s<t−s∗}g(x)

(3.18)

Step 3. Now we have all the elements to conclude the proof, in fact we can get the estimate

(3.9) by choosing t = 2s∗. This means that the semi-group Pt associated to equation

(3.6) satisfies the Doeblin’s condition with t0 = 2s∗, α = p∗s∗e
−2p∞s∗ and ν = 1

s∗
1[0,s∗](s)

for functions n0(·, x) ∈ L1
s with g(x) = 1. With this result, the exponential convergence

to equilibrium readily follows from Doeblin’s theorem applied to the semi-group Pt, with

λ = − log(1−α)
t0

> 0 and with the normalization by g(x). In fact, the Doeblin’s theorem we

have presented in Chapter 1 estimates the L1 norm of the difference Pt(n−n∗); we have

taken n0 for n, so by the linearity of the semi-group Pt and the fact that Pt(n
∗) = n∗ it

follows that Pt(n0 − n∗) = Pt(n0) − Pt(n∗) = n − n∗, that is exactly the difference that

the Theorem for the convergence wants to estimate with the L1 norm.

3.2.2 Model convergence in the non-linear case

The linear theory allows us to determine the asymptotic behaviour of the non-linear

system (2.1) as well, always supposing to be in the weak interconnection regime. As for
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the previous result, we will make use of the Duhamel’s formula and the Doeblin’s theory

for stochastic semigroups.

Theorem 3.2.2 (Convergence to equilibrium). Assume (2.4)-(2.5), that p ∈ W 1,∞(

(0,∞) × Ω) satisfies (2.2b) and that I ∈ Cb(Ω)1. For γ and ‖ ∂p
∂S
‖∞ small enough, let

(n∗, N∗, S∗, w∗) be the corresponding stationary state of (2.1). Then there exist C, λ > 0

such that the solution n of (2.1) satisfies

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤ Ce−λt(‖n0 − n∗‖L∞x L1
s

+ ‖w0 − w∗‖∞) ∀t ≥ 0 .

Moreover ‖S(t)− S∗‖∞ and ‖N(t)−N∗‖∞ converge exponentially to 0 when t→∞.

Proof. We start the demonstration by defining

LS[n] := −∂sn− p(s, S)n+ δ0(s)

∫ ∞
0

p(u, S(t, x))n(t, u, x) du ,

so we can observe that n satisfies the evolution equation

∂tn = LS[n] ,

that can be rewritten as

∂tn = LS∗ [n] + (LS[n]− LS∗) = LS∗ + h , (3.19)

where h is given by

h(t, s, x) =
(
p(s, S∗(x))− p(s, S(t, x))

)
n(t, s, x)+

+ δ0(s)

∫ ∞
0

(
p(u, S(t, x))− p(u, S∗(x))

)
n(t, u, x) du

(3.20)

and satisfies the following∫∞
0
h(t, s, x) ds =

∫∞
0

[
p(s, S∗(x))− p(s, S(t, x))

]
n(t, s, x) ds+

+
∫∞

0
δ0(s)

∫∞
0

[
p(u, S(t, x))− p(u, S∗(x))

]
n(t, u, x) du ds

=
∫∞

0

[
p(s, S∗(x))− p(s, S(t, x))

]
n(t, s, x) ds+

+
∫∞

0

[
p(s, S(t, x))− p(s, S∗(x))

]
n(t, s, x) ds

= 0 .

(3.21)

1For studying the convergence we assume that I only depends on position in order to have an

autonomous system and a semi-group for the linear problem [T].
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Formally, the proof is based on the rewriting (3.19) of equation (2.1), because it relies on

the result proved for the linear case and we can treat the term h as a perturbation. In

order to do this rigorously, we notice that h contains a multiple of δ0, so it is necessary to

use a solution in a space of measures. This is the reason why we have conducted all our

analysis considering weak solution instead of simply mild solution. Mild solutions are

more convenient for finding solutions, but weak solutions have a more manageable form.

In fact, in Lemma 2.2.2. we have actually used the concept of mild solution, but we have

taken advantage of the Ball’s Theorem to call it weak solution anyway, foreseeing that

at this point we would have to make use of this concept.

Now, consider Pt being the linear semi-group associated to operator LS∗ . Since Ptn
∗ = n∗

for all t ≥ 0, and using Duhamel’s formula, we can assert that n fulfils

n− n∗ = Pt(n0) +
∫∞

0
Pt−τh(τ, s, x) dτ + Pt(n

∗)

= Pt(n0 − n∗) +
∫∞

0
Pt−τh(τ, s, x) dτ ,

(3.22)

so what we need to do is to approximate the function h.

Firstly we have to treat the following inequalities:

‖N(t)−N∗‖∞ = supx∈Ω |N(t, x)−N∗(x)| =
= supx∈Ω

∣∣ ∫∞
0

(
p(s, S(t, x))n(t, s, x)− p(s, S∗(x)n∗(s, x)

)
ds
∣∣

= supx∈Ω

∣∣ ∫∞
0

(
p(s, S(t, x))n(t, s, x)− p(s, S∗(x))n∗(s, x)+

+p(s, S∗(x))n(t, s, x)− p(s, S∗(x)n(t, s, x)
)

ds
∣∣

≤ supx∈Ω

∣∣ ∫∞
0

(
p(s, S(t, x))− p(s, S∗(x))

)
n(t, s, x) ds

∣∣+
+ supx∈Ω

∣∣ ∫∞
0
p(s, S∗(x))

(
n(t, s, x)− n∗(s, x)

)
ds
∣∣

≤ supx∈Ω

∣∣ ∫∞
0

∂p
∂S

(
S(t, x)− S∗(x)

)
n(t, s, x) ds

∣∣+
+ supx∈Ω

∣∣ ∫∞
0
p(s, S∗(x))

(
n(t, s, x)− n∗(s, x)

)
ds
∣∣

≤ ‖g‖∞‖
∂p
∂S
‖∞‖S(t)− S∗‖∞ + p∞‖n(t)− n∗‖L∞x L1

s
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‖S(t)− S∗‖∞ = supx∈Ω

∣∣S(t, x)− S∗(x)
∣∣ =

= supx∈Ω

∣∣ ∫
Ω

(
w(t, x, y)N(t, y)

)
dy + I(x)−

∫
Ω

(
w∗(x, y)N∗(y)

)
dy − I(x)

∣∣
≤ supx∈Ω

∣∣ ∫
Ω

(
w(t, x, y)N(t, y)

)
dy −

∫
Ω

(
w∗(x, y)N∗(y)

)
dy
∣∣+

+ supx∈Ω

∣∣I(x)− I(x)
∣∣

≤ supx∈Ω

∣∣ ∫
Ω

(
w(t, x, y)N(t, y)− w∗(x, y)N(t, y) + w∗(x, y)N(t, y)−

−w∗(x, y)N∗(y)
)

dy
∣∣

≤ supx∈Ω

∣∣ ∫
Ω
N(t, y)

(
w(t, x, y)− w∗(x, y)

)
dy +

∫
Ω
w∗(x, y)

(
N(t, y)−N∗(y)

)
dy
∣∣

≤ supx∈Ω

∣∣ ∫
Ω
N(t, y)

(
w(t, x, y)− w∗(x, y)

)
dy
∣∣+

+ supx∈Ω

∣∣ ∫
Ω
w∗(x, y)

(
N(t, y)−N∗(y)

)
dy
∣∣

≤ supx∈Ω

∣∣ ∫
Ω

( ∫∞
0
p(s, S(t, y))n(t, s, y) ds

)
(w(t, x, y)− w∗(x, y)) dy

∣∣+
+ supx∈Ω

∣∣ ∫
Ω
γG
(
g(x)F (S(x)), g(y)F (S(y))

)(
N(t, y)−N∗(y)

)
dy
∣∣

≤ p∞ supx∈Ω

∫
Ω

∣∣ ∫∞
0
n(t, s, y) ds

∣∣|w(t, x, y)− w∗(x, y)| dy+

+ supx∈Ω

∣∣ ∫
Ω
γG
(
g(x)F (S(x)), g(y)F (S(y))

)(
N(t, y)−N∗(y)

)
dy
∣∣

≤ p∞‖w(t)− w∗‖∞
∫

Ω
|g(y)| dy+

+γ supx∈Ω

∫
Ω
|G
(
g(x)F (S(x)), g(y)F (S(y))

)
||N(t, y)−N∗(y)| dy

≤ p∞‖g‖1‖w(t)− w∗‖∞ + γ|Ω|‖G‖∞‖N(t)−N∗‖∞

where G is restricted to the set [0, p∞‖g‖∞]2.

Combining those estimates it follows that

‖N(t)−N∗‖∞ ≤ p∞‖n(t)− n∗‖L∞x L1
s
+

‖g‖∞‖
∂p
∂S
‖∞
[
p∞‖g‖1‖w(t)− w∗‖∞ + γ|Ω|‖G‖∞‖N(t)−N∗‖∞

]
‖N(t)−N∗‖∞ − γ|Ω|‖G‖∞‖g‖∞‖

∂p
∂S
‖∞‖N(t)−N∗‖∞ ≤ p∞‖n(t)− n∗‖L∞x L1

s
+

+p∞‖g‖1‖g‖∞‖
∂p
∂S
‖∞‖w(t)− w∗‖∞

‖N(t)−N∗‖∞ ≤
p∞‖g‖1‖g‖∞‖

∂p
∂S
‖∞‖w(t)−w∗‖∞+p∞‖n(t)−n∗‖

L∞x L1
s

1−γ|Ω|‖G‖∞‖g‖∞‖
∂p
∂S
‖∞

and

‖S(t)− S∗‖∞ ≤ p∞‖g‖1‖w(t)− w∗‖∞+

+γ|Ω|‖G‖∞
[
‖g‖∞‖

∂p
∂S
‖∞‖S(t)− S∗‖∞ + p∞‖n(t)− n∗‖L∞x L1

s

]
‖S(t)− S∗‖∞ − γ|Ω|‖G‖∞‖g‖∞‖

∂p
∂S
‖∞‖S(t)− S∗‖∞ ≤ p∞‖g‖1‖w(t)− w∗‖∞+

+γ|Ω|‖G‖∞p∞‖n(t)− n∗‖L∞x L1
s

‖S(t)− S∗‖∞ ≤
p∞‖g‖1‖w(t)−w∗‖∞+γ|Ω|‖G‖∞p∞‖n(t)−n∗‖

L∞x L1
s

1−γ|Ω|‖G‖∞‖g‖∞‖
∂p
∂S
‖∞
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that, naming C1 := γ|Ω|‖G‖∞‖g‖∞‖
∂p
∂S
‖∞ < 1, can be rewritten as

‖N(t)−N∗‖∞ ≤
p∞

1−C1

(
‖g‖1‖g‖∞‖

∂p
∂S
‖∞‖w(t)− w∗‖∞ + ‖n(t)− n∗‖L∞x L1

s

)
(3.23)

‖S(t)− S∗‖∞ ≤
p∞

1− C1

(
‖g‖1‖w(t)− w∗‖∞ + γ|Ω|‖G‖∞‖n(t)− n∗‖L∞x L1

s

)
. (3.24)

Thus the estimate for h we were looking for is

‖h(t)‖L∞x L1
s

= supx∈Ω

∣∣ ∫∞
0

[
p(s, S∗(x))− p(s, S(t, x))

]
n(t, s, x) ds+

+
∫∞

0
δ0(s)

∫∞
0

[
p(u, S(t, x))− p(u, S∗(x))

]
n(t, u, x) du ds

∣∣
≤ supx∈Ω

∣∣ ∫∞
0

[
p(s, S∗(x))− p(s, S(t, x))

]
n(t, s, x) ds

∣∣+
+ supx∈Ω

∣∣ ∫ ∞
0

δ0(s) ds︸ ︷︷ ︸
=1

∫∞
0

[
p(s, S(t, x))− p(s, S∗(x))

]
n(t, s, x) ds

∣∣
≤ 2 supx∈Ω

∣∣ ∫∞
0

[
p(s, S∗(x))− p(s, S(t, x))

]
n(t, s, x) ds

∣∣
≤ 2 supx∈Ω

∫∞
0

∣∣ ∂p
∂S

∣∣|S∗(x)− S(t, x)||n(t, s, x)| ds
≤ 2‖ ∂p

∂S
‖∞‖S(t)− S∗‖∞‖g‖∞

≤ 2p∞‖g‖∞‖
∂p
∂S
‖∞

1−C1

(
‖g‖1‖w(t)− w∗‖∞ + γ|Ω|‖G‖∞‖n(t)− n∗‖L∞x L1

s

)
≤ C2

(
‖w(t)− w∗‖∞ + ‖n(t)− n∗‖L∞x L1

s

)
,

(3.25)

where C2 =
2p∞‖g‖∞‖

∂p
∂S
‖∞

1−C1
max{‖g‖1, γ|Ω|‖G‖∞}.

On one hand, using Theorem 4.0.1 about the convergence for the linear case and estimate

(3.25), we get from (3.22) the following

‖n(t)− n∗‖L∞x L1
s
≤ ‖Pt(n0 − n∗)‖L∞x L1

s
+
∫ t

0
‖Pt−τh(τ)‖L∞x L1

s
dτ

≤ e−λt

1−α‖n0 − n∗‖L∞x L1
s

+ 1
1−α

∫ t
0

e−λ(t−τ)‖h(τ)‖L∞x L1
s

dτ

≤ e−λt

1−α‖n0 − n∗‖L∞x L1
s

+ C2

1−α

∫ t
0

e−λ(t−τ)(‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1
s
) dτ ,

(3.26)

with α = p∗s∗e
−2p∞s∗ , λ = − log(1−α)

2s∗
> 0.

On the other hand, from the equation for w found in (2.19) and that for w∗ in (3.4), and

by applying (3.23), we deduce
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‖w(t)− w∗‖∞ =

= supx,y∈Ω

∣∣e−tw0(x, y) + γ
∫ t

0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ − w∗(x, y)

∣∣
= supx,y∈Ω

∣∣e−tw0(x, y) + γ
∫ t

0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ − w∗(x, y)−

−e−tw∗(x, y) + e−tw∗(x, y)
∣∣

= supx,y∈Ω

∣∣e−tw0(x, y) + γ
∫ t

0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ − e−tw∗(x, y)+

−w∗(x, y)(1− e−t)
∣∣

= supx,y∈Ω

∣∣e−tw0(x, y) + γ
∫ t

0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ − e−tw∗(x, y)−

−γG(N∗(x), N∗(y))(1− e−t)
∣∣

= supx,y∈Ω

∣∣e−tw0(x, y) + γ
∫ t

0
e−(t−τ)G(N(τ, x), N(τ, y)) dτ−

−e−tw∗(x, y)− γ
∫ t

0
e−(t−τ)G(N∗(x), N∗(y)) dτ

∣∣
≤ supx,y∈Ω

∣∣e−tw0(x, y)− e−tw∗(x, y)
∣∣+

+ supx,y∈Ω

∣∣γ ∫ t
0

e−(t−τ)G(N(τ, x), N(τ, y)) dτ − γ
∫ t

0
e−(t−τ)G(N∗(x), N∗(y)) dτ

∣∣
≤ e−t‖w0 − w∗‖∞+

+ γ supx,y∈Ω

∣∣ ∫ t
0

e−(t−τ) < ∇G,
(
N(τ, x)−N∗(x), N(τ, y)−N∗(y)

)
> dτ

∣∣
≤ e−t‖w0 − w∗‖∞ + γ‖∇G‖∞

∫ t
0

e−(t−τ)‖N(τ)−N∗‖∞ dτ

≤ e−t‖w0 − w∗‖∞ + C3

∫ t
0

e−(t−τ)‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1
s
) dτ ,

(3.27)

with C3 :=
2γp∞‖G‖∞

1−C1
max{‖g‖1‖g‖∞‖

∂p
∂S
‖∞, 1}.

Hence, adding the two norms estimated in (3.26) and (3.27) we get

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤
e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
+

+C4e−λ̃t
∫ t

0
eλ̃τ (‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1

s
) dτ ,

(3.28)

with λ̃ := min{λ, 1}, C4 := max
{

C2

1−α , C3

}
.
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Now, using Gronwall’s inequality on (3.28) we get

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤
≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
+ C4e−λ̃t

∫ t
0

eλ̃τ (‖w(τ)− w∗‖∞+

+‖n0 − n∗‖L∞x L1
s
) dτ

≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
exp

( ∫ t
0
C4e−λ̃teλ̃τ dτ

)
≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
exp

(
C4e−λ̃t

∫ t
0

eλ̃τ dτ
)

≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
exp

(
C4e−λ̃t 1

λ̃
(eλ̃τ − 1)

)
≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
exp

(
C4

1
λ̃
(1− eλ̃)

)
calculate the exponential with Taylor series expansion

≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
exp

(
C4

1
λ̃
(1− 1 + λ̃)

)
≤ e−λ̃t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
eC4t

≤ e−λ̃t+eC4t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
≤ e−(λ̃t−C4)t

1−α

(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
.

If γ and ‖ ∂p
∂S
‖∞ are small enough we obtain the convergence result sought, because it

realizes that C4 < λ̃.

Finally, we get the exponential convergence of N and S applying this result to the

estimates (3.23) and (3.24) respectively.
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