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Abstract

We consider a model of inflation, called Fibre Inflation, derived from string theory in the
framework of type IIB flux compactification and we study the production of primordial
black holes due to the gravitational collapse of the curvature perturbations. They are a good
candidate for dark matter and if their mass was in the range MPBH ∈ [10−17M�, 10−13M�]
then their contribution to the total dark matter abundance would be between 10% and
100%. The inflaton potential has enough tuning freedom to allow for a flat plateau at
large field values, corresponding to the usual slow roll behaviour, and an inflection point
near the minimum that enhances the scalar perturbations. It is the latter feature that
greatly increases the density anisotropies from the usual δρ/ρ ∼ 10−5, typical of the CMB
radiation, to δρ/ρ ∼ 10−1 due to a peak in the primordial power spectrum that allows
for the formation of black holes. The latter is computed solving the Mukhanov-Sasaki
equation numerically using the Hubble slow roll parameters extracted from the solutions
to the Friedmann equations and the inflaton equation of motion. The formation of black
holes is followed by the production of a stochastic background of secondary gravitational
waves: in this thesis we compute their amplitude and compare it with current observational
bounds and the sensitivities of earth- and space-based interferometers. Our result is within
reach of experiments like DECIGO and BBO, hence in the future it will be possible to have
a comparison between our theoretical results and observations.



Abstract

Consideriamo un modello inflazionario, chiamato Fibre Inflation, derivato dalla teoria delle
stringhe nell’ambito della compattificazione del flusso di tipo IIB e studiamo la produzione
di buchi neri primordiali dovuta al collasso gravitazionale delle perturbazioni di curvatura.
Questi sono buoni candidati per la materia oscura e se la loro massa fosse nel range
MPBH ∈ [10−17M�, 10−13M�] allora il loro contributo all’abbondanza totale di materia
oscura sarebbe tra il 10% e il 100%. Il potenziale dell’inflatone presenta sufficiente libertà
di tuning per permettere un plateau piatto ad alti valori del campo scalare, corrispondente
all’usuale comportamento slow roll, e un punto di flesso vicino al minimo che intensifica le
perturbazioni scalari. È quest’ultima caratteristica che aumenta le anisotropie nella densità
dall’usuale δρ/ρ ∼ 10−5, tipiche della radiazione CMB, a δρ/ρ ∼ 10−1 a causa di un picco
nello spettro primordiale che permette la formazione di buchi neri. Lo spettro è calcolato
risolvendo numericamente l’equazione di Mukhanov-Sasaki usando i parametri di slow roll
di Hubble ricavati dalla soluzione delle equazioni di Friedmann e le equazioni del moto
dell’inflatone. La formazione di buchi neri è seguita dalla produzione di un background
stocastico di onde gravitazionali secondarie: in questa tesi calcoliamo la loro ampiezza e
la confrontiamo con gli attuali limiti osservativi e le sensibilità degli interferometri sulla
Terra e nello spazio. Il nostro risultato è entro la portata di esperimenti come DECIGO
e BBO, quindi in futuro sarà possibile avere un confronto tra i nostri risultati teorici e le
osservazioni.
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Chapter 1

Introduction and notation

Cosmology is the branch of physics that describes the evolution of the universe and the large
scale structures that cannot be dealt with efficiently using classical Newtonian mechanics,
such as black holes and galaxies. Its main objective is to comprehend the birth, the history
and the fate of our universe taking into account the data collected from observations. But
this is not all, as cosmology addresses other important questions concerning high energy
physics: in fact when the universe was at its earliest stages of evolution its content was
very dense and the energies involved were very high. That is why it is useful to make a link
between cosmology and high energy particle physics: in studying early universe cosmology
one could virtually obtain a full description of the first stages of its evolution and thus of
the mechanisms that triggered and drove it.

However it is not so simple to create the link between cosmology and particle physics.
One has to find a concrete framework in which to apply these ideas: for the former the most
appropriate one is General Relativity (GR), while for the latter it is Quantum Field Theory
(QFT). It is well known that GR as a field theory is non-renormalizable and so when one
tries to quantize it its UV behaviour shows some divergences that cannot be removed via the
usual renormalization methods. Therefore the QFT of the Standard Model (SM), which is
the SU(3)×SU(2)×U(1) symmetric theory describing particle physics, treats gravitational
interactions only classically, but we know that for some extreme scenarios like the very
first moments of the universe or black holes we should rely on a quantum description of
gravity. This is a problem that theories like string theory or loop quantum gravity try to
solve, but there are ways of dealing with the gravitational interaction of particles making
use of some approximations. One of these is QFT in curved spacetime (QFTCS), which is
an extension of ordinary QFT, that assumes a flat Minkowski background, to a curved one
in which quantum fields evolve. In this context gravity is still treated classically, but the
interaction of quantum fields with the gravitational one leads to some crucial consequences,
the most famous one being Hawking radiation. QFTCS is the right framework in which
we are able to study the evolution of the early universe and therefore it will be our main
tool to understand the origin of Primordial Black Holes (PBHs), since as we shall see
they are formed due to the curvature perturbation during inflation. The reason why we
study PBHs is that because their nature makes them a good candidate for dark matter:
in fact they only interact gravitationally with visible matter, which makes them invisible
to telescopes, as dark matter should be from observational evidence. The production of
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secondary Gravitational Waves (GWs) following PBH formation is then the link between
theory and experiments, so a computation of their amplitude and frequency is necessary to
perform that connection: this is the objective of this work.

In this thesis we will study the formation of PBHs considering Fibre Inflation, a model
of inflation derived from string theory in the framework of type IIB flux compactification.
In this scenario inflation is driven by a scalar field, the inflaton, whose potential shows an
almost flat plateau at high field values and an inflection point near the minimum. The
coupling between the inflaton and the gravitational field leads to an enhancement of the
curvature power spectrum that leads to the formation of PBHs. Then we will study the
stochastic gravitational waves background produced by this process and we will compare
the result with the current bounds given by past observations and with the sensitivities
of the earth- and space-based interferometers, both the currently working ones (such as
aLIGO and LISA) and the future ones (such as DECIGO and BBO).

Except where it is explicitly indicated we will work in natural units in which ~ = c = 1
until the point where we will introduce the theory of cosmological perturbations, where
we will switch to Planck units in which ~ = c = G = 1; the Minkowski metric will be
ηµν = diag(−,+,+,+). For the Fourier transformation and its inverse we use the following
convention:

f̃(k) =
1

(2π)3/2

∫
R3

d3x f(x)e−ik·x,

f(x) =
1

(2π)3/2

∫
R3

d3k f̃(k)eik·x.
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Chapter 2

Standard cosmology and related issues

In this chapter we will review some basic concepts of standard cosmology, enlighten its
main issues and propose the most elegant and accepted solution, namely inflation.

2.1 The evolution of the universe

2.1.1 The FRW metric

The standard model of cosmology [1][2] relies on the prime assumption of a homogeneous
and isotropic universe which goes under the name of Cosmological Principle (CP): this
comes from the observational fact that the universe looks exactly the same in all directions
on sufficiently large scales. As a crucial example one can consider the observation of the
Cosmic Microwave Background (CMB) radiation, whose temperature is about 2.7 K with
fluctuations of at most δT/T ∼ 10−5 that can be observed looking far into the deep past of
our universe. Figure (2.1) shows the CMB radiation. Once this assumption is considered
one can apply it to a concrete framework, namely the one of GR [3][4] and the Einstein
gravity theory, whose main starting point are the Einstein field equations :

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (2.1)

which are partial differential equations for the metric tensor gµν characterizing the spacetime
manifold. In general it is very difficult to find exact solutions to these equations due to their
high degree of non-linearity except for few peculiar cases in which there is some symmetry
that can be exploited. However there is another way of dealing with cosmology: one can
consider a particular form of the metric tensor and insert it into the Einstein equations to
have some dynamics. In particular one can show that the CP, i.e. assumption of homogeneity
and isotropy, uniquely determines the metric to be the Friedmann-Robertson-Walker (FRW)
metric:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.2)

where a(t) is the cosmological scale factor while k = 0,±1 (even though with a suitable
rescaling of the coordinates it can assume any real value). These three values correspond to
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Figure 2.1: The Cosmic Microwave Background as observed by the Planck observatory.
The differences in color denote the ∼ 10−5 energy fluctuations. Source: https://www.esa.
int/ESA_Multimedia/Images/2013/03/Planck_CMB.

a flat space or a closed/open curved space (de Sitter -dS- or Anti de Sitter -AdS- space).
One can also introduce the conformal time τ such that:

dτ =
dt

a(t)
,

so that we can rewrite the FRW metric as:

ds2 = a2(τ)

[
−dτ 2 +

dr2

1− kr2
+ r2dΩ2

]
. (2.3)

Note that for the special case k = 0, i.e. flat spacetime, we obtain:

ds2 = a2(τ)ηµνdx
µdxν ,

where ηµν is the Minkowski metric. Hence we can see that for the case of flat spacetime the
scale factor a(τ) acts on distances while it changes in time: the evolution and the expansion
of the universe is therefore determined by this parameter, whose dynamics is dictated once
we insert the FRW metric into the Einstein equations.

2.1.2 A model for the universe: the perfect fluid

The assumption of homogeneity and isotropy allows us to model the universe as a perfect
fluid, for which the stress-energy tensor reads:

Tµν = (ρ+ p)UµUν − pgµν , (2.4)
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where Uµ is the fluid’s 4-velocity. For the case of a comoving fluid, for which Uµ = (−1,0), in
a flat FRW background this reduces to Tµν = diag(ρ,−p,−p,−p). The continuity equation
for the stress-energy tensor reads ∇µT

µ
ν = 0 and inserting Eq. (2.4) the ν = 0 component

gives:
∇µT

µ
0 = ρ̇+ 3H(ρ+ p) = 0, (2.5)

where the dot . stands for the derivative with respect to the time t while:

H =
ȧ

a
(2.6)

is the Hubble parameter. One then assumes an equation of state for the fluid, p = ωρ, then
this equation can be rewritten as:

ρ̇

ρ
= −3(1 + ω)

ȧ

a
, (2.7)

whose general solution is given by:

ρ(t) ∝ a(t)−3(1+ω). (2.8)

Let us consider three peculiar values of ω:

• ω = 0: dust. In this case the particles composing the fluid don’t interact among
themselves and so the pressure vanishes. The energy density then reads:

ρdust(t) =
E

V
∝ a(t)−3. (2.9)

This is compatible with the rescaling of the two quantities determining the energy
density. In fact in this limit the fluid can be modeled as cold matter so that the main
contribution to the total energy is the mass of the fluid, therefore ρdust(t) ≈ m/V .
The mass is an invariant quantity so it does not rescale, while the volume rescales as
V ∝ a3 since any of the three space directions rescales as xi ∝ a.

• ω = 1/3: radiation. This holds because for massless particles there is no mass scale
involved and this implies the trace of the stress-energy tensor to vanish, hence:

T = −ρ+ 3p = 0 =⇒ p =
1

3
ρ.

The energy density then reads:

ρradiation(t) ∝ a(t)−4. (2.10)

This again is compatible with the rescaling of the two quantities determining the
energy density. In fact the photon frequency redshifts as ν ∝ a−1 and the volume
rescales as V ∝ a3.
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• ω = −1: vacuum energy. In this peculiar case the equation of state becomes:

ρΛ = −p =
Λ

8πG
, (2.11)

Λ being the cosmological constant. In such case the energy density does not rescale in
time with a(t). We will see later how this is compatible with an accelerated expansion
of the universe, i.e. ä > 0.

In this section we have studied the dependence of the energy density on the scale factor,
which by now is an undetermined quantity since Eq. (2.7) is one differential equation for
two variables, ρ(t) and a(t). Now we want to examine the dynamics of a(t) and to do it
we will work in the frame of GR and Einstein gravity, inserting the FRW metric into the
Einstein field equations (2.1).

2.1.3 Friedmann equations

Once we consider the FRW metric and insert it into the Einstein equations we obtain two
equations, called the Friedmann equations :

3

[(
ȧ

a

)2

+
k

a2

]
= 8πGρ, (2.12)

3
ä

a
= −4πG(ρ+ 3p). (2.13)

Technically speaking the first equation is a constraint on the possible initial conditions for
a(0) and ȧ(0), while the second one is the real dynamical equation for the scale factor a(t).
We can also define the density parameter Ω as:

Ω =
8πG

3H2
ρ =:

ρ

ρcritical
, ρcritical :=

3H2

8πG
, (2.14)

so that we can rewrite the first Friedmann equation (2.12) as:

Ω− 1 =
k

a2H2
. (2.15)

We then have three possible cases depending on the value of ρ:

• ρ < ρcritical or equivalently Ω < 1 or equivalently k = −1, which is the case of an
open universe;

• ρ = ρcritical or equivalently Ω = 1 or equivalently k = 0, which is the case of a flat
universe;

• ρ > ρcritical or equivalently Ω > 1 or equivalently k = 1, which is the case of a closed
universe.
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One can also show that the topology of the universe does not change in time, in the sense
that if the initial conditions are related to a flat, open or closed universe then its evolution
will always lead to a flat, open or closed universe respectively.

The dynamics of the scale factor is therefore dependent on the value of k, which
represents the type of universe we live in. Observations tell us that we are very close to
Ω = 1 [5], so our universe is (almost) flat: this means that k = 0 and we can then solve the
Friedmann equations for the three values of ω we considered before. We then have:

• ω = 0, dust, ρ ∝ a−3 =⇒ ä ∝ a−2 =⇒ a(t) ∝ t
2
3 ;

• ω = 1/3, radiation, ρ ∝ a−4 =⇒ ä ∝ a−3 =⇒ a(t) ∝ t
1
2 ;

• ω = −1, dark energy, ρ = Λ/(8πG) = const =⇒ ä = H2
0a = (Λ/3)a =⇒ a(t) ∝ eH0t,

and the Hubble parameter is a constant.

From the form of the dynamical Friedmann equation we see that for ω > −1/3, i.e.
in our cases of dust and radiation, there is always a time t = 0 at which the scale factor
a(t = 0) vanishes: this is a particular feature of these Friedmann models for the universe.
This is the Big Bang singularity and it is considered to be the starting point of the universe
from which we can measure time. This is a singularity of the metric and it is unavoidable
with any change of coordinates1. We can then give a brief history of the various phases of
the universe starting from the initial singularity:

• ∼ 10−43 s (1019 GeV): this corresponds to the Planck time, non-perturbative quantum
gravity plays the most important role and we need to address the study of the universe
at these scales to more fundamental theories.

• ∼ 10−37 s (1015 GeV): at this time the Grand Unification Theory (GUT) phase
transition occurs, at which the strong and electro-weak interactions separate. Also
this is the epoch related to the baryon asymmetry and, more importantly for our
purposes, inflation, a period of accelerated expansion of the universe.

• ∼ 10−11 s (100 GeV): the electro-weak spontaneous symmetry breaking occurs and
the electromagnetic force separates from the weak force.

• ∼ 10−5 s (200 MeV): quarks and gluons confine into heavier hadrons.

• ∼ 0.2 s (1 − 2 MeV): primordial neutrinos decouple from the other particles and
propagate almost undisturbed, the ratio between the number of protons and neutrons
freezes out.

• ∼ 200 − 300 s (0.05 MeV): nuclear reactions become efficient and so protons and
neutrons fuse together to create heavier nuclei in the process of the primordial
nucleosynthesis.

1Conversely to the case of, for example, the Schwarzschild singularity at r = 2MG, which can be shown
to be a singularity in the coordinates changing to the Kruskal-Szekeres coordinates.
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• ∼ 1011 s (1 eV): this time corresponds to the matter-radiation equality, i.e. the time
at which the density of matter and radiation coincide.

• ∼ 1013 s: free electrons and protons combine to form neutral hydrogen and the
universe becomes transparent to the background radiation. This is the time at which
the CMB was formed.

• ∼ 1015 − 1016 s: large scale structures start to form.

2.2 Problems with this scenario

As promising as it might seem to be, the picture we just depicted has many problems that
cannot be solved if we only considered the Big Bang theory. Three of them are commonly
known as the flatness problem, the horizon problem and the magnetic monopole problem.
There is a common solution to these issues: a period of accelerated expansion of the universe
called inflation. Hereafter we briefly discuss these problems and show how inflation solves
them at the same time.

The flatness problem The Friedmann equations tell us that once the universe starts
with a certain topology, i.e. closed, flat or open depending on the value of the initial
energy density which consequently determines k, it will evolve maintaining that topology.
In particular we can study the three cases separately:

• k = −1, open universe: the first Friedmann equation reads Ω − 1 = −(aH)−2. It
is possible to show that in this case the cosmological expansion wins against the
gravitational attraction and the universe keeps expanding forever and Ω→ 0 in time.

• k = +1, closed universe: the first Friedmann equation reads Ω− 1 = (aH)−2. In this
case it is possible to show that the universe is so dense that a gravitational collapse
occurs at a certain time tBC > 0 and it goes under the name of Big Crunch.

• k = 0, flat spacetime: the first Friedmann equation reduces to Ω = 1 at all times.
The energy density parameter never changes and the universe maintains its flatness.
However this fixed point is an unstable fixed point since the smallest fluctuation from
this value will result in a non-zero curvature that, as we just saw, will result in an
indefinitely expanding universe or in a Big Crunch.

As we mentioned before, observations suggest that nowadays our universe is very close
to k = 0 or equivalently Ω0 = 1 (the current bound is |Ω0 − 1| = 0.000± 0.005). Now we
are in a dark energy (or vacuum energy) dominated era, so the energy density is constant
and equal to the energy density at the moment of the matter-dark energy equality. Using
the Friedmann equations it can be shown that we can write the evolution of Ω during the
matter domination era as:

Ω(t)− 1 =
(Ω0 − 1)a(t)2

Ωrad,0 + a(t)Ωmatter,0

, a� amΛ,
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where amΛ stands for the scale factor at matter-dark energy equality. Considering the time
at the matter-radiation equality, at which arm ∼ 10−4, we obtain:

|Ω(trm)− 1| ∼ 10−6.

At this point going back in time we can consider a radiation-dominated universe, so using
the Friedmann equations we can compute the energy density at the Planck time. In this
way we obtain:

|Ω(tP )− 1| ∼ 10−62.

We can then state the flatness problem as follows. In order to match the observational
result of |Ω0 − 1| = 0.000± 0.005 the initial conditions of the universe have to satisfy the
aforementioned bound for the energy density at Planck time. Also note that going back in
time it might be possible that we could have an even more stringent condition since the
volume of the universe in this scenario becomes smaller and smaller. The problem is that
in principle Ω can take any value from 0 to ∞, so the initial conditions of the universe have
to be extremely fine-tuned, and this is not very appealing.

The horizon problem The second issue that the Hot Big Bang model presents is the
so-called horizon problem. The latest signals that we can detect from the early universe are
the ones from the CMB, a background radiation that fills all of the sky that was formed
about 350000 years after the Big Bang and whose temperature is T ≈ 2.73 K everywhere
we look up to one part per 100000. Let us consider a flat universe with k = 0, so that the
metric reads:

ds2 = a(τ)2
[
−dτ 2 + dr2 + r2dΩ2

]
,

then if we consider a null geodesic, i.e. the motion of a photon, the maximal distance that
a photon can travel in a time ∆t = tf − ti is given by:

∆τ =

∫ tf

ti

dt̃

a(t̃)
.

In particular we can define the comoving particle horizon if ti = 0, i.e.:

dp(t) =

∫ tf

0

dt̃

a(t̃)
. (2.16)

Now, if the CMB is so homogeneous everywhere we look it means that it must have
thermalized and so the photons that were scattering before recombination must have been
in causal contact with themselves. According to the Hot Big Bang model this must have
happened not too far in the past since (at least almost) all of the particles must have been
in causal contact with each other in order to be able to thermalize. Keeping this in mind
we can compute the maximum angle in the sky that connects two points that could have
been in causal contact during recombination. In general the angle between two equal-time
points P, Q can be expressed as θ = ∆r/∆R, where ∆r is the proper distance between
the two points and ∆R is the proper distance from those points to the earth. Therefore
if we considered a photon starting from P at the Big Bang time and arriving to Q at
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recombination time (this path corresponds to the maximum distance traveled by a photon
before recombination) we have:

θmax =
τrec − τBB
τ0 − τrec

=:
∆rphoton

∆r0

.

In general we have:

τ2 − τ1 =

∫ t2

t1

dt̃

a(t̃)
=

∫ a2

a1

da

a2H(a)
.

One can then use the Friedmann equation to write the Hubble parameter as a function of
the scale factor. Inserting the known value for a at the time of recombination the final result
yields θmax ≈ 0.02. This means that the maximal angle that could connect two photons
of the CMB travelling towards each other is 2θmax ≈ 0.04. Therefore since the whole last
scattering surface covers a solid angle of 4π then we can estimate 4π/(0.04)2 ∼ 104 causally
disconnected patches of sky.

We can then state the flatness problem as follows. How can it be that so many causally
disconnected regions of the universe are now at the same exact temperature T ≈ 2.73 K
within one part per 100000?

The exotic particles problem As we mentioned before in the very early universe the
electro-weak and strong interactions were merged in a single interaction described by a GUT
in which the gauge symmetry group was larger than GSM = SU(3)× SU(2)× U(1) (like
for example SU(5) or SO(10), of which GSM is a subgroup): this means that there was one
single coupling constant but more force carriers than the ones that we know nowadays. Then
when the GUT phase transition occurred this force split into the strong and electro-weak
interactions. During the early times in which the symmetry was not broken the theory
predicts the production of some exotic particles such as magnetic monopoles, massless
neutrinos or axions. Concentrating on the case of the magnetic monopole, the theory
predicts its mass to be very high, ∼ 1016 GeV, but they are predicted to be stable. Also
according to this theory their numerical density should be of the same order of the one for
baryons.

We can then state the exotic particles problem as follows. The GUT is elegant and
seems a reasonable continuation of the history of the universe going back in time, but
why haven’t we detected any of these exotic particles? Another big problem concerning
magnetic monopoles is that due to their heavy mass they would give a huge contribution
to the energy density that would cause the almost instant gravitational collapse of the
universe. So how didn’t this ever happen at least until now?

2.2.1 Inflation

There is one common solution to all of the aforementioned problems: a period of accelerated
expansion of the universe, called inflation, right after the GUT transition. The dynamical
cause of this process can be achieved in many ways: in the following chapters we will
examine models in which inflation is driven by a single scalar field, called the inflaton.
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Let us now examine why inflation can solve the three problems we described above.
First of all we shall assume that the scale factor changes in time as follows:

a(t) ∝


(
t

ti

) 1
2

, for 0 < t < ti, radiation domination

exp[H0(t− ti)], for ti < t < tf , inflation

Flatness problem Let us rewrite the first Friedmann equation for a universe with
non-zero curvature as:

|Ω(t)− 1| = k

(aH)2
,

and suppose that we have an inflationary phase such that the Hubble parameter is actually
a constant while the scale factor grows exponentially. Then we can write:

|Ω(t)− 1| = k

H2
0

e−2H0t.

Therefore if we compare two different times ti, tf at the start and at the beginning of
inflation we have:

|Ω(tf )− 1|
|Ω(ti)− 1|

= e−2H0(tf−ti) =: e−2N ,

where we have defined the number of efoldings N as dN := d log a. Suppose that for
t ≈ ti the curvature was very strong, i.e. |Ω(ti) − 1| ≈ 1 (analog reasoning can be done
considering a strong positive curvature), then |Ω(tf)− 1| ≈ e−2N . Recalling the relation
between the nowadays value of Ω0 and its value at any time we can write, reminding that
|Ω0 − 1| ≤ 0.005:

|Ω(tf )− 1| ≈ e−2N ≤
0.005 a2

f

Ωr,0 + afΩm,0

.

Comparing this expression with the current values of the energy densities for radiation and
matter we arrive at the conclusion that N ≥ 60. This implies that a sufficiently long period
of accelerated expansion can solve the flatness problem.

Horizon problem We stated before that the photons composing the CMB must have
been in causal contact in order to thermalize. If we assumed a period of accelerated
expansion of the universe these particles could have separated quickly, but they could have
had the time to reach thermal equilibrium before this process. Recall that the comoving
particle horizon differs from the proper particle horizon, which is given by Dp(t) = a(t)dp(t).
Therefore if we considered for instance an accelerated expansion of the form a(t) ∝ eH0(t−ti)

the proper distance between two points in the sky could have increased so quickly that now
they could be causally disconnected even though they were not in the early universe. This
explains why we see so many causally disconnected patches at the same exact temperature
within one part per 100000.
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Exotic particles problem The solution to this problem can be achieved once we assume
that inflation started after the GUT phase transition. In fact in this way other magnetic
monopoles cannot be produced anymore and the ones that were produced before inflation
get smeared out at a very fast rate so that their numerical density becomes exponentially
small. This explains why we have never detected a single magnetic monopole.

Until now we only explained what inflation is, but we did not describe any mechanism
that could allow for such an event to occur. We will see in the next chapter how this can be
achieved in a rather simple way considering a model involving a single scalar field. There
are theories that involve more than one scalar field, but we will not consider them since the
model that we will take into consideration in the study of GW production is a single field
model.
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Chapter 3

Inflation and PBHs

In this chapter we will study the basic concepts of inflation, enlightening its causes and
conditions. After that we will move to the theory of cosmological perturbations and their
quantization, showing how they are related to the formation of Primordial Black Holes.

3.1 Dynamics of inflation

The main framework that is used to study fundamental physics is quantum field theory
[6][7]: we will rely on its generalization to quantum field theory in curved spacetime [8][9]
since we are dealing with a non-fixed background. We will then study models of inflation
[10][11] in which the accelerated expansion of the universe is driven by a scalar field Φ
called the inflaton which is minimally coupled to the gravitational field. The action of such
field in a generic spacetime reads:

S[Φ] =

∫
d4x
√
−gL[Φ] =

∫
d4x
√
−g
(
−1

2
gµν∂

µΦ∂νΦ− V [Φ]

)
, (3.1)

where gµν is the spacetime metric, g is its determinant and V [Φ] is the inflaton potential.
The dynamics of the inflaton field is determined by the Euler-Lagrange equations:

∂µ
δ(
√
−gL[Φ])

δ∂µΦ
− δ(
√
−gL[Φ])

δΦ
= 0.

Inserting the form of the FRW metric Eq. (2.2) the equation of motion reads:

Φ̈− 1

a2
∇2Φ + 3HΦ̇ +

δV [Φ]

δΦ
= 0, (3.2)

which resembles the Klein-Gordon equation gµν∂
µ∂νΦ + δV [Φ]

δΦ
= 0 weren’t it for the a−2

factor multiplying the laplacian operator ∇2 = ∂j∂
j and the friction term 3HΦ̇, both

coming from the minimal coupling of the inflaton with the gravitational field. We can
simplify the discussion adopting a perturbative approach, in which we write the inflaton
field as a time-dependent background plus a small perturbation:

Φ(x, t) = φ(t) + δφ(x, t),
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and study the background first. Its equation of motion reads:

φ̈+ 3Hφ̇+
δV [φ]

δφ
= 0. (3.3)

One can then compute the stress-energy tensor in the usual way as:

Tµν = ∂µφ∂νφ+ gµνL,

and since φ does not depend on space then it is homogeneous and isotropic by construction,
so Tµν takes the usual form corresponding to a perfect fluid, Tµν = diag(ρ,−p,−p,−p).
Hence it is possible to obtain the energy density and the pressure:

ρ = T00 =
φ̇2

2
+ V [φ], p =

T jj
3

=
φ̇2

2
− V [φ], (3.4)

so that we can extract the equation of state parameter ω as:

ωinfl =
p

ρ
=

φ̇2

2
− V [φ]

φ̇2

2
+ V [φ]

Note that if the kinetic term is subdominant with respect to the potential, i.e. φ̇2 � V [φ],
then we can obtain an equation of state of the kind p ≈ −ρ: this condition for the inflaton
field is called the slow roll condition. As we saw in the previous chapter this corresponds to
an exponentially growing scale factor: this means that this scalar field can drive inflation if
its potential energy is much larger than its kinetic term (in the following we will see how
this translates to some conditions to the inflaton potential).

Let us now consider the first Friedmann equation (2.12), which can be written in an
alternative form as:

ȧ2 + k =
8πG

3
ρa2,

then using the form of the energy density ρ given by the inflaton field and considering k = 0
we obtain, reminding the definition of the Hubble parameter (2.6):

H2 =
8πG

3

(
φ̇2

2
+ V [φ]

)
.

In order to have inflation the potential must dominate over the kinetic term, hence during
inflation we can approximate:

H2 ≈ 8πG

3
V [φ].

Since we are considering a model of slow roll inflation then the acceleration φ̈ can be
neglected so that the equation of motion becomes:

3Hφ̇+
δV [φ]

δφ
= 0⇐⇒ φ̇ = − 1

3H

δV [φ]

δφ
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The slow roll conditions then become:

φ̇2 � V [φ]⇐⇒ 1

V [φ]

(
δV [φ]

δφ

)2

� H2, (3.5)

|φ̈| � |3Hφ̇| ⇐⇒
∣∣∣∣δ2V [φ]

δφ2

∣∣∣∣� H2. (3.6)

These conditions suggest that the inflaton potential has to be sufficiently flat in order for
the field to slowly roll down on it until it reaches the minimum, at which point inflation
ends since the potential does not dominate anymore.

Another important consequence of inflation is the shrinking of the comoving Hubble
sphere, defined as rH := (aH)−1. In particular one has:

d

dt
rH = −

(
Ḣ

H2
+ 1

)
= − ä

ȧ2
< 0,

because during inflation ä > 0. We can then introduce the Hubble slow roll parameters ε, η
and κ, three important quantities that can be used to rewrite the slow roll conditions:

ε := − Ḣ

H2
, η :=

ε̇

εH
, κ :=

η̇

ηH
.

Then the condition for the shrinking of the Hubble sphere can be written as:

d

dt
rH =

ε− 1

a
< 0,

which tells us that inflation persists as long as ε < 1. This also means that the Hubble
parameter H changes slowly during inflation. Also as we saw before the inflationary epoch
must last for at least N ≥ 60 so that we can to solve the flatness problem. This implies
that the parameter ε has to vary slowly, so it must also hold |η| � 1.

Considering the second Friedman equation (2.13), in the same way as we did for the
first one we can write it as:

Ḣ +H2 = −8πG

3

(
φ̇2

2
− V [φ]

)
,

and inserting it into the first Friedmann equation we obtain:

Ḣ = −4πGφ̇2 = − 1

2M2
P

φ̇2,

where we have introduced the reduced Planck mass MP = (8πG)−1/2. Therefore we can
rewrite the first slow roll parameter as:

ε =
1

2M2
P

φ̇2

H2
. (3.7)
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Then we can use the slow roll condition H2 ≈ V [φ]/(3M2
P ) and the equation of motion

φ̇ ≈ − δV [φ]
δφ

/(3H), to write it in terms of the scalar potential as:

ε ≈ M2
P

2

(
1

V [φ]

δV [φ]

δφ

)2

.

Analogously we can rewrite η as:

η ≈M2
P

1

V [φ]

δ2V [φ]

δφ2
.

Using the above relations we can also write the number of efoldings as a function of the
field, in particular:

N(φ) =

∫ tf

t0

Hdt =

∫ φf

φ0

H(φ)

φ̇
dφ ≈

∫ φf

φ0

1

MP

√
2ε(φ)

|dφ|.

Example: m2φ2 inflation Let us consider the case of the simplest non-trivial scalar
potential:

V [φ] =
1

2
m2φ2,

then the slow roll parameters read:

ε = η = 2

(
MP

φ

)2

.

Since we want these parameters to be small then the inflaton field has to take super-
Planckian values until the end, i.e. φ >

√
2MP =: φf , then inflation ends. Then we can

compute the number of efoldings as:

N(φ) =

∫ φ0

φf

φ

2M2
P

dφ =
φ2

0

4M2
P

− 1

2
.

In order to have N > 60 it must then hold φ0 > 2
√

60MP ≈ 15MP .

This is an example of a large-field inflation since φ takes values which are greater than
the Planck mass. There are other models, such as inflection point or hill-top inflation, for
which the inflaton field takes values which are sub-Planckian, i.e. φ < MP .

The inflaton field comes out in other alternative theories to Einstein gravity as well. In
particular we know that the Einstein field equations (2.1) are derived from the Einstein-
Hilbert action:

SEH [g] =
1

2κ2

∫
d4xLEH [g], LEH [g] =

√
−gR[g],

where R is the Ricci scalar and κ =
√

8πG is the coupling constant of the theory. As we
have seen in this framework the inflaton field is inserted manually in the lagrangian and it
is minimally coupled to gravity. There are other theories in which to the Einstein-Hilbert
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Figure 3.1: A typical inflaton potential. It presents a flat plateau for large field values
and a minimum just before an exponentially growing part. The field starts at high values
and it slowly rolls down until it reaches the minimum, at which point inflation ends.

action some other terms are added, such as RµνRµν , R
µνρσRµνρσ or f(R) [12][13]. In these

cases the inflaton field comes out when gauge freedom is exploited to cancel out some
degrees of freedom of the gravitational field and its potential looks like the one in figure
(3.1). It has an almost flat plateau from which the field rolls down; inflation occurs just
before it reaches the minimum, in which it stabilizes and the universe keeps on expanding
as usual. In chapter 4 we will not consider the aforementioned cases, but we will see that
the inflaton field is one of the moduli that come from string compactification. Its potential
can be tuned in order to look like the one in figure (3.1) and in order for it to satisfy the
conditions (3.5) and (3.6).

3.2 Cosmological perturbations

In order to derive some observable quantities which will be crucial to compare theoretical
predictions with observations we need a framework in which we can define them: this is
given by the theory of cosmological perturbations [1][11][14], which we will present here.
We will consider this framework because we know that the CMB anisotropies are very
small, as we mentioned before. Hence it will be useful to develop the necessary tools to
deal with small perturbations of the metric. From now on we will work in Planck units
where ~ = c = G = 1.

Suppose we want to study small oscillations of a generic quantity X(t,x) around a value
X̄(t), then it is natural to write:

X(t,x) = X̄(t) + δX(t,x),

where δX(t,x) � X̄(t), X̄(t) being a time-dependent homogeneous and isotropic back-
ground. For example we can consider small fluctuations of the metric and the stress-energy
tensor:

gµν = ḡµν + δgµν , Tµν = T̄µν + δTµν ,
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and in this form we can approximate the Einstein equations to very high accuracy as:

Ḡµν = 8πT̄µν , δGµν = 8πδTµν ,

where Gµν is the Einstein tensor and δGµν is its variation given by the variation of the metric
and keeping only order O(δg) terms. Also the continuity equation for the stress-energy
tensor implies ∇µδT

µ
ν = 0.

3.2.1 Metric perturbations in Minkowski and FRW spacetime

If the metric is of the Minkowski type, i.e. gµν = ηµν , then the universe is maximally
symmetric and we can decompose the metric perturbations into scalar, vector and tensor
components (SVT decomposition) which are independent in the linear theory. The perturbed
metric can be written as:

gµν = ηµν + hµν ,

where we have denoted hµν = δgµν . We can then categorize the perturbations according to
their transformation properties under space rotations. According to this h00 is a scalar, h0i

are spatial vectors while hij are spatial tensors. Hence we can parametrize the perturbations
in terms of the SVT decomposition as:

h00 = 2φ, h0i = βi + ∂iγ, hij = −2ψδij +

(
∂i∂j −

1

3
δij∇2

)
λ+

1

2
(∂iεj + ∂jεi) + hTTij ,

where φ, γ, ψ and λ are scalars, βi and εi are vectors and hTTij is a symmetric tensor. We
also have the following definition for the laplacian operator and the constraints on the
perturbing fields:

∇2 = δij∂i∂j, ∂iβ
i = 0, ∂iε

i = 0, ∂ihTTij = 0, δijhTTij = 0.

The ”TT” for the tensorial degrees of freedom stands for ”transverse-traceless”. These
conditions imply that the vectors have 3 − 1 = 2 independent degrees of freedom each
while the tensor has 6− 3− 1 = 2 independent degrees of freedom. These expressions can
be inverted to give the fields in terms of the metric components if the fields satisfy the
following boundary conditions:

γ → 0, λ→ 0, ∇2λ→ 0, εi → 0,

sufficiently fast at spatial infinity.
The linearized theory is invariant under the gauge transformation hµν → hµν−∂µξν−∂νξµ.

If we write the functions ξµ as ξ0 = A, ξi = Bi + ∂iC with ∂iB
i = 0 then the gauge

transformations translate as:

δφ = −Ȧ, δψ =
1

3
∇2C, δγ = −A− Ċ, δλ = −2C, δβi = −Ḃi, δεi = −2Bi, δh

TT
ij = 0,

where δX = X̃−X with X̃ being the transformed field. We then see that these fields, except
the tensor, are not gauge-invariant. However it is possible to define some gauge-invariant
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quantities combining the fields in the right way according to their transformations. In
particular we can define the following gauge invariant fields:

Φ := −φ+ γ̇ − 1

2
λ̈, Ψ := −ψ − 1

6
∇2λ, Ξi := βi −

1

2
ε̇i,

so that any equation for Φ, Ψ and Ξi will be invariant for any gauge choice. As we said
before hTTij is gauge-invariant and it corresponds to gravitational waves. The total number
of gauge-invariant degrees of freedom is then six: two of them are given by the two helicity
states of hTTij , two of them are given by the two helicity states of the transverse vector Ξi

and the other two are given by the two scalars Φ and Ψ. We can then fix a gauge, the most
common one being the Newtonian gauge:

γ = λ = 0, βi = 0,

so that the metric becomes:

ds2 = −(1− 2φ)dt2 +

[
1− 2ψ +

1

2
(∂iεj + ∂jεi) + hTTij

]
dxidxj.

Also in this gauge we can write ψ = −Ψ, φ = −Φ and if we neglect vector perturbations
the metric becomes:

ds2 = −(1 + 2Φ)dt2 +
[
(1 + 2Ψ)δij + hTTij

]
dxidxj.

Let us now consider the case of an expanding flat FRW spacetime:

ds2 = gµνdx
µdxν = a(τ)2ηµνdx

µdxν ,

which satisfies the condition gµν = gµν(τ). We will perform a change of notation in order to
distinguish it from the flat Minkowski case. We can proceed in an analogous way to study
perturbations, so we will write the perturbations on the metric as:

δg00 = 2a2φ, δg0i = a2(Si + ∂iB),

δgij = a2

(
2ψδij + 2∂i∂jE + ∂iFj + ∂jFi +

1

2
hij

)
,

where φ, B, ψ and E are scalars, Sj and Fj are transverse vectors (i.e. ∂jS
j = ∂jF

j = 0)
and hij is a transverse and traceless tensor (i.e. ∂ih

i
j = 0, hjj = 0). In the following we

will neglect the vector perturbations since we will not be interested in them. As before
hij is already gauge-invariant, while for the scalar perturbations we define the following
gauge-invariant quantities, which take the name of Bardeen potentials :

Φ := −φ+
1

a

d

dτ

[
a

(
B − dE

dτ

)]
, Ψ := −ψ −H

(
B − dE

dτ

)
,

where H := a′/a = ȧ is the conformal Hubble parameter. For a = 1 they take a similar
form to the case of Minkowski spacetime. Being these quantities gauge invariant we can fix
a gauge choice and set again B = E = 0, so that Ψ = −ψ and Φ = −φ. This is called the
conformal Newtonian gauge and the metric reads:

ds2 = −a(τ)2(1− 2Φ)dτ 2 + a(τ)2

[
(1− 2Ψ)δij +

1

2
hij

]
dxidxj. (3.8)
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3.2.2 Dynamics and quantization of perturbations

Until now we studied perturbations around a background without making any assumptions
on their nature. Actually the tensor modes are gravitational waves while the scalar modes
are related to the comoving curvature perturbations, usually denoted by ζ. This is a
gauge-invariant quantity whose action reads, at first order:

S[ζ] =
1

2

∫
dtd3xa3 φ̇

2

H2

[
ζ̇2 − 1

a2
∂iζ∂

iζ

]
, (3.9)

We can simplify this equation changing time dependence to conformal time dependence
and introducing a new variable, called the Mukhanov-Sasaki variable:

u := zζ, z :=
√

2εa,

where ε is the first Hubble slow roll parameter. The action then becomes:

S[ζ[u]] =
1

2

∫
dτd3x

[
(u′)2 − ∂iu∂iu+

z′′

z
u2

]
. (3.10)

We see that it is very similar to the Klein-Gordon case, but with conformal time and a
time-dependent effective mass given by:

m2
eff = −z

′′

z
.

The equation of motion for the variable u then reads:

u′′ −∇2u− z′′

z
u = 0. (3.11)

We can then define the Fourier modes:

uk(τ) :=
1

(2π)3/2

∫
R3

d3xe−ik·xu(τ,x),

so that the equation of motion Eq. (3.11) becomes:

u′′k +

(
k2 − z′′

z

)
uk = 0. (3.12)

This is the Mukhanov-Sasaki equation and it will be the starting point to study PBH
production during inflation. It is a linear differential equation so its most general solution
is given by:

uk(τ) = a−k vk(τ) + a+
−kv

∗
k(τ),

where vk and v∗k are two linearly independent solutions and a∓±k are integration constants.
The normalization is chosen to satisfy:

W [vk, v
∗
k] = v′kv

∗
k − vkv∗′k = −i,
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where W [vk, v
∗
k] is the Wronskian. Also the integration constants are chosen so that:

a−k =
W [vk, u

∗
k]

W [vk, v∗k]
, a+

k = (a−k )∗.

We can then write the most general solution to the equation of motion (3.11) in terms of
these modes as:

u(τ,x) =
1

(2π)3/2

∫
R3

d3k
[
a−k vk(τ) + a+

−kv
∗
k(τ)

]
eik·x =

1

(2π)3/2

∫
R3

d3ka−k vk(τ)eik·x + c.c. (3.13)

We can proceed with the canonical quantization of the theory. As usual we define the
conjugate momentum:

π :=
∂L
∂u′

= u′,

and promote u and π to the operator valued tempered distributions û and π̂. We then
impose equal time canonical commutation relations:

[û(τ,x), π̂(τ,y)] = iδ(3)(x− y), [û(τ,x), û(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0,

which translate to the commutation relations for the integration constants, which now
become the creation and annihilation operators:[

â+
k , â

−
p

]
= δ(3)(k− p),

[
â+
k , â

+
p

]
=
[
â−k , â

−
p

]
= 0. (3.14)

These operators act on the Fock space F = C⊕ (
⊕∞

n=1Hn), where:

Hn =

{
|k1, ...,kn〉 =

1√
n!
â+
kn
...â+

k1
|0〉
}

is the n-particle Hilbert space and the vacuum state |0〉 is defined by:

â−k |0〉 = 0 ∀k ∈ R3.

Example: Minkowski spacetime Let us consider the example of a flat Minkowski
spacetime in which a = 0 so that z′′/z = 0. The Mukhanov-Sasaki equation then becomes:

v′′k + k2vk = 0,

whose solution is given by vk(τ) = αe−ikτ + βeikτ . The normalization condition for the
modes implies:

|α|2 − |β|2 =
1

2k
,

and we can choose α = 1/
√

2k and β = 0 so that the modes in Minkowski spacetime
become:

vk(τ) =
1√
2k
e−ikτ .

The vacuum state |0〉M is unique and from this we can construct the usual unitary Minkowski
QFT.
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Example: quasi de Sitter spacetime Let us consider the example of a quasi de Sitter
spacetime in which a(τ) = −1/(Hτ) and ε is small and approximately constant (in fact
during inflation |η| � 1) so that z′′/z = 2/τ 2. The Mukhanov-Sasaki equation then
becomes:

v′′k +

(
k2 − 2

τ 2

)
vk = 0.

As initial conditions we impose the so-called Bunch-Davies conditions :

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ , (3.15)

which basically state that far in the past the modes behave as if they were in Minkowski
spacetime. In such case its analytic solution is given by:

vk(τ) =
1√
2k
e−ikτ

(
1− i

kτ

)
.

We can then consider two limits, i.e. the sub-horizon scales k � aH and the super-horizon
scales k � aH. We can rewrite the Mukhanov-Sasaki equation for the Fourier modes of
the rescaled curvature perturbations uk as:

u′′k + k2

[
1− 2

(
aH

k

)2
]
uk = 0.

Therefore for sub-horizon scales the equation becomes u′′k + k2uk = 0, whose solution is
uk ∝ eikτ . On the other hand for super-horizon scales the equation becomes u′′k−2uk/τ

2 = 0,
whose solutions are uk ∝ τ−1 or uk ∝ τ 2, the former being the one of interest. Considering
again the curvature perturbations we find that ζk = uk/z ∝ const. This means that
curvature perturbations on super-horizon scales freeze: as a consequence it is possible to
ignore the evolution of the perturbations from the moment they exited the horizon until
today.

Note that the construction of the vacuum is not generally unique in a generic spacetime.
In fact, as we said before, Eq. (3.11) is a linear PDE so we can always construct a new
solution as a linear combination of known solution. For example we can define some new
modes:

ṽk(τ) = αkvk(τ) + β∗kv
∗
k(τ),

so that we can write the solution to the equation of motion (3.11) using these modes:

û(τ,x) =
1

(2π)3/2

∫
R3

d3k
[
b̂−k ṽk(τ) + b̂+

−kṽ
∗
k(τ)

]
eik·x =

1

(2π)3/2

∫
R3

d3kb̂−k ṽk(τ)eik·x + h.c., (3.16)

where b̂±k are the new creation and annihilation operators defined by the new modes and
they satisfy the same commutation relations Eq. (3.14) provided that |αk|2 − |βk|2 = 1
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(which is equivalent to W [vk, v
∗
k] = −i). The transformation that relates the two sets of

creation and annihilation operators is called Bogoliubov transformation and reads:{
â−k = α∗kb̂

−
k + βkb̂

+
−k

â+
k = αkb̂

+
k + β∗k b̂

−
−k

. (3.17)

We then have two sets of creation and annihilation operators related by a non trivial
transformation which will define two vacuum states:

â−k |0〉a = 0, b̂−k |0〉b = 0 ∀k ∈ R3.

These are different vacua (in the sense that they cannot be related through a unitary trans-
formation) because the action of an annihilation operator on the vacuum state corresponding
to the other set gives something different from 0, in fact:

â−k |0〉b =
(
α∗kb̂

−
k + βkb̂

+
−k

)
|0〉b = βkb̂

+
−k |0〉b 6= 0 if βk 6= 0.

This can also be seen from the definition of the number operator N̂
(j)
k := ĵ+

k ĵ
−
k , where ĵ

stands for either â or b̂. We can then compute the number of particles with momentum
k on any state |Ω〉, in particular we can compute the expectation value of N̂

(a)
k on the b

vacuum:
〈0|b N̂

(a)
k |0〉b = 〈0|b â+

k â
−
k |0〉b = |βk|2δ(3)(0),

where δ(3)(0) comes from the fact that we are considering an infinite volume, while if we
considered the numerical particle density the result would be finite. The non-uniqueness
of the vacuum is a consequence of the redefinition of the modes and it is not present in
the usual Minkowski QFT since in that case we require the transformations on fields to be
unitary. In our case we need an additional condition for the modes that they must satisfy in
order to specify the true vacuum of our theory. This is actually given by the Bunch-Davies
condition Eq. (3.15) which defines the Bunch-Davies vacuum.

3.2.3 Scalar power spectrum

An important quantity that will be of crucial importance in the study of primordial GWs
is the scalar power spectrum Pu(k), which is an observable and it is defined as:

〈0| ûkûp |0〉 = |vk|2δ(3)(k + p) =: Pu(k)δ(3)(k + p), (3.18)

together with its dimensionless version:

Pu(k) :=
k3

2π2
Pu(k). (3.19)

This quantity is directly related to the two-point function, which in turn is related to
observable quantities: that is why computing the power spectrum is very important to
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obtain a link between the theory and observations. To obtain the power spectrum for the
curvature perturbations ζ it will be sufficient to divide by z2 the expression, obtaining:

Pζ(k) =
k3

2π2
|ζk|2 =

k3

2π2

∣∣∣uk
z

∣∣∣2 . (3.20)

The power spectrum can be computed for the case of quasi de Sitter spacetime for super-
horizon scales as:

Pζ(k � aH) =
1

z2
Pu(k � aH) =

1

2εa2

1

2k3τ 2
=

H2

4εk3
=⇒

Pζ(k) =
H2

8π2ε
. (3.21)

In our hypothesis ε < 1 and |η| � 1, so this can be regarded as a typical slow roll behaviour.
Recalling that on super-horizon scales the curvature perturbations freeze then to a good
level of approximation we can write the power spectrum at horizon crossing, i.e. k = aH,
and it becomes just a function of k:

Pζ(k = aH) =
H2

8π2ε

∣∣∣∣
k=aH

.

As we said before this is the case for quasi de Sitter, for which both H and ε are time-
dependent. This means that Pζ(k) is not actually scale invariant and its deviation from
scale invariance is described by the spectral index ns defined as:

ns − 1 :=
d logPζ(k)

d log k
. (3.22)

Both the dimensionless power spectrum and the spectral index are tied by observational
constraints [15], which are the following ones:

Pζ(kCMB) = 2 · 10−9,

ns = 0.9650± 0.0050,
dns

d log k
= −0.009± 0.008,

where the spectral index and its derivative are computed at scale k∗ = 0.05 Mpc−1 at 68%
confidence level.

3.2.4 Tensor power spectrum

When studying GW production associated to PBHs we need to make a distinction between
their nature and their origin. In particular we identify three of them [16]:

• ”primordial” GWs, which are the ones produced by quantum fluctuations of the
metric perturbations;

• ”induced” GWs, which are the ones produced when the scalar perturbations re-enter
the horizon undergoing gravitational collapse and forming a PBH;
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• GW produced by the merging of PBH binaries.

We are interested in the second case, because in the assumption of gaussianity of the scalar
perturbations (assumption that we will rely on) no significant primordial GWs are produced
[16].

In a similar way to what we did for the scalar case we can define the power spectrum
for the tensor modes. In particular if hij(τ,x) are the gauge invariant tensor perturbations
we can define their Fourier modes as:

hij(τ,x) =
1

(2π)3/2

∫
R3

d3k
[
h

(+)
k (τ)e

(+)
ij (k) + h

(×)
k (τ)e

(×)
ij (k)

]
eik·x, (3.23)

where e
(+,×)
ij (k) are the polarization tensors for the + and the × modes. The insertion of

the metric in Eq. (3.8) into the Einstein equations and setting the scalar modes to 0 (here
we are interested in the tensor modes only) gives, at second order:

h′′ij + 2Hh′ij −∇2hij = 0,

whose solution is Eq. (3.23). In complete analogy with the scalar case we can define the
power spectrum for the tensorial modes as:

〈0| ĥ(m)
k (τ)ĥ(n)

p (τ) |0〉 =: δ(3)(k + p)δ(m)(n)Ph(k), (3.24)

where (m), (n) stands for either (+) or (×). Also its dimensionless version is given by:

Ph(k) =
k3

2π2
Ph(k). (3.25)

As an example we can consider the evolution in conformal time of the tensor modes in
quasi de Sitter spacetime. In such case we have:

H =
a′

a
= −1

τ

1

1− ε
.

Also in complete analogy to the scalar case, defining a new variable v
(·)
ij := ah

(·)
ij /2 (where

(·) denotes either (+) or (×) polarization state) we can obtain an action that is the same
as the one for scalar perturbations, but with two polarization states and −a′′/a instead of
−z′′/z as the effective square mass. For quasi de Sitter spacetime we have:

a′′

a
≈ 1

τ 2
(2 + 3ε),

and so the solution of the equation of motion, imposing again the Bunch-Davies initial
conditions, is given in terms of Hankel functions1 as:

v
(·)
k (τ) =

√
−πτ
2

H(2)
ν (−kτ),

1The Hankel functions of the first and second kind are defined as H
(1,2)
ν (z) := Jν(z)± iYν(z), where Jν

and Yν are Bessel functions of the first and second kind.

25



where the index ν is defined as a′′/a =: (ν2 − 1/4)/τ 2 and in quasi de Sitter spacetime
is equal to ν ≈ 3/2 + ε. Then it is possible to show that the dimensionless tensor power
spectrum for the super-horizon scales is given by:

Ph(k � aH) =

(
k

aH

)3−2ν
2H2

π2
.

Therefore it is possible to extract the spectral index for the tensor modes, which is defined
as:

nT − 1 :=
d logPh(k)

d log k
,

and for quasi de Sitter spacetime it is given by nT = −2ε.
We can define the tensor-to-scalar ration r as:

r :=
AT
As

, Ph,ζ(k) =: AT,s
(
k

k∗

)nT,s−1

. (3.26)

Then this is given by r = 16ε in quasi de Sitter spacetime and it is tied to observational
constraints, in particular r0.002 < 0.064 at scale k∗ = 0.002 Mpc−1 [17]. Therefore since we
can obtain the consistency relation r = −8nT then the tensor spectral index is subjected to
the same constraints. Note that this holds for single-field inflation, if observations led us to
r 6= −8nT then it would mean that inflation was not driven by a single field.

3.3 Dark Matter and PBHs

The reason why physicists study PBHs is because in the last years the proposal of them
being a good candidate for dark matter (DM) arose. The nature of latter is one of the
biggest issues in theoretical physics, but its existence solves at least two problems [18].

Galaxy rotation curves These curves give the angular velocity of the stars in a galaxy
around its center. For a distribution typical of galaxies they present a maximum near the
center and then the velocity decreases far from it. However observations show that once
the velocity reaches its maximum it remains almost flat: this can only happen if the mass
within the radius increases linearly. This goes in contrast with the observations, which
show a decreasing density of usual baryonic matter, see figure (3.2). A solution to this
problem is the inclusion of an invisible massive component of the galaxy that permeates it
everywhere. We call this Dark Matter (DM) since it does not interact via EM interactions
so it cannot be observed directly with any telescope.

Velocity dispersion In a classical bound N -body system the virial theorem must be
obeyed. It relates the kinetic energy of the particles with their interaction potential and it
can be used to compare the velocity distribution of stars predicted by the theory given the
observed (baryonic) mass distribution with observations. The result is not the one that is
computed: even considering complicated mass distributions the observations do not match
the theoretical predictions. The solution to this problem is again DM because a bigger
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Figure 3.2: The rotation curve for the galaxy NGC 6503 which shows the measured values
and the ones given by the theoretical predictions. Source: [18].

mass would match the observations and since it is not detected then it should not interact
electro-magnetically.

But what is DM? Its nature is not clear yet and there are many hypothesis, among
which we have the following ones:

• Weakly Interacting Massive Particle (WIMP), which should be a new elementary
particle not present in the SM and that would be predicted for example by super-
symmetric theories (in this case the candidate would be the Lightest Supersymmetric
Particle -LSP-) or Kaluza-Klein theories (in this case the candidate would be the
Lightest KK Particle -LKP-);

• Quantum Chromodynamics (QCD) axion, which would be a solution to the strong
CP problem in the framework of the Peccei-Quinn theory;

• sterile neutrino, which could be a right-handed neutrino inserted in theories beyond
the SM to explain neutrino oscillations and it would have a wide mass range, between
1 eV and 1015 GeV;

• Gravitationally Interacting Massive Particle (GIMP), which would be arising as
massive singularities in the theory of Einstein gravity.

In any case DM should share the same properties: it must be massive, so that it interacts
gravitationally, and neutral, so that it does not interact electro-magnetically. We will work
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in the different hypothesis that DM is composed of Primordial Black Holes (PBHs), so that
we do not have to neither change GR nor add new elementary particles.

3.3.1 PBH formation

Primordial Black Holes [19][20] form when the curvature perturbations re-enter the Hubble
horizon during inflation and collapse gravitationally. Their formation was studied in depth
by Stephen Hawking in [19]. The main difference between PBHs and ”ordinary” black holes
is that due to their production mechanism their lower bound on the mass is not ≈ 3 M�,
which is the minimum mass that a star must have in order to collapse into a black hole.
Actually their lower bound is related to gamma ray burst due to Hawking evaporation and
it is M ∼ 10−17M� [21].

We can write the fraction of the total energy density of PBHs with mass M at formation
as [22]:

βf (M) =
ρPBH
ρtot

∣∣∣∣
f

,

and assuming a gaussian distribution for the curvature perturbations this can be written as:

βf (M) =
1√

2πσM

∫ ∞
ζc

dζe
− ζ2

2σ2
M ,

where ζc is the critical value for the collapse into a PBH to occur. For σM � ζc we can
approximate this expression as:

βf (M) ≈ σM√
2πζc

e
− ζ2c

2σ2
M .

The mass of a PBH is assumed to be proportional to the horizon mass MH , i.e.:

M = γMH = γ
4π

3

ρtot
H3

∣∣∣∣
f

=
4πγ

Hf

, (3.27)

where γ is a constant related to the details and the efficiency of the gravitational collapse
and it is assumed to be 0 ≤ γ ≤ 1. In our hypothesis PBHs behave as matter, therefore
the fraction of the total energy density of PBHs at formation time can be related to the
present one as:

βf (M) =

(
H0

Hf

)2
ΩDM

a3
f

fPBH(M),

where af is the scale factor at formation time, H0, Hf is the Hubble parameter today and
at formation time respectively and ΩDM is the density parameter for DM today which is
ΩDM ≈ 0.26. Since we assume that the formation of PBHs occurs during the radiation
dominated epoch the Hubble parameter behaves as:

H2
f = Ωr

H2
0

a4
f

(
g∗f
g∗0

) 1
3

, (3.28)
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where g∗f and g∗0 are the number of relativistic degrees of freedom at PBH formation time
and today respectively while Ωr is the density parameter for radiation which is Ωr ≈ 8×10−5.
Combining these results we can write:

βf (M) ≈ 4
√
γ
× 10−9

(
g∗f
g∗0

) 1
4
(
M

M�

) 1
2

fPBH(M).

Assuming that PBHs constitute all of DM today, i.e. fPBH(M) = 1 ∀M , considering only
SM degrees of freedom so that g∗f = 106.75 and g∗0 = 3.36 and assuming γ = 1 we obtain:

βf (M) ≈ 10−8

(
M

M�

) 1
2

. (3.29)

Since the standard deviation of the gaussian distribution is related to the two-point function
as σ2

M ∼ 〈ζζ〉 then assuming ζc = 1 and M = 10−15M� we find βf(M) ≈ 3 × 10−16 and
σ = 0.12. This means that in order to achieve the formation of PBHs we need to enhance
the curvature perturbations power spectrum to O(10−2), which is 7 orders of magnitude
larger than its value at CMB scales. This enhancement can be achieved in models in
which the inflaton potential presents a rich structure that allows for an extremely flat and
sufficiently long plateau during the last stages of inflation. This is actually the case for
Fibre Inflation, as we will discuss below.

It is also possible to give an estimate of the PBH mass in terms of the number of
efoldings that elasped from the CMB scales to their formation. This can be achieved
inserting eq. (3.28) into eq. (3.27) and inverting. In particular we have:

∆NPBH
CMB = log

(
aPBHHinf

aCMBHinf

)
=

18.4− 1

12
log

(
g∗f
g∗0

)
+

1

2
log γ − 1

2
log

(
M

M�

)
, (3.30)

where g∗f and g∗0 are the number of relativistic degrees of freedom at formation time and
at current time.
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Chapter 4

Secondary Gravitational Waves from
PBH production

In this chapter we discuss the theory of secondary gravitational waves induced by a
primordial power spectrum and we study some examples. We then present the current
observational bounds and the sensitivity curves of interferometers, with which we compare
the theoretical results presented in the examples.

4.1 Secondary gravitational waves

To study secondary gravitational waves we will follow [23] (note the different convention
for the Fourier transformation in the paper, therefore some definitions will be different).
Further details can be found in [24] and [25]. Let us consider the following perturbed metric
in the conformal Newtonian gauge:

ds2 = −a(τ)2(1 + 2Ψ)dτ 2 + a(τ)2

[
(1− 2Ψ)δij +

1

2
hij

]
dxidxj,

where Ψ, Φ (= −Ψ in the absence of anisotropic stress) are the Bardeen potentials while
∂ih

ij = 0, h = hjj = 0. We can write the tensor perturbations expanding in Fourier modes:

hij(τ,x) =
1

(2π)3/2

∫
R3

d3k
[
h

(+)
k (τ)e

(+)
ij (k) + h

(×)
k (τ)e

(×)
ij (k)

]
eik·x,

where we have defined the polarization tensors:

e
(+)
ij (k) =

1√
2

[ui(k)uj(k)− vi(k)vj(k)] ,

e
(×)
ij (k) =

1√
2

[ui(k)vj(k) + vi(k)uj(k)] ,

where u and v, which have both unitary norm, are three-vectors defined in such a way that
(u,v, k̂ = k/|k|) form an orthonormal triplet.
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We can then insert the perturbed metric in the Einstein equations and expand them up
to second order to obtain the evolution equation for the secondary GWs. This reads:

h′′ij + 2Hh′ij −∇2hij = −4Prsij Srs,

where a prime ′ denotes a derivation with respect to the conformal time τ , H = a′/a = aH
is the conformal Hubble parameter, Prsij is the projection operator to the transverse and
traceless part of the source term Srs. We can then move to the conjugate space via Fourier
transformation:

Ŝrs(τ,k) =
1

(2π)3/2

∫
R3

d3xSrs(τ,x)e−ik·x,

P̂rsij = e
(+)
ij (k)e(+)rs(k) + e

(×)
ij (k)e(×)rs(k),

so that the equation of motion becomes:

d2

dτ 2
h

(·)
k (τ) + 2H d

dτ
h

(·)
k (τ) + k2h

(·)
k (τ) = Ŝ(·)(τ,k),

where (·) denotes either (+) or (×) and Ŝ(·)(τ,k) := −4e(·)rs(k)Ŝ(·)
rs (τ,k). The solution to

the equation can be expressed in terms of a Green function gk for a radiation dominated
universe (k = |k|):

h
(·)
k (τ) =

1

a(τ)

∫ τ

τ0

dτ̃ gk(τ, τ̃)a(τ̃)Ŝ(·)(τ̃ ,k),

gk(τ, τ̃) =
sin[k(τ − τ̃)]

k
θ(τ − τ̃). (4.1)

From the expansion of the Einstein equations we can then obtain the source term at
second order in the scalar. We are considering a radiation dominated era, hence ω = 1/3,
therefore we have:

Sij = 4Ψ∂i∂jΨ + 2∂iΨ∂jΨ−
4

3(1 + ω)
∂i

(
Ψ′

H
+ Ψ

)
∂j

(
Ψ′

H
+ Ψ

)
=

4Ψ∂i∂jΨ + 2∂iΨ∂jΨ− ∂i
(

Ψ′

H
+ Ψ

)
∂j

(
Ψ′

H
+ Ψ

)
.

We need to write it in Fourier space. First we define the usual Fourier modes for the scalar
Ψ̂(τ,k):

Ψ̂(τ,k) =
1

(2π)3/2

∫
R3

d3xΨ(τ,x)e−ik·x.

They are related to the curvature perturbations ζ through the relation Ψ = 2
3
ζ and we can

write them in terms of a transfer function:

Ψ̂(τ,k) = T (τ,k)Ψ̂(k) =
2

3
T (τ,k)ζ̂(k),

where:

T (τ,k) = T (kτ), T (x) =
9

x2

[
sin
(
x/
√

3
)

x/
√

3
− cos

(
x/
√

3
)]
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is the expression of the transfer function in the radiation dominated era. We further define
the following function:

f(τ, k1, k2) = 4

[
2T (τ, k1)T (τ, k2) +

(
T (τ, k1) +

T ′(τ, k1)

H

)(
T (τ, k2) +

T ′(τ, k2)

H

)]
,

(4.2)
then the final result for the Fourier transformed of the source term yields:

Ŝ(·)(τ,k) =
1

(2π)3/2

4

9

∫
R3

d3p e(·)(k,p)f(τ, p, |k− p|)ζ(p)ζ(k− p),

where e(·)(k,p) = e(·)jk(k)pjpk. This expression for the source term can then be inserted
into the solution to the GW equation of motion. In particular we obtain:

h
(·)
k (τ) =

1

(2π)3/2

4

9

∫
R3

d3p
1

k3τ
e(·)(k,p)ζ(p)ζ(k− p) · ...

... ·
[∫ τ

τ0

kdτ̃(kτ̃) (sin(kτ) cos(kτ̃)− cos(kτ) sin(kτ̃)) f(τ̃ , p, |k− p|)
]
.

Now we need to determine the extremes of the integration over τ̃ . For the lower one we
can consider τ0 = 0 since inflation occurs at the very early stages of the evolution of the
universe. In order to fix the upper extreme of integration we need to study the behaviour of
the transfer function T (τ, k) and of the function f(τ, k1, k2). As we said before the tensor
modes are generated when the perturbations re-enter the Hubble horizon. Since the transfer
function decays as τ−2 this process ends at a time which is around τ ≈ O(103)k−1: this
implies that we can approximate the upper extreme of integration to τ →∞. Hence the
tensor modes become:

h
(·)
k (τ) =

1

(2π)3/2

4

9

∫
R3

d3p
1

k3τ
e(·)(k,p)ζ(p)ζ(k− p) · ...

... ·
[
Ic
(
p

k
,
|k− p|
k

)
cos(kτ) + Is

(
p

k
,
|k− p|
k

)
sin(kτ)

]
,

where we have defined the functions:

Ic(x, y) :=

∫ ∞
0

dzz(− sin z)χ(x, y; z)

Is(x, y) :=

∫ ∞
0

dzz(cos z)χ(x, y; z)

χ(x, y; z) := 4

[
2T (xz)T (yz) +

(
T (xz) + xz

∂

∂z
T (xz)

)(
T (xz) + xz

∂

∂z
T (xz)

)]
.

If we define the new coordinates x := p/k, y := |k−p|/k and we assume that the curvature
perturbation only depend on the modulus of the mode k and not on its direction then the
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domain of integration for these coordinates allowed by the triangular inequality for the
triplet (k,p,k− p) is given by:

x+ y ≥ 1 ∩ x− y ≥ −1 ∩ x− y ≤ 1.

We can then perform another coordinate transformation, d := |x− y|/
√

3, s := (x+ y)/
√

3,
and the domain of integration simply becomes 0 ≤ d ≤ 1/

√
3, 1/

√
3 ≤ s <∞. In doing so

the integrals Ic and Is can be computed analytically.

In general observables are related to correlation functions. In our case we want to
compute the two-point function of the tensor modes since, as we shall see later, it is related
to the energy density parameter of GWs.

The two-point function is given by the insertion of the Fourier modes into a correlator:

〈h(m)
k1

(τ)h
(n)
k2

(τ)〉 =
1

(2π)3

(
4

9

)2 ∫
R3

d3p1

∫
R3

d3p2
1

k3
1k

3
2τ

2
e(m)(k1,p1)e(n)(k2,p2) · ...

... · 〈ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)〉 · ...

... · [Ic (x1, y1) cos(k1τ) + Is (x1, y1) sin(k1τ)] [Ic (x2, y2) cos(k2τ) + Is (x2, y2) sin(k2τ)] ,

where we used (m,n) = (+), (×) to define the two polarization states and xj, yj are the
same coordinates that we defined earlier. We also highlighted the four-point function for
the curvature perturbations 〈ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)〉. Recalling the definition of
the dimensionless scalar power spectrum Pζ(k1):

〈ζ(k1)ζ(k2)〉 = δ(3)(k1 + k2)
2π2

k3
1

Pζ(k1),

we can express the four-point function exploiting Wick theorem and checking the admissible
configuration for the momenta. The result is:

〈ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)〉 =

δ(3)(k1 + k2)
[
δ(3)(k2 + p1 − p2) + δ(3)(p1 + p2)

] 2π2

p3
1

2π2

|k1 − p1|3
Pζ(k1)Pζ(|k1 − p1|).

hence the two-point function for the tensor modes becomes:

〈h(m)
k1

(τ)h
(n)
k2

(τ)〉 = δ(3)(k1 + k2) · 2
(

4

9

)2 ∫
R3

d3p1
1

k6
1τ

2
e(m)(k1,p1)e(n)(k1,p1) · ...

... · 2π2

p3
1

2π2

|k1 − p1|3
Pζ(k1)Pζ(|k1 − p1|) · ...

... ·
[
cos2(k1τ)I2

c (x1, y1) + sin2(k1τ)I2
s (x1, y1) + sin(2k1τ)Ic(x1, y1)Is(x1, y1)

]
.

We can then express the integral in terms of the variables x and y, which turns out to be:

〈h(m)
k1

(τ)h
(n)
k2

(τ)〉 = δ(3)(k1 + k2)
2π2

k3
1

δ(m)(n) · 4

81

1

k2
1τ

2
· ...
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... ·
∫∫
A

dxdy
x2

y2

[
1− (1 + x2 − y2)2

4x2

]2

Pζ(k1x)Pζ(k1y) · ...

... ·
[
cos2(k1τ)I2

c (x1, y1) + sin2(k1τ)I2
s (x1, y1) + sin(2k1τ)Ic(x1, y1)Is(x1, y1)

]
,

where A denotes the domain of integration which was described above.

Now we need an observable, so that it would be possible to compare the theoretical
prediction to measurable quantities. To do so we define the GW power spectrum Ph(k) in
a similar way to what we did for the scalar power spectrum:

〈h(m)
k1

(τ)h
(n)
k2

(τ)〉 = δ(3)(k1 + k2)δ(m)(n) 2π2

k3
1

Ph(τ, k),

which can be extracted from the two-point function we just computed:

Ph(τ, k) =
4

81

1

k2
1τ

2

∫∫
A

dxdy
x2

y2

[
1− (1 + x2 − y2)2

4x2

]2

Pζ(k1x)Pζ(k1y) · ...

... ·
[
cos2(k1τ)I2

c (x1, y1) + sin2(k1τ)I2
s (x1, y1) + sin(2k1τ)Ic(x1, y1)Is(x1, y1)

]
.

This power spectrum is used to compute the density parameter of gravitational waves.
The energy density of GWs is given by [14]:

ρGW (τ,x) =
1

128πa(τ)2

〈
1

2
(h′ij)

2 +
1

2
(∇hij)2

〉
≈ 1

128πa(τ)2

〈
(∇hij)2

〉
,

which can be written in terms of the energy density per logarithmic interval of k as:

ρGW (τ) =

∫
d log k ρGW (τ, k), ρGW (τ, k) =

1

64π

(
k

a(τ)

)2

Ph(τ, k).

We then define the energy density parameter of GWs as:

ΩGW (τ, k) :=
ρGW (τ, k)

ρcritical
=

1

24

(
k

H(τ)

)2

Ph(τ, k), ρcritical =
3H2

8π
,

where the bar denotes an average over time. Since this is the quantity that we want to
compare with the experimental results we want to compute it at present time. This can be
done performing a rescaling using the scale factor through the different epochs and relating
the radiation density during the radiation dominated era to the current one at time τ0

through entropy conservation. Finally, after performing the average over the conformal
time τ and the coordinate change from (x, y) to (s, d) that we defined above, the density
parameter of gravitational waves reads:

ΩGW (τ0, k) =
cgΩr,0

36

∫ ∞
1/
√

3

ds

∫ 1/
√

3

0

dd

[
(s2 − 1/3)(d2 − 1/3)

s2 − d2

]2

· ...
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... · Pζ

(
k
√

3

2
(s+ d)

)
Pζ

(
k
√

3

2
(s− d)

)[
I2
c (s, d) + I2

s (s, d)
]
, (4.3)

where cg ≈ 0.4 is a function of the relativistic degrees of freedom, Ωr,0 ≈ 8 · 10−5 is the
present value for the radiation density while Pζ is the scalar power spectrum. The two
functions Ic and Is come from the analytic integration of the transfer function and read:

Ic(s, d) = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s− 1),

Is(s, d) = −36
s2 + d2 − 2

(s2 − d2)2

[
s2 + d2 − 2

s2 − d2
log

(
1− d2

|s2 − 1|

)
+ 2

]
.

4.1.1 Some examples

In the following we will present some examples of analytical and numerical computations
for some power spectra.

δ function We consider the following power spectrum:

Pδζ (p) = A2δ

(
log

p

kp

)
= kpA2δ(p− kp),

where kp is the peak frequency. We can then insert the power spectrum into the expression
for the density parameter:

Ωδ
GW (τ0, k) =

cgΩr,0k
2
pA4
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∫ ∞
1/
√

3

ds

∫ 1/
√

3

0

dd

[
(s2 − 1/3)(d2 − 1/3)

s2 − d2

]2

· ...

... · δ

(
k
√

3

2
(s+ d)− kp

)
δ

(
k
√

3

2
(s− d)− kp

)[
I2
c (s, d) + I2

s (s, d)
]

=

cgΩr,0k
2
pA4
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∫ ∞
1/
√

3

ds

∫ 1/
√

3

0

dd

[
(s2 − 1/3)(d2 − 1/3)

s2 − d2

]2

· ...

... · δ

(
k
√

3

2

(
s+ d− 2kp√

3k

))
δ

(
k
√

3

2

(
s− d− 2kp√

3k

))[
I2
c (s, d) + I2

s (s, d)
]
.

Since δ(ax) = |a|−1δ(x) we have:

Ωδ
GW (τ0, k) =

cgΩr,0k
2
pA4

36

4

3k2

∫ ∞
1/
√

3

ds

∫ 1/
√

3

0

dd

[
(s2 − 1/3)(d2 − 1/3)

s2 − d2

]2

· ...

... · δ
(
s+ d− 2kp√

3k

)
δ

(
s− d− 2kp√

3k

)[
I2
c (s, d) + I2

s (s, d)
]
.
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We can perform the integral over d assuming that the 0 of the δ enters the integration
domain (we will see later that this assumption is correct) and get:

Ωδ
GW (τ0, k) =

cgΩr,0k
2
pA4

36

4

3k2

∫ ∞
1/
√

3

ds

∫ 1/
√

3

0

dd

[
(s2 − 1/3)(d2 − 1/3)

s2 − d2

]2

· ...

... · δ
(
s+ d− 2kp√

3k

)
δ

(
d−

(
s− 2kp√

3k

))[
I2
c (s, d) + I2

s (s, d)
]

=

cgΩr,0k
2
pA4

36

4

3k2

∫ ∞
1/
√

3

ds

(s2 − 1/3)

((
s− 2kp√

3k

)2

− 1/3

)
s2 −

(
s− 2kp√

3k

)2


2

· ...

... · δ
(

2s− 4kp√
3k

)[
I2
c

(
s, s− 2kp√

3k

)
+ I2

s

(
s, s− 2kp√

3k

)]
.

Exploiting again the fact that δ(ax) = |a|−1δ(x) and assuming that the 0 of the δ enters
the integration domain we can integrate over s to obtain:

Ωδ
GW (τ0, k) =

cgΩr,0A4

486

(
kp
k

)2(
1− k2

4k2
p

)2 [
I2
c

(
2kp√

3k
, 0

)
+ I2

s

(
2kp√

3k
, 0

)]
.

This corresponds to having d = 0 and s = 2kp/(
√

3k). d = 0 is within the domain of
integration, while s = 2kp/(

√
3k) is within the domain of integration only if k < 2kp. This

is a general condition for the wave number of secondary GWs, which states that GWs with
wave number k < Nkp are produced at N -th order, while the effects of GWs with k > Nkp
are much suppressed [20]. The final result can then be written as:

Ωδ
GW (τ0, k) =

cgΩr,0A4

486

(
kp
k

)2(
1− k2

4k2
p

)2 [
I2
c

(
2kp√

3k
, 0

)
+ I2

s

(
2kp√

3k
, 0

)]
θ

(
1− k

2kp

)
.

This is shown in figure (4.1).

Top-hat function This power spectrum is given by:

PTH
ζ (p) =


A2

2∆
for | log(p/kp)| < ∆

0 otherwise

and its limit ∆→ 0 reproduces the δ function power spectrum. This was analysed in [20].
With some suitable changes of coordinates it is possible to write the energy density

parameter as:

ΩTH
GW (τ0, k) =

(
1

2∆

)2 ∫∫
D1∩D2

d log p dδ J (p/k, δ)w(p/k, δ, τ0)Ωδ
GW (τ0, k/p),
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Figure 4.1: Energy density parameter for a δ function scalar power spectrum.

where we have defined the functions:

J (p/k, δ) :=
k

p

[
1− δ2

(
k

2p

)2
]−1

,

w(p/k, δ, τ) := (1− δ2)2

[
1− δ2

(
k

2p

)2
]−1 [

I(k, p+ kδ/2, p− kδ/2, τ)

I(k, p, p, τ)

]2

,

I(k, k1, k2, τ) := k

∫ τ

0

dτ̃ a(τ̃)gk(τ, τ̃)f(τ, k1, k2),

where gk is the Green function defined in Eq. (4.1) and f is the same function defined in
Eq. (4.2). The domain of integration is instead given by:

D1 := {|δ| < 1, p > k/2}, D2 = {| log[(p+ kδ/2)/kp]| < ∆, | log[(p− kδ/2)/kp]| < ∆}.

In figure (4.2) we show the plot of ΩTH
GW for different values of ∆ and ΩTH

GW/Ω
δ
GW at k = kp

as a function of ∆.
From the left panel we actually see that the limit ∆→ 0 corresponds to the case of a

δ function power spectrum. Also for small ∆ it is almost the same at least qualitatively,
while for ∆ = 1.0 it changes its behaviour. It exhibits a flat plateau over the region
| log(k/kp)| < ∆, reflecting the behaviour of the scalar modes. The O(104) difference in
scale between this plot and the one in figure (4.1) is due to the normalization, in fact in
[20] there is an extra factor Ω−1

r,0 in the plot.
From the right panel we see that for small ∆, in particular ∆ < 0.1, ΩTH

GW (τ0, k = kp) as
a function of ∆ is almost constant and can also be approximated by Ωδ

GW . Also we see that
it decreases as ∆−2 for large ∆, which is a behaviour that is expected any generic peaked
power spectrum.
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Figure 4.2: Left panel: normalized energy density parameter for a top-hat function scalar
power spectrum. The red line corresponds to the ∆→ 0 limit, the blue one corresponds to
∆ = 10−3, the green one corresponds to ∆ = 10−1, the purple one correspond to ∆ = 1.
Right panel: ratio ΩTH

GW/Ω
δ
GW at k = kp as a function of ∆. The green line corresponds

to the ∆−2 fit. Source: [20].

Figure 4.3: Energy density parameter for a broken power law scalar power spectrum for
three different sets of exponents.

Broken power law In this case the power spectrum is given by:

PBPLζ (p) = A2

[(
p

kp

)n+

θ(p− kp) +

(
p

kp

)n−

θ(kp − p)
]
, (4.4)

where θ is the Heaviside step function and in general one has n+ < 0, n− > 0. The
details of the computation of the energy density parameter are given in Appendix A.
In figure (4.3) we show the numerical result for three different sets of exponents, i.e.
(n+, n−) = (−1, 1), (−3, 4), (−5, 5). We see that as the modulus of the exponents increases
the shape of the energy density parameter resembles the one for the case of the δ function
power spectrum. This is due to the fact that the peak in the power spectrum becomes
steeper and steeper and peaked at k = kp. Note that the limit n± → ∓∞ does not
correspond to a δ function, but it is interesting to note this similarity.
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Figure 4.4: Observational constraints on the abundance of PBH dark matter. Source:
[26].

4.2 Current observational bounds

We show the current observational bounds on the abundance of PBH Dark Matter in figure
(4.4) [26]. The thick red line corresponds to PBHs formed from a monochromatic power
spectrum, i.e. Pζ(p) = A2kpδ(p − kp), peaked at kp = 2πfLISA = 2π · 3.4 mHz and with
A2 = 0.033. The meanings of every line are given here:

• γ EG bkg: extra-galactic gamma rays as black hole evaporation [27];

• WD: existence of white dwarves in our local galaxy [28];

• HSC: microlensing events on M31 with the Subaru/HSC Andromeda observation [29];

• Kepler: milli/microlensing effect from the Kepler satellite [30];

• EROS: EROS/MACHO microlensing [31];

• UFD: heating of a star cluster in the ultra-faint dwarf galaxy Eridanus II [32];

• CMB: accretion rate and luminosity of PBHs [33][34][35].

We see that in the regions MPBH ∼ [10−17M�, 10−14M�] and MPBH ∼ [10−13M�, 10−11M�]
there are no observational bounds, hence PBHs whose mass belongs in these ranges can
account for all of DM. Also the peak frequency of LISA corresponds to MPBH ∼ 10−12M�,
which is not a constrained value for the mass. This is a very lucky serendipity, since if
PBHs of this mass are all of DM then LISA would detect the GWs produced during their
formation and the signal would be Gaussian, isotropic and unpolarized [26].
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The mass of PBHs only depends on the peak scale and not on the particular form of the
scalar power spectrum, therefore setting kp = 2πfLISA for all the aforementioned examples
will lead to the same conclusion, i.e. there are no constraints in this mass region.

4.3 Interferometry sensitivity curves

In general the signal arriving to a detector can be parametrized as [36]:

s(t) = h(t) + n(t),

where h is the actual signal while n is the noise. Assuming the latter to be gaussian and
with zero mean value we can define the Power Spectral Density (PSD) Sn(f) as:

〈ñ(f)ñ∗(f ′)〉 =:
1

2
δ(f − f ′)Sn(f),

where ñ(f) is the Fourier transformed of the noise. An integration over the positive
frequencies gives:

|n(t)|2 =

∫ +∞

0

dfSn(f),

and hence we can define the amplitude spectral density as the square root of the PSD. We
then define the dimensionless characteristic strain for the source amplitude, hc(f), and for
the noise, hn(f), such that the Signal-to-Noise Ratio (SNR) % can be written as:

%2 =

∫ +∞

−∞
d log f

[
hc(f)

hn(f)

]2

.

With these definitions we have: √
Sn(f) =

1√
f
hn(f).

We give these definitions because they are among the most plotted ones to show the
sensitivities of interferometers. It can be shown that they are related to the energy density
parameter of GWs as follows:

ΩGW (τ0, f)h2 = 6π2f 3Sn(f) · 1034,

so that we can make a comparison between our calculations and the sensitivity curves.
The number h is defined as H0 = 100h km s−1 Mpc−1, H0 being the Hubble parameter
measured at present time. Its most updated value is h = 0.721± 0.020 [37].

The PSDs can be found in the literature. Here we give them for some of the current
and future experiments together with their frequency ranges. These are the most updated
ones to our knowledge.
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• aLIGO, f ∈ [5, 5000] Hz (source: https://dcc.ligo.org/LIGO-T1800044/public).
The LIGO collaboration provides the updated files for the characteristic strain (not an
analytical fit) after the most recent measurement of coating thermal noise on aLIGO
samples.

• LISA, f ∈ [10−5, 1] Hz [38]:

SLISA
n (f) =

10

3L2

[
POMS(f) + 2

(
1 + cos2

(
f

f∗

))
Pacc(f)

(2πf 4)

] [
1 +

3

5

(
f

f∗

)]
,

where L = 2.5 Gm is the length of the arms, f∗ = c/(2πL) = 19.09 mHz and the
so-called Optical Metrology Noise POMS and the test mass Acceleration noise Pacc
are given by:

POMS(f) = 2.25 · 10−22 m2

[
1 +

(
2 mHz

f

)2
]

Hz−1,

Pacc(f) = 9 · 10−30 m2s−4

[
1 +

(
0.4 mHz

f

)2
][

1 +

(
8 mHz

f

)4
]

Hz−1.

• DECIGO, f ∈ [10−5, 100] Hz [39]:

SDECIGO
n (f) = 7.05 · 10−48

[
1 +

(
f

fp

)2
]

+ 4.8 · 10−51

(
f

1 Hz

)−4
1

1 +
(
f
fp

)2 + ...

...+ 5.33 · 10−52

(
f

1 Hz

)−4

Hz−1,

where fp = 7.36 Hz.

• BBO, f ∈ [10−5, 100] Hz [39]:

SBBO
n (f) = 2 · 10−49

(
f

1 Hz

)2

+ 4.58 · 10−49 + 1.26 · 10−51

(
f

1 Hz

)−4

Hz−1.

• MAGIS-100 and MAGIS-km, f ∈ [0.1, 10] Hz [40][41]. For the MAGIS-100 experiment
two curves are reported: the one denoted by ”MAGIS-100 (5 year)” shows what is
possible after sensor research and development, the one denoted by ”MAGIS-km” is
the estimated sensitivity of a future km-scale experiment. The two strains are given
by:

SMAGIS-100 (5 year)
n (f) = 10−38 Hz−1, SMAGIS-km

n (f) = 10−42 Hz−1.

• ET , f ∈ [1, 104] Hz [42]:

SET
n (f) = S0

[
xα + a0x

β +
b0(1 + b1x+ b2x

2 + b3x
3 + b4x4 + b5x

5 + b6x
6)

1 + c1x+ c2x2 + c3x3 + c4x4

]
,

where x = f/(200 Hz), S0 = 1.52 · 10−52, α = −4.1, β = −0.69, a0 = 186, b0 =
233, b1 = 31, b2 = −65, b3 = 52, b4 = −42, b5 = 10, b6 = 12, c1 = 14, c2 = −37, c3 =
19 and c4 = 27.
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Figure 4.5: Comparison between the energy density parameters computed from a δ func-
tion, top hat function and broken power law scalar power spectrum with the interferometry
sensitivity curves.

We compare the examples we studied in section 4.1.1 (for the case of broken power law
we consider n+ = −n− = −5), considering A2 = 0.033 and a peak scale kp = 2πfLISA.
The energy density parameter is multiplied by a factor h2 by convention. The comparison
is shown in figure (4.5). We see that the models considered in the examples produce a
GW signal that enter the frequency ranges of LISA, DECIGO and BBO. For the other
interferometers these signals would be out of their frequency range: this would mean
relying on higher frequency GWs, which would have been produced by lower mass PBHs,
namely around MPBH ∼ 10−18M� or even less. However these values of the mass are very
constrained, actually it is very improbable that PBHs of these masses can account for a
significant fraction of DM, see the observational bounds from extra-galactic gamma rays in
figure (4.4). We then conclude that it is very unlikely that these interferometers will be
able to detect the GW background generated by PBH production.
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Chapter 5

GWs from Fibre Inflation

In this chapter we present the inflationary model of Fibre Inflation and we show how we can
achieve the formation of primordial black holes. We then present the original work of this
thesis, namely the study of gravitational wave production after PBH formation, comparing
our results with the current observational bounds and the interferometry sensitivities.

5.1 Fibre Inflation

Fibre Inflation [43] is an inflationary model derived from string theory in the context of
type IIB flux compactification, and which we will consider in the next sections to study
secondary GW production.

The reason why we consider this framework is because in type IIB string theory it is
possible to achieve moduli stabilisation and to obtain an effective 10D supergravity action
with N = 1 supersymmetry, which allows for chiral matter. After compactification on
a Calabi-Yau (CY) manifold (a three-fold to be precise) the N = 1 supersymmetry is
preserved, hence it is possible to compare results with observations. The moduli in the
4D supergravity action are called Kähler moduli and they are complex scalar fields that
parametrize geometrical features of the CY manifold such as its volume and the deformations
of the extra dimensions. We can parametrize them as Ti = τi + ibi, i = 1, ..., h1,1(X), where
h1,1(X) is a Hodge number of the CY manifold X. In terms of the real part of the Kähler
moduli τi we can write the volume of the CY manifold as:

V = tP1τK3 − τ 3/2
dP ,

where tP1 is the volume of the P1 base on which a K3 divisor with volume τK3 is fibred and
τdP is the volume of a diagonal del Pezzo divisor. It is shown that in a 1/V � 1 expansion
only V and τdP are lifted by non-perturbative corrections to the superpotential W and
perturbative α′ corrections to the Kähler potential K, while τK3 remains flat and so it
represents a good candidate for the inflaton since it enjoys an effective non-compact rescale
symmetry.

Considering open-string loop corrections and higher derivative α′ effects one obtains an
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CW AW BW GW/〈V〉 RW/〈V〉 〈τK3〉 〈V〉
P1 1/10 2/100 1 1.303386×10−3 6.58724×10−3 3.89 107.3
P2 4/100 2/100 1 3.080548×10−5 7.071067×10−4 14.30 1000
P3 1.978/100 1.65/100 1.01 9.257715×10−8 1.414×10−5 168.03 50000

Table 5.1: Examples of parameters for the Fibre Inflation potential Eq. (5.2) that allow
for PBH formation of mass 10−14M�. In all cases DW = 0.

inflationary potential for τK3 of the form:

Vinf (τK3) =

(
Cup
V4/3

+ g2
s

CKK
τ 2
K3

+
W 2

0√
gs

εF 4

VτK3

+
CW
V√τK3

+ g2
sDKK

τK3

V2
+ δF 4

W 2
0√
gs

√
τK3

V2

)
W 2

0

V2
,

where gs � 1 is the string coupling, W0 = O(1 − 10) is the superpotential (which is
constant after moduli stabilisation), Cup controls the uplifting contribution and depends on
V , CKK , DKK and CW are coefficients for the 1-loop open string corrections while εF 4 and
δF 4 are coefficients for the higher derivatives α′ F 4 effects.

In order to generate a potential that can allow for PBH formation we need to introduce
some other corrections. In particular CW is not a constant but it is a function of the
modulus τK3 of the following form:

CW (τK3) = CW −
AW
√
τK3√

τK3 −BW

,

where AW , BW and CW are constant parameters. Also there is another 1-loop correction
to the effective action which is crucial for the formation of PBHs given by:

δVW = W 2
0

τK3

V4

DW −
GW

1 +RW
τ
3/2
K3

V

 ,

where again DW , GW and RW are constant parameters. In Fibre Inflation models many
contributions to the inflaton potential can be neglected such as the Kaluza-Klein loop
correction, so that CKK = DKK = 0. We will also neglect the higher derivative effects, so
the inflaton potential we will consider is given by:

Vinf (τK3) =
W 2

0

V3

 Cup
V1/3

− CW√
τK3

+
AW√

τK3 −BW

+
τK3

V

DW −
GW

1 +RW
τ
3/2
K3

V

 . (5.1)

We can express this potential in terms of the canonically normalized inflaton field φ,
defined as:

φ :=

√
3

2
log〈τK3〉+ φ̂,

where 〈τK3〉 is the minimum of the modulus τK3. Then the potential becomes:

Vinf (φ) = V0

[
C1 − e−φ̂/

√
3

(
1− C2

1− C3e−φ̂/
√

3

)
+ C4e

2φ̂/
√

3

(
1− C5

1 + C6eφ̂
√

3

)]
, (5.2)
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Figure 5.1: Fibre Inflation potential corresponding to the set of parameters P2 in table
(5.1)

where:

V0 =
CWW

2
0

V10/3
, C1 =

Cup〈τK3〉1/2

CWV1/3
, C2 =

AW
CW

, C3 =
BW

〈τK3〉1/2
,

C4 =
〈τK3〉3/2DW

VCW
, C5 =

GW

DW

, C6 =
〈τK3〉3/2RW

V
.

In figure (5.1) we show the Fibre Inflation potential Eq. (5.2) for the set of parameters P2

of table (5.1).
From Fibre Inflation it is then possible to compute the Hubble parameter H and the slow

roll parameters, which are shown in the figure (5.2). This was done solving the Friedmann
equation (2.12) and the inflaton equation of motion (3.2) simultaneously as functions of the
number of efoldings N , which are the following:

H ′ +
1

2
H(φ′)2 = 0, H2φ′′ + (HH ′ + 3H2)φ′ +

δV [φ]

δφ
= 0, (5.3)

where in this case the prime ′ denotes a derivation with respect to N . The slow roll
parameters were then computed as:

ε = −H
′

H
, η = 2ε− 2

H2(φ′)2

δV [φ]

δφ
− 6

5.1.1 PBH formation in Fibre Inflation

The primordial power spectrum is computed solving the MS equation (3.12) since we
cannot consider slow roll approximations Eq. (3.21) when modes corresponding to about
N ∈ [15, 25] efoldings before the end of inflation enter the Hubble horizon. The MS equation
as a function of N reads:

u′′k + (1− ε)u′k +

[(
k

aH

)2

+
(

1 +
η

2

)(
ε− η

2
− 2
)
− η′

2

]
uk = 0,
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Figure 5.2: Left panel: the Hubble parameter H as a function of the number of efoldings
before the end of inflation. Right panel: the Hubble slow roll parameters ε, η and κ
derived from the Fibre Inflation potential Eq. (5.1), the Friedmann equation and the
inflaton equation of motion Eqs. (5.3).

where the prime ′ denotes a derivation with respect to N and it has been used the identity:

1

z

d2z

dτ 2
= (aH)2

[
2− ε+

3η

2
− εη

2
+
η2

4
+
ηκ

2

]
to rewrite the effective mass of the curvature perturbations. The dimensionless power
spectrum is given by:

Pu(k) =
k3

2π2

∣∣∣uk
z

∣∣∣2 ,
which in the superhorizon limit kτ → 0 can be approximated as:

Pu,sh(k) =
H2

8π2ε

22ν−1|Γ(ν)|2

π

(
k

aH

)3−2ν

In the slow roll regime ε, η, κ � 1 we can approximate z′′/z ≈ 2(2 + 3ε + 3η)/τ 2 so that
ν ≈ 3/2 + ε+ η/2 and the power spectrum can be computed at horizon crossing as:

Pu,sr(k) =
H2

8π2ε

∣∣∣∣
k=aH

. (5.4)

To compute the power spectrum the MS equation (3.12) is solved numerically and the
curvature perturbations uk and the function z are evaluated at the end of inflation. In
figure (5.3) we show the result with a comparison with the slow roll approximation. As we
see it breaks down when the inflaton field approaches the point of inflection of the potential
and the constant roll phase is reached: this is indeed the moment when the curvature
perturbations are enhanced and PBH formation can be achieved.

The spectral index can be computed and with the set of the parameters P2 in table
(5.1) turns out to be ns = 0.9437. This is 3σ redder than the current best fit, however the
tension can be decreased including non-zero neutrino masses, making the result compatible
within 2σ.
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Figure 5.3: The thick blue line represents the primordial power spectrum in Fibre Inflation
obtained with the inflaton potential Eq. (5.2) with the set of parameters P2 in table (5.1).
The dashed orange line represents the slow roll approximation Eq. (5.4).

5.2 GW production in Fibre Inflation

In this section we compute the energy density parameter of GWs using the Fibre Inflation
power spectrum in figure (5.3): this is done applying the theory of secondary GWs we
studied in the first section. We will then compare our results with the current observational
bounds and the interferometry sensitivities.

Before proceeding we need to make some comments about the code we used to compute
the energy density parameter of GWs.

First of all we computed the scalar power spectrum numerically, so it is not defined
for all possible values of k, but only for the ones that enter the horizon before the end of
inflation, i.e. when ε < 1. In particular we have the following interval for the wave number:

k ∈ [1.32× 10−5, 2.3× 1020].

The upper extreme of integration for the variable s is +∞, so in principle the potential
should be defined for all possible wave numbers in order for the integration to make sense.
Since this does not hold there was the need of fixing the upper extreme of integration. In
particular the following condition was adopted:

k
√

3

2

(
smax + dmax(= 1/

√
3)
)

= kmax =⇒ smax =
1√
3

(
2kmax
k
− 1

)
,

where kmax is the last value at which the scalar power spectrum is defined. This holds
because from Eq. (4.3) we see that this is the highest possible value for which the power
spectrum in the integrand is defined.

The extremes of integration include the point s = d = 1/
√

3: this would mean that the
potential should be defined also for k = 0 since in the integrand it appears as a function of
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Figure 5.4: Left panel: energy density parameter ΩGWh
2 computed using the Fibre

Inflation primordial power spectrum figure (5.3) as a function of the scale k. Right panel:
energy density parameter ΩGWh

2 computed using the Fibre Inflation primordial power
spectrum figure (5.3) as a function of the PBH mass MPBH .

const · (s− d). However the extrapolation of the potential to small values of k performed
by the software leads to a decrease of Pζ , so there is no need of fixing the lower extreme of
integration since it would lead to a negligible contribution to the overall result.

Also it is important to consider the behaviour of the function I2
c (s, d) + I2

s (s, d) when
we change the upper extreme of integration. In fact if we take a look at these functions we
see that the dependence on the variable d is weak while for s ∼ O(103−4) its contribution to
the integral becomes negligible. This corresponds to a maximum value for the scale of order
k ∼ 1016−17: for higher scales the upper extreme of integration could be too low to actually
include the main contribution of this function to the integral and so the results may not
be reliable for these values. However as we shall see from our results the energy density
parameter corresponding to these scales is already out of reach of current experiments,
therefore these scales will not be relevant in the comparison with observations.

Once we computed the energy density parameter we plotted it as a function of the scale
k and the PBH mass M , which is computed inverting Eq. (3.30). In particular we have:

M

M�
= γ

(
g∗f
g∗0

) 1
6

exp
[
36.8− 2∆NPBH

CMB

]
. (5.5)

We used γ = 1 and only SM physics involved in PBH production, therefore g∗f = 106.75
and g∗0 = 3.36. In figure (5.4) we plot the energy density parameter as a function of the
scale k, ΩGW (τ0, k), and as a function of the PBH mass MPBH , ΩGW (τ0,MPBH).

In order to compare our results with the sensitivities of interferometers we plotted the
energy density parameter as a function of the GW peak frequency, ΩGW (τ0, fGW ). To obtain
a relation between the PBH mass and the GW frequency we followed [20], according to
which:

fGW = 0.03 Hz

(
1020g

MPBH

) 1
2
(

106.75

g∗f

) 1
12

,

and since PBH are formed in the RD epoch then, assuming that only SM physics is involved
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Figure 5.5: Left panel: energy density parameter ΩGWh
2 computed using the Fibre

Inflation primordial power spectrum figure (5.3) as a function of the GW peak frequency
fGW . Right panel: the thick blue line represents the energy density parameter ΩGWh

2

computed using the Fibre Inflation primordial power spectrum figure (5.3) for large scales,
while the dashed orange line represents the fit ΩGW ∼ f−2.4.

Figure 5.6: The thick blue line represents the primordial power spectrum derived in Fibre
Inflation for large scales, while the dashed orange line represents the fit Pu ∼ k−1.2

in their production, g∗f = 106.75 and so:

fGW = 0.03 Hz

(
1020g

MPBH

) 1
2

= 6.73 · 10−9 Hz

(
M�
MPBH

) 1
2

. (5.6)

The plot is presented in figure (5.5). We see that the maximum value of the density
parameter is reached at a frequency fmax ∼ 10−1 Hz. This suggests that to compare
our results with observations we must rely on interferometers that can detect GWs whose
frequency is around this value. This is the case for, e.g., LISA, DECIGO, BBO, MAGIS-100,
ET and aLIGO; this frequency is out of reach of other possible experiments such as IPTA
and SKA whose frequency domain is around [∼ 10−9,∼ 10−6] Hz. For high frequency
it was possible to perform a polynomial fit finding ΩGW (τ, f) ∼ f−2.4. This is what we
expect since a good fit for the power spectrum for Fibre Inflation is Pu(k) ∼ k−1.2 for
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Figure 5.7: The black thick line represents the energy density parameter ΩGWh
2 as

a function of the GW frequency computed from the Fibre Inflation primordial power
spectrum. The dashed lines represent the sensitivity curves for aLIGO, LISA, DECIGO,
BBO, MAGIS-100, MAGIS-km, and ET.

large scales k ∈ [∼ 1013,∼ 1017], see figure (5.6). It is easy to establish a relation between
the GW frequency, the mass of PBHs and the scale using Eqs. (5.5), (5.6) and the fact
that k ∼ a ∼ e∆N , obtaining, as one should expect, k ∼ f . Then since we have the
correspondence ΩGW ∼ Ph ∼ P2

u we obtain ΩGW ∼ f−2.4, which is what we computed. For
the lower frequencies it was not possible to perform a similar fit since we see from figure (5.3)
that the behaviour of the scalar power spectrum at scales corresponding to N ≈ 19− 26
efoldings before the end of inflation (or k ∼ 1010 − 1012) cannot be approximated with a
function of the kind Pu(k) ∼ kα.

5.2.1 Comparison with current observational bounds

Comparing the plot in the right panel of figure (5.4) with figure (4.4) we see that our peak
mass is around ∼ 10−15M�, which is a value that does not have observational bounds for
the mass of PBHs. As the mass increases we find the some constraints due to the existence
of white dwarves for MPBH ∼ 10−14 − 10−13M� which however do not influence our results
since the contribution to the total DM abundance for PBHs of this mass is between 10%
and 100% [44]. There are no constraints until MPBH ∼ 10−11 − 10−10M�. These values
correspond to ΩGW (τ0,MPBH)h2 ∼ 10−15 − 10−16, which are out of reach of current and
future interferometers.

5.2.2 Comparison with interferometry sensitivity curves

In figure (5.7) we compare the energy density parameter ΩGWh
2 as a function of the GW

peak frequency with the sensitivity curves of these interferometers. We see that it is just
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out of reach of LISA, ET and MAGIS-km, but the future experiments DECIGO and BBO
could detect these gravitational waves.

As we said before the scales higher than k ∼ 1016 − 1017 are not reliable, however they
correspond to GW frequencies of order f ∼ 105 − 106 Hz. This can be proved relating
the GW frequency fGW in Eq. (5.6) with the scales k using Eq. (5.5) and the fact that
a = exp(∆N) = k/H. The Hubble parameter H is always of order O(10−5 − 10−6) during
inflation (as it can be seen from the left panel of figure (5.2)) and inserting the numerical
values for the number of relativistic degrees of freedom at formation time and at present
time one finds the result:

fGW ∼ (10−11 − 10−12) · k Hz

We then conclude that our results are reliable within the frequency domains of current and
future interferometers, so that they can be compared with observations.
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Chapter 6

Conclusions

The objective of this thesis was the study of gravitational wave production in Fibre Inflation.
These would have been generated after the gravitational collapse of the density perturbations
to form primordial black holes during inflation.

The first chapter was devoted to a general introduction to the ideas and tools that were
used in this thesis. We also defined our units and notations.

In the second chapter we studied standard cosmology. We started from the assumption
of homogeneous and isotropic universe, namely the Cosmological Principle, which uniquely
determines the spacetime metric to be of the FRW type. Exploiting the continuity equation
for the stress-energy tensor and inserting the metric into the Einstein field equations we
obtained the Friedmann equations for the evolution in time of the scale factor. We analyzed
three typical cases, namely dust, radiation and vacuum energy, and we found that for a flat
FRW spacetime the third case allows for an accelerated expansion of the universe. We then
enlightened some of the problems that afflict this model, namely the flatness, the horizon
and the exotic particles problem, and we showed how a period of accelerated expansion of
the universe solves them simultaneously.

In the third chapter we studied inflation in detail, showing that a scalar field, the
inflaton, can drive it if its potential is sufficiently smooth and flat. We studied the evolution
of the background, which obeys a Klein-Gordon-like equation, and we saw how its coupling
with the gravitational field induces inflation. After that we briefly studied the theory of
cosmological perturbations, showing how it can be used to study small variations around
the flat FRW metric. This led us to a form of the metric that contains both scalar and
tensor modes, which are of interest for us in the study of gravitational wave production.
We then moved to study the curvature perturbations and we derived the Mukhanov-Sasaki
equation, which describes the evolution in (conformal) time of their Fourier modes. Their
quantization is then performed and we saw how the non-uniqueness of the vacuum, a
typical feature of the theory of quantum fields in a curved background, can be removed
setting some initial conditions for the modes: we adopted the Bunch-Davies conditions. We
then defined the scalar and the tensor power spectra and we reported their observational
constraints. We devoted the final section of the chapter to the description of dark matter
and the problem that its introduction as a component of the total energy density of the
universe solves. We proposed that it is made of primordial black holes and we studied their
production mechanism and gave some estimates on the primordial power spectrum in order
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for this process to actually occur.
In the fourth chapter we introduced the theory of secondary gravitational waves using

the metric derived in the previous chapter when we dealt with cosmological perturbation
theory. We derived an expression for the energy density parameter for gravitational waves
and we computed it for some examples of primordial power spectra. We then described the
current observational bounds on the fraction of PBH DM and the interferometry sensitivity
curves and we compared them with the results from the examples.

Finally in the fifth chapter we introduced Fibre Inflation, an inflationary model derived
from string theory in the framework of type IIB flux compactification. In this model the
scalar power spectrum is computed numerically solving the Mukhanov-Sasaki equation
for the curvature perturbations and it presents a peak of order O(10−2) that allows for
the formation of primordial black holes. We then inserted this power spectrum into the
expression for the energy density parameter for gravitational waves and analyzed the results.
We found that the peak is at a frequency of order O(10−1) Hz, which is in the frequency
domain of current and future experiments such as LISA, DECIGO, BBO and ET. We
then compared it with their sensitivity curves, finding that the stochastic background of
gravitational waves derived in this framework is just out of reach of LISA. In order for
the signal to be detected by this experiment the mass of primordial black holes produced
in Fibre Inflation should be higher: this would allow for the peak to be around a lower
frequency and hence detectable. However this would mean that the inflection point should
be at field values that are further from the minimum than the one that we considered in this
thesis and this has problems related to the spectral index. In Fibre Inflation this quantity
turns out to be a bit too red (it can be fixed for example adding non-zero neutrino masses)
and the change of the position of the inflection point we just mentioned would make it
even redder. Also a higher PBH mass would be subjected to the observational constraints
mentioned in chapter 4: we then conclude that to detect these gravitational waves we need
to rely on other detectors.

Among these there are DECIGO and BBO: in fact their sensitivities allow for the
detection of the signal we computed in chapter 5. This is an important result since it
provides a connection between an observable quantity predicted from string theory and
experiments: we could then be able to test the theory and check the validity of our result.

We studied dark matter as primordial black holes because this hypothesis does not rely
on modified gravity theory nor physics in beyond the SM in their production mechanism.
Also the primordial power spectrum is derived from a top down approach as a low energy
effective 4D theory whose UV limit is string theory and not given as an ansatz as it is done
in the three examples we studied in chapter 4 (δ function, top hat function and broken
power law). These are two appealing features that enlighten the robustness of the model
we considered. Finally we stress that the inflaton potential has a rich structure that allows
for the production primordial black holes. Among the parameters that can be tuned there
are some concerning the details of string compactification: this can be a way to explore the
string landscape and thus to make a connection between string compactification and string
phenomenology with observation.
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Appendix A

Calculations for the broken power law
potential

Here we present the details of the computation of the energy density parameter for GWs
for the case of the broken power law potential Eq. (4.4).

The two terms in the integral are written as:

PBPL
ζ

(√
3

2
k(s± d)

)
= A2

(√
3k

2kp
(s± d)

)n+

θ

(√
3

2
k(s± d)− kp

)
+ ...

...+A2

(√
3k

2kp
(s± d)

)n−

θ

(
kp −

√
3

2
k(s± d)

)
,

so that the product of the two Pζ terms in the integral becomes:

PBPL
ζ

(√
3

2
k(s+ d)

)
PBPL
ζ

(√
3

2
k(s− d)

)
=

A4

(
3k2

4k2
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3

2
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)
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(√
3

2
k(s− d)− kp

)
+ ...

...+A4

(√
3k

2kp
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3

2
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θ

(
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√
3

2
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)
+ ...

...+A4

(√
3k

2kp
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(
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√
3

2
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)
θ

(√
3

2
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)
+ ...
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(
3k2
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(
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√
3

2
k(s+ d)

)
θ

(
kp −

√
3

2
k(s− d)

)
. (A.1)

Once we have the expression in Eq. (A.1) for the product of the two power spectra in the
integrand the θ functions give some conditions on the domains of integration. First of all we
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impose the condition k < 2kp [20], then necessarily it must hold Q > 1/
√

3, where we have
defined Q := 2kp/(

√
3k). The Heaviside θ functions, together with the integration domains

s ∈ [1/
√

3,∞], d ∈ [0, 1
√

3], give the following conditions to the domains of integration of
the four terms in Eq. (A.1):

First term:

{
s+ d ≥ Q

s− d ≥ Q
=⇒

{
[Q ≤ s ≤ Q+ 1/

√
3 ∧ 0 ≤ d ≤ s−Q] ∪

[Q+ 1/
√

3 ≤ s <∞ ∧ 0 ≤ d ≤ 1/
√

3]

Second term:

{
s+ d ≥ Q

s− d ≤ Q
=⇒

{
[1/
√

3 ≤ s ≤ Q ∧ Q− s ≤ d ≤ 1/
√

3] ∪
[Q ≤ s ≤ Q+ 1/

√
3 ∧ s−Q ≤ d ≤ 1/

√
3]

Third term:

{
s+ d ≤ Q

s− d ≥ Q
=⇒ ∅,

Fourth term:{
s+ d ≤ Q

s− d ≤ Q
=⇒


[1/
√

3 ≤ s ≤ Q ∧ 0 ≤ d ≤ Q− s] if Q ≤ 2/
√

3{
[1/
√

3 ≤ s ≤ Q− 1/
√

3 ∧ 0 ≤ d ≤ Q− 1
√

3] ∪
[Q− 1/

√
3 ≤ s ≤ Q ∧ 0 ≤ d ≤ s−Q]

if Q > 2/
√

3

The final result can then be written as the sum of three integrals:

36

cgΩr,0

ΩGW (τ0, k) = I1 + I2 + I3,

where:
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and:
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Also note that:

θ

(
±
(
Q− 2√

3

))
= 1⇐⇒ ±k > ±kp.

Let us begin expanding i1(s, d):
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)
, (A.2)

where fm, gm and hm are the following even polynomials:
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The integrations of the first and the third terms over the variable d are given by this general
expression:∫ β

α

dd da(s2−d2)n+−b =
da+1s−a(sa − d2)n+−b+1

a+ 1
F2 1

(
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a− 2b+ 3

2
+ n+;

a+ 3

2
; d2s−a

) ∣∣∣∣d=β

d=α

,

where F2 1 is the hypergeometric function. For the other two terms we could not find any
analytic expression due to the presence of the logarithm.

The computation of I3 is analogous, with n− instead of n+.

For I2 we have the same terms as in Eq. (A.2), but with (s2 − d2)n+ exchanged with
(s+d)n+(s−d)n− . The integrations over the variable d give the following general expression
for the first and third terms:∫ β

α

dd da(s+ d)n+−b(s− d)n−−b =

da+1

a+ 1

(
1− d2

s2

)b(
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s
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a+ 1, b− n+, b− n−; a+ 2;

d

s
,−d

s

) ∣∣∣∣d=β

d=α

,

where F1 is the first Appell hypergeometric series. Again for the other two terms we could
not find an analytical expression due to the presence of the logarithm.

The integration over s must then be carried over numerically since we were not able to
find an analytical expression due to their very complicated form.
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