SCUOLA DI SCIENZE Corso di Laurea in Matematica

Un modello dinamico di ottimizzazione di portafoglio per robo-advisors

Relatore: Chiar.mo Prof. Stefano Pagliarani Presentata da: Pietro Sittoni

 $\begin{array}{c} {\rm VI~Sessione} \\ {\rm Anno~Accademico~2019/2020} \end{array}$

Introduzione

Negli ultimi anni il ricorso a gestori di investimenti automatizzati, comunemente noti come *robo-advisor*, si è progressivamente diffuso. Nati nel 2008 sulla scia della crisi finanziaria e della conseguente perdita di fiducia nelle istituzioni di servizi finanziari, i *robo-advisor* hanno raggiunto oggigiorno un valore delle attività sotto il loro controllo che è pari a 600\$ miliardi nel mercato americano, 100\$ miliardi nel mercato europeo e 75\$ miliardi nel mercato asiatico [8].

Robo-advisor è un termine che comprende varie forme di consulenza finanziaria digitale per la gestione degli investimenti e di trading. In questo studio ci concentreremo sui robo-advisor che operano con investimenti passivi a lungo termine, con un livello di autonomia elevato.

L'obiettivo del *robo-advisor* è costruire e gestire un portafoglio su misura per il profilo di rischio del cliente. Il *robo-advisor* interagisce ripetutamente con il cliente, il quale comunica e aggiorna la propria avversione al rischio. Lo scambio di informazioni si rende necessario per evitare che il robo-advisor prenda decisioni basate su informazioni non aggiornate e, quindi, incorra nell'eventualità di agire in modo difforme dal profilo di rischio del cliente.

Nella costruzione del modello di *robo-advisor* e nelle ricerca della strategia da adottare faremo riferimento all'articolo di *Capponi*, *Ólafsson* e *Zaripho-poulou* [4]. Il *robo-advisor* descritto nel presente lavoro utilizza un criterio di

INTRODUZIONE

investimento mean-variance a più periodi con un orizzonte di investimento finito, molti modelli di robo-advisor utilizzano criteri analoghi. La differenza maggiore con gli altri criteri mean-variance sta nel parametro di avversione al rischio, che spesso viene considerato un parametro costante lungo tutto l'orizzonte di investimento. Nel nostro caso, invece, il robo-advisor costruisce un processo stocastico di avversione al rischio in cui tiene conto di informazioni legate all'avversione al rischio comunicata dal cliente, dell'età, delle idiosicrasie del cliente e dei ritorni realizzati. Questo processo sarà quello utilizzato all'interno del problema di ottimizzazione mean-variance.

I criteri *mean-variance* si collocano nell'ambito dei problemi di controllo stocastico temporalmente incoerenti. L'obbiettivo sarà massimizzare un funzionale della forma:

$$J_n(x, u) = \mathbb{E}_{n,x} \left[F_n(x, X_N^u) \right] + G_n(x, \mathbb{E}_{n,x} [X_N^u]).$$

Il problema è temporalmente incoerente per due motivi: in primo luogo J_n dipende esplicitamente dallo stato iniziale (n,x) e G_n sarà una funzione non lineare del valore atteso. Diversamente dai problemi di controllo stocastico temporalmente coerenti, per la risoluzione dei criteri mean-variance non possiamo usare il l'equazione di Bellman, pertanto lo approcceremo con la teoria dei giochi. In parole povere, vedremo l'intero problema come un gioco non cooperativo, dove l'n-esimo "giocatore" è l'incarnazione dell'investitore al tempo n-esimo, il quale decide il controllo n-esimo senza essere vincolato a cooperare con gli altri "giocatori". Come strategia ottimale useremo l'equilibrio perfetto di Nash di un sottogioco.

Nell'articolo [2] Björk e Murgoci trattano problemi di controllo stocastico temporalmente incoerenti a tempo discreto, uno dei quali è il criterio mean-variance a più periodi con un orizzonte di investimento finito, però con parametro di avversione al rischio costante. Anche se il parametro è costante, non è un problema troppo dissimile dal nostro; infatti lo impiegheremo per INTRODUZIONE iii

la trattazione del nostro probelma. Altri articoli correlati a questo argomento includono [7] scritto da Li e Ng, che nel 2010 risolsero la versione a più periodi del problema di Markowitz; successivamente Basak e Chabakauri [1] hanno risolto la versione a tempo continuo del medesimo problema; $Bj\ddot{o}rk$ et al. [6] risolsero il problema mean-variance dinamico a tempo continuo, con la funzione di utilità mean-variance applicata al rendimento della ricchezza del cliente. Un recente studio di Dai et al. [5] sviluppa ulteriormente un quadro dinamico mean-variance basato sui rendimenti logaritmici. In tutti questi articoli l'avversione al rischio è un parametro costante, differentemente dal nostro problema mean-variance.

Indice

In	trod	uzione	i							
1	Str	Struttura del modello								
	1.1	Modello di mercato	1							
	1.2	Interazione tra cliente e robo-advisor	3							
	1.3	Processo di avversione al rischio	4							
	1.4	Criterio di investimento	5							
	1.5	Modello di robo-advising	7							
2	Inve	estimento ottimale	11							
	2.1	.1 Sistema di equazioni Hamilton-Jacobi-Bellman generalizzato .								
	2.2	Strategia Ottimale	15							
Bi	bliog	grafia	23							

Capitolo 1

Struttura del modello

1.1 Modello di mercato

Fissato uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$, sia $N \in \mathbb{N}$ e siano $t_0, t_1, ..., t_N \in \mathbb{R}$, con $t_0 < t_1 < ... < t_N$. Nello specifico, $t_0 = 0$ sarà la data odierna mentre $t_N = T \ge 1$ l'orizzonte di investimento.

Sia $Y = (Y_n)_{n=0,...,N}$ un processo a valori in $\mathcal{Y} = \{1,...,M\}, M \geq 1, Y_0$ assume valore costante e l'intero processo è una catena di Markov omogenea, con matrice di transizione P. Utilizzeremo Y per catturare le condizioni macroeconomiche che influenzano i tassi d'interesse e i rendimenti del mercato azionario.

Il mercato è composto da un titolo non rischioso (bond), le cui dinamiche si modellizzano mediante un processo $B = (B_n)_{n=0,\dots,N}$. B_n rappresenta il valore del bond al tempo t_n . L'evoluzione nel tempo del bond è:

$$\begin{cases}
B_0 = 1, \\
B_n = (1 + r_{n-1})B_{n-1}, & n = 1, ..., N,
\end{cases}$$

dove $(r_n)_{n=0,\dots,N-1}$ è una sequenza deterministica e rappresenta il tasso d'interesse privo di rischio. Inoltre all'interno del mercato considereremo un titolo rischioso (stock), modellizzato mediante un processo $S = (S_n)_{n=0,\dots,N}$. Come

per il bond S_n rappresenta il valore dello stock al tempo t_n . La sua evoluzione nel tempo è:

$$\begin{cases} S_0 \in \mathbb{R}_{>0}, \\ \\ S_n = (1 + Z_n)S_{n-1}, \quad n = 1, ..., N, \end{cases}$$

dove $Z=(Z_n)_{n=0,\dots,N}$ rappresenta il rendimento del titolo rischioso, è un processo a valori in $[-1,+\infty[$. Poniamo $Z_0:=0$, per i tempi successivi il processo Z è definito mediante una famiglia di variabili aleatorie indipendenti identicamente distribuite ζ_n a valori in $[-1,+\infty[^M,$ definita nel seguente modo, $\zeta=(\zeta_n)_{n=1,\dots,N}$, dove $\zeta_n=(\zeta_{n,y})_{y\in\mathcal{Y}}$. Poniamo $Z_n:=\zeta_{n,Y_{n-1}}$, dato che le ζ_n sono fra loro indipendenti allora anche le Z_n lo sono. Fissato $y\in\mathcal{Y}$, $\zeta_{n,y}$ è una variabile aleatoria, con densità $f_{Z|_y}$, la quale dipende solamente dallo stato economico y, ha valore atteso $\mu(y)>r(y)$ e varianza $0<\sigma^2(y)<+\infty$. Per l'indipendenza delle Z_n , S è un processo di Markov.

Al fine di semplificare la notazione poniamo il valore atteso $\mu_{n+1} := \mu(Y_n)$, la varianza $\sigma_{n+1}^2 := \sigma^2(Y_n)$. L'indice di μ_{n+1} e σ_{n+1} é n+1, perché sono rispettivamente valore atteso e varianza di Z_{n+1} , quindi dato che Z_{n+1} dipende da Y_n , anche μ_{n+1} e σ_{n+1} dipendono da Y_n . Inoltre definiamo $\widetilde{Z}_{n+1} := Z_{n+1} - r_{n+1}$, $\widetilde{\mu}_{n+1} := \mu_{n+1} - r_{n+1}$ e $\widetilde{\sigma}_{n+1}^2 := \sigma_{n+1}^2 - r_{n+1}$.

Sia $\epsilon = (\epsilon_n)_{n=0,\dots,N}$ un processo a valori reali, con ϵ_0 costante. Utilizzeremo ϵ per catturare le modifiche idiosincratiche delle preferenze di rischio del cliente. Il processo è indipendente dai processi Y e Z.

Con il processo $(\alpha, \beta) = (\alpha_n, \beta_n)_{n=1,\dots,N}$ indichiamo una strategia di investimento. Assumiamo che sia autofinanziante e predicibile, in questo caso diremo che la strategia è ammissibile. Le variabili aleatorie α_n e β_n rispettivamente indicano: la prima la quantità di stock in portafoglio nel periodo $[t_{n-1}, t_n]$ e la seconda la quantità di stock in portafoglio nel periodo $[t_{n-1}, t_n]$. Il processo $X^{(\alpha,\beta)} = (X_n^{(\alpha,\beta)})_{n=0,\dots,N}$ è il valore del portafoglio nel periodo $[t_{n-1}, t_n]$. Grazie all'ipotesi di autofinanziamento, riscriviamo il valore della

strategia:

$$X_{n+1}^{(\alpha,\beta)} - X_n^{(\alpha,\beta)} = \alpha_{n+1}(S_{n+1} - S_n) + \beta_{n+1}(B_{n+1} - B_n)$$

$$= \alpha_{n+1}Z_{n+1}S_n + \beta_{n+1}r_{n+1}B_n$$

$$= \alpha_{n+1}Z_{n+1}S_n + r_{n+1}(X_n^{(\alpha,\beta)} - \alpha_{n+1}S_n).$$

Allora ponendo $R_{n+1} = 1 + r_{n+1}$ otteniamo

$$X_{n+1}^{(\alpha,\beta)} = (1+r_{n+1})X_n^{(\alpha,\beta)} + (Z_{n+1}-r_{n+1})\alpha_{n+1}S_n$$
$$= R_{n+1}X_n^{(\alpha,\beta)} + \tilde{Z}_{n+1}\alpha_{n+1}S_n.$$

Da questa riscrittura possiamo osservare che dato $X_0 \in \mathbb{R}$ e un processo predicibile α esiste un unico processo predicibile β tale che la strategia (α, β) sia autofinanziante, predicibile e valga $X_0^{(\alpha,\beta)} = X_0$. Utilizzeremo il processo $\pi = (\pi_n)_{n=0,\dots,N-1}$ per denotare la quantità in dollari investiti nello stock dopo il ribilanciamento, $\pi_n := \alpha_{n+1}S_n$. Se (α, β) è ammissibile diremo che anche π lo è. Possiamo scrivere il valore della strategia come:

$$X_{n+1}^{(\alpha,\beta)} = R_{n+1} X_n^{(\alpha,\beta)} + \tilde{Z}_{n+1} \pi_n.$$
 (1.1)

Quindi cambiamo la notazione $X_n^{\pi} := X_n^{(\alpha,\beta)}$.

Denotiamo con $(\mathcal{F}_n)_{n=0,\dots,N}$ la filtrazione naturale generata dal processo (Y_n, Z_n, ϵ_n) .

1.2 Interazione tra cliente e robo-advisor

Durante lo scorrere del tempo il cliente ed il robo-advisor interagiscono più volte. Nelle interazioni, il cliente comunica le sue preferenze di rischio. Supponiamo che il cliente comunichi un singolo parametro: lo chiameremo parametro di avversione al rischio. Per modellare l'interazione useremo uno stopping-time rispetto alla filtrazione $(\mathcal{F}_n)_{n=0,...,N}$, chiamato interazione pro-

grammata, $\mathcal{T} = (\mathcal{T}_n)_{n=0,\dots,N}$, $\mathcal{T}_0 = 0$ e $\mathcal{T}_k < \mathcal{T}_{k+1}$. L'interazione può essere innescata da una combinazione di eventi, cambiamenti nello stato dell'economia o eventi di mercato, come una serie di rendimenti negativi. Definiamo un altro processo $\boldsymbol{\tau} = (\boldsymbol{\tau}_n)_{n=0,\dots,N}$, $\boldsymbol{\tau}_n := \max\{\mathcal{T}_k | \mathcal{T}_k \leq n\}$, rappresenta l'ultima interazione avvenuta prima del tempo t_n .

1.3 Processo di avversione al rischio

Il processo di avversione al rischio $\gamma^C = (\gamma_n^C)_{n=0,\dots,N}$ è a valori in $\mathbb{R}_{\geq 0}$, adattato alla filtrazione $(\mathcal{F}_n)_{n=0,\dots,N}$ e supponiamo γ_0^C costante. Introduciamo il processo $\boldsymbol{\xi} = (\boldsymbol{\xi}_n)_{n=0,\dots,N}$, un processo adattato alla filtrazione $(\mathcal{F}_n)_{n=0,\dots,N}$ a valori in $\mathbb{R}_{\geq 0}$, che tiene traccia del parametro d'avversione al rischio comunicato al tempo $\boldsymbol{\tau}_n$. In prima battuta, si può pensare a $\boldsymbol{\xi}_{\boldsymbol{\tau}_n}$ come al parametro d'avversione al rischio $\gamma_{\boldsymbol{\tau}_n}^C$. Nel modello considerato in seguito, $\boldsymbol{\xi}_{\boldsymbol{\tau}_n}$ sarà dato da un'opportuna dilatazione di $\gamma_{\boldsymbol{\tau}_n}^C$ con lo scopo di considerare un eventuale behavioral bias da parte del cliente. $\boldsymbol{\xi}$ dipende solamente dall'interazione programmata \mathcal{T} e per costruzione è costante tra due interazioni successive, dunque $\boldsymbol{\xi}_n = \boldsymbol{\xi}_{\boldsymbol{\tau}_n}$. Il robo-advisor costruisce il proprio modello di avversione al rischio del cliente, il processo $\gamma = (\gamma_n)_{n=0,\dots,N}$.

La filtrazione $(\mathcal{F}_n^R)_{n=0,...,N}$ utilizzata dal robo-advisor è la filtrazione naturale generata dal processo $D=(D_n)_{n=0,...,N}$ definito nel seguente modo: $D_n:=(Y_{(n)},Z_{(n)},\boldsymbol{\tau}_{(n)},\boldsymbol{\xi}_{(n)})$, per ogni n=0,...,N. Il processo è a valori in:

$$\mathcal{D}_n := \mathcal{Y}^{n+1} \times \mathbb{R}^n \times \mathbb{N}^{n+1} \times \mathbb{R}^{n+1}, \quad n = 0, ..., N,$$
 (1.2)

Dove intendiamo con $\mathbb{R}^0 := \{0\}$. Il processo di avversione al rischio γ è a valori in $\mathbb{R}_{\geq 0}$ ed è adattato alla filtrazione $(\mathcal{F}_n^R)_{n=0,\dots,N}$, definito al tempo t_n come $\gamma_n := \gamma_n(D_n)$, dove $\gamma_n : \mathcal{D}_n \longrightarrow \mathbb{R}_{\geq 0}$ è una funzione misurabile.

Possiamo vedere il processo D come $D_n = (M_n, I_n)$, dove $M_n := (Y_{(n)}, Z_{(n)})$ e $I_n := (\boldsymbol{\tau}_{(n)}, \boldsymbol{\xi}_{(n)})$. Questo ci mostra che la filtrazione $(\mathcal{F}_n^R)_{n=0,\dots,N}$ ha due fonti d'informazione: la prima, le informazioni disponibili sul mercato e l'e-

conomia, queste informazioni sono date dal processo M; la seconda, le informazioni catturate dall'interazione con il cliente, ovvero le informazioni date dal processo I.

1.4 Criterio di investimento

Il robo-advisor per elaborare la strategia di investimento risolve un versione dinamica del problema mean-variance di Markowitz adatto alle preferenze di rischio del cliente.

Per ogni $n \in \{0, ..., N-1\}$, $x \in \mathbb{R}$, $d \in \mathcal{D}_n$; data una legge di controllo $\pi = (\pi_n)_{n=0,...,N-1}$, con $\pi_n = \alpha_{n+1}S_n$, definiamo il funzionale obbiettivo come:

$$J_n(x,d;\pi) := \mathbb{E}_{n,x,d}[r_{n,N}^{\pi}] - \frac{\gamma_n(d)}{2} Var_{n,x,d}[r_{n,N}^{\pi}], \tag{1.3}$$

dove $r_{n,N}^{\pi} := \frac{X_N^{\pi} - X_n}{X_n}$. Le condizioni $X_n = x$ e $D_n = d$ sono date e sia valore atteso che varianza sono calcolate attraverso la misura di probabilità condizionata $\mathbb{P}_{n,x,d}(\cdot) := \mathbb{P}(\cdot|X_n = x, D_n = d)$. Assumiamo che i controlli siano: funzioni misurabili dei processi X_n e D_n per ogni n e tali che $\mathbb{E}[\sum_{n=0}^{N-1} \pi_n^2] < +\infty$.

Osservazione 1. Il funzionale obbiettivo J_n dipende dalla legge di controllo π ristretta ai tempi $\{t_n, ..., t_{N-1}\}.$

Il processo di avversione al rischio e il funzionale definiscono una famiglia di problemi di ottimizzazione, nel senso che ad ogni tempo t_n sorge un nuovo problema dipendente da: i rendimenti di mercato, cambiamento dello stato economico e le informazioni comunicate dal cliente; tutti i problemi avranno lo stesso orizzonte di investimento T. Questa tipologia di problemi fa parte di una classe di problemi nota con il nome temporalmente incoerenti. Questo nome è dovuto al fatto che presa una legge di controllo che ottimizza J_n , la sua restrizione ai tempi successivi può non essere più ottimale per J_{n+1} . Per i problemi temporalmente incoerenti non vale il principio di Bellman.

Per ovviare a ciò facendo riferimento a [2], utilizzeremo la teoria dei giochi per riformulare il problema utilizzando l'equilibrio perfetto di Nash di un sottogioco come legge di controllo ottimale. In parole povere, il metodo utilizzato dal robo-advisor per trovare una strategia di investimento, è vedere l'intero problema come un gioco non cooperativo, dove l'n-esimo giocatore, quindi l'incarnazione dell'investitore al tempo n-esimo, è chi decide la strategia al tempo n-esimo. In termini più formali utilizzeremo la seguente definizione.

Definizione 1. Una legge di controllo π^* si dice ottimale se per ogni $n \in \{0,...,N-1\}, x \in \mathbb{R}, d \in \mathcal{D}_n$,

$$\sup_{\pi \in A_{n+1}^*} J_n(x, d; \pi) = J_n(x, d; \pi^*),$$

dove $A_{n+1}^* := \{\pi | \pi_{n+1:N} = \pi_{n+1:N}^* \}$ e $\pi_{n+1:N}^* := \{\pi_{n+1}^*, ..., \pi_{N-1}^* \}$. Se esiste una legge di controllo ottimale π^* definiamo la funzione valore ad ogni tempo t_n come:

$$V_n(x,d) := J_n(x,d;\pi^*). \tag{1.4}$$

Per definizione A_{n+1}^* è l'insieme in cui le leggi di controllo coincidono con π^* dopo il tempo t_n . Un modo equivalente per leggere questa definizione è il seguente: il controllo π_{N-1}^* è ottenuto dal giocatore N-1 ottimizzando $J_{N-1}(x,d;\pi)$ rispetto a π_{N-1} per ogni $x \in \mathbb{R}$ e $d \in \mathcal{D}_n$. Il controllo π_{N-2}^* è ottenuto dal giocatore N-2 ottimizzando $J_{N-2}(x,d;\pi)$ rispetto a π_{N-2} tendo conto che il giocatore N-1 sceglierà π_{N-1}^* . Si procede allo stesso modo per gli altri controlli con una ricorsione all'indietro. Notiamo che se il problema fosse temporalmente coerente utilizzare questo metodo o la programmazione dinamica è equivalente ed in entrambi i casi otterremmo la stessa funzione valore.

Il risk-return tradeoff al tempo t_n in J_n è dato dal modello d'avversione creato dal robo-advisor γ . Se il processo fosse costante l'intero problema di ottimizzazione si ridurrebbe ad un più classico criterio mean-variance, ed anche in questo caso rimarrebbe un problema temporalmente incoerente. In

questo caso cerchiamo di arricchire la struttura del modello inserendo una versione dinamica delle preferenze di rischio. γ non dipende dalla ricchezza iniziale e vi sono due ragioni: in primo luogo dato che gli $r_{n,T}^{\pi}$ sono quantità relative, cioè il rapporto di due quantità in dollari, affinchè J_n sia senza unità di misura γ non dipenderà dalla ricchezza iniziale, in secondo luogo vedremo più avanti che la strategia ottimale risulta coerente con un investitore che sceglie la stessa allocazione dei sui asset a tutti i livelli di ricchezza.

1.5 Modello di robo-advising

In questa Sezione verrà presentato un possibile modello di *robo-advisor*. **Dinamiche di mercato.** Il rendimento del titolo rischioso Z, condizionando rispetto allo stato economico $Y_n = y \in \mathcal{Y}$, ha distribuzione Normale con valore atteso $\mu(y)$ e varianza $\sigma^2(y)$.

Interazione programmata. In questo caso per modellizzare l'interazione tra cliente e robo-advisor useremo una sequenza deterministica. Sia ϕ una costante intera positiva, allora poniamo $\mathcal{T}_k := k\phi$ per ogni $k = 0, ..., \lfloor \frac{N}{\phi} \rfloor$, $\lfloor \cdot \rfloor$ è la funzione parte intera. Se $k > \lfloor \frac{N}{\phi} \rfloor$ allora $\mathcal{T}_k > N$, questo vorrebbe dire che il cliente e il robo-advisor interagiscono dopo la scadenza, il che ai fini del modello è poco rilevante, quindi considereremo la successione fino a $\lfloor \frac{N}{\phi} \rfloor$. Se $\phi = 1$ in ogni momento verrà comunicata una preferenza di rischio. Allora $\gamma_n = \xi_n$ per ogni n, quindi il modello di avversione al rischio creato dal robo-advisor sarà un'opportuna dilatazione del processo di avversione al rischio del cliente, la dilatazione è data da eventuali behavioral bias. Se $\phi \geq T$ le preferenze di rischio verranno comunicate solamente al tempo iniziale. Quindi γ sarà costante e il problema si trasformerà in un criterio mean-variance. Avversione al rischio del cliente. L'avversione al rischio è data dal processo γ^C , è della forma:

$$\gamma_n^C := e_n^{\eta} \gamma_n^{id} \gamma_n^Y,$$

dove la prima componente $e^{\eta}=(e^{\eta_n})_{n=0,\dots,N}$ è una componente temporale, più nello specifico è una successione deterministica dove $e^{\eta_n}:=e^{-\alpha(N-1-n)}$, α è un parametro per determinare aumento d'avversione al rischio dovuto all'età. La seconda componete $\gamma^{id}=(\gamma^{id}_n)_{n=0,\dots,N}$, ed evolve nel tempo come:

$$\gamma_n^{id} := \gamma_{n-1}^{id} e^{\epsilon_n},$$

dove ϵ_n é definito nel seguente modo: sia $B \sim Be_{p_{\epsilon}}$, dove $Be_{p_{\epsilon}}$ é una distribuzione di Bernulli di parametro p_{ϵ} , allora definiamo $\epsilon_n := (\sigma_{\epsilon}W_n - \frac{\sigma_{\epsilon}^2}{2})B$, $W = (W_n)_{n=1,\dots,N}$ è una successione i.i.d. di v.a. Normali standard indipendenti da B, $\sigma_{\epsilon} > 0$. Quindi anche ϵ è i.i.d.. γ^{id} cattura gli shock idiosincratici che mutano l'avversione al rischio del cliente, non sono legati alle dinamiche di mercato. I termini moltiplicativi e^{ϵ_n} sono indipendenti tra loro, hanno valore atteso uguale a 1 e rendono γ^{id} una martingala. Grazie alle proprietà della funzione esponenziale, uno shock positivo $(\epsilon_n > 0)$ ha un impatto maggiore sull'avversione al rischio rispetto ad uno shock negativo $(\epsilon_n < 0)$ della stessa dimensione. La terza componente $\gamma^Y = (\gamma_n^Y)_{n=0,\dots,N}$ è definita come:

$$\gamma_n^Y := \bar{\gamma}(Y_n),$$

dove $\bar{\gamma}: \mathcal{Y} \to \mathbb{R}_{\geq 0}$ è una funzione misurabile. Sia $y \in \mathcal{Y}$ allora $\bar{\gamma}(y)$ è un coefficiente di avversione al rischio che dipende dal corrente stato economico. Richiediamo che la funzione $\bar{\gamma}$ abbia la seguente propietà:

$$se \quad \frac{\mu(y) - r(y)}{\sigma(y)} \ge \frac{\mu(y') - r(y')}{\sigma(y')} \quad allora \quad \bar{\gamma}(y) \ge \bar{\gamma}(y'), \quad per \quad ogni \quad y, y' \in \mathcal{Y},$$

Con questa condizione, l'avversione al rischio del cliente è maggiore quando il vantaggio di investire nell'attività rischiosa è maggiore.

Modello di avversione al rischio creato dal *robo-advisor*. Il processo d'avversione al rischio γ è della forma:

$$\gamma_n := \boldsymbol{\xi}_n e^{\eta_n - \eta_{\boldsymbol{\tau}_n}} \frac{\gamma_n^Y}{\gamma_{\boldsymbol{\tau}_n}^Y},$$

il primo termine $\boldsymbol{\xi}_n$, è il parametro di avversione al rischio comunicato al tempo t_{τ_n} ed è della forma:

$$\boldsymbol{\xi}_n := \gamma_{\boldsymbol{\tau}_n}^C \gamma_{\boldsymbol{\tau}_n}^Z := \gamma_{\boldsymbol{\tau}_n}^C e^{-\beta(\frac{1}{\phi} \sum_{k=\boldsymbol{\tau}_n-\phi}^{\tau_{n-1}} (Z_{k+1} - \mu_{k+1}))},$$

dove $\beta \geq 0$ è fissato, il fattore $\gamma_{\tau_n}^Z$ amplifica o riduce il valore di avversione al rischio comunicato dal cliente al tempo t_{τ_n} . Il fattore dipende dai recenti ricavi del mercato, la somma all'esponente è l'eccesso di rendimento cumulativo dell'attività rischiosa rispetto al suo valore atteso, nell'intervallo temporale $[t_{\tau_n-\phi},t_{\tau_n}]$. All'esponente non vengono aggiunti gli eccessi di rendimento dei tempi precedenti perchè i guadagni precedenti non hanno alcun valore predittivo. Questi eventi possono portare a dei behavioral bias e β determina l'impatto che essi hanno rispetto all'avversione al rischio. Data la convessità della funzione esponenziale ci consente di modellizare l'avversione alla perdita: l'avversione al rischio del cliente aumenta maggiormente a seguito di una sottoperformance di mercato, rispetto alla sua diminuzione quando il mercato supera le aspettative di rendimento della stessa quantità [6].

Capitolo 2

Investimento ottimale

In questo capitolo andremo alla ricerca di una strategia di investimento ottimale. Prenderemo in esame il problema definito dal funzionale $(J_n)_{n=0,...,N-1}$ e il processo d'avversione al rischio costruito dal robo-advisor $\gamma = (\gamma_n)_{n=0,...,N}$. L'obbiettivo sarà trovare una legge di controllo ottimale π^* definita come nella sezione precedente. Per ora l'interazione programmata \mathcal{T} e il processo di avversione al rischio γ saranno nella forma più generale, successivamente studieremo anche il modello di robo-advisor introdotto nella Sezione 1.5.

2.1 Sistema di equazioni Hamilton-Jacobi-Bellman generalizzato

Per iniziare scriviamo il sistema di equazioni di Hamilton-Jacobi-Bellman (HJB) generalizzato. Al fine di semplificare la notazione denoteremo $\widetilde{D}_n^{\pi} := (X_n^{\pi}, D_n)$ e l'insieme in cui prende i valori con $\widetilde{\mathcal{D}}_n$.

Proposizione 1. Assumiamo che esista una legge di controllo ottimale π^* per il problema. Allora la funzione valore verifica l'equazione ricorsiva

$$\begin{split} V_{n}(\tilde{d}) &= \sup_{\pi} \bigg\{ \mathbb{E}_{n,\tilde{d}} \big[V_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big) \big] - \big(\mathbb{E}_{n,\tilde{d}} \big[f_{n+1,n+1} \big(\widetilde{D}_{n+1}^{\pi}; \widetilde{D}_{n+1}^{\pi} \big) \big] - \mathbb{E}_{n,\tilde{d}} \big[f_{n+1,n} \big(\widetilde{D}_{n+1}^{\pi}; \widetilde{d} \big) \big] \big) \\ &- \mathbb{E}_{n,\tilde{d}} \bigg[\frac{\gamma_{n+1} \big(D_{n+1} \big)}{2} \bigg(\frac{g_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big)}{X_{n+1}^{\pi}} \bigg)^{2} \bigg] + \frac{\gamma_{n}(d)}{2} \bigg(\mathbb{E}_{n,\tilde{d}} \bigg[\frac{g_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big)}{x} \bigg] \bigg)^{2} \bigg\}, \end{split}$$

per ogni n = 0, ..., N - 1 e $\tilde{d} = (x, d) \in \widetilde{\mathcal{D}}_n$, con valore finale

$$V_N(\tilde{d}) = 0, \quad \tilde{d} = (x, d) \in \widetilde{\mathcal{D}}_N.$$

Per ogni n = 0, ..., N e $\tilde{d}' = (x', d') \in \widetilde{\mathcal{D}}_n$ fissati, la successione di funzioni $(f_{k,n}(\cdot; \tilde{d}'))_{k=0,...,N}$, verifica la ricorsione

$$\begin{cases}
f_{k,n}(\tilde{d};\tilde{d}') = \mathbb{E}_{k,\tilde{d}} \left[f_{k+1,n}(\widetilde{D}_{k+1}^{\pi^*};\tilde{d}') \right], & \tilde{d} = (x,d) \in \widetilde{\mathcal{D}}_k, \quad 0 \le k < N, \\
f_{N,n}(\tilde{d};\tilde{d}') = \frac{x}{x'} - 1 - \frac{\gamma_n(d')}{2} \left(\frac{x}{x'} \right)^2, & \tilde{d} = (x,d) \in \widetilde{\mathcal{D}}_N,
\end{cases}$$
(2.1)

e la successione $(g_k)_{k=0,\ldots,N}$, verifica la ricorsione

$$\begin{cases}
g_k(\tilde{d}) = \mathbb{E}_{k,\tilde{d}}[g_{k+1}(\widetilde{D}_{k+1}^{\pi^*})], & \tilde{d} = (x,d) \in \widetilde{\mathcal{D}}_k, \quad 0 \le k < N, \\
g_N(\tilde{d}) = x, & \tilde{d} = (x,d) \in \widetilde{\mathcal{D}}_N.
\end{cases}$$
(2.2)

Definizione 2. Per ogni legge di controllo π e per ogni n=0,...,N fissato, definiamo la successione di funzioni $(f_{k,n}^{\pi})_{k=0,...,N}, f_{k,n}^{\pi}: \widetilde{\mathcal{D}}_k \times \widetilde{\mathcal{D}}_n \to \mathbb{R}$, come

$$f_{k,n}^{\pi}(\tilde{d};\tilde{d}') := \mathbb{E}_{k,\tilde{d}}\left[F_n(\tilde{d}',X_N^{\pi})\right], \qquad (2.3)$$

dove la successione $(F_n)_{n=0,\ldots,N}, F_n : \widetilde{\mathcal{D}}_n \times \mathbb{R} \to \mathbb{R}, \ \dot{e}$

$$F_n(\tilde{d}, y) := \frac{y}{x} - 1 - \frac{\gamma_n(d)}{2} \left(\frac{y}{x}\right)^2, \quad \tilde{d} = (x, d) \in \widetilde{D}_n, \quad y \in \mathbb{R}.$$

Inoltre definiamo la successione $(g_k^{\pi})_{k=0,\dots,N}, g_k^{\pi}: \widetilde{\mathcal{D}}_k \to \mathbb{R}, come$

$$g_k^{\pi}(\tilde{d}) := \mathbb{E}_{k,\tilde{d}}[X_N^{\pi}]. \tag{2.4}$$

Se $\pi = \pi^*$ con π^* legge di controllo ottimale scriveremo $f_{k,n} := f_{k,n}^{\pi^*}$ e $g_k := g_k^{\pi^*}$.

Dimostriamo la Proposizione 1, quindi ricaviamo il sistema di equazioni (HJB).

Dimostrazione della Proposizione 1. Sia

$$G_n(\tilde{d}, y) := \frac{\gamma_n(d)}{2} \left(\frac{y}{x}\right)^2, \tag{2.5}$$

allora riscriviamo il funzionale obbiettivo come

$$\begin{split} J_{n}(\tilde{d};\pi) &= \mathbb{E}_{n,\tilde{d}}[r_{n,N}^{\pi}] - \frac{\gamma_{n}(d)}{2} Var_{n,\tilde{d}}[r_{n,N}^{\pi}] \\ &= \mathbb{E}_{n,\tilde{d}} \left[\frac{X_{N}^{\pi} - x}{x} \right] - \frac{\gamma_{n}(d)}{2} Var_{n,\tilde{d}} \left[\frac{X_{N}^{\pi} - x}{x} \right] \\ &= \mathbb{E}_{n,\tilde{d}} \left[\frac{X_{N}^{\pi} - x}{x} \right] - \frac{\gamma_{n}(d)}{2} \mathbb{E}_{n,\tilde{d}} \left[\left(\frac{X_{N}^{\pi} - x}{x} \right)^{2} \right] \\ &+ \frac{\gamma_{n}(d)}{2} \left(\mathbb{E}_{n,\tilde{d}} \left[\frac{X_{N}^{\pi} - x}{x} \right] \right)^{2} \\ &= \mathbb{E}_{n,\tilde{d}} \left[\frac{X_{N}^{\pi}}{x} - 1 - \frac{\gamma_{n}(d)}{2} \left(\frac{X_{N}^{\pi}}{x} \right)^{2} \right] + \frac{\gamma(d)}{2} \left(\frac{\mathbb{E}_{n,\tilde{d}} \left[X^{\pi} \right]}{x} \right)^{2} \\ &= \mathbb{E}_{n,\tilde{d}} \left[F_{n}(\tilde{d}, X_{N}^{\pi}) \right] + G_{n} \left(\tilde{d}, \mathbb{E}_{n,\tilde{d}} \left[X_{N}^{\pi} \right] \right), \end{split}$$

per (2.3) e (2.4) J_n diventa

$$J_n(\tilde{d};\pi) = f_{n,n}^{\pi}(\tilde{d};\tilde{d}) + G_n(\tilde{d},g_n^{\pi}(\tilde{d})).$$
(2.6)

Tramite la proprietá della torre scriviamo f e g come

$$\begin{split} f_{k,n}^{\pi}(\tilde{d};\tilde{d}') &= \mathbb{E}_{k,\tilde{d}} \left[F_n(\tilde{d}',X_N^{\pi}) \right] = \mathbb{E}_{k,\tilde{d}} \left[\mathbb{E}_{k+1,\tilde{D}_{k+1}^{\pi}} \left[F_n(\tilde{d}',X_N^{\pi}) \right] \right] \\ &= \mathbb{E}_{k,\tilde{d}} \left[f_{k+1,n}^{\pi} \left(\tilde{D}_{k+1}^{\pi};\tilde{d}' \right) \right], \end{split} \tag{2.7}$$

$$g_k^{\pi}(\tilde{d}) = \mathbb{E}_{k,\tilde{d}}[X_N^{\pi}] = \mathbb{E}_{k,\tilde{d}}\left[\mathbb{E}_{k+1,\tilde{D}_{k+1}^{\pi}}[X_N^{\pi}]\right] = \mathbb{E}_{k,\tilde{d}}[g_{k+1}^{\pi}(\tilde{D}_{k+1}^{\pi})]. \tag{2.8}$$

Quindi abbiamo ottenuto le ricorsioni (2.1) e (2.2).

Il seguito della dimostrazione consiste in due parti: nella prima deriviamo l'equazione ricorsiva soddisfatta dai funzionali obiettivo data una legge di controllo ammissibile π arbitraria, nella seconda deriviamo l'equazione ricorsiva che la funzione valore deve soddisfare. Grazie alle ricorsioni (2.1) e (2.2) la funzione obbiettivo J_{n+1} al tempo t_{n+1} diventa

$$J_{n+1}(\widetilde{D}_{n+1}^{\pi};\pi) = \mathbb{E}_{n+1,\widetilde{D}_{n+1}^{\pi}}[F_{n+1}(\widetilde{D}_{n+1}^{\pi},X_{N}^{\pi})] + G_{n+1}(\widetilde{D}_{n+1}^{\pi},\mathbb{E}_{n+1,\widetilde{D}_{n+1}^{\pi}}[X_{N}^{\pi}])$$
$$= f_{n+1,n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi};\widetilde{D}_{n+1}^{\pi}) + G_{n+1}(\widetilde{D}_{n+1}^{\pi},g_{n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi})).$$

Applicando a destre e a sinistra dell'uguaglianza il valore atteso condizionato $\mathbb{E}_{n.\tilde{d}}[\cdot] \text{ otteniamo}$

$$\mathbb{E}_{n,\tilde{d}}[J_{n+1}(\widetilde{D}_{n+1}^{\pi};\pi)] = \mathbb{E}_{n,\tilde{d}}[f_{n+1,n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi};\widetilde{D}_{n+1}^{\pi})] + \mathbb{E}_{n,\tilde{d}}[G_{n+1}(\widetilde{D}_{n+1}^{\pi},g_{n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi}))].$$

Aggiungiamo e togliamo $J_n(\tilde{d};\pi)$ e da (2.6) segue che

$$\mathbb{E}_{n,\tilde{d}}[J_{n+1}(\widetilde{D}_{n+1}^{\pi};\pi)] = J_{n}(\tilde{d};\pi) + \mathbb{E}_{n,\tilde{d}}[f_{n+1,n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi};\widetilde{D}_{n+1}^{\pi})] - \mathbb{E}_{n,\tilde{d}}\left[F_{n}(\tilde{d},X_{N}^{\pi})\right] + \mathbb{E}_{n,\tilde{d}}[G_{n+1}(\widetilde{D}_{n+1}^{\pi},g_{n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi}))] - G_{n}(\tilde{d},\mathbb{E}_{n,\tilde{d}}[X_{N}^{\pi}]).$$

Utilizzando le ricorsioni (2.1) e (2.2), le definizioni (2.3) e (2.4) possiamo

scrivere J_n come

$$J_{n}(\tilde{d};\pi) = \mathbb{E}_{n,\tilde{d}}[J_{n+1}(\widetilde{D}_{n+1}^{\pi};\pi)] - \mathbb{E}_{n,\tilde{d}}[f_{n+1,n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi};\widetilde{D}_{n+1}^{\pi})] + \mathbb{E}_{n,\tilde{d}}[f_{n+1,n}^{\pi}(\widetilde{D}_{n+1}^{\pi};\tilde{d}')] - \left(\mathbb{E}_{n,\tilde{d}}[G_{n+1}(\widetilde{D}_{n+1}^{\pi},g_{n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi}))] - G_{n}(\tilde{d},\mathbb{E}_{n,\tilde{d}}[g_{n+1}^{\pi}(\widetilde{D}_{n+1}^{\pi})])\right).$$
(2.9)

Iniziamo la seconda parte della dimostrazione, quindi deriviamo il sistema di equazioni che la legge di controllo ottimale π^* deve soddisfare. Sia π una legge di controllo tale che coincida con π^* dopo il tempo t_n , più esplicitamente una legge tale che $\pi_k^*(\tilde{d}') = \pi_k(\tilde{d}')$, per ogni k = n + 1, ..., N - 1 e $\tilde{d}' \in \widetilde{\mathcal{D}}_k$, allora per (1.4) possiamo scrivere J_{n+1} come

$$J_{n+1}(\widetilde{D}_{n+1}^{\pi};\pi) = V_{n+1}(\widetilde{D}_{n+1}^{\pi^*}),$$

quindi usando anche l'equazione (2.9), per ogni $\tilde{d} \in \widetilde{\mathcal{D}}_n$, la funzione valore diventa

$$\begin{split} V_{n}(\tilde{d}) &= \sup_{\pi_{n}} \Big\{ \mathbb{E}_{n,\tilde{d}} \big[V_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big) \big] - \big(\mathbb{E}_{n,\tilde{d}} \big[f_{n+1,n+1} \big(\widetilde{D}_{n+1}^{\pi}; \widetilde{D}_{n+1}^{\pi} \big) \big] - \mathbb{E}_{n,\tilde{d}} \big[f_{n+1,n} \big(\widetilde{D}_{n+1}^{\pi}; \widetilde{d} \big) \big] \big) \\ &- \mathbb{E}_{n,\tilde{d}} \big[G_{n+1} \big(\widetilde{D}_{n+1}^{\pi}, g_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big) \big] + G_{n} \big(\widetilde{d}, \mathbb{E}_{n,\tilde{d}} \big[g_{n+1} \big(\widetilde{D}_{n+1}^{\pi} \big) \big] \big) \Big\}, \end{split}$$

con valore finale $V_N(\tilde{d}) = 0$, $\tilde{d} \in \widetilde{\mathcal{D}}_N$. Per (2.5) otteniamo la tesi.

2.2 Strategia Ottimale

Lemma 1. Sia $\pi = (\pi_n)_{n=0,...,N-1}$ un legge di controllo ammissibile della forma

$$\pi_n(x,d) = \tilde{\pi}_n(d)x, \qquad (2.10)$$

per ogni $x \in \mathbb{R}$ e $d \in \mathcal{D}_n$, con $\tilde{\pi}_n$ funzione deterministica, sia $\mathbb{P}_{n,d}(\cdot) := \mathbb{P}(\cdot|D_n = d)$. Allora

$$a_n(x,d) := \mathbb{E}_{n,x,d} \left[\frac{X_N^{\pi}}{x} \right] \quad e \quad b_n(x,d) := \mathbb{E}_{n,x,d} \left[\left(\frac{X_N^{\pi}}{x} \right)^2 \right]$$

non dipendono da x, quindi scriveremo $a_n(d) = a_n(x,d)$ e $b_n(d) = b_n(x,d)$. Inoltre rispettivamente a_n e b_n verificano le seguenti ricorsioni

$$\begin{cases}
 a_n(d) = \mathbb{E}_{n,d}[(R_{n+1} + \tilde{Z}_{n+1}\tilde{\pi}_n(d))a_{n+1}(D_{n+1})], & n = 0, ..., N - 1, \\
 a_N(d) = 1, & (2.11)
\end{cases}$$

$$\begin{cases}
b_n(d) = \mathbb{E}_{n,d}[(R_{n+1} + \widetilde{Z}_{n+1}\widetilde{\pi}_n(d))^2 b_{n+1}(D_{n+1})], & n = 0, ..., N - 1, \\
b_N(d) = 1.
\end{cases}$$
(2.12)

Dimostrazione. La prova di questo lemma consiste in un induzione all'indietro. Per n=N la tesi è vera poichè $\mathbb{E}_{N,x,d}\left[\frac{X_N^{\pi}}{x}\right]=1$. Mostriamo anche il passo n=N-1, grazie alle dinamiche di mercato (1.1) e a (2.10).

$$\mathbb{E}_{N-1,x,d} \left[\frac{X_N^{\pi}}{x} \right] = \mathbb{E}_{N-1,x,d} \left[R_N + \widetilde{Z}_N \widetilde{\pi}_{N-1}(d) \right] = R_N + \widetilde{\mu}_N \widetilde{\pi}_{N-1}(d) = a_{N-1}(d).$$

Ora sia $n \in \{0,1,...,N-2\}$ e assumiamo la tesi vera per n+1,n+2,...,N-1.

$$\mathbb{E}_{n,x,d} \left[\frac{X_N^{\pi}}{x} \right] = \mathbb{E}_{n,x,d} \left[\prod_{k=n}^{N-1} \left(\frac{X_{k+1}^{\pi}}{X_k^{\pi}} \right) \right]$$

$$= \mathbb{E}_{n,x,d} \left[\left(R_{n+1} + \widetilde{Z}_{n+1} \widetilde{\pi}_n(d) \right) \prod_{k=n+1}^{N-1} \left(R_{k+1} + \widetilde{Z}_{k+1} \widetilde{\pi}_k(D_k) \right) \right]$$

$$= \mathbb{E}_{n,x,d} \left[\left(R_{n+1} + \widetilde{Z}_{n+1} \widetilde{\pi}_n(d) \right) \mathbb{E}_{n+1,X_{n+1}^{\pi},D_{n+1}} \left[\prod_{k=n+1}^{N-1} \left(R_{k+1} + \widetilde{Z}_{k+1} \widetilde{\pi}_k(D_k) \right) \right] \right]$$

(usando la proprietà della torre N-n volte e applicando l'ipotesi induttiva otteniamo)

$$= \mathbb{E}_{n,x,d} \left[\left(R_{n+1} + \widetilde{Z}_{n+1} \widetilde{\pi}_n(d) \right) a_{n+1}(D_{n+1}) \right]$$

$$= \mathbb{E}_{n,d} \left[\left(R_{n+1} + \widetilde{Z}_{n+1} \tilde{\pi}_n(d) \right) a_{n+1}(D_{n+1}) \right] = a_n(d).$$

Nell'ultimo passaggio abbiamo tolto la dipendenza da x, perché r_n è una sequenza deterministica e le \widetilde{Z}_n sono fra loro indipendenti, allora R_{n+1} e \widetilde{Z}_{n+1} non dipendono da X_n . Il caso per b_n è analogo.

Osservazione 2. Per trovare una legge di controllo ottimale agiremo in maniera differente da [1]. Invece di sfruttare il sistema di equazioni (HJB), verifichiamo direttamente la Definizione 1 di legge di controllo ottimale. Questo ci permette di non dover supporre l'esistenza di una legge di controllo ottimale π^* , perché, utilizzando la definizione 1, riusciremo a dimostrarne anche l'esistenza. Se avessimo utilizzato il sistema (HJB) avremmo dovuto supporre l'esistenza poiché per ricavarlo l'abbiamo fatto.

Proposizione 2. Il problema di ottimizzazione è risolto dalla legge di controllo

$$\pi_n^*(x,d) = \tilde{\pi}_n^*(d)x, \quad 0 \le n < N$$
 (2.13)

con $x \in \mathbb{R}$ e $d \in \mathcal{D}_n$, dove la proporzione ottimale di ricchezza allocata dell'attività rischiosa $\tilde{\pi}_n^*$ è

$$\tilde{\pi}_n^*(d) = \frac{1}{\gamma_n} \frac{\mu_n^{az}(d) - R_{n+1}\gamma_n \left(\mu_n^{bz}(d) - \mu_n^a(d)\mu_n^{az}(d)\right)}{\mu_n^{bz^2}(d) - \left(\mu_n^{az}(d)\right)^2}$$
(2.14)

e i coefficienti sono

$$\mu_{n}^{a}(d) = \mathbb{E}_{n,d} \left[a_{n+1} \left(D_{n+1} \right) \right], \quad \mu_{n}^{az}(d) = \mathbb{E}_{n,d} \left[a_{n+1} \left(D_{n+1} \right) \widetilde{Z}_{n+1} \right],$$

$$\mu_{n}^{b}(d) = \mathbb{E}_{n,d} \left[b_{n+1} \left(D_{n+1} \right) \right], \quad \mu_{n}^{bz}(d) = \mathbb{E}_{n,d} \left[b_{n+1} \left(D_{n+1} \right) \widetilde{Z}_{n+1} \right],$$

$$\mu_{n}^{bz^{2}}(d) = \mathbb{E}_{n,d} \left[b_{n+1} \left(D_{n+1} \right) \widetilde{Z}_{n+1}^{2} \right].$$

Inoltre la funzione valore V_n non dipende da x, quindi $V_n(\tilde{d}) = V_n(d)$ per ogni $\tilde{d} = (x, d) \in \tilde{\mathcal{D}}_n$ e n = 0, ..., N - 1.

Dimostrazione. Sia π^* come in (2.13), controlliamo che π^* verifichi la defini-

zione 1, quindi che per ogni n = 0, ..., N - 1,

$$\sup_{\pi \in A_{n+1}^*} J_n(x, d; \pi) = J_n(x, d; \pi^*),$$

dove $A_{n+1}^* = \{\pi | \pi_{n+1:N} = \pi_{n+1:N}^* \}$ e $\pi_{n+1:N}^* = \{\pi_{n+1}^*, ..., \pi_{N-1}^* \}$. Da (2.5), (2.6), (2.7) e (2.8) abbiamo

$$J_n(\tilde{d};\pi) = f_{n,n}^{\pi}(\tilde{d};\tilde{d}) + G_n(\tilde{d},g_n^{\pi}(\tilde{d}))$$

$$= \mathbb{E}_{n,\tilde{d}}[f_{n+1,n}(\widetilde{D}_{n+1}^{\pi};\tilde{d})] + \frac{\gamma_n(d)}{2} \left(\frac{\mathbb{E}_{n,\tilde{d}}[g_{n+1}(\widetilde{D}_{n+1}^{\pi})]}{x}\right)^2.$$

Ricordiamo che π^* è una funzione lineare in x, quindi possiamo applicare il Lemma 1, grazie anche alle ricorsioni (2.3) e (2.4) otteniamo

$$f_{n+1,n}(\tilde{d}; \tilde{d}') = a_{n+1}(d)\frac{x}{x'} - 1 - \frac{\gamma_n(d')}{2}b_{n+1}(d)\left(\frac{x}{x'}\right)^2,$$

$$g_{n+1}(\tilde{d}) = a_{n+1}(d)x.$$

Per brevitá ponendo $R:=R_{n+1},\ \tilde{\pi}_n:=\tilde{\pi}_n(d), a_{n+1}:=a_{n+1}(D_{n+1})$ e $b_{n+1}:=b_{n+1}(D_{n+1})$, la funzione obbiettivo diventa

$$J_n(\tilde{d}, \pi) = \mathbb{E}_{n, \tilde{d}} \left[a_{n+1} \frac{X_{n+1}^{\pi}}{x} - 1 - \frac{\gamma_n(d)}{2} b_{n+1} \left(\frac{X_{n+1}^{\pi}}{x} \right)^2 \right] + \frac{\gamma_n(d)}{2} \left(\mathbb{E}_{n, \tilde{d}} \left[a_{n+1} \frac{X_{n+1}^{\pi}}{x} \right] \right)^2$$

(per le dinamiche di mercato (1.1) esplicitiamo X_n^{π} , inoltre ricordando che r_{n+1} è una sequenza determinisitca e le \widetilde{Z}_n sono fra loro indipendenti, allora \widetilde{Z}_{n+1} e R_{n+1} non dipendono da X_n)

$$\begin{split} &= \mathbb{E}_{n,d} \left[a_{n+1} \left(R + \widetilde{Z}_{n+1} \tilde{\pi}_n \right) - 1 - \frac{\gamma_n(d)}{2} b_{n+1} \left(R + \widetilde{Z}_{n+1} \tilde{\pi}_n \right)^2 \right] \\ &+ \frac{\gamma_n(d)}{2} \left(\mathbb{E}_{n,d} \left[a_{n+1} \left(R + \widetilde{Z}_{n+1} \tilde{\pi}_n \right) \right] \right)^2 \\ &= \mathbb{E}_{n,d} \left[a_{n+1} \left(R + \widetilde{Z}_{n+1} \tilde{\pi}_n \right) - 1 - \frac{\gamma_n(d)}{2} b_{n+1} \left(R^2 + 2R \tilde{\pi}_n \widetilde{Z}_{n+1} + \tilde{\pi}_n^2 \widetilde{Z}_{n+1}^2 \right) \right] \\ &+ \frac{\gamma_n(d)}{2} \left(R^2 \left(\mathbb{E}_{n,d} \left[a_{n+1} \right] \right)^2 + 2R \tilde{\pi}_n \mathbb{E}_{n,d} \left[a_{n+1} \right] \mathbb{E}_{n,d} \left[a_{n+1} \widetilde{Z}_{n+1} \right] \right) \end{split}$$

$$+ \tilde{\pi}_n^2 \Big(\mathbb{E}_{n,d} \big[a_{n+1} \widetilde{Z}_{n+1} \big] \Big)^2 \Big)$$
$$= \alpha \tilde{\pi}_n^2 + \beta \tilde{\pi}_n + \eta,$$

dove α , β e η sono

$$\alpha = \frac{\gamma_{n}(d)}{2} \left(\left(\mathbb{E}_{n,d} \left[a_{n+1} \widetilde{Z}_{n+1} \right] \right)^{2} - \left(\mathbb{E}_{n,d} \left[b_{n+1} \widetilde{Z}_{n+1} \right] \right)^{2} \right)$$

$$= \frac{\gamma_{n}(d)}{2} \left(\left(\mu^{az}(d) \right)^{2} - \left(\mu^{bz}(d) \right)^{2} \right),$$

$$\beta = \mathbb{E}_{n,d} \left[a_{n+1} \widetilde{Z}_{n+1} \right] - \gamma_{n}(d) \mathbb{E}_{n,d} \left[b_{n+1} \widetilde{Z}_{n+1} \right] R + \gamma_{n}(d) \mathbb{E}_{n,d} \left[a_{n+1} \right] \mathbb{E}_{n,d} \left[a_{n+1} \widetilde{Z}_{n+1} \right] R$$

$$= \mu^{az}(d) - \gamma_{n}(d) R \left(\mu^{bz}(d) - \mu^{az}(d) \right),$$

$$\eta = \frac{\gamma_{n}(d)}{2} R^{2} \left(\mathbb{E}_{n,\tilde{d}} \left[a_{n+1} \right] \right)^{2} - 1 - \frac{\gamma_{n}(d)}{2} R^{2} \mathbb{E}_{n,d} \left[b_{n+1} \right] + \mathbb{E}_{n,d} \left[a_{n+1} \right] R.$$

Deriviando rispetto a $\tilde{\pi}_n$ otteniamo la proporzione di allocazione ottimale (2.14). Per la definizione di funzione valore (1.4) segue che

$$V_n(\tilde{d}) = J_n(\tilde{d}; \pi^*) = \alpha \tilde{\pi}_n^{*2} + \beta \tilde{\pi}_n^* + \eta,$$

le funzioni α , β , η e $\tilde{\pi}$ non dipendono da x allora $V_n(\tilde{d}) = V_n(d)$.

Nella dimostrazione non abbiamo mai supposto l'esistenza di una legge di controllo ottimale. Dato che siamo riusciti a trovarla allora π^* esiste. \square

I valori attesi $\mu_n^a(d)$, $\mu_n^{az}(d)$, $\mu_n^b(d)$, $\mu_n^{bz}(d)$ e $\mu_n^{bz^2}(d)$ ammettono una rappresentazione integrale. A titolo di esempio con il seguente lemma scriviamo esplicitamente $\mu_n^{az}(d)$, sia nel caso generale, sia con il modello di robo-advising della Sezione 1.5. I calcoli per gli altri coefficienti sono simili.

Lemma 2. Sia $n \in \{0,...,N-1\}$ e $(y_{(n)},z_{(n)},\tau_{(n)},\xi_{(n)})=d \in \mathcal{D}_n$, dove \mathcal{D}_n è l'insieme definito in (1.2), inoltre assumiamo che $\epsilon_{(n+1)}$ abbia come densità

condizionata rispetto a $D_n = d$ la funzione $f_{\epsilon_{(n+1)}|d}$. Allora

$$\mu_n^{az}(d) = \sum_{y_{n+1} \in \mathcal{Y}} P_{y_n, y_{n+1}} \int_{\mathbb{R}} \int_{\mathbb{R}^{n+1}} a_{n+1} \left(y_{(n+1)}, z_{(n+1)}, \tau_{(n+1)}, \xi_{(n+1)} \right)$$

$$\tilde{z}_{n+1} f_{Z|y_n} \left(z_{n+1} \right) f_{\epsilon_{(n+1)}|d} \left(\epsilon \right) dz_{n+1} d\epsilon,$$

dove $\tilde{z}_{n+1} = z_{n+1} - r_{n+1}$ e con (τ_{n+1}, ξ_{n+1}) funzione misurabile di $(y_{(n+1)}, z_{(n+1)}, \epsilon_{(n+1)})$.

Dimostrazione. Per definizione $\tau_n = \max\{\mathcal{T}_k | \mathcal{T}_k \leq n\}$, quindi dato che \mathcal{T} è adattato a $(\mathcal{F}_n)_{n=0,\dots,N}$ anche $\boldsymbol{\tau}$ lo è. Il processo $\boldsymbol{\xi}$ per come è stato definito nella Sezione 1.3 è adattato a $(\mathcal{F}_n)_{n=0,\dots,N}$. Dato che $\mathcal{F}_n = \sigma(Y_{(n)}, Z_{(n)}, \epsilon_{(n)})$ abbiamo la tesi.

Il Lemma seguente è analogo al precedente, solo nel caso del modello della Sezione 1.5.

Lemma 3. Sia $n \in \{0, ..., N-1\}$ e $(y_{(n)}, z_{(n)}, \tau_{(n)}, \xi_{(n)}) = d \in \mathcal{D}_n$, dove \mathcal{D}_n è l'insieme definito in (1.2). Allora se $\tau_{n+1} < n+1$

$$\mu_n^{az}(d) = \sum_{y_{n+1} \in \mathcal{Y}} P_{y_n, y_{n+1}} \int_{\mathbb{R}} a_{n+1} \left(y_{(n+1)}, z_{(n+1)}, \tau_{(n+1)}, \xi_{(n+1)} \right) \tilde{z}_{n+1} f_{Z|y_n} \left(z_{n+1} \right) dz_{n+1}.$$

Se $\tau_{n+1} = n+1$

$$\mu_n^{az}(d) = \sum_{y_{n+1} \in \mathcal{Y}} P_{y_n, y_{n+1}} \int_{\mathbb{R}} \int_{\mathbb{R}} a_{n+1} \left(y_{(n+1)}, z_{(n+1)}, \tau_{(n+1)}, \xi_{(n+1)} \right)$$
$$\tilde{z}_{n+1} f_{Z|y_n} \left(z_{n+1} \right) f_{\epsilon}^{(\phi)} \left(\epsilon \right) dz_{n+1} d\epsilon.$$

dove $\tilde{z}_{n+1} = z_{n+1} - r_{n+1}$, $f_{\epsilon}^{(\phi)}$ è la funzione ottenuta dalla convoluzione della densità di ϵ_1 con se stessa ϕ -volte e ξ_{n+1} è una funzione misurabile di $(y_{(n+1)}, z_{(n+1)}, \epsilon_{(n+1)})$.

Dimostrazione. Se $\tau_{n+1} < n+1$ allora $\xi_{n+1} = \xi_n \in \mathcal{D}_n$ e poiché l'interazione programmata \mathcal{T} è una sequenza deterministica, otteniamo la tesi nel caso in

cui $\tau_{n+1} < n+1$. Se $\tau_{n+1} = n+1$ allora

$$\boldsymbol{\xi}_{n+1} = \boldsymbol{\xi}_{n+1} \frac{\boldsymbol{\xi}_{n+1-\phi}}{\boldsymbol{\xi}_{n+1-\phi}} = \boldsymbol{\xi}_{n+1-\phi} e^{\phi\alpha} e^{\sum_{k=\tau_n}^n \epsilon_{k+1}} \frac{\gamma_{n+1}^Z}{\gamma_{n+1-\phi}^Z} \frac{\bar{\gamma}\left(Y_{n+1}\right)}{\bar{\gamma}\left(Y_{n+1-\phi}\right)},$$

dove γ_{n+1}^Z e $\gamma_{n+1-\phi}^Z$ dipendono da $\{Y_{n+1-2\phi}, \dots, Y_n\}$ e $\{Z_{n+2-2\phi}, \dots, Z_{n+1}\}$. Osservando che, data l'indipendenza delle variabili aleatorie ϵ_k , la densità della variabile aleatoria $\sum_{k=\tau_n}^n \epsilon_{k+1}$ è data da $f_{\epsilon}^{(\phi)}$, otteniamo la tesi nel caso in cui $\tau_{n+1} = n+1$.

Per calcolare $\mu_n^{az}(d)$, nel caso del modello della Sezione 1.5, dobbiamo tenere in conto che esistono due casi, in entrambi i valori attesi dipendono dai ritorni del mercato Z_{n+1} e lo stato economico Y_{n+1} . La differenza tra i due sta nel caso in cui l'interazione tra cliente e robo advisor avviene al tempo t_{n+1} $(\tau_{n+1} = n+1)$, in questo caso per il calcolo di $\mu_n^{az}(d)$ dovremmo considerare anche la densità di $\sum_{k=\tau_n}^n \epsilon_{k+1}$, dove i termini ϵ_k della sommatoria sono le modifiche idiosineratiche delle preferenze di rischio.

Siano

$$\tilde{\mu}_n^{az}(d) := \frac{\mu_n^{az}(d)}{\tilde{\mu}_{n+1}}, \quad \tilde{\mu}_n^{bz}(d) := \frac{\mu_n^{bz}(d)}{\tilde{\mu}_{n+1}}, \quad \tilde{\mu}_n^{bz^2}(d) := \frac{\mu_n^{bz^2}(d)}{\tilde{\mu}_{n+1}^2 + \sigma_{n+1}^2}.$$

Si puó osservare che moltiplicando $\tilde{\pi}_n^*(d)$ per $\frac{\tilde{\mu}_{n+1}}{\tilde{\mu}_{n+1}}$ e raccogliendo σ_{n+1}^2 al denominatore, possiamo scrivere la proporzione di ricchezza allocata come

$$\tilde{\pi}_{n}^{*}(d) = \frac{\tilde{\mu}_{n+1}}{\gamma_{n}(d)\sigma_{n+1}^{2}} \frac{\tilde{\mu}_{n}^{az}(d) - R_{n+1}\gamma_{n}(d) \left(\tilde{\mu}_{n}^{bz}(d) - \mu_{n}^{a}(d)\tilde{\mu}_{n}^{az}(d)\right)}{\tilde{\mu}_{n}^{bz^{2}}(d) + \left(\frac{\tilde{\mu}_{n+1}}{\sigma_{n+1}}\right)^{2} \left(\tilde{\mu}_{n}^{bz^{2}}(d) - \left(\tilde{\mu}_{n}^{az}(d)\right)^{2}\right)},$$

questo mostra che la strategia é proporzionale a $\frac{\tilde{\mu}_{n+1}}{\gamma_n(d)\sigma_{n+1}^2}$, la quale coincide con una strategia di investimento di $Markowitz\ standard$

$$\tilde{\pi}_{n-1}^*(d) = \frac{\tilde{\mu}_n}{\gamma_{n-1}\sigma_n^2}.$$

Nell'ultimo periodo di tempo, il fattore di proporzionalità è uguale a uno, allora la proporzione di allocazione ottimale é data esplicitamente da

$$\tilde{\pi}_{N-1}^*(d) = \frac{\tilde{\mu}_N}{\gamma_{N-1}\sigma_N^2},$$

che coincide con la strategia di investimento di ${\it Markowitz\ standard}$ a periodo singolo.

Bibliografia

- [1] BASAK, S., E CHABAKAURI, G. Dynamic Mean Variance Asset Allocation. Review of Financial Studies, 23(8), 2970-3016, 2010.
- [2] BJÖRK, T., E MURGOCI, A. A Theory of Markovian Time Inconsistent Stochastic Control in Discrete Time. *Finance & Stochastics*, 18(3), 545–592, 2013.
- [3] BJÖRK, T., MURGOCI, A., E ZHOU, X. Mean-Variance Portfolio Optimization with State-Dependent Risk Aversion. *Finance & Stochastics*, 24(1), 1-24, 2014.
- [4] CAPPONI, A., ÓLAFSSON, S., E ZARIPHOPOULOU, T. Personalized robo—advising: enhacing investment through client interaction. Forthcoming in Management Science, 2020.
- [5] Dai, M., Jin, H., Kou, S., e Xu, Y. A Dynamic Mean-Variance Analysis for Log Returns. Forthcoming in Management Science, 2020.
- [6] Kahneman, D., Tversky, A. Prospect Theory: An Analysis of Decision under Risk. *Econometrica*, 47(4), 263–291, 1979.
- [7] LI, D., E NG, W-L. Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. *Mathematical Finance*, 10(3), 387-406, 2000.

24 BIBLIOGRAFIA

[8] STATISTA FinTech Report 2020-Personal Finance. disponibile sul sito $\frac{\text{https:}}{\text{www.statista.com/study}}{41710/\text{fintech-report-personal-finance}}$.

Ringraziamenti

Ringrazio il mio relatore, prof. Pagliarani, per avermi seguito nella stesura di questa tesi, i docenti che mi hanno guidato nel corso degli studi, la mia famiglia e gli amici che mi hanno sostenuto.