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Abstract

With the advent of the High-Luminosity phase of the LHC (HL-LHC), the
instantaneous luminosity of the Large Hadron Collider at CERN is expected to
increase up to ∼ 7.5 · 1034cm−2s−1. Therefore, new strategies for data acquisition
and processing will be necessary, in preparation for the higher number of signals
produced inside the detectors, that would eventually make the trigger and readout
electronics currently in use at the LHC experiments obsolete. In the context of an
upgrade of the trigger system of the Compact Muon Solenoid (CMS), new recon-
struction algorithms, aiming for an improved performance, are being developed.
For what concerns the online tracking of muons, one of the figures that is being
improved is the accuracy of the transverse momentum (pT ) measurement.

Machine Learning techniques have already been considered as a promising so-
lution for this problem, as they make possible, with the use of more information
collected by the detector, to build models able to predict the pT with an improved
precision.

In this Master Thesis, a step further in increasing the performance of the pT
assignment is taken by implementing such models onto a type of programmable
processing unit called Field Programmable Gate Array (FPGA). FPGAs, indeed,
allow a smaller latency with a relatively small loss in accuracy with respect to
traditional inference algorithms running on a CPU, both important aspects for a
trigger system. The analysis carried out in this work uses data obtained through
Monte Carlo simulations of muons crossing the barrel region of the CMS muon
chambers, and compare the results with the pT assigned by the current (Phase-1)
CMS Level 1 Barrel Muon Track Finder (BMTF) trigger system. Together with
the final results, the steps needed to create an accelerated inference machine for
muon pT are also presented.

Chapter 1 provides a global view of the CMS experiment at LHC;

Chapter 2 presents an introduction of the CMS Muon System, with a particular
attention to the Level 1 Trigger system of the barrel region;

Chapter 3 introduces Machine Learning concepts and terminology, offering an
overview of a common workflow in the creation of a Supervised Learning
algorithm, introducing also the concept of quantizing a Neural Network;

Chapter 4 describes the main characteristics of FPGAs, together with a brief de-
scription of the workflow to implement designs with such a kind of electronics
devices;

Chapter 5 presents the original results of this project: the realization of two Neu-
ral Networks (NN) for the estimation of the particles’ momentum, the steps
followed to implement a NN on an FPGA, a description of the target hardware
used in this thesis and the results obtained performing the pT assignment task
using an FPGA and a consumer CPU.





Sommario

Con l’avvento della fase ad alta luminosità del Large Hadron Collider (HL-LHC)
presso il CERN di Ginevra, si prevede che la luminosità istantanea aumenterà fino a
∼ 7.5 ·1034cm−2s−1. Pertanto, saranno necessarie nuove strategie per l’acquisizione
e l’elaborazione dei dati, in preparazione ad un maggior numero di segnali prodotti
all’interno dei vari rivelatori, che renderanno obsoleti il sistema di trigger e l’elet-
tronica di acquisizione dati attualmente in uso presso gli esperimenti lungo LHC.
Nell’ambito dell’aggiornamento del sistema di trigger del Compact Muon Solenoid
(CMS), nello specifico, si stanno sviluppando nuovi algoritmi di ricostruzione che
mirano a migliorarne le prestazioni. Per quanto riguarda il tracciamento online
dei muoni, uno degli aspetti che si sta migliorando è la precisione della misura del
momento trasverso (pT ).

Le tecniche di Machine Learning sono ritenute una soluzione promettente per
questo problema, in quanto permettono, con l’uso di più informazioni raccolte dal
rivelatore rispetto al sistema di trigger, di costruire modelli in grado di prevedere
con una migliore precisione il pT .

In questa tesi di Laurea Magistrale, viene perseguito un ulteriore passo avanti
verso l’aumento delle prestazioni nell’assegnazione di pT , implementando tali mo-
delli su un dispositivo logico programmabile chiamato Field Programmable Gate
Array (FPGA). Le FPGA, infatti, promettono una minore latenza con una perdi-
ta di precisione relativamente piccola rispetto ai tradizionali algoritmi di inferenza
eseguiti su una CPU, entrambi aspetti importanti per un sistema di trigger. L’ana-
lisi effettuata in questo lavoro utilizza i dati ottenuti attraverso simulazioni Monte
Carlo di muoni che attraversano la regione del barrel delle camere a muoni di CMS.
I risultati sono quindi confrontati con il pT assegnato dall’attuale (Fase-1) sistema
di trigger di Livello-1 in CMS chiamato Barrel Muon Track Finder (BMTF). Insie-
me ai risultati finali, sono presentati anche i passi necessari per implementare su
una FPGA un modello di Machine Learning per l’assegnamento del pT dei muoni.
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Chapter 1

The Large Hadron Collider

The Large Hadron Collider (LHC) [1, 2, 3] is the particle accelerator operating
at CERN since 2010. Placed in a 27 km tunnel, the former LEP tunnel, it is
capable of accelerating either protons or heavy-ion beams. In the first case LHC
currently reaches a center-of-mass energy of 13 TeV. The two proton beams run
in separate beam pipes; the bending, needed to make the collisions possible, is
achieved using compact twin-bore superconducting magnets, cooled at 2.1 K with
superfluid helium, yielding a magnetic field of 8.3 T.

Figure 1.1: The CERN accelerator complex.

The proton injection is done employing pre-existing accelerators. This chain
of accelerators, shown in Figure 1.1, comprises the Linac (Linear Accelerator),
the PSB (Proton Synchrotron Booster), the PS (Proton Synchrotron) and the SPS
(Super Proton Synchrotron). Given all these steps, an injection energy into LHC of
450 GeV is reached. The LHC beam filling requires about two hours. Though LHC
can keep the same beams circulating for a longer period of time, data is usually
taken only in the first 10 hours, then the beams are dumped and a new fill is
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6 CHAPTER 1. THE LARGE HADRON COLLIDER

Quantity Value

Circumference 26659
Magnets working temperature (K) 1.9
Number of Magnets 9593
Number of principal dipoles 1232
Number of principal quadrupoles 392
Number of radio-frequency cavities per beam 16
Nominal energy, protons (TeV) 6.5
Nominal energy, ions (TeV/Nucleon) 2.76
Magnetic field maximum density (T) 8.33
Project luminosity (cm−2s−1) 2.06 ×1034

Number of proton packages per beam 2808
Number of proton per package (outgoing) 1.1 ×1011

Minimum distance between packages (m) ∼ 7
Number of rotations per second 11245
Number of collisions per crossing (nominal) ∼ 20
Number of collisions per second (millions) 600

Table 1.1: Main LHC technical parameters.

started in order to restart at maximum beam intensity to maximize the integrated
luminosity collected by the detectors.

The beams have a bunched structure, shown in Figure 1.2, with a crossing
frequency of f = 40 MHz, corresponding to an inter-collision time of 25 ns. They
are made up of 39 trains, each one containing 72 bunches with N = 1.1 × 1011

protons each. The number of missing packets between a train and the following
one allows an absolute synchronization of the electronic systems. The inter-collision
time is usually used as a time unit, commonly called bunch crossing (BX). Other
technical parameters can be found in Table 1.1.

LHC started with a first phase of data taking (Run-1) in 2009, ending in 2013.
In these years, it operated at a maximum centre of mass energy of

√
s = 8 TeV

for proton-proton collision, reaching a maximum instantaneous luminosity of 7.67
×1033cm−2s−1 and an average number of interactions per BX equal to 21 [4]. At the
end of this run, the total integrated luminosity hit 23.30 ×1039cm−2. The second
LHC run (Run-2) lasted from 2015 to 2018. During this period LHC operated at
a maximum center of mass energy of 13 TeV and the peak number of collisions per
BX and the instantaneous luminosity reached the values of approximately 60 and
2.2×1034cm−2s−1 respectively. The next run (Run-3) is expected to start in 2022,
after a shutdown for the detectors’ upgrades.

1.1 LHC Detectors

The collisions happen at four interaction points, where the 4 main detectors are lo-
cated: ATLAS (AToroidal LHCApparatuS) and CMS (CompactMuon Solenoid)
are general purpose detectors, ALICE (A Large Ion Collider Experiment) focuses
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Figure 1.2: The LHC beam structure.

on the heavy ions physics and on the study of the quark-gluon plasma, and LHCb
(LHC beauty experiment) studies the CP violation in b-physics.

Figure 1.3: Schematic drawings of the four main LHC detectors.

1.1.1 CMS

CMS [5, 6] is a general-purpose detector at LHC. It is built around a cylindrical
solenoid magnet which produces a 3.8 T magnetic field, about 100000 times the
magnetic field of the Earth. The field is confined by a steel yoke that forms the
bulk of the detector’s 14000-tonne weight. The description of the apparatus in
further details will be covered in section 1.2.
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1.1.2 ALICE

ALICE (A Large Ion Collider Experiment) [7, 8] is a detector dedicated to heavy-
ion physics at the LHC. It is designed to study the physics of strongly interacting
matter at extreme energy densities, where a phase of matter called quark-gluon
plasma is formed. By exploiting the similiarities between these conditions and
those just after the Big Bang, it is possible to gain insight on the origin of the
Universe. It allows a comprehensive study of all kinds of known particles produced
in the collision of heavy nuclei (Pb-Pb). During proton-proton runs, data is taken
nonetheless in order to provide reference data for the heavy-ion programme and to
a number of specific strong-interaction topics for which ALICE is complementary
to the other LHC detectors.

The ALICE detector is 16 × 16 × 23m3 with a total weight of approximately
10000 tons. It consists of a central barrel part and a forward muon spectrometer.
The barrel is embedded in a large solenoid magnet capable of a magnetic field up
to 0.5 T.

1.1.3 ATLAS

ATLAS (A Toroidal LHC ApparatuS) [9, 10] is the other general-purpose detector
at the LHC. It investigates a wide range of physics, such as the search for extra
dimensions and particles that could make up dark matter. The detector is forward-
backward symmetric with respect to the interaction point, making it comparable
to a 25m high and 44m long cylinder. A solenoid aligned on the beam axis provides
a 2 T magnetic field in the inner detector, while three toroids (one for the barrel
and one for each end-cap) produce a toroidal magnetic field of approximately 0.5
T and 1 T for the muon detectors in the central and end-cap regions, respectively.

Although it has the same scientific goals as the CMS experiment, it uses differ-
ent technical solutions in some subsystems and a different magnet-system design.

1.1.4 LHCb

The Large Hadron Collider beauty (LHCb) [11, 12] experiment specializes in in-
vestigating the difference between matter and antimatter by studying a type of
particle called the “beauty quark”, or “b quark”. Instead of surrounding the colli-
sion point with an enclosed detector as ATLAS and CMS, the LHCb experiment
uses a series of subdetectors to mainly detect forward particles.

The 5600-tonne LHCb detector is made up of a forward spectrometer and planar
detectors. It is 21 metres long, 10 metres high and 13 metres wide.

1.1.5 Other experiments

Aside from the aforementioned major LHC experiments, other smaller ones are
worth a mention. One of them, LHCf [13, 14], uses particles thrown forward by
p− p collisions as a source to simulate high energy cosmic rays. LHCf is made up
of two detectors which sit along the LHC beamline, at 140m from either side of
the ATLAS collision point. They only weight 40 kg and measures 30× 80× 10 cm.
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Another experiment placed at the LHC is called TOTEM [15, 16]. It is designed
to measure p − p total elastic and diffractive cross section by measuring protons
emerging at a small angle with respect to the beam lines. Detectors are spread
across half a kilometre around the CMS interaction point in 26 special vacuum
chamber called “roman pots”, and they are connected to beam ducts, in order to
reveal particles produced during the collisions.

1.2 The Compact Muon Solenoid detector

The Compact Muon Solenoid (CMS) is a general purpose detector 21.6 m long
with a diameter of 15 m and a weight of about 14000 tons. It is composed by a
cylindrical barrel and two endcaps (1.4).

Figure 1.4: Overall view of the CMS detector.

A superconducting solenoid generates a magnetic field of 3.8 T inside the de-
tector. In its innermost region, a high quality central silicon inner tracker, capable
of achieving a track reconstruction with very high resolution, is installed. A homo-
geneous electromagnetic calorimeter and a sampling hermetic hadron calorimeter
are installed to perform energy measurements on electrons, photons and jets from
hadrons. Finally, a redundant and highly performant muon system wraps the de-
tector: it provides detection of muon tracks, and contribute to the measurement of
their transverse momentum and angular position. Its four muon stations are sliced
into an iron yoke that returns the flux of the magnetic field, acts as an absorber for
traversing particles that are not muons and neutrinos, and hosts and mechanically
supports the stations.

In CMS, a right-handed coordinate system can be defined: the x-axis points
to the center of the accelerator ring, the y-axis points upwards and the z-axis is
parallel to the beam pipe and the solenoid magnetic field. Beside these coordinates,
two angles are defined: the polar angle θ with respect to the z-axis, defined in the
range 0 ≤ θ ≤ π, and the azimuthal angle φ with respect to the y-axis in the
x − y plane going from 0 to 2π (2.1). The following description is based on such
coordinate system.

An ultra-relativistic approximation (|~p| � m) of the rapidity y, known as pseu-
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dorapidity η, is also introduced to replace in most cases the polar angle:

y = 1/2 ln

(
E + pz
E − pz

)
≈ η = 1/2 ln

(
|~p|+ pz
|~p| − pz

)
= − ln

(
tan

θ

2

)
(1.1)

where E, |~p| and pz are the energy, the 3-momentum and the component along
the z-axis of a particle.

Tracker

The Tracker is a crucial component in the CMS design. It measures particles’
momentum through their path, the greater is their curvature radius across the
magnetic field, the larger is their momentum. The Tracker is able to reconstruct
muons, electrons and hadrons paths as well as tracks produced by short-lived par-
ticles decay, such as b quarks. It has a low degree of interference with particles and
a high resistance to radiation: these are important characteristics due to the high
radiation environment in which the Tracker is installed. On the other hand, the
detector has to feature high granularity and fast response in order to keep up with
the rate of particles crossing the Tracker (about 1000 particles from more than 20
overlapping p − p interactions every 25 ns). These requirements on granularity,
response time and radiation hardness lead to a design entirely based on silicon de-
tector technology. The Tracker is presently composed of a pixel detector with four
barrel layers at radii between 4.4 cm and 10.2 cm and a silicon strip tracker with
10 barrel detection layers extending outwards to a radius of 1.1m. Each system is
completed by endcaps which consist of 3 disks in the pixel detector and 3 plus 9
disks in the strip tracker on each side of the barrel, extending the acceptance of
the tracker up to a pseudorapidity of |η| < 2.5.

Calorimeters

As previously mentioned, there are two types of calorimeters in the CMS experi-
ment which measure the energy of particles emerging from the collisions.

Electromagnetic calorimeters measure the energy of particles subjected to the
Electromagnetic interaction by keeping track of their energy loss inside the detec-
tor. The Electromagnetic Calorimeter (ECAL) of CMS is a hermetic homogeneous
calorimeter made of 61200 lead tungstate (PbWO4) crystals, mounted in the cen-
tral barrel part, with a pseudorapidity coverage up to |η| = 1.48, closed by 7324
crystals in each of the two endcaps, extending coverage up to |η| = 3.0. PbWO4

scintillates when electrons and photons pass through it, i.e. it it produces light in
proportion to the crossing particle’s energy. The use of these high density crys-
tals guarantees a calorimeter which is fast, has fine granularity and it is radiation
resistant: all important characteristics in the LHC environment. Photodetectors,
that have been especially designed to work in the strong magnetic field, are glued
onto the back of each crystal to detect the scintillation light and convert it to an
electrical signal that is amplified and sent out for further processing and analysis.

The energy measurement for hadrons is carried out by the Hadron Calorimeter
(HCAL), which is specifically built for measuring strong-interacting particles. It is
a sampling calorimeter, i.e. it is made up of series of alternating passive and active
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layers. The passive layers are designed to make particles lose energy, while the
active layers take snapshots of the showers of particles caused by hadrons traversing
the calorimeter. The blue-violet light emitted by these kind of scintillators is then
absorbed by optic cables of about 1 mm of diameter, shifting its wavelength into
the green region of the electromagnetic spectrum and finally converted into digital
data by photodetectors. The optic sum of light produced along the path of a
particle, and performed by specifically designed photo-diodes, is correlated to its
energy.

The HCAL also provides tools for an indirect measurement of non-interacting
particles like neutrinos, which are produced in electroweak interactions. Indeed,
HCAL is built to encapsulate as hermetically as possible the interaction point in
order to detect “invisible” particles by looking for missing energy and momentum
from the reconstruction of the collision event.

Unlike ECAL, HCAL has two more components called forward sections, located
at the ends of CMS, designed to detect particles moving with a low scattering angle,
extending the total coverage of the HCAL system to |η| < 5.191. These sections
are built with more radiation resistant materials to protect them from the higher
energy deposited in the regions close to the beam pipe.

1.3 High Luminosity LHC

In order to further increase LHC’s discovery potential, as well as to improve the
precision of Standard Model physics measurements, the High Luminosity LHC
(HL-LHC) [17] Project was setup in 2010 to extend its operability by another
decade and to increase its luminosity (and thus collision rate) by a factor of ∼ 10
beyond its design value. The main objective of the HL-LHC design study was
to determine a set of beam parameters and the hardware configuration that will
enable the LHC to reach the following targets:

• a peak luminosity of up to ∼ 7.5×1034 cm−2s−1 with leveling, i.e. a constant
luminosity at a value below the virtual maximum luminosity, in order to
reduce the "luminosity burn-off" (protons consumed in the collisions) which
follows a luminosity peak without leveling;

• an integrated luminosity of 250 fb−1 per year with the goal of 3000 fb−1 in
about a dozen years after the upgrade. The integrated luminosity is about ten
times the expected luminosity of the first twelve years of the LHC lifetime.

The overarching goals are the installation of the main hardware for the HL-
LHC during the Long Shutdown 3 (LS3), scheduled for 2024-2026 (see Figure 1.5),
finishing the hardware commisioning at machine re-start in 2026-2027 while taking
all actions to assure a high efficiency in operation until 2035-2040.

Upgrading such a large scale, complex piece of machinery is a challenging pro-
cedure and it hinges on a number of innovative technologies. The process relies
on a combination of 11-12 T superconducting magnets, compact and ultraprecise
superconducting radio-frequency cavities for beam rotation, as well as 100-m-long
high-power superconducting links with zero energy dissipation. In addition, the
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Figure 1.5: LHC/ HL-LHC Plan (last update August 2020 [18]).

higher luminosities will make new demands on vacuum, cryogenics and machine
protection, and they will require new concepts for collimation and diagnostics, ad-
vanced modelling for intense beam and novel schemes of beam crossing to maximize
the physics output of the collisions.

The HL-LHC physics program is designed to address fundamental questions
about nature of matter and forces at the subatomic level. Although the Higgs boson
has been discovered, its properties can be evaluated with much greater precision
with ∼ 10 times larger data set [19] than the original design goal of 300 fb−1.
The low value of the Higgs boson mass poses the so-called hierarchy problem of
the Standard Model, which might be explained by new physics and from a better
understanding of electroweak symmetry breaking. The imbalance between matter
and anti-matter in the universe is the big open issue for flavour physics. Finally,
there may be a new weakly interacting massive particle to explain the existence of
Dark Matter. The HL-LHC will also allow further scrutiny of the new landscape of
particle physics in case evidence of deviations from the SM, including new particles,
are found. In the absence of any such hint, the ten-fold increase in data taking will
nevertheless push the sensitivity for new physics into uncharted territory.

The ATLAS and CMS detectors will be upgraded to handle an average number
of pile-up events per BX of ∼ 200, corresponding to an instantaneous luminosity
of approximately 7.5×1034 cm−2s−1 for operation with 25 ns beams at 7 TeV. The
detectors are also expected to handle a line density of pile-up events of 1.3 events
per mm per BX. ALICE and LHCb will be upgraded to operate at instantaneous
luminosity of up to 2× 1031 cm−2s−1 and 2× 1033 cm−2s−1 respectively.



Chapter 2

The CMS Muon System

The muon (µ) is an elementary particle classified as a lepton, with an electric charge
of -1 (+1 for antimuons) and a spin of 1

2
with a mass of about 105 MeV, ≈ 200

times higher than the one of an electron. During p− p and heavy ions collisions at
LHC, muons are produced and they are mainly detected via the Tracker system,
see 1.2, and the Muon System (Figure 2.1), a group of subdetectors dedicated to
this task and placed in the outermost region of the CMS experiment.

2.1 The experimental apparatus

As is implied by the experiment’s middle name, the detection of muons is of central
importance to CMS: precise and robust muon measurement was a central theme
from its earliest design stages. The aim of the Muon System [20] is to provide
a robust trigger, capable to perform BX assignment and standalone transverse
momentum (pT ) measurement, perform efficient identification of muons and con-
tribute to the measurement of the pT of muons with energy as high as few hundreds
of GeV or more. Good muon momentum resolution and trigger capability are en-
abled by the high-field solenoidal magnet and its flux-return yoke. The latter also
serves as a hadron absorber for the identification of muons.

In the barrel region, where the background is small, the muon rate is low,
and the 3.8 T magnetic field is uniform and mostly contained in the steel return
yoke, drift chambers with rectangular drift cells are used. The barrel Drift Tube
(DT) chambers cover the psudorapidity region |η| < 1.2 and are organized into 4
concentric stations interspersed among the layers of the flux return plates.

In the 2 endcap regions of CMS, where the muon rates and background levels
are larger and the magnetic field gets large and non-uniform, the Muon System uses
Cathode Strip Chambers (CSC). With their fast response time, fine segmentation
and radiation resistance, the CSCs are used to track muons between |η| values of
0.9 and 2.4. There are 4 stations of CSCs in each endcap, with chambers positioned
perpendicular to the beam line and interspersed between the flux return plates.

Resistive Plate Chambers (RPC) are deployed throughout the central and for-
ward regions (η < 1.8): they offer a fast response and an excellent time resolution
providing an unambiguous BX assignment to muons, thus are mainly dedicated for
triggering. Even though the RPCs have a lower spatial resolution than DTs and

13
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Figure 2.1: CMS detector longitudinal (top) view and barrel transverse (bottom)
view. Describing LHC a reference frame is usually used in which the x-axis is
pointed towards the center of the circular accelerator, the y-axis goes upward and
the z-axis runs along the accelerated beam.

CSCs, they are also used to complement them in the offline reconstruction. A total
of 6 layers of RPCs are embedded in the barrel Muon System, two in each of the
first two stations, and one in each of the last two stations. In the endcap region,
the two outermost layers of CSCs have a layer of RPCs (divided in two stations)
placed right after the CSC chambers. The inner endcap disk houses instead two
layers of RPCs. One is positioned in its inner side, after the innermost layer CSC
chambers, the other is placed in the outer side of the iron yoke of forming the disk.
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2.1.1 The Drift Tube Chambers

(a) The layout of a Drift Tube cell.

(b) Schematic view of a DT chamber.

Figure 2.2: DT chamber schematic in the Muon System (b) and a drift tube cell
(a).

The basic detector element of the DT muon system is a drift tube cell (Fig.
2.2a) of 42 mm × 13 mm and it contains a stainless steel anode wire with a
diameter of 50 µm and lenght varying from 2 to 3 m. Cells are placed next to each
other separated by "I"-shaped aluminium beams, making up layers contained in
between two parallel aluminium planes. Strips of aluminium, deposited on both
faces of each I-beam and electrically isolated serve as cathodes. Anode wires and
cathodes are put at positive and negative voltage (typically +3600 V, -1200 V)
respectively, and provide the electric field within the cell volume. The distance
of the traversing track to the wire is measured by the drift time of ionization
electrons; for this purpose, two additional positively-biased (+1800V) strips are
mounted on the aluminium planes on both inner surfaces in the center of the
cell itself, in order to provide additional field shaping and improve the space-to-
distance linearity over the cell. The tubes are filled with a 85%/15% gas mixture
of Ar/CO2, which provides good quenching properties. The drift speed obtained is
about 55µm/ns. Thus, a maximum drift time (half-cell drift distance) of ∼ 380 ns
(or 15-16 BXs) is obtained. The choice of a drift chamber as tracking detector in
the barrel was dictated by the low expected rate and by the relatively low intensity
of the local magnetic field.

The DT system is segmented in 5 wheels along the z direction, each about
2.5 m wide and divided into 12 azimuthal sectors, covering ∼ 30° each. Drift
tubes are arranged in 4 concentric cylinders, called stations, within each wheel, at
different distance from the interaction point, and interleaved with the iron of the
yoke. Each DT station consists of 12 chambers in each wheel, with the exception
of the outermost station, MB4, whose top and bottom sectors are equipped of two
chambers each, thus yielding a total of 14 chambers per wheel in that station.
Each DT chamber is azimutally staggered with respect to the preceeding inner
one, in order to maximize the geometrical acceptance. The DT layers inside a
chamber, as shown in Figure 2.2b, are stacked, half-staggered, in groups of 4 to
form three superlayers (SL), two of them measure the muon position in the bending
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plane r-φ, the other one measures the position along the z coordinate. However, the
chambers in the outermost station, MB4, are only equipped with two φ superlayers.
The overall CMS detector is thus equipped with a total of 250 DT chambers.

Figure 2.3: Reconstructed hit resolution for DT φ (squares) and θ (diamonds)
superlayers measured with 2016 data [21].

Figure 2.3 shows the spatial resolution of DT hits sorted by station, wheel and
wire orientation (φ or θ) [21]. The resolution in the φ superlayers (i.e. in the
bending plane) is better than 250 µm in MB1, MB2 and MB3, and better than
300 µm in MB4. In the θ superlayers, the resolution varies from about 250 to 600
µm except in the outer wheels of MB1.

Within every station, both θ and φ superlayers show symmetric behavior with
respect to the z = 0 plane, as expected from the detector symmetry. In the central
wheel (wheel 0), where tracks from the interaction region are mostly perpendicular
to all layers, the resolution is the same for θ and φ superlayers. From wheel
0 toward the forward region, tracks from the interaction region have increasing
values of |η|; this affects θ and φ superlayers in opposite ways. In the θ superlayers
the increasing inclination angle degrades the linearity of the distance-drift time
relation,thus worsening the resolution. In contrast, in φ superlayers the inclination
angle increases the track path within the tube (along the wire direction), thus
increasing the ionization charge and improving the resolution. The resolution of
the φ superlayers is worse in MB4 because no θ measurement is available, so no
corrections can be applied to account for the muon time of-flight and the signal
propagation time along the wire.

2.1.2 The Cathode Strip Chambers

The high magnetic field and particle rate expected in the muon system endcaps
does not allow to use drift tubes detectors to perform measurements at large η
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values. Therefore a solution based on Cathode Strip Chambers (CSC) has been
adopted [22].

(a) Layout of the CSC subsystem.

(b) Schematic view of CSC chamber sig-
nal formation.

Figure 2.4: The Cathode Strip Chambers of the CMS endcap muon system.

Each endcap region of CMS has four muon station disks (from ME1 to ME4) of
CSCs. These chambers are trapezoidal multi wire proportional chambers (MWPC)
with segmented cathodes, capable of providing precise spatial and timing informa-
tion, due to a short drift length which leads to fast signal collection, even in presence
of large inhomogeneous magnetic field and high particles rates. A charged particle
crossing the layers produces a signal which is collected by several adjacent cathode
strips; since the strips are deployed radially, a charge interpolation provides a high
resolution measurement of the φ-coordinate. The additional analysis of the wire
signal offers the measurement of the orthogonal r -coordinate. Wire signals provide
a fast response, useful for trigger purposes.

Each CSC has six layers of wires sandwiched between cathode panels. Wires
run at approximately constant spacing, while cathode panels are milled to make
six panels of strips running radially, one plane of strips per gas gap. Therefore,
each chamber provides six measurements of the φ -coordinate (strips) and six
measurement of the r-coordinate (wires).

ME1 has three rings of CSCs, at increasing radius, while the other three stations
are composed of two rings. All but the outermost chamber of ME1 overlap in φ
and therefore form rings with no dead area in azimuth. In station 2 to 4 there are
36 chambers covering 10° in φ making up the outer ring, and 18 chambers covering
20° in the inner ring, closer to the beam pipe. which are then arranged to form
four disks of concentric rings placed in between the endcap iron yokes.

The spatial resolution of the CSC strip measurement depends on the relative
position at which a muon crosses a strip: it is better for a muon crossing near a
strip edge than at the center because then more of the induced charge is shared
between that strip and its neighbor, allowing a better estimate of the center of
the charge distribution. The design specifications for the spatial resolutions in the
CSC system were 75 µm for the chambers in the inner ring of ME1 and 150 µm for
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Station/Ring Spatial Resolution (µm)

ME1/1a 45

ME1/1b 52

ME1/2 90

ME1/3 105

ME2/1 125

ME2/2 134

ME3/1 120

ME3/2 135

ME4/1 123

ME4/2 134

Table 2.1: CSC transverse spatial resolution per station [21].

the others. Table 2.1 summarizes the mean spatial resolution in each CSC station
and ring.

2.1.3 The Resistive Plate Chambers

Resistive Plate Chambers (RPCs) [23] are used both in the barrel and endcaps,
complementing DT and CSC systems, in order to ensure robustness and redun-
dancy to the muon spectrometer. RPCs are gaseous detectors characterized by a
coarse spatial resolution, however they show a time response comparable to scin-
tillators, and, with a sufficient high segmentation, they can measure the muon
momentum at the trigger time and provide an unambiguous assignment of the BX.

Figure 2.5: Schematic view of a CMS double gap RPC.

A RPC is formed, as shown in Figure 2.5, by two planes of material with high re-
sistivity (Bakelite) separated by a 2mm gap filled with a mixture of freon (C2H2F4)
and isobutane (i−C4H10). The planes are externally coated with graphite, which
forms the cathode for the high voltage (9.5 kV). The crossing particle generates an
electron avalanche which induces a signal in the insulated aluminium strips placed
outside the graphite cathodes ready to be read-out. CMS uses double-gap RPCs,
with two gas-gap read-out by a single set of strips in the middle: this increase the
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signal on the read out strip, which sees the sum of the single gap signals. In the
barrel the readout is segmented into rectangular strips 1-4 cm wide and 30-130 cm
long, whereas the endcaps are equipped with trapezoidal shaped strips covering
approximately the range ∆φ = 5− 6,∆η = 0.1.

In the barrel region, the system layout follows the DT segmentation and two
RPC stations are attached to each side of the two innermost DT stations of a sector,
whereas one single RPC is attached to the inner side of the third and fourth DT
stations. This solution ensures proper detection of muons in the low pT range
within barrel trigger, which cross by multiple RPC layers before they stop in the
iron yoke.

Double-gap RPCs operated in avalanche mode have demonstrated the ability
to reach an intrinsic time resolution of around 2 ns [24]. This has to be folded
in with the additional time uncertainty coming from the time propagation along
the strip, which contributes about 2 ns, plus the additional jitter that comes from
small channel-by-channel differences in the electronics and cable lengths, again of
the order of 1-2 ns. These contributions, when added quadratically, give an overall
time resolution of around 3 ns [25]. This is much smaller than the 25 ns timing
window of the RPC data acquisition system (DAQ) in CMS.

Figure 2.6: The bunch crossing distribution from reconstructed RPC hits in the
barrel (left) and in one endcap (right), using the 2016 data [21].

The left-hand side of Figure 2.6 shows the BX distribution of RPC hits asso-
ciated with global muons in the barrel, while the right-hand side shows the same
distribution for one endcap. Each bin corresponds to the 25 ns bunch separation in
LHC, and bin 0 is the time of the L1T. In figure 2.6, 0.5% of RPC hits are outside
bin 0.

2.2 Trigger and data acquisition

At LHC, the beam crossing interval for protons is 25 ns, corresponding to a fre-
quency of 40 MHz. Depending on luminosity, several collisions may occur at each
crossing of the proton bunches. Since it is impossible to store and process this large
amount of data, a reduction from the 40 MHz to the offline storage rate of approx-
imately 1 kHz has to be achieved. This task is performed by the trigger system,
which is the first step of the physics event selection process. The selection criteria
is driven by the experiment’s physics goals, thus the trigger system must be able to
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reconstruct physics objects (muons, electrons, gammas, jets, missing energy, etc)
with sufficient efficiency and purity to achieve the required rate reduction without
compromising the yield of interesting events.

Figure 2.7: Schematic diagram of the CMS Trigger Chain.

Since the time between crossings is too short to collect all the information
coming from all the subdetectors and process it in a single step, an architecture
based on different levels of increasing complexity has been adopted. In CMS this
bandwidth reduction is performed in two main steps: the Level-1 trigger is based
on custom electronics, and has to reduce the number of accepted events down
to a maximum rate of 100 kHz, using coarse information coming from the muon
detectors and calorimeters; the High Level trigger (HLT) is based on software
algorithms running on a farm of commercial CPUs. At this stage each event can
take much more time for its processing, since the bandwidth has been already
reduced and events are processed in parallel by different machines of the HLT. In
this way the full information available from all the detectors (including the one of
the silicon inner tracker) can be used, allowing a further reduction of event rate
of a factor 102−3. In Figure 2.7 a diagram of the CMS trigger chain is pictured,
together with the rate of events which characterize each steps of the chain.

2.2.1 The Level-1 Trigger system

The Level-1 Trigger (L1T) [26, 27] must cope with the machine frequency of 40
MHz and the time between collisions, 25 ns, is far too short for running any kind of
non trivial algorithm and for taking a decision on accepting that event. However,
since dead time has to be avoided, complete information from the subdetectors is
stored in First In First Out (FIFO) memories. In parallel, the trigger logic runs
using a subset of the information, pipelined in small steps requiring less than 25 ns
each, in order to start a new event processing every BX, even if the full processing
requires a much longer time to complete. To make this possible, custom developed
programmable hardware is used: Field Programmable Gate Arrays (FPGA) are
used where possible, but also Application Specific Integrated Circuits (ASICs) and
Programmable Lookup Tables (LUTs) are taken into account to complete each
processing step in time. At the end of the logic chain a decision is taken. If the
event has to be kept, the FIFO memories containing the detector data are read
and sent to the HLT. The maximum time available for the trigger logic to take a
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decision is determined by the amount of BXs for which the detector data can be
stored into FIFOs, and corresponds to 4 µs.

The L1T at CMS is further subdivided into three major subsystems: the Muon
Trigger, the Calorimeter Trigger and the Global Trigger. The first two systems pro-
cess information coming from, respectively the muon spectrometer and calorime-
ters and do not have to perform the task of selecting events by themselves. On the
other hand, they identify and perform sorting on various types of trigger objects
(i.e. electron/photon, jets, muons) and then forward the four best candidates of
each kind of trigger object to the Global Trigger where the final decision is made,
as shown in Figure 2.8. This last selection can be performed considering only one
type of object (e.g. selecting events where µ have a pT > 22 GeV) or combining
queries regarding more trigger objects.

Figure 2.8: Schematic diagram of the CMS Level-1 trigger.

The Level-1 Muon Trigger

The Level-1 Muon trigger is designed to reconstruct muon position and pT and to
assign the particle’s origin in terms of BX.

During the LHC Run-2 the L1T had to cope with an increase of the total event
rate of roughly a factor 6 compared to the limits reached during the first LHC run
(Run-1). In view of this increase in luminosity the L1T chain of CMS underwent
considerable improvements.

In the upgraded L1T, the architecture of the electronics devoted to muon track-
ing follows a geographical partitioning. As we can see on the left of Figure 2.8,
Trigger Primitives (TP) from the CSCs are sent to the Endcap Muon Track Finder
(EMTF) and the Overlap Muon Track Finder (OMTF) via a mezzanine on the
muon port card. Endcap RPC hits are sent via the link board to the concentrator
pre-processor and fan-out (CPPF) card and barrel RPC hits are sent to the Twin-
Mux concentrator card. DT trigger primitives are sent to the TwinMux card via a
copper to optical fiber (CuOF) mezzanine. The TwinMux builds “Superprimitives”,
which combine the very good spatial resolution of DT trigger segments with the
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superior timing properties of RPC hits, improving the efficiency and the quality of
the information used in the following steps.

The EMTF receives RPC hits via the CPPF card. In addition to the CSC
hits, the OMTF receives DT hits and RPC hits via the CPPF and the TwinMux,
which also provides DT and RPC hits to the Barrel Muon Track Finder (BMTF).
The Global Muon Trigger (GMT) sorts the muons, performs duplicate removal and
sends the best eight muons to the Global Trigger.

2.2.2 The High Level Trigger and DAQ

The CMS High Level Trigger [28] has the task to further reduce the event rate from
the L1T to ≈ 1 kHz, as required by the storage system and the offline processing
of events. In order to achieve this reduction, the HLT performs an analysis similar
to off-line event reconstruction relying on a farm of commercial processors.

The architecture of the CMS DAQ system is shown schematically in Figure
2.7. The detector front-end electronics are read out in parallel by the Front-End
System (FES) that format and store the data in pipelined buffers. These buffers
must be connected to the processors in the HLT farm, and this is achieved by
the large switch network (Builder Network). From the buffers, data is moved by
the Front End Drivers (FEDs) to the Front End Readout Links (FRLs) which
are able to get information from two different FEDs. Information coming from
different FRLs is then sent to the Event Builder system in charge of building the
full event. At this stage, data reaches the CMS surface buildings while beginning
the reconstruction phase. After the assembly phase, each event is sent to the
Event Filter where HLT algorithms, together with some Data Quality Monitoring
operations, are performed. Filtered data is then separated into several online
streams, whose content depends on trigger configurations (e.g. all data collected
by single muon triggers), and is sent to a local storage system before being migrated
to the CERN mass storage. Two systems complement this flow of data from the
Front-ends to the processor farm: the Event Manager, responsible for the actual
data flow through the DAQ, and the Control and Monitor System, responsible for
the configuration, control and monitor of all the elements.

2.3 The DT Local Muon Trigger

The DT Local Trigger System [29] (or DT Trigger Primitive Generator DT-TPG)
goal is the detection of charged particles crossing the muon barrel chambers, mea-
suring their position and trajectory as well as their BX of origin. It also tags
the reconstructed primitives with a quality word based on the number of layers
involved in the computation and, eventually, it sends them to later stages of the
L1T processing.

In Figure 2.9 the workflow the systems is shown: the signals picked up by
the individual wires inside the DTs’ superlayers are processed by the Bunch and
Track identifiers (BTIs) that perform track fitting and BX assignment, exploiting
the mean-timer [30] property, holding for half staggered DT cells characterized by
a linear drift. Then, the Track Correlator (TRACO) has to match information
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Figure 2.9: Schematic diagram of the CMS DT Local Trigger.

coming from the two φ-superlayers of a DT chamber, increasing the lever-arm
between the BTI track segments making up the particles’ trajectory, and so the
accuracy of the parameter measurements. The next step is performed by the
Trigger Server (TS), which filters the candidates produced by the TRACO. Finally,
the information is sent to the TwinMux card, which merges DT primitives together
with the corresponding hits from RPCs. Then, the tracks are transferred to the
Trigger processors designed for BMTF and OMTF.

2.3.1 Bunch and Track Identifier

The Bunch and Track Identifier (BTI) [30] can be defined as a hardware track
fitting device. It is based on an implementation of the generalized mean-timer
method. It was explicitly developed to work on groups of four staggered layers of
DTs (superlayers), and to identify tracks which gave a signal in at least three out
of the four layers in a fixed time window. Each BTI is connected to 9 cells of the
same SL and adjacent BTIs overlap (having 5 common cells) to avoid low efficiency
regions [31].

The BTI algorithm relies on the fact that the particle path is a straight line, the
wire positions along the path (the measurement points) are equidistant and half-
staggered, and the drift velocity is approximately constant in the cell. Therefore,
considering the drift times of any three adjacent planes of staggered tubes (e.g.
cells in layers A, B and C of Figure 2.10), if the time is a linear function of the
space, the quantity

TMAX =
TA + 2TB + TC

2
(2.1)

is a constant and this principle holds independently from the track impact point
d and angle of incidence φ. TMAX is the drift time corresponding to the distance
between wires in two staggered layers (2.1 cm). Extending this method to four
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Figure 2.10: Layout of a DT Bunch and Track Identifier.

layers, the track identification is possible even if the drift time of a tube is missing
(due to inefficiency) or is altered by the emission of a δ ray. It is also insensi-
tive to uncorrelated single hits and it is therefore well-suited to a high radiation
environment.

After a particle’s crossing, a signal is induced on the detecting ith wire at a
time Td(i) that depends on the drift velocity vd as well as the distance between
the particle trajectory and the wire. On every BTI clock count, the apparent
Td(i) = TMAX − Ts(i) is computed (since the BTI digitizes the delay time Ts
from the wires signal detection with a 80 MHz frequency), and a straight line is
reconstructed from all different permutations of pairs of layers. Parameters like the
position and the angular parameter k = h tanφ (where h = 13 mm is the distance
between wire planes) are then evaluated for each pair of layers.

Hence at every clock cycle, a whole set of k-equations are computed and a
BTI trigger is generated if at least three of the six possible combinations are in
coincidence. For a single muon traversing the superlayer, the coincidence happens
at a fixed latency TMAX after the particle passage, allowing BX identification. In
the case of a four hit alignment, an High Quality Trigger (HTRG) is raised, while
in any other case a Low Quality Trigger (LTRG) is issued. However, there might
be a possibility that the alignment of four hits at some clock step produces a
LTRG just before or after the correct HTRG: a so called ghost trigger candidate.
The noise reduction of ghosts is obtained issuing the LTRG only if no HTRG is
generated before or after the possible LTRG: this mechanism is called Low Trigger
Suppression (LTS).

2.3.2 The Track Correlator

The TRAck COrrelator [32] task is to find correlations between track segments
obtained from BTIs of the two different φ superlayers in a station. Each TRACO
is connected to 4 BTIs of the inner SL and to 12 BTIs of the outer one (see
Figure 2.11). Segment position and angle from the two SLs are compared to verify
if they belong to a single track crossing a chamber. In this case, a new angle
with better resolution is assigned to the trigger primitive. The total number of
TRACOs per chamber depends on the size of the station (usually from 12 to 24
TRACOs are needed). Each TRACO tries to find up to two correlated segments,
and forwards their parameters to the Trigger Server. In the θ view, since there is



2.3. THE DT LOCAL MUON TRIGGER 25

only one detecting SL per station, no TRACO operation is performed, forwarding
data directly to the TS.

Figure 2.11: TRAck COrrelator geometrical layout

The algorithm of the TRACO starts by selecting, among all candidates in
the inner and outer SL independently, the best track segment according to the
trigger quality (HTRG or LTRG) and to the track proximity to the radial direction
compared to the vertex (i.e its pt). Then, it computes the k-parameter and the
position of a correlated track candidate, using the relations:

kCOR =
D

2
tanφ = xinner − xouter

xCOR =
xinner + xouter

2

(2.2)

Due to the long arm between the two SLs, the angular resolution of a correlated
track is ∼ 5 mrad which is significantly improved compared to the BTI resolution,
whereas the position resolution is improved by a factor

√
2.

Figure 2.12: Definition of the angles transformed by the TRACO.

Using programmable LUTs, the computed parameters are then converted to
the chamber reference system: position is transformed to radial angle φ and k-
parameter to bending angle φb = ψ − φ (as shown in Figure 2.12). If a correlated
track is built, it is forwarded to the TS, for further selection. If the correlation
fails, the TRACO forwards an uncorrelated track following a preference list that
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includes both parent SL (IN/OUT) and the quality bit (H/L) of the two candidate
tracks. If no correlation is possible since there is no candidate in one SL, the
existing uncorrelated track is still forwarded.

2.3.3 The Trigger Server

The Trigger Server [33] is the last on-board component of the DT Local Trigger
logic and has to select the best trigger candidate among the trigger primitives
provided by all TRACOs in a muon chamber and sends them to the TwinMux (see
Section 2.3.4).

Each muon station is equipped with only one TS and, for this reason, it needs
to be extremely robust and redundant. The TS has the following characteristics:

• since interesting physics may have two close-by muons that can hit the same
muon chamber, emphasis was put on the efficiency and purity of up to two
selected segments in designing the Trigger Server. The selection is based on
both the bending angle and the quality of the track segment.

• it has to reject ghosts generated by TRACOs using a configurable ghost
rejection algorithm.

• the processing time is independent on the number of TRACOs in the station.

• it has the capability to treat several pile-up events.

• it is equipped with a built-in redundancy since there is only one TS on each
chamber, resulting in a bottleneck of the on-chamber trigger.

The TS is composed by two subsystems (see Figure 2.13): one for the trans-
verse view (TSφ) and the other for the longitudinal view (TSθ). The TSθ has to
detect triggers produced by the 64 BTIs which equip the SL in the θ view. This
information is sent back to the TRACOs of the φ view and can be used as a valida-
tion of a trigger in order to reduce backgrounds. The TSφ is implemented in a two

Figure 2.13: Trigger Server architecture.

level structure: the Track Sorter Slave (TSS) and the Track Sorter Master (TSM).
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In this way a parallel approach with two steps of increasing bandwidth is guaran-
teed. On the other hand, the TSθ is formed by two identical units (TST) which
group together data coming from up to 8 BTIs and perform a logical OR on the
information received in order to prepare the θ-view trigger for regional processing.

2.3.4 The TwinMux barrel concentrator board

The TwinMux [34] is the adaptive layer for the track finder in the barrel region. It
merges and transmit information from DT, RPC and of the Hadronic Calorimeter
Outer barrel trigger, unburdening the track finder processors (BMTF and OMTF).
It is also responsible for duplicating the trigger primitives in order to reduce con-
nections between the Track Finders, increasing the reliability of the system.

Figure 2.14: TwinMux role in the DT and RPC trigger chain.

The TwinMux is a single slot double-width full-height µTCA board, equipped
with 6 front panel SNAP12 receivers and 2 Minipods (one transmitter and one
receiver) for high speed data transmission (up to 13 Gbps). Based around a Xilinix
Virex-7 FPGA, the TwinMux achieves the merging of several 480 Mb/s trigger links
to higher speed serial links and compensates delays to provide BX alignment of
the trigger data coming from different inputs.

The TwinMux hosts an algorithm aimed at improving the trigger performance
through the simultaneous use of DT and RPC information. This is achieved
through two main operations: the calculation of DT+RPC primitives and of RPC-
only primitives. Each TwinMux processor receives DT and RPC links from one
sector of the barrel muon detector. The data coming from these two detectors
contains different information: Trigger Primitives are sent from DTs and they in-
clude position, direction, quality and BX information. On the other hand, Hits
coming from RPCs include position and BX information only, and they undergo
a clustering process, i.e. neighbouring hits are merged and the resulting cluster
position is assigned with half-strip resolution and converted into DT coordinates.
In case that the same RPC cluster fires in two consecutive BXs, the second one is
suppressed.

In MB1 or MB2 station, if there is no DT primitive available, "pseudo primi-
tives" can be built. In fact, MB1 and MB2 are equipped with two RPC chambers,
installed on the two opposite sides of the DTs with respect to the beam line. If
RPC clusters from these two chambers are close in space, they are combined and
position and direction are computed and used to create a primitive which is sent
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to the BMTF, potentially increasing the number of station layers used to build a
BMTF track.

Thus, RPC-only trigger primitives are particularly useful in case of problems
affecting the DT detector, ensuring triggers are generated even in case of complete
lack of input from a DT chamber. Nevertheless, there is an increase in overall
efficiency even in standard, healthy detector conditions, as shown in Fig. 2.15,
where the efficiency for DT-only and DT+RPC primitives (red open circles) is
complemented with the inclusion of RPC-only primitives as well (blue full circles)
[35].

Figure 2.15: Trigger Primitive efficiency, for the MB1 station, versus the recon-
structed muon pseudorapidity η. In red, open circles, the efficiency without the
introduction of RPC-only primitives. In blue, solid circles, the efficiency with all
the primitives types included.

The DT+RPC primitives are obtained following an algorithm which has several
steps. First, input data are deserialized and synchronized. RPC clusters close in φ
to DT Trigger Primitives from the same chamber are searched for in a ± 1BX time
window centered around the DT primitive BX. After that the closest RPC cluster
is selected and if the ∆φ with respect to the Trigger Primitive is equal or less than
15 mrad, RPC and DT are considered matched and a DT+RPC primitive quality
flag is set. Furthermore, if the DT Trigger Primitive was built with less than 8 DT
φ layers, the Trigger Primitive BX is set to match the RPC cluster BX; if it was
built with all 8 DT φ layers, its BX is not changed. The impact of this procedure
is clear by looking at the different BX assignment distribution for DT-only and
DT+RPC primitives in Figure 2.16. Whenever no match with an RPC cluster is
found, the original DT Trigger Primitive is sent to the BMTF and the DT+RPC
primitive quality flag is not set.
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Figure 2.16: Comparison of BX assignment at the output of the TwinMux concen-
trator board when using DT-only primitives versus DT+RPC primitives.

2.4 The Barrel Muon Track Finder
The Barrel Muon Track Finder (BMTF) [36] receives the muon Super Primitives
from the Barrel area of CMS (|η| < 0.85) and it reconstructs muon tracks and
calculate the physical parameters: transverse momentum (pT ), the φ and η angles,
the quality of the candidate and the track address. The Track Finding algorithm
ran over the LHC Run-2 consisted in three stages:

1. The Extrapolator Unit combines, using LUTs, the trigger primitives from
different DT stations. For selected permutations of stations with primitives,
a reference station is chosen, and the primitive from that station is propagated
to the other one, called target station. The distance between the propagated
trigger primitive and the one from the target station is computed, and, if the
two lay within an acceptable window, the latter primitive is retained in the
next stage of the track-finding algorithm. The same algorithm also probes
the compatibility of primitives from different stations laying in neighbouring
sectors.

2. The Track Assembler Unit links the segment pairs to the full track and
assigns a quality word related to the number and type of stations involved in
the reconstruction.

3. The Assignment Unit uses LUTs, implemented with Block RAM (BRAM),
to assign physical parameters to the track previously built by the algorithm
(pT , φ, η).

Due to the limited address space provided by BRAM, the momentum assign-
ment is performed using information from only two stations. In addition, the LUTs
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are filled assuming that the track originates from the center of the detector. This
beam spot constraint improves the momentum resolution, since it effectively adds
one more point at the CMS center, exploiting the full bending power of the CMS
solenoid.

In Figure 2.17 the entire process of track finding is shown. The algorithm run
in parallel for all sectors of one wedge in the same card. Each one of the twelve
processing cards delivers the three best muon candidates to the GMT.

Figure 2.17: Graphical depiction of the steps making up the BMTF algorithm.

2.5 The CMS Phase-2 Level-1 Trigger upgrade

In order to fully exploit the HL-LHC running period, major consolidations and
upgrades of the CMS detector are planned [37, 38, 39, 40, 41]. The collision rate
and level of expected pileup imply very high particle multiplicity and an intense
radiation environment. The intense hadronic environment corresponding to ∼ 200
simultaneous collisions per beam crossing, imposes serious challenges to the L1T
system requirements in order to maintain performance. The Phase-2 upgrade [42]
of the L1T system utilizes technological advances to enhance the physics selectivity
already at the hardware level of the data acquisition system. This upgrade of the
trigger and DAQ system will keep a two-level strategy while increasing the L1T
maximum rate to 750 kHz. The total latency will be increased to 12.5 µs to
allow, for the first time, the inclusion of the tracker information at this trigger
stage. Moreover, a longer latency will enable higher-level object reconstruction
and identification, as well as the evaluation of complex global event quantities
and correlation variables to optimize physics selectivity. The implementation of
sophisticated algorithms using particle-flow reconstruction techniques or Machine
Learning based approaches are contemplated [42]. In addition, a 40 MHz scouting
system harvesting the trigger primitives produced by sub-detectors and the trigger
objects produced at various levels of the trigger system is foreseen.
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2.5.1 Muon chambers upgrades

The Phase-2 upgrade of the DT system foresees a replacement of the chamber
on-board electronics, which is presently built with components that are neither
sufficiently radiation hard to cope with HL-LHC conditions nor designed to cope
with the expected increase of L1T rate foreseen for Phase-2 operation. DT cham-
bers themselves will not be replaced, hence the existing detectors will operate
throughout Phase-2. In the upgraded DT architecture, time digitization (TDC)
data will be streamed by the new on-board DT electronics (OBDT) directly to
a new backend electronics, hosted in the service cavern, and called Barrel Muon
Trigger Layer-1 (BMTL1). Event building and trigger primitive generation will
be performed in the BMTL1 using the latest commercial FPGAs. This will allow
building L1T TPs exploiting the ultimate detector time resolution (few ns) improv-
ing BX identification, spatial resolution and reducing the probability to produce
multiple trigger segments per chamber for a given crossing muon (ghosts), with
respect to the present DT local trigger, described in Section 2.3.

In order to better exploit the intrinsic time resolution of the existing RPC sys-
tem (∼ 2 ns), and ensure the robustness of its readout throughout the HL-LHC
era, the off-detector electronics (called Link System) will be replaced. Regarding
L1T, the most relevant aspect of this upgrade is the increase of the readout fre-
quency from 40 MHz to 640 MHz (reading out the detector 16 times per BX).
As a consequence, each RPC hit provided to the muon track finders will have an
additional time information featuring a granularity of one sixteenth of BX.

In order to increase the redundancy of the Muon System in the challenging
forward region, new improved RPCs (iRPC) chambers will be installed in stations
3 and 4 (RE3/1 and RE4/1), extending the RPC pseudorapidity coverage to
|η| < 2.4. The reduced bakelite resistivity and gap thickness (1.4 mm compared to
2 mm in the present RPC system) allows the detector to withstand the high rates
anticipated in RE3/1 and RE4/1.

Moving on to CSCs, the on-chamber cathode boards on the inner rings of
chambers (1.6 < |η| < 2.4) will be replaced in order to handle higher trigger and
output data rates, together with the FPGA mezzanine boards on most of the on-
chamber anode boards, in order to cope with higher L1T latency. Corresponding
off-chamber boards that receive trigger and readout data will also be replaced to
handle the higher data rates.

Finally, New Gas Electron Multiplier (GEM) chambers will be installed in the
forward region 1.6 < |η| < 2.8. The installation of GEM detectors will allow a
precise measurement of the muon bending angle in the first and second stations
to be performed and used as a handle to control the muon trigger rate. The
added sensitive detecting layers will increase the trigger efficiency and improve the
operational resilience of the system. GEM foils have been demonstrated to be a
suitable technology for the CMS forward region. A single GEM chamber is made
of three GEM foils. A stack of two or six GEM chambers forms a superchamber.
These superchambers will be installed in three distinct locations in the forward
region (1.6 < |η| < 2.8), dubbed GE1/1, GE2/1 and ME0, as shown in red and
orange in Figure 2.18.
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Figure 2.18: Longitudinal view of a quadrant of the CMS Phase-2 muon system.
Different colors in the figure refer to different sub-detectors: DT (orange), RPC
(light blue), CSC (green), iRPC (purple), GE (red), ME0 (orange).

2.5.2 Phase-2 Muon Barrel Trigger primitives

A new algorithm will be introduced to perform DT TPs generation, called Ana-
lytical Method (AM), which assumes that muons follow a straight path inside a
chamber and rely on the mean-timer property (see Section 2.3.1). The AM has
been designed following a very direct hardware-oriented approach. It operates in
three steps, called grouping, fitting and correlation. Starting from a group of 10
nearby cells, distributed across the four layers of a DT SL, the grouping step selects
patterns of 3 or 4 fired DT cells compatible with a straight line. From those pat-
terns, the fitting step exploits the mean-timer property to compute unambiguously
the BX corresponding to every subset of 3 cells within each pattern. For cases with
4-cells patterns, the BX of each triplet is combined with the others using an arith-
metic mean. Track parameters are then computed using exact formulas from χ2

minimization. Finally, a correlation between the two r − φ SLs is attempted. A
potential match between the primitives of the SLs in the same chamber is looked
for, within a window of ±25 ns. If a match is found, the track parameters are re-
calculated, either as an arithmetic mean of the ones of each SL (position, time), or
as ratio of the difference between the positions of each primitive and the distance
between the two SLs (direction). If no match is found, all per-SL primitives are
forwarded to the next stage to maintain high efficiency.

After building the DT segments and clustering the RPC hits, the BMTL1 will
then merge information from both sub-detectors into combined super-primitives
(SP) according to the data flow shown in Figure 2.19. This exploits the redun-
dancy and complementarity of the two sub-systems, combining the DT spatial
resolution with the RPC time resolution, thus increasing the trigger primitive per-
formance and making them more robust against effects like detector failures or
aging. The baseline SP combination algorithm works as follows. The RPC clusters
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Figure 2.19: Architecture for the Muon Barrel Trigger primitive generation as
foreseen in the Phase-2 L1T upgrade. The dashed line represents the separation
between the underground experimental cavern (UXC) and the underground service
cavern (USC).

are translated into DT coordinate conventions and the DT primitives are matched
to RPC TPs based on the azimuth angle, within a three units BX window centered
around the DT primitive’s BX. For DT TPs that are matched to an RPC cluster,
the SP BX and sub-BX timing are set based on RPC information. In the first two
stations, the algorithm can also build an RPC-only TP out of hits from the two
RPC layers, in chambers where no DT primitive is found. Furthermore, in the
whole barrel, RPC clusters not matched to any DT segments nor used to build an
RPC-only segment are passed to the track finders.

The time resolution of the muon barrel SPs is shown in Figure 2.20 (left). It is
estimated from a MC simulation based on the time coordinate of SPs associated
to generated muons with pT > 20 GeV. The time distribution becomes narrower
when the information coming from the RPCs is used (σ = 1.9 ns) with respect to
the only-DT primitives (σ = 2.2 ns). Figure 2.20 (right) shows the efficiency to
reconstruct a barrel SP and correctly assign its BX. It is computed with respect
to offline reconstructed segments geometrically matched with incoming generated
muons and no minimal quality threshold cut is applied to the SPs. In the no-ageing
case, the TP efficiency is ∼ 98% for DT-only primitives and increases to above
∼ 99% for combined DT+RPC SPs 1.

The spatial resolution for position and direction of the DT TPs, computed with
respect to simulated hits, is presented in the left and right hand-side of Figure 2.21
respectively. The layout of the plots is identical to the one used for Figure 2.20
(right). As an example, MB2 stations show a position resolution of ∼ 0.3 mrad,
which reflects an improvement of a factor of ∼ 6 with respect to the legacy TPs.
A similar improvement is observed for the direction resolution, which is ∼ 1 mrad

1In view of the operation throughout HL-LHC, potential effects due to the ageing or failures
of the detectors presently equipping the muon system were considered. A thorough description
of such effects goes beyond the scope of this document. Anyhow, more information about the
expected ageing of the DT detector can anyhow be found in [43].
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Figure 2.20: Left: Timing distribution of muon TPs from the analytical method
(AM) algorithm, generated with and without enabling the combination into
DT+RPC SPs. Results are computed with and without including detector ageing
and failures. Right: Trigger segment efficiency of muon barrel primitives, measured
with the analytical method (AM), with and without enabling the combination of
DT+RPC SPs. Results are computed with and without including detector ageing
and failures.

for the Phase-2 AM TPs. The same conclusion holds for all stations.

2.5.3 Phase-2 Track Finding with the Kalman Filter

In Phase-2, the DT backend electronics will be upgraded, thus providing better
position and time resolution. This allows possible improvements in track recon-
struction, hence a better momentum resolution. This can be done by taking ad-
vantage of the better DT position resolution and by exploiting information from
all stations in the L1T muon reconstruction. This goal cannot be achieved by the
LUT approach (see Section 2.4) since the address space required for four stations
is 88 bits with the current precision, more than the available space in the LUTs
implemented today. The precision is expected to increase even more in Phase-2.
Another achievement would be to implement momentum assignment without the
beam spot constraint. This is motivated by searches for displaced particles. Since
a displaced particle does not originate from the beam spot, the beam spot con-
straint results in mismeasured pT and inefficiency of the trigger for such physics
signals. To achieve both goals, a new tracking paradigm is implemented exploiting
a Kalman Filter (KF) algorithm [42].

Kalman Filtering is a technique very widely used in track reconstruction at
hadron colliders. However, to achieve a suitable latency, a special KF implemen-
tation has been devised, tuned for the barrel muon trigger and optimized for low
latency. A pictorial representation of the KF algorithm is shown in Figure 2.22.
To reduce the number of computations, the values of the Kalman gain (i.e. the
"factor" used to update the TP parameters at each step of the algorithm) for dif-



2.5. THE CMS PHASE-2 LEVEL-1 TRIGGER UPGRADE 35

Figure 2.21: Spatial resolution of muon barrel TPs computed with respect to
simulated hits in the DT detector. Left: position resolution. Right: direction
resolution. Results are computed with and without including ageing for the DT
detector.

Figure 2.22: Sketch of a muon track traversing the full CMS detector. The Kalman
Filter-based track finder is illustrated, starting from the outermost muon station,
propagating inwards and updating the track parameters at each station. At the
innermost station it provides a vertex-constrained and an unconstrained measure-
ment, allowing for triggering on prompt and displaced muons.

ferent tracks in simulation have been studied; it was found that the gain matrix
can be precalculated for different values of curvature (implying different multiple
scattering) and different combinations of the stubs used at each station (implying
different uncertainty of the already reconstructed track at each station). There-
fore, an approximate Kalman Filter was implemented, propagating the track from
station to station, and updating it using a precalculated Kalman gain that depends
on a 4-bit pattern of the already used primitive and the value of the curvature at
the given point of the track.

After reaching the first station, a measurement without the beam spot con-
straint is stored and then the track is propagated to the center of CMS. While
the energy loss was neglected for the station-to-station propagation, for the prop-
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agation to the vertex it is taken into account since the material budget of the
calorimeters, the magnet and the tracker is significant. After the vertex propa-
gation, the impact parameter of the track to the beam spot is estimated and a
Kalman update is performed, requiring that the track should pass through the
origin. This final update provides a beamspot constrained measurement. This
approximate KF algorithm, named KBMTF, exploits the measurements in all de-
tector stations, provides a vertex unconstrained measurement for displaced muons,
and implements a vertex constrained measurement for muons originating from the
beamspot, satisfying all requirements for the improved muon trigger.

2.5.4 The Phase-2 Global Muon Trigger

In the Phase-2 muon L1T, the Global Muon Trigger (GMT) receives tracks from
the inner-tracker track finder, standalone muon tracks from the regional muon track
finders, and all stubs from the muon detectors. Combining information from the
muon system with the one of tracks reconstructed in the inner tracker, a reduction
of trigger rates, up to a factor of 4 with respect to the Phase-1 BMTF and the
KBMTF alone.

The objects reconstructed by the GMT are sent directly to the Phase-2 Global
Trigger, where they can be used either as a single-object trigger, or in conjunction
with other trigger objects. In addition, GMT objects can also be used to implement
the particle-flow algorithm.

Even though the Phase-2 L1T upgrade will introduce reconstruction in the
inner-tracker in the L1T, there are cases when the pT assignment carried out only
with information coming from muon chambers still remain critical. One such case,
briefly mentioned in Section 2.5.3, concerns displaced muons. This is why a ML
Model implemented on an FPGA was studied in this Master thesis: to find alter-
natives in pT assignment which are reliable and have low latency but do not strictly
rely on combination of information from the muon chambers and the inner-tracker.
In Chapter 5, the pT produced by such a model will be compared with the pT as-
signed after the output produced by the existing BMTF (in the Assignment Unit).
The comparison with the Phase-1 BMTF was pushed by the fact that a full simu-
lation of the Phase-2 L1T has yet to be released to the public.



Chapter 3

Introduction to Machine Learning

The expression "Machine Learning" (ML) was first used to describe a particular
type of computer algorithms in 1959 by Arthur Samuel [44]. In recent years, ML has
become one of the pillars of computer and data science and it has been introduced
in almost every aspect of everyday life. Services like Google, YouTube and Netflix
improve their search engines and "recommendation" functions by implementing
a complex structure of learning algorithms in order to record all users’ choices
and preferences and hence to build a customised environment, theoretically unique
for each user. E-mail providers have also perfected spam filters with ML, allowing
them to classify suspect e-mails as spam more efficiently by looking for more subtle
features compared with a "classic" word association algorithm.

ML algorithms, and especially pattern recognition techniques, are also deployed
by social networks, for example to identify different people in photos, but also
in medicine, e.g. 2D/3D images of human tissues and organs for diagnosis, and
beyond.

Currently, the spread of learning algorithms in many sectors finds its roots
mainly in an increased quantity of data available, combined with a technological
progress in storage and computational power, which can nowadays be exploited
with lower maintenance and material costs.

There are several ways to make an algorithm "learn". The main classes of learn-
ing algorithms are supervised learning, unsupervised learning and reinforcement
learning. This work will deal with a specific type of supervised learning algorithm,
hence in the next Section a more in depth description will be presented. However,
for the sake of clarity, a brief explanation about the other types will presented as
well.

Unsupervised Learning

In an unsupervised learning algorithm, the computer is provided with an input
dataset but with no corresponding true output values for underlining a possible
structure of data. This algorithm will, therefore, result in a clustering selection of
the input data.

Clustering algorithms are used in many web-based application, such as news-
paper websites: using thousands of stories as input data, the learning algorithm
automatically cluster the information together based on the topic or user prefer-
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ences, organizing information in a coherent and customizable way.
Unsupervised learning is also used for organizing large computer cluster, decid-

ing which machines tend to work together in order to connect them and increase
the overall efficiency. Another application is on social network analysis, identifying
between hundreds of friends the closest one, based on private communications or
recent social activities.

Reinforcement Learning

Reinforcement learning is the study of learning in a scenario where a learner actively
interacts with the environment to achieve a certain goal. This active interaction
justifies the terminology of agent used to refer to the learner. The achievement of
the agent’s goal is typically measured by the reward he receives from the environ-
ment and which he seeks to maximize.

In recent years, a lot of improvements were observed in this area of research.
Most popular examples include DeepMind and the Deep Q learning architecture
(dated 2014), which culminated in the famous defeat of the champion of the game
of Go by AlphaGo in 2016.

Reinforcement learning can be understood using the concepts of Agents, Ac-
tions, Environments, States, and Rewards:

Agent It is the component that take actions, e.g. a video game character navi-
gating its virtual environment, as well as a drone making a delivery.

Action It is one amongst the set of all possible moves/choices the agent can make.
In a reinforcement learning environment, agents can choose only among a
predefined list of possible actions. E.g. in video games, the list might include
moving right or left, jumping or not, jumping high or low, crouching or
standing still; in the stock markets, the list might include buying, selling or
holding any title among a list of financial product.

Environment It is the world through which the Agent moves. The environment
takes as input the Agent’s current State and its selected Action as input,
and returns as output the Agent’s Reward and next State. E.g. in a model
in which the Agent would be a real person, the Environment could be the
entirety of the physics laws, plus the rules of the society it lives in, and
within which all of its actions would be processes and the consequences of
them determined.

State It is a concrete situation in which the Agent happens to put itself. E.g.
it could be a specific moment in time and/or place in space, a local and
instantaneous configuration that puts the Agent in contact and relation with
its Environment (e.g. tools, obstacles, prices).

Reward It is the feedback based on which the success or failure of the Agent’s
choices are measured. E.g. in a video game, a reward could indeed be the
gain of a price when a special object is captured, and similar. Every time an
Agent does something in the Environment that foresees a possible Reward,
the Agents sends output in form of Actions to the Environment and the
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Environment returns the Agent’s new state as well as the obtained Rewards
(or lack of them).

In a nutshell, reinforcement learning judges actions by the results they produce.
It is fully goal oriented, as its aim is just to learn sequences of actions that will
eventually lead an Agent to achieve a predefined goal, in terms of maximizing
its objective function. In the video game example, the final goal is to finish the
game with the maximum score, so each additional point obtained throughout the
game will affect the Agent’s subsequent behaviour (i.e. an Agent might learn that
making some combination of Actions will lead to a point to it will try to redo
the same actions effectively in case a similar situation will be offered next in the
Environment).

Nowadays, applications of RL can be seen e.g. in high-dimensional control
problems, like robotics: they have been the subject of research (in academia and
industry) for many years, and more and more start-ups are beginning to use this
ML type to build products for industrial robotics applications.

3.1 Supervised Learning

This specific type of learning algorithm looks for a function which maps an input
to an output based on provided input-output pairs. This is accomplished in the
so-called training process: namely, a learning phase in which, along with the input
features, a target variable is also provided (acting as the "truth"), which contains
the information that the machine has to learn during the training process.

In a nutshell, unsupervised learning involves observing several examples of a
random vector of features x and attempting to implicitly or explicitly learn the
probability distribution p(x), or some interesting properties of that distribution.
On the other hand, supervised learning [45] involves observing several examples of
a random vector x and an associated value or vector y, then learning to predict y
from x, usually by estimating p(y|x). The adjective "supervised" originates form
the view of the target y being provided by an external instructor who shows the
ML system what to do.

There are different kinds of problems that can be solved via an algorithm trained
in this way. The one tackled in this work is called regression and consists in
trying to predict a continuous output value (instead of a discrete output which
characterizes a classification problem). Visual recognition is another application
domain that highly relies on supervised ML algorithms. For instance, a system
might need to identify pedestrians on a street in an automotive application for
self-driving cars: to do so, its core software is already trained with millions of short
videos picturing street scenes, with some of the videos containing no pedestrians
at all while others having up to dozens. Since the presence or not of pedestrians,
during training, is known a priori, the learning is supervised. In the next section,
a more in depth mathematical description will be presented.
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3.1.1 How machines "learn"

To make the concept of learning more concrete, let us consider an example of a
simple ML algorithm: linear regression. The goal is to build a system that can
take a vector x ∈ Rn as input and predict the value of a scalar y ∈ R as its output.
The output of linear regression is a linear function of the input. Let ŷ be the value
that the model predicts, given y as the true label. The output is then defined as

ŷ = wTx + b (3.1)

where w ∈ Rn is a vector of parameters and b is a scalar parameter called bias.
Parameters are values that control the behaviour of the system. In this case,

wi is the coefficient that is multiplied by feature xi before summing up the contri-
butions from all the features. w can be thought of, and it is usually referred to,
as a set of weights that determine how each feature affects the predictions. If a
feature xi receives a positive weight wi, then increasing the value of that feature
increases the value of the prediction ŷ. If a feature receives a negative weight,
then increasing the value of that feature decreases the value of the prediction. If a
feature’s weight is large in magnitude, then it has a large effect on the prediction.
On the other hand, if a feature’s weight is zero, it has no effect on the prediction.

Training a model simply means finding values for all the weights and the bias
from labelled examples which result in a good prediction ŷ. In the case of super-
vised learning, the algorithm builds a model by examining many examples and
attempting to find a model that minimizes the loss. The term loss is used to de-
scribe a sort of penalty for an incorrect prediction: it is a number indicating how
bad the model prediction is for a certain example in the training set. A visual rep-
resentation is shown in Figure 3.1: 3.1a shows a model with predictions which are
more far away from the known values with respect to the model in 3.1b, meaning
that the loss would be higher in the first case, as visually intuitive by the longer
red arrows.

(a) Example of a model with high loss. (b) Example of a model with lower loss.

Figure 3.1: Different regression models for a supervised ML algorithm. Red arrows
represent loss while the blue line represents predictions. In (a), an high loss is
obtained while in (b) a lower loss is achieved.

In order to describe and aggregate the individual losses associated to predictions
from a model, loss functions are defined. There are numerous loss functions, each
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of them more or less suited for different problems tackled by ML algorithms. In
case of regression problems, Mean Squared Error (MSE) is frequently used, defined
as the sum of all the squared losses (y− ŷ)2 for individual examples divided by the
number of examples, as follows:

MSE =
1

N

∑
(x,y)∈D

(y − ŷ(x))2 (3.2)

where

• (x,y) is an example in which x is the vector of features that the model uses
to make predictions, and y is the example’s label (the quantity to predict);

• ŷ(x) is a function of the weights and bias;

• D is a dataset containing many labelled examples, i. e. (x,y) pairs.

MSE is not the only possible metric for regression problems: for instance the
Mean Absolute Error (MAE) is another loss function, defined as follows:

MAE =
1

N

∑
(x,y)∈D

|y − ŷ(x)| (3.3)

MAE shows a linear profile which can be useful if the MSE results too strict
not allowing a good gradient descent (see 3.1.2), however the discontinuity at 0
can cause errant behaviours for very small loss values.

3.1.2 Training a ML model

The supervised model we are discussing takes one or more features as input and
return one prediction as output. Initially, all the weights are randomly set and,
at each iteration, the value of the loss function generates new values for wi. This
learning procedure continues until the algorithm discovers the parameters with
the lower possible loss. When the loss stops changing (or changes really slowly),
the model is said to have converged, i.e. it has reached a minimum of the loss
function. Therefore, this kind of regression problems will have a convex plot of
loss vs. weights. However, calculating the loss function for every value of wi is an
inefficient way of finding the convergence point. This is why most ML algorithms
involve optimization of some sort. Optimization refers to the task of minimizing
some function f(x) by altering x. The function to be minimized is called the
objective function, other than loss function. One of the most common optimization
technique is called gradient descent (GD) which uses the fact that derivative of a
function, in this case the loss function, tells how to change its input in order to
reduce its output, down to its minimum, where the derivative will go to zero.

Let us apply this logic to ML. After choosing a starting value for the weights,
typically random, the gradient of the loss curve is evaluated. Mathematically
speaking, a vector of partial derivatives with respect to the weights, is computed
and in case of a negative gradient, the gradient descent algorithm performs the
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Figure 3.2: Schematic representation of the gradient descent algorithm.

next step, by changing slightly the weights in order to obtain a loss nearer to the
minimum of the function.

GD algorithms multiply the gradient by a scalar known as learning rate (or
step size, one of the model’s so-called hyperparameters) which determines the
"size" of the step towards the minimum. Tuning the learning rate is a tricky
problem: if a too small learning rate is selected, the learning procedure will take
too long; conversely, if it is too large, the next point will exceed the minimum and
the convergence may eventually not be reached.

In case of loss function optimization via GD, when large data volumes come into
play, other parameters in the strategy become relevant for a fast convergence of the
minimisation algorithm, e.g. the so-called batch size: it corresponds to the total
number of examples that are used to calculate the gradient in a single iteration.
By default, the batch matches the entire dataset. However, datasets may often
contain millions of entries as well as a huge number of features. In these cases,
the evaluation of the gradient can be too time and resource consuming. Smaller
batch sizes are therefore suggested: in the stochastic gradient descent (SGD), for
instance, the batch size is reduced to one single entry per iteration. Given enough
iterations, SGD works, but it usually yields noisy results which are too sensible to
the single examples given. An intermediate approach between batch GD and SGD
is the so called mini-batch GD : the original training set is subdivided into smaller
batches (usually of the order of 10, but can be much more depending on the size
of the dataset) which are chosen randomly when the gradient is evaluated. This
allows more parallelization of the entire process, which might be extremely useful
in case of heterogeneity of hardware devices available for training. This technique
will ultimately provide GD algorithm convergence in a shorter time.

3.1.3 Validation and Testing

A key challenge in ML is "generalization", i.e the fact that the algorithm must
perform well on new, previously unseen inputs. What separates ML from a gen-
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eral optimization algorithm is that also the generalization error, or test error, is
requested to be as low as possible, other than the loss evaluated with the training
data. In order to quantify this error and, in this way, predict the model accuracy
with new data, it is common to split the data at hand in three different sets:

Training Set used in the learning algorithm to make the model learn by finding
the weights which reduce the loss as much as possible;

Validation Set used to evaluate results coming from the training set each time
a parameter is changed, i.e. the learning rate or the addition of an extra
feature.

Test Set allows a double-check on the evaluation after the model has passed the
validation set.

Figure 3.3: ML training workflow using a validation and test subset.

In Figure 3.3, an example of workflow is shown: the training set is firstly checked
by the validation set, which provides the model’s optimal parameters for another
cycle of training; then, the best model is tested again using the testing subset to
obtain a reliable and generalized model.

There are 4 different main techniques in order to split the dataset into Training
and Validation/Test set and measure the accuracy of the model:

1. Training and Test Set Splitting;

2. k-fold Cross-Validation;

3. Leave One Out Cross-Validation;

4. Repeated Random Test-Train Splits.

Training and Test Splitting

This algorithm evaluation technique is very fast and so useful with a slow training
model. It is also ideal for large datasets. Splitting a large dataset into large sub-
datasets ensures that they are both representative of the underlying problem.

However, this technique can show a high variance. This means that differences
in the training and test set can result in meaningful differences in the estimate of
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Figure 3.4: Example showing the splitting between training and test datasets. On
the left side the training dataset can be seen, while, on the right side, the test data
used for verifying the trained model is pictured [46].

accuracy. Furthermore, in order for this split to work, the test has to be represen-
tative of the dataset as a whole, i.e. the test set should be a random preview of
the future data the model will deal with after deployment.

In Figure 3.4, a simple example is shown where the model is not perfect, since
a few predictions are wrong. However, the model does about as well on the test
data as it does on the training data.

K-fold Cross-Validation

K-fold Cross-Validation (CV) is another approach that can be used to estimate
the performance of a ML algorithm with less variance than a single train-test set
split. The dataset is divided into k subsets (called "folds"): for each fold, the
kth subset is used as the test set and the other k − 1 subsets are put together to
form the training set (see Figure 3.5). Then, the average error across all k trials is
computed, together with the standard deviation.

Figure 3.5: Pictorial representation of k-Fold Cross Validation [47], with e.g. k =
10.

This technique has the following pros and cons:

Pros: It is less sensitive to how the data splitting is carried out: every data point
gets to be in a test set exactly once, and gets to be in training set k−1 times.
Therefore, the variance of the resulting estimate is reduced as k is increased.
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Cons: The disadvantage of this method is that the training algorithm has to be
rerun from scratch k times, which means it takes k time as much computation
to make an evaluation, thus resulting in evidently longer times to complete
the training process.

Leave One Out Cross-Validation

The Leave One Out CV is a simplified version of the k-fold one, where the size of
the fold is 1 (i.e. k = nb. of entries). The result is a large number of performance
measures that can be summarized in an effort to give a more reasonable estimate of
the accuracy of your model on unseen data. An evident downside of this procedure
is the computational power needed, which is much larger than k-fold CV.

Repeated Random Test-Train Splits

Another variation on k-fold CV is to create a random split of the data like the
train/test split described above, but repeating multiple times the process of split-
ting and evaluation of the algorithm, like a cross-validation. This has the speed
of using a simple train/test split and the reduction in variance in the estimated
performance associated to k-fold CV. It is also possible to repeat the process as
many times as needed to improve the accuracy.

On the other hand, the repetitions in this approach may include much of the
same data in the train or the test split from run to run, introducing redundancy
into the evaluation.

3.1.4 Examples of Supervised Learning algorithms

When dealing with supervised learning, there are various learning algorithms to
choose from. A non exhaustive list is the following:

Support Vector Machines (SVMs): input vectors are mapped to a high-dimension
feature space, where a decision surface is constructed, in order to classify the
inputs [48];

Decision Trees (DTs): a binary recursive partitioning procedure, where data is
subjected to a series of cut based on conditions which are optimized in the
learning phase [49];

k-Nearest Neighbour (kNN): data is classified by clustering the train set using
a user-defined distance in the feature space. The probability of belonging
to a certain class is evaluated considering the distance of the test from the
clusters [49];

Artificial Neural Networks (ANNs): data goes through layers of neurons ca-
pable of performing weighted operations on their inputs. ANN architecture
is inspired by biological neural connections.

Due to the number of features used to perform the regression and the relative
low engineering needed to build an accurate model, ANNs were chosen in this work
to be implemented on a Field Programmable Gate Array (see Section 4).
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3.2 Artificial Neural Networks

Figure 3.6: Selection of possible architectures of ANNs [50].

An Artificial Neural Network (ANN) is a network vaguely inspired to the bio-
logical neural connections that constitute the human brain, specifically designed to
tackle non-linear learning problems. Currently, ANNs, and more specifically Deep
Neural Networks (DNN), are one of the main techniques used in ML.

(a) Graphical representation of a Per-
ceptron.

(b) Neural Network basic layout.

Figure 3.7: Simple diagrams representing the layout and functioning principle of
Neural Networks.

Among the different architectures of ANN available (see Figure 3.6), the Fully
Connected Multilayer Perceptron (MLP) was chosen for this work, due to its rela-
tive simple design. MLPs, as the name suggests, are made up of single units called
Perceptrons. These, as shown in Figure 3.7a, are characterized by [51]:

1. Input Values (x = (x, y, z));

2. Weights (wi);

3. Net sum
∑

;
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4. Activation Function f(
∑

).

All the input values are multiplied by their weights (wixi). Then, all of these
are added together to create the net or weighted sum (

∑
iwixi), which is then given

to the Activation Function f(
∑

iwixi) which evaluates the perceptron’s outputs,
adding a non-linearity compared to the simple linear combination alone.

Perceptrons can be stacked together to make a layer of neurons, each producing
its own outputs. These layers can then be put together to build arbitrarily deep
custom networks, by feeding the outputs of a layer to the neurons of the next
layer, which will be "hidden" to the user, and resulting in a structure like the one
in Figure 3.7b.

Activation functions

As mentioned before, in order to add non-linearities to the model, a specific func-
tion is applied to the weighted sum of each perceptron. This functions is usually
called activation function. Various functions can be selected to fulfill this purpose
and a few examples found in literature are:

Sigmoid: a function that converts the weighted sum to a value between 0 and 1:

f(x) =
1

1 + e−x
(3.4)

Rectified linear unit or ReLU: it usually works better than a smooth function
like the sigmoid, being also easier to compute:

f(x) = max(0, x) (3.5)

Leaky ReLU : a variant of the classic ReLU where the value for inputs smaller
than 0 is not simply 0 but:

f(x) =

{
αx if x < 0

x otherwise
(3.6)

with α usually a much smaller number than 1. In this way the number of
neurons completely turned off is reduced with respect to ReLU, arguably
producing a more adaptive neural network.

3.3 Machine Learning frameworks
The growth in popularity of ML algorithms has made essential to develop frame-
works which allow any user to build, train and deploy a ML model with little to no
knowledge of the complex underlying algorithms. In this way, it is not necessary
to be an expert in order to deploy a model able to tackle a particular problem in
the scientific or commercial domain, while at the same time, offering the expert
user the ability of fine tuning their models, without taking too much care in the
fundamentals of the model itself. In recent years there has been an increase in the
number of alternatives in ML frameworks. Among the most popular (see Figure
3.8) there are [52]:
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PyTorch [53]: an open source deep learning framework, developed by Facebook,
built to be flexible and modular for research, with the stability and sup-
port needed for production deployment. PyTorch provides a Python package
for high-level features like tensor computationwith strong GPU acceleration.
With the latest release of PyTorch, the framework provides graph-based ex-
ecution, distributed learning, mobile deployment and quantization.

TensorFlow [54]: a library developed by Google which offers training, distributed
training, and inference (TensorFlow Serving) as well as other capabilities such
as TFLite (mobile, embedded), Federated Learning (compute on end-user
device, share learnings centrally), TensorFlow.js, (web-native ML), TFX for
platform etc. TensorFlow is widely adopted, especially in enterprise/production-
grade ML. Thanks to its clean design, scalability, flexibility, easy-to-understand
documentation and performance, it has reached the top of the list of the ML
frameworks worldwide.

Theano [55]: a Python library that let the user define, optimize and evaluate
mathematical expression, especially ones with multi-dimensional arrays. For
problems involving large amounts of data, Theano allows to attain speeds
that rival hand-crafted C implementations, and it was demonstrated to also
surpass C on a CPU by orders of magnitude via taking advantage of recently
released GPU architectures. Architecturally, Theano combines aspects of a
computer algebra system with aspects of an optimizing compiler, a combina-
tion that is particularly useful for trasks in which complicated mathematical
expression need to be evaluated repeatedly and the overall evaluation speed
is critical for a project.

Caffe [56]: a deep learning framework developed by Berkeley AI Research (BAIR)
and by community contributors. Its expressive architecture encourages ap-
plication, while models and optimization are defined by configuration and
without hard-coding, so it is intended to ease the use of such a framework to
a large community of users. The switch between CPU and GPU can be done
by setting a single flag. The focus on performance and speed makes Caffe
good for research experiments and industry deployment.

The work in this thesis is based on the TensorFlow framework, hence in the next
Section 3.3.1 a more accurate description will be given.

3.3.1 Tensorflow

TensorFlow (TF) is an open-source software library for dataflow programming
across a range of tasks. It is a symbolic math library for numerical computation
that uses data flow graphs. Despite suitable for a variety of tasks, it is particularly
useful for ML applications, such as neural networks. It was developed by the Google
Brain team [58] for internal use and released under the Apache 2.0 open-source
license on November 2015. On September 2019, a major update to TensorFlow 2.0
has made the library even more efficient and accessible, by implementing a more
intuitive Application Programming Interface (API) [59]. Currently, it is one of
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Figure 3.8: Popularity in Google searches of the most popular ML frameworks from
January 2010 to February 2021[57]. Numbers represent search interest relative to
the highest point on the chart for the given region and time. A value of 100 is the
peak popularity for the term. A value of 50 means that the term is half as popular.
A score of 0 means that there was not enough data for this term.

the most utilised ML frameworks worldwide, due to its completeness and reliable
libraries.

Its architecture is flexible enough to allow users to deploy computation to one
or more CPUs or GPUs in a desktop, server, or even mobile device with a single
API. Moreover, through the Google Cloud Platform (GCP) it is possible to imple-
ment models built with TensorFlow on a Tensor Processing Unit (TPU), Google’s
custom-developed application-specific integrated circuits (ASICs) used to acceler-
ate ML workloads [60].

In a not exhaustive list of TensorFlow’s features, one could mention [52]:

• TF runs on Windows, Linux and macOS, and also on mobile devices, includ-
ing both iOS and Android;

• TF provides a Python API which offer flexibility to create all sorts of com-
putations, including any NN architecture one can think of;

• TF includes highly efficient C++ implementations of many ML operations,
particularly those needed to build NNs. There is also a C++ API to define
one’s own high-performance operations;

• TF provides several advanced optimization nodes to search for the parame-
ters that minimize a cost function: TF automatically takes care of computing
the gradients of the functions one defines, i.e. implements automatic differ-
entiation;

• TF also comes with a native visualization tool called TensorBoard, that allows
browsing through computation graph, view learning curves, and more;

• Once a model is done with TF, computations can be deployed to one or more
CPUs or GPUs, local or remote via any Cloud Computing Service provider.

As an example, some code snippets [61] showing how a model that performs
regression (see Section 3.1.2) can be implemented from scratch and trained in
Tensorflow are shown in the following. A correspondent example will be given in
the next section for a higher-level framework as well.
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Each input of data, in TensorFlow, is almost always represented by a tensor,
and is often a vector. In supervised training, the output is also a tensor. Here is
some data synthesized by adding Gaussian (Normal) noise to points along a line.

1 import t en so r f l ow as t f
2

3 # The ac tua l l i n e
4 TRUE_W = 3.0
5 TRUE_B = 2.0
6

7 NUM_EXAMPLES = 1000
8

9 # A vector o f random x va lue s
10 x = t f . random . normal ( shape=[NUM_EXAMPLES] )
11

12 # Generate some no i s e
13 no i s e = t f . random . normal ( shape=[NUM_EXAMPLES] )
14

15 # Calcu la te y
16 y = x ∗ TRUE_W + TRUE_B + no i s e

Here the model is defined, together with weights and bias as variables.

1 c l a s s MyModel( t f . Module ) :
2 de f __init__( s e l f , ∗∗kwargs ) :
3 super ( ) . __init__(∗∗ kwargs )
4 # I n i t i a l i z e the weights to ‘ 5 . 0 ‘ and the b i a s to ‘ 0 . 0 ‘
5 # In prac t i c e , the se should be randomly i n i t i a l i z e d
6 s e l f .w = t f . Var iab le ( 5 . 0 )
7 s e l f . b = t f . Var iab le ( 0 . 0 )
8

9 de f __call__( s e l f , x ) :
10 re turn s e l f .w ∗ x + s e l f . b
11

12 model = MyModel ( )
13

14 # Ver i fy the model works
15 a s s e r t model ( 3 . 0 ) . numpy( ) == 15 .0

The standard L2 loss can be introduced, also known as MSE (see Section 3.1.1):

1 # This computes a s i n g l e l o s s va lue f o r an e n t i r e batch
2 de f l o s s ( target_y , predicted_y ) :
3 re turn t f . reduce_mean ( t f . square ( target_y − predicted_y ) )

The training loop, written from scratch in TF, is relatively straightforward:

1 # Given a c a l l a b l e model , inputs , outputs , and a l e a rn i ng ra t e . . .
2 de f t r a i n (model , x , y , l ea rn ing_rate ) :
3

4 with t f . GradientTape ( ) as t :
5 # Trainable v a r i a b l e s are automat i ca l l y tracked by GradientTape
6 cur r ent_lo s s = l o s s (y , model ( x ) )
7

8 # Use GradientTape to c a l c u l a t e the g rad i en t s with r e sp e c t to W and
b

9 dw, db = t . g rad i en t ( current_loss , [ model .w, model . b ] )
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10

11 # Subtract the g rad i ent s c a l ed by the l e a rn i ng ra t e
12 model .w. assign_sub ( l ea rn ing_rate ∗ dw)
13 model . b . assign_sub ( l ea rn ing_rate ∗ db)
14

15 model = MyModel ( )
16

17 # Co l l e c t the h i s t o r y o f W−va lue s and b−va lue s to p l o t l a t e r
18 Ws, bs = [ ] , [ ]
19 epochs = range (10)
20

21 # Def ine a t r a i n i n g loop
22 de f t ra in ing_loop (model , x , y ) :
23

24 f o r epoch in epochs :
25 # Update the model with the s i n g l e g iant batch
26 t r a i n (model , x , y , l ea rn ing_rate =0.1)
27

28 # Track t h i s be f o r e I update
29 Ws. append (model .w. numpy( ) )
30 bs . append (model . b . numpy( ) )
31 cur r ent_lo s s = l o s s (y , model ( x ) )

And finally the model is actually trained by a single function call:

1 # Do the t r a i n i n g
2 t ra in ing_loop (model , x , y )

From this example, it is clear how, with a few lines of code, it is possible
to implement a ML model without a deep understanding of the theory behind
it. However, higher-level libraries, like Keras, allow an even faster deployment of
models, as shown in the following section.

Keras

Keras [62] is a deep learning API written in Python, running on top of the ma-
chine learning platform TensorFlow: an approachable, highly-productive interface
for solving ML problems, with a focus on modern deep learning. However, it is
possible to deploy Keras with Theano or TensorFlow 1.0 as back-end. Keras pro-
vides essential abstractions and building blocks for developing and shipping ML
solutions. It was developed with a focus on enabling fast experimentation, thanks
to its simple interface which minimizes the number of user actions required for
common use cases and provides clear and actionable feedback upon user error.

The core data structures of Keras are "layers" and "models". The simplest
type of model is the Sequential model, a linear stack of layers. However, it is
possible to deploy more complex architectures using the Keras Functional API,
which allows to build arbitrary graphs of layers, or writing models entirely from
scratch via subclassing.

As done in the previous section, some code snippets showing how a model that
performs regression can be implemented using the Keras APIs with a Tensorflow
backend, and how it results in a much simpler and cleaner code base, is shown in
the following.
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Building a Sequential model is as follows:
1 from ten so r f l ow . keras . models import Sequent i a l
2

3 model = Sequent i a l ( )

Then, the add() method is used to stack layers, as follows:
1 from ten so r f l ow . keras . l a y e r s import Dense
2

3 model . add (Dense ( un i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim=100) )
4 model . add (Dense ( un i t s =10, a c t i v a t i o n=’ softmax ’ ) )

where units corresponds to the number of nodes, or neurons, of that layer and
activation is the activation function (as explained in 3.2). In the definition of the
first layer, the number of features in input is also specified via the input_dim
option.

Once the layout of the model is defined, the compile() method is used to con-
figure the learning process:

1 model . compi le ( l o s s=’ ca t ego r i c a l_c ro s s en t r opy ’ ,
2 opt imize r=’ sgd ’ )

Here which loss function will be used in the learning process is specified, together
with the configuration of the optimizer (in this example sgd stands for Stochastic
Gradient Descent).

Now the model can be trained in batches using x_train and y_train as train
set and labels:

1 model . f i t ( train_data , t ra in_labe l , epochs=5, batch_size=32)

After the training is done, the model can be used easily to infer on new data:
1 c l a s s e s = model . p r ed i c t ( test_data )

This example shows how simple it is to deploy a neural network with Keras.
However, Keras is also a highly flexible framework suitable to iterate on state-of-
the-art research ideas. It follows the principle of progressive disclosure of complex-
ity : it makes it easy to get started, yet it makes it possible to handle arbitrarily
advance use cases, only requiring incremental learning at each step.

3.4 Quantizing Neural Networks
Early efforts in the field of deep learning have focused mostly on the training aspect
of neural networks. The success of these efforts has led to widespread deployment
of neural networks trained in data centers and on embedded devices, where they
are used for inference which in turn emphasized the need to make the inference
phase more efficient, especially on hardware that requires low latency, see Chapter
5. Thus, network compression is critical and has become an effective solution to
reduce the storage and computation costs for deep NN models.

Quantization, which means conversion of the arithmetic used within the NN
from high-precision floating-points to normalized low-precision integers (fixed-point)
[63], is an essential step for efficient deployment.
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Floating-point representation allows the decimal point to “float” to different
places within the number, depending upon the magnitude. Floating-point numbers
are divided into two parts, the exponent and the mantissa, whose sum makes up
the total number of bits, or bitwidth, used to represent a number. This scheme is
very similar to scientific notation, which represents a number as A × 10B, where
in this case A is the mantissa and B is the exponent. However, the base of the
exponent in a floating-point number is 2, that is A×2B. The floating-point number
is standardized by IEEE/ANSI standard 754-1985. The basic IEEE floating-point
number utilizes an 8-bit exponent and a 24-bit mantissa.

Figure 3.9: Fixed-point number representation. ap_fixed<width,integer> will be
the C type associated to input, output and parameters of the NN model by the
hls4ml library in Section 4.2.2.

Fixed-point numbers, instead, consist of two parts, integer and fractional, as
shown in Figure 3.9. Compared to floating-point, fixed-point representation main-
tains the decimal point within a fixed position, allowing for more straightforward
arithmetic operations. For example, when dealing with floating-point numbers
arithmetic, one must first ensure the decimal points are aligned, by either multi-
plying the number with more integer bits or dividing the number with the fewest
integer bits by 2 until both operands have the same number of bits in the mantissa.
However, in case of two fixed-point numbers with the same precision, this is not
necessary. The major drawback of the fixed-point system is that a larger number
of bits is needed to represent larger numbers or to achieve a more accurate result
with fractional numbers.

Briefly, integer quantization consists of approximating real values with integers
[64] according to

xQ =
x

scale
(3.7)

where

scale =
max (x)−min (x)

2N
(3.8)

and N is the number of bits used in the approximation. Each layer’s weights and
activations are given a different scale according to their extremum values. However,
the so called post-training quantization degrades network performance.

Incorporating resource intensive models without a loss in performance poses a
great challenge [65]. In recent years many developments aimed at providing efficient
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inference from the algorithmic point of view has been achieved. This includes the
aforementioned post-training quantization with its related loss in performance and
accuracy, due to the loss in precision going from a 32-bit floating precision number
to a fixed precision number with less bitwidth. Therefore, a solution is to perform
quantization-aware training (as suggested in [65]): a fixed numerical representation
is adopted for the whole model, and the model training is performed enforcing this
constraint during weight optimization.

3.4.1 QKeras

To simplify the procedure of quantizing Keras models, the QKeras library [66] has
been developed by a collaboration between Google and CERN: it is a quantization
extension to Keras that provides a drop-in replacement for layers performing arith-
metic operations. This allows for efficient training of quantized versions of Keras
models.

QKeras is designed using Keras’ design principle, i.e. being user-friendly, modu-
lar, extensible, and "minimally intrusive" to Keras native functionality. The library
includes a rich set of quantized layers, it provides functions to aid the estimation
of model area and energy consumption, allowing for simple conversion between
non-quantized and quantized networks. Importantly, the library is written in such
a way that all the QKeras layers maintain a true drop-in replacement from Keras
so that minimal code changes are necessary.

In the following, two examples of the QKeras version of native Keras objects
are discussed.

1 QDense (64 , kerne l_quant i ze r = quant ized_bits ( 6 , 0 ) ,
2 bias_quant izer = quant ized_bits ( 6 , 0 ) ( x ) )
3 QActivation ( ’ quant ized_re lu (6 , 0 ) ’ ) ( x )

Listing 3.1: Quantized QKeras layers example.

The first code modification that is necessary in order to use QKeras’ objects consist
of typing Q in front of the original Keras data manipulation layers name and
specifying the quantization type, i.e. the kernel_quantizer and bias_quantizer
parameters. Only data manipulation layers, which perform some computation that
may change the data input type and create variables, are changed to the QKeras
version. When quantizers are not specified, no quantization is applied to the layer
and it behaves like the un-quantized Keras layer.

The second code change is to pass approprate quantizers, e.g. quantized_bits.
In the code snippet 3.1, QKeras is instructed to quantize the kernel and bias to a
bit-width of 6 and 0 integer bits. QKeras works by tagging all variables, weights
and biases created by Keras as well as the output of arithmetic layers, by quantized
functions. Quantized functions are specified directly as layers parameters and then
passed to QActivation, which acts as a merged quantization and activation func-
tion. The quantized_bits quantizer used above performs mantissa quantization:

2int−b+1clip(round(x× 2int−b−1 − 2b−1 2b−1 − 1) (3.9)

where x is the input, b specifies the number of bits for the quantization, int specifies
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how many bits of b are to the left of the decimal point, and clip and round are
function from the Numpy library [67].

The quantizer used for the activation functions in 3.1, quantized_relu, is a
quantized version of ReLU (see Section 3.2).

Through simple code changes like those above, a large variety of quantized
models can be created. QKeras can be used to create a range of deep quantized
models, trained quantization-aware and based on the same architecture as the
baseline model. Finally, it is possible to create an optimally heterogeneously quan-
tized QKeras model with a significantly reduced resource consumption, without
compromising the model accuracy.

An original idea of a neural network for the use case covered in this thesis was
indeed implemented on Keras with a Tensorflow backend, improved and modified
to best attack the need, migrated whenever necessary to the use of QKeras, and
dumped on FPGA resources: this will be discussed in depth in Chapter 5.
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Chapter 4

Introduction to FPGAs

In the computer and electronics world, there are two different types of hardware for
performing computation: the multipurpose kind (like consumer CPUs) which can
be programmed to accomplish a wide range of tasks; and a more specialized kind,
such as Application-Specific Integrated Circuits (ASICs), which provides highly
optimized resources for quickly perform in critical tasks, but it is permanently
configured to only one application via a multimillion dollar design and fabrica-
tion effort. Computer software provides the flexibility to change applications and
perform a huge number of tasks, but it is orders of magnitude worse than ASIC
implementations in terms of performance, silicon area efficiency, and power usage
[68].

Field Programmable Gate Arrays (FPGAs) are devices that blend the benefits
of both hardware and software. They implement circuits just like hardware, pro-
viding huge power, area and performance benefits over software, yet they can be
reprogrammed cheaply and easily to implement a wide range of tasks. FPGAs im-
plement computations spatially, simultaneously computing millions of operations
in resources distributed across a silicon chip. Such systems can be hundreds of
times faster than microprocessor based designs. However, unlike in ASICs, these
computations are programmed into the chip, not permanently frozen by the man-
ufacturing process. This means that an FPGA-based system can be programmed
and reprogrammed many times. But this flexibility comes at a cost: when produc-
ing an ASIC, the main expense is the building of the "master", with a much cheaper
production line after development with respect to FPGAs, whose cost per chip is
much higher than ASICs. Furthermore, an FPGA programmed to accomplish a
specific task will perform worse than an ASIC designed with the same objective in
mind.

Figure 4.1 illustrates the internal layout of an FPGA, which is made up of
replicated units of digital electronic circuits, called logic blocks, embedded in a
general routing structure, hence the gate and array in the name of this type
of devices. The logic blocks contain processing elements for performing simple
combinational logic, as well as flipflops for implementing sequential logic. Any
Boolean combinational function of five or six inputs can be implemented in each
logic block. The general routing structure allows arbitrary wiring, so the logical
elements can be connected in the desired manner.

Because of this generality and flexibility, an FPGA can implement very complex
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Figure 4.1: An abstract view of and FPGA. Logic cells are embedded in a general
routing structure.

circuits. Modern devices can compute functions on the order of millions of basic
gates, working with clock frequencies in the hundreds of Megahertz. To boost
speed and capacity, in several devices additional ad-hoc elements are embedded
into the array, such as large memories, multipliers and even microprocessors. With
these predefined, fixed-logic units, which are fabricated into the silicon, FPGAs
are capable of implementing complete systems in a single programmable device,
by configuring the connections between these units to perform complex algorithms.

4.1 Main logic elements of an FPGA

In very general terms, there are two types of resources in an FPGA, making up
the so-called FPGA fabric: logic, devoted to perform digital operations, and the
configurable connections between logic blocks, called interconnect. In the next few
section, a small selection of logic elements will be described.

4.1.1 Lookup Tables

Any computation can be represented as a Boolean equation and, in turn, these
can be expressed as a truth table. From these simple representation, complex
structure which can do arithmetic can be built, such as adders and multipliers, as
well as decision-making structures that can evaluate conditional statements, such
as the classic if-then-else construct. Combining these, elaborate algorithms can be
described simply by using truth tables.

From this basic observation of digital logic, the truth table can be seen as
the basic computational element of the FPGA. More specifically, one hardware
element that can easily implement a truth table is the Lookup Table (LUT). From
a circuit implementation perspective, a LUT can be formed simply from an N-to-
one multiplexer and an N-bit memory. Therefore, using LUTs gives an FPGA the
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Figure 4.2: A 3-LUT schematic on the left and the corresponding 3-LUT symbol
and truth table for a logical XOR on the right.

generality to implement arbitrary digital logic. Figure 4.2 shows a typical N-input
LUT that could be find in FPGAs.

The LUT can compute any function of N inputs by simply programming the
lookup table with the truth table of the function to be implemented. As shown
on the right side of Figure 4.2, if we wanted to implement a 3-input exclusive-or
(XOR) function with a 3-input LUT, we would assign values to the lookup table
memory such that the pattern of select bits chooses the correct row’s "answer".
Thus, every "row" would yield a result of 0 except in the four cases when the XOR
of the three select lines yields 1.

4.1.2 Flip-Flops

Only LUTs are not sufficient to implement all of the functionality requested from
FPGAs. Indeed, implementing digital circuits requires, other than combinatorial
logic elements (logic gates), sequential logic ones, in order to deploy algorithms
which exploit memory or the concept of "state". To accomplish this need, a simple
single-bit storage element is added in the base logic block in the form of a D
flip-flop.

Figure 4.3: A simple LUT logic block with a D flip-flop.

A flip-flop is basically a circuit capable of storing a 0 or a 1. A Delay (or Data)
Flip-Flop [69] is a type of flip-flop which delays the transfer of its input to its
output. The activation of this type of flip-flop has three external connections: the
input, the output and a clock input which controls the timing of the transfer of
the input value to the output.

With the insertion of the D flip-flop in the logic block, it looks something like
Figure 4.3. The output multiplexer on the right selects a result either from the
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function generated by the lookup table or from the stored bit in the D flip-flop.
The logic blocks of modern FPGAs are made up of multiple LUTs and flip-flops,

with multiple programmable connections which are used to reproduce complex
functions.

4.1.3 Digital Signal Processors

While it is possible to implement a multiplication with a number of the afore-
mentioned logic blocks, it would cause a large delay penalty or a large logic block
footprint. Indeed, these logic blocks are not very efficient at performing multipli-
cations.

Instead of doing it this way, it is possible to delegate this operation to an ad-hoc
multiplier implemented into the FPGA fabric. Then, instead of inefficiently using
simple LUTs to implement a multiplication, the values that need to be multiplied
can be routed to actual multipliers implemented in silicon. The result is that, for
a small price in silicon area, the otherwise area-prohibitive multiplication can be
offloaded onto dedicate hardware that does it much better.

These units are called Digital Signal Processor (DSP) slices [70]. The DSP slice
consists of a multiplier followed by an accumulator, and it can be used to multi-
ply numbers with arbitrary bitwidth. Furthermore, they are usually designed to
perform fixed-point arithmetic, which is another reason to quantizing (see Section
3.4) the parameters of a NN model when implementing it on an FPGA.

4.2 Programming an FPGA
FPGA algorithm design is unique with respect to programming a CPU in that in-
dependent operations may run fully in parallel, allowing FPGAs to achieve a much
higher number of operations per second at a relatively low power cost compared
to CPUs and GPUs (Figure 4.4). However, such operations consume dedicated
resources onboard the FPGA and cannot be dynamically remapped while running.
The challenge in creating an optimal FPGA implementation is to balance FPGA
resource usage with achieving the latency and throughput goals of the target algo-
rithm. Key metrics for an FPGA implementation include:

Clock Frequency the frequency of the clock signal used to perform sequential
synchronized operations on the FPGA;

Latency the total time (typically expressed in units of clock periods) required for
a single iteration of the algorithm to complete;

Resource Usage expressed as the following FPGA resource categories: onboard
FPGA memory (BRAM), DSPs, and registers and programmable logic (FFs
and LUTs).

The logic and routing elements in an FPGA are controlled by programming
interconnections. In these devices, every routing choice and every logic function
is controlled by a simple memory bit. With all of its memory bits programmed,
by way of a configuration file or bitstream, an FPGA can implement the user’s
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Figure 4.4: GPU vs FPGA performance comparison [71].

desired function. Thus, the configuration can be carried out quickly and without
permanent fabrication steps, allowing customization at the user’s electronics bench,
or even in the final end product. This is why FPGAs are field programmable, and
why they differ from mask-programmable devices, which have their functionality
fixed by masks during fabrication.

Figure 4.5: A typical FPGA mapping flow.

Customizing FPGA is a process of creating a bitstream to load into the device
(see Figure 4.5). Bitsreams can be generated either with programming languages
(see Section 4.2.1), from schematics or other proprietary methods. FPGA designers
usually start with an application written in a hardware description language (HDL)
such as Verilog and VHDL. This abstract design is optimized to fit into the FPGA’s
available logic through a series of steps: Logic synthesis converts high-level logic
constructs and behavioural code into logic gates, followed by technology mapping
to separate the gates into groupings that best match the FPGA’s logic resources.
Next, placement assigns the logic groupings to specific logic blocks and routing
determines the interconnect resources what will carry the user’s signals. Finally,
bitstream generation creates a binary file that sets all of the FPGA’s programming
points to configure the logic blocks and routing resources appropriately.

After a design has been compiled, the FPGA can be programmed to perform
a specified computation simply by loading the bitstream into it. Typically a host
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microprocessor/microcontroller downloads the bitstream to the device. There are
many known methods for storing the single bits of binary information making up
the bitstream. One of the most widely used is volatile static RAM, or SRAM. This
method has been made popular because it provides fast and infinite reconfiguration
in a well-known technology. Nevertheless, a significant drawback is that SRAM
does not maintain its contents without power, which means that at power-up the
FPGA is not configured and must be programmed using off-chip logic and storage.
Thus, the appropriate bitstream must be loaded every time the FPGA is powered
up, as well as any time the user wants to change the circuitry when it is running.
Once the FPGA is configured, it operates as a customized electronics device.

The FPGA market is dominated by two main suppliers: Xilinx Inc. [72], ac-
quired by AMD in 2020, and the once called Altera Corporation, acquired by Intel
in 2015 [73]. For this work, an evaluation board produced by Xilinx was made
available by INFN Bologna. The following tools are offered by the manufacturer
to program and make the best use of Xilinx’s FPGAs.

Vivado Design Suite

The Vivado Design Suite [74] contains services that support all phases of FPGA de-
signs, starting from design entry, simulation, synthesis, place and route, bitstream
generation, debugging, and verification as well as the development of software
targeted for these FPGAs. It is an Integrated Development Environment (IDE)
that has been built from the ground up to address the productivity bottlenecks in
system-level integration and implementation. The edition used in this work was
the Vivado HL Design Edition 2018.3. It includes, among other tools:

Vivado High-Level Synthesis compiler (Vivado HLS): a compiler which en-
ables C and C++ programs to be directly targeted into Xilinx devices with-
out the need to manually write in more hardware descriptive languages (like
VHDL and Verilog). The concept of HLS will be described in more detail in
the next section;

Vivado IP Integrator : it allows to quickly integrate and configure pre-synthesized
(but also custom made) blocks (Intellectual Properties or IPs) from the large
Xilinx IP library. Its use will be presented in Section 5.4.3;

Vivado Software Development Kit (Vivado SDK): an Integrated Design En-
vironment (IDE) for creating software applications on any of Xilinx’s micro-
processors embedded into FPGAs.

4.2.1 High Level Synthesis

High-level Synthesis (HLS) [75] is the process of automatic generation of hardware
circuit from “behavioral descriptions” contained in a C or C++ program. The tar-
get hardware circuit consists of a structural composition of data path, control and
memory elements. HLS acts as a bridge between hardware and software domains
[76], providing an improvement in productivity for hardware designers who can
work at a higher level of abstraction while creating high performance hardware;
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and an improvement in system performance for software designers who can accel-
erate the computationally intensive parts of their algorithms on a new compilation
target, i.e. the FPGA.

Using a HLS design methodology allows to develop algorithms at the C-level
(in programming languages like C and C++) with typically shorter development
time. Moreover, it is more easier to validate functional correctness at this level
than with traditional HDLs.

The fundamental tasks in HLS are decomposed into:

Hardware modeling concerns transforming the application described in C or
C++, into a synthesizable logic circuit description where operations are
placed in order of execution, according to the C application;

Task scheduling schedules operations by assigning these to specific clock cycles
or by building a function that determines execution time of each operation
at the runtime. In other words, a time schedule for all ordered operations
listed in the previous step is created;

Resource allocation and binding determine which resources and their quan-
tity needed to build the final hardware circuit. Binding refers to specific
binding of an operation to a resource (such as a functional unit, a memory,
or an access to a shared resource).

Control generation and optimization creates a series of control signals which
can be used to keep track and control the execution of the final product.

This decomposition of HLS tasks is automatically performed by proprietary
software applications to translate sequential languages like C and C++ to a parallel
implementation on sequential circuits.

To perform these tasks, HLS compilers synthesize a C code as follows:

1. Top-level function arguments synthesize into I/O ports;

2. C functions synthesize into blocks in the logic circuit. If the C code includes a
hierarchy of sub-functions, the final design will include a hierarchy of modules
or entities that have a one-to-one correspondence with the original C function
hierarchy. All instances of a function use the same block by default.

3. Loops in the C functions are kept rolled by default: when loops are rolled,
synthesis creates the logic for one iteration of the loop, and the design ex-
ecutes this logic for each iteration of the loop in sequence, managed by a
properly generated control logic. Using optimization directives, it is possible
to unroll loops, which allows all iterations to occur in parallel, by replicating
hardware resources.

4. Arrays in the C code synthesize into Block RAM (BRAM) or UltraRAM 1

in the final FPGA design. If the array is on the top-level function interface,
HLS implements the array as ports to access a BRAM outside the design.

1Block RAM e Ultra Ram are the product names of two different RAM designs built by Xilinx
for FPGAs.



64 CHAPTER 4. INTRODUCTION TO FPGAS

HLS creates an optimized implementation based on default behaviour, con-
straints, and any specified optimization directives. It is possible to use optimiza-
tion directives to modify and control the default behaviour of the internal logic
and I/O ports. This allows to generate variations of the hardware implementation
from the same C code.

4.2.2 The hls4ml package

The hls4ml package [77] was developed by members of the High Energy Physics
(HEP) community to translate ML algorithm, built using frameworks like Tensor-
Flow 3.3.1, into HLS code. In this work hls4ml was used to perform this trans-
formation on a trained NN, defined by its architecture, weights, and biases. A
schematic of a typical workflow is illustrated in Figure 4.6.

The part of the workflow illustrated in red indicates the usual software workflow
required to design a NN for a specific task 3.3.1. The blue section of the workflow
is the task of hls4ml, which translates a model into an HLS project that can be
synthesized and implemented to run on an FPGA. Some code snippets are shown
in the following to explain how an already trained model can be converted into an
HLS project using the hls4ml Python API.

Firstly, the model must be loaded (in this example the model was built using
QKeras) [78]:

1 import hls4ml
2 from qkeras . u t i l s import load_qmodel
3

4 model = load_qmodel ( "QKeras_model . h5" )

Then, a configuration has to be created:
1 c on f i g = hls4ml . u t i l s . config_from_keras_model (model ,
2 g r anu l a r i t y = ’name ’ )

The config_from_keras_model() function returns a Python dictionary and takes
the following compulsory arguments:

• The Python object containing the NN;

• The granularity (name, type or model). This flag sets the level of fineness
wanted for the parameter tuning. By using name, it is possible to configure
each layer and activation function individually. While, type is used if the
developer wants to share the configuration between all layers of the same
type. And finally, with model a single configuration is used for the entire
model.

By modifying the configuration dictionary it is possible to change the arithmetic
precision used for weights, biases and results. After the configuration, the model
can be converted by specifying, other than the model object and configuration, the
output folder and the FPGA model where the project will be implemented:

1 hls_model = hls4ml . c onve r t e r s . convert_from_keras_model (model ,
h l s_con f i g=con f ig , output_dir=’HLS_Project ’ , fpga_part=’ xczu9eg−
f fvb1156−2−e ’ )
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Figure 4.6: A typical workflow to translate a model into an FPGA implementation
using hls4ml.

Now, typing hls_model.compile(), the hls_model can be compiled, i.e. scripts
for Vivado HLS are generated containing the instructions for synthesizing the model
with the provided device as target hardware. It is possible to synthesize the project
inside a Python session with the hls_model.build() function.

It is clear by the couple of lines of code shown, how it is easy to create the
HLS project, making it feasible also for people who are not expert in FPGAs or
hardware in general. In Section 5.4.2 the configuration used in this work will be
presented, together with the steps to follow to go from an HLS project to running
the final application on an FPGA.

The goal of the hls4ml package is to empower a HEP physicist to accelerate
ML algorithms using FPGAs, thanks to its tools for ML models conversion into
HLS. Indeed, hls4ml makes the translation of Python objects into HLS, and its
synthesis, parts of an automatic workflow, allowing fast deployment times also for
those who know how to write software, yet are not experts on FPGAs.
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Chapter 5

Muon momentum assignment using
Machine Learning on an FPGA

In Chapter 3, an overview on ML has been presented, together with a simple
tutorial on how a NN can be built, trained and later used for predictions. After
that, in Chapter 4, FPGAs were presented and the potential in using HLS was
discussed.

The main purpose of this thesis concerns the implementation of an ML algo-
rithm on an FPGA, using data coming from local trigger segments (trigger primi-
tives) from the DT chambers (explained in more detail in Chapter 2) at the CMS
experiment, in order to perform muon pT assignment predictions. This work is
built upon [79], where the possibility of exploiting NNs to perform muon pT as-
signment was initially explored.

After a brief description of the physical problem analysed, this chapter will be
articulated into four main sections:

1. The first section will describe the muon pT assignment process for the CMS
L1T;

2. The second section will provide an overview of the data used and the prepro-
cessing required in order to make them suitable for a ML model (as described
in more detail in [79]);

3. The third section will show the design and optimization of the model, training
and test, as well as the predictions for new unseen data;

4. The fourth section will show the steps needed for converting the model built
using Python, firstly into an HLS project (as described in general in Section
4.2.2), and then into an application which can be launched on an FPGA;

5. The fifth section will compare the predictions coming from such models with
the actual L1T algorithm running in CMS.

All the code written for this thesis and the output data are available in a digital
repository [80].

67
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5.1 The muon pT assignment
Detection of muons is very important in the CMS experiment. Muons are expected
to be produced in a large set of physics signatures studied as part of the CMS
physics programme: for instance, the golden decay channel of the Higgs Boson,
sees the production of four muons [81], as shown in Figure 5.1. Since muons can
penetrate several metres of iron with little energy loss, unlike most particles, they
are not stopped by any layer of the CMS calorimeters. That is why the CMS
muon detectors (described in more detail on Chapter 2) are placed far from the
interaction point.

Figure 5.1: Higgs boson’s golden decay into 4 leptons (l = e, µ, τ).

During CMS Phase-1, the trigger system tracked muons through the four sta-
tions of the barrel system in two steps. First, individual hits from single chambers
are combined by local trigger electronics (see Section 2.3), resulting in track seg-
ments (trigger primitives) encoding local position and direction. Then, a Track
Finder system combines segments from different stations into muon track can-
didates. The present Barrel Muon Track Finder (see Section 2.4) estimates the
muon transverse momentum in a relatively simple way, using LUTs (see Section
4.1.1) addressed by the difference in the azimuthal position of the trigger primitives
from the two innermost stations participating in the track and the φB of the most
internal one.

Improving the transverse momentum measurement performed by the trigger,
namely the momentum resolution, is very important to achieve a reduction of trig-
ger rates. In fact, due to the rapidly decreasing shape of the inclusive muon pT
spectrum, even a relatively small reduction of the resolution can provide a signifi-
cant decrease of the trigger rate at a given pT threshold, by reducing the number
of low momentum muon candidate misidentified as high momentum ones. This
becomes particularly pressing in the context of future upgrades of CMS, in view
of the High Luminosity LHC (see Section 1.3) upgrade, to avoid using higher mo-
mentum thresholds as luminosity increases, with the consequence of losing physics
acceptance.

The Phase-1 algorithm for Level-1 muon pT assignment is based on the use of
a fraction of all the available information from the trigger primitives: as a matter
of fact, firstly it assumes that the muon comes from the vertex and, secondly, it
uses just the φB (see Figure 2.12) of the most internal station (as long as it is not
MB3, due to the magnetic field disposition which places the trajectory’s saddle
point in this station) and the the φ angles of the two most internal stations. A ML
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approach, especially in the implementation of an Artificial Neural Network, would,
instead, make use of all the angle differences, all φB, the position and direction
within a chamber of all trigger primitives, the station/sector/wheel coordinates of
the chambers generating the primitives. Furthermore, possible non-linear relations
among the input data can be explored through the use of different and deeper
network architectures, opening the way for supervised regression algorithms, hence
allowing to span a much wider parameter space. By implementing the ML algo-
rithm on an FPGA, this work tries also to search for ways to make the pT prediction
faster, other than more accurate, hence opening the way for designing a track fit-
ting technique at the L1T, possibly achieving better performance than KBMTF
included in the Phase-2 CMS Upgrade (see Section 2.5).

In this work, ML predictions are used to provide a momentum measurement
limited to the only trigger primitives (at chamber level) associated to muon track
candidates built by the present Track Finder system, which will also provide the
reference performance in terms of momentum assignment accuracy. In this way it
is possible to understand how the new solution proposed in this thesis compares
with the current L1T algorithm.

5.2 Data preparation
The first important step prior to model creation is data preparation. In a standard
ML problem, this is a delicate phase that deals with aspects such as data cleans-
ing, data scaling (normalization and binning), feature inspection and eventually
feature engineering. The data preparation was performed following [79], where it
is explained in more details.

The data used was generated out of a simulated sample of muons with dif-
ferent energy and direction crossing the CMS detector and, as anticipated in the
previous section, only trigger primitives were used for a more direct comparison
with the actual L1T algorithm. Each generated muon passing through the barrel
DT chambers results into several trigger primitives. Each muon has an associated
number corresponding to the number of chambers crossed by its trajectory. There-
fore, inside a plain csv file, extracted from a TTree in a ROOT [82] file (using the
Python macro described in [79]), all the necessary information was stored, both
the physical information of each simulated muon and the respective primitive hits
in the detector, up to the L1T information.

The variables in the csv file are the following:

1. n_Primitive is an integer value corresponding to the number of primitives
contained in that record.

2. dtPrimitives contains the variables of muon local segments from the DT
chambers (Section 2.1.1):

dtPrimitive.id_r an integer with the identifier of the trigger primitive sta-
tion (ranging from 1 to 4);

dtPrimitive.id_phi an integer with the identifier of the trigger primitive
sector (ranging from 1 to 12);



70 CHAPTER 5. MUON PT ASSIGNEMENT USING ML ON AN FPGA

TRACO code Quality label Meaning

6 HH Correlated H+H trigger (outer and inner SL)
5 HL Correlated H+L or L+H trigger
5 LL Correlated L+L trigger
4 HO Uncorrelated High trigger (outer SL)
3 HI Uncorrelated High trigger (inner SL)
2 LO Uncorrelated Low trigger (outer SL)
1 LI Uncorrelated Low trigger (inner SL)
7 / Null Track

Table 5.1: TRACO quality code conversion table. See Section 2.3 for terminology
clarification.

Figure 5.2: Data extract from the plain csv input file containing the input data.

dtPrimitive.id_eta an integer with the identifier of the trigger primitive
barrel wheel (ranging from -2 to 2);

dtPrimitive.phiB the bending angle of the trigger primitive (see Figure
2.12 for reference);

dtPrimitive.quality an integer with a value representing the quality of the
hit (a map of such values for the quality of the primitive is shown in
Table 5.1).

3. l1Muons contains the variables of muons exiting the L1T (after the correct
BX assignment and the BMTF, described in Section 2.4):

l1Muon.eta and l1Muon.phi: the value of the η and φ angles of the muon
track estimated by the L1T;

l1Muon.charge : an integer representing the charge of the muon (-1 or
+1);

l1Muon.quality : an integer with a value of quality given by the L1T
depending on the type of Track Finder involved (in this case the BMTF).
Ranges from 0 to 15, an higher value implies, in general, the use of
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more trigger primitives and/or the use of primitives from the innermost
stations.

l1Muon.pt : the estimation of the pT made by the L1T system. This
variable is quite important as it is used to compare the performance of
the pT assignment by the analyzed model.

Both dtPrimitives and l1Muons features are repeated 4 times for each entry
in order to describe these quantities for the trigger primitive reconstructed
in the 4 stations MB1, MB2, MB3 and MB4.

4. genParticles contains the variables of the generated muons. These are the
"true" physical values since the original interacting muon is generated and
not coming from measured data:

genParticle.status an integer flag assuming different values depending on
the generation process. All particles have a status flag equal to 1 being
the ones propagated from the generator to the GEANT [83] simulation;

genParticle.pdgId : Particle Data Group code of the generated particle
(-13 for muons and +13 for anti-muons);

genParticle.eta and genParticle.phi: "real" value of the η and φ angles
of the muon;

genParticle.pt : transverse momentum of the generated muon. This vari-
able will be used as the target from the ML algorithm, i.e. the quantity
the model has to learn.

5. delta_phiNM (with NM = 12, 13, 14, 23, 24, 34): these columns are filled
with the difference, in module, of the φ angle, expressed in global detector
coordinate, of the different trigger primitives linked to the same muon. Phys-
ically, the pT of a particle, crossing the detector, is inversely proportional to
the bending angle caused by the effects of the strong magnetic field produced
by the solenoid magnet. Therefore, there is a delta_phi for each combina-
tion of station pairs (MB1-MB2, MB1-MB3, etc...). In the eventuality of no
primitive in a certain section, a placeholder (0) is inserted.

In Figure 5.2, a snapshot of the data stored in a plain csv file is shown.

5.3 Choosing the model
NNs were chosen as the ML algorithm analyzed in this work due to their flexibility
with respect to the alternatives (as described in detail in [79]): instead of following
a set of predefined instruction to solve a problem, NNs process information by a
large number of interconnected processing elements working in parallel (as shown
in Section 3.2); the resulting model is also deployable in other machines and can
be tested with new datasets with little to no modifications required.

The following sections will provide a detailed description of the process needed
to create such networks, using a Python macro with QKeras framework environ-
ment (described in Section 3.4.1).
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Input dataset and feature selection

For this specific analysis, the entire datased used contains about 300000 generated
muons with a range in pT from 3 to 200 GeV/c, distributed uniformly. Feature
selection is the first step in the creation of the NN model: from the list presented
in Section 5.2, only the variables concerning the trigger primitives were effectively
used as input feature:

• n_Primitive being the number of primitives used for the track reconstruc-
tion related to the accuracy of its pT assignment;

• dtPrimitive.id_r, dtPrimitive.id_eta, dtPrimitive.id_phi for the lo-
cation of the primitive in the detector;

• dtPrimitive.phiB and delta_phi (one for each combination of stations)
for their correlation to the muon pT ;

• dtPrimitive.quality for the correlation between the number of hits used
for the construction of the primitive, which has an impact on the resolution
of φB.

As already stated in the previous section, each dtPrimitive variable refers to
one trigger primitive only; each muon, however, has more than one TP (n_Primitive
indicate the exact number of primitives for a certain muon record, up to 4). For
this reason, every variable has an additional integer number at the beginning of
their name indicating the primitive number. For instance, dtPrimitive.id_r in
the list above actually means: 1dtPrimitive.id_r, 2dtPrimitive.id_r, 3dt-
Primitive.id_r and 4dtPrimitive.id_r, for the other variables as well.

Target variable

The target variable is genParticle.pt, which contains the pT of the simulated
muon, distributed from 3 to 200 GeV/c and normalized between 0 and 1 since, in a
NN environment (but this logic can be extended to all ML algorithms), the target
variable is supposed to be normalized in order to be learned more easily.

5.3.1 Neural Network architecture

In [79], a fully connected NN (built using Keras, see Section 3.3.1) was studied
with 2 hidden layers of 1000 and 50 nodes respectively. However, in order to find
alternatives which reduce the size of the NN and are more accurate, two different
NN architectures have been studied in this thesis:

1. a Fully Connected MLP with 3 hidden layers containing 80, 50 and 35 nodes
respectively (from here onwards it will be called S model);

2. a Fully Connected MLP with 5 hidden layers made up of 60, 50, 30, 40, 15
nodes each (D model).

Both were implemented using QKeras as follows (the description of the functions
used in this snippet can be found in Section 3.3):
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1 # Fi r s t model ( sha l low )
2 model = Sequent i a l ( )
3 model . add (QDense (80 , input_shape=(27 ,) ,
4 kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
5 bias_quant izer=quant ized_bits (16 ,1 ) ,
6 k e r n e l_ i n i t i a l i z e r=’ random_normal ’ ) )
7 model . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
8 name=’ r e l u1 ’ ) )
9 model . add (QDense (50 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,

10 bias_quant izer=quant ized_bits (16 ,1 ) ) )
11 model . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
12 name=’ r e l u2 ’ ) )
13 model . add (QDense (35 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
14 bias_quant izer=quant ized_bits (16 ,1 ) ) )
15 model . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
16 name=’ r e l u3 ’ ) )
17 model . add (QDense (1 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ) )
18 model . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
19 name=’ r e l u4 ’ ) )
20 # Second model ( deep )
21 model2 = Sequent i a l ( )
22 model2 . add (QDense (60 , input_shape=(27 ,) ,
23 kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
24 bias_quant izer=quant ized_bits (16 ,1 ) ,
25 k e r n e l_ i n i t i a l i z e r=’ random_normal ’ ) )
26 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
27 name=’ r e l u1 ’ ) )
28 model2 . add (QDense (50 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
29 bias_quant izer=quant ized_bits (16 ,1 ) ) )
30 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
31 name=’ r e l u2 ’ ) )
32 model2 . add (QDense (30 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
33 bias_quant izer=quant ized_bits (16 ,1 ) ) )
34 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
35 name=’ r e l u3 ’ ) )
36 model2 . add (QDense (40 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
37 bias_quant izer=quant ized_bits (16 ,1 ) ) )
38 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
39 name=’ r e l u4 ’ ) )
40 model2 . add (QDense (15 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ,
41 bias_quant izer=quant ized_bits (16 ,1 ) ) )
42 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
43 name=’ r e l u5 ’ ) )
44 model2 . add (QDense (1 , kerne l_quant i ze r=quant ized_bits (16 ,1 ) ) )
45 model2 . add ( QActivation ( a c t i v a t i o n=quant ized_relu (16 ,1 ) ,
46 name=’ r e l u6 ’ ) )

Listing 5.1: Python script to build two NN models using the QKeras library.

In both cases the first hidden layers presents a gaussian random number as ker-
nel initializer (for the initial randomized weight assignment). Between layers, the
activation functions (ReLUs, see Section 3.2) are defined. All the object initialized
here are quantized, as coming from the QKeras library, with a bitwidth of 16 bits
of which 1 is used to represent the integer part of the value (another bit is used for
the sign).
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5.3.2 Neural Network optimization via weight pruning

Figure 5.3: Graphical representation of the weight pruning optimization.

When building a NN model, the final hardware platform where the inference
computation will be run, has to be considered. In order to minimize the resource
utilization when a NN is targetted to FPGA, further optimization was needed
with respect to [79], aimed at reducing the number of parameters and operations
involved in the computation, by removing connections, and thus parameters, in
between NN layers. This process is commonly called weight pruning, i.e. the
elimination of unnecessary values in the weight tensor, by practically setting the
NN parameters’ values to zero, which will be translated into "cut" connections
between nodes of the NN during the synthesis of the HLS design (see Section
5.4.2). The pruning is done during the training process to allow the NN to adapt
to the changes. The TensorFlow Sparsity Pruning (TFSP) API [84] was selected
to perform this optimization. It uses an algorithm designed to iteratively remove
connections, based on their magnitude during training. Fundamentally, a final
target sparsity (i.e. a target percentage of weights equal to zero) is specified, along
with a schedule to perform the pruning (e.g. start pruning at step 2000, stop
at step 10000, and do it every 100 steps), and an optional configuration for the
pruning structure (e.g. prune individual values or blocks of values). As training
proceeds, the pruning routine is scheduled to execute, eliminating the weights with
the lowest magnitude (i.e. those closest to zero), until the current sparsity target
is reached. Every time the pruning routine is scheduled to execute, the current
sparsity target is recalculated, until it reaches the final target sparsity at the end
of the pruning schedule by gradually increasing it according to a smooth ramp-up
function (see Figure 5.4).

At the end of the training procedure, the tensors corresponding to the pruned
layers will contain zeros according to the final sparsity target for the layer. Looking
at Table 5.2 (which concerns the second model built in the previous section), it is
clear how this technique reduces the number of weights different from zero, hence
the number of operations performed when the NN is used. This causes a reduction
of the number of DSPs (see Section 4.1.3) scheduled to be used by Vivado HLS
during the synthesis of the NN (see Section 5.4.2).
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Figure 5.4: Example of sparsity ramp-up function with a schedule to start pruning
from step 0 until step 100, and a final target sparsity of 90%. [84]

Weights Biases Total
Complete Pruned Complete Pruned Complete Pruned

1st layer 1620 409 60 60 1680 469
2nd layer 3000 750 50 50 3050 800
3rd layer 1500 375 30 29 1530 404
4th layer 1200 300 40 40 1240 340
5th layer 600 150 15 15 615 165

Output layer 15 4 1 1 16 5

Table 5.2: Table showing the results of the pruning technique for the D model.
There is a complete list of parameters for every layer before and after pruning. In
both cases the model was built using QKeras.

5.3.3 Training the Neural Network

The following lines of code were used to start the NNs training with weight pruning
enabled:

1 pruning_params = {"pruning_schedule " :
2 pruning_schedule . ConstantSpars i ty ( 0 . 7 5 ,
3 begin_step=2000 ,
4 f r equency=100)}
5 model = prune . prune_low_magnitude (model , ∗∗pruning_params )
6 adam = Adam( l r =0.001)
7 model . compi le ( l o s s=’mean_squared_error ’ , opt imize r=adam)
8 model . f i t ( X_training , y_training ,
9 batch_size=s i z e ,

10 epochs=epochs ,
11 verbose=1,
12 va l idat ion_data=(X_validation , y_val idat ion ) ,
13 c a l l b a c k s =[ h i s to ry , pruning_cal lbacks . UpdatePruningStep ( ) ] )
14

15 model = str ip_pruning (model )

The pruning_params dictionary contains the pruning schedule as an object
from the TFSP library, initialized providing: the final sparsity target, the ini-
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tial step when starting pruning and after how many steps perform the proce-
dure again. The model is then wrapped in the prune.prune_low_magnitude con-
tainer, allowing the recovery of the original QKeras model by simply calling the
strip_pruning() function after the training is completed.

By calling the model.compile() method, the loss function and the optimizer
(described in Section 3.2 and Section 3.1.2 respectively) are set. The Adaptive
Momentum estimation (Adam) [85] was used as optimizer: it is a method for
efficient stochastic optimization that only requires first-order gradients with little
memory requirement. The method computes individual adaptive learning rates
for different parameters from estimates of first and second moments (mean and
variance) of the gradients.

Training RMSE Validation RMSE

S model 0.102409 0.105033
D model 0.109454 0.112008

Table 5.3: Training and validation scores of both NN models studied in this thesis.

The actual training was initiated with the model.fit() method with the fol-
lowing arguments:

X_training and y_training training data and "true" values used for training

batch_size number of entries used to perform the gradient descent at once. The
training iteration ends when all dataset is used, one batch at a time;

epochs number of times the entire training set is used to train the model;

verbose verbosity of the output;

validation_data validation set (see Section 3.1.3)

callbacks functions called during the training process to keep track of the algo-
rithm and apply the pruning procedure.

In order to validate the models, a train/test split of 80/20% was performed.
Using 200 epochs for the first model and 130 for the second, and a batch size of
300 records for both, Table 5.3 shows the results for both the training and valida-
tion phases. Figures 5.5a and 5.5b show the loss value trend over the iterations
(epochs) during training and validation: for each iteration, the minimization of
loss is noticeable, ending up at an approximately constant value.

5.3.4 Neural Network model performance on CPU

The final step for the model creation is testing such models using a separated
dataset. The QKeras models trained in the previous section were saved into a
HDF5 file [86], containing:

• The architecture of the model, in order to be reproduced when it is needed
to be used with other datasets;
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(a) S model loss values. (b) D model loss values.

Figure 5.5: These plots show the trend of the loss function for each iteration
(epoch) of both pruned models under study. The blue line indicates the training
phase while the orange line the validation phase. Notice that, for each epoch, the
loss function is always minimized.

• The weights of the model;

• The training configuration (loss, optimizer);

• The state of the optimizer, allowing to resume training exactly where it was
left.

Then, using another csv file with an independent set of simulated muons (about
15k muons), created and processed in the same way as the training sample, it was
possible to load the models and predict the muon pT by adding the following lines
of code

1 model = load_qmodel ( "model . h5" )
2 p r ed i c t i o n s = model . p r ed i c t (X_test )

The results of the prediction were compared to the pT estimated by the pT
assignment unit of the BMTF (see Section 2.4). The analysis code performed this
steps:

1. Loading of the model;

2. For each generated muon, a dR =
√
dφ2 + dη2 matching with the L1T tracks

was carried out: in this way only muons with corresponding Level-1 tracks
were considered, factoring the Level-1 reconstruction efficiency out of the
study;

3. If dR were below a certain threshold, the track was selected and histograms
were filled with that candidate.

The input data for the analysis contained about 14000 muon entries. Two
different types of plots were produced as output:

• pT resolution histograms;

• Efficiency curves computed as function of the generated muon pT ("turn-on
curves").
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pT resolution histograms

The pT resolution histograms, for each generated muon, are filled using the follow-
ing relation:

∆pT
pT

=
pTest − pTgen

pTgen
(5.1)

where pTest is the estimation of the transverse momentum, given by the model
prediction or the L1T pT assignment unit, and pTgen is the generated transverse
momentum. Even though this metric makes a quick and easy to understand com-
parison possible, it is important to keep in mind that this resolution is asymmetric,
i.e. its range can go from -1 to infinite. This means that, for a constant actual
spread, the standard deviation associated to its distribution is affected by the value
of its mean: the smaller it is, the smaller the standard deviation will get. In the
case under study, the distributions’ mean will vary in a small range of values, and
this is why this effect was not taken in consideration in the following remarks about
the results.

Figure 5.6: Transverse momentum resolution histograms computed for the smaller
ML-based model (violet) and L1T (green) based momentum assignment, computed
for muons generated in the 3 - 200 GeV pT range.

Figure 5.6 and 5.7 show the pT resolution for the entire range analysed (from 3 to
200 GeV/c) for both produced models. The green line indicates the resolution of the
L1T system while the violet (for the S model) and the blue (for the D model) lines
indicate the resolutions of the predictions made by the NN models. In particular,
it is possible to notice a less broad distribution for the ML resolution, resulting
in a overall improvement (yet small) with respect to the L1T system. Another
noticeable detail, from the L1T curve, is the small peak corresponding to the value
-1: this happens when the pT assigned by the L1T is significantly underestimated
with respect to the generated muon pT . The ML momentum assignment is less
prone to large pT underestimation. As will be discussed in the next section, this
difference has implication in the efficiency of triggering on muons when a minimal
pT cut is applied on the L1T track.

In general, an additional feature visible in all the pT resolution plots is the
scale: the peaks of the ML-based distributions are closer to zero if compared with
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Figure 5.7: Transverse momentum resolution histograms computed for the deeper
ML-based (blue) and L1T (green) based momentum assignment, computed for
muons generated in the 3 - 200 GeV pT range.

the L1T ones. This is due to a different calibration of the pT scale in the two cases.
The L1T pT assignment is in fact calibrated as the point for which the efficiency
turn-on curve (described in the next section) of muons with fixed pT reaches the
90% value. On the other hand, the ML attempts to estimate the generated muon
pT and is therefore characterized by a smaller scale bias.

(a) D Model with v. w/o weight pruning. (b) D model v. model analyzed in [79].

Figure 5.8: Transverse momentum resolution histograms computed for the deeper
ML-based (blue) and L1T based momentum assignment, computed for muons gen-
erated in the 3 - 200 GeV pT range, and compared withD model without the weight
pruning optimization (see Section 5.3.2) (magenta) on the left, and the resolution
obtained in [79] (black) on the right.

In Figure 5.8a, the pT resolution for the D model without the weight pruning
optimization (see Section 5.3.2) is shown for reference. The results appear not
affected badly by this technique, instead the distribution appear slightly more
biased towards higher values with respect to the D model that will be used from
here onwards. Figure 5.8b depicts the comparison between the model described
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in [79] and the D model, showing an overall increase in both peak position and
standard deviation of the pT distribution.

The increase in performance after the pruning process could be explained by
the fact that pruning "instability" (i.e. the test accuracy immediately following a
pruning step) is positively correlated with the final level of generalization attained
by the pruned model [87]. However, when dealing with ML fine-tuning and opti-
mization, there is no defined path towards better results. Indeed, the process could
be described as a continuous search for an optimal trade-off between better per-
formance and more optimization among various metrics (speed, accuracy, resource
usage, etc.), trying different alternatives at the same time which could sacrifice
some aspects in order to improve others. More studies ought to be done in or-
der to understand better the dependencies at play in the "generalization-stability
tradeoff" and make a clearer path towards the optimal working point of a given
ML algorithm.

Efficiency turn-ons

The efficiency turn-ons, as the word states, represent an efficiency ε defined as
follows:

ε =
number of muons that passes a cut at a defined pT threshold

total number of muons
(5.2)

After the definition of a minimal pT threshold cut, the efficiency numerator is filled
if the pT value from the ML or the Level-1 pT assignment is above threshold. Then
the ratio with the denominator is performed. As outlined above, both numerator
and denominator are filled only in case a geometrical match between a L1T muon
track and a generated muon is found.

Figure 5.9: Efficiency turn-on given a pT threshold cut of 22 GeV. The blue dots
show the efficiency for the ML based momentum assignment related to the D
model, while the green dots show the efficiency for the Level-1 trigger pT assign-
ment.
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In Figure 5.9 a turn-on efficiency curve is shown for the D model. A threshold
of 22 GeV/c was selected, as it was the threshold of the lowest pT -cut unprescaled
single muon triggers over Run-2. Such a momentum cut, in fact, has nearly full
acceptance for signatures of events at the electroweak scale (Z → µ+µ−, W →
µ−ν̄µ) and above.

Figure 5.10: Efficiency turn-on given a pT threshold cut of 27 GeV. The blue dots
show the efficiency for the ML based momentum assignment related to the D
model, while the green dots show the efficiency for the Level-1 trigger pT assign-
ment.

Figure 5.11: Efficiency turn-on given a pT threshold cut of 32 GeV. The blue dots
show the efficiency for the ML based momentum assignment related to the D
model, while the green dots show the efficiency for the Level-1 trigger pT assign-
ment.

Figures 5.10 and 5.11 show the same curves with different cuts, respectively at 27
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and 32 GeV/c.
As for the pT resolution plots, turn-ons have a different calibration for ML and
L1T. However, this difference has been accounted for and the resulting plots are
calibrated.

From these plots, a very high efficiency in the plateau region of the ML turn-on
curve can be observed: the lower efficiency of the Level-1 curve in the high-pT
region is mainly caused by the underestimation of the muon pT in some events,
which is visible as the small peak at -1 in the pT resolution plots. The ML model,
instead, is not affected by this issue and the efficiency at high values of pT is nearly
100%. On the other hand, Figures 5.9 and 5.10 show a small increase of efficiency
in the 10 - 20 GeV/c region which is comparable with a worse resolution in the
low pT range. This is not optimal since it is located below the threshold, thus
resulting in a higher fraction of muons with low momentum misidentified as high
momentum, and consequently in an increase of overall rate.

5.4 Implementation of a Neural Network on a Field
Programmable Gate Array

This section will present the main subject of the work described in this thesis: the
implementation on a FPGA of the pT inference performed by a NN using data
coming from local trigger segments (trigger primitives) from the DT chambers
(explained in more detail in Chapter 2) at the CMS experiment. The aim was
to find an alternative to the operating muon pT assignment algorithm installed
in the L1T with a faster and more accurate technique, thus capable of sustaining
the increase in luminosity which will characterize the upgrades of the HL-LHC
project. Before going into details about the steps required to build an application
deployable on an FPGA, a brief description of the software and hardware used will
be presented.

5.4.1 Hardware characteristics

The target hardware consisted in a Xilinx ZCU102 Evaluation Board [88] featuring
the Zynq Ultrascale+ XCZU9EG-2FFVB1156E Multiprocessor System on a Chip
(MPSoC) with a quad-core Arm Cortex-A53, dual-core Cortex-R5F real-time pro-
cessors, and a Mali-400 MP2 graphics processing unit based on Xilinx’s 16nm
FinFET+ programmable logic fabric. The ZCU102, shown in Figure 5.12, sup-
ports all major peripherals and interfaces, enabling development for a wide range
of applications. The ZCU102 MPSoC houses 600k logic cells (flip-flops and LUTs,
see Section 4.1) and 2520 DSP slices (Section 4.1.3) working with an internal mem-
ory of 32.1 Mb. This board was chosen because of the faster development the use
of a microprocessor ensures, as only the firmware concerning the NN had to be
designed, leaving the rest (e.g. I/O interface) manageable via software.

Modern MPSoCs [89], such as the Xilinx Ultrascale+ device in exam in this
thesis, combine heterogeneous computing with the high performance of FPGAs.
MPSoCs have been traditionally used in networking, automotive, communications,
signal processing, and multimedia among other applications.
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Figure 5.12: The Xilinx ZCU102 Evaluation Board.

In all MPSoC devices from Zynq Ultrascale family, the system is subdivided in
two main parts (Figure 5.13):

Processing System (PS) which contains all the microprocessors, in particular
the quad core ARM Cortex-A53 that implements the ARM v8-A 64-bit in-
struction set with frequency up to 1.5 GHz, and whose cores are accessed
using the Xilinx Software Development Kit (how it is done is described in
more details in Section 5.4.4);

Programmable Logic (PL) which contains the re-configurable logic (FPGA in
Section 4).

Vivado and its Software Development Kit (SDK) can establish a JTAG [90]
connection to the MPSoC through the Digilent SMT2.5 USB-to-JTAG module
with off-module microUSB connector. This link was used for the programming of
the FPGA and first steps of debugging.

On the other hand, to communicate and so retrieve the output of the compu-
tation carried out in the PL and handled by the PS, the Universal Asynchronous
Receiver-Transmitter (UART) [91] interface was used. Indeed, the CP2108 quad
USB-UART on the ZCU102 board provides four UART connections through a sin-
gle micro-B USB connector. UART is basically a protocol that involve transmitting
and receiving serial data. It was used to establish a communication interface on
the microprocessor linked to the standard I/O of a console.

Inside the device, multiple interconnection options between PL and PS are avail-
able, making high-speed data transfer possible, suitable for the most demanding
applications.
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Figure 5.13: Functional block diagram of the Xilinx Zynq Ultrascale+ MPSoC.

5.4.2 From an HLS project to an IP core

Once the target hardware had been defined, the thing to do was transform both
trained models shown in Section 5.3 into two distinct HLS projects using the func-
tions from the hls4ml library listed in Section 4.2.2. The projects were then opened
with Vivado HLS to modify the input/output interface from the one created auto-
matically by hls4ml:

1 #pragma HLS INTERFACE ap_vld port=q_dense_input , layer_out

to AXI4-Lite interfaces:

1 #pragma HLS INTERFACE s_ax i l i t e port=q_dense_input bundle=input
2 #pragma HLS INTERFACE s_ax i l i t e port=layer_out bundle=output
3 #pragma HLS INTERFACE s_ax i l i t e port=return bundle=input

This was done in order to allow the PS to communicate easily with the PL
through the MPSoC IP in the Vivado IP integrator (see Section 5.4.3). Then, the
NN I/O consisted in reading and writing registers in the PS on-board memory,
handled by the software.

The Advanced eXtensible Interface (AXI4) [92] is a family of buses defined as
part of the fourth generation of the ARM Advanced Microcontroller Bus Architec-
ture (AMBA) standard. AXI4-Lite is a subset of AXI which has a simpler interface
than the full AXI4 but lacks burst access capability, i.e. for every "word" of 32 bits
exchanged between PS and PL, a new handshake procedure must be performed.
This obviously makes the I/O operation slower than using a single burst of data.
However, in order to focus on the NNs implementation without producing firmware
dedicated to handle the I/O, this approach was chosen, with the intention of pro-
ducing a faster and more efficient I/O interface for the models’ IP cores in the
future. An entire write cycle for a single entry, dealing with all the 27 features
making up the test set, took approximately 500 ns, as shown in Figure 5.14.

The next step was to synthesize the two HLS projects. After synthesizing the
project, performance and utilization estimates can be analyzed in the post-synthesis
report, which contains information on the following performance metrics:
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Figure 5.14: Simulation of a write cycle of the 27 features in input for a single entry
through a AXI4-Lite interface between the Processing System to the Programmable
Logic.

Area Amount of hardware resources required to implement the design based on
the resources available in the FPGA, including look-up tables (LUT), regis-
ters, block RAMs, and DSPs;

Latency Number of clock cycles required for the function to compute all output
values;

Initiation interval (II): Number of clock cycles before the function can accept
new input data;

Loop iteration latency : Number of clock cycles it takes to complete one iter-
ation of the loop;

Loop initiation interval : Number of clock cycles before the next iteration of
the loop starts to process data. For instance, a maximal pipelined design
correspond to II=1;

Loop latency : Number of cycles to execute all iterations of the loop.

These reports for both S and D models are shown in Figure 5.16a and 5.16b
respectively. In general, when implementing NNs into FPGAs, the main problem
which can be faced is the lack of DSP slices. The models chosen for analysis have
been proven to be suitable for implementation in the target hardware available for
this work. From this point onward, only the D model will be presented, due to the
almost equal resource consumption, but better performance on the test set shown
by the D model. Before going further, a simulation of the model behaviour on
the FPGA was carried out, yealding the promising results depicted in Figure 5.15,
which shows a comparable behaviour with the NN inference on software (more in
detail analysis will be described for the implemented NN in Section 5.5).
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Figure 5.15: Transverse momentum resolution histograms computed for the deeper
ML-based simulated on the FPGA (dark yellow) and L1T based momentum as-
signment, computed for muons generated in the 3 - 200 GeV pT range.

(a) S model. (b) D model.

Figure 5.16: Tables containing the resource footprints of both models in terms of
BRAM, DSPs, FFs, LUTs and URAM available and used.

As described more in detail in the following section, in order to implement
the chosen NN model in a complete design, its project was then exported via the
Vivado IP Packager. It enables to create a reusable Intellectual Property module
that can be added to the Vivado IP Catalog, which is accessible from the Vivado
IP Integrator.

5.4.3 Implementing a Block Design

Intellectual property (IP) cores [74] provide an easy mechanism for incorporating
complex logic in the design (i.e. implemented in fabric logic), from high-speed
gigahertz transceivers to digital signal processors as well as soft microprocessors to
an embedded ARM SoC.
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Vivado IDE provides the IP integrator (IPI) with graphic connectivity canvas
to select peripheral IPs, configure the hardware settings, and stitch together the
IP blocks to create the digital system. This is done in workspaces called Block
Designs (BDs).

Figure 5.17: Block Design showing the IP core containing the NN connected to the
PS, through IPs handling the I/O interface of the implemented NNs.

In the case under study, the model was represented inside a Block Design by the
IP core produced by Vivado HLS. On the other hand, the PS was represented by
the Zynq Ultrascale+ MPSoC IP. In this way, through the addition of IPs handling
the AXI4-Lite interfaces, it was possible to connect the application with the ARM
processor, which will be used to communicate with the PL. The final diagram
representing the entire design is shown in Figure 5.17.

Once the design was ready, an HDL wrapper was created in order to synthesize
and implement the project. Finally, the bitstream could be generated, which would
be copied onto the FPGA in order to program it (for a description on how FPGA
are programmed, see Section 4.2).

5.4.4 Inference on the FPGA using Vivado SDK

At this stage the D model have been successfully translated in bitstreams. The
computation on the FPGA have been performed through Vivado SDK, calling
functions in a C++ code, compiled on a host PC that drive the execution into
the PL. These C++ functions were defined in a library generated by the Export
functionality of Vivado, which contained, among other tools, methods to: set and
get the input of the NN, get its output, control and check the execution in the
FPGA.

To make the floating point data in the test set with the same format as the
NN inputs, the ap_fixed.h library from the include directory of Vivado HLS was
imported. By defining the input as objects of the ap_fixed<16,6> class, the input
was cast to fixed point numbers of 16 bits. Because the function for setting the
input data requested 14 words of 32 bits, instead of 27 numbers 16 bits long, the
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inputs were concatenated two by two and put together in a struct to be written
in the register’s address read by the NN as input data.

Here is a snippet of commented code showing how to perform a single inference
on the FPGA:

1 //Outside the main func t i on
2 #inc lude "xmyproject . h" // This i n c l ud e s the p r o j e c t l i b r a r y generated

by Vivado
3 s t a t i c XMyproject z ; // Dec la ra t i on o f the in s t anc e handler passed by

r e f e r e n c e to a l l other f un c t i on s
4

5 // In s i d e the main func t i on
6

7 XMyproject_Q_dense_10_input_v data t e s t ; // Input data . The type i s
de f i ned in the p r o j e c t l i b r a r y as a s t r u c t conta in ing 14 32−b i t s
"words"

8 u32 res_hw ; //Result
9

10 i f ( XMypro j ec t_In i t i a l i z e (&z ,NN_DEVICE_ID) != XST_SUCCESS) return
XST_FAILURE; // I n i t i a l i z i n g the t a r g e t and handl ing in case o f
f a i l u r e

11

12 XMyproject_DisableAutoRestart(&z ) ; //Option to ensure a s i n g l e read /
wr i t e c y c l e

13

14 i f ( XMyproject_IsReady(&z ) )
15 x i l_p r i n t f ( "\nHLS pe r i ph e r a l i s ready . S ta r t i ng . . . \ n" ) ;
16 e l s e {
17 x i l_p r i n t f ( "\n ! ! ! HLS pe r i ph e r a l i s not ready ! Ex i t ing . . . \ n" ) ;
18 re turn XST_FAILURE;
19 }
20

21 XMyproject_Set_q_dense_10_input_V(&z , da ta t e s t ) ; // Se t t i ng the input
22 XMyproject_Start(&z ) ; // S ta r t i ng the computation
23

24 do {
25 res_hw= XMyproject_Get_layer13_out_0_V(&z ) ; // Po l l i n g to r e t r i e v e

the r e s u l t
26 } whi l e ( ! XMyproject_IsReady(&z ) ) ;
27

28 res_hw= XMyproject_Get_layer13_out_0_V(&z ) ;

The XMyproject functions were generated by Vivado HLS when the IP core was
exported, and they handle the NN I/O, as well as the execution of the inference.

The results were expressed as 17 bits fixed point numbers with 2 bits for sign
and integer representation.

This structure was enclosed in a loop, allowing the inference for all 14284 entries
in the test dataset. The output was then retrieved via the UART interface, con-
nected to a serial port on the host PC, using a Python script which also converted
the integer representation back into floating point numbers for further analysis.
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5.5 Results: comparisons between Hardware, Soft-
ware and Level-1 Trigger

A main advantage of switching to a FPGA assigning the pT is the reduction of
time needed for single predictions. This was evaluated by counting the number
of clocks pulses between the input of a pattern and the production of the related
output. The model took approximately 74 clock cycles (corresponding to ∼ 0.368
µs) for each candidate on the FPGA, in contrast with the times obtained with a
consumer CPU of 37.29 ms for a single prediction, and 0.184 s for each entry in a
dataset, obtained using QKeras’ predict() function. It is, however, comparable
with the ∼ 9 BXs (∼ 0.225 µs) expected to be needed by the KBMTF (see Section
2.5) to reconstruct a track.

The data coming from the FPGA was then analyzed, producing the same type
of plots presented in Section 5.3.4. However, this time they will show how the pT
assignment changes from the algorithm included in the L1T used today, to the NN
running on a consumer grade CPU as a halfway step, and finally to the inference
carried out by the FPGA.

5.5.1 Resolution histograms

Figure 5.18: Transverse momentum resolution histograms computed for the deeper
ML-based model running on a consumer CPU (blue), running on an FPGA (red)
and L1T based momentum assignment (green), computed for muons generated in
the 3 - 200 GeV pT range.

In Figure 5.18 the resolution histogram for the D model is shown. In this
overall picture, it is clear that the model infer momenta with a resolution which
is narrower when the computation is carried out on a CPU. When the assignment
is performed on an FPGA, slight worse results are produced with respect to a
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traditional CPU, with a small bias towards higher values of resolution. However,
the FPGA distribution still has a smaller standard deviation with respect to the
one associated to the assignment performed by the L1T.

Figure 5.19: Transverse momentum resolution histograms computed for the deeper
ML-based model running on a consumer CPU (blue), running on an FPGA (red)
and L1T based momentum assignment (green), computed for muons generated in
the 3 - 20 GeV pT range.

Figure 5.20: Transverse momentum resolution histograms computed for the deeper
ML-based model running on a consumer CPU (blue), running on an FPGA (red)
and L1T based momentum assignment (green), computed for muons generated in
the 20 - 40 GeV pT range.

Delving into portions of the pT spectrum, Figure 5.19 displays a struggle by the
NN in performing good pT assignment when compared to the L1T, in the range 3
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- 20 GeV/c. However, by looking at Figure 5.20 (20 - 40 GeV/c) it is clear how the
NN starts catching up in accuracy, once the pT starts getting larger. This explains
the overall better precision of the ML-based algorithm in pT assignment.

The passage from software inference to FPGA has caused a small decrease in
the advantages achieved by using a ML-based algorithm to assign pT to muons, as
demonstrated by the slightly wider resolutions’ distributions. This could be the
effect of the loss in precision the input features undergo, due to the conversion to
fixed-point representation needed to perform computations efficiently in an FPGA.

Nevertheless, the hardware approach still appears compatible or, in case of
higher momenta, even better than the L1T based momentum assignment.

5.5.2 Efficiency turn-ons

Figure 5.21: Efficiency turn-on given a pT threshold cut of 22 GeV/c. The blue
dots show the efficiency for the ML based momentum assignment related to the
D model running on a consumer CPU, the red dots show the results for the ML
model implemented on the FPGA, while the green dots show the efficiency for the
Level-1 trigger pT assignment.

As shown in the previous section, the accuracy of the model under study in the
range 3 - 20 GeV/c results worse than the L1T. This, as explained in 5.3.4, can
cause problems when cuts in momentum are applied, especially when the threshold
is in the low part of the pT spectrum. Figure 5.21 depicts the turn-on curves for the
D model when a threshold cut at 22 GeV/c is applied. A small difference between
software and hardware based computation was achieved. The same behaviour can
be observed with higher thresholds, as portrayed in Figure 5.10 for a 27 GeV/c
threshold cut and Figure 5.11 for a 32 GeV/c threshold cut. In all of these turn-on
curves, the almost 100% efficiency in the high pT territory is also shown to be
conserved in the implementation of the NN on the FPGA.
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Figure 5.22: Efficiency turn-on given a pT threshold cut of 27 GeV/c. The blue
dots show the efficiency for the ML based momentum assignment related to the
D model running on a consumer CPU, the red dots show the results for the ML
model implemented on the FPGA, while the green dots show the efficiency for the
Level-1 trigger pT assignment.

Figure 5.23: Efficiency turn-on given a pT threshold cut of 32 GeV/c. The blue
dots show the efficiency for the ML based momentum assignment related to the
D model running on a consumer CPU, the red dots show the results for the ML
model implemented on the FPGA, while the green dots show the efficiency for the
Level-1 trigger pT assignment.
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5.6 Summary and next Steps

The aim for this thesis was, starting from the work described in [79], to produce an
alternative method for assigning pT to muons crossing the barrel region of the CMS
muon chambers, in preparation for the environment of the High-Luminosity phase
of the LHC (HL-LHC), when the instantaneous luminosity of the Large Hadron
Collider at CERN is expected to increase up to 7.5 · 1034cm−2s−1.

The first thing to do was to prepare the data available for analysis. This task,
carried out following the procedure described in [79], produced a final csv file
containing about 300000 entries for training and validation of the ML models with
27 features each, describing the position and direction of Monte Carlo generated
muons with a range in pT from 3 to 200 GeV/c.

Using this dataset, two NN were built: both had an input layer with 27 fea-
tures, although the first model (S model) contained 3 hidden layers with 80, 50
and 35 neural units respectively; while the second model (D model) had 5 hidden
layers made up of 60, 50, 30, 40 and 15 nodes. All layers, in both models, used
the Rectified Linear Unit as activation function. In order to create models suited
for hardware implementation, two optimizing techniques were performed: weight
pruning which reduced the number of multiplication needed when the NNs are used
for inference, by setting, during the training procedure, equal to 0 the weights with
the lowest values, up to 75% of them, basically cutting the less "important" connec-
tions. The second way of optimizing the NNs was to build them using the QKeras
Python library. This made all the parameters inside the models quantized, i.e.
represented as normalized fixed-point numbers with defined bitwidth. This strat-
egy was motivated by the better performance of FPGAs in dealing with fixed-point
numbers and their smaller size with respect to the 64-bit floating numbers used by
all computing carried out on PCs, including ML frameworks like TensorFlow.

Both models were tested in software, yielding the results shown in Figure 5.7
and 5.6, proving a better overall pT resolution compared to the current L1T. How-
ever, in both cases, the accuracy in the low range of momentum (0-20 GeV/c) saw
a decrease in quality, as depicted also in the turn-on curve in Figure 5.9, where a
surplus in efficiency below threshold is noticeable. Being the main objective of this
thesis the completion of an implementation workflow leading to NN inference on
FPGA, the D model was chosen for running on hardware, even though the momen-
tum resolution does not reach the accuracy of the current L1T at low pT , hoping
to build more fine-tuned NNs in the future. One alternative to explore, in order to
obtain a better performing model, would be to use, as target of inference, the ratio
between the charge q of the particle and its pT . Indeed, the transverse momentum
is inversely proportional to the curvature of muon’s trajectory (see Figure 2.12 to
understand the link between the curvature and the variables in the dataset) inside
the magnetic field, and so, by using its inverse, misassigned low pT would gain
more weight in the training process, making small variations in pT , big variations
in track curvature. Moreover, various parameters concerning quantization could
be explored: a different bitwidth for the parameters of each layer, new activation
functions (which are still in development at the time of writing) and an energy
consumption optimization [65].

Having decided which model to implement, the next step was to produce a
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HLS project using the hls4ml Python library. This tool allows to create, from a
model saved on disk, a High-Level Synthesis project, i.e. a “behavioral description”
contained in a C++ program, which can be synhtesized into an hardware circuit
description and packed into an IP core, to be used in the Vivado IP Integrator
to produce the bitstream needed to program the FPGA. The NN IP core was
connected to the board MPSoC via the AXI4-Lite interface, which allowed an easy
implementation, without the need of creating a dedicated I/O firmware. This will
be overcome to perform I/O operation "on-the-fly", allowing to insert the FPGA
implemented NN in a real trigger scenario.

In Figure 5.16b the resources needed for implementing theD model, as obtained
from the post-synthesis report of the HLS project, are shown. From there the low
resource cost achieved using the optimization techniques can be appreciated. Even
though these values are surely improvable, this is another example of why the work
done in this thesis can be considered a good "proof of concept": by using a small
set of optimization routines, a NN was made implementable in a FPGA, without
an exaggerating amount of hardware resources needed.

After the creation of the bitstream, it was time to program the FPGA and run
the inference computation. This was controlled from software, via the Vivado SDK
tool, and produced overall comparable resolutions with respect to the L1T system
(Figure 5.18), with slightly better results at higher pT values (Figure 5.20), but
worse assignments in the 3 - 20 GeV/c range (Figure 5.19). The steepness of the
turn-on curves indicates, in general, a reasonable agreement between the traditional
L1T system and the ML-based new solution. Anyhow, in the plateau region of the
ML turn-on curve an efficiency very close to 100% is observed, significantly better
than in the present L1T. On the other hand, compared to the present L1T, the
proposed algorithm shows a higher efficiency in the low pT region (e.g. 10 - 15
GeV, for a 22 GeV/c threhold cut) of the turn-on (Figure 5.21). This feature,
which would definitely imply a high rate for the newly proposed solution, must be
tackled in the next development stages.

The time needed for inference was also computed by counting the number of
clocks pulses between the input of a pattern and the production of the related
output. The D model took approximately ∼ 0.368 µs for each candidate on the
FPGA, in contrast with the times obtained with a consumer CPU of 37.29 ms
for a single prediction, and 0.184 s for each entry in a dataset. It is, however,
comparable with the ∼ 9 BXs (∼ 0.225 µs) expected to be needed by the KBMTF
(see Section 2.5) to reconstruct a track.



Conclusions

In this thesis, a new strategy for data processing based on Machine Learning (ML)
was analyzed, in preparation for the high instantaneous luminosity environment of
the High-Luminosity phase of the LHC (HL-LHC).

By implementing such ML-based models onto Field Programmable Gate Arrays
(FPGAs), an alternative to the Level-1 Trigger track reconstruction algorithms
developed for the Phase-2 Upgrade of the Compact Muon Solenoid (CMS) was
developed and tested. FPGAs promise smaller latency with a relatively small loss
in accuracy with respect to traditional inference algorithm running on software.

It was possible to build two Neural Network (NN) models able to predict the
transverse momentum pT of simulated muons crossing the Barrel region of the CMS
muon chambers, and compare the results with the pT assigned by the current CMS
Level 1 Barrel Muon Track Finder (BMTF) trigger system.

The training dataset contained about 300000 muons uniform in pT within a
range from 3 to 200 GeV/c. The two NN architectures built for this analysis
differs in the number of layers: one more shallow with 3 hidden layers, called S
model, and the other deeper with 5 hidden layers, called D model.

In order to create models suited for hardware implementation, two optimizing
techniques were performed: weight pruning, which reduced the number of multipli-
cation needed when the NNs are used for inference, by setting, during the training
procedure, equal to 0 the weights with the lowest values, basically deleting the
terms with negligible contributions. The second way of optimizing the NNs was
to make all the parameters inside the models quantized, i.e. represented as nor-
malized fixed-point numbers with defined bitwidth. For this reason, the NNs were
built using the QKeras Python package. This strategy was motivated by the bet-
ter performance of FPGAs in dealing with fixed-point numbers and their smaller
size with respect to the 64-bit floating numbers used by all computations carried
out on CPUs, including ML frameworks like TensorFlow.

The two NNs were translated into two distinct HLS project, using the hls4ml
Python package, which then were synthesized into two Intellectual Property (IP)
cores. The two models outputs were compared with the ones obtained from soft-
ware, showing a satisfactory agreement. After that, the D model was chosen to
complete the workflow towards the implementation on hardware, due to better re-
sults at the same resource cost with respect to the S model. The D model’s IP core
was then inserted into a Block Design for the Vivado IP integrator and connected
to the MPSoC IP core of the Xilinx ZCU102 Evaluation Board via Axi4-Lite inter-
faces. Following synthesis and implementation (i.e. place and route of the design)
steps, the bitstream was produced in order to program the FPGA.

The inference for the chosen model produced overall comparable resolutions
with respect to the L1T system, with slightly better results at higher pT values,
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but with worse assignments in the 3 - 20 GeV/c range. These results are reflected
in the turn-on curves, which indicate a reasonable performance for the ML-based
new solution. In the plateau region of the ML turn-on curve an efficiency very
close to 100% is observed, better than in the present L1T. Thus, investigating the
behaviour of the ML pT assignment for very high-energy muons where a reduction
in efficiency due to large pT misestimation is observed for the existing L1T, could
be an interesting continuation of this work. On the other hand, compared to the
present L1T, the proposed algorithm shows a higher efficiency in the low pT region
(e.g. 10 - 15 GeV/c, for a 22 GeV/c cut) of the turn-on. This feature, which would
definitely imply a high rate for the newly proposed solution, must be tackled in
the next development stages.

Regarding the time needed for the pT assignment, the FPGA showed an infer-
ence time of the order of ∼ 70 clock cycles, corresponding to ∼ 14 BXs, which
is comparable with the latency of the current CMS trigger system, demonstrating
the promises of faster inference times related to the use of FPGAs.

This work represents a first stepping stone towards more refined and fine-tuned
NNs, implemented in a more optimized way onto FPGAs. There is space for
improvements in every phase of the workflow, from finding more suitable bitwidths
for the weights, to a more evolved I/O interface used to send and retrieve data
from the NN, in order to process data in a pipelined way and to reduce even more
the time needed for computation.

The work presented in this thesis has been accepted as an oral presentation at
the forthcoming "International Symposium on Grids & Clouds 2021" (ISGC 2021)
in Taipei (Taiwan), 22-26 March 2021, in the conference track on "Converging High
Performance infrastructures: Supercomputers, clouds, accelerators".
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