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Abstract

The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional inte-
grable quantum systems has been the object of increasing attention in recent years. In
this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for
finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD)
picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase
model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles.
The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with
the remarkable property of roaming between infinitely many critical points when moving
along a renormalization group trajectory. Namely, the finite-temperature dimensionless
ground-state energy of the system approaches the central charges of all the minimal uni-
tary conformal field theories (CFTs) Mp as the temperature varies. Within the GHD
framework we develop a detailed study of the staircase model’s hydrodynamics and com-
pare its quite surprising features to those displayed by a class of non-diagonal massless
models flowing between adjacent points in theMp series. Finally, employing both TBA
and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges
the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current
in off-equilibrium conformal field theories.
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Introduction

In the last forty years, integrable models have proven an ideal landscape for the under-
standing of equilibrium and off-equilibrium properties of interacting quantum many-body
systems. This is true on two levels.

Theoretically, the presence of an extensive number of conserved quantities allows one
to exactly solve the dynamics at all orders in perturbation theory by simply requiring
some analytical and self-consistency properties of the scattering data of the theory. This
is the essence of the S-matrix approach to integrable quantum field theories (QFTs).
Originally developed to provide an alternative route for the theoretical understanding
of low-energy processes in quantum chromodynamics (QCD), which could not be dealt
with the usual techniques of perturbative quantum field theory, the analytic theory of
scattering amplitudes was soon understood to work at its best with integrable quantum
models in one spatial dimension [2, 3]. The reason is that the presence of too many
conservation laws poses severe constraints on the interactions allowed in the theory.
In fact, so severe that if there are two or more spatial dimensions a “no-go”theorem
forbids any non-supersymmetric integrable QFT to present non-trivial interactions [4].
Luckily, among (1 + 1)-dimensional theories there is a vast class of models which can be
exactly solved, as any two-dimensional lattice model which is classically integrable can
be mapped into a quantum spin chain, and the latter can in turn be regarded as the
non-relativistic, discretized limit of some integrable field theory. Towards the end of the
1980s, a series of pioneering works by Al. B. Zamolodchikov [5, 6, 7] made it clear that
the S-matrix content of an integrable relativistic QFT, togheter with the knowledge of
its mass spectrum, is sufficient to determine the thermodynamic properties of the model
when the latter is at finite temperature. This is done by generalizing a procedure already
known for non-relativistic interacting gases [8], which involves the solution of a set of
nonlinear integral equations, the thermodynamic Bethe ansatz (TBA) equations.

On the other hand, quantum integrable systems can be realized and studied in a labo-
ratory. For instance, a spin-1

2
Heisenberg chain is well-reproduced by a magnetic crystal

in which ions are arranged in one-dimensional rays and the locality of interactions is
preserved by non-magnetic atoms screening long-distance effects [9]. A Lieb-Liniger gas,
the non-relativistic limit of the celebrated sinh-Gordon QFT, can obtained by trap-
ping rubidium atoms using an optical lattice [10]. Moreover, the recent development
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of sophisticated experimental techniques has made it possible to investigate quantum
many-body systems out of thermal equilibrium [11]: in a partitioning protocol, two
quantum systems connected to thermal reservoirs at different temperatures are joined
together and the global system is let evolve with an interaction Hamiltonian. It turns
out that integrability plays a key role in determining the thermalization properties of
the system at large time scales. Indeed, if there are few conserved charges the relaxation
process inevitably leads to a homogeneous Gibbs ensemble, where there are no transport
phenomena at the macroscopic scale. On the other hand, if there are infinitely many con-
served charges thermalization cannot take place in a proper sense: a pre-thermalization
process occurs, and the final state is a spatially inhomogeneous ensemble with infinitely
many generalized thermodynamic potentials coupled to the conserved charges[12]. This
is known as a generalized Gibbs ensemble (GGE). The absence of proper thermalization
in a GGE is manifested by non-equilibrium steady state currents, i.e. diffusive phenom-
ena due to ballistic motion of charge carriers even at large space-time scales [13]. In
particular, a universal formula for the steady state energy current has been found by
D. Bernard and B. Doyon [1, 14] in a partitioning protocol realized by joining togheter
two (1 + 1)-dimensional critical systems modeled by a certain conformal field theory
(CFT). The emergent hydrodynamic picture in the theory of off-equilibrium integrable
models is coherently described within the recently-developed framework of generalized
hydrodynamics (GHD), where the TBA techniques are extensively used [15, 16].

The present manuscript is set within this context. Its aim is to provide a detailed
theoretical and numerical study of the generalized hydrodynamics of Zamolodchikov’s
staircase model [17]. This is a (1 + 1)-dimensional integrable scattering theory with a
diagonal S-matrix, obtained by analytic continuation of the sinh-Gordon S-matrix at
the self-dual point. In spite of the apparent simplicity of the model, which contains
only one neutral massive particle with no bound states, there is a rather peculiar feature
which is manifested at the TBA level. This is the fact that at intermediate temperatures,
between the infrared and the ultraviolet regimes, the scaling free-energy of this model
approaches the central charges of all the minimal unitary conformal models, that is, the
renormalization group (RG) trajectory roams between infinitely many conformal fixed
points. An accurate analysis of the staircase’s reduced TBA equations reveals unexpected
connections to a class of non-diagonal theories, the An massless perturbations of unitary
minimal models. The numerical implementation of the partitioning protocol, with some
refinements introduced by the author in order to account for specific features of the
staircase model, shows that this connection holds also at the GHD level. A comprehensive
theoretical study to support numerical observations in this direction is in preparation
[18]. Within the context of GHD, we employ TBA techniques to obtain an expression for
the steady-state energy current in a partitioning protocol, which reproduces in the UV
limit the result obtained in [1]. This result is then generalized to all the local and quasi-
local higher-spin charges in the staircase model, which display a universal power-law
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dependence on the temperatures of the thermal reservoirs, with coefficients depending
on the spin and on the limiting central charge. The numerical simulations performed
with Phyton are in very good agreement with the theoretical predictions in the UV
regime. The work is structured as follows.

• In chapter 1 we introduce the main ideas and tools in the theory of (1 + 1)-
dimensional integrable quantum systems, starting from from the well-established
notion of Liouville integrability in discrete classical systems. We then discuss the
S-matrix approach to integrable quantum field theories and illustrate the role of
integrability in obtaining the exact analytical structure of the scattering ampli-
tudes.

• In chapter 2 we present the thermodynamic Bethe ansatz technique and use it to
derive the finite-temperature properties of integrable (1 + 1)-dimensional QFTs
with diagonal scattering, showing also how the central charge of the underlying
conformal field theory is recovered form the dimensionless free energy of the model
in the UV limit. In the last part of the chapter we outline the universal classification
of TBA systems in terms of ADE simply-laced algebras and describe how it can
be generalized to non-diagonal theories, with a particular attention to An massless
models flowing between critical points in the minimal unitary series.

• The scattering theory and TBA structure of Zamolodchikov’s staircase model are
discussed in chapter 3. A detailed analysis of the kinks-plateaux structure displayed
by the L-function of the model is followed by a comparison between the staircase’s
reduced TBA equations and the stationary solutions of Y -systems in An massless
models. By adapting arguments presented in [19, 20], we provide an analytic
derivation of the roaming behaviour displayed by the staircase’s model scaling
function.

• In chapter 4 we outline the main ideas and techniques of generalized hydrodynamics
(GHD), starting from the off-equilibrium description of systems with finitely-many
conserved charges. We then show how integrability, combined with the local en-
tropy maximization assumption, lead to the notion of generalized Gibbs ensembles.
These can be studied using a quasi-particle formulation based on the TBA tech-
niques introduced in chapter 2. The second part of the chapter is devoted to the
analysis of some curious features displayed by the staircase model in a GHD setting.
In particular, we present a numerical implementation of the partitioning protocol
which accounts for the non-monotonicity of the effective velocity, and suggest how
this feature can be related to the behaviour of magnons in An massless models.

• The final chapter is devoted to the study of steady-state average currents and
charges in the off-equilibrium staircase model. By means of the quasi-particle de-
scription of GGEs we derive the exact UV limit of the average energy current and
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density in the steady state which is formed by joining two independently thermal-
ized reservoirs. A slight generalization of this procedure is then used to treat the
case of steady-state higher-spin currents, which display different UV behaviours
according to the initial GGE in which the two reservoirs are prepared.
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Chapter 1

Integrability in (1 + 1)-dimensional
quantum field theories

In this chapter we outline the basic notions about integrable quantum field theories in
(1 + 1) dimensions, which are the main ingredients of the thermodynamic Bethe ansatz
and the hydrodynamic approach developed in the following chapters. Starting from
the definition of Liouville integrability in discrete classical systems [21], we show how
it is possible to extend this notion to discrete quantum systems and then to quantum
field theories by taking a scaling limit of one-dimensional spin chains. In particular, we
underline the essential role of locality when dealing with systems having an extensive
number of degrees of freedom.

In the second part of the chapter we present a different approach to integrable QFTs,
the analytic theory of scattering amplitudes [2, 3]. In this formulation, the fundamental
objects are asymptotic multi-particle states and S-matrix elements rather than quantum
fields. The presence of infinitely many conserved charges has profound implications on
the structure of the S-matrix in one spatial dimensions, as the scattering processes are
completely elastic and factorizable. Therefore, the physical content of an integrable
(1 + 1)-dimensional quantum field theory is completely unveiled by the spectrum of its
conserved charges and by the analytic structure of its two-particle S-matrix.

1.1 From classical to quantum integrability

The notion of integrability finds application in diverse areas of theoretical physics, from
classical mechanics to quantum field theories. In this section we review the main is-
sues which arise when trying to extend a classical definition of integrability to quantum
systems, and show how they can be overcome [21, 22].
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1.1.1 Discrete classical systems

Let us see how integrability is defined and works in discrete classical systems. The space
of states of a classical system with n degrees of freedom is a 2n-dimensional manifold
parametrized by n coordinates qi ∈ R and their canonically conjugated momenta pi ∈ R,
i = 1, . . . , n. The manifold is symplectic, which means that it is endowed with a bilinear
antisymmetric operation, the Poisson brackets {· , ·}, acting on two copies of the algebra
F of smooth functions over the phase space:

{F,G} ≡
n∑
i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
, F,G ∈ F . (1.1)

The time evolution of any observable F ∈ F is ruled by the Hamiltonian function
H(qi, pi) through the relation:

Ḟ = {H,F} , (1.2)

which in particular entails the well-known Hamilton equations for the canonical coordi-
nates and momenta:

q̇i = {H, qi} =
∂H

∂pi
, ṗi = {H, pi} = −∂H

∂qi
, i = 1, . . . , n . (1.3)

A conserved quantity, or classical integral of motion, is a function F ∈ F which is
invariant under the time evolution generated by H, that is {H,F} = 0. We define a
dynamical system (with a 2n-dimensional phase space) classically integrable, or Liouville-
integrable, if it admits n independent integrals of motion Fi ∈ F which are in involution,
that is {Fi, Fj} = 0 for all i, j = 1, . . . , n. Independence of the conserved quantities
means that at any point in phase space, the tangent space to the surface:

Mf = {(qi, pi) : Fi = fi ,∀ i = 1, . . . , n} , (1.4)

with fi constant quantities, exists and it is n-dimensional. Clearly there cannot be more
than n of such quantities which are independent, and the Hamiltonian must therefore be
a function of the Fi, so that we can always choose it to coincide with one of them. When
a system admits several conserved quantities, however, the choice of which of them plays
the role of time-evolution generator is essentially a matter of convenience: we will see in
the last chapter a situation in which the time-evolution is not ruled by the Hamiltonian.

The fundamental consequence of Liouville integrability is that if a system is classically
integrable according to the previous definition, then we can solve the equations of motion
by quadrature. This means that it is possible to find a canonical transformation from
(qi, pi) to action-angle variables (Ii, ϕi), such that the dynamics is trivial in these new
coordinates:

İi = {H, Ii} = 0 , ϕ̇i = {H,ϕi} =
∂H

∂Ii
= Ωi({Ij}) . (1.5)
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One usually refers to the problem of finding the canonical transformation to action-angle
coordinates as the direct problem of classical dynamics, whereas the inverse problem
consists in re-expressing the latter as functions of the original variables (qi, pi) in order
to obtain their time-evolution. The inverse problem is usually the more difficult one from
the computational point of view, and it is the one which is generalized to the inverse
scattering method in classical field theory.

Our main problem is, however, how to decide whether a theory with a given Hamil-
tonian is integrable in the above sense. There is no general answer to this question,
but several techniques are available to find the integrals of motion of the theory. Let
us briefly discuss the concept of Lax pairs, which is one of the integrability tools most
easily generalized to classical field theories and quantum systems. A Lax pair is a couple
of d-dimensional square matrices L, M with entries in the functional space F such that
the dynamic of L is given by:

L̇ = [M,L] , (1.6)

being [· , ·] in the right-hand side the usual matrix commutator. With a Lax pair at hand,
one can directly construct integrals of motions. For instance, for all m ∈ N:

d

dt
Tr(Lm) = mTr

(
Lm−1L̇

)
= mTr

(
Lm−1[M,L]

)
= Tr([M,Lm]) = 0 . (1.7)

In particular, if L is diagonalizable, it is not difficult to show that (1.6) implies the
conservation of all the d eigenvalues of L (which are not necessarily independent functions
of (qi, pi)). However, this is not sufficient to have Liouville integrability, as the conserved
quantities should be in involution. LetM be the space of d-dimensional square matrices
with entries in F , so that L,M ∈M. Then it is possible to show [21] that the condition
of mutual involution for the eigenvalues of L is equivalent to the existence of a quantity
r =

∑
α,β aα ⊗ bβ with constant entries belonging to the Lie algebra1 M⊗M such that

the following equation holds:

[r12 , r13] + [r12 , r23] + [r32 , r13] = 0 , (1.8)

where r12 =
∑

α,β aα ⊗ bβ ⊗ 1, r13 =
∑

α,β aα ⊗ 1 ⊗ bβ and similarly for other indices.
If we further require r12 = −r21 then r is called a classical r-matrix and the previous
equation is the classical Yang-Baxter equation, a fundamental constraint which appears
in many situations when integrability is at stake. As we will see in the next section, the
quantum version of the previous equation is strictly related to the factorizability of the
S-matrix in (1 + 1)-dimensional integrable quantum field theories.

As we have previously mentioned, the Lax pair formalism is usually employed to
provide conserved quantities in integrable field theories at the classical level [21, 22].
Without enetering into details, we just mention that when dealing with continuously

1The Lie-algebraic structure of M⊗M is induced by the Poisson brackets in F .
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many degrees of freedom, one usually introduces a non physical spectral parameter λ in
order to avoid the use of infinite-dimensional matrices. A Lax pair is thus given by two
finite-dimensional matrices L(λ), M(λ) which smoothly depend on λ and such that:

d

dt
L(λ) = [M(λ), L(λ)] , (1.9)

which implies that Tr[L(λ)] is conserved for every λ. The expansion of Tr[L(λ)] in
powers of λ thus provides infinitely many conserved charges which are in involution if a
continuous generalization of (1.8) holds.

1.1.2 Quantum spin chains and integrable QFTs

Our main purpose is to provide a sensible definition of integrable quantum field theories.
To do so, let us start by considering quantum systems with a finite number of degrees
of freedom. In a quantum-mechanical system of finitely-many interacting particles, the
phase space is replaced by an Hilbert space H which in general is infinite-dimensional
and does not admit a countable basis if the particles move in a non-compact space. To
make things easier, suppose that each particle is “freezed”in a fixed position so that
there are only spin degrees of freedom. Assuming that there are N spin-1

2
particles lying

on a straight line, what we are considering is the (anti-ferromagnetic) Heisenberg XXX
quantum spin chain [23], with Hilbert space H = (C2)⊗N and Hamiltonian:

1

4

N∑
j=1

(σj · σj+1 − 1) , σN+1 ≡ σ1 . (1.10)

For any finite N , this Hamiltonian is an Hermitean 2N × 2N matrix, which is diagonaliz-
able. In the diagonal basis, it is possible to find as much as 2N other pairwise-commuting
diagonal matrices which commute also with H. According to our definition of integrabil-
ity in classical discrete systems, this model seems integrable (and it is indeed). However,
we could in principle build other spin chains with similar properties, and that would
suggest that any of these model is integrable. Moreover, they would admit a number of
conserved charges larger than the number of degrees of freedom. To avoid this absurd
conclusion, we have to provide a different definition of integrability in quantum spin
chains, which makes sense in the thermodynamic limit N → +∞ and is strictly related
to the notion of locality.

In a quantum chain we say that an operator O is local if it is supported on a finite
number of sites of the chain. More specifically, let hj ≡ σj · σj+1 be the Hamiltonian
density supported on the sites j and j + 1. This is by definition local. Then we say that
the operator Ok, with a support centered on the site k, is local if:

[Ok, hj] = 0 , |i− j| large enough , (1.11)

10



where the expression “large enough”is meaningful only in the thermodynamic limit.
At this point we say that a quantum spin chain is integrable if as N → +∞ it admits
infinitely many local conserved charges which are pairwise commuting. As it will become
clear in the next section, it is essential for integrability techniques that the system has
one spatial dimension.

We can now proceed and generalize this definition to quantum field theories. A first
way to obtain a QFT is of course through quantization of the corresponding classical
field theory. However, renormalization is then necessary to deal with divergences arising
from the strong fluctuations of interacting fields. The renormalization procedure can be
put on a more solid ground by starting from a well-behaved lattice theory2 and then
taking its scaling limit. This is, roughly speaking, the limit in which the system’s size is
sent to infinity and at the same same its correlation lenght ξ diverges. Practically this
means that if O(1),O(2) are two local operators at lattice sites j1 and j2 then we scale
the system’s size in such a way that j1, j2, · · · → +∞ while all the ratios j1/ξ, j2/ξ, . . .
are kept finite and constant. In order for the correlator 〈O(1)O(2)〉 to remain finite as
ξ → +∞ we have to multiply it by ξd1ξd2 , with d1 and d2 appropriate scaling dimensions
of the operators. What we obtain in this way is a quantum theory of local fields largely
independent on the details of the original lattice model.

In a (1 + 1)-dimensional relativistic QFT, a local conserved charge:

Q =

∫
dx q(x) (1.12)

is expressed as the spatial integral of a local density q(x) built solely from fields in the
theory and their derivatives at the point x. To make a contact with definition (1.11), we
can rephrase the locality condition for the density q(x) by introducing the Hamiltonian
density h(x), such that:

H =

∫
dxh(x) (1.13)

is the Hamiltonian of the theory. Then we say that q(x) is a local density if:

[q(x), h(x′)] = 0 , |x− x′| space-like . (1.14)

We can now formulate a sensible definition of integrable quantum field theories in one
spatial dimension: a (1 + 1)-dimensional QFT is integrable if there exist infinitely many
pairwise-commuting conserved charges Qi =

∫
dx qi(x) such that the densities qi(x) are

local.
Before turning to the S-matrix description of integrable scattering theories, we men-

tion the fact that two-dimensional conformal field theories are integrable according to

2We are thinking of a two-dimensional classical lattice theory or, equivalently, a one-dimensional
quantum chain.
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our definition3. A conformal field theory is a quantum field theory which describes the
universality class of a certain critical phenomenon (second-order phase transition), and
it is scale-invariant at the local level, i.e. it is symmetric under conformal transforma-
tions. In two dimensions, invariance under infinitesimal conformal transformations in
the complex plane implies the splitting of the theory into an holomorphic and an anti-
holomorphic sector. In particular, using complex variables (z, z̄), this means that the
stress-energy tensor components satisfy:

∂z̄Tzz = ∂zTz̄z̄ = 0 , (1.15)

and as a consequence we have the conservation of all the higher-spin charges in the
conformal families of Tzz and Tz̄z̄ [26]. One can always build combinations of these
charges which are pairwise commuting and therefore a two-dimensional conformal field
theory is an integrable quantum field theory.

The interesting question is whether a perturbation of a CFT by one of its relevant
operators is still an integrable model. A general criterion, known as “counting argument”,
was developed by A. B. Zamolodchikov [27] in order to establish when this is the case.
We will say something more about integrable deformation of conformal field theories in
the next chapter.

1.2 S-matrix theory

We have described how a quantum field theory can be thought of as a scaling limit of
a lattice model. In this section, we will consider a different description of integrable
QFTs, which relies solely on the scattering data of a given theory. The main ingredients
of the S-matrix formalism are the asymptotic scattering states needed to describe the
Hilbert space and the transition amplitudes encoding the details of the interactions.
The advantage of this approach is that it can be used in a consistent way even when
a lagrangian description of the QFT is not available: the latter is a situation of great
interest in this thesis, as it is precisely what happens with Zamolodchikov’s staircase
model, which will be introduced in chapter 3.

The S-matrix description of integrable QFTs is based on some fundamental physical
principles:

• short range of the interactions;

• unitarity of time evolution;

• Lorentz invariance of the scattering amplitudes;

3We do not provide here an introduction to the vast subject of two-dimensional CFTs. See [24] for
a review and [25, 26] for a more exhaustive treatment of this topic.
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• causality principle and analyticity.

Let us briefly discuss the implications of these principles in a generic (d+ 1)-dimensional
scattering theory, d ≥ 1.

1.2.1 General properties

The short range of the interactions is necessary in order to define the asymptotic states
in the Hilbert space H. If the particles participating in a scattering process are well
separated from each other except for a small space-time region in the proximity of the
interaction, then off-shell effects can be neglected and for the incoming and outgoing
particles the on-shell condition holds:

pµp
µ = m2 . (1.16)

In an infinite volume of course both the energy and the spatial momentum eigenvalues
form a continuous spectrum, but let us adopt for simplicity the notation |n〉 to indicate
a generic multi-particle state and assume that {|n〉}n is a basis for H, so that orthonor-
mality and completeness relations read:

〈m|n〉 = δm,n ,
∑
n

|n〉 〈n| = 1 . (1.17)

Let |in〉 be the asymptotic state in the remote past t→ −∞ and |out〉 the asymptotic
state in the remote future t → +∞, way after the interaction has taken place. The
scattering matrix S is the linear operator such that:

|out〉 = S |in〉 . (1.18)

If the scattering theory admits an Hamiltonian description, then S is expressed as the
time-ordered exponential:

S = T exp

[
−i
∫ +∞

−∞
dd−1xHint(x)

]
, (1.19)

from which unitarity immediately follows. However, this property is easily proved even
if an Hamiltonian description is not available4. Indeed, suppose that the initial state is
a normalized linear superposition:

|in〉 =
∑
n

an |n〉 ,
∑
n

|an|2 = 1 , (1.20)

4This is for instance the case of the staircase model.
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then conservation of probability implies that |out〉 must be a normalized superposition
of basis states as well. Therefore:

1 =
∑
m

|〈m|S |in〉|2 = 〈in|S†S |in〉 =
∑
n,m

a∗nam 〈n|S†S |m〉 , (1.21)

which thanks to (1.20) implies:
S†S = 1 . (1.22)

Concerning the Lorentz invariance principle, this is simply the statement that the
transition amplitude between any two states |n〉, |m〉 is invariant when the latter are
transformed according to some representation U(Λ) of the Lorentz group, that is:

〈m′|S |n′〉 = 〈m|S |n〉 ⇒ U−1(Λ)SU(Λ) = S , (1.23)

and therefore the scattering matrix can depend only on Lorentz-invariant quantities.
Let us finally comment on the causality and analyticity principles. Causality is the

principle according to which the correlation function of any two physical observables
O(1)(x1), O(2)(x2) vanishes when |x1 − x2| is a space-like interval. In ordinary quantum
systems, the causality principle allows to extract information on the analytic properties of
the transition amplitude thanks to dispersion relations satisfied by the Green functions.
However, it is generally very difficult to pin down the analytic structure of the S-matrix
in a relativistic scattering theory by relying only on causality. The assumption that one
usually makes when dealing with an integrable scattering theory is that the physical
transition amplitudes coincide with the real boundary values of meromorphic functions
in the complex plane, having a minimum number of singularities dictated by the physical
features of the theory, and which can be inferred via a self-consistent bootstrap method
[3]. We will come back to this point later on.

1.2.2 Conserved charges and factorization

We can now turn to the case of (1 + 1)-dimensional scattering theories: as it will become
clear in a while, this is indeed the only situation where integrability can be fully realized
at the quantum level in non-supersymmetric theories. The infinite-dimensional Hilbert
space of the theory is specified by assigning the masses {ma, a ∈ I} and the internal
charges of all the particle species which enter the asymptotic scattering states, being
I the set of particle types. In one spatial dimension, we can parametrize the on-shell
energy and momentum of a particle by means of its relativistic rapidity θ:

Ea(θ) = ma cosh(θ) , pa(θ) = ma sinh(θ) , (1.24)

so that (1.16) is satisfied. Notice that a generic Lorentz transformation amounts to a
translation θ 7→ θ + α and therefore any rapidity difference is Lorentz-invariant.
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Figure 1.1: Ordering prescription for the rapidities in a n-to-n particle scattering.

The asymptotic states are created by acting on the vacuum |0〉 with the (bosonic
or fermionic) creation operators A†a(θ), and are annihilated by the operators Aa(θ). A
generic n-particle state thus reads:

|θ1, . . . , θn〉a1,...,an ≡ A†a1(θ1) . . . A†an(θn) |0〉 . (1.25)

Since particles are forced to move on a line and no further interaction can take place as
t → ±∞, the fastest particle must be at the far right in the remote future and at the
far left in the remote past. Thus we adopt the following ordering prescription for the
asymptotic states, see figure 1.1:

|θ1, . . . , θn〉(in/out)
a1,...,an

,

{
θ1 > · · · > θn ∈ R (in)

θ1 < · · · < θn ∈ R (out)
. (1.26)

The S-matrix elements are now defined by the overlaps between the in and out states:

Sb1,...,bn′a1,...,an
(θ1, . . . , θn; θ′1, . . . , θ

′
n′) =

(in)
a1,...,an

〈θ1, . . . , θn|θ′1, . . . , θ′n′〉
(out)
b1,...,bn′

, (1.27)

where because of Lorentz invariance (1.23) the left-hand side must be a function of
difference rapidities only, θij = θi − θj.

In an integrable theory, the presence of infinitely many conserved charges in involution
severely constrains the S-matrix. If the theory is relativistic, local conserved charges can
always be arranged in such a way that they are labelled by a spin index s ∈ Z:

Qs =

∫ +∞

−∞
dx qs(x) , [Qs, Qs′ ] = 0 , (1.28)

with qs(x) a local density. Of course, not all the possible values of s are present in a
given integrable model. These charges are defined so that they act on the asymptotic
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states (1.26) as the conserved charges of free theories act on free particle states. That
is, they have additive eigenvalues which are well-defined functions of the rapidity and
can always be chosen so to commute with internal symmetries. The first charges are by
definition the light-cone components of the energy-momentum:

Q±1 = H ± P , (1.29)

so that:
Q±1 |θ1, θ2, . . .〉(in/out)

a1,a2...
=
∑
k

make
±θk |θ1, θ2, . . .〉(in/out)

a1,a2...
, (1.30)

and in a similar way the higher-spin local charges act as higher-rank representations of
the Lorentz group:

Qs |θ1, θ2, . . .〉(in/out)
a1,a2...

=
∑
k

χ(s)
ak
esθk |θ1, θ2, . . .〉(in/out)

a1,a2...
. (1.31)

Notice that the equation above automatically ensures that the Qs commute with internal
symmetries. For this reason, the numbers χ(s) are the same for different particle types
falling inside a symmetry multiplet.

The consequences on the scattering amplitudes following from the presence of in-
finitely many conserved charges Qs are the following:

• no particle production or annihilation can take place: n-to-n′ scattering processes
are forbidden if n 6= n′ ;

• the set of rapidities must be the same in the incoming and outgoing states, and
permutations of rapidities can occur only among particles belonging to a symmetry
multiplet, that is:

{θk} = {θ′k} , χ(s)
ak

= χ
(s)

a′k
for θk = θ′k ; (1.32)

• the scattering amplitudes are completely factorizable: every n-to-n S-matrix is
expressed as a product of n(n− 1)/2 two-particle S-matrices.

The first two properties are summarized by saying that in an integrable QFT the scat-
tering is purely elastic. This immediately follows from (1.31). Indeed, by taking the

product of both sides of the equations with the out state
(out)

a′1,a
′
2,...
〈θ′1, θ′2, . . .|, one sees that

the overlap is non-vanishing iff the following holds:∑
k∈ (in)

χ(s)
ak
esθk =

∑
k∈ (out)

χ
(s)

a′k
esθ
′
k . (1.33)
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This is an infinite set of equations (one for each value of s present in the theory) which
admits (1.32) as unique solution.5

To prove factorizability, we will follow an heuristic argument which goes along the
line of the more formal proof in [28]. Suppose that the scattering theory is parity-
invariant, so that whenever Qs is a conserved charge also Q−s is such, and consider the
odd combination:

Ps = Qs −Q−s ⇒ Ps |θ1, θ2, . . .〉(in/out)
a1,a2...

=
∑
k

χ(s)
ak

sinh(sθk) |θ1, θ2, . . .〉(in/out)
a1,a2...

. (1.34)

Assuming for simplicity that all the quantities χ
(s)
ak are of order O(1) (as is usually the

case), the dominant contribution at large rapidities in the right-hand side of the previous
equation is the one with the sth power of the particles’ momenta p. Thus the action of
the operator eicPs , c ∈ R, on a localized wavepacket:

ψ(x0, p0) =

∫ +∞

−∞
dp e−a

2(p−p0)2eip(x−x0) , (1.35)

is given by:

eicPsψ(x0, p0) '
∫ +∞

−∞
dp e−a

2(p−p0)2eip(x−x0)eicp
s ' ψ(x0 − scps−1

0 , p0) , (1.36)

where the second approximate equality follows from a saddle-point evaluation of the
integral. Hence we see that when we act with a higher-spin conserved charge on a
wavepacket localized around x0 in position space and p0 in momentum space, x0 is
shifted by a quantity ∝ ps−1

0 .
If the incoming particles in a scattering event are localized wavepackets, then the

application of a higher-spin operators to one of the latter amounts to change the impact
parameters of the state, i.e. the relative positions of the particles at the interaction
time. But as [Qs, H] = 0 ,∀s, the conserved charges commute with the S-matrix and the
transition amplitude is unaffected by this change. Therefore, considering for instance
a 3-to-3 scattering process, the three S-matrices corresponding to the configurations in
figure 1.2: 

Sb1,b2,b3a1,a2,a3
(θ1, θ2, θ3) (a)

Sd,ca2,a3(θ2, θ3)Se,b3a1,c
(θ1, θ3)Sb1,b2e,d (θ1, θ2) (b)

Sd,ca1,a2(θ1, θ2)Sb1,ed,a3
(θ1, θ3)Sb1,b3c,e (θ2, θ3) (c)

(1.37)

5To prove uniqueness one actually needs a slightly stronger condition, namely that the function

fak(α) =
∑
s>0 e

−sαχ
(s)
ak has only singular point on the real line, which is the same for every ak. The

quantities χ
(s)
ak are such that this condition holds for every integrable QFT studied so far [22].

17



t

θ1 θ3θ2

(a)

θ1 θ3θ2

(b)

θ1 θ3θ2

(c)

Figure 1.2: Three different configurations for a 3-to-3 scattering corresponding to differ-
ent impact parameters of the incoming particles. Particle-type indices in the worldlines
are omitted for the sake of clarity.
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Figure 1.3: Pictorial representation of the quantum Yang-Baxter equation (1.39). The
incoming particle ai has rapidity θi, i = 1, 2, 3.

must be equal6, as each configuration can be mapped in any of the other two by displacing
the incoming wavepackets with an higher-spin operator. Therefore, we obtain at once
the factorization of a 3-to-3 S-matrix into 3 two-body S-matrices:

Sb1,b2,b3a1,a2,a3
(θ1, θ2, θ3) = Sd,ca2,a3(θ2, θ3)Se,b3a1,c

(θ1, θ3)Sb1,b2e,d (θ1, θ2) , (1.38)

and a consistency relation for the different ways in which the factorization can be per-
formed:

Sd,ca2,a3(θ2, θ3)Se,b3a1,c
(θ1, θ3)Sb1,b2e,d (θ1, θ2) = Sd,ca1,a2(θ1, θ2)Sb1,ed,a3

(θ1, θ3)Sb1,b3c,e (θ2, θ3) . (1.39)

This is the celebrated quantum Yang-Baxter equation, represented in figure 1.3). The
Yang-Baxter equation appears in both quantum spin chains and integrable QFTs. By ex-
ploiting the relation between a one-dimensional quantum system and a two-dimensional
classical lattice system [23] it is possible to show that (1.39) is nothing but the quantum
version of equation (1.8). Notice that in order to perform the previous manipulations,
and in particular to obtain the Yang-Baxter equation, one only needs two higher-spin
conserved charges besides energy and momentum. This result was proved by S. Parke in
[28].

6Sums over repeated indices are understood.

18



At this point it should be clear why integrable quantum field theories with non trivial
scattering amplitudes can exist only in one spatial dimension. In d > 1 spatial dimensions
particles are not forced to move on a line, and by acting with higher-spin operators on the
localized wavepackets, the latter can be displaced in such a way that the particles never
collide, so that any scattering can be mapped into a trivial one. This is the renowned
Coleman-Mandula theorem [4], stating that the maximal symmetry allowed in a non
trivial, non-supersymmetric (d+ 1)-dimensional scattering theory, d ≥ 2, is the Poincaré
group times (possibly) an internal symmetry group.

1.2.3 Two-particle S-matrix: analytic structure and bootstrap
principle

Besides the Yang-Baxter equation, the S-matrix must satisfy some simple analytic prop-
erties which follow from general QFT principles. Since all the scattering processes are
factorizable, we can focus on the analytic structure of the two-particle S-matrix7:

|θ1, θ2〉(in)
a1,a2

=
∑
b1,b2

Sb1,b2a1,a2
(θ1, θ2) |θ1, θ2〉(out)

b1,b2
, (1.40)

where of course other terms in the sums corresponding to 2-to-n contributions are for-
bidden by elasticity. The first property, that we have already mentioned, is Lorentz
invariance, so that:

Sb1,b2a1,a2
(θ1, θ2) = Sb1,b2a1,a2

(θ12) . (1.41)

In terms of (real-valued) rapidities, the unitarity condition follows from the definition
(1.40) and orthonormality of the asymptotic states:∑

b1,b2

Sb1,b2a1,a2
(θ)[Sc1,c2b1,b2

(θ)]∗ = δc1a1δ
c2
a2
. (1.42)

If the scattering theory is ruled by a time-dependent Hermitean Hamiltonian then
there is time-reversal symmetry in the S-matrix:

Sb1,b2a1,a2
(θ) = S b̄2,b̄1ā2,ā1(θ) , (1.43)

where ā denotes the antiparticle of a and the exchange of horizontal indices occurs
because if a particle is travelling to the right then under time reversal its antiparticle is
travelling to the left and vice-versa. In a two-particle scattering, it is possible to express

7Notice the different convention with respect to the definition (1.18): it is customary to define the
two-particle S-matrix as a map from the outgoing to the incoming states, which would correspond to
S−1 according to the general definition.
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the S-matrix in terms of the Mandelstam variables s, t, u. Let p1, p2 be the momenta
of the incoming particles and p3, p4 the momenta of the outgoing ones. Then:

s = (p1 + p2)2 = m2
1 +m2

2 + 2m1m2 cosh(θ12) ,

t = (p1 − p3)2 = m2
1 +m2

3 − 2m1m3 cosh(θ13) , (1.44)

u = (p1 − p4)2 = m2
1 +m2

4 − 2m1m4 cosh(θ14) ,

where because of elasticity and the ordering conventions θ1 = θ4 > θ3 = θ2, m1 =
m4, m2 = m3. This implies that any u-channel contribution is identically vanishing.
Furthermore, notice that:

s(iπ − θ) = t(θ) , (1.45)

so that the S-matrix depends only on the Mandelstam variable s.
In the complex s-plane S(s) is a multi-valued function which possesses three branch

points at s = (m1 −m2)2, (m1 + m2)2,∞, and it is otherwise a meromorphic function.
These branch points are of square-root type, as can be seen by expressing θ = θ(s)
through the first of equations (1.44), and the corresponding cuts along the real line
are the usual u-cut (−∞, (m1 −m2)2] and s-cut [(m1 + m2)2,+∞], which start at the
threshold energies corresponding to the creation of a particle pair in the u and s-channel
respectively. Since in an integrable theory the scattering is purely elastic, there are no
further cuts due to higher energy thresholds. The physical sheet is the Riemann sheet
lying just above the s-cut, i.e. s = s+ + i0+, s+ > (m1 + m2)2, and the poles of the
S-matrix in the real line between the two branch cuts correspond to possible bound states
of the theory. Indeed, if (m1−m2)2 < s+ < (m1 +m2)2 the center-of-mass energy is less
than the minimum value required to produce a pair of free particles in either the u or
the s-channel. Coming back to the rapidity variables, it can be shown from (1.44) and

Re(s)

Im(s)

(ma −mb)2

(ma +mb)
2 s+

s−
Re(θ)

physical strip

Im(θ)

iπ

−iπ

0

Figure 1.4: Analytic structure of the two-particle S-matrix in the s-plane (left) and θ-
plane (right). The strip Im(θ) ∈ [−iπ, 0] corresponds to the second, unphysical Riemann
sheet in the s-plane.

the unitarity condition that, as a function of θ ∈ C, S(θ) is meromorphic with no branch
points. The branch points in the s-variable are mapped into the points θ = 0, iπ,∞
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which are now regular, and the cuts run along the points Im(θ) = 0, Im(θ) = π, meeting
at infinity. The physical sheet is mapped into the strip Im(θ) ∈ [0, π], and the physical
bound states lie in the imaginary line within this strip. The analytic structure of S in
both the s and the θ-plane is shown in figure 1.4.

An important analytical property of the two-particle scattering matrix is the so-called
“Hermitean analyticity”on the physical sheet:

[Sb1,b2a1,a2
(θ)]∗ = Sa2,a1b2,b1

(−θ∗) Im(θ) ∈ [0, π] . (1.46)

This is the statement that the complex conjugate of the S-matrix on the physical sheet
is the S-matrix evaluated at minus its complex conjugate θ-argument, which is still on
the physical sheet. As θ 7→ −θ∗ corresponds to s 7→ s∗, in terms of the s-variable we
have:

[Sb1,b2a1,a2
(s)]∗ = Sa2,a1b2,b1

(s∗) s = s+ + i0+ . (1.47)

Furthermore, if the theory is also parity-invariant:

Sb1,b2a1,a2
(θ) = Sb2,b1a2,a1

(θ) , (1.48)

then Hermitean analyticity implies real analyticity on the physical sheet:

[Sb1,b2a1,a2
(θ)]∗ = Sa1,a2b1,b2

(−θ∗) , (1.49)

which is combined with unitarity (1.42) to give:∑
b1,b2

Sb1,b2a1,a2
(θ)Sc2,c1b2,b1

(−θ∗) = δc1a1δ
c2
a2
. (1.50)

Notice that in a scattering theory derived from a consistent QFT the simultaneous
presence of time-reversal (1.43) and parity symmetry (1.48) implies that the S-matrix is
also invariant under charge conjugation, so that there is full CPT -invariance:

Sb1,b2a1,a2
(θ) = Sa1,a2b1,b2

(θ) . (1.51)

Finally, the two-particle S-matrix enjoys a crossing symmetry, i.e. it is unaffected by
an exchange of space and time directions. This symmetry is encoded in the equivalence
(1.45) between the s and t-channel and reads (see figure 1.5):

Sb1,b2a1,a2
(iπ − θ) = S ā2,b1

b̄2,a1
(θ) . (1.52)

To conclude our discussion of the analytic properties of two-particle S-matrices, let
us turn to the constraints coming from the presence of bound states in the theory. As
we have pointed out, the latter are due to simple poles in the physical strip. Suppose
that the two-particle matrix Sb1,b2a1,a2

has a simple pole at θ = iuka1a2 , with k a label for the
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a1 θ1
a2θ2

b1 θ2 b2θ1

θ1 − θ2

iπ − θ1 + θ2s-channel

t-channel

u-channel

Figure 1.5: Pictorial representation of the available channels in a 2-to-2 scattering event.
A rotation θ12 7→ iπ− θ12 maps the s-channel into the t-channel and leaves the S-matrix
unchanged.

ma1

ma2 mk
uka1a2

ua1a2k

ua2a1k

Figure 1.6: Mass triangle and the fusing angles.

bound state. The residue corresponding to this pole must be purely imaginary, so that
we can write:

Sb1,b2a1,a2
∝ i

R(k)

θ − iuka1a2
, (1.53)

where R(k) > 0 if the process is in the direct channel (a1 and a2 are the incoming particles)
and R(k) < 0 if it is instead in the crossed channel. The mass of the bound state k can
be read from the first of equations (1.44):

m2
k = m2

a1
+m2

a2
+ 2ma1ma2 cos

(
uka1a2

)
. (1.54)

This is the Carnot relation for a triangle with sides of lengths ma1 ,ma2 ,mk, and by
looking at figure 1.6 one sees that the angles uka1a2 , u

a2
a1k

and ua1a2k, called fusing angles,
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must satisfy the geometric relation:

uka1a2 + ua2a1k + ua1a2k = 2π . (1.55)

This geometric point of view highlights the presence of a “democracy principle”between
elementary scattering particles and bound states of the theory. Indeed, one can regard
each of the three fusing angles as the imaginary part of the pole corresponding to the
scattering of two of the particles k, a1, a2. Proceeding further, one can scatter a bound
state with a different elementary particle, looking for other bound states. By requiring
that the procedure closes upon itself, one obtains a set of constraints which must be
satisfied by the scattering amplitudes. This is the essence of the S-matrix bootstrap
approach[3], which allows to determine the location of the poles by considering bound
states and elementary particles on the same ground.

1.2.4 The sinh-Gordon S-matrix

Thanks to factorization of multi-particle scattering processes and the analytic properties
which must be satisfied by the scattering amplitudes, the problem of finding the S-matrix
of an integrable quantum field theory is reduced to that of finding a set of meromorphic
functions Sb1,b2a1,a2

(θ) which satisfy:

1. Yang-Baxter equations (1.39) ;

2. unitarity and Hermitean analyticity (1.50) ;

3. crossing symmetry (1.52) ;

4. consistency relations due to bound states .

The solution of this problem is much simpler if the S-matrix is diagonal, i.e. there is no
exchange of particle types during the scattering:

Sb1,b2a1,a2
= δb1a1δ

b2
a2
Sa1,a2 (1.56)

as in this case the Yang-Baxter equations are trivially satisfied while unitarity and cross-
ing symmetry relations are simplified as follows:∑

a1,a2

Sa1,a2(θ)Sa1,a2(−θ∗) = 1 , Sa1,a2(iπ − θ) = Sā2,a1(θ) , (1.57)

and the most general solution of these equations can be written as a product of mero-
morphic functions[29, 3]:

Sa,b(θ) =
∏

x∈Aa,b

sinh
[

1
2
(θ + iπx)

]
sinh

[
1
2
(θ − iπx)

] , (1.58)

23



being Aa,b a set of complex numbers which can always be chosen to lie in the strip
Re(x) ∈ [−1, 1]. In particular, if Re(x) ∈ [−1, 0] there are no poles in the physical strip.

Requiring also that the scattering is neutral, so that every particle coincides with its
antiparticle, the solution of (1.57) is:

Sa,b(θ) =
∏

x∈Aa,b

tanh
[

1
2
(θ + iπx)

]
tanh

[
1
2
(θ − iπx)

] . (1.59)

The simplest non-trivial S-matrix having the form above is the celebrated sinh-Gordon
S-matrix [30, 2]:

SshG(θ) =
tanh[1

2
(θ − iγ)]

tanh[1
2
(θ + iγ)]

, (1.60)

which describes the scattering theory of a single neutral particle. This S-matrix can be
obtained via a perturbative expansion from the sinh-Gordon action:

SshG =

∫
d2x

[
1

2
(∂µφ)2 − 2µ cosh(βφ)

]
, 2µ =

m2
0

β2
, (1.61)

m0 being the bare mass of the particle. The coupling constant β is related to the
parameter γ in (1.60) via:

γ =
β2/8

1 + β2/(8π)
< π (1.62)

from which it immediately follows that there are no bound states in the physical strip.
To conclude, we notice that any solution to the analyticity requirements listed above

can be always multiplied by a factor (1.58) if Re(x) ∈ [−1, 0], so that no new physical
bound states are introduced. This is called a CDD ambiguity factor, and in general it
cannot be determined solely from integrability techniques. The sinh-Gordon S-matrix
can be regarded as a pure CDD factor.
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Chapter 2

Thermodynamics of diagonal
scattering theories

In this chapter we present the main technique used to study finite-temperature proper-
ties of (1+1)-dimensional massive integrable quantum field theories, the thermodynamic
Bethe ansatz (TBA). Originally introduced by C.N. Yang and C.P. Yang to derive the
thermodynamics of a non-relativistic gas of interacting bosons [8], the TBA approach was
soon extended to relativistic integrable QFTs thanks to the works of Al. B. Zamolod-
chikov [5, 7], T. R. Klassen and E. Melzer [29, 31]. The main idea behind relativistic
TBA is that space-time symmetry enforces an equivalence between the finite-size ground
state energy of a QFT and the finite-temperature free energy density of the very same
theory in an infinite volume. This allows to obtain a set of nonlinear integral equations
(TBA equations) which result from the thermodynamic limit of the Bethe quantization
condition for the asymptotic states in an integrable theory.

Via the TBA equations, the finite-temperature properties of a massive integrable QFT
can be reconstructed once its S-matrix and mass spectrum are known. When the high
energy limit is performed, any massive integrable theory in (1 + 1) dimensions reaches
a critical point in Wilson’s space of actions where its correlation lenght diverges, that
is, a conformal field theory. The scaling free energy of an off-critical theory therefore
reproduces the central charge of some CFT in the UV limit: if the massive QFT is
obtained as a perturbation of the former via some relevant operator, this limit provides
a good consistency check for its bootstrapped S-matrix, which rules the thermodynamics.

We mainly discuss here the thermodynamics of diagonal integrable models, for which
the TBA equations can be obtained via a simple and well-established procedure. More-
over, if the diagonal theory is related to a certain affine Lie algebra of the A, D or E
series, the TBA equations can be cast in a universal way. However, in the last section of
this chapter we also provide a heuristic argument showing how these universal TBA sys-
tems can be used to describe the finite-temperature properties of non-diagonal scattering
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theories [6, 7, 32, 33].

2.1 Zamolodchikov’s mirror argument

Suppose that we have a (1+1)-dimensional integrable QFT confined in a finite volume
and we wish to evaluate its ground state energy. The groundbreaking result obtained
by Al. B. Zamolodchikov is that this is equivalent to obtain the finite-temperature
free energy of the theory in the thermodynamic limit. The argument goes as follows.
Assume that the theory is defined on a cylinder with periodic boundary conditions in
both directions, that is, on a torus generated by two circumferences CL, CR of lengths
L and R respectively, as in figure 2.1. Thanks to relativistic invariance, we can choose
the time direction to be either along CL or CR, obtaining two different but equivalent
quantization schemes.

CLCR

Figure 2.1: Toroidal geometry of the mirror argument.

Let x be the coordinate in the direction of CR and y the coordinate along the direction
of CL. The stress-energy tensor of the theory is Tµν . We can proceed in two way:

• if y is the time coordinate and x the space coordinate, then the time evolution is
ruled by the Hamiltonian:

HR =
1

2π

∫
CR

dxTyy (2.1)

and the corresponding quantization scheme is called “L-channel”quantization

• if instead we take y to be the space coordinate and −x the time coordinate1 then
the Hamiltonian is:

HL =
1

2π

∫
CL

dy Txx (2.2)

and now the quantization scheme is the “R-channel”one.

1The minus sign is chosen to preserve the relative orientation of the axis when we switch from one
channel to the other.
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Let Z(L,R) the partition function of the theory, with L and R both finite. Then we can
equivalently write:

Z(L,R) = TrHR e
−LHR = TrHL e

−RHL (2.3)

where HR and HL are the Hilbert spaces of states living in CR and CL respectively. If we
choose to quantize the theory in the L-channel then the limit L → +∞ corresponds to
sending the (euclidean) time to infinity and therefore the trace is projected down to the
ground state:

Z(L,R) = TrHR e
−LHR '

L→∞
e−LE0(R) (2.4)

On the other hand, if one chooses the R-channel scheme then L→ +∞ corresponds to a
thermodynamic limit and the euclidean time R, which is now periodic, is to be identified
with the inverse temperature of the system, R = 1

T
. Thus:

Z(L,R) = TrHL e
−RHL =

∑
n

e−REn(L) '
L→∞

e−RLf(R) (2.5)

where En(L) are the discretized energy levels on the finite volume and f(R) is the free
energy per unit density at inverse temperature R. Therefore in the limit L � R we
obtain:

E0(R) = Rf(R) . (2.6)

This is the fundamental relation between the ground state energy in a finite volume
(right-hand side) and the free energy density in the thermodynamic limit at finite tem-
perature.

2.2 Derivation of the thermodynamics

We can now develop the thermodynamics of the theory by making use of the mirror
argument. In the following we will work in the R-channel, as if L is large enough to
neglect short-distance processes between particles then it is possible to obtain a basis
of asymptotic states (Bethe states) which allows in principle to compute the sum in
(2.5). In the case of a diagonal scattering theory this is done by means of a very simple
procedure known as coordinate Bethe ansatz

2.2.1 Coordinate Bethe ansatz

Let us consider a (1 + 1)-dimensional diagonal scattering theory defined on a circle of
lenght L. The spectrum of the theory consists of N particles of different species labelled
by a = 1, . . . , n, with

∑n
a=1Na = N . Let ma, a = 1, . . . , n be the masses of the various

species and define the correlation lenght through ξ = 1/m1, m1 being by convention the
lowest mass in the spectrum.
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Since the theory is diagonal, we can specify the interactions via the scattering phases
δab entering the two-particle S-matrices via Sab(θ) ≡ eiδab(θ), θ being as usual the rapidity
difference between the two particles involved. We are interested in the asymptotic regions
in which the particles are well separated from each other, that is:

|xi − xi+1| � ξ , i = 1, . . . , N − 1 (2.7)

there are N ! such regions in the total Hilbert space of the system, corresponding to the
possible permutations of the positions xi, and in every asymptotic region we can neglect
any short-distance effect therein, so that the particles are on-shell and the multi-particle
state is represented in position space by a plane wave:

Ψ(x1, . . . , xN) =
N∏
j=1

eipjxj
∑
P∈SN

A(P)Θ(xP) , (2.8)

were the amplitude A only depends on the permutation P of the particle positions and:

Θ(xP) =

{
1 , if xP1 < · · · < xPN
0 , otherwise

. (2.9)

Exchanging the positions of two adjacent particles results in a modification of the
amplitude due to the acquisition of a scattering phase, so that if P = (. . . , i, j, . . . ) and
P ′ = (. . . , j, i, . . . ) then:

A (P ′) = Sij(θi − θj)A (P) (2.10)

the quantization condition for the particles’ momenta comes from the periodic (antiperi-
odic) boundary conditions, which must be imposed if the particles are bosons (fermions):

Ψ(. . . , xi = L, . . . ) = (−1)FiΨ(. . . , xi = 0, . . . ) , i = 1, . . . N (2.11)

with (−1)Fi = ±1 if the ith particle is a boson (upper sign) or a fermion (lower sign).
Using (2.8) the equation above reads:

A(i,P2, . . . ,PN) = (−1)FieipiLA(P2, . . . ,PN , i)

= (−1)FieipiL

(∏
j 6=i

Sij(θi − θj)

)
A(i,P2, . . . ,PN) , i = 1, . . . , N

(2.12)

where P is any permutation in SN such that P1 = i. Since the particles are on-shell we
can parametrize their relativistic momenta using rapidities:

(Ei , pi) = (mi cosh (θi) , mi sinh (θi)) (2.13)
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so that the quantization condition becomes

eimi sinh (θi)
∏
j 6=i

Sij(θi − θj) = (−1)Fi (2.14)

or equivalently, taking the logarithm and using δij(θ) = −i lnSij(θ):

Lmi sinh (θi) +
∑
j 6=i

δij(θi − θj) = 2πni , i = 1, . . . , N (2.15)

with ni ∈ Z if the ith particle is a boson and ni ∈ Z + 1
2

if it is a fermion.
Equation (2.15) is known as the coordinate Bethe ansatz equation, and directly fol-

lows from the plane-wave form of the asymptotic wavefunction in the space of coordi-
nates. Notice that if all the interactions are trivial, i.e. Sij(θ) = 1 for all i, j, then the
previous condition reduces to the usual momentum quantization condition for a particle
in a box, pi = 2πni/L.

The quantum numbers ni specify the admissible rapidities, and for several specific
models one can show that the solution is unique for every set {ni} of pairwise distinct
numbers and that the totality of the resulting states form a basis for the interacting
Hamiltonian. We will assume the latter condition as an hypothesis. However, there is
an additional constraint on the possible values of the ni which is due to the structure of
the interaction. Indeed, unitarity of the S-matrix implies that for any particle species a
it must be S2

aa(0) = 1. This means that there are two possibilities:

1. Saa(0) = −1. If there are two particles of the same species with the same rapidity,
the wavefunction is antisymmetric under the exchange of their coordinates. If the
species a is bosonic, this is incompatible with the statistics and the integers2 n

(a)
i

must be all distinct. If instead the species a is fermionic, there are no restrictions
on the values of the half-integers n

(a)
i . Therefore, in this case, bosons behave like

fermions and fermions behave like bosons.

2. Saa(0) = 1. This is the opposite situation: bosons can occupy each rapidity state
in an arbitrary number and fermions are subject to an exclusion principle.

This shows the deep interplay between statistics and dynamics in one spatial dimen-
sions, where it is impossible to exchange the positions of two particles without making
them scatter against each other. In the TBA context, we therefore define the type of the
particle species a in the following way:

ta ≡ −(−1)FaSaa(θ = 0) =

{
+1 , fermionic type

−1 , bosonic type
(2.16)

2The superscript here designates the subset of {ni}Ni=1 relative to the species a.
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In the following we will concentrate on fermionic-type particles. Once the Bethe equa-
tions (2.15) are solved for a given set {ni}, the resulting multi-particle state |θ1, . . . , θN〉
is an asymptotic eigenstate of the Hamiltonian, with total energy and momentum given
by:

E({θi}) =
N∑
i=1

mi cosh (θi) , p({θi}) =
N∑
i=1

mi sinh (θi) (2.17)

2.2.2 Ground state energy in the thermodynamic limit

Let us now derive the finite-temperature free energy of the system in the thermodynamic
limit:

L→∞ , N →∞ , N/L fixed (2.18)

considering for simplicity the case in which all the N particles are of the same species
(fermionic) with massm. As the volume increases, the difference between two consecutive
rapidities in the spectrum behaves as |θi − θi+1| ∼ 1/mL so that the occupied Bethe
quantum numbers condense into a continuous distribution ρp(θ) of occupied states in
the rapidity space. By definition, this particle density3 is such that the number of
particles with rapidity in the interval [θ, θ + ∆θ] is given by Lρp(θ)(θ)∆θ, and thus the
discrete sum over occupied rapidities is replaced by an integral (here and below, all the
integrations are over R unless otherwise specified):∑

i

f(θi) −→
TD

L

∫
dθ f(θ)ρp(θ) (2.19)

this allows one to rewrite the total energy (2.17) as a linear functional of ρp(θ):

E [ρp(θ)] = Lm

∫
cosh (θ)ρp(θ)dθ (2.20)

and the quantization condition (2.15) becomes:

m sinh (θi) +

∫
δ(θi − θ)ρp(θ)dθ =

2π

L
ni , i = 1, . . . , N . (2.21)

Not all the allowed states ni in the right-hand side of the previous equation are
necessarily filled with particles: it is customary to introduce a density of holes (per unit
of lenght and rapidity) ρh(θ), so that L[ρp(θ) + ρh(θ)]∆θ is the total number of Bethe
states (occupied and unoccupied) in the rapidity interval [θ, θ+∆θ]. To be more precise,
let us define a counting function:

J(θ) ≡ m

2π
sinh (θ) +

1

2π
(δ ∗ ρp)(θ) (2.22)

3The distribution ρp(θ) is sometimes called root density, to highlight the fact that it is obtained as
a limiting density of solutions of the Bethe equation.
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where the symbol * stands for a convolution:

(f ∗ g)(θ) ≡
∫

dθ ′f(θ − θ′)g(θ′) = (g ∗ f)(θ) . (2.23)

By construction J(θi) = ni/L, so that using the counting function we can associate to
each density ρp(θ) in the space of rapidities a distribution in the lattice Z/L of Bethe
quantum numbers. By taking the derivative of equation (2.22) with respect to θ, one
obtains therefore a constraint relating the densities of holes and particle in the thermo-
dynamic limit:

d

dθ
J(θ) = ρp(θ) + ρh(θ) =

m

2π
cosh (θ) +

1

2π
(φ ∗ ρp)(θ) (2.24)

where the kernel φ(θ) has been introduced as the logarithmic derivative of S(θ):

φ(θ) ≡ d

dθ
δ(θ) = −i d

dθ
lnS(θ) (2.25)

at this point, in order to obtain the physical distributions ρp(θ), ρh(θ) at thermal equi-
librium it is sufficient to minimize the free energy functional4:

F [ρp, ρh] = E [ρp]− TS [ρp, ρh] = E [ρp]−
1

R
S [ρp, ρh] (2.26)

subject to the constraint (2.24). The total entropy S of the (fermionic) system can
be easily evaluated. In fact, if we consider a rapidity interval [θi, θi + ∆θ] such that
(mL)−1 � ∆θ � 1 ( i.e. we are looking at the mesoscopic scale of the system), then we
can reshuffle the ni ∼ Lρp(θi)∆θ particles and the mi ∼ Lρh(θi)∆θ holes in the interval
without changing the macroscopic energy (2.20) of the system. Since we are considering
a fermionic species the number of ways in which this can be done is:

Ωi =
(ni +mi)!

ni!mi!
(2.27)

and therefore the total entropy is given by:

S [ρp, ρh] = lim
TD

∏
i

ln Ωi = L

∫
dθ [(ρp + ρh) ln (ρp + ρh)− ρp ln ρp − ρh ln ρh] . (2.28)

In order to enforce the Bethe constraint (2.24) let us define:

Φ [ρp, ρh] ≡ L

∫
dθ

[
ρp(θ) + ρh(θ)−

m

2π
cosh (θ)− 1

2π
(φ ∗ ρp) (θ)

]
(2.29)

4Recall that we are working in the R-channel, so that R is identified as the system’s inverse temper-
ature.
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the functional to minimize is then F − λΦ, with λ a Lagrange multiplier. Equation
(2.24) is automatically recovered imposing δ(F−λΦ)

δλ
= 0, while the other two functional

equations read:

δ(F − λΦ)

δρp
= L

∫
dθ

[
m cosh (θ)− 1

R
ln

(
ρp + ρh
ρp

)
+

1

2π
(φ ∗ λ)(θ)− λ

]
.

= 0 (2.30)

δ(F − λΦ)

δρh
= −L

∫
dθ

[
1

R
ln

(
ρp + ρh
ρh

)
+ λ

]
.

= 0 (2.31)

solving (2.31) for λ and substituting the result into (2.30), one obtains:

mR cosh (θ) + ln

(
ρp
ρh

)
− 1

2π

[
φ ∗ ln

(
ρp + ρh
ρh

)]
(θ) = 0 . (2.32)

We notice that the above equation involves only the ratio between the densities of parti-
cles and holes, as a consequence of the fact that the trace in (2.3) is over the full Hilbert
space of the theory, i.e. Z(L,R) is the grand-canonical partition function at zero chem-
ical potential. Let us therefore define the system’s pseudoenergy ε(θ) and the related
occupation function n(θ):

ε(θ) ≡ − ln

(
ρp
ρh

)
, n(θ) =

ρp
ρp + ρh

=
1

1 + eε(θ)
(2.33)

so that the equation (2.32) becomes:

ε(θ) = mR cosh (θ)− 1

2π

[
φ ∗ ln

(
1 + e−ε

)
(θ)
]

(2.34)

this is the celebrated thermodynamic Bethe ansatz (TBA) equation [5, 29, 31] for a
system of interacting fermions at inverse temperature R, where the interaction is encoded
in the kernel φ. It is a self-consistency nonlinear integral equation which, once solved,
allows one to express all the thermodynamic observables through the densities ρp and
ρh. In particular, having solved the TBA equation we are finally able to evaluate the
free energy at thermal equilibrium. To do so, first integrate (2.34) against ρp(θ)dθ and
use the constraint (2.24) to obtain:∫

dθ ρp(θ)[Rm cosh (θ − ε(θ)]

=

∫
dθ

2π
ln (1 + e−ε) {2π [ρp(θ) + ρh(θ)]−m cosh (θ)} (2.35)

from the definition of the free energy functional (2.26) and writing F (R) = Lf(R) we
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have:

Rf(R) =
R

L
F (R) =

1

L
(RE − S)

= Rm

∫
dθ cosh (θ)ρp(θ)−

∫
dθ [ρp ln (1 + eε) + ρh ln

(
1 + e−ε

)
]

=

∫
dθ [Rm cosh (θ)− ε(θ)] ρp(θ)−

∫
dθ (ρp + ρh) ln

(
1 + e−ε

)
] (2.36)

finally, plugging (2.35) into the previous formula one obtains the expression for the
equilibrium free energy density at temperature 1/R, which coincides with the ground
state energy E0(R) thanks to equation (2.6):

E0(R) = Rf(R) = −
∫

dθ

2π
m cosh (θ)L(θ) (2.37)

where we have defined:
L(θ) ≡ ln (1 + e−ε(θ)) . (2.38)

Of course the same procedure can be carried out for bosonic-type particles (i.e. true
bosons with S(0) = 1 or fermions with S(0) = −1). In that case relations (2.22) and
(2.24) still hold as well as expression (2.20) for the total energy, but the entropy functional
is modified according to the fact that multiple occupations are now possible. The bosonic
TBA equation and the bosonic ground state energy read:

ε(θ) = mR cosh (θ) +
1

2π

[
φ ∗ ln

(
1− e−ε

)
(θ)
]

(2.39)

E0(R) = +

∫
dθ

2π
m cosh (θ) ln

(
1− e−ε(θ)

)
. (2.40)

However, there are reasons to believe that the only consistent interacting theories in
the TBA context are those of fermionic-type particles. The problem with the bosonic
TBA equation comes from the term ln

(
1− e−ε(θ)

)
: when varying the temperature the

argument may become negative in a certain rapidity interval, and that would lead to
complex solutions, which have no sound physical interpretation.

The generalization to purely diagonal scattering theories with n fermionic species of
particles and a non-degenerate mass-spectrum ma, a = 1, . . . , n, is straightforward. Let
Sab(θ) = Sba(θ) the S-matrix elements and

φab(θ) ≡ −i
d

dθ
Sab(θ) , a, b = 1, . . . , n . (2.41)

If the theory is purely elastic, φab(θ) = φab(−θ) as a consequence of unitarity. There is
one TBA equation for each particle species:

εa(θ) = m̂aβ cosh (θ)− 1

2π

n∑
a=1

(φab ∗ Lb)(θ) (2.42)
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where La(θ) ≡ ln
(
1 + e−εa(θ)

)
, m̂a ≡ ma/m1 and the dimensionless inverse temperature

β = m1R has been introduced. the ground state energy is additive and simply given by:

E0(R) = −
n∑
a=1

ma

∫
dθ

2π
cosh (θ)La(θ) (2.43)

As a concluding remark, we notice that because of the very special role of the ground
state energy in the mirror correspondence (2.6), the previous derivation does not allow
one to obtain the excited states in the theory. The latter can nonetheless be obtained
via other methods, as was first noticed in [34], were a method based on the analytic
continuation of some of the system’s parameter was proposed.

2.3 Infrared and ultraviolet limits

The correlation lenght of the theory on the torus is by definition the reciprocal of the
lowest mass in its spectrum. Therefore if one works in the R-channel the ultraviolet and
the infrared limits of the theory are obtained by sending β → 0 and β →∞ respectively,
β ≡ m1R. In the UV limit the theory should reproduce a certain conformal field theory,
and it is possible to show from CFT first principles (see for instance [26]) that for the
ground state energy it holds:

lim
β→0

E0(R) =
2π

R

(
∆min + ∆̄min −

c

12

)
(2.44)

where ∆min and ∆̄min are the lowest conformal weights of the CFT and c its central
charge. It is therefore useful to introduce a dimensionless scaling function c(β) via:

E0(R) ≡ −πc(β)

6R
(2.45)

so that in a theory5 with ∆min = ∆̄min one has:

lim
β→0

c(β) = ceff ≡ c− 24∆min (2.46)

that is, in the UV limit the scaling function of an integrable theory reproduces the
effective central charge of the underlying conformal field theory. The expression of c(β)
in terms of the particles’ pseudoenergies follows from (2.43):

c(β) =
3

π2
β

n∑
a=1

m̂a

∫ +∞

−∞
dθ cosh (θ)La(θ) . (2.47)

5This is for instance the case when the primary fields are scalars.
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Since the pseudoenergies -and therefore the functions La(θ)- are fixed exclusively by
the integrable dynamics contained in the kernels φab, the fact that the scaling function
correctly reproduces the effective central charge of the CFT in the UV limit is a good
check of the correctness of the S-matrix obtained via bootstrap methods.

Let us now study in detail the UV and the IR limit of the scaling function, starting
from the latter. As β → ∞ the driving term in each TBA equation (2.42) is dominant
over the convolution:

εa(θ) = m̂aβ cosh (θ) +O(e−β) (2.48)

so that (using the fact that εa(θ) = εa(−θ) and thus La(θ) = La(−θ)):

lim
β→∞

c(β) =
6

π2
β

n∑
a=1

m̂a

∫ +∞

0

dθ cosh (θ)e−βm̂a cosh (θ)
[
1 +O(e−β)

]
(2.49)

=
6

π2
β

n∑
a=1

m̂aK1(m̂aβ) +O(e−2β) (2.50)

where K1 is a modified Bessel function, exponentially dumped as β → ∞. This is
consistent with the fact that in the infrared regime the theory reduces to a collection of
free massive particles, for which trivially c = 0.

To study the UV limit β → 0 we shall consider here models for which the functions
φab(θ) are peaked at θ = 0 and rapidly decrease when |θ| increases. This is the most
common scenario, which occurs whenever the S-matrices Sab(θ) are given by products
of minimal blocks with no extra CDD factors. If the kernels are peaked about the
origin in the rapidity axis, as β → 0 the pseudoenergies εa(θ) develop a plateau in the
region − ln (2/β) � θ � ln (2/β), while tend to the asymptotic free values (2.48) for
|θ| � ln (2/β)6, see for instance the first plot in figure 3.4. The constant pseudoenergies
εa are solutions of the following coupled transcendental equations:

εa =
n∑
a=1

Nab ln (1 + e−εb) (2.51)

where:

Nab ≡ −
1

2π

∫ +∞

−∞
dθ φab(θ) = − 1

2π
[δab(+∞)− δab(−∞)] (2.52)

is a matrix which is symmetric and positive definite in the models we are considering7.
Along the edges of the plateau, i.e. along the kinks connecting the constant values

εa to the asymptotic pseudoenergies, the TBA driving terms can be approximated as:

m̂aβ cosh (θ) ' 1

2
m̂aβe

θ = m̂ae
(θ−ln 2

β ) (2.53)

6To see this, derive equation (2.42) with respect to θ and notice that β sinh (θ) → 0 as β → 0
whenever |θ| < ln (2/β).

7With the very relevant exception of the the sinh-Gordon model, where N ≡ N11 < 0.
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and the behaviour at the edges of the plateau is dictated by the universal kink TBA
equations:

ε̃a(θ) =
1

2
m̂aβe

θ − 1

2π

n∑
b=1

(φab ∗ L̃b)(θ) (2.54)

where L̃a(θ) ≡ ln (1 + e−ε̃a(θ)) and the kink pseudoenergies ε̃a assume the constant values
εa for θ � ln (2/β). The advantage of introducing these quantities lies in the fact that
they only significantly differ from the pseudoenergies εa(θ) when θ . − ln (2/β) and
their dependence on β is trivial: it only amounts to a shift of θ to the right by ln (2/β).
In terms of L̃a(θ) the ultraviolet limit of the scaling function reads:

c(0) =
6

π2
lim
β→0

n∑
a=1

∫ +∞

0

dθ L̃a(θ)
1

2
m̂aβe

θ (2.55)

where we took advantage of the parity of La(θ) to reduce the integration domain in
(2.47). The integral in the right-hand side of the previous equation can be evaluated as
follows:

c(0) =
6

π2

n∑
a=1

∫ +∞

0

dθ L̃a(θ)

[
dε̃a
dθ
− 1

2π

n∑
b=1

(
φab ∗

e−ε̃b

1 + e−ε̃b
dε̃b
dθ

)
(θ)

]

=
6

π2

n∑
a=1

[∫ +∞

εa

dε ln (1 + e−ε) +
1

2
εa ln (1 + e−εa)

]
=

6

π2

n∑
a=1

L
(

1

1 + eεa

)
(2.56)

in the first line we used the derivative of equation (2.54) with respect to θ to substitute
1
2
m̂aβe

θ. The second line follows from a simple change of variable in the first term of
the integral, where for the second term one has to exchange the convolution order, use
equation (2.54) and then perform two integration by parts. In the third line we used the
definition of Roger’s Dilogarithm:

L(z) ≡ −1

2

∫ z

0

dt

(
ln (1− t)

t
+

ln (t)

1− t

)
(2.57)

and the relation:

L
(

1

1 + x

)
= Li2(x) +

1

2
ln (1− x) ln (x) , (2.58)

where Li2(z) is the usual Dilogarithm function, with integral representation:

Li2(z) =

∫ 0

z

dt
ln (1− t)

t
. (2.59)
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Therefore in order to obtain the central charge of the CFT underlying a given purely
elastic (diagonal) massive scattering theory one has to solve the transcendental equations
(2.51) and then substitute the resulting εa in the last line of (2.56). The sum therein
can be evaluated using Dilogarithm sum rules [35] once the εa are known.

2.4 Universal TBA for ADE diagonal theories

There is a vast class of two dimensional integrable quantum field theories for which
the TBA equations can be presented in a universal way [32]: these are the so-called
ADE theories, that is, diagonal scattering theories with an S-matrix related to a certain
simply-laced affine Lie algebra8 of the series An, Dn, E6, E7, E8. Each of these theories
is obtained as an integrable perturbation of a certain conformal field theory by some
of its relevant operators. It was noticed [36, 29] that if the conformal families of the
unperturbed CFT are classified according to an algebra in the ADE series9, then it is
possible to perturb the theory in such a way that the QFT describing the deformation
is still integrable and the spins of the conserved charges are precisely the exponents of
the Lie algebra G describing the underlying CFT, modulo the Coxeter number of G.
Moreover, the theory describes the (purely elastic) scattering of r massive particles (r
being the rank of G) and the masses of these particles are proportional to the components
of the Perron-Frobenius eigenvector of I, the incidence matrix of the Dynkin diagram10

of G. For instance, the An series describes the deformation of Zn+1-parafermion CFTs
deformed by the primary fields of dimensions ∆(An) = 2

n+3
, while the Dn series S-

matrices are those of sine-Gordon theory at the reflectionless points, i.e. free boson
theories perturbed by operators with ∆(Dn) = 1

n
.

One can also work the other way around and start from an off-critical action which
is directly built from an algebra in the ADE series. Such theories are the so-called affine
Toda field theories (ATFTs):

S =

∫
d2x

[
1

2
∂µφi∂

µφi −
β2

m2

r∑
i=0

eβαi·φ

]
(2.60)

where β is a coupling constant, φi are real scalars, αi, i = 1, . . . , r are the positive simple
roots of the Lie algebra and α0 is the negative of its maximal root. The minimal parts
of the ATFTs S-matrices are precisely the ADE series S-matrices, though in this case
there are also some extra CDD factors which depend on the couplings.

8We follow the notation introduced in chapter 13 of [26] for simply-laced algebras. See also [25] for
a detailed discussion of the subject.

9See [37] for a review of ADE classification of conformal field theories.
10The incidence matrix elements Iab of a Dynkin diagram (in general, of an undirected graph) are

such that Iab = 1 iff the nodes a and b are connected by a line and Iab = 0 otherwise.
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In order to obtain a universal TBA for ADE theories one starts from the usual TBA
equations:

νa(θ) = εa(θ) +
1

2π

r∑
a=1

(φab ∗ Lb)(θ) , νa(θ) ≡ maR cosh (θ) (2.61)

with r = rank G. For ADE S-matrices it is possible to show that the following relation
holds [33]:

lnSab

(
θ +

iπ

h

)
+ lnSab

(
θ − iπ

h

)
=

r∑
c=1

Ibc lnSac(θ)− 2πiΘ(θ)Iab , (2.62)

where h is the Coxeter number of G, I is the incidence matrix of its Dynkin diagram and
Θ is the Heaviside step function with Θ(0) = 1

2
. Deriving the previous equation with

respect to θ and then taking the Fourier transform of both sides yields:

φ̃ab(k) = −2π

[
I

(
2 cos

(
πk

h

)
− I
)−1

]
ab

(2.63)

where the Fourier transform of the kernel φab has been introduced:

φ̃ab(k) =

∫ +∞

−∞
dθ φab(θ)e

ikθ . (2.64)

Notice that by setting k = 0 in equation (2.63) one obtains a relation between the
incidence matrix I and the matrix N defined in (2.52):

N = I(2− I)−1 (2.65)

this relation allows to rewrite the coupled transcendental equations for the plateau pseu-
doenergies of an ADE scattering theory in a more suitable way. Indeed, defining ya = eεa

equation (2.51) reads (with n = r):

ya =
n∏
b=1

(1 + 1/yb)
Nab , (2.66)

which becomes, thanks to (2.65):

y2
a =

n∏
b=1

(1 + yb)
Iab . (2.67)
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Using equation (2.63) it is possible to recast the TBA equations (2.61) in the following
universal form:

νa(θ) = εa(θ) +
1

2π

r∑
a=1

Iab [φh ∗ (νb − Λb)] (θ) , Λa(θ) = ln
(
1 + eε(θ)

)
(2.68)

where the kernel:

φh(θ) =
h

2 cosh
(
hθ
2

) (2.69)

is specified for each ADE theory once the Coxeter number h is given. The universality
of the TBA structure for the ADE scattering theories can be shown to hold at a deeper
level. Indeed, by performing an analytic continuation θ 7→ θ ± iπ

h
it is possible to show

that equations (2.68) are equivalent to the following set of functional equations (called
Y -system):

Ya

(
θ − iπ

h

)
Ya

(
θ +

iπ

h

)
=

n∏
b=1

(1 + Yb(θ))
Iab , a = 1, . . . , n (2.70)

where Ya(θ) ≡ eεa(θ). The Y -system seems to play a very relevant role in the formal
development of many theories which display integrability at the quantum level. Any
solution of the previous system is also a solution of the universal TBA equations (2.68),
but now the dependence on the driving terms νa(θ) has completely disappeared. It has
been proved [33] that for the previous system to have stationary (i.e. θ-independent)
solutions the matrix Iab must be the incidence matrix of an An, Dn, E6, E7, E8 or A2n/Z2

Dynkin diagram11: this provide a complete classification of the Y -systems.
The stationary solutions of the Y -systems are the quantities ya = eεa in (2.67), which

are used to evaluate the UV central charge through equation (2.56): a noticeable result is
that for ADE theories the solutions of these coupled equations are algebraic rather then
transcendental, as the entries of Iab are non-negative integers. An important property of
equation (2.70) is its periodicity, namely:

Ya(θ + iπP ) = Yā(θ) , P =
h+ 2

h
, ā ≡ n− a+ 1 . (2.71)

On a physical ground, the TBA system (or Y -system) associated to a certain Dynkin
diagram can be visually represented by “attaching”a particle of the system to each node,
with driving term νa(θ) = maR cosh (θ), a = 1, . . . , n. There are interactions only
between adjacent particles as the pseudoenergies are coupled through the adjacency
matrix Iab. Keeping up with this interpretation, the node ā in (2.71) is the antiparticle

11The A2n/Z2 diagrams are obtained through a folding procedure from the A2n diagrams, and some
additional considerations must be made when dealing with the corresponding TBA systems.
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of a, and in the An case one has the further property that Ya(θ) = Yā(θ). The periodicity
of the Y -system has a series of remarkable consequences, among which we only want to
mention the fact that the period P determines both the Casimir energy expansion in
powers of R when working in the finite-size channel (the L-channel) and the conformal
dimension of the perturbing field Φ in the off-critical action:

S = SCFT + λ

∫
d2xΦ(x) , ∆(Φ) =

{
1− 1

p
, for An, Dn, En

1− 2
p

, for A2n/Z2

. (2.72)

2.5 TBA equations of An massless flows

The classification of Y -systems in terms of the ADE series is based only on the structure
of the matrix Iab appearing in (2.67) and it is completely independent on h, so that it
is in principle possible to write a physically consistent set of TBA equations leading
to (2.70) for a certain value of h, but where the latter is no more a Coxeter number.
In particular these equations may describe the thermodynamics of a theory with non-
diagonal scattering. When the scattering is non-diagonal the usual coordinate Bethe
ansatz for the asymptotic states cannot be employed (as in each interaction along the
circle internal degrees of freedom are exchanged), and one has to adopt a far more
sophisticated algebraic approach to diagonalise the S-matrix. We will not describe the
algebraic Bethe ansatz technique (see [23] for a review), suffice it to say that in this
approach fictitious degrees of freedom are introduced, called magnons, which are massless
and carry no conserved charges. When the Hilbert space is extended so to include
magnons, the S-matrix is diagonal.

In general the perturbation of a coset conformal model by one of its relevant op-
erators may lead to non-diagonal scattering theories. This is true in particular for the
perturbations of a unitary minimal modelMn by its least relevant operator Φ = Φ(1,3) of
conformal dimension ∆ = 1− 2

n+3
. The corresponding renormalisation group trajectory

is massless or massive depending on the sign of λ in (2.72), and the TBA systems of
both these integrable flows were proposed by A. B. Zamolodchikov In the seminal works
[7], [6]:

νa(θ) = εa(θ) +
1

2π

n∑
b=1

I
(A)
ab (φ ∗ Lb)(θ) , φ(θ) =

1

cosh (θ)
(2.73)

for a = 1, . . . , n. I
(A)
ab is the adjacency matrix of the An Dynkin diagram:

I
(A)
ab = δa,a+1 + δa+1,a (2.74)
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and the driving terms are:

νa(θ) =


δ1
amR cosh (θ) , λ < 0 (massive)

mR
2

(δ1
ae
θ + δnae

−θ) , λ > 0 (massless)

(2.75)

that is, for λ < 0 we have one massive driving term attached to the first node of the
Dynkin diagram and n − 1 magnons attached to the other nodes. For λ < 0 instead
there are n− 2 magnons attached to the central nodes while the physical particles with
driving terms mR

2
e±θ (usually referred to as “right-mover”and “left-mover”) are attached

to the first and the last nodes, see figure 2.2.

mR cosh θ

1 2 n− 1 n

mR
2 eθ

1 2 n− 1

mR
2 e−θ

n

Figure 2.2: Dynkin diagrams for the the An massive (left) and massless (right) non
diagonal flows, with magnons attached to white nodes and physical particles attached to
black nodes.

To find the Y -system of the An flows we perform an analytic continuation θ → θ± iπ
2

.
If νa(θ) are given as in (2.75) then one has νa

(
θ + iπ

2

)
+ νa

(
θ − iπ

2

)
= 0 and, exploiting

also the pole structure of 1
cosh (θ)

and the explicit form of I
(A)
ab , this allows to recast

equation (2.73) as:

Ya

(
θ +

iπ

2

)
Ya

(
θ − iπ

2

)
= (1 + Ya+1(θ))(1 + Ya−1(θ)) , a = 1, . . . , n (2.76)

where now Ya(θ) = e−εa(θ). The previous system is formally identical to the ADE Y -
system (2.70) when we set h = 2 and Iab as in (2.74), and it rules the UV behaviour of
both massless and massive An flows. The stationary solutions of this systems correspond
to the quantities ya = e−εa(0) which satisfy equations (2.67), εa(0) being the constant
values of the pseudoenergies in the plateaux which form as β → 0. They are the essential
instruments used to compute the UV and the IR limit of the scaling function for the
flow12. In particular it is possible to show [6, 38] that in the massless case, An interpolates
between the Mn+2 and the Mn+1 minimal models (n ≥ 2), so that both the UV and
the IR central charges are non vanishing, whereas for the massive flow the UV limit is
the same but in the IR case the model approaches a theory with c = 0.

12However in the infrared limit β → +∞ the stationary solutions must be interpreted as the values
e−εa(∞), with a a magnonic node. When a labels instead a massive node, the pseudoenergy asymptoti-
cally tend to infinity.
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The staircase model that we will describe in the following chapter seems to be strictly
related to the An massless flow. In this case, a detailed study of the reduced form of
equation (2.73) shows that [33, 39]:

cUV = lim
β→0

c(β) =
6

π2

(∑
a∈I

−
∑
a∈I′

)
L
(

ya
1 + ya

)
(2.77)

cIR = lim
β→∞

c(β) =
6

π2

(∑
a∈I

−
∑
a∈I′′

)
L
(

ya
1 + ya

)
(2.78)

where I ′ ≡ I−{L} and I ′′ ≡ I−{L,R}, being I the adjacency matrix of the An Dynkin
diagram, L the node to which the left-mover is attached and R the node with the right-
mover attached. When I is given by (2.74), the stationary equations (2.67) can exactly
solved, and this of course holds when we remove one or two nodes obtaining the reduced
diagrams I ′, I ′′. The explicit solutions are the following [38]:

y2
a =

n∏
b=1

(1 + yb)
Iab ⇒ 1 + ya =

sin2 [π(a+ 1)/(n+ 3)]

sin2 [π/(n+ 3)]
(2.79)

y2
a =

n−1∏
b=2

(1 + yb)
Iab ⇒ 1 + ya =

sin2 [πa/(n+ 1)]

sin2 [π/(n+ 1)]
(2.80)

inserting these solutions in (2.77) and making use of the Dilogarithm sum rules one
obtains

cUV = 1− 1

(n+ 2)(n+ 3)
, cIR = 1− 1

(n+ 1)(n+ 2)
(2.81)

which are the central charges of the Mn+2 and Mn+1 unitary minimal models, as an-
nounced.
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Chapter 3

TBA structure of Zamolodchikov’s
staircase model

In this chapter we discuss the S-matrix and the TBA structure of Zamolodchikov’s
staircase model [17], the principal object of study in this thesis. The staircase model is a
scattering theory obtained via analytic continuation of the sinh-Gordon S-matrix, and it
does not posses a physically sensible lagrangian description. The mass spectrum and the
analytic structure of the model are very simple, and yet a surprising phenomenon arises
at finite temperatures: the scaling function approaches the central charges of all the
unitary minimal models Mn when the temperature varies. We refer to this property by
saying that there are roaming trajectories generated by the action of the renormalization
group (RG). In the context of generalized hydrodynamics, which will be introduced in
the next chapter, the presence of several UV fixed points allows to tests the predicted
behaviour of steady state expectation values with a precision which would be inaccessible
for other models.

Moreover, at the pure TBA level the equations of the staircase model are strictly
related to those of the An non-diagonal massless flows, and this suggests that it is in some
sense possible to regard the former as an effective scattering theory for more complicated
models with magnons in their spectra. It is also possible to obtain generalized staircase-
like theories via analytic continuation of the coupling constants in affine Toda field
theories [20], [19].

3.1 The scattering theory

The staircase model originally proposed by Al. B. Zamolodchikov is perhaps the simplest
scattering theory which displays roaming trajectories under the renormalization group
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action. The particle content of the theory consists of a single neutral boson1 of mass m,
with the following two-body S-matrix:

S(θ) ≡ tanh

(
θ − θ0

2
− iπ

4

)
tanh

(
θ + θ0

2
− iπ

4

)
(3.1)

where θ = θ1 − θ2 is the rapidity difference between the two scattering particles and
θ0 ∈ R is a parameter of the model. It is immediate to check that this scattering
amplitude satisfies the crossing symmetry (1.52) and unitarity (1.50) requirements:

S(θ) = S(iπ − θ) , S(θ)S(−θ∗) = 1 . (3.2)

Thanks to the periodicity condition:

S(θ) = S(θ + 2πi) (3.3)

the zeros and poles of the S-matrix are completely fixed by those in the physical strip
0 ≤ Im(θ) < π and in the unphysical one −π ≤ Im(θ) < 0. In the physical strip there
are two simple zeros:

θ = ±θ0 + i
π

2
, (3.4)

while two resonance poles are found in the unphysical strip:

θ = ±θ0 − i
π

2
. (3.5)

The absence of zeros in the physical strip is a signal of the fact that there are no bound
states in the model. We can re-express the scattering amplitude (3.1) in terms of the
Mandelstam variable s = 2m2(1 + cosh (θ)):

S(s) =

√
s(s− 4m2)− 2im2 cosh (θ0)√
s(s− 4m2) + 2im2 cosh (θ0)

(3.6)

from this expression we recognise the usual square-root branch points at s = 0 and
s = 4m2 originating the u-channel cut (−∞, 0] and the s-channel one [4m2,+∞). In
the s-plane the two zeros (3.4) are at the points s = 2m2 ± 2im2 sinh (θ0) in the first
Riemann sheet, while the poles (3.5) are in the unphysical Riemann sheet just under the
zeros, see figure 3.1.

On a physical ground, there are two possible interpretations for this scattering the-
ory. The first one relies on the analogy with the massless flow between the tricritical
and the critical Ising model, A2 : M4 →M3. In [6] the massless particles in the theory

1One could also choose the neutral particle to be a Majorana fermion by simply changing the overall
sign of the scattering amplitude.
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Re(θ)

Im(θ)
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−iπ
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Re(s)

Im(s)

×

×

2
m

2
si
n
h
(θ

0
)

0 4m22m2

Figure 3.1: Zeros and poles of the staircase S-matrix in the θ-plane (left) and in the
s-plane (right). Zeros are denoted by black dots and poles by crosses. In the s-plane the
poles in the second sheet are misplaced a bit for transparency, as they are exactly under
the zeros.

were interpreted as right-moving (p = 1
2
Meθ) and left-moving (p = 1

2
Me−θ) Goldstone

fermions representing the spontaneous breaking of the M4 supersymmetry by the inte-
grable Φ(1,3) perturbation. The S-matrix which was proposed therein for the scattering
between massless fermions is similar to the staircase’s one (3.1):

S(θ) = − tanh

(
θ

2
− iπ

4

)
, (3.7)

with θ the rapidity difference between the left mover and right mover. This scattering
amplitude has a single pole in the unphysical sheet corresponding to a highly unstable
Higgs boson in the theory. In light of this, one can argue that the S-matrix (3.1)
represents a deformation of this theory in which SUSY is explicitly broken and the
Goldstone fermions acquire a mass m related to the Higgs energy scale via M2 = m2eθ0 .

The second interpretation of this massive scattering amplitude, to which we will stick
from now on, is that of an analytic continuation of sinh-Gordon S-matrix at its self-dual
point. To see this, it is useful to rewrite (3.1) as:

S(θ) =
sinh (θ)− i cosh (θ0)

sinh (θ) + i cosh (θ0)
(3.8)

and compare it to the sinh-Gordon S-matrix (1.60), which we recast as well:

SshG(θ) =
sinh (θ)− i sin (γ)

sinh (θ) + i sin (γ)
, γ ≡ β2/8

1 + β2/(8π)
. (3.9)
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We notice that SshG(θ) has two zeros along the imaginary axis in the physical strip,
which coincide when the self-dual point γ = π

2
(i.e. β2 = 8π) is reached. If at that point

we make the analytic continuation:

γ 7→ γ =
π

2
± iθ0 (3.10)

then the double zero of (3.9) splits into two distinct points with different real parts and
the same happens to the pole in the unphysical strip, while we precisely recover the
S-matrix (3.8):

SShG

(
θ; γ =

π

2
± iθ0

)
= S(θ; θ0) (3.11)

One might be tempted to perform the analytic continuation (3.10) directly at the
lagrangian level. The sinh-Gordon potential is proportional to the sum of two free-field
exponential, eβφ + e−βφ, and because of the two possible signs in (3.10) there are two
possible analytic continuation of each term, resulting in four exponential operators:

U± = exp
(
±i
√

8πα+φ
)
, V± = exp

(
±i
√

8πα−φ
)

(3.12)

with α± complex coefficients. From the CFT point of view these exponentials are vertex
operators (see e.g. [25]) which have complex conformal weights. However, the sinh-
Gordon conserved charges can be shown to survive under all these four perturbations,
so that the action:

S =

∫
d2x

[
1

2
(∂µφ)2 + µ+U+ + µ−U− + ν+V+ + ν−V−

]
(3.13)

is still integrable at the quantum level [17]. This action would be a good candidate for
a lagrangian description of the staircase model, were it not for the fact that even if we
choose the coefficients µ±, ν± in such a way that it is a real action, by no means the
perturbing potential can be arranged bounded from below. Therefore, as far as it is
presently known, there is no way to provide a physically sensible lagrangian description
of this scattering theory.

3.2 TBA analysis

Let us now turn to the TBA structure of the model. From equation (3.8) one readily
obtains the kernel φ(θ) ≡ −i∂θ lnS(θ):

φ(θ) =
1

cosh (θ − θ0)
+

1

cosh (θ + θ0)
≡ ψ(θ + θ0) + ψ(θ − θ0) (3.14)

where the function ψ is defined as the reciprocal of the hyperbolic cosine. The function
φ(θ) is plotted in figure 3.2 for two values of θ0. Let us also define the kernel normalization
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constant (notice the different choice of the overall sign with respect to the definition
(2.52)):

C−1 ≡ 1

2π

∫ +∞

−∞
dθ ψ(θ) =

1

2
. (3.15)

Since the particle content of the model consists only in one massive neutral particle,
there is only one TBA equation, the solution of which gives the particle’s pseudoenergy
ε(θ):

ε(θ) = β cosh (θ)− 1

2π
[(ψ ∗ L) (θ − θ0) + (ψ ∗ L) (θ + θ0)] (3.16)

where β ≡ mR and L(θ) ≡ ln
(
1 + e−ε(θ)

)
. Both the kernel and the driving term in the

equation above are even functions of θ, thus also ε(θ) is even, as ε(θ) and ε(−θ) satisfy
the same functional equation. This implies that L(θ) = L(−θ) and the same holds for
the occupation function n(θ) defined as in (2.33). In natural units β is dimensionless,
and it is very useful to define the quantities x ≡ ln(β/2) and y = −x. We will be mainly
interested in the UV regime(s) of the theory, where β is much smaller than 1, so that
typically x < 0 and y > 0. It turns out more convenient to use y rather than β in the
TBA equation:

ε(θ) = 2e−y cosh (θ)− 1

2π
[(ψ ∗ L) (θ − θ0) + (ψ ∗ L) (θ + θ0)] . (3.17)

Figure 3.2: Kernel function φ(θ) of the staircase model for θ0 = 10 (left) and θ0 = 50
(right). As θ0 increases φ(θ) flattens to zero in the region between the peaks, while the
width of the latter is almost untouched.

47



3.2.1 Kinks and plateaux

Two important observations on equation (3.17) are in order. The first is that there are
two dimensionless parameters, y and θ0, which control the behaviour of the system. As
we will show in the next section, it is the value of the ratio y/θ0 which is responsible for
the characteristic staircase profile of the scaling function:

c(β) =
3β

π2

∫ +∞

−∞
dθ cosh (θ)L(θ) (3.18)

as well as for the similar profiles of average charge currents and densities when the system
is out of thermal equilibrium. When y and θ0 are sent to infinity and their ratio is kept
fixed and different from an integer or half-integer, c(β) approaches the central charge of
a unitary minimal model Mn. On the other hand if θ0 is fixed (and large enough) and
y is increased the RG flow of the system roams between every unitary minimal model:
as θ0 gets larger, the scaling function gets arbitrarily close to each of them, and the
“time”spent in proximity of every fixed point increases as well. The integer and half-
integer values of y/θ0 are the cross-over points where c(β) leaves the basin of a unitary
minimal model and enters the next one. The scaling function is plotted in figure 3.3 for
different values of θ0.

The second observation concerns the non-local nature of equation (3.17). As the
function ψ(θ) is peaked at θ = 0, the two convolution terms are peaked at θ − θ0 and
θ + θ0 and become exponentially small as |θ ± θ0| exceeds a few units. So the value of ε
at θ is influenced by the values of ε in the very small intervals around θ+ θ0 and θ− θ0.
If |θ| � y then the driving term in (3.17) is largely dominant over the convolution terms
and therefore the pseudoenergy becomes exponentially increasing:

ε(θ) '

{
e−y+θ , θ � y

e−y−θ , θ � −y
(3.19)

this means that when |θ| � y, the occupation function falls-off exponentially and L(θ)
suffers a double exponential decay, as ln (1 + e−ε) ' exp

(
e−y±θ

)
when θ � y (upper sign)

or θ � −y (lower sign). This is the same behaviour displayed by scattering theories for
which φ(θ) is peaked at θ = 0. Things however are quite different in the central region
−y < θ < y, where the staircase’s TBA shows different structures depending on the ratio
y/θ0. To see that, let us start with 0 < y < θ0/2. When −y < θ < y both |θ − θ0| and
|θ + θ0| are larger than y, therefore L(θ− θ0) and L(θ+ θ0) (the dominant contributions
from the convolution) are essentially zero, so that approximately:

2e−y . ε(θ) ' 2e−y cosh(θ) . 1 + e−y , −y < θ < y . (3.20)

In this interval therefore L(θ) varies very little and it develops a plateau which gets larger
as y increases, in complete analogy with models having a single peak in φ(θ). Two kinks
at θ = ±y connect the plateau value of L to the vanishing asymptotic values.
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Figure 3.3: Staircase model’s scaling function (3.18) for different values of θ0 as the
temperature varies. The plateaux are clearly visible and they match the values of the
unitary minimal model central charges (3.58) (dashed horizontal lines).

If instead we take θ0/2 < y < θ0, and start at θ very large and negative, the behaviour
of L(θ) is the same described above as long as θ < −y. However, since the TBA equation
relates the values of L(θ), L(θ−θ0) and L(θ+θ0) we expect the kink at θ = +y to originate
another kink at θ = y − θ0 > −y, as well as a kink at −y + θ0 < y originated from the
one at θ = y. For θ > y again L(θ) drops to zero. So there are four kinks in this range,
as it is confirmed by the numerical solution of the TBA equation.

One could then proceed and show that for θ0 < y < 3θ0/2 there are six kinks at
the positions ±y, ±(y − θ0), ±(y − 2θ0). These kinks form two alternating sequences
generated from the right and left “seed”kinks, at θ = ±y respectively. The general
situation, supported by the numerical solution of equation (3.17) and represented in the
plots in figure 3.4, is the following. When:

(k − 1)θ0

2
< y <

kθ0

2
, k ∈ N (3.21)

L(θ) has 2k kinks, at the positions ±(y − iθ0), i = 0, 1, . . . , k − 1. The latter can be
organized into two sequences originated from the left and the right seed kinks, so that
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Figure 3.4: Profiles of L(θ) at different values of the ratio y/θ0. The right plot in the
top row is at the transition between the first (k = 1) and second (k = 2) fixed points,
all the other plots are at values of y/θ0 well inside (3.21). The vertical dashed lines are
at the points zi in (3.24).

we can label their positions as:{
θi,L = −y + (i− 1)θ0

θi,R = y − (k − i)θ0

, i = 1, 2, . . . , k (3.22)

and clearly θ1,L < θ1,R < θ2,L < · · · < θk,L < θk,R. Furthermore, θi,R = −θk−i+1,L as
expected from the parity of L(θ).

In each region between two adjacent kinks, the L-function shows very little variations,
as can be argued [20] from a qualitative study of the integral equation satisfied by L′(θ),
and this is also in agreement with the numerics. There are therefore 2k + 1 plateaux
of L(θ), the first and the last one being respectively in the regions θ < −y and θ > y,
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where L(θ) is effectively zero. The internal plateaux are of alternating width, as so is the
distance between two adjacent kinks. Starting from θ = −y, we can arrange the internal
plateaux into two sequences:{

P2i−1 = [θi,L , θi,R] , i = 1, . . . , k , |P2i−1| = 2y − (k − 1)θ0

P2i = [θi,R , θi+1,R] , i = 1, . . . , k − 1 , |P2i| = kθ0 − 2y
(3.23)

This structure gives us a hint of what happens to L(θ) when there is a transition between
two fixed points in the UV limit, that is when k/θ0 is equal to an integer or half integer
(assuming both y and θ0 very large). Setting y = αθ0, with (k − 1)/2 < α < k/2, when
α gets closer to k/2 the width of the even plateaux P2i shrinks to zero, and a new bump
forms at θ = 0, which then gets larger as it effectively becomes a new plateau. Thus when
α is just above k there are two more kinks and one more plateau, the “thin”plateaux
being now the odd ones, P2i−1. Of course when α → (k − 1)/2 one only needs to
interchange the roles of P2i and P2i−1.

We have tacitly assumed so far that the kinks are point-like jumps of L(θ) located
at the positions (3.22), but they actually have a finite extension: this is the size of the
interval where ψ(θ) is appreciably different from zero, which is of order O(1 ÷ 10), see
Figure 3.2. The extension of the kinks does not depends, in first approximation, on the
values of y, θ0 and as these parameters get larger (with a fixed ratio) the former becomes
negligible with respect to the size of the plateaux so that L(θ) is well-approximated by a
piece-wise constant function. As long as y and θ0 are finite, however, we should consider
the finite size of the kinks. This requires just one more piece of notation. Let us define
the points

zi ≡
(i− k)θ0

2
, i = 0, 1 . . . , 2k , (3.24)

which are the equidistant midpoints of the internal plateaux (for i 6= 0 , 2k), namely zi is
the central point of Pi. The ith kink, even though finite-sized, is well inside the interval:

Ki ≡ [zi−1 , zi] , i = 1, 2, . . . , 2k (3.25)

as z0 < θ1,L < z1 < θ1,R < · · · < θk,L < z2k−1 < θk,R < z2k. Notice also that L(z0) and
L(z2k) are zero to all effects, so we can safely set:∫ +∞

−∞
dθ L(θ)f(θ) =

2k∑
i=1

∫
Ki

dθ L(θ)f(θ) (3.26)

as long as f is not doubly-exponentially increasing at large rapidities.
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3.2.2 Reduced TBA equations and the relation to An massless
flows

To conclude this section, let us derive the coupled algebraic equations for the con-
stant quantities ε(zi) ≡ εi, i.e. the pseudoenergies at the plateaux’ midpoints. If
i = 1, . . . , 2k − 1 one has:

2e−y cosh (zi) ≤ 2 exp(|i− k|θ0/2− y) ≤ 2 exp((k − 1)θ0/2− y) , (3.27)

so that the driving term in (3.17) is bounded by an exponentially decreasing quantity
which is negligible when y and θ0 are large enough. The TBA equation for εi is thus:

εi = −
2k∑
i=1

∫
Ki

dθ′

2π
L(zi − θ′)φ(θ′) (3.28)

where (3.26) has been used. The kernel is effectively different from zero only inside the
two plateaux containing θ = ±θ0, so that we can safely use the approximation:

φ(θ) ' 2πC−1 [δ(θ − θ0) + δ(θ + θ0)] (3.29)

therefore, using the fact that ε(zi ± θ0) = εi±2, equation (3.28) becomes:

εi = −C−1
[
ln
(
1 + e−εi−2

)
+ ln

(
1 + e−εi+2

)]
i = 1, . . . , 2k − 1 , (3.30)

with the boundary conditions ε−1 = ε0 = ε2k = ε2k+1 = +∞. Furthermore, we notice
that the interactions only involve even plateaux when i is even and odd plateaux when
i is odd, so that we can write two disjoint sets of coupled equations. In fact, setting
xi ≡ exp{(−ε2i−1)} for i = 1, . . . , k and yi ≡ exp{(−ε2i−2)} for i = 2, . . . , k the equations
above split into: {

xi = [(1 + xi+1)(1 + xi−1)]C
−1

, i = 1, . . . , k

yi = [(1 + yi+1)(1 + yi−1)]C
−1

, i = 2, . . . , k
(3.31)

with boundary conditions x0 = xk+1 = y1 = yk+1 = 0. A manipulation of the staircase
TBA equation similar to the one performed in the previous chapter leads to the kink
equations for the quantities connecting the various εi [39].

Notice that, as C−1 = 1/2, the two sequences of coupled equations (3.31) can be
re-written in the following way :

x2
a =

k∏
b=1

(1 + xb)
Iab , y2

a =
k∏
b=2

(1 + yb)
Iab (3.32)

52



where Iab is the incidence matrix of a A-type Dynkin diagram, and in the first equation
a = 1, . . . , k while in the second one a = 2, . . . , k. These are exactly the equations (2.79)
(renaming ya ≡ xa) and (2.80) for the ultraviolet and infrared stationary solutions of a
massless A-type Y -system.

This coincidence had already been noticed in [20], but its consequences were not
completely analyzed therein. As we are going to show in detail in the next section, when
the ratio y/θ0 is kept fixed as in (3.21) and y, θ0 are sent to infinity, the staircase model
approaches the unitary minimal model Mk+2. But this is also the UV fixed point of
the Ak massless flow and the IR fixed point of the Ak+1 one, and the θ-independent
values of the real-particle and magnonic rapidities in those models are precisely ruled
by the first and the second equation in (3.32) respectively. Thus, it seems that when
the staircase model, during its roaming, reaches the Mk+2 fixed point, the midpoints of
the “odd”plateaux of its L-function correspond to the particles in the Ak massless flow
in its UV limit, while the ones of the “even”plateaux correspond to the particles of the
Ak+1 massless flow in its IR limit. This is not an innocuous analogy, as it indicates that
somehow a diagonal scattering theory with only one massive particle in the spectrum
encodes information about the particles contained in other non-diagonal models having
the same high-energy and low-energy limits [18]. In the next chapter we will show that
this relation seems to hold at the hydrodynamic level, where we can actually “see”the
density peaks corresponding to these particles.

3.3 The scaling function

The scaling function of the staircase model depends on the two parameters y ≡ ln (2/β),
θ0 rather than on the temperature alone, so that we can conveniently re-write (3.18) as:

c(y, θ0) =
6

π2

∫ +∞

−∞
dθ e−y cosh (θ)L(θ) . (3.33)

Thanks to (3.26) we can reduce the integration domain to
⋃i=2k
i=1 Ki. Inside each Ki,

L(θ) is bounded for every finite y and the quantity 2e−y cosh(θ) is effectively different
from zero (in the limit of large y) only in K1 and K2k, as it is roughly bounded by
exp (|i− k|θ0/2− y)→ 0 when i 6= 1 , 2k, that is:

2e−y cosh(θ) '


e−y−θ , θ ∈ K1

0 , θ ∈ K2 . . . , K2k−1

e−y+θ , θ ∈ K2k

(3.34)

therefore the only relevant contributions to the scaling functions come from the kinks in
K1 and K2k:

c(y, θ0) = c− + c+ (3.35)
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where:

c− ≡
3

π2

∫
K1

dθ e−y−θL(θ) , c+ ≡
3

π2

∫
K2k

dθ e−y+θL(θ) . (3.36)

Notice that, as L(θ) = L(−θ) and the two intervals K1 and K2k are symmetric with
respect to θ = 0, c− = c+ and therefore we only need to evaluate one of the above
integrals. In order to do so, let us take the derivative with respect to θ of the TBA
equation (3.17):

ε′(θ) = 2e−y sinh θ − 1

2π
[(ψ′ ∗ L) (θ − θ0) + (ψ′ ∗ L) (θ + θ0)] (3.37)

and then integrate both sides over Ki with measure L(θ) dθ, so that we end up with:

J i =
π2

3
Ci − I i− − I i+ (3.38)

where:

J i ≡
∫
Ki

dθ ε′(θ)L(θ) =

∫ εi

εi−1

dε ln
(
1 + e−ε

)
(3.39)

Ci ≡ 3

π2

∫
Ki

dθ 2e−y sinh (θ)L(θ) (3.40)

I i± ≡
1

2π

∫
Ki

dθ (ψ′ ∗ L) (θ ± θ0)L(θ) (3.41)

The right hand side of (3.40) is basically the contribution to the scaling function coming
from the interval Ki when the latter is in the positive rapidity region, otherwise there is
an extra minus sign. Namely:

2e−y sinh(θ) '


−e−y−θ , θ ∈ K1

0 , θ ∈ K1, K2 . . . , K2k−1

e−y+θ , θ ∈ K2k

(3.42)

so that from (3.35) it follows:

Ci = −δ1,ic− + δ2k,ic+ . (3.43)

To evaluate I± we use the following generalized integration by parts, the proof of which
can be found in [20]:∫

Ki

dθ (f ′ ∗ A) (θ)B(θ) = −
∫
Ki

dθ (f ′ ∗B) (θ)A(θ) +

(∫ +∞

−∞
dθf(θ)

)
[A(θ)B(θ)]zizi−1

.

(3.44)
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This equality is valid when f is even and exponentially decreasing outside a support
centered in θ = 0, while A, B are slowly varying functions on the support of f . These
conditions are met if we choose f(θ) = ψ(θ), A(θ) = L(θ ± θ0), B(θ) = L(θ). Applying
(3.44) to (3.41) we have:

I i± = − 1

2π

∫
Ki

dθ (ψ′ ∗ L) (θ)L(θ ± θ0) +

(
1

2π

∫ +∞

−∞
dθψ(θ)

)
[L(θ)L(θ ± θ0)]zizi−1

= −I i±2
∓ + C−1[L(θ)L(θ ± θ0)]zizi−1

(3.45)

where the second line follows from a change of variable in the first integral and by noting
that zi ± θ0 = zi±2. The coefficient C−1 has been defined in (3.15). It is convenient to
define:

Ĩ i± ≡ I i± −
1

2
C−1[L(θ)L(θ ± θ0)]zizi−1

, (3.46)

so that equation (3.45) simplifies to:

Ĩ i± = −Ĩ i±2
∓ . (3.47)

Now notice that because of the double-exponential fall-off of L, I i± ' 0 and Ĩ i± ' 0 for
i < 1 or i > 2k. At this point equation (3.38) can be rewritten as follows:

J i =
π2

3
Ci − Ĩ i− − Ĩ i+ −

1

2
C−1[L(θ)(L(θ + θ0) + L(θ − θ0))]zizi−1

=
π2

3
Ci − Ĩ i− − Ĩ i+ +

1

2
C−1[L(θ)ε(θ)]zizi−1

, (3.48)

where the TBA equation for the plateaux (3.30) has been used. To get rid of the surface
term it is again convenient to set:

J̃ i ≡ J i − 1

2
C−1[L(θ)ε(θ)]zizi−1

, (3.49)

so that (3.48) finally reads:

J̃ i =
π2

3
Ci − Ĩ i− − Ĩ i+ =

π2

3
[−δ1,ic− + δ2k,ic+]− Ĩ i− − Ĩ i+ . (3.50)
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Equation (3.50) selects the desired integrals in (3.36) if we choose (equivalently) i = 1
or i = 2k. For i = 1 we have:

c− = − 3

π2

(
J̃ 1 + Ĩ1

− + Ĩ1
+

)
= − 3

π2

(
J̃ 1 − Ĩ3

−

)
= − 3

π2

(
J̃ 1 + J̃ 3 − Ĩ5

−

)
= . . .

= − 3

π2

k∑
i=1

J̃ 2i−1 , (3.51)

where the second equality follows from Ĩ1
− = −Ĩ−1

+ = 0 , Ĩ1
+ = −Ĩ3

− = 0 and then we have

repeatedly used Ĩ i− = −J̃ i + Ĩ i+2
− for 1 < i < 2k. The cascade stops when J̃ 2k+1 = 0 is

met. From equations (3.39) and (3.49) we get:

J̃ 2i−1 = J 2i−1 − 1

2
[L(θ)ε(θ)]z2i−1

z2i−2

=

∫ ε2i−1

ε2i−2

dε ln
(
1 + e−ε

)
− 1

2

[
ε2i−1 ln

(
1 + e−ε2i−1

)
− ε2i−2 ln

(
1 + e−ε2i−2

)]
.

(3.52)

Now if we use the representation (2.59) of the Dilogarithm function Li2(z) the integral
in the previous equation reads J 2i−1 = Li2(−e−ε2i−1) − Li2(−e−ε2i−2). Furthermore, we
can combine J 2i−1 and the surface term via the following relation between Li2(z) and
Roger’s dilogarithm L(z), which holds for x > −1 and is a slight modification of (2.58):

L
(

x

1 + x

)
= −Li2(−x)− ln (1 + x) ln (x) (3.53)

so that (3.52) reads:

J̃ 2i−1 = −L
(

xi
1 + xi

)
+ L

(
yi

1 + yi

)
, (3.54)

with xi = e−ε2i−1 and xi = e−ε2i−2 being the solutions of (3.31), i = 1, . . . , k. Therefore
we finally obtain the UV limit of the staircase model’s scaling function:

lim
y,θ0→∞

c(y, θ) =
6

π2

k∑
i=1

[
L
(

xi
1 + xi

)
− L

(
yi

1 + yi

)]
≡ ck (3.55)
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where the limits y, θ0 → +∞ are performed keeping the ratio y/θ0 fixed as in (3.21). To
evaluate the sum in the previous equation we use the fact that if the quantities xi satisfy
the chain of relations (3.31) with C−1 = 1/2 then the following sum rule for Roger’s
dilogarithm holds [35]:

6

π2

k∑
i=1

L
(

1

1 + xi

)
=

2k

k + 3
(3.56)

and an identical one holds substituting yi to xi. Using these relations and the identity:

L
(

x

1 + x

)
=
π2

6
− L

(
1

1 + x

)
(3.57)

the right-hand side of (3.55) yields:

ck = 1− 6

(k + 2)(k + 3)
, k = 1, 2, . . . (3.58)

which is precisely the central charge of the unitary minimal modelMn, with n = k+2 ≥
3, as expected from the numerical results in figure 3.3.

As a final remark, we mention that (3.58) can be directly obtained from the more
general result proved in [20] for modified affine Toda field theories by choosing the rank
of the Lie algebra (i.e. the number of particles) r = 1 and the dual Coxeter number
h = 2, which corresponds to selecting the Mn series among the rational conformal field
theories.
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Chapter 4

Generalized hydrodynamics of the
staircase model

The physics of many-body quantum systems out of thermal equilibrium has received a
lot of attention in recent years, motivated by the successful experimental realization of
these systems using cold atomic gases [11, 40]. It has been observed that when there are
extensively many conserved charges, the time evolution of a system initially prepared in
a non-thermal state does not lead to Gibbs thermalization in a traditional sense: what is
instead observed is the realization of a generalized Gibbs ensemble (GGE) characterized
by all the local and quasi-local charges, with non-equilibrium steady state currents due to
ballistic transport [12]. These phenomena are coherently described within the theoretical
framework of generalized hydrodynamics (GHD) [15, 16, 41], which is based on the
assumption of local entropy maximization and provides a quasi-particle representation
of GGEs by extending the TBA techniques discussed in chapter 2.

In this chapter, we present the the main principles and results of Euler-scale gener-
alized hydrodynamics and apply them to the study of the staircase model. The peculiar
features of this scattering theory, already observed when describing its TBA structure
in the previous chapter, strongly affect its hydrodynamics. In particular, unlike any
other massive integrable QFT studied so far within the GHD picture1, the effective ve-
locities of the quasi-particles are strongly non monotonic, displaying a structure which
bears resemblance to the one observed in the GHD profiles of An massless flows [42]. In
the last part of the chapter we describe how these features must be taken into account
when implementing the simplest off-equilibrium setup (partitioning protocol with ther-
mal reservoirs), leaving to the next chapter a detailed discussion of GHD steady state
currents in the staircase model.

1To the best of the author’s knowledge.
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4.1 Non-equilibrium quantum systems and emergent

hydrodynamics

There are different approaches which can be used to describe many-body quantum sys-
tems out of equilibrium. The one we will follow, and which is particularly suited to study
the appearence of hydrodynamic features, is the Hamiltonian reservoir approach: the off-
equilibrium quantum system is connected to an external thermal bath, and togheter they
form a closed system with unitary time evolution. This framework finds its best practical
realization in the so-called partitioning protocol [1, 14], which is implemented by joining
together at a time t = 0 two quantum systems independently thermalized at tempera-
tures Tl and Tr. In the (1 + 1)-dimensional case we can think of these systems as two
semi-infinite halves joined at x = 0, with the left reservoir at x = −∞ and the right
reservoir at x = +∞, see figure 4.1.

t

x
0

TL TR

current

Figure 4.1: Partitioning protocol. Dashed lines represent different rays ξ = x
t
. Diffusion

occurs only inside the light cone defined by the particles’ maximum velocity, and the
reservoir are unaffected outside of it. The non equilibrium steady state lies at ξ = 0.

The steady state which is formed near the junction at a large time is described by a
time-evolved density matrix ρ(t) = e−iHtρ0e

iHt, where H = Hr + Hl + δH is the exact
Hamiltonian ruling the time evolution and the initial state is:

ρ0 = ρl ⊗ ρr = n
(
e−βlHl−βrHr

)
, n(A) ≡ A

Tr[A]
(4.1)

so that the average of any local observable O in this state is:

Osta = lim
t→+∞

Tr[ρ(t)O] = lim
t→+∞

〈eiHtOe−iHt〉0 . (4.2)

If such a steady state exists, then it is a maximal entropy state involving all the conserved
charges in the dynamics. Systems which possess few conserved charges usually relax to-
wards a traditional Gibbs ensemble, where there are no steady state currents. But if
there are enough charges, it is possible that the steady state admits non-equilibrium sta-
tionary currents, carried by quasi-particles at the mesoscopic level. Roughly speaking,
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this means that if the system is integrable, the conserved charges are “too many”to allow
for a traditional thermalization, and there is ballistic transport in the non-equilibrium
steady state (NESS). Diffusion in the steady state is bound to take place inside a light
cone [13] defined by the quasi-particle maximum velocity, that is x/t = ±1 in the rel-
ativistic case2, while the asymptotic reservoirs are unaffected by the NESS currents at
any finite time.

An exact result has been found [1] for the steady state energy current when the left
and right subsystem are integrable QFT near a conformal critical point. In that case,
there are left-movers (particles coming from the reservoir at x = +∞) carrying a mean
energy density hl = πc

6
T 2
l and right-movers (from the reservoir at x = −∞) carrying a

mean energy density hr = πc
6
T 2
r . This means that if Tl 6= Tr there is a non-zero energy

current within the light cone, and in the UV limit Tr , Tl → +∞ (with Tl/Tr fixed) the
NESS average energy current and density are given by:

〈j〉sta =
1

2
(hl − hr) =

cπ

12
(T 2

l − T 2
r ) (4.3)

〈h〉sta =
1

2
(hl + hr) =

cπ

12
(T 2

l + T 2
r ) (4.4)

with c the central charge of the CFT.

Let us now investigate how hydrodynamics emerges in a quantum many-body system
out of equilibrium, starting from a homogeneous system with a finite number of local
charges:

Qi =

∫
dx qi(x, t) , i = 1, 2, . . . , N (4.5)

which are pairwise commuting: [Qi, Qj] = 0 ∀ i, j = 1, . . . , N . It is customary to identify
the first two conserved charges with the Hamiltonian and the momentum, Q1 = H,
Q2 = P , so that the conservation laws read Q̇i = i[Q1, Qi] = 0. Recall from chapter
1 that by “local”we mean that the densities qi(x, t) entering (4.5) commute with the
Hamiltonian density at space-like separations. The continuity equations relating the
charge densities and their currents ji(x, t) are the usual differential equations:

∂tqi(x, t) + ∂xji(x, t) = 0 , i = 1, 2, . . . , N (4.6)

If we believe the Boltzmann principle of entropy maximization to hold at the macro-
scopic scale, then after a sufficiently large time the system reaches a state ρ which
maximizes S[ρ] = −Tr[ρ ln ρ] under the N + 1 constraints coming from the separate

2This holds when particles can move at the speed of light c = 1, while in the more general case the
light cone is defined by a Fermi velocity vF < 1. However, equations (4.3), (4.4) for the steady state
energy current and density are universal.
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conservation of all the charges and the overall normalization of ρ. From the variation:

δTr
[
ρ
(

ln ρ+
∑

βiQi + α
)]

= 0⇒ Tr
[
δρ
(

ln ρ+ 1 +
∑

βiQi + α
)]

= 0 , (4.7)

we obtain the density matrix of the resulting Gibbs ensemble:

ρ = n
(
e−

∑N
i=1 βiQi

)
(4.8)

with the normalization map defined as in (4.1). The set of generalized inverse tem-
peratures β = (β1, β2, . . . , βN) works as a coordinate system for the manifold of maxi-
mal entropy states. The average of a local observable O(x, t) in this state is given by
〈O〉β = Tr[ρO] and it is independent of space-time coordinates as the system is globally
homogeneous and stationary. Let us now define:

qi = 〈qi(0, 0)〉β , ji = 〈ji(0, 0)〉β (4.9)

and notice that we can write any average of a charge density as the derivative of the
model-specific free energy density:

f(β) = − lim
L→+∞

1

L
ln Tr

[
e−

∑N
i=1 βiQi

]
(4.10)

with respect to one of the βi. With this sign choice in the previous equation, the Hessian
matrix of f(β) is the opposite of the static covariance matrix [43]:

Cij = −∂
2f(β)

∂βi∂βj
=

∫
dx 〈qj(0, 0)qi(x, 0)〉cβ = Cji , (4.11)

and usually C is positive definite so that the map β → q ≡ (q1, . . . , qN) is a bijec-
tion: the average densities of conserved charges are good coordinates to parametrize
a maximal entropy state. This means that we can express also the current densities
j(β) ≡ (j1, . . . , jN) as functions of q:

j = j(q) , (4.12)

and once the functional dependence is made explicit, one has an equation of state for
the model. Finally, it is simple to show that, because of space and time translation
invariance, also the matrix:

Bij =
∂ji(β)

∂βj
=

∫
dx 〈ji(0, 0)qj(x, 0)〉cβ (4.13)

is symmetric, which means that the one-form
∑

i jidβi is closed. Assuming that the
manifold of maximal entropy states is regular enough, this implies that it is also an
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exact form, thus we can write the average current densities as derivatives of a different
free energy density g(β):

qi =
∂f(β)

∂βi
, ji =

∂g(β)

∂βi
, i = 1, . . . , N . (4.14)

In general a system may be prepared in a state which is non-stationary and inho-
mogeneous, so that the observable averages 〈O(x, t)〉 explicitly depend on space-time
coordinates. In this context, the emergence of hydrodynamics is based on the assump-
tion of local entropy maximization: that is, the assumption that at large space and time
scales the averages can be evaluated in a Gibbs ensemble with space-time dependent
inverse temperatures βi(x, t):

〈O(x, t)〉 ≈ 〈O(0, 0)〉β(x,t) = Tr[ρ(x, t)O] . (4.15)

The validity of this assumption has to be tested model by model and it is in general very
difficult to prove, but it is based on the very sensible principle of separation of scales
(see figure 4.2): if we wait long enough, fluctuations in the averages are expected to
take place at scales which are very large with respect to the microscopic ones, but still
extremely small with respect to the macroscopic scales where the full thermalization to a
global, homogeneous Gibbs ensemble takes place. Thus, the appropriate lenght scale at
which hydrodynamic takes place is the mesoscopic one: a (locally) homogeneous Gibbs
ensemble is reached at every “fluid cell”labelled by (x, t), and (4.15) is (nearly) valid
after a local relaxation time τrel, with τmicro � τrel � τmacro.

Conservation laws at the mesoscopic level relate the changes of average currents and
densities between neighbouring fluid cells. To see this, we can consider an integration
contour [x1, x2] × [t1, t2] containing a macroscopic number of cells and integrate (4.6)
along the latter:∫ x2

x1

dx (qi(x, t2)− qi(x, t1)) +

∫ t2

t1

dt (ji(x2, t)− ji(x1, t)) = 0 . (4.16)

Then, denoting space-time dependent averages by:

qi(x, t) = 〈qi(0, 0)〉β(x,t) , ji(x, t) = 〈ji(0, 0)〉β(x,t) (4.17)

and taking the expectation value of (4.16) we obtain N macroscopic conservation laws:∫ x2

x1

dx (q(x, t2)− q(x, t1)) +

∫ t2

t1

dt (j(x2, t)− j(x1, t)) = 0 , (4.18)

which can be re-written in differential form as:

∂tq(x, t) + ∂xj(x, t) = 0 . (4.19)
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Macroscopic Mesoscopic (fluid cells) Microscopic

(x, t)

(x′, t′)

e−
∑
βi(x,t)Qi

e−
∑
βi(x

′,t′)Qi

Figure 4.2: The separation of scales upon which relies the local entropy maximization
hypothesis.

These are the Euler hydrodynamic equations of the model. They can be rewritten as
wave equations thanks to (4.12):

∂tq(x, t) + J(q(x, t))∂xq(x, t) = 0 , (4.20)

where J(q) is the N ×N flux Jacobian matrix of the transformation q→ j(q):

J(q)ij =
∂ji(q)

∂qj
, i, j = 1, . . . , N. (4.21)

It is possible to use a different set of coordinate to parametrize the maximal entropy
state. Suppose that n(x, t) = (n1, . . . , nN) is such that q = F q(n) and j = F j(n), with
F q and F j regular maps. Then n(x, t) are valid coordinates and (4.20) becomes:

∂tn(x, t) + J(n(x, t))∂xn(x, t) = 0 . (4.22)

Notice that J(q) and J(n) are related by a similarity transformation:

J(n) = R−1J(q)q=Fq(n)R , R = ∇nj (4.23)

so that the spectrum of the Jacobian is independent of the coordinates. Furthermore,
from the symmetry of the matrix (4.13) it is possible to show that its eigenvalues are
real. It is therefore useful to choose a coordinate system in which J(n) is diagonal, so
that there are no convective derivatives and Euler equations reduce to:

∂tni(x, t) + veff
i (n(x, t))∂xni(x, t) = 0 , i = 1, . . . , N. (4.24)
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The quantities ni are the normal modes of Euler hydrodynamics, and the eigenvalues
veff
i (n(x, t)) are the effective velocities at which they propagate. In the next section we

will show that it is possible to find an explicit expression for the effective velocities em-
ploying the pseudo-particle description ad the machinery of generalized TBA.

Let us now come back to the partitioning protocol introduced at the beginning of
this section, using q-coordinates for simplicity. Equations (4.20) are invariant under the
scaling (x, t)→ (ax, at) so that we may assume the existence of self-similar solutions (at
least in the large scale limit a → +∞), which depend only on the ray ξ = x/t, that is
q(x, t) = q(ξ), β(x, t) = β(ξ). Recasting the derivatives in terms of ξ, (4.20) becomes
an eigenvalue equation for the ray-dependent Jacobian:

(J(q)− ξ1)∂ξq = 0 . (4.25)

The initial condition t → 0+ is fixed by the state of the inhomogeneous system at the
local relaxation time, which is in general unknown. However, as |x| → ∞ any average is
evaluated in the Gibbs state of one of the two reservoirs, which are at generalized inverse
temperatures βr,l. As |x| is very large, the limit t → 0+ corresponds to ξ → ±∞, so
that the initial value problem is:

lim
ξ→±∞

q(ξ) = lim
x→±∞

〈q(x, 0)〉ini = qβr,l , (4.26)

with q ≡ (q1, . . . , qN). On the other hand, for every fixed x a steady state is reached in
the limit t→ +∞, which corresponds to ξ → 0. Thus the steady state averages are:

qsta = lim
ξ→0

q(ξ) , jsta = lim
ξ→0

j(ξ) . (4.27)

If the two subsystems are near a conformal critical point with central charge c, then jsta1

and qsta
1 are given by (4.3) and (4.4) respectively. We will present in the next chapter a

generalization of these expressions for the averages of higher-spin charges.

4.2 Generalized hydrodynamics

In an integrable model there is in general an infinite number of conservation laws, and
this strongly affects the thermalization properties of the systems. It is believed -and it
has been successfully tested in some specific cases, both theoretically and experimentally
[11, 12]- that after a long enough relaxation time the state of the system converges to
a generalized Gibbs ensemble (GGE), rather than to a traditional Gibbs ensemble. The
density matrix of a GGE is obtained maximizing the entropy under an infinite number
of constraints, and that reduces to taking the limit N → +∞ in (4.8):

ρgen = n
(
e−

∑+∞
i=1 βiQi

)
(4.28)
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where again Q1 = H, Q2 = P and all the charges are in involution. There are two delicate
points which must be dealt with when one considers a generalized Gibbs ensemble:

• quasi-local charges. The sum in (4.28) is usually enlarged to include also quasi-
local charges. In a continuous system a local charge is defined by the fact that it
is obtained integrating a density q(x, t) which is non-vanishing only in a limited
spatial support. Quasi-local charges are instead characterized by densities which
have an extended support but an exponentially decaying operatorial norm at large
distances. Their inclusion in the GGE is necessary in order to build a complete set
of conserved charges in the space of maximal entropy states, which is now infinite-
dimensional [44]. Once all the charges in the model have been identified, one should
define in a precise way the convergence properties of the series

∑+∞
i=1 βiQi, which

is usually done by fixing the potentials βi through successive truncations and may
involve finite-volume regularization.

• boundary conditions. In a finite volume, the conserved quantities in the model
depend on the specific boundary conditions. For instance, the presence of walls
preclude any non-zero potential β2 for the conserved momentum, as translational
invariance is broken. However, given a set of allowed conserved quantities, if the
volume is large enough then the boundary condition have little effects on the specific
free energy and therefore on the local current and charge averages. Furthermore,
it is possible to construct a GGE directly in an infinite volume, and in that case
the maximal set of conserved charges is provided by periodic boundary conditions,
which are precisely the ones used in the TBA approach. Therefore we will assume
that the available conserved charges are those compatible with the TBA boundary
conditions.

Apart from these technical problems, the physical principles underlying local entropy
maximization and fluid-cell thermalization are still expected to hold: the assumption
(4.15) is sufficient to evaluate all the one-point averages qi(x, t) and ji(x, t) in a GGE
with infinite space-time dependent inverse temperatures βi(x, t). This is the generalized
hydrodynamic (GHD) picture. Since integrability is now at play, we can extend the TBA
formalism to generalized Gibbs ensembles and use the quasi-particle formulation to solve
the hydrodynamic equations.

4.2.1 TBA and equations of state in a generalized Gibbs en-
semble

The TBA picture is easily generalized to systems with infinitely many conserved charges.
The latter are defined by their eigenvalues when acting on one-particle asymptotic states
|θ〉:

Qi |θ〉 = hi(θ) |θ〉 , i = 1, 2, . . . (4.29)
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and assuming that there is a single relativistic particle species of mass m, the first
eigenvalues are parametrized in the usual way:

h1(θ) = E(θ) = m cosh(θ) , h2(θ) = p(θ) = m sinh(θ) . (4.30)

In infinite volume, a TBA state is fully described by two continuous distributions in the
rapidity space: the particle density ρp(θ) and the hole density ρh(θ). In a fermionic-type
system the sum ρp(θ) + ρh(θ) is the total density of Bethe states, and the occupation
function is defined by n(θ) = ρp(θ)/(ρp(θ) + ρh(θ)). In a GGE, the average charge
densities qi = 〈qi〉β are given by:

qi = Tr[ρgenqi] =

∫
dθ ρp(θ)hi(θ) , i = 1, 2, . . . (4.31)

where here and below all the integrations are over R. The previous equation generalizes
(2.20) to all the conserved charges3 and may be seen as a definition of ρp(θ). In the GHD
setting, the TBA distributions become space-time dependent at the mesoscopic scale:

ρp(θ)→ ρp(θ;x, t) , ρh(θ)→ ρh(θ;x, t) , n(θ)→ n(θ;x, t) (4.32)

and thanks to the local entropy maximization assumption (4.15) this dependence is
moved to the inverse temperatures β = β(x, t) so that qi(x, t) = Tr[ρgen(x, t)qi(0, 0)].
The explicit dependence on (x, t) will be generally omitted from now on.

The coordinate Bethe ansatz, in the thermodynamic limit, becomes the constraint
(2.24) between ρp(θ) and ρh(θ), which we rewrite as:

2π[ρp(θ) + ρh(θ)] = p′(θ) +

∫
dαφ(θ − α)ρp(α) . (4.33)

Now let us define the dressing of a generic function h(θ) via a linear integral operation:

h 7→ hdr , hdr(θ) = h(θ) +

∫
dα

2π
φ(θ − α)n(α)hdr(α) . (4.34)

Notice that the dressing of bare observables due to a non-zero interaction kernel φ is
not peculiar of GHD, as it can be defined already in the equilibrium TBA setting. The
linearity of this operation is expressed by the relation:

[αf(θ) + βg(θ)]dr = αfdr(θ) + βgdr(θ) , (4.35)

where α and β are constants. Moreover, the dressing equation satisfies the symmetry
relation: ∫

dθ f(θ)n(θ)gdr(θ) =

∫
dθ g(θ)n(θ)fdr(θ) , (4.36)

3recall that qi is a charge density and in a homogeneous and stationary Gibbs ensemble with finite
spatial volume L it holds Qi =

∫
dx qi(x, t) =

∫
dx qi(0, 0) = Lqi.
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for any pair of integrable functions f and g. Both equations (4.35) and (4.36) trivially
follow from (4.34) and will be extensively used in the following.

By using the definition of n(θ) and of the dressing operation, the Bethe constraint
(4.33) can be rewritten as follows:

2πρp(θ) = n(θ)[p′(θ)]dr (4.37)

or, equivalently:
2π[ρp(θ) + ρh(θ)] = [p′(θ)]dr . (4.38)

Note that the order in which the derivative with respect to θ and the dressing are per-
formed is important, as in general4 [h′(θ)]dr 6= [hdr(θ)]′. The right-hand side of (4.37)
depends only on the occupation function, so that this relation is a map between ρp(θ) and
n(θ) as state coordinates for the GGE in the TBA description. The map between ρp(θ)
and the set of averages q is given by (4.31). The inverse temperatures β = (β1, β2, . . . )
can be used as state coordinates also in a generalized Gibbs state, and they are re-
covered from the generalized TBA self-consistency equation satisfied by a generalized
pseudoenergy εw, related to n(θ) as in (2.33):

n(θ) =
1

1 + eεw(θ)
. (4.39)

The derivation of the TBA equation in the GHD setting [45] follows the same lines of
the procedure employed in Chapter 2, so that we will only sketch it here. The starting
point is the definition of a generalized, dimensionless free energy F (β) = limL→+∞ Lf(β)
and the corresponding GGE partition function:

f (β) = − lim
L→+∞

1

L
lnZgen , Zgen = Tr

[
e−

∑+∞
i=1 βiQi

]
. (4.40)

From standard thermodynamic arguments, the equilibrium densities ρp(θ), ρh(θ) are
obtained by minimizing the generalized free energy functional:

F [β; ρp, ρh] =
+∞∑
i=1

βi〈Qi〉β − S[ρp, ρh] (4.41)

while enforcing the Bethe equation of state (4.33). This is of course equivalent to max-
imize the entropy while imposing an infinite number of constraints on the conservation

4It is easy to see that the two operations commute provided (φ ∗ (hdrn′)) is zero almost everywhere,
which holds for instance if the system is prepared in a pure state, so that n(θ) = 0 except at a single
point.
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of the charges Qi. In the previous equation, the entropy at leading order in L is given
by (2.28) and, thanks to (4.31):

+∞∑
i=1

βi〈Qi〉β = L
+∞∑
i=1

βi

∫
dθ ρp(θ)hi(θ) . (4.42)

The functional minimization of F [β; ρp, ρh] with respect to ρp, ρh yields the GGE TBA
equation:

εw(θ) = w(θ)−
∫

dα

2π
φ(θ − α)Lw(α) , Lw(θ) ≡ ln

(
1 + e−εw(θ)

)
(4.43)

where now the driving term is:

w(θ) ≡
+∞∑
i=1

βihi(θ) . (4.44)

The free energy density f(β) is then given by the stationary value of the functional
(4.41):

f (β) = −
∫

dθ

2π
p′(θ)Lw(θ) . (4.45)

One can use equation (4.43) in either of two ways, depending on the available data. If the
set of generalized inverse temperatures is known, then the TBA equation can be solved for
εw(θ), providing the equilibrium particle density and therefore a map β 7→ ρp(θ) between
different GGE state coordinates. On the other hand, if somehow the equilibrium density
is known from the beginning (and thus is the generalized pseudoenergy via (4.39)), then
the inverse temperatures are obtained from the functional derivatives:

βi =
δ

δhi(θ)

[
εw(θ) +

1

2π
(φ ∗ Lw)(θ)

]
, i = 1, 2, . . . (4.46)

where in the right-hand side the eigenvalues hj(θ) are kept fixed for j 6= i.

The TBA machinery provides an explicit expression for the GGE average charge
densities qi. Indeed, from the definition (4.31) and equation (4.37), we have:

qi =

∫
dθ

2π
(p′)dr(θ)n(θ)hi(θ) =

∫
dp(θ)

2π
n(θ)hdr

i (θ) , (4.47)

where the second equation follows from the symmetry relation (4.36). The TBA alone
is however not sufficient to derive a similar expression for the average current densities
ji = 〈ji〉β. For relativistic models, a way to obtain these quantities is through a mirror
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transformation, that is, a double Wick rotation which exchanges the roles of space and
time coordinates:

C : (x, t) 7→ (it , −ix) . (4.48)

This transformation, similar to the one relating s and t-channels in the S-matrix the-
ory, squares to the identity and is implemented on rapidities by θ 7→ iπ/2 − θ. Con-
sequently, the the one-particle energy and momentum eigenvalues E(θ) = m cosh(θ),
p(θ) = m sinh(θ) are exchanged as well: (E, p) 7→ (−ip , iE). Notice that the signs are
consistent with the representations of the corresponding operators on (x, t)-functions,
H = i∂t, p = −i∂x.

Under a relativistic mirror transformation, one expects current and charge densities
to be exchanged: namely, a current density ji is a charge density qi in the mirror theory.
If q[h] and j[h] are the charge and current densities associated to a one-particle eigenvalue
h(θ) this means:

C(j[h]) = iq[hc] , hc(θ) ≡ h(iπ/2− θ) . (4.49)

Let us also denote by 〈O〉w the average of an observable O in the GGE characterized
by a driving term w(θ). When a mirror transformation is applied this expectation value
transforms as 〈C(O)〉w = 〈(O)〉wc , wc(θ) = w(iπ/2−θ). The average of a current density
j[h] follows therefore from (4.50) and C2 = id:

〈j[h]〉w = 〈C(C(j[h]))〉w = i〈q[hc]〉wc (4.50)

thus, from equation (4.47) for qi = q[hi] and the crossing exchange of E and p one
obtains the expression for a current density average ji = j[hi] in a GGE:

ji =

∫
dθ

2π
(E ′)dr(θ)n(θ)hi(θ) =

∫
dE(θ)

2π
n(θ)hdr

i (θ) . (4.51)

We have presented an heuristic derivation of the formula above, but the latter can be
rigorously proved using form factors techniques [43]. Moreover, this formula is very
sensible from a physical point of view, as it can be cast in the following way:

ji =

∫
dθ ρc(θ)hi(θ) (4.52)

where the spectral density ρc(θ) has been introduced as the distribution which, by defi-
nition, gives a current average when integrated against its one-particle eigenvalue. From
(4.37) and (4.51) one has:

ρc(θ) =
1

2π
n(θ)(E ′)dr(θ) = veff(θ)ρp(θ) , (4.53)

where

veff(θ) ≡ (E ′)dr(θ)

(p′)dr(θ)
=

pdr(θ)

Edr(θ)
(4.54)
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is the effective velocity of a quasi-particle of rapidity θ. This quantity depends on the
ensemble state through the occupation function entering the dressing and represents the
modification of the quasi-particle’s group velocity vgr(θ) = p(θ)/E(θ) = tanh(θ) due
to the presence of interactions. A quasi-particle of rapidity θ carries conserved charge
eigenvalues hi(θ), i = 1, 2, . . . , and moves with a velocity veff(θ) so that the corresponding
current densities are veff(θ)hi(θ). The pair of densities (ρp, ρc) can be used as well to
characterize a generalized Gibbs state, together with a self-consistent equation of state
which directly follows from the definition of the effective velocity:

ρc(θ)

ρp(θ)
=
E ′(θ) +

∫
dαφ(θ − α)ρc(α)

p′(θ) +
∫

dαφ(θ − α)ρp(α)
. (4.55)

A simple manipulation of (4.55) gives an integral equation for veff(θ) which can be read
as a sort of dressing equation for the group velocity:

veff(θ) = vgr(θ) +

∫
dα

φ(θ − α)ρp(α)

p′(θ)

(
veff(α)− veff(θ)

)
. (4.56)

As a concluding remark, we notice that through equations (4.47) and (4.51) the
TBA formalism provides an explicit expression for the free energies which generate the
expectation values q and j, as in (4.14) (with N → +∞). Indeed, take fw(β) ≡ f (β)
defined by (4.45) and define likewise:

gw(β) = −
∫

dE(θ)

2π
Lw(θ) . (4.57)

Then:

qi =
∂fw
∂βi

=

∫
dθ hi(θ)

δfw
δw(θ)

, (4.58)

ji =
∂gw
∂βi

=

∫
dθ hi(θ)

δgw
δw(θ)

, (4.59)

(4.60)

so that a simple partial derivation of fw and gw with respect to the inverse temperatures
βi yields the state coordinates qi and ji while a functional derivation of the very same
generators gives the quasi-particle coordinates ρp(θ) = δfw

δw(θ)
and ρc(θ) = δgw

δw(θ)

4.2.2 The partitioning protocol

The Euler equations (4.19) for the GGE averages (with again N → +∞) can be re-
formulated in terms of the TBA state coordinates thanks to the maps ρp 7→ q and
ρc 7→ j explicitly provided by equations (4.31) and (4.52). At this point, the inclusion
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of all the conserved charges in a generalized Gibbs ensemble (including the quasi-local
ones) plays a fundamental role, as the completeness of the sets q and j suggests that
the one-particle eigenvalues hi(θ) appearing in these two equations form a complete set
of functions in the rapidity space. Thus, by plugging (4.31) and (4.52) in (4.19) we get
(re-introducing the explicit (x, t)-dependence):

0 = ∂tρp(θ;x, t) + ∂xρc(θ;x, t)

= ∂tρp(θ;x, t) + ∂x[v
eff(θ;x, t)ρp(θ;x, t)] , (4.61)

from which we recognize the typical form of a linear hydrodynamic conservation law,
with ρp playing the role of a fluid density. The most convenient way to parametrize the
state of a GGE is by using the occupation function n(θ;x, t): indeed this is precisely the
choice of coordinates which diagonalize the flux Jacobian J(n) and allows us to rewrite
the hydrodynamic equations in the form (4.24), where there are no convective derivatives.
Specifically, the normal modes ni of hydrodynamics are given by the products of one-
particle eigenvalues and the TBA occupation function:

ni(θ;x, t) = hi(θ)n(θ;x, t) , (4.62)

while the corresponding propagation velocities are nothing but the effective velocity
veff(θ;x, t) defined in (4.54): indeed, at a fixed θ all the normal modes are carried by
the corresponding quasi-particle and thus they form a degenerate eigenspace. In the
occupation function coordinates the Euler equation (4.61) reads:

∂tn(θ;x, t) + veff(θ;x, t)∂xn(θ;x, t) = 0 (4.63)

The proof is as follows. First, rewrite the dressing equation (4.34) in the integral
operator representation:

hdr = (1− ϕN )−1h , (4.64)

where for any sufficiently regular function h:

(Nh)(θ) ≡
∫

dαn(θ)δ(θ − α)h(α) = n(θ)h(θ) , (4.65)

(ϕh)(θ) ≡
∫

dα

2π
φ(θ − α)h(α) . (4.66)

Then define the following symmetric5 integral operator:

S = N (1− ϕN )−1 , (4.67)

5The symmetry is intended with respect to the internal product 〈f, g〉 ≡
∫

dθ f(θ)g(θ), so that
〈f, (Sg)〉 = 〈g, (Sf)〉.
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so that we can rewrite (4.37) and (4.53) as:

(Sp′)(θ) = 2πρp(θ) , (SE ′)(θ) = 2πρc(θ) (4.68)

and therefore equation (4.61) becomes:

(∂tS)p′ + (∂xS)E ′ . (4.69)

To evaluate the derivatives of the integral operator S one must expand (1 − ϕN )−1 in
power series of ϕN and then apply the Leibniz distribution rule. This yields:

∂αS = ∂α[N (1− ϕN )−1]

= (1−Nϕ)−1(∂αN )(1− ϕN )−1 (4.70)

for α = x , t. Therefore:

0 = (1−Nϕ)−1
[
(∂tN )(1− ϕN )−1p′ + (∂xN )(1− ϕN )−1E ′

]
= (1−Nϕ)−1

[
(∂tN )(p′)dr + (∂xN )(E ′)dr

]
, (4.71)

which clearly implies (4.63) from the definition of the effective velocity.

As a concrete application of these results, let us apply them to the solution of the
partitioning protocol. Suppose that the two reservoirs are in pure Gibbs states6 at inverse
temperatures βr,l. from the GHD point of view, this means that all the averages can be
evaluated in these initial ensembles by using the occupation functions nr,l(θ) obtained
from the solution of (4.43) with wr,l(θ) = T−1

r,l E(θ). At t = 0 the two systems are
connected at x = 0 and thus the initial-value problem we have to solve is the following:{

∂tn(θ;x, t) + veff(θ;x, t)∂xn(θ;x, t) = 0

lim
t→0+

n(θ;x, t) = nrΘH(x) + nlΘH(−x)
(4.72)

where ΘH is the Heaviside function. A first-order linear problem with this kind of initial
values is called a Riemann problem. Since both the differential equation and the initial
condition are invariant under a uniform rescaling of x and t we can again use a ray
variable ξ = x/t to rewrite the problem:{

[veff(θ; ξ)− ξ]∂ξn(θ; ξ) = 0

lim
ξ→±∞

n(θ; ξ) = nr,l(θ)
. (4.73)

6This condition is not strictly necessary: one can consider the partitioning protocol in the more
generic situation where the reservoirs are in GGEs with TBA driving terms wr,l(θ) =

∑
βr,li hi(θ), and

solve the corresponding equations (4.43) to get the asymptotic values nr,l(θ). In the next chapter we
will explicitly derive some GHD average in a partitioning protocol with non-thermal reservoirs.
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Note that the initial-value condition has now turned into a boundary condition equivalent
to (4.26), while the first equation is nothing but the eigenvalue problem (4.25) written
in the normal modes coordinate system. Once a solution for n(θ; ξ) is known, one can
compute the GHD averages q(ξ) , j(ξ) for any value of ξ.

The solution to the previous problem is unique given these boundary conditions.
Indeed, for a fixed θ, n(θ; ξ) must be a constant function of the ray ξ except possibly at
the value(s) of ξ such that vdr(θ; ξ) = ξ. But since7 limξ→±∞[vdr(θ; ξ) − ξ] = ∓∞, the
only solution compatible with the boundary conditions is the following:

n(θ; ξ) = nl(θ)ΘH

(
veff(θ; ξ)− ξ

)
+ nr(θ)ΘH

(
ξ − veff(θ; ξ)

)
. (4.74)

For a fixed ray ξ the construction of the previous global occupation function requires to
solve the transcendental equation:

veff(θ∗(ξ); ξ) = ξ , (4.75)

and if the effective velocity is a monotonic function of the rapidity there is a unique
solution θ∗(ξ) for every ξ ∈ [−1,+1]. Therefore one can recast (4.74) as:

n(θ; ξ) = nl(θ)ΘH (θ − θ∗(ξ)) + nr(θ)ΘH (θ∗(ξ)− θ) . (4.76)

The physical interpretation of the equation above is quite convincing: if θ > θ∗(ξ) then
vdr > ξ, so the quasi-particles which contribute at the ray ξ come from the left reservoir
(that is, they are found at x < 0 for t→ 0+), whereas they come from the right reservoir
if θ < θ∗(ξ), as then vdr < ξ. The solution of (4.76) is a rarefaction wave continuously
interpolating between the two reservoirs: shock-like solutions are not needed as in a
GGE there is a continuous distribution of normal modes which smoothly connect the
asymptotic values at ξ = ±∞.

4.3 Euler-scale hydrodynamics of the staircase model:

numerical results

At this point we have developed all the necessary GHD tools to study the off-equilibrium
properties of the staircase model described in the previous chapter. In this section we
present some of the numerical results obtained for the occupation function, effective
velocity and particle density in a partitioning protocol with thermal reservoirs. The
discussion of steady state currents will be carried out in the next chapter.

In order to compute any average in the partitioning protocol, one has to solve the
staircase’s TBA equations (3.16) for the reservoirs at inverse temperatures βr,l and plug

7Notice that in the relativistic case max
θ∈R

∣∣veff(θ; ξ)
∣∣ = 1, while in non-relativistic systems veff(θ; ξ) is

in general not bounded but is finite for every finite θ.
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the functions nr(θ), nl(θ) in equation (4.74) for the occupation function n(θ; ξ) of the
joint system. In order to numerically build this quantity, the zero(s) of the effective
velocities must be found in a self-consistent way by solving (4.75). veff(θ; ξ) depends on
n(θ; ξ), as the global occupation function enters the dressing of E(θ) and p(θ), thus an
iterative procedure must be employed to find the zero(s) of the velocity. In the simplest
case where the latter is monotonic, there is only one zero θ∗(ξ) for each ξ and the iteration

is rapidly convergent: one starts with an initial value, say θ
(0)
∗ = 0, which is plugged in

(4.76) to obtain n(0)(θ; ξ). This quantity is then used to solve equation (4.75), which

yields a new zero θ
(1)
∗ , again to be plugged in (4.76). The iteration of this procedure thus

provides a sequence {θ(n)
∗ (ξ)} which converges to the true zero, limn→+∞ θ

(n)
∗ (ξ) = θ∗(ξ).

In practice, a few iterations are sufficient to reach θ∗(ξ) within a very small error.
Things are more complicated when the effective velocity is non monotonic. This

situation is not very common, but might arise in non-diagonal models [42], where there is
a multi-particle spectrum which includes magnons. However, quite surprisingly, we found
that the effective velocity of the staircase model is non monotonic: to our knowledge, this
is the first case to be analyzed of a diagonal, one-particle model where a non monotonic
veff appears. Let us show in detail how this is indeed the case, starting from the thermal
equilibrium scenario.

4.3.1 Effective velocity and quasi-particle distributions at equi-
librium

To see why the staircase model’s effective velocity is in general non monotonic, consider
the definition (4.54): any zero of veff(θ) must be either a zero of the numerator pdr(θ), or
a pole of the denominator Edr(θ). It is useful to notice that, by taking the derivative with
respect to θ of both sides of the single-particle TBA equation (2.34) (setting β = mR)
and comparing it with the definition (4.34), one has:

ε′(θ) = [β sinh(θ)]dr = T−1pdr(θ) , (4.77)

where the second equality follows from (4.35). Therefore, at any finite temperature the
simple zeros of pdr(θ) coincide with those of ε′(θ). Furthermore, from the definitions
(2.33), (2.38) it follows:

L′(θ) = −ε′(θ)n(θ) , (4.78)

and typically n(θ) has no zeros while L′(θ) = 0 only in the midpoint of the central
plateau. However, as explained in the previous chapter, in the staircase model L(θ)
develops an increasing number of plateaux as the ratio y/θ0 grows, and their central
points are at the positions zi defined in (3.24), for i = 1, . . . , 2k− 1. Thus we expect the
effective velocity to be non monotonic, with veff(zi) = 0, i = 1, . . . , 2k − 1.
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The quantity Edr(θ), on the other hand, does not have any simple pole. Indeed, in
analogy with equation (4.77), one can write:

π′(θ) = T−1Edr(θ) , (4.79)

where the “pseudomomentum”π(θ) is the solution of (2.34) with driving term given
by β sinh(θ) instead of β cosh(θ). The corresponding function Lπ(θ) = ln

(
1 + e−π(θ)

)
displays a kinks-plateaux structure similar to that of L(θ) for positive rapidities, but quite
different for negative rapidities. This is a consequence of the fact that π(θ) in general
develops a non vanishing imaginary part for θ < 0. As a result, no simple zeros are
added to veff(θ) from the denominator, but the global behaviour of the effective velocity,
already at equilibrium, is quite involved and strongly depends on the temperature. The
function veff(θ) is shown in figure 4.3 together with the particle and spectral densities
(4.37), (4.53) for various values of the ratio y/θ0, y = ln(2/β).

Recall that when y/θ0 is in the range (3.21) defined by the integer k, in the limit
of large y and θ0 the staircase model flows towards the minimal unitary model Mk+2.
Having this in mind, the global features of the equilibrium effective velocity can be
summarized as follows:

• For any value of y and θ0,
∣∣veff(θ)

∣∣ ≤ 1, and as |θ| & y, veff(θ) ∼ vgr(θ) = tanh(θ) .

• veff(θ) is a monotonic function of θ only for k = 1, i.e. around the Ising critical
point. For k > 1, the number of local extrema is 2(k − 1), and at these points one
has

∣∣veff
∣∣→ 1 as y, θ0 → +∞.

• The effective velocity is not an odd function of θ. This is a general property8

which does not depend on the temperature, but becomes evident when k > 2, as
veff(θ) starts to develop some plateaux approaching the value veff = 0 from below
at negative rapidities. Whenever k is increased by one a new plateau appears in
the profile.

• For k = 1 , 2 the zeros of veff(θ) are given by zi = (i − k)θ0/2, k = 1, . . . , 2k − 1.
When k ≥ 3, this is still true for the points zi, i = 2k − 3 , 2k − 2 , 2k − 1, while
the points zi, i = 1, . . . , 2k − 4 are the starting and ending points of the plateaux
of veff(θ). In particular this means that veff(θ) ≤ 0 for all θ ≤ z2k−3.

These properties of the effective velocity are quite bizarre. However, some light of
them can be shred by considering in more detail the particle distribution ρp(θ). Looking
at figure 4.3, one sees that ρp(θ) is even (as expected from its definition), and it has 2k

8In particular, it is not a feature peculiar only to the staircase model. The reason is that in general
if the kernel φ(θ) is even, then an even function of the rapidity remains even when dressed, but an odd
function of the rapidity does not remain odd: indeed, if f(−θ) = −f(θ) the integral dressing equations
for fdr(−θ) and −fdr(θ) are different.
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Figure 4.3: Equilibrium profiles of veff(θ), ρp(θ) and ρc(θ) for different values of y =
−x = ln(2/β), with θ0 = 50. The particle and spectral densities are normalized to the
maximum value of ρp(θ).

peaks when (k − 1)θ0/2 < y < kθ0/2. For k = 1, 2 these peaks are at veff = ±1, and the
area below the ones at veff = +1 and at veff = −1 is the same: this means that half of the
particles is moving along the positive x-direction and half of them is moving the other way
with the very same velocity, so that the neat current of any charge is zero, as expected
at equilibrium. However, when k ≥ 3, that is starting from the 3-state Potts model
M5, some peaks appear in correspondence of the plateaux at veff = 0. Particles with a
vanishing effective velocity do not carry any degree of freedom, and this is a phenomenon
which happens in models with magnons in their spectrum; moreover, as we previously
pointed out, the magnonic effective velocities can be non monotonic. In light of this,
it is suggestive that M5 is the UV point of the A3 massless flow, the first one which
contains a magnon. A numerical study of the effective velocities and particle densities in
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An massless models [18], motivated by the results above , has confirmed the surprising
fact that the staircase model’s effective velocity can be obtained by summing all the
velocities of the particles in the Ak massless flow9, after an appropriate translation of
the latter in rapidity space. The same holds for the occupation function and the particle
densities, strengthening the suggestion made at the end of the previous chapter that the
staircase model can be regarded as an effective theory for non diagonal models.

4.3.2 Partitioning protocol with pure Gibbs reservoirs

In the off-equilibrium scenario the multiple solutions of equation (4.75) depend both on
the ray parameter ξ and on the GGEs characterizing the states of the two reservoirs. In
particular, if the latter are in pure Gibbs ensembles at temperatures Tr,l, then the zeros
of (4.75) are affected by the ratio:

σ ≡ Tl/Tr , (4.80)

where in the following we will always choose σ ≥ 1, σ = 1 corresponding to a global
homogeneous Gibbs ensemble, i.e. equilibrium. The iterative procedure previously de-
scribed for the self-consistent determination of θ∗(ξ) with a monotonic effective velocity

is straightforwardly generalized to the present case: each seed rapidity θ
j,(0)
∗ (ξ) converges

after a few iteration to the actual solution θj∗(ξ), with j indexing the position among the
multiple solutions. In particular, we have numerically observed for the staircase model
that when ξ = 0 the zeros of (4.75) have a very weak dependence on σ. As can be seen in
figure 4.4, even when σ = O(102), which to all practical purposes amounts to neglecting
the right reservoir, there is no sensible displacement between the equilibrium zeros zi
and the actual discontinuity points of n(θ; ξ = 0).

In the next chapter we will be interested in studying current averages in the non-
equilibrium steady state, that is at ξ = 0. On account of the previous considerations
about the multiple zeros of veff at and off-equilibrium, we can rewrite the joint occupation
function (4.74) as:

n(θ, ξ = 0) = χl(θ)nl(θ) + (1− χl(θ))nr(θ) =

{
nl(θ) , θ ∈ L
nr(θ) , θ ∈ R

, (4.81)

being y, θ0 as in (3.21) and χl(θ), χr(θ) = 1 − χl(θ) the characteristic functions of the
sets:

L ≡ [z1 , z2] ∪ [z3, z4] ∪ . . . ∪ [z2k−1 , +∞) , (4.82)

R ≡ (−∞ , z1] ∪ [z2, z3] ∪ . . . ∪ [z2k−2 , z2k−1] . (4.83)

9Recall that these are one right-mover, one left-mover and k − 2 magnons.
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Figure 4.4: Joint occupation function n(θ; ξ = 0) for σ = 10, 100. Top (bottom) row:
both the reservoirs are near the second(third) UV fixed point, respectively k = 2 and
k = 3 in equation (3.21). The vertical lines are at the equilibrium zeros of veff(θ).

We remark that if zi is the onset point of a velocity plateau rather than a simple zero,
it is actually irrelevant whether n(θ) is given by nl(θ) or nr(θ) in [zi , zi+1], as veff ' 0
everywhere in the interval. Another viable choice would be setting n(θ) equal to nr(θ) for
θ ≤ z2k−3, without a sensible modification of the hydrodynamics. The parametrization
(4.81) is just a matter of convenience.

In figure 4.5 we have plotted the off-equilibrium profiles of the effective velocity,
particle and spectral densities at ξ = 0 for k = 2 and different values of σ > 1. For small
values of σ, veff(θ; ξ = 0) is not sensibly different from the corresponding equilibrium
function, which is coherent with the previous observation on the displacement of its
zeros. On the other hand, ρp and ρc are affected by the temperature difference between
the two reservoirs: the height of the peaks at veff = −1 is reduced, and so is the area
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Figure 4.5: Off-equilibrium profiles of veff(θ), ρp(θ) and ρc(θ) (normalized as in figure
4.3) for σ = 1.5 (left) and σ = 10 (right). In both cases the two reservoirs are near the
same critical point k = 2.

covered by the latter. This is an indication of the fact that as σ increases there are
more charge-carriers moving from the left to the right reservoir, and the unbalance is
responsible for the non-vanishing global currents (4.51).
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Chapter 5

GHD currents of higher-spin charges

In this chapter we present the main theoretical achievements of this thesis. By com-
bining TBA techniques with the generalized hydrodynamics approach, we provide an
expression for the staircase model’s steady state average energy current and density in
an inhomogeneous setup, namely a partitioning protocol with thermal Gibbs reservoirs.
By taking the UV limit of these averages we recover the exact expressions (4.3) and (4.4)
for off-equilibrium CFTs. We then generalize our results to NESS averages of higher-spin
currents and charge densities, obtaining a universal power-law dependence on the tem-
peratures of the two reservoirs in the high energy limit: js, qs ∝ T s+1

l ∓ T s+1
r . To a first

approximation, we find that the coefficients appearing in these scaling laws are linear in
the UV central charge and exponential in the spin. The expressions of these coefficient
become exact when the left and right reservoirs are in generalized Gibbs ensemble and
the time-evolution of the system is governed by an higher-spin conserved charge rather
than a spin-1 Hamiltonian. We provide numerical results which confirm our predictions.

The arguments we present in this chapter are shaped in order to account for the very
peculiar features of Zamolodchikov’s staircase model, and can be extended to other mod-
els with similar properties, i.e. a logarithmic derivative of the S-matrix with displaced
peaks [19, 20, 46]. Our results are in agreement with the ones obtained for simpler model
with no staircase-like behaviour [47].

5.1 Energy current

Let us consider a partitioning protocol with two staircase scattering theories indepen-
dently thermalized at temperatures Tl, Tr and joined at x = 0. For reasons which will
become apparent later, we are interested in the situation in which the left and right
subsystems tend in the UV limit to the same minimal modelMk+2. According to (3.21),
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this amounts to choose:

(k − 1)θ0

2
< yr < yl <

kθ0

2
, k ∈ N , (5.1)

where we have defined:

yr ≡ ln(2/βr) , yl ≡ ln(2/βl) = yr + ln(σ) , (5.2)

with σ = Tl/Tr > 1 and as usual βl,r = mT−1
l,r are the dimensionless inverse temperatures.

If (5.1) holds and σ is not too large, then from the considerations made in the previous
chapter it follows that the occupation functions nr(θ), nl(θ) are very similar and the zeros
of the steady state effective velocity are not sensibly displaced from the equilibrium ones
(see figure 4.4). Therefore the steady state occupation function n(θ) ≡ n(θ; ξ = 0) is
given by (4.81), with the domains L and R defined in (4.82), (4.83).

The average energy current j1 at ξ = 0 is the sum of the contributions from the right
and left reservoirs, that is:

j1 = jr1 + jl1 (5.3)

with:

jr1 =

∫
R

dθ

2π
p(θ)n(θ)hdr

1 (θ) =

∫
R

dθ

2π
p(θ)nr(θ)h

dr
1 (θ) , (5.4)

jl1 =

∫
L

dθ

2π
p(θ)n(θ)hdr

1 (θ) =

∫
L

dθ

2π
p(θ)nl(θ)h

dr
1 (θ) , (5.5)

and h1(θ) is defined as in (4.30). Now we can take advantage of relation (4.77) between
the dressed momentum and the derivative of the pseudoenergy to write:

ε′r,l(θ) = [βr,l sinh(θ)]dr = T−1
r,l p

dr(θ) , (5.6)

where ε′r,l(θ) are the solutions of the standard TBA equations for the two Gibbs reservoirs.
Notice that in the equation above the dressing of p(θ) is performed with nr(θ) in the
right reservoir and with nl(θ) in the left one, while in both (5.4) and (5.5) it is the the
joint occupation function n(θ) which enters the definition of hdr

1 . But again, as long as
(5.1) holds and σ is small we can assume that the dressing of h1(θ) is made with nr(θ)
in (5.4) and with nl(θ) in (5.5): this is the main assumption of our proof, and we will
present a numerical check of its validity in the next section.

Using the symmetry relation (4.36) to move the dressing from h1(θ) to p(θ) in (5.4),
(5.5) and then applying (5.6), we can write:

jr1 =
Tr
2π

∫
R

dθ ε′r(θ)nr(θ)h1(θ) = −mTr
2π

∫
R

dθ L′r(θ) cosh(θ)

= −T
2
r

2π

∫
R

dθ 2e−yr cosh(θ)L′r(θ) , (5.7)
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where the second equality is obtained from:

nr,l(θ)ε
′
r,l(θ) = −L′r,l(θ) , (5.8)

and the third one from the definitions of βr,l and yr,l. Exactly in the same way:

jl1 = −T
2
l

2π

∫
L

dθ 2e−yl cosh(θ)L′l(θ) . (5.9)

Let us now consider in more detail the integration domains R and L. The functions
Lr,l(θ) undergo a double exponential decay when |θ| � yr,l, and we can effectively set
Lr,l(z0) = Lr,l(z2k) = 0 even when these quantities are multiplied by an exponentially
increasing function. Of course this property is not spoiled when we derive Lr,l(θ) with
respect to1 θ so again we can set L′r,l(z0) = L′r,l(z2k) = 0 and R, L reduce to the compact
domains K1 ∪K3 · · · ∪K2k−1 and K2 ∪K4 · · · ∪K2k respectively, with Ki defined as in
(3.25). Inside each Ki the functions L′r,l(θ) are bounded for every finite y, as the width
of each kink is small but independent on the temperature. Furthermore, the quantities
2e−yr,l cosh(θ) are effectively different from zero (in the high temperature limit) only
in K1 and K2k, and we can use the approximation (3.34) for both the left and right
subsystem. In light of this, equations (5.7) and (5.9) can be rewritten as:

jr1 = −T
2
r

2π

∫
K1

dθ e−yr−θL′r(θ) , (5.10)

jl1 = −T
2
l

2π

∫
K2k

dθ e−yl+θL′l(θ) . (5.11)

After an integration by parts, and setting Lr,l(z0) = Lr,l(z2k) = 0, the previous equations
reduce to:

jr1 = −T
2
r

2π

{∫
K1

dθ e−yr−θLr(θ) + e−[yr−(k−1)θ0/2]Lr(z1)

}
, (5.12)

jl1 = +
T 2
l

2π

{∫
K2k

dθ e−yl+θLl(θ) + e−[yl−(k−1)θ0/2]Ll(z2k−1)

}
. (5.13)

Since yr,l > (k−1)θ0/2 and Lr(z1) ' Ll(z2k−1) are bounded, the finite terms both vanish
in the limit yl,r →∞ with yl/θ0 and yr/θ0 fixed; thus in this limit:

jr1 → −
πT 2

r

6
c−,r , c−,r ≡

3

π2

∫
K1

dθe−yr−θLr(θ) , (5.14)

1Explicitly, one has L(θ) ' ln
(
1 + e−β cosh(θ)

)
' e−e

±θ−y
as θ � y (+) or θ � −y (-). Therefore

L′(θ) ' ∓ exp
(
±θ − y − e±θ−y

)
' ∓e−e±θ−y .
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jl1 → +
πT 2

l

6
c+,l , c+,l ≡

3

π2

∫
K2k

dθe−yl+θLl(θ) . (5.15)

We recognise from (3.36) that in the high-temperature limit c−,r = c+,l = ck/2, being ck
the central charge (3.58) of the unitary minimal modelMk+2. The NESS average energy
current in the UV limit θ0, yl,r → +∞, (k − 1)θ0/2 < yr < yl < kθ0/2 is therefore:

j1 = jl1 + jr1 →
ckπ

12

(
T 2
l − T 2

r

)
=
ckπ

12
T 2
l

(
1− 1

σ2

)
, (5.16)

which is the expected result (4.3).
To obtain the average energy density q1 = qr1 + ql1 one proceeds with minimum

adaptations. Up to exponentially vanishing corrections in the limit yr,l → +∞, in this
case one has:

qr1 =

∫
R

dθ

2π
E(θ)nr(θ)h

dr
1 (θ) = +

T 2
r

2π

∫
K1

dθ e−yr−θL′r(θ) , (5.17)

ql1 =

∫
L

dθ

2π
E(θ)nl(θ)h

dr
1 (θ) = −T

2
l

2π

∫
K2k

dθ e−yl+θL′l(θ) , (5.18)

where clearly the only difference with respect to expressions (5.7), (5.9) is the overall
sign in front of qr1 due to the fact that sinh(θ) ' − cosh(θ) when θ ∈ K1. Therefore in
the UV limit also (4.4) is recovered:

q1 = ql1 + qr1 →
ckπ

12

(
T 2
l + T 2

r

)
=
ckπ

12
T 2
l

(
1 +

1

σ2

)
. (5.19)

The scaled averages 12β2
l q1/π and 12β2

l j1/π are plotted in figure 5.1 as functions of
yl up to the k = 3 critical point, with σ = 1.5. The plateaux of these quantities are at
ck(1 ± σ−2), which precisely matches the predictions (5.16), (5.19). At this point it is
clear why the choice to take yr, yl as in (5.1) is sensible: at large values of θ0 (say e.g.
θ0 = 50, the value we actually used most of the time for the numerical computations)
it would take at least ln (σ) ' O(10) in order to have different UV regimes in the two
subsystems. But if σ ' O(e10) we see from the equations above that the contribution of
the left movers (from the right reservoir) to the NESS averages j1 and q1 is practically
zero. As we will see in the next section, this is true to an even larger extent in the case
of higher-spin currents, where we have higher powers of 1/σ in the NESS averages.

5.2 Higher-spin currents from TBA: Gibbs reser-

voirs

The argument presented above can be easily extended to the computation of NESS
higher-spin average currents in the UV limit. Namely, given any conserved charge with
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Figure 5.1: Scaled energy charge 12β2
l q1/π and current 12β2

l j1/π. The plateaux start to
form at the points kθ0/2, θ0 = 50.

one-particle eigenvalue hi(θ) one obtains the steady state average of its current in an off-
equilibrium massive integrable QFT through (4.51), and then take the high-temperature
limit of the resulting expression to obtain the value of the latter in an off-equilibrium CFT
setting. Let us apply this method to the staircase model, starting from a partitioning
protocol with Gibbs reservoirs.

5.2.1 Average current densities in the UV limit

Consider the one-particle eigenvalues:

h2s−1(θ) ≡ cosh(sθ) , h2s(θ) ≡ sinh(sθ) , (5.20)

which correspond to the even and odd components of a spin-s conserved charge2 (1.31).
Without losing generality, we have set m = 1, so that βr,l = T−1

r,l . With the same
definitions of the previous section, let again yr, yl be as in (5.1). The ξ = 0 average

2Of course in the staircase model there is only one particle type, so we can set all the quantities
χ(s) equal to 1. If there are more particle species, these numbers are usually obtained via bootstrap
methods.
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current density corresponding to the eigenvalue h2s−1(θ) is:

j2s−1 = jr2s−1 + jl2s−1 , (5.21)

where:

jr2s−1 =

∫
R

dθ

2π
sinh(θ)nr(θ)h

dr
2s−1(θ)

=
Tr
2π

∫
R

dθ ε′r(θ)nr(θ) cosh(sθ) = −T
s+1
r

2π

∫
R

dθL′r(θ)β
s
r cosh(sθ) , (5.22)

and:

jl2s−1 =

∫
L

dθ

2π
sinh(θ)nl(θ)h

dr
2s−1(θ)

=
Tl
2π

∫
L

dθ ε′l(θ)nl(θ) cosh(sθ) = −T
s+1
l

2π

∫
L

dθL′l(θ)β
s
l cosh(sθ) . (5.23)

In both (5.22) and (5.23), the second equality is obtained moving the dressing operator
to p(θ) = sinh(θ) and making use of equation (5.6) and of the considerations thereafter,
while in the third equality we have factored out T sr,l and used equation (5.8). Since:

βsr,l = 2se−s yr,l , (5.24)

we can now employ the approximation:

2e−s y cosh(sθ) '


e−s(y+θ) , θ ∈ K1

0 , θ ∈ K2 . . . , K2k−1

e−s(y−θ) , θ ∈ K2k

, (5.25)

so that equations (5.22) and (5.23) read:

jr2s−1 = −2sT s+1
r

4π

∫
K1

dθ e−s(yr+θ)L′r(θ) , (5.26)

jl2s−1 = −2sT s+1
l

4π

∫
K2k

dθ e−s(yl−θ)L′l(θ) . (5.27)

Again we can integrate by parts and use the fact that for yr,l sufficiently large:

exp

[
−s yr +

s(k − 1)θ0

2

]
Lr(z0) ' exp

[
−s yl +

s(k − 1)θ0

2

]
Ll(z2k) ' 0 (5.28)

to write:

jr2s−1 = −s 2s

4π
T s+1
r

{∫
K1

dθ e−s(yr+θ)Lr(θ) +
1

s
e−s[yr−(k−1)θ0/2]Lr(z1)

}
, (5.29)
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jl2s−1 = +
s 2s

4π
T s+1
l

{∫
K2k

dθ e−s(yl−θ)Ll(θ) +
1

s
e−s[yl−(k−1)θ0/2]Ll(z2k−1)

}
. (5.30)

The surface terms exponentially vanish in the UV limit (faster with respect to the case
of s = 1 charges). Therefore we end up with the result:

j2s−1 = jl2s−1 + jr2s−1 →
s 2s

4π

(
Csl T s+1

l − CsrT s+1
r

)
=
s 2s

4π
Csl T s+1

l

(
1− C

s
r

Csl
1

σs+1

)
, (5.31)

where the limit is specified as in (5.16) and:

Csl ≡
∫
K2k

dθ e−s(yl−θ)Ll(θ) , Csr ≡
∫
K1

dθ e−s(yr+θ)Lr(θ) . (5.32)

Since Lr,l(θ) = Lr,l(−θ) and the intervals K1, K2k are symmetric with respect to the
origin, we can write:

Csl = Cs(y = yl) , Csr = Cs(y = yr) , Cs(y) ≡
∫
K2k

dθ e−s(y−θ)L(θ) , (5.33)

and we note that, for s = 1 and (k − 1)θ0/2 < y < kθ0/2 it holds:

lim
y,θ0→+∞

C1(y) =
π2

6
ck , (5.34)

so that the energy current result (5.16) is recovered.
When we consider the one-particle eigenvalue h2s(θ) the computation of the UV limit

proceeds exactly in the same way as for h2s−1(θ), except that now instead of (5.25) we
have to use the approximation:

2e−s y sinh(sθ) '


−e−s(y+θ) , θ ∈ K1

0 , θ ∈ K2 . . . , K2k−1

e−s(y−θ) , θ ∈ K2k

. (5.35)

It follows that in the high temperature limit jl2s is given by (5.27) while jr2s differs from
expression (5.26) for the overall sign. Therefore:

j2s = jl2s + jr2s →
s 2s

4π
Csl T s+1

l

(
1 +
Csr
Csl

1

σs+1

)
. (5.36)

The same considerations can be applied to the charge densities q2s−1 and q2s associated
to the eigenvalues (5.20), which are defined through the integration measure dp(θ)/2π
instead of dE(θ)/2π. Again, the only contributions to the integrals come from K1 and
K2k and at a finite but large temperature one obtains:

q2s−1 ≈ j2s , , q2s ≈ j2s−1 , (5.37)
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where the symbol ≈ stands for an equality up to terms of order O(e−y), which becomes
exact in the UV limit. Notice however that because of relativistic invariance q2 = j1 at
any finite temperature.

Let us briefly comment one delicate point in our derivation of (5.31). Even if not ap-
preciably displaced from the equilibrium positions, the zeros of veff(θ; ξ = 0) change when
Tl 6= Tr. Moreover, as we noticed in the previous chapter, when the k = 3 critical point
is reached, the effective velocity starts to develop plateaux exponentially approaching
the value veff = 0 from below, but without actually reaching it at any finite tempera-
ture. This is the reason why, according to the remark following (4.83), one could set
n(θ) = nr(θ) for all the values of θ smaller than the “displaced”simple zero z2k−3, k ≥ 3.
The most generic scenario is that in which the discontinuity points of n(θ) are at the posi-

tions −yr < θ
(1)
∗ < θ

(2)
∗ · · · < θ

(n)
∗ < yl, 1 ≤ n ≤ 2k−1, and the definitions of the domains

R and L are modified accordingly. However, because of the behaviour of 2e−y cosh (sθ)
and of the rapid fall-off of L(θ) for |θ| > y, also in this case the contributions from the
central, finite intervals vanish in the UV limit, so that (5.31) still holds, but with the

intervals K̃1 ≡ [−kθ0/2, θ
(1)
∗ ] and K̃2k = [θ

(n)
∗ , kθ0/2] now being the integration domains

in Csr , Csl . In other words, as every contribution coming from the region −yr < θ < yl is
exponentially suppressed, the only requirement for our proof is that n = nr for θ < z1

and n = nl for θ > z2k−1. This condition is always met.

The result we have obtained is that in the UV limit the GHD averages of spin-s
charge and current densities scale proportionally to T s+1

l ± T s+1
r , being Tl and Tr the

temperatures of the asymptotic Gibbs reservoirs. This power law seems quite universal,
and indeed it can be inferred from CFT first principles when the left and right subsys-
tems are at a critical point [18]. Moreover, our derivation is based on assumptions which
are peculiar to diagonal massive QFTs with non monotonic effective velocities, but the
resulting formula (5.31) coincides with the one obtained in [47] for models with a kernel
φ(θ) peaked at θ = 0. The specific features of the staircase model, however, are compu-
tationally advantageous for at least two reasons: first, unlike models with a monotonic
veff, the coefficients (5.32) are defined by an integral over a compact interval; second,
the presence of infinitely many UV fixed points in the staircase’s roaming trajectory
allows for a more precise numerical test of the currents’ scaling behaviour. In the next
subsection, we present our numerical results and study how Cs(y) depend on the spin
and on the central charge ck.

5.2.2 Numerical results

Let us analyze the coefficients Csl and Csr in (5.32). In both the integrals, the dominant
contribution comes from the region where |θ| > y, that is from [−kθ0/2 , −yr] in Csr and
from [yl , kθ0/2] in Csl . This is so because of the finite extension of the kinks: there is an
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interval of order O(1) where L(θ) is not yet zero and the arguments of the exponentials
become positive. Furthermore, since it is only the value of the ratio y/θ0 which fixes
the UV limit of the theory, we expect that Csl = Csr as long as the condition (5.1) is
satisfied. This is indeed verified by the numerical evaluation of the function Cs(y) (see
figure 5.2), which shows that the latter is translationally invariant in the central regions
(k − 1)θ0/2 < y < kθ0/2, and therefore by (5.33) one has Csl = Csr when (5.1) holds.

Figure 5.2: Top row: Cs(y) for s = 1 to 7 in the first four UV plateaux. Bottom row:
the same coefficients scaled as specified in the main text.

Looking at the first and second plot in figure 5.2, one observes that when y/θ0 ap-
proaches an half-integer value, the function Cs(y) has a sudden fall. This is consistent
with (5.33), as it is easy to show that L(z2k)/s ≤ limy/θ0→k/2 Cs(y) ≤ L(z2k−1)/s, where
L(z2k) ' 0 and L(z2k−1) ' 1. In the central plateaux regions, on the other hand, to a
first approximation Cs(y) depends linearly on the central charge and exponentially on
the spin. To see this, one can treat s as a continuous variable and derive Cs(y) with
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respect to s, so to obtain a differential equation for Cs(y) which is solved with the initial
condition (5.34) at s = 1:

Cs(y) =
π2

6
ck exp

{[∫ s

1

ds′ 〈θ〉s′ − (s− 1)y

]}
, (5.38)

where:
(k − 1)θ0

2
≤ 〈θ〉s ≡

∫
K2k

dθ θesθL(θ)∫
K2k

dθ esθL(θ)
≤ kθ0

2
, ∀s ∈ R , (5.39)

so that the exponent in the right-hand side of (5.38) has an upper bound given by
(s − 1)(kθ0/2 − y). When Cs(y) is written in this form the dependence on the spin is
rather involved, but the advantage with respect to the expression given in (5.33) is that
now the central charge is factored out and deviations from linearity can in principle be
extracted from the exponent.

The scaled coefficients 6Cs(y)/π2ck are shown in the third and fourth plot of figure
5.2 for the first integer values of s, where ck = c1 = 1/2 for y < θ0/2, ck = c2 = 7/10 for
θ0/2 < y < θ0 and so on up to the k = 4 plateau. As it is clear from the figure, these
functions have almost the same value at every plateau: deviations from linearity in ck
are very small, even though non zero when s > 1.

Figure 5.3: Left: currents βs+1
l j2s−1 for s = 1 to 4 in the first four UV plateaux. Right:

the same quantities scaled as specified in equation (5.40). Here θ0 = 50 and σ = 1.5.

Once obtained the coefficients Cs(y) for various values of the spin, we could proceed
and numerically check the validity of our result for the average current densities. The
quantities βs+1

l j2s−1 are shown in the first plot of figure 5.3 for s = 1, 2, 3, 4 and yl
ranging over the first 4 plateaux, and they display the expected scaling behaviour. The
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quantities shown in the second plot are instead the same currents scaled in such a way
to completely eliminate the dependence on the temperature, that is:

j̃2s−1 ≡
4πβs+1

l j2s−1

s2sCsl
=

(
1− C

s
r

Csl
1

σs+1

)
'
(

1− 1

σs+1

)
, (5.40)

where the approximate equality holds as long as yl/θ0 is not an integer or an half-integer.
Notice the presence of peaks in j̃2s−1 when yl/θ0 = k/2, corresponding to the drops in Csl
at the same values3.

The horizontal dashed lines in the second plot of figure 5.3 are at y = 1−σ−(s+1), and
the deviations of the scaled currents from these values in the plateaux are an estimation
of the global error made when deriving equation (5.31). Recall that our main assumption
was that it is possible to use n(θ) = nr(θ) in the definition of the dressed eigenvalues
hdr
i (θ) when θ ∈ R (respectively n(θ) = nl(θ) when θ ∈ L). This seems reasonable when

we look at the numerics, as when σ is of order O(1 ÷ 10) the functions nl(θ) and nr(θ)
are almost indistinguishable; however, this is the only approximation not justified by
some exponentially-decreasing bound, thus we believe it to be the main source of error.
By looking at the deviations from the constant values in the regions where yl/θ0 6= k/2
we see that the error is very small: the deviations slightly increase with yl and at a fixed
temperature they seem to decrease exponentially with the spin (the absolute error is of
order O(10−2) for s = 1, 2 and O(10−4) for s = 4).

There is a comment to make regarding the values of s. Figure 5.3 shows that when
we join two systems prepared in thermal states, the average current densities have a
staircase behaviour regardless of whether the spin is even or odd. Moreover, the same
result holds for any real and positive value of s, as our derivation of (5.31) and (5.36)
proceeds without having to make any assumption on s as long as s > 0. Of course this
does not imply that the staircase model admits conserved charges for every positive value
of the spin: in order for s to be the actual spin of a conserved charge in the staircase
model, there must exist an operator Qs such that its eigenvalue on a one-particle state
|θ〉 is a linear combination of h2s−1(θ) and h2s(θ). If Qs is a local conserved quantum
charge then s ∈ N and the charge transforms according to an integer spin representation
of the Lorentz group. The local charges in the staircase model are obtained via an
analytic continuation (3.10) of the corresponding ones in the sinh-Gordon model, which
exist for odd values of s [2, 29]. Nonetheless, it is still meaningful to consider even or
non-integer values of s in the one-particle eigenvalues, as in the most generic GGE setup
one has to include also non local charges, and the latter have in general fractional and

3One should keep in mind that these peaks do not reflect the physical behaviour of the current aver-
ages at the points yl/θ0 = k/2. Indeed, not only the functions Cs(y) lose their translational invariance
therein, but the approximations used in the derivation of (5.31) are no more valid. In particular, when
yl/θ0 = k/2 the coefficients (5.32) are defined by integrals over the whole non-compact domains R, L.
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coupling-dependent spin. For instance, in [48] it has been shown that the sine-Gordon
model in the repulsive regime admits a set of charges with spins s = 2πk/p, being p > 1
a parameter dependent on the coupling β. Since sine-Gordon is analytically continued to
sinh-Gordon, and the latter to the staircase model, we expect local charges with similar
fractional spins to appear also in the GGE description of the staircase model.

5.3 Higher-spin currents in non-thermal steady states

In the previous sections we derived and discussed the expressions of higher-spin current
averages in the staircase model when the the asymptotic reservoirs are in Gibbs states.
In this scenario we have a universal dependence on the temperatures Tl, Tr in the UV
limit, but unless s = 1 the exact dependence of the coefficients Csl , Csr on the central
charge is not available. There is, however, a situation in which these coefficients are
exactly linear in the central charge: namely, this is the case when the reservoirs are in
non-thermal states, described by generalized TBA equations of the form (4.43). The
derivation of this result proceeds in two steps.

First, consider the following generalized TBA equation for the staircase model:

εs(θ) = βs cosh (sθ)− 1

2π
[(ψ ∗ Ls) (θ − θ0) + (ψ ∗ Ls) (θ + θ0)]

= 2se−sy cosh (sθ)− 1

2π
[(ψ ∗ Ls) (θ − θ0) + (ψ ∗ Ls) (θ + θ0)] , (5.41)

where again m = 1 and (k − 1)θ0/2 < y = ln (2/β) < kθ0/2 for some positive integer
k. This equation corresponds to a GGE where the only non vanishing βi is coupled to
a spin-s charge eigenvalue4 hs(θ) = cosh(sθ). We have numerically solved (5.41) and
obtained the plots of the functions Ls(θ) ≡ ln

(
1 + e−εs(θ)

)
at different temperatures

and for the first integer values of s. These functions display a kinks-plateaux structure
which is extremely similar to that of L1(θ) ≡ L(θ), described in section 3.2.1: in fact,
the only difference with respect to the latter is that the first and last kinks of Ls (at
∓y respectively) are steeper than the ones of L. This is a consequence of the fact that
εs(θ) grows with a larger exponent when |θ| > y. The positions of kinks and plateaux
are untouched and at the midpoints Ls(zi) = L(zi), as the driving term can still be
neglected when we derive the coupled transcendental equations for εs(zi), which are thus
given by (3.30). We remark that only the first and last kinks of Ls(θ) are affected by the
driving term: the central kinks of Ls are not steeper then the ones of L (they are in fact
practically indistinguishable when the functions are superimposed), because their width
depends only on the support of the kernel.

4We are using a lighter notation with respect to the one in (5.20) since we focus here on even
eigenvalues. The case hs(θ) = sinh(sθ) is a straightforward generalization.
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The fact that Ls(θ) and L(θ) have the same properties allows us to obtain an ex-
plicit relation between the coefficients Cs(y) and the central charges ck starting from the
generalized TBA equation (5.41), namely:

Cs(y) ≡
∫
K2k

dθ e−s(y−θ)Ls(θ)→
π2

3

ck
s2s

, (5.42)

in the usual limit y, θ0 → ∞ and y/θ0 fixed. To obtain the expression above one has
to proceed along the lines of what we did in section 3.3 for the standard TBA scaling
function, the only difference being that in this case one has to derive both members of
equation (5.41) with respect to θ and integrate them over Ki with measure Ls(θ) dθ.
Notice that Ls(zi) = L(zi) is a crucial property, as it is the specific form of the coupled
equations (3.30) which ensure the validity of the dilogarithm sum rule.

With relation (5.42) at hand we can proceed to the evaluation of higher-spin current
averages in a GGE. Before turning to the partitioning protocol, however, we have to
generalize the TBA-derived formulas (4.47) and (4.51) for the average charge and current
densities. Recall that in the quasi-particle description the GHD average qi is defined by
(4.31), which is equivalent to equation (4.47) thanks to the Bethe constitutive relation
(4.33). Equation (4.51) for the current average is then obtained by means of a crossing
symmetry argument. Suppose that we now modify equation (4.33) in the following way:

ρp(θ) + ρh(θ) =
1

2π
h(θ) + (φ ∗ ρp)(θ) , (5.43)

that is, a generic regular function h(θ) replaces p′(θ) in the right hand side. An explicit
calculation shows that the minimization of the GGE free energy functional (4.41) with
respect to ρp and ρh is not affected by this replacement in the constraint, so that the
resulting generalized TBA equation is still (4.43). On the other hand, the equilibrium
free energy density f(β) is now given by:

f(β) = −
∫

dθ

2π
h(θ) ln

(
1 + e−εw(θ)

)
(5.44)

instead of (4.45). This means that there is a large freedom in the choice of f(β) keeping
fixed the TBA equation, i.e. the generalized Gibbs ensemble. At first sight, equation
(5.43) might seem physically meaningless when h(θ) 6= p′(θ), because on a more funda-
mental level the constitutive relation (4.33) directly follows from the Bethe quantization
condition (2.15) in the thermodynamic limit. However, there is a precise meaning un-
derlying the choice of a generalized free energy density of the form (5.44). We will spend
a few words on this at the end of the section.

Let us take h(θ) = hs(θ) = cosh(θ), i.e. precisely the driving term of the GGE TBA
equation. Then from (5.43) we now have:

ρp(θ) + ρh(θ) =
[hs(θ)]

dr

2π
, ρp(θ) = ns(θ)

[hs(θ)]
dr

2π
, (5.45)
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so that the average density of a charge with eigenvalue hk(θ) becomes:

q
(s)
k ≡

∫ +∞

−∞
dθρp(θ)hk(θ) =

∫ +∞

−∞

dθ

2π
[hs(θ)]

dr ns(θ)hk(θ) , (5.46)

where the superscript denotes the spin of the GGE charge and the subscript the spin of
the charge we are averaging. We are interested in the case k = s so we can stick to the
usual notation qs with no risk of ambiguity. The corresponding current density average
js is now obtained by implementing the crossing transformation θ → iπ/2 − θ, which
acts on higher-spin eigenvalues as:

cosh (sθ) 7→

{
(−1)k cosh (sθ) , s = 2k

−i(−1)k sinh (sθ) , s = 2k + 1
. (5.47)

Selecting the odd values of s, up to an irrelevant minus sign5:

js =

∫ +∞

−∞

dθ

2π
[sinh (sθ)]drns(θ)hs(θ) (5.48)

for a system in the specified GGE. Using the fact that:

ε′s(θ) = sβs[sinh (θ)]dr , (5.49)

together with ε′s(θ)ns(θ) = −L′s(θ) and β = 2e−y, (5.48) reduces to:

js = − 2s−1

2πsβ2s

∫ +∞

−∞
dθ2e−sy cosh (sθ)L′s(θ) . (5.50)

Notice that now we have an overall factor of β−2s instead of the characteristic β−(s+1)

of a pure thermal state: the dependence of current averages on the (generalized) inverse
temperatures is peculiar to a given GGE. If we join two subsystems prepared in states
described by (5.41) (with β = βr,l) at generalized temperatures Tr,l = β−1

r,l such that (5.1)

holds, the integration interval in (5.50) reduces to K2k for jls and to K1 for jrs. Proceeding
exactly as in the standard TBA case but using the fact that now the scaling function is
(5.42), we end up with the expression for the UV limit of js = jls + jrs in a partitioning
protocol with non-thermal asymptotic reservoirs:

jl,rs = ± 2s−1

2πβ2s
CsL,R ⇒ js = jls + jrs →

πck
12s

(
T 2s
l − T 2s

r

)
. (5.51)

As announced, an exact linear dependence on the UV central charge is obtained. This
is in spite of a different power law in Tl,r with respect to the one in (5.31), which is a

5This can be always re-absorbed by including a factor of (−1)k in hs(θ).
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direct consequence of the modified current equation (5.48). We remark that the latter is
consistent with the result (D13) derived in [15] by means of form factors. In particular,

the form factor approach shows that a charge density q
(s)
k with GGE average (5.46) and

the corresponding current density j
(s)
k are related by a continuity equation of the form:

i[Qs, q
(s)
k ] + ∂xj

(s)
k = 0 , (5.52)

which clarifies the role of h(θ) = hs(θ) in (5.44) as the eigenvalue of the higher-spin
charge Qs now ruling the time evolution. Therefore we conclude that GGE averages of
higher-spin current (and charge) densities depend linearly on the central charge whenever
the only non-vanishing conserved charge in the ensemble coincides with the generator of
time evolution, be it the Hamiltonian or an higher-spin charge.

94



Conclusions and outlooks

The purpose of this work was to perform a detailed study of Zamolodchikov’s staircase
model within the recently developed framework of generalized hydrodynamics. In order
to do so, we needed to present a vast set of theoretical tools. The first part of this
thesis was therefore entirely devoted to the discussion of integrability techniques, from
the analytic S-matrix theory to the thermodynamic Bethe ansatz for diagonal integrable
QFTs in one spatial dimension.

Within this context, we introduced the staircase model and outlined its TBA struc-
ture. Despite the simplicity of its mass spectrum and S-matrix, the peculiar features
displayed by this model make it worth a thorough investigation. In particular, the roam-
ing behaviour of the staircase model’s scaling function, which approaches all the minimal
unitary models as the temperature varies, suggested a connection with the An series of
massless, non-diagonal models flowing between the very same critical theories. This
suggestion was found to be true at the TBA level, and motivated a further study of
the staircase model in the context of generalized hydrodynamics, to which a large part
of this thesis was dedicated. The hydrodynamic features of Zamolodchikov’s staircase
model are quite peculiar, as non-monotonic effective velocities were never observed in
any other diagonal theory with a single-particle spectrum. Again, we found similarities
with the off-equilibrium behaviour of An massless flows. A comprehensive review of this
connection will be the object of a future publication.

The last chapter of this thesis was entirely devoted to the investigation of non equi-
librium steady-state currents arising after the implementation of a partitioning protocol.
Because of its infinitely many UV fixed points, the staircase model revealed to be ex-
tremely suited for this study, as we could numerically check our results in more than
one critical regime. Even though the computations we performed were based on specific
features of staircase-like models, the resulting expressions are universal, as the very same
scaling laws are found in diagonal models having a monotonic effective velocity [47].

There are several directions in which further research can (and hopefully will) be
pursued:

• At the pure S-matrix level, it is still unclear whether the scattering amplitude
of the staircase model can be derived from a QFT with a consistent lagrangian
formulation. A candidate action is given in (3.13), and even if apparently physically
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ill-defined, it gives rises to a consistent perturbative expansion [17].

• Generalized staircase-like theories can be obtained from affine Toda field theories
through a suitable analytic continuation of the coupling constant [19, 20], and
the resulting scaling functions roam between coset conformal models. Since affine
Toda field theories are diagonal models, their TBA equations are derived with little
effort. Thus it would be interesting to investigate whether it is possible to relate
also these models to some non-diagonal theories.

• Finally, the results we obtained for the UV limits of higher-spin currents could in
principle be obtained from CFT first principles, by making use of Zamolodchikov’s
mirror argument to study the finite-size scaling of higher-spin conformal fields in
a cylindrical geometry.
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