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Che cosa sono i fiori?
non senti in loro come una vittoria?

la forza di chi torna
da un altro mondo e canta

la visione. L’aver visto qualcosa
che trasforma

per vicinanza, per adesione a una legge
che si impara cantando, si impara profumando.

Che cosa sono i fiori se non qualcosa d’amore
che da sotto la terra viene

fino alla mia mano
a fare la festa generosa.

Che cosa sono se non
leggere ombre a dire

che la bellezza non si incatena
ma viene gratis e poi scema, sfuma

e poi ritorna quando le pare.
Chi li ha pensati i fiori,
prima, prima dei fiori..

( Senza polvere e senza peso, Mariangela Gualtieri)
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Abstract

Questa tesi contribuisce allo studio delle prestazioni e a chiarire le possibilità di impiego
del calorimetro elettromagnetico per la selezione degli eventi di collisione elastica fra
muoni ed elettroni nell’esperimento MUonE. Assieme al sistema di tracciamento il calorimetro
costituisce il rivelatore prototipo che sarà utilizzato nel Test Run in programma nel 2021
(TR2021). Il lavoro di tesi ha avuto per obiettivo lo sviluppo del codice di simulazione
rapida della risposta del calorimetro, nelle condizioni di misura previste nel TR2021. A
partire da eventi di collisione fra muoni di alta energia ed elettroni a riposo, generati
in approssimazione NLO, in condizioni cinematiche prefissate ,si è sviluppata la pro-
cedura che generalizza le condizioni cinematiche di collisione considerando le proprietà
cinematiche del fascio: la sua divergenza angolare e la dispersione spaziale o larghezza
(beam spot). Gli eventi NLO includono il caso di urto con radiazione di un fotone
reale. Si è quindi proceduto allo sviluppo della procedura di propagazione delle parti-
celle nei bersagli sottili e nei volumi del tracciatore (tracker), considerando gli effetti di
deflessione delle traiettorie dovuti alla diffusione coulombiana multipla, fino all’arrivo
di elettroni, muoni e fotoni irradiati sulla superficie del calorimetro. Per simulare la
risposta del calorimetro si quindi è fatto ricorso ad un modello parametrico di sviluppo
degli sciami elettromagnetici (fast simulation). L’algoritmo di fast simulation è stato
realizzato riferendosi alla parametrizzazione dello sviluppo degli sciami elettromagnetici
GFLASH utilizzata nell’esperimento CMS. Il codice di simulazione è stato collaudato con
successo, confrontando i risultati ottenuti con quelli attesi, pubblicati dagli autori del
modello. È stata quindi studiata la distribuzione dell’energia rilasciata dalle particelle
nelle unita’ sensibili, o celle, del calorimetro. Successivamente, i due codici di simu-
lazione, quello che permette di simulare la propagazione delle particelle nel rivelatore,
e quello che consente di simulare la risposta rapida del calorimetro, sono stati integrati
in un programma di calcolo con cui è stato possibile realizzare uno studio completo e
dettagliato delle caratteristiche degli eventi che ci si aspetta possano essere registrati
durante il TR2021. Il programma di simulazione ha consentito di individuare criteri per
la selezione degli eventi elastici tra quelli NLO. Sono stati individuati tre diversi criteri
di selezione degli eventi, che sembrano consentire una selezione degli eventi d’interesse
con elevata efficienza. I criteri sono basati esclusivamente sulle informazioni ottenibili
grazie al calorimetro: l’energia ricostruita dello sciame e la posizione del centroide di
energia. La tesi chiarisce, almeno in parte, il ruolo prezioso che questo strumento potrà
avere nell’esperimento finale.



Abstract

This thesis contributes to the study of the electromagnetic calorimeter performances
and to the clarification of its role in the selection of µ − e elastic scattering events for
the MUonE experiment. Together with the tracking system, the calorimeter constitutes
the prototype detector for the Test Run scheduled in 2021 (TR2021). One of the main
proposals of this thesis is the development of the fast simulation code for the calorimeter
response, in the working condition expected in the TR2021. Given a generated set
of NLO events, consisting in high energy muons scattering on electrons at rest with
prefixed kinematical conditions, it has been developed the procedure which generalizes
kinematical scattering conditions considering the kinematical properties of the beam:
its angular divergence and its spatial profile (beam spot). NLO events include the case
of one real photon radiation. It has been simulated the propagation of particles across
light targets and tracking stations, considering the deflection given by multiple Coulomb
scattering, until electrons, muons and photons have reached the calorimeter surface. The
response of the calorimeter has been simulated by means of a fast simulation algorithm
that has been developed relying on an existing parametrization (GFLASH) also used
by CMS. The simulation code has been validated successfully, comparing the obtained
results with the expected ones, published by the authors of the model. Thus, it has been
studied the distribution of the energy released by particles in sensitive units, or cells, of
the calorimeter. As a next step, the two simulation codes (the one for the propagation of
particles throughout the detector and the one for the calorimeter response) were unified
in a single algorithm, through which a complete study of the events topology expected
in the TR2021 was carried out. This fast simulation tool enabled to identify selection
criteria for elastic events within the full NLO set. Three different criteria were proposed
which seem to identify efficiently the interesting events. Selections are mainly based on
calorimetric information: the reconstructed shower energy and the centroid position of
the cluster. The thesis clarifies, at least in part, the precious role that this detector may
have in the final experiment.
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Introduction

It is an incredible fact that a single number can hide a hint on how nature works.
The anomalous magnetic moment of the muon aµ = (g − 2) /2 represents one of the
open questions in the nowadays physics scenario as the experimental measurement and
the theoretical prediction differ of 3.7σ. The E821 experiment at Brookhaven reports
the most precise measurement of the anomaly [18], while the theoretical estimation is
reported in [13]:

aexpµ = 116592089 (63)× 10−11 and aSMµ = 116591810 (43)× 10−11. (1)

In some months a new result should be announced from the E989 experiment at Fermi-
lab which aims at a precision of 0.14 ppm, a fourfold improvement over the 0.54 ppm
achieved from Brookhaven. On the theoretical side, the biggest uncertainty is given by
the hadronic vacuum polarization contribution to the anomaly at leading order aHLOµ .
Until now, its calculation has been carried out with a data-driven approach based on
the measurement of the hadronic e+ − e− cross section in the time-like region. But this
method seems to have reached its precision limit and new approaches are needed. In this
context, the MUonE collaboration proposes an independent estimation of aHLOµ from a
precise measurement of the hadronic contribution to the running of the QED coupling in
the space-like region ∆αhad(t). The selected process is the µ−e elastic scattering and the
experiment will take place at CERN exploiting the available M2 muon beam of 150 GeV.
After an introduction of the theory predictions and experimental measurements in Chap-
ter 1, Chapter 2 introduces and explains the proposal and the main problems concerning
the MUonE project. In Chapter 3 the original work of the thesis starts with the descrip-
tion of the simulation code for the Test Run 2021 setup. The kinematical properties of
the beam are taken into account and applied to the generated MC NLO events before
being propagated in the experimental setup. In Chapter 4 it is described how the fast
simulation for EM showers was developed. The parametrization is the one proposed in
[36] and also used in CMS.The code has been validated and gives consistent results with
the CMS reference. The final Chapter 5 shows results obtained by merging the two fast
simulation tools and aims to demonstrate how the calorimeter can take an important
role in the selection of elastic events discarding the radiative ones.
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Chapter 1

Introduction on the Muon and its
Anomaly

1.1 An historical overview

In 1936 Carl D. Anderson and Seth Neddermeyer discovered a new particle as a con-
stituent of cosmic-ray showers through a cloud chamber measurement; those data were
commented by them in 1937 [1] as

“the first experimental evidence for the existence of particles of both penetrating
and non-penetrating character [...]. Moreover, the penetrating particles in this
range do not ionize perceptibly more than the non-penetrating ones, and cannot
therefore be assumed to be of protonic mass. [...] The non-penetrating particles
are readily interpreted as free positive and negative electrons. Interpretations of
the penetrating ones encounter very great difficulties, but at present appear to
be limited to the following hypotheses: (a) that an electron (+ or −) can possess
some property other than its charge and mass which is capable of accounting for
the absence of numerous large radiative losses in a heavy element; or (b) that there
exist particles of unit charge, but with a mass (which may not have a unique value)
larger than that of a normal free electron and much smaller than that of a proton”

The existence of such a particle was confirmed in 1937 by J.C. Street and E.C. Stevenson,
in particular they supported the idea that these were “particles of electronic charge, and
of mass intermediate between those of the proton and electron[...]”.
Because of its mass, many physicists at that time believed that this new entity could be
related to the one theoretically predicted by Yukawa in 1935: the mesotron (shortened
as meson), mediator of the strong nuclear forces.
But, in 1946, an important experiment by M. Conversi, E. Pancini and O. Piccioni [3]
shown that those mesons were not affected by the nuclear force, being unreactive in
the nuclear sense, thus could not correspond to the Yukawa’s hypothesis. His predicted
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particle, nowadays known as π meson, was finally identified in 1947 by C. Lattes, G.
Occhialini and C. F. Powell in a cosmic-ray experiment [4]. They discovered that in
some cases an object that appeared to be a meson would stop and then emit another
particle of somewhat lower mass. Hence the origin of cosmic ray muons became clear:
the majority of π mesons, entering the atmosphere, decay into muons which are able to
reach the Earth’s surface; with this discovery they managed to differentiate the Yukawa
particle, denominated pion, from the earlier-discovered muon.

After this puzzling path towards a deeper knowledge of that particle, physicists
believed that the muon was just the heavier copy of the electron and this remained the
feeling until precise measurements of the so-called anomalous magnetic moment were
performed.
Nowadays muons are classified as leptons in the framework of the Standard Model, a
model for the strong, electromagnetic and weak interactions of elementary particles.
Leptons are particles of half-integer spin, existing in three generations

Le =

(
νe
e−

)

L

Lµ =

(
νµ
µ−

)

L

Lτ =

(
ντ
τ−

)

L

, (1.1)

together withe their correspondent antiparticle. The doublets are composed by one neu-
tral lepton (neutrinos ν) and a charged lepton (electron e, muon µ, tau τ). What
really differentiate the three charged leptons is the mass value: me = 0.511 MeV,
mµ = 105.658 MeV and mτ = 1776.86 MeV. This is the key parameter which brings to
the different behaviors and characteristics of these fermions.
The electron can be studied most precisely because of its stability, but nowadays also
the muon can be managed quite well in experiments and it reveals to be a good leptonic
candidate for the discovery of physics beyond the Standard Model. Some effects scale
with powers of m2, therefore the τ is the most sensible lepton for this kind of researches
but, being more massive, is less stable than the muon.

1.2 Magnetic Moments

The main subject of this thesis work is a specific muon observable, namely its anomalous
magnetic moment. This quantum property can be described in Quantum Field Theory
and is a powerful probe of physics beyond the Standard Model.
In classical mechanics, an electric charge e with mass m orbiting in a magnetic field ~B
carries a magnetic dipole moment defined as

~µL =
( e

2m

)
~L (1.2)
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where ~L = m~r × ~v is the orbital angular momentum. Because of the magnetic moment,
the magnetic field ~B induces a mechanical action on the charge through a torque:

~M = ~µ× ~B. (1.3)

After Stern-Gerlach experiment in 1922 [6], spinning particles, in particular electrons,
were proposed in 1925 by G. Uhlenbeck and S. Goudsmit as a necessary request for the
explanation of the anomalous Zeeman effect [5]. An intrinsic magnetic moment was

defined for all of them, where the orbital angular momentum ~L would be replaced by
the quantum angular momentum called spin ~S = ~

2
~σ, bringing to

~µs = gs

( e

2m

)
~S = gs

µB
~
~S. (1.4)

which is usually defined in terms of Bohr magneton

µB =
e~
2m

. (1.5)

The equation introduces the so-called dimensionless gyromagnetic ratio gs, linked to the
spin, which needed to assume the value of 2 in order to explain the observations. This
number plays a key role in the development of the research on the anomalous magnetic
moment.
When in 1928 Dirac presented its famous theory of the electron [7], the picture became
clearer. The relativistic equation for an electron in an external magnetic field takes the
form:

(i∂µ − eAµ)γµψ = mψ (1.6)

and the extraordinary result was that the g value came out to be equal to 2, consistently
with the value measured in earlier experiments, and directly as a natural consequence
of his relativistic equation, such that Dirac himself stated that its theory “gave just
the properties that one need for an electron. That was an unexpected bonus” for him,
“completely unexpected”.

This theoretical prediction was then supported by many measurements although
with large experimental errors. It required 20 years of experimental efforts to establish
that the electron’s magnetic moment exceeds the value of 2 by a tiny fraction. As a
matter of fact, in 1947 J. Schwinger [8] showed that from a theoretical point of view
these “discrepancies can be accounted for by a small additional electron spin magnetic
moment” that arises from the lowest-order radiative correction to the Dirac moment.
Hence, the “interaction of an electron with an external field is now subjected to a finite
radiative correction”. His famous QED calculation predicted the one loop radiative
contribution to ae, shown diagrammatically in Fig. (1.1)

ae =
α

2π
∼ 0.00116 → gthe = 2 · 001161 (1.7)
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which is independent from any mass and equal for both aµ and aτ . What he remarked was
that, in the process of the production of these results, mass and charge renormalization
must be applied.
In the same year, this deviation was experimentally confirmed by Kusch and Foley [9],
measuring:

gexpe = 2 · (1.00119± 0.00005). (1.8)

This result was in agreement with Schwinger’s prediction and became one of the first
QED triumphs, as a confirmation of the perturbative method.
It turned out to be convenient to divide the magnetic moment into two parts:

Figure 1.1: Lowest order QED contribution to the electron anomalous magnetic moment
calculated by Schwinger (with l = e).

µ = (1 + a)
e~
2m

(1.9)

where the first term is the Dirac term while the second is the anomalous Pauli moment,
or anomalous magnetic moment. The so-called anomaly, defined as:

a =
g − 2

2
. (1.10)

quantifies the discrepancy of the g factor from the Dirac predicted value of 2, hence it
accounts for all the corrections which need to be applied to the magnetic moment.

1.3 Renormalization, running constants and QED

In Quantum Electrodynamics (QED) calculations can be performed by a perturbation
method, based on Feynman diagrams, at subsequent orders of series expansion in powers
of the coupling constant. In doing so, one of the main problems is the appearance of
many divergent quantities.
Infinities come from the integration over variables (as the momenta of virtual particles)
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that are not directly measurable and can therefore reach extremely high or low values.
These integrals are generally ill-defined and one can try to put one or more cutoffs on
the integration domain and perform a limit to remove them only at the very end of the
calculation. If the diagram contribution diverges sending the cutoffs to infinity or to
zero, one says that the diagram has respectively an ultraviolet or an infrared divergence.
The procedure to actually renormalize a theory, trying to get rid of these infinities,
involves a set of advanced mathematical techniques. The basic points are:

1. Regularization: The infinities are removed with a suitable technique, that can
consist in the introduction of a cutoff Λ.

2. Redefinition of parameters : One redefines a finite number of parameters to ab-
sorb the infinities. In this process a mass scale µ, called renormalization scale, is
introduced.

The infinities of the theory end up in the so-called bare parameters, which are those in
the absence of vacuum interactions, instead what can be measured are the renormalized
or dressed parameters shielded by polarized virtual electron/positron pairs at a given
energy scale. The effect on the electron charge is shown in Fig.(1.2): the effective charge
results from the shielding of virtual electron-positron pairs, the so-called Vacuum Polar-
ization Effect (VP).

Figure 1.2: Screening of the elec-
tric charge in Quantum Field Theory.
Feynman’s diagrams for the creation
of virtual particles are also shown on
top.

As a consequence, the physical coupling is not constant: its value depends on the
energy scale/distance of the process in which we probe the particle. This phenomenon
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is a general feature of quantum field theories known as running of the coupling
constants. It can be described quantitatively starting from the so-called beta function:

β(g) =

(
dg

d lnµ

)
QED−−−→ β(e) =

e3

12π2
(1.11)

where g is the effective charge of the theory and µ the energy scale. β(e) is the one-loop
QED beta function taking as the effective parameter the electric charge e. In this theory,
the coupling constant is defined as αqed = e2/4π hence, alter some mathematical steps,
it is possible to get an equation for αqed = α from (1.11):

dα

d lnµ2
=
α2

3π
, (1.12)

in order to get the running of the parameter we need to integrate considering an arbitrary
scale q0 ∫ α(q2)

α(q
2
0)

1

α2
dα =

∫ q

q0

1

3π
d lnµ2

1

α(q2)
− 1

α(q20)
= − 1

3π
ln

(
q2

q20

) (1.13)

hence the running of the electromagnetic coupling caused by vacuum polarization results
in

α(q2) =
α(q0)

1− α(q0)
3π

ln
(
q2

q20

) (1.14)

The closer one gets (increasing the energy scale q is equivalent to probing a smaller dis-
tance scale), the greater the observed effect of the virtual processes which modify the
electric charge. Therefore the electromagnetic coupling runs, in particular it increases
with energy.
This procedure gives a form of the running coupling constant in the one-loop approxi-
mation (Fig. (1.3)) as a result of the renormalization process based on the existence of
VP processes.

Contributions to the vacuum polarization loops are given by all charged leptons and
quarks, hence it is convenient to express the running of the coupling constant in this way

α(q2) =
α

1−∆α(q2)
(1.15)

where α = α(q2 = 0) is the fine structure constant and:

∆α(q2) = ∆αlep(q
2) + ∆αtop(q

2) + ∆αhad(q
2). (1.16)

is the shift of the coupling constant when the photon momentum is q2. The quark
contributions are included in ∆αhad except the very small top contribution, which is
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Figure 1.3: One-loop photon self-energy

separated from the other quarks because at top energy-scale QCD can be calculated
with perturbative methods. This term will be neglected in the following.
Perturbation theory permits to express the contribution from QED to the anomalous
magnetic moment (aQEDµ ) as a perturbation series in powers of α/π

aQED = C1

(α
π

)
+ C2

(α
π

)2
+ C3

(α
π

)3
+ ... . (1.17)

Vacuum polarization enters at the two loop level (fourth order in the electric charge)
and it is the only source of difference between the g-factors of the electron and muon,
because of their different mass.

1.4 Muon g-2 in the Standard Model

The muon anomaly can be expressed as a sum of three terms inside the SM (represen-
tative Feynman diagrams in Fig.(1.4)):

aSMµ = aQEDµ + aEWµ + ahadµ . (1.18)

The electromagnetic and weak contributions can be calculated with extreme precision
by perturbative calculation. The hadronic one, instead, must rely on experimental data.
It is really demanding to measure this contribution and as a matter of fact it presents
the biggest uncertainty. The muon anomaly provides a particularly sensitive probe for
new physics, more than the electron as the sensitivity goes with m2

l (m2
µ/m

2
e ∼ 43000).

1.4.1 QED contribution

Dealing with the electron, the QED contribution to ae is largely dominating, as the
hadronic and weak ones go with (me/M)2 where M is the weak or hadronic scale, far

10



Figure 1.4: Representative diagrams contributing to aµ . From left to right: leading
order QED (Schwinger term), lowest-order weak, lowest-order hadronic.

bigger than the electron mass (order of contribution 10−12). Nowadays, ae is the most
precisely measured quantity [12] and it is a powerful precision test for QED giving the
extraordinary agreement with the theoretical evaluation [11]:

aexpe = 1 159 652 180.73(28)× 10−12,

aSMe = 1 159 652 180.91()× 10−12.
(1.19)

The measured value of ae is an extremely important result, as it gives the possibility to
extrapolate a high level accuracy value for the fine structure constant α, which results
in [11]:

α−1(ae) = 1 370 359 991.50(33)× 10−12. (1.20)

Dealing with the muon, the difference in mass with respect to the electron plays a
key role in the determination of the anomaly. It is possible to divide aQEDµ in three main
contributions:

aQEDµ = A1 + A2(mµ/me) + A2(mµ/mτ ) + A3(mµ/me,mµ/mτ ) (1.21)

which take into account the presence of internal loops (Fig.(1.5)) with leptons different
from the muons.
In Eq. (1.21), A1 represents the universal term, which is equal for all the three charged
leptons. This term is the dominant one in the electron anomaly reported in Eq.1.19. A2

enters at two-loop level including loops with lepton flavour different from the external
lines, and A3 includes diagrams with an extra loop, thus having at least three loops.
Therefore, there are mass dependent contributions, which are negligible in the electron
anomaly.
Each coefficient Aj can be expanded in perturbation theory as a series in α/π:

Aj =
N∑

i=j

A
(2i)
j

(α
π

)i
(1.22)
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Figure 1.5: Two loop (α4) diagrams representing leptonic VP contributions. (b) and (c)

contribute to the mass dependent corrections to aµ (A
(4)
2 ). (a), having the same lepton

flavour in the loop and in the external lines, contributes to the universal term (A
(4)
1 )

where i ≤ j according to the given definition.
Currently the QED contribution to aµ has been calculated to five loops, obtaining [13]:

aQEDµ = 116 584 718.931(7)(17)(6)(100)(23)× 10−11 (1.23)

where the uncertainties are due to the tau-lepton mass, the α4 term, the α5 term, the
estimate of the α6 term, and the value of α taken from the measurement of the Cesium
atom α−1 = 137.035999046(27) [13], which provides a new determination of the con-
stant independent of the electron magnetic anomaly ae (Eq. (1.20)), from which α was
traditionally extracted.

1.4.2 Electroweak contribution

In Eq.(1.18), aEWµ collects all the loops involving W±, Z or Higgs bosons (Fig.1.6 repre-
sents the leading order contributions). Their contribution is not dominant as those terms
are suppressed by a factor of (α/π) · (m2

µ/m
2
W ) ∼ 4 × 10−9. The current calculations,

including two loops and leading three loops, obtain [11]:

aEWµ = 153.6(1.0)× 10−11. (1.24)

1.4.3 Hadronic contribution: time-like approach

Hadronic loop contributions to aSMµ give rise to its main theoretical uncertainties, mainly
from the leading hadronic vacuum polarization term aHLOµ and from the hadronic light-
by-light contribution aHLBLµ .
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Figure 1.6: The leading weak contributions to aµ.

Hadronic Vacuum Polarization On a perturbative level, we may obtain the hadronic
vacuum polarization term replacing internal lepton loops of the QED VP term by quark
loops (Fig.1.7). But due to the non-perturbative nature of QCD at low energies, pQCD

Figure 1.7: The leading hadronic contribution to aµ.

cannot be applied, therefore a semi-phenomenological approach is needed to compute
aHV Pµ via dispersion relations together with the optical theorem and experimental data
of the hadron production cross section e+e− annihilation.
Because of the analyticity of the vacuum polarization function, this last obeys the dis-
persion relation

Πhad
γ (q2)

q2
=

∫ ∞

0

ds

s

1

π
Im Πhad

γ (s)
1

q2 − s, (1.25)

which represents the one from the hadronic contribution. Because of optical theorem,
the imaginary part of the vacuum polarization amplitude can be related to the total
cross section of a process which in the time-like approach is the e+e−-annihilation

ImΠhad
γ (s) =

s

4πα
σ0
had(e

+e− → had) =
α

3
Rhad(s), (1.26)

with

Rhad(s) =
σ0
had

4πα2/3s
. (1.27)
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The dispersion relation in Eq.(1.25) needs the bare cross section for e+e− annihilation,
that is different from the measured one which is corrected for initial state radiation,
effects of the electron vertex loop and VP correction to the photon propagator. The
reason is that taking into account the physical σhad would produce double counting of
VP effects.
Undressing the cross section requires to replace the running α(s) with the classical α,
such that:

σ0
had = σhad

(
α

α(s)

)2

, (1.28)

giving as a result in Eq1.27

Rhad(s) =
σhad

4πα(s)2/3s
. (1.29)

The lowest order hadronic contribution to the anomaly can be calculated through the
dispersion relation

aHLOµ =
α

π

∫ ∞

0

ds

s

1

π
Im Πhad(s)K(s) (1.30)

which can be written as

aHLOµ =
(αmµ

3π

)2
(∫ E2

cut

m2
π0

ds
Rdata
had (s)K̂(s)

s2
+

∫ ∞

E2
cut

ds
RpQCD
had (s)K̂(s)

s2

)
(1.31)

with a cut Ecut in the energy of a few GeV, separating the non-perturbative low energy
part from the perturbative high energy tail. The high energy part is calculable by
perturbative QCD and gives negligible contribution to the final uncertainty.
The Eq.1.31 is written in terms of the rescaled kernel function

K̂(s) =
3s

m2
µ

K(s). (1.32)

The term 1/s2 in Eq.1.31 enhances the low energy region; due to resonances (especially
the ρ resonance) and threshold effects at low energies, Rhad(s) in Eq.(1.31) is highly
fluctuating (Fig.1.8), therefore this constitutes the main difficulty of the method.

The main channel is e+e− → π+π−, with the ρ resonance showing up at ∼ 770 MeV.
With increasing energy more channels open up and the measurement of Rhad(s) gets
harder.
There are two methods used to measure the cross section:

1. The direct scan mode, where the beam energy is adjusted to provide measurements
at different center-of-mass (CM) energies (Fig.(1.9.b));

2. The radiative return method, where a collider is operating at a fixed CM energy
(Fig.(1.9a)). Here the high statistics allow for an effective scan over different masses
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Figure 1.8: Experimental data (in blue) of R(s). The green curve represents a naive
quark-parton model prediction, while the red one follows the 3-loop pQCD calculation
[11].

of the hadronic system through the emission of initial state photons, whose spec-
trum can be calculated and, in some cases, measured directly. Hence σhad(s

′) is
measured at energies

√
s′ lower than the fixed

√
s at which the accelerator is run-

ning.

Figure 1.9: a) Principle of the radiative return; b) Direct scan mode [10].

This second method is particularly interesting for meson machines like Φ− and B−
factories with high event rates. Important results have been achieved by KLOE (at the
DAΦNE collider in Frascati) and BaBar (at the PEPII collider at SLAC) by measuring
the π+π− cross section which is the channel which dominates in σhad.
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It is important to remark that there are some discrepancies between results from different
experiments and this strongly affects the precision of the combined cross sections used
for the evaluation of the dispersion integrals [13]. As an example, the most precise π+π−

measurements, by KLOE and BaBar, do not agree within the given uncertainties. There
is a hope to solve the discrepancy by looking at other experiments, but their results
are not precise enough, lying between those of KLOE and BABAR, and overlapping
reasonably with both as it can be seen in Fig.(1.10).

For the direct scan mode, precise results below 1.4 GeV from the CMD-2 and SND

Figure 1.10: Comparison of re-
sults from different experiments
of aHLOµ (π+π−) evaluated between

0.6 GeV and 0.9 GeV [13].

detectors at BINP (Novosibirsk) have been obtained at VEPP-2M, and more recently
from CMD-3 and SND at VEPP-2000 up to 2 GeV.
In Fig.(1.11), the recent evaluations of aHLOµ are shown; the recent review in [13] gives
the recommended estimate of:

aHLOµ = 693.1(40)× 10−10 (1.33)

which should provide a realistic evaluation of the current precision of data-driven HVP
evaluations. The final error is evaluated as the quadratic sum of experimental uncertain-
ties, systematic errors including the tension between different experimental results and
the error related to the pQCD calculation.

Higher-order vacuum polarization contributions are not negligible and need to be
considered for the evaluation of aHV Pµ . The main contributions come from diagrams (a)
and (b) in Fig.(1.12), while the (c)’s one is very small [13].
The state-of-the-art evaluation of the NLO contribution reported in [13] is

aHNLOµ = −9.83(7)× 10−10. (1.34)
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Figure 1.11: Comparison of recent and previous evaluations of aHLOµ determined from
e+e− → hadrons cross section data.

Figure 1.12: Higher-order interactions in vacuum polarization processes. The gray blobs
refer to hadronic VP, the white one in diagram (b) to leptonic VP.

Beyond NLO, it is necessary to take into account also NNLO contributions for the aimed
accuracy in the value of g − 2, which have been estimated in [13] to be:

aHNNLOµ = 1.24(1)× 10−10. (1.35)

These results lead to the sum:

aHV Pµ = aHLOµ + aHNLOµ + aHNNLOµ = 684.5(40)× 10−10. (1.36)

Hadronic Light-by-Light Scattering The last important process which enters in
the evaluation of the hadronic contribution to aµ is the Hadronic Light-by-Light (LbL)
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term. It is characterized by a quark loop with four photons attached. This is a problem-
atic term because of its big uncertainties, even if its absolute value is much smaller than
the VP contribution. Fig.(1.13) shows a lowest order LbL diagram, where three out of
four photons are virtual.
Until some years ago this term could not be determined from data, only model depen-

Figure 1.13: Diagram of the hadronic light-by-light interaction process.

dent estimates of the total contribution were made and the large model uncertainties
needed to be reduced and better controlled. This is an important issue as those errors
are comparable with that of the leading order VP contribution and therefore important,
even if the LbL term contributes only marginally to the central value of ahadµ . Recently a
new data-driven approach has been developed, based on a dispersive relation, providing
a model-independent description of HLbL scattering which allowed to reduce the uncer-
tainty (for more details [16]).
The current estimates reported in [13] are

aHLBLµ = 92(19)× 10−11 (1.37)

and
aHLBL,NLOµ = 2(1)× 10−11, (1.38)

which have been obtained taking into account the independent data-driven dispersive
estimates and the model-dependent ones.

1.4.4 Hadronic contribution: Lattice QCD

There was a remarkable progress in the last years in the evaluation of aHV Pµ with Lat-
tice QCD (LQCD), even if the results are not yet competitive with the dispersive ones
obtained with time-like data. As a matter of fact, in LQCD the current uncertainties
reach the level of 2− 3% against 0.5− 0.6% error of e+e− measurements.
In Fig.(1.14) recent results by the various lattice QCD groups (in blue) are reported with
those obtained from the data-driven methods (in red). LQCD results seem promising
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with the development of theory and calculation in the next future, but nowadays those
are still not accurate enough.
The current lattice world average reported in [13] is:

aHLOµ (LQCD) = 711.6(184)× 10−10 (1.39)

consistent with the data-driven method giving Eq.1.33 but with a much larger uncer-
tainty.

Figure 1.14: Recent results for aHLOµ

in units of 10−10. The full blue cir-
cles are lattice results included in the
lattice world average. The average
is indicated by a light blue band,
while the green band indicates the
“no new physics” scenario. The un-
filled blue circles are older lattice re-
sults or superseded by more recent
calculations. The red squares indi-
cate results obtained from the data-
driven methods [13].
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1.4.5 SM prediction: summing up

Taking into account all these contributions (QED, EW and QCD), the obtained theo-
retical estimation for the anomalous magnetic moment of the muon within the SM is
[13]

aSMµ = aQEDµ + aEWµ + aHV P,LOµ + aHV P,NLOµ + aHV P,NNLOµ + aHLBLµ + aHLBL,NLOµ =

= 116591810(43)× 10−11

(1.40)

where the error is dominated by the hadronic vacuum polarization contributions.

1.5 Experimental measurement of g − 2

Numerous experiments in the last six decades have been involved in the measurement of
muon’s anomaly: from CERN I (1958−1962) reaching a 0.4% precision, to BNL (1990−
2003) which is actually the most precise measurement, achieving 0.5 ppm (Fig.(1.15)).
The E821 experiment at Brookhaven obtained the measurement:

aexpµ = 116592089(63)× 10−11. (1.41)

The experiment consisted in the injection of muons into a storage ring (Fig.(1.16))in
stable orbits with a cyclotron frequency ωc. Muons, in a strong magnetic field, because
of their anomalous magnetic moment, are affected by a spin precession with a frequency
ωs such that:

~ωc = − q
~B

mγ
, ~ωs = −gq

~B

2m
− (1− γ)

q ~B

γm
(1.42)

giving as a result of the difference of the two frequencies the anomalous precession fre-
quency ωa

~ωa = ~ωs − ~ωc = −
(
g − 2

2

)
q ~B

m
= −aµ

q ~B

m
, (1.43)

which takes this form also in the presence of an ~E field thanks to a good choice of the
momentum: the so-called magic momentum of 3.094 GeV/c.
Therefore, aµ in Eq.1.41 was determined by a precision measurement of ωa and B [18].

Nowadays, the world is awaiting the result of Fermilab’s current Muon g − 2 E989
experiment (red dashed line in Fig.(1.15)). It is very promising as its goal is to measure
the muon’s anomaly to 0.14 ppm, a fourfold improvement over the 0.54 ppm precision
of Brookhaven E821. As a matter of fact, the E989 experiment is designed to repeat the
BNL measurement with the same technique, reusing the BNL magnet, but with many
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Figure 1.15: Plot showing
the precision needed (y axis)
to evaluate the different con-
tributions entering in aµ and
what precision all the dif-
ferent experiments involved
in past decades were able to
achieve.

Figure 1.16: Experimental setup at BNL for E821.

improvements on the experimental setup and with a 20 times higher number of muons,
in order to reduce the statistical uncertainty [19].
An alternative and innovative approach is proposed at J-PARC in Japan for the Muon
g − 2/EDM experiment. It will feature an ultra-cold muon beam, with a factor of
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10 lower muon momentum, injected into a compact storage ring, 20 times smaller in
diameter and with a highly uniform magnetic field compared with previous and ongoing
muon g − 2 experiments (Fig.1.17). The innovation is the unprecedented quality of the

storage magnetic field ~B which is fundamental for the calculation of aµ as seen in Eq.1.43.
The initial goal is to reach the statistical uncertainty of BNL E821, with much smaller
systematic uncertainties from sources different from the current method [20].

Figure 1.17: Experimental setup at J-PARC for Muon g − 2/EDM experiment.

1.6 Theory versus Experiment: Hint of New Physics?

The history of this observable is not over, looking at the values in Eq.(1.40) and Eq.(1.41)
there is a discrepancy between the two:

∆aµ = aexpµ − athµ = 279(76)× 10−11 (1.44)

which corresponds to a deviation of 3.7σ.
The reason of that difference would lie in one of these three possible causes:

1. Theoretical evaluations could be wrong or underestimate the uncertainty. The
hadronic light-by-light term could be responsible for the disagreement, but its
latest improved calculations have smaller uncertainties that could not explain it.
Otherwise, there could be an issue in the evaluation of the Hadronic VP term,
given by the data-driven method.
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2. The experimental measurements could have underestimated systematic uncertain-
ties.

3. This discrepancy is true and it is produced by new physics beyond the Standard
Model (BSM).

In order to understand if new physics comes into play, it is important to improve the
precision on the experimental measurement, as J-PARC and E989 at Fermilab aim to
do, or find innovative ways for the measurement of the Hadronic VP term. In [21] it is
highlighted that the scenario where ∆aµ arises from hypothetical errors in the evaluation
of the hadronic cross section σhad(s) (Eq.1.29), rather than new physics, leads to several
consequences.
The same cross section data are used as input into dispersion relations to calculate the
hadronic contribution to the running QED coupling evaluated at the Z-pole, ∆α

(5)
had(M

2
Z),

which is an important component of the global fits to the EW sector of the SM. The
commonly used result for HVP from dispersive approach leads to a consistent global EW
fit, but generates the ∆aµ discrepancy.
Starting from the hypothesis that ∆aµ is given by missing contributions in σhad(s), the

corresponding shifted values in ∆α
(5)
had(M

2
Z) would modify EW fit predictions of W boson

mass MW , sin2θlepeff and Higgs boson mass MH . Being consistent with the measured
values of the EW observables, the only region of energy where the missing contributions
could be is at ∼ 0.7 GeV; but, in order to solve the g − 2 discrepancy, the hadronic
cross section would need to be improbably larger than its current robust measurement.
Nevertheless, the experimental measurement of the anomaly has been confirmed in the
last years by some LQCD calculations (e.g. [22]), therefore alternative confirmations of
the dispersive estimated of aHV Pµ are needed to solve this dichotomy between dispersive
approach and recent LQCD evaluations. If the adjustment of the HVP term would turn
out to reconcile experiment and SM prediction, it would thus not necessarily weaken the
case for physics beyond the SM, but to some extent shift it from g−2 to the EW fit [23].
On the other way, if that ∆aµ discrepancy is real, it points out to new physics as low-
energy Supersymmetry (SUSY) where the missing contribution to the anomaly is given
by the existence of supersymmetric partners. Furthermore, in the SUSY framework,
the discrepancy is sensitive to many parameters difficult to measure at LHC, thus it
would give more stringent bounds and constrains on those. Therefore, muon g − 2 is a
powerful discriminator amongst model of physics and, because of that, its measure would
be extremely important for the physics of next generation.
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Chapter 2

The MUonE experiment

The largest contribution to the theoretical uncertainty of aµ is the one of the hadronic
vacuum polarization term aHV Pµ . Through the dispersive approach, which exploits e+−e−
annihilation data and pQCD, it is possible to evaluate this contribution; nevertheless, in
the low energy region where the data-driven method is applied, it is difficult to evaluate
the integral with high precision because of resonances and threshold effects. This is the
main difficulty of the method, thus, being LQCD not competitive yet, it is fundamental
to find a new approach to increase the precision and keep on understanding what is
behind the discrepancy between the theoretical evaluations and the experimental mea-
surement. This is what the MUonE collaboration aims to do; their innovative proposal
is to evaluate the HVP term through the high precision measurement of the effective
electromagnetic coupling αQED in the space-like region where the vacuum polarization
is a smooth function [25].

2.1 Hadronic contribution: space-like approach

In the time-like approach, aHLOµ is defined by Eq.1.30, where ImΠhad is proportional
to σhad(e

+e−). Through some mathematical steps [24], the time-like equation can be
redefined as a space-like integral

aHLOµ =
α

π

∫ 1

0

dx(x− 1)Π̄had[t(x)] (2.1)

where
Π̄had(t) = Πhad(t)− Πhad(0) (2.2)

and

t(x) = −x
2m2

µ

1− x < 0 (2.3)

24



is a space-like squared 4−momentum.
The running of the coupling constant in Eq.1.15 is expressed as a function of ∆α(q2)
which can be defined as

∆α(q2) = −Re(Π̄(q2)) = −Re(Π̄lep(q
2))− Re(Π̄had(q

2)). (2.4)

In the space-like region of momenta, the value of q2 is negative (q2 < 0), giving as a
result the imaginary part of Π̄had(q

2) equal to zero. Therefore

Π̄had(q
2) = Re(Π̄had(q

2)) = −∆αhad(q
2) (2.5)

and Eq.2.1 becomes

aHLOµ =
α

π

∫ 1

0

dx(1− x)∆αhad[t(x)]. (2.6)

The hadronic shift ∆αhad[t(x)] cannot be calculated in perturbation theory as it in-
volves QCD contributions at low-energy scales. However, its expression considering LO
processes can be determined starting from the effective coupling

α(t) =
α

1−∆α(t)
=

α

1−∆αlep(t)−∆αhad(t)
(2.7)

with α(t = 0) = α, giving as a result

∆αhad(t) = 1−∆αlep(t)−
α

α(t)
. (2.8)

The leptonic contribution can be calculated in perturbation theory, thus it is possible
to subtract it in order to get the hadronic. This is not true anymore at higher order
calculations, resulting in a more complex expression which needs the implementation of
Monte Carlo simulations.
The change from annihilation (s-channel) to scattering (t-channel) process simplifies the

evaluation of the anomaly. While the calculation’s precision of the time-like integral in
Eq.1.31 was compromised by the fluctuations of Rhad(s), now the hadronic contribution
to the effective coupling is a quite smooth function of the variable x free of any resonance
poles, as shown in the left plot of Fig.(2.1), and this simplify the evaluation of the
integral. The range x ∈ [0, 1] corresponds to t ∈ [−∞, 0] where x = 0 when t = 0. The
expected integrand in Eq.(2.6) is shown as a function of the variable x in the right plot
of Fig.(2.1), the value of ∆αhad at the peak xpeak ≈ 0.914 is: ∆αhad(tpeak) ≈ 7.86× 10−4

where tpeak ≈ −0.108 GeV2.
This new method which involves the dispersive integral in the space-like region is at the
base of the MUonE project and the main idea would be described in details in the next
section.
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Figure 2.1: Leptonic and hadronic contribution to the running of αQED on the left as a
function of x and the integrand (1− x)∆αhad[t(x)] as a function of x and t on the right.

2.2 Experimental Proposal

The MUonE experiment aims at an independent and very precise measurement of the
leading hadronic contribution to the muon magnetic moment aHLOµ , through a novel
method involving the dispersive integral in the space-like region of Eq.2.6, as proposed
in [27]. This approach requires the measurement of the hadronic contribution to the
running of α in the space-like region ∆αhad(t). In the past, few direct measurements of
that term were computed and the most precise was obtained by OPAL [26] from small-
angle Bhabha scattering. There are some intrinsic limitations related to this process, an
example is the mixing of s and t channels which complicates the extraction of ∆αhad(t)
from data limitating the accuracy on aHLOµ . The MUonE proposal is to exploit the t-
channel µe elastic scattering cross section at low energy, overcoming some difficulties
concerning Bhabha scattering physics.
MUonE has to measure, with an unprecedented precision, the shape of the differential
cross section of µ−e elastic scattering, using the intense muon beam available at CERN,
with energy of 150 GeV, on atomic electrons of a light target. The reasons why it is an
extremely appealing proposal are listed in the following points:

1. Differently from Bhabha scattering, it is a pure t-channel process, where the de-
pendence on t of the differential cross section is proportional to |α(t)/α|2 [27]:

dσ

dt
=
dσ0

dt

∣∣∣∣
α(t)

α

∣∣∣∣
2

, (2.9)

enabling an easier extraction of the running of α(t).
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2. The highly energetic muons from CERN M2 beam allow to access the region of the
peak of the integrand function (Eq.2.6) shown in Fig.(2.1).

3. The boosted kinematics of the collision guarantees the containment of all the events
in a single homogeneous detector, as the angular deflection stays in a 50 mrad cone.

4. The kinematics of the elastic scattering is well known and determined by angular
observables. This permits to identify the signal region through the correlation of
muon and electron scattering angles, shown in Fig.(2.2). It is evident from that
picture that for θe < 5 mrad there is an ambiguity region where θe ∼ θµ and which
needs to be treated carefully in order to have the right µ/e identification.

Figure 2.2: Correlation plot of the scattering angles of muons and electrons from elastic
scattering events given a 150 GeV muon beam.

2.2.1 Precision requested for the measurement

The challenge of the experiment is to achieve a statistical and systematic uncertainty in
the measurement of the µe differential cross section at the level of 10ppm, this permits
to have the new space-like determination of aHLOµ competitive with the present time-like
approach. A competitive determination requires a precision of the order of 10−2 in the
measurement of the hadronic running, which translates into a precision of 10−5 in the
shape of the differential cross section.
The aimed accuracy requires an excellent control of many effects:
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1. on the theoretical side, the effect of radiative corrections to the µe cross section,
which requires NLO [28] and NNLO calculations [13]. In order to extract with high
precision ∆αhad(t), a Monte Carlo code accurate to the NNLO level of radiative
contributions must be available;

2. on the experimental side, there are different effects which need to be taken into
account:

(a) the detector resolution for the signal/background selection;

(b) the control of multiple Coulomb scattering effect which breaks the muon-
electron angular correlation of Fig(2.2) and the planarity;

(c) uniformity of sensors’ efficiency;

(d) tracker alignment and the knowledge of the longitudinal dimension of the
tracking stations;

(e) the knowledge of the mean energy of the beam which needs to be calibrated
with a physical process.

More details on those would be given in the section dedicated to the experimental
apparatus.

2.2.2 Extraction of the hadronic contribution

The experimental workflow is articulated in precise steps:

1. preparing the detector in order to have good quality data (good efficiency of de-
tection, reconstruction, readout, calibration etc.);

2. a selection of signal events which helps in the rejection of background ones (mainly
nuclear processes due to µ−N scattering which induce the production of e+ − e−
couples), suppression of radiative events and reduction of some detector effects;

3. precise measurement of the scattering angles of the outgoing muons and electrons
(θe, θµ);

4. shape of the differential cross section for the elastic scattering events;

5. a template fit for the extrapolation of the hadronic contribution ∆αhad(t) on the
observable;

6. evaluation of the hadronic VP contribution aHLOµ through the master integral in
Eq.2.6.
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The average beam intensity for energies at 150 GeV is of ∼ 1.3×107 muons/s. Assuming
2 years of data taking and a running time of ∆t0 ∼ 2×107 s/year with a target thickness
of d = 60 cm, the integrated luminosity is of 1.5× 107 nb

−1
. This permits the collection

of the statistics required to achieve the aimed accuracy for MUonE, which amounts to

Ntot = L ·σµe ∼ 3.7× 1012. (2.10)

where σµe is the process cross section.
A modular detector is proposed, composed by a sequence of N detection stations (N =
40), each one made of one target layer (∼ 1.5 cm of Beryllium or Graphite) and silicon
microstrip tracking detectors, for an overall length of 1 m (Fig.2.3). At the end of the

Figure 2.3: Drawing of a MUonE tracking station.

tracking region, an electromagnetic calorimeter (ECAL) is set to measure the electron
energy followed by a muon detector. Those two will help the tracker to identify the
electron and muon tracks and to suppress physical and beam backgrounds. This iden-
tification is needed for building up the shape of the differential cross section which will
define the counting ratio R(θi):

R(θi) =
dσdata(∆αhad(t) 6= 0)/dθi
dσMC(∆αhad(t) = 0)/dθi

=
dNdata(∆αhad(t) 6= 0)/dθi
dNMC(∆αhad(t) = 0)/dθi

. (2.11)

In Eq.2.12, the observables θi are the scattering angles of the outgoing muon and
electron (i = e, µ) from the elastic scattering process, dσdata(∆αhad(t) 6= 0)/dθi and
dNdata(∆αhad(t) 6= 0)/dθi are respectively the differential cross section and the observed
event yield of the elastic scattering, while dσMC(∆αhad(t) = 0)/dθi and dNMC(∆αhad(t) =
0)/dθi are the corresponding MC predictions obtained with α(t) = ∆αlep(t) where the
hadronic running ∆αhad(t) is switched off. The differential cross sections respect the
two angles are shown in Fig.(2.4) from [25] with the expected events for the MUonE
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Figure 2.4: Electron (left) and muon (right) angular distributions. Entries correspond
to the expected events for the nominal MUonE integrated luminosity [25].

integrated luminosity of 1.5× 107 nb
−1

.
From Eq.2.9, R(θi) at LO results in

R(θi) =

∣∣∣∣
α(t)

α

∣∣∣∣
2

=
1

|1−∆αlep(t)−∆αhad(t)|2
, (2.12)

which can be used for the extraction only if just leading order events are considered.
The MUonE proposal imposes a knowledge of the differential cross section at the NNLO
level, hence, taking into account higher order contributions, this expression cannot be
used for the final extrapolation of the hadronic contribution. It would be carried out
by a template fit method on the ratio R(θi) in Eq.2.11 which is deeply described in the
Letter of Intent [25] and requires an implementation of the theoretical NLO and NNLO
prediction into a Monte Carlo event generator code.

2.3 µ− e elastic scattering theory

2.3.1 Kinematics

Elastic µ− e scattering process in Fig.(2.5) is represented by

µ±(p1)e
−(p2)→ µ±(p3)e

−(p4) (2.13)

where p1, p2 and p3, p4 are the 4-momenta respectively of the initial and final state
particles. In a fixed target experiment, the electron is initially at rest, thus in the
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Figure 2.5: Feynman diagram for µ− e elastic scattering process.

laboratory system (LAB) Mandelstam variables s and t are defined as

s = (p1 + p2)
2 = (p3 + p4)

2 = m2
µ +m2

e + 2meEµ,

t = (p2 − p4)2 = (p1 − p3)3 = 2m2
e − 2meE

′
e,

s+ t+ u = 2m2
µ + 2m2

e.

(2.14)

For any given value of the incoming muon momentum, there exists a maximum four-
momentum transfer q2max = −tmin:

tmin = −λ(s,m2
µ,m

2
e)

s
(2.15)

where λ(a, b, c) is the Källen function defined as

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (2.16)

Given the M2 CERN muon beam, at a reference value Eµ = 150 GeV it is found

tmin = −(380 MeV)2. (2.17)

The parameters for the Lorentz transformation between LAB and center-of-mass system
(CMS) are

γ =
Eµ +me√

s
=
s+m2

e −m2
µ

2me

√
(s)

,

β =
pµ

Eµ +me

=
λ1/2(s,m2

µ,m
2
e)

s+m2
e −m2

µ

;

(2.18)

The CMS energy corresponding to the muon beam energy is
√
s ∼ 0.405541 GeV and

the Lorentz γ factor γ ∼ 370.
Thus the elasticity condition which relates the scattering angles θe and θµ (LAB frame)
results

tanθµ =
2tanθe

(1 + γ2tan2θe)(1 + g∗µ)− 2
, (2.19)
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where

g∗µ =
β

β∗µ
=
Eµme +m2

µ

Eµme +m2
e

(2.20)

and β∗µ is the muon velocity in the CMS. The elasticity curve in Fig.(2.2) is Eq.2.19 in the
θe− θµ plane and it is the fundamental constrain for MUonE to allow the discrimination
of elastic scattering events and background processes.
The energy and scattering angle of the electron in the LAB are defined as:

E ′e = me
1 + β2 cos2 θe
1− β2 cos2 θe

, cos θe =
1

β

√
E ′e −me

E ′e +me

. (2.21)

The elastic scattering kinematics, if the incident particle has a mass bigger than the
particle at rest, as it happens for muon and electron, gives a maximum scattering angle
for the outgoing muon:

sin θmaxµ =
mµ

me

→ θmaxµ = 4.8 mrad, (2.22)

while the recoiling electron can be emitted at larger angles according to its energy, i.e.
0 ≤ θe ≤ ∼ 32 mrad for the electron energy E ′e & 1GeV (arbitrary cut at 1 GeV).
Therefore, when both scattering angles are lower than 4.8 mrad there is an ambiguity
between muon and electron which must be resolved with µ/e discrimination.
While for elastic processes the t is equal for electron and muon, going at higher orders
allowing for additional emission of photons in the final state, the momentum transferred
needs to be distinguished for electron and muon:

te = (p2 − p4)2 = 2m2
e − 2meE

′
e,

tµ = (p1 − p3)2.
(2.23)

2.3.2 Differential cross section

Starting at LO in QED there is a single diagram with t-channel exchange of a photon
(Fig.(2.6.a)). In order to obtain the LO differential cross section, the first step is the

integration of the squared matrix element M
(0)
n over the two-particle (e and µ) phase

space:

dσ0 =

∫
dΦnM

(0)
n =

∫
dΦn|A(0)

n |2, (2.24)

where A
(0)
n is the LO amplitude of the µe → µe process and n = 2. It brings to the

definition of the differential cross section

dσ0

dt
=

1

λ(s,m2
µ,m

2
e)

[
(s−m2

µ −m2
e)

2 + st+
1

2
t2
]
. (2.25)
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Figure 2.6: LO contributions from QED, hadronic VP and Z-boson exchange [31].

This calculation is valid both for positive and negative muons, which will be available as
beam particles at the CERN North Area where the M2 beam is situated.
The definition of the LO differential cross section is not enough for the aimed 10 ppm

Figure 2.7: (a) Diagram which
contributes to the hadronic cor-
rection to µe scattering at NLO.
(b)-(e) Some diagrams contribut-
ing to the four classes of hadronic
corrections at NNLO. The gray
blobs indicate hadronic vacuum
polarization insertions [29].

accuracy, NLO and NNLO corrections need to be considered, thus Eq.2.25 have to be
modified.
Electroweak contributions due to the exchange of Z bosons (Fig.(2.6.c)) are strongly
suppressed because of the large mass MZ , however the interference between γ − Z can
not be neglected and those LO weak corrections need to be taken into account in the
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calculation. The vacuum polarization contributions considered are from leptons and
hadrons, represented by the insertion of the leptonic and hadronic bubble in the photon
propagator Fig.(2.6.b). Their diagrams, with the ones with real photon emissions, and
their interference need to be taken into account both at NLO and NNLO level (Fig.(2.7)).
A detailed study with a MC code has been developed by theoretician [28] and then used
by the MUonE collaboration for the inclusion of higher-order contributions to the µe
elastic scattering process by computing the full set of NLO corrections to the process
in the SM, both from QED and purely weak effects. On the NNLO side, recent studies
have been made on the full set of contributions and more details can be found in [13].

NLO QED corrections

There are two kinds of NLO QED events: i) when the photon is virtual, 2 → 2 pro-
cesses which include one-loop virtual corrections; ii) when the photon is real, 2 → 3
bremsstrahlung processes µe → µe + γ. The NLO cross section is split into two contri-
butions:

dσ(1) = dσµe→µe + dσµe→µeγ =

= dσvirtualNLO + dσrealNLO =

=

∫
dΦnM

(1)
n +

∫
dΦn+1M

(0)
n+1

(2.26)

where n = 2.
The study carried out in [28], which includes all the electroweak (QED+pure weak)

Figure 2.8: Upper panels have plots for µ+e− → µ+e− process while lower for µ−e− →
µ−e−. On the left, the ratios Ri are shown as a function of the electron scattering angle,
on the right as a function of the muon one.
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effects, showed some results for the quantities:

Ri =
dσi(∆αhad.(t) 6= 0)

dσi(∆αhad.(t) = 0)
(2.27)

which represent the ratio of a generic cross section σi including the contribution of
∆αhad(t) to the running of α and the same cross section without it, giving the sensitivity
of a given observable (e.g. scattering angles) to the signal of interest. In Fig.(2.8) the
chosen observables are θe, θµ and both the processes µ±e− → µ±e− are considered. LO
and NLO results are shown, where the energy of the outgoing electron is requested to be
greater than 1 GeV. The signal visible at LO on the electron angle is almost completely
washed out by photon radiation effects at NLO. Therefore, in addition events with a
selection cut on the acoplanarity π− (φe−φµ) between the scattered electron and muon
are shown. This cut enhances the sensitivity to the hadronic correction helping in the
selection of elastic scattering events.
From the distributions as a function of the electron angle, it is clear how the sensitivity
is largely recovered by the application of cuts, removing the contribution of radiative
processes; while the distribution as a function of the muon angle is particularly robust
under those and also under cuts, being less affected by real photon emission.
Cuts would be useful to recover the elasticity condition. The correlation plot θe − θµ,

Figure 2.9: Scattering angle of the electrons VS scattering angle of the muons. The line
in blue represents the elastic correlation, while the dots are NLO events with (in red)
and without (in blue) a cut on the acolpanarity.

which helps in the selection of signal events, is strongly affected by radiative processes
in particular at low muon angles; in Fig.(2.9), NLO Setup 1 corresponds to NLO events
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with Ee > 0.2 GeV while NLO Setup 3 have an additional condition on the acoplanarity
which helps in recovering the correlation.

2.4 Experimental apparatus

Muons with momentum ∼ 150 GeV/c, from the CERN M2 muon beamline, impinge on
atomic electrons of Beryllium or Graphite targets. In order to measure the scattering
angles, a dedicated tracking system is needed to reconstruct the two particles’ paths.
The apparatus is mainly divided in three parts as represented in Fig.(2.10):

1. tracking system;

2. electromagnetic calorimeter;

3. muon filter.

Figure 2.10: Set up of the MUonE experimental apparatus.

2.4.1 Tracking system

Several requirements are needed to performe the tracking:

1. maximize the coverage of the region of interest of the process having a uniform
detector;

2. minimize the Multiple Coulomb Scattering (MCS) in order to reduce the smearing
of the true particle trajectories, outgoing from the scattering process;

3. increase the collection of data;

4. a good angular resolution.

The q2 range of interest corresponds to Ee & 1 GeV that, having a muon beam of mo-
mentum 150 GeV/c, consists in a maximum scattering angle of 30 mrad. Hence, an
active area of 10× 10 cm2 with 1 m stations is sufficient to contain all the kinematics
and it can be achieved with a single silicon sensor, guaranteeing the uniformity of the
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detection efficiency needed for detectors in high beam rate environment.
In order to minimize the MCS, the total thickness of the target (60 cm) is subdivided
into 40 slices. Therefore the tracking apparatus is divided into 40 stations (one station
in Fig.(2.11)), each of length 1 m with a target layer 1.5 cm thickness.
Dividing the apparatus in such modules, the same muon beam is ’re-used’: it interacts

Figure 2.11: An overview of one station, which is repeated 40 times in the final apparatus.

several times with different targets, increasing the collection of data. This permits also
to exploit the tracking stations for the monitoring of the beam direction, having a better
control on the system.
A fundamental point is the detector angular resolution. This requirement has a strong

impact on the capability of distinguishing muons from electrons, as angular information
would be extremely important for this aim. As a matter of fact, there exists an ambiguity
region whose extension is determined by the angular resolution itself. Fig.(2.12) groups
the distributions of the two scattering angles θleft and θright, assigned randomly at the
two particles, with different angular resolution. It is clear from those plots how the width
of the curves and of the region of ambiguity, where θe ∼ θµ, are strongly related to this
parameter. This highlights the fact that the tracking system itself is not enough for a
good particle identification (PID), for this aim the presence of an ECAL and a muon
detector could be of fundamental importance.
The angular resolution is related to the spatial resolution of the tracker planes, an an-
gular resolution of 0.02 mrad corresponds to a spatial resolution of 20 µm, which can be
achieved with state-of-the-art silicon detectors.
The sensitive planes in a single station are three, each of them embedded with two sen-
sors to measure the orthogonal coordinates to the beam direction (x, y). The middle
plane is rotated to solve reconstruction ambiguities.
The choice of the silicon detector has been made looking at the sensors and electronics
(needed for the trigger) available on the market, already designed for current experi-
ments. The chosen one is the one for the CMS Outer Tracker (OT), being developed
for the LHC high-luminosity upgrade, in particular the 2S modules of the CMS OT in
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Figure 2.12: Distribution of two measured scattering angles for events simulated with
different angular resolution: i) top-left ideal angular resolution (only MCS effect); ii) top-
right angular resolution of 0.02 mrad; iii) bottom-left angular resolution of 0.06 mrad;
iv) bottom-right angular resolution of 0.1 mrad. In green the point with correct µ − e
identification, while in blue with the wrong ID [25].

Fig.(2.13). The main characteristics are:

1. the whole coverage of the active area: 10 cm× 10 cm;

2. sensor thickness of 320 µm, with strip pitch of 90 µm and segmentation in 5 cm
long strips;

3. 1016 strips at each side of the sensor which are read out by 8 ASIC chips (CBC)
giving 2032 channels for an high-rate read out;

4. two closely-spaced silicon sensors reading the same coordinate are mounted together
(with a gap of 1.8 mm) on the module and read out by common front-end CBC
ASICs to correlate the hits from the two sensors (triggering purpose).
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Figure 2.13: An exploded view of the CMS 2S module with the different components.

2.4.2 Electromagnetic Calorimeter

The ECAL does not cover the whole acceptance of the elastic scattering, but the choice
of adding it to the apparatus is motivated by the following reasons:

1. PID is necessary particularly in the region of ambiguity (θe ∼ θµ) where the in-
formation of the angle of scattering given by the tracking system is not enough.
Feasible techniques exploit the measurement of the electron scattering angle, ob-
tained by the impact point of the EM shower, or the measurement of the electron
energy, which allows to determine the kinematics of the elastic scattering;

2. Electron energy measurement gives a countercheck of the results, helping in the
control of systematic effects and the background;

3. Event selection which can be based on energy thresholds or on the number of
showers present for the same event (e.g. if the event is e+ γ it could results in two
different showers).

The proposed calorimeter is homogeneous and placed after the 40 tracking stations. It is
composed by lead tungstate (PbWO4) crystals with a section of 2.85× 2.85 cm2 and of
length ∼ 25X0, read out by solid state sensors. The points of strength of this material are
the fast light scintillation emission time, the good light yield and the compact dimension.
As a matter of fact, the ECAL transverse dimension would be of the order of 1× 1 m2

which is enough to contain the angular region where the identification is ambiguous (in
particular for θe ≤ 5 mrad). With that area, full containment is achieved fo electron
with energy E & 30 GeV, while angular acceptance is for E & 10 GeV.
Another important role of the calorimeter could be to help in getting rid of background
events, as electron-positron pair production and nuclear interactions within the targets,
and radiative processes (µe→ µe+Nγ).
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Chapter 3

Fast simulation of the kinematical
properties of the beam

The M2 muon beam for the MUonE experiment, available at the CERN North Area, has
an optimal momentum value of 160 GeV with σp = 6 GeV/c. As it is shown in the Letter
Of Intent (LOI) [25], the beam spot at the entrance of the experiment has a spread of
σx = 26 mm on the x axis and of σy = 27 mm on the y one (Fig.(3.1)), while the angular
divergence is σx′ = 0.27 mrad on the XZ plane and σy′ = 0.20 mrad on the Y Z plane
(Fig.(3.2)). The beam parameters have been used to simulate the interaction of muons

Figure 3.1: Beam Spot size at MUonE with σx = 26 mm and σy = 27 mm .

and the response of the detector, in particular of the electromagnetic calorimeter.
This chapter describes how in this thesis work the beam spot size and divergence have
been considered and applied on the MC events simulated with the full set of NLO cor-
rections [28]. It will highlight the effects that these kinematical properties of the beam
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Figure 3.2: Beam divergence at MUonE with σx′ = 0.27 mrad and σy′ = 0.20 mrad.

have on some observables as the momenta of the incoming and outgoing particles, the
polar angles and the coordinates of the impact points at the entrance of the calorimeter.
The events generated with the NLO MC code have particular characteristics:

Figure 3.3: Setup for the TestRun 2021 of the MUonE experiment. The stations are
composed by silicon trackers while targets are made of Beryllium.

• The momentum is along the z-axis ;

• The energy distribution of the incoming muon has a Gaussian spread of 3% around
the central value of 150 GeV ;

• The generation was done without any simulation of the beam size and divergence;

• The electron energy has a generation cut at Ee > 0.2 GeV.
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Since the experiment is designed to cover the angular region up to θe ∼ 30 mrad, a
preselection cut has been applied, accepting events with the electron scattering angle
θe < 50 mrad.
These events need to be propagated inside the experimental setup in order to evaluate
detector effects, in particular the Multiple Coulomb Scattering (MCS) of the material
budget. No energy loss effects (e.g. bremsstrahlung) have been considered instead, hence
particles conserve their energies all along their paths. The considered setup is shown in
Fig.(3.3) which is the one proposed for the TestRun 2021. It consists in three stations
(Station 0, 1, 2) made of six 2S modules with an active area of 10× 10 cm2 needed for
tracking particles and two Beryllium targets in which muons interact. ECAL is located
downstream the tracking region, at a distance d = 10 cm from the last silicon sensor.

3.1 Multiple Coulomb scattering

Figure 3.4: The particle is incident in the plane of the figure and affected by MCS. The
main quantities used for the description are shown.

Charged particles traversing a material are deflected by many small-angle scatterings
with the atoms of the medium. The net scattering and displacement distributions are
Gaussian according to the central limit theorem and are well-represented by the theory
of Moliére [35].
Defining [11]:

θ0 = θRMS
plane =

1√
2
θRMS
space , (3.1)

it is enough for many application to use a Gaussian approximation for the generation of
the exit projected angle θplane in Fig.(3.4), with an RMS given by:

θ0 =
13.6

E (MeV)

√
d

X0

[
1 + 0.038 · ln

d

X0

]
(3.2)
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where E is the energy of the particle, X0 is the radiation length inside the material and
d the thickness of the traversed medium.
Coordinates of the exit points turn out to be displaced with respect the impact points
since particles trajectories are perturbed by the medium. In order to account for this
effect, looking at Fig.(3.4), the RMS lateral deviation yplane is found to be:

yRMS
plane =

1√
3
d θ0. (3.3)

In this thesis work, every time that a charged particle traverses a target or a silicon layer,
the effect of the MCS is simulated with the generation of the i − th exit angles on the
X and Y plane, θiXZ and θiY Z , according to a Gaussian distribution with sigma θ0:

θiXZ → Gauss( θi−1XZ , θ0),

θiY Z → Gauss( θi−1Y Z , θ0).
(3.4)

While the exit coordinates xiout and yiout are generated according to a Gaussian distribu-
tion with sigma yRMS

plane :

xiout → Gauss(xiin,
1√
3
d θ0),

yiout → Gauss(yiin,
1√
3
d θ0),

(3.5)

where xiin and yiin are the entering coordinates in the material.

3.2 Simulation of the beam divergence

The muon beam has a small angular divergence, hence the direction of the incoming
muons, ideally ~Pin = (Px, Py, Pz) = (0, 0, Pz), needs to be rotated of an angle in agree-
ment with the angular divergence of the beam. Therefore, a change of the reference
system is required with a redefinition of the momenta of all the outgoing particles
from the interactions in the targets: muons, electrons and radiative photons. The
redefinition of the momenta in the new reference system can be realized through a
rotation matrix R. First of all, the incoming muon momentum is modified such that
~Pin = (0, 0, Pz)→ ~P ′in = (P ′x, P

′
y, P

′
z) with the generation of two random angles:

θx → Gauss(0, σx′)

θy → Gauss(0, σy′)
(3.6)

from a Gaussian centered in zero and with two-dimensional spread determined by the
beam divergences σx′ = 0.27 mrad and σy′ = 0.20 mrad. The new components of the
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incoming muon momentum are calculated according to:





P ′z =
√

|~Pin|
1+tan2(θx)+tan2(θy)

P ′x = P ′z tan(θx)

P ′y = P ′z tan(θy)

(3.7)

maintaining the absolute value of the momentum constant (|~P ′in| = |~Pin|). This vector
will now determine the angles ψ and ϕ defining the rotation matrix R.
As a matter of fact, in order to have the momenta of the outgoing particles in the

Figure 3.5: Rotation of the reference system due to the angular divergence of the beam.
The first rotation Ry is around the y axis of an angle ψ, while the second R′x is around
the new x′ axis of an angle ϕ.

reference system of the divergent beam, the matrix is defined as the product of two
rotations:

1. the first one clockwise of an angle ψ = arctan(P
′
x

P ′z
) around the y axis;

2. the second one clockwise of an angle ϕ = arctan(
P ′y
PT ′z

) around the new x′ axis,

where PT ′z =
√
P ′2x + P ′2z .

as shown in Fig.(3.5).
The first rotation matrix Ry is defined as:

Ry =




cos ψ 0 sin ψ
0 1 0

− sin ψ 0 cos ψ


 (3.8)
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hence, in the new reference system a given vector ~p = (x, y, z) results in ~p ′ = (x′, y′, z′)


x′

y′

z′


 =




cos ψ 0 sin ψ
0 1 0

− sin ψ 0 cos ψ





x
y
z


 . (3.9)

Now, the matrix Rx′ of the second rotation

Rx′ =




1 0 0
0 cos ϕ sin ϕ
1 − sin ϕ cos ϕ


 (3.10)

will act on ~p ′ = (x′, y′, z′) in such a way that ~p ′′ = (x′′, y′′, z′′) results as the new vector
in the reference frame of the divergent beam:



x′′

y′′

z′′


 =




1 0 0
0 cos ϕ sin ϕ
1 − sin ϕ cos ϕ





x′

y′

z′


 . (3.11)

It is now possible to define the rotation matrix which transforms a given vector in the
initial reference frame ~p = (x, y, z), into the new one in the system of the divergent beam:

R = Rx′Ry =




cos ψ 0 sin ψ
− sin ϕ sin ψ cos ϕ sin ϕ cos ψ
− cos ϕ sin ψ − sin ϕ cos ϕ cos ψ


 . (3.12)

As a result, the coordinates of the new vector come from the action of the matrix on the
vector ~p such that ~p ′′ = R~p giving





x′′ = cos ψ x + sin ψ z

y′′ = − sin ϕ sin ψ x + cos ϕy + sin ϕ cos ψ z

z′′ = − cos ϕ sin ψ x− sinϕy + cos ϕ cos ψ z.

(3.13)

To be a real rotation matrix, it needs to belong to SO(3), therefore it has to be special
orthogonal and it can be checked verifying the property AAT = I which characterize all
the orthogonal matrices:

RRT =




cos ψ 0 sinψ
− sin ϕ sin ψ cos ϕ sin ϕ cos ψ
− cos ϕ sin ψ − sin ϕ cos ϕ cos ψ


 ·




cos ψ − sin ϕ sin ψ − cos ϕ sin ψ
0 cos ϕ − sin ϕ

sin ψ sin ϕ cos ψ cos ϕ cos ψ


 =

=




c2 ψ + s2 ψ −c ψ sϕsψ + s ψ sϕcψ −c ψ cϕ sψ + s ψ cϕ cψ
−s ϕ sψ cψ + s ϕ cψ sψ s2 ϕs2 ψ + c2 ϕ+ s2 ϕc2 ψ sϕ s2 ψ cϕ− s ϕ cϕ + s ψ c2 ψcϕ
−c ϕ sψ cψ + c ϕ c ψ sϕ cϕ s2ψ sϕ − s ϕ cϕ+ c ϕ c2ψ sϕ c2 ϕ s2 ψ + s2 ϕ+ c2 ψ c2 ϕ


 =

=




1 0 0
0 1 0
0 0 1




(3.14)
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Furthermore, it implies that detR = 1:

detR = cos2 ψ cos2 ϕ+ sin2 ϕ sin2 ψ + sin2 ϕ cos2 ψ + sin2 ψ cos2 ϕ =

= cos2 ψ (cos2 ϕ+ sin2 ϕ) + sin2 ψ (sin2 ϕ+ cos2 ϕ)

= 1,

(3.15)

hence R is a rotation matrix belonging to SO(3).
The correctness of the rotation R has been verified by checking that its application

Figure 3.6: Distributions of the three components of the incoming muon momentum
from the NLO events without (top plots) and with (bottom plots) the simulation of the
angular divergence of the beam. Beam muons are simulated to interact randomly in one
of the two targets.

to the initial muon momentum Pin = (0, 0, Pz) gives the same result as the smeared
momentum P ′in obtained initially with Eq.3.7. Then the rotation obtained in this way
event-by-event has been applied to the momenta of all the outgoing particles in order to
have them in the reference system of the divergent beam.
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Fig.(3.6) shows the distributions of the momentum components for the incoming muons
before and after applying the simulation of the beam divergence. They refer to muons
interacting either in Target 1 or 2, therefore the spread in px and py is given by MCS due
to the passage across Station 0, if the interaction happens in Target 1, or across Station
0, Target 1 and Station 1, if the interaction happens in Target 2. The effect of the beam
divergence is of the order of 30− 40 MeV on the transverse components, therefore there
is no visible effect on the distribution of the pz component.

3.3 Simulation of the Beam Spot

Incoming muons are assumed to interact in one of the two Beryllium targets. In order to
simulate realistic scenarios, the target will be selected in a random way, and the depth
at which the interaction occurs will be chosen randomly with a uniform distribution.
The reference point z0 = 0 is taken at the beginning of the Station 0, which is distant
z1 = 1.00 m from the next one. The distance between the calorimeter and the last silicon
layers is z2 = 0.10 m.

In order to include the spread of the beam in the x and y direction, two random

Figure 3.7: The picture shows an event where the beam spot size (yellow) is taken into
account, it influences the value of the impact coordinates of the particles.

coordinates are generated with Gaussian distributions centered in the origin and with
spread σx = 2.6 cm and σy = 2.7 cm:

xR → Gauss(0, σx)

yR → Gauss(0, σy).
(3.16)
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Muons in Station 0 are propagated from this initial random position (xR, yR) and then
all along the tracking stations until the interaction in one of the two targets happens
(Fig.(3.7)). Only events where the muon interacts at a radius rµ < 5 cm will be con-
sidered in order to take into account the sensors’ dimensions. After that, propagation
keeps on with the outgoing particles (e, µ and eventually γ) until the ECAL is reached.
As aforementioned, in this propagation step the effect of the MCS was implemented for
the charged leptons, modifying the direction of their momenta. While photons, when
produced, are propagated as a straight line all along the tracker.
The simulation of the beam spot size has a significant effect on some observables.
Fig.(3.8) shows the distributions of the particle positions at the entrance of the calorime-
ter without (top row) and with (bottom row) the simulation of the beam spot and di-
vergence. Neglecting the beam profile, the distributions are determined just by the µ−e
scattering process and the MCS. The size of the beam and the angular divergence give
a contribution bringing to a wider distribution for all the three types of particle.

Figure 3.8: Distributions of the coordinates for the outgoing muons, electrons and pho-
tons at the entrance of the ECAL. In the top box the distributions without the effect of
the kinematical properties of the beam, in the bottom one with the effects applied.
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3.4 Relevant observables

Figure 3.9: Sketch of the transversal face of the MUonE ECAL foreseen at the TestRun
2021. It is a 14× 14 cm2 array of 25 PbWO4 crystals.

Now that we know how to simulate the kinematical properties of the beam and the
propagation step for the particles produced in the NLO collissions, we want to understand
their properties at the entrance of the ECAL. We aim to establish to what extent the
calorimeter would help in the separation and discrimination of the outgoing particles.
We require events to satisfy the following geometrical conditions:

1. A cut on electron’s scattering angle is applied at the generated level requiring it to
be less than 50 mrad.

2. The silicon sensors have a surface of 10× 10 cm2, the incoming muons are imposed
to be inside the sensors’ fiducial volume;

3. ECAL has a surface of 14× 14 cm2 (Fig.(3.9)), the restriction is imposed on the
impact points of the impinging particles.

In this work, events are taken into account only when an electron impacts the ECAL.
Observables used to characterize events selected according to the previous criteria are:

• Angles of electrons and muons in the XZ and Y Z planes;
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• The polar angles of outgoing electrons and muons;

• The impact coordinates of outgoing electrons, muons and photons;

• The energy of the outgoing particles.

Interactions can occur in Target 1 or in Target 2, therefore it is important to consider the
two situations individually in order to understand the different topologies of the events
in the two cases.

In Fig.(3.10) the distributions of the angles on the XZ and Y Z planes for both the

Figure 3.10: Distribution of the angles on XZ and YZ planes for muons (left plots, in
red) and electrons (right plots, in blue). Events coming from Target 1 are represented
in green, while from Target 2 in black.

electrons and muons are presented. There are more events coming from the second tar-
get, due to the geometry of the setup which impose different angular acceptances for
events produced in the two stations. Target 1 is farther than Target 2 from the ECAL,
therefore outgoing particles with larger angles produced in the first target are more likely
to go outside the calorimeter acceptance.
Not all the events which have been generated are useful for the final measurement, in

particular, all the ones with electron energy less than ∼ 1 GeV are more subjected to
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Figure 3.11: Distribution of the angles on XZ and YZ planes for muons (left plots, in red)
and electrons (right plots, in blue) with a cut on the energy measured by the calorimeter
at EECAL ≥ 1 GeV. Events coming from Target 1 are represented in green, while from
Target 2 in black.

experimental perturbations and related systematics. In addition, they are not interesting
for the physical case under study, since events at large electron’s scattering angle do not
provide information about the running. Therefore, it it is useful to impose a cut on the
energy measured by the calorimeter to EECAL ≥ 1 GeV. As it is shown in Fig(3.11)
events generated at Target 2 are reduced: a large fraction of electrons produced at the
first target and at large angles fly off the calorimeter acceptance; when produced at the
second target they can be mainly rejected by applying the energy threshold.
In Fig.(3.12), plots of the polar angles with respect to the z-axis are shown for muons

and electrons arriving at the ECAL. The distinction of events coming from Target 1
and 2 is made and here no energy cut is imposed. It is interesting to notice the effect
of the geometrical acceptance in the distribution of the electron’s polar angle: figure
shows that there are two bumps for electrons coming from Target 1 and 2 at different
angles. Given the proximity of Target 2 to the ECAL, the distribution increases up to
about ∼ 50 mrad, while for Target 1 the maximum is around ∼ 25 mrad. There is no
difference in the muon angle distribution, as this is much smaller than the acceptance of
the detector (order of 1 mrad versus 10 mrad).
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Figure 3.12: Distributions of the polar angle of muon (top panel) and electron (bottom
panel) trajectories at the calorimeter entrance. The green histograms represent particles
from Target 1, the black histograms from Target 2. The sum of the two contributions is
in red for muons and in blue for electrons.

Fig.(3.13) shows the effects of the energy cut EECAL ≥ 1 GeV on the muon and electron

Figure 3.13: Distributions of the polar angle of muon (top panel) and electron (bottom
panel) trajectories at the calorimeter entrance, after an energy cut EECAL ≥ 1 GeV. The
green histograms represent particles from Target 1, the black histograms from Target 2.
The sum of the two contributions is in red for muons and in blue for electrons.
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distributions produced at Target 1 and Target 2. The bottom plot, which refer to the
electron distributions, illustrate the cut off of large angle electrons from Target 2.
Fig.(3.14) shows the impact positions of muons, electrons and photons on the front face

Figure 3.14: Distributions of the impact coordinates for muons (first row), electrons
(second row) and photons (third row) on the front face of the calorimeter without any
cut on the energy. The first column includes all the events, the second just the ones form
Target 1 and the last from Target 2.

of the calorimeter. Because of MCS we expect electrons to have a wider distribution
than muons. This is what can be observed in this figure, where the outgoing muons
preserve the condition of being generated in a radius rµ < 5 cm, while the shape of the
electron distribution is visibly altered by MCS. In particular, electrons from Target 1
have a wider spread as they have to traverse a bigger amount of material, thus are less
concentrated in the center.
Fig.(3.15) shows the distribution of impact positions after imposing an energy cut. As

expected, this is balancing the yield of electrons coming from Target 1 (second column)
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Figure 3.15: Distributions of the impact coordinates for muons (first row), electrons
(second row) and photons (third row) with a cut on the energy EECAL ≥ 1 GeV. The
first column includes all the events, the second just the ones form Target 1 and the last
from Target 2.

and from Target 2 (third column).
Finally, the true values of the energies of particles entering into the calorimeter ac-

ceptance are shown in Fig.(3.16). The calorimeter is needed to measure the energy of
the electron, therefore an algorithm simulating the shower and giving a feedback on the
response of the detector is fundamental for the analysis tool, in order to know how well
the energy will be reconstructed.
Muons are m.i.p. (minimum ionising particle) and their energy deposition inside the
calorimeter is quite independent from their energy. In the final analysis its contribution
will be subtracted by the energy measurement of the ECAL, but in this first work it can
be neglected.
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Figure 3.16: Distributions of the energy for muons (first column), electrons (second
column) and photons (third column). The first row includes all the events, the second
row the ones form Target 1 and the last from Target 2.
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Chapter 4

Fast Simulation of the
Electromagnetic Calorimeter
Response

4.1 Electromagnetic Showers

Electromagnetic calorimeters are detectors used to measure the energy of a particle
exploiting the process of electromagnetic showers. The principle is simple: if an electron
or a photon enters in the calorimeter with enough energy, above few MeV, it starts to
interact with the material’s atoms through:

1. Bremsstrahlung (when it is an electron);

2. e+e− pair production (when it is a photon).

In this way the shower starts: the electron will radiate a photon which will then produce
a pair and so on, while the photon will produce an electron and a positron which will then
interact with matter via bremsstrahlung. This process will keep on until the produced
particles reach the so called critical energy EC . At this point, electrons will lose energy
mainly via the ionization process, while photons through Compton or photoelectric effect,
hence the energy loss would be slower.

As shown in Fig.(4.1), the development is characterized by the radiation length X0,
which strictly depends on the material and represents the mean free path before the
electron radiates a photon. After each radiation length, the energy of the electron is
reduced by a factor 1/e. Differently, the path length after which the photon interacts
via pair production is 9

7
X0, slightly bigger than the one of the electron.

The radiation length is approximately given by:

1

X0

=
4αNAZ(Z + 1)r2e ln(183Z−1/3)

A
(4.1)
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Figure 4.1: Simple model of the
development of an electromagnetic
shower.

where α is the fine structure constant, NA is the Avogadro’s number, re is the classical
electron radius, Z is the atomic number and A is the atomic weight. The units of X0 in
Eq. 4.1 are [g/cm2] which, if divided by the material density, can be expressed in units
of [cm].
The critical energy EC is defined as the energy at which the rates of energy loss by
radiation and ionization become equal, it has an approximation related to X0:

EC = 2.66

(
X0

Z

A

)1.1

(4.2)

below that, ionization dominates.
A third important parameter is the Moliere radius RM which expresses the transversal
size of the shower:

RM = X0
21.2 MeV

EC
(4.3)

The 90% of the energy is contained within a radius of RM , which has only a weak de-
pendency on the material.
All those parameters define the development of the shower inside the calorimeter: the
radiation length determines the longitudinal depth of the shower, the critical energy sets
the value of the energy below which energy loss happens mainly through ionization and
the Moliere radius determines the transverse development at different depths. In par-
ticular, the electromagnetic showers’ evolution is generally parametrized by two profiles:
the longitudinal and the transversal one. Those describe the deposition of energy all
along the calorimeter. The shower gets wider at higher depths because particles become
less energetic hence more subjected to MCS, if positrons or electrons, and Compton or
photoelectric effects, if photons. While after the peak, where E < EC , the longitudinal
loss of energy gets slower because absorption of particles starts to dominate on creation
of secondaries.
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4.2 Shower Parametrization

In this study the electromagnetic showers have been modeled with the GFLASH param-
eterization, proposed by G. Grindhammer and S. Peters for electrons in homogeneous
media [36][37]. This method is used in the fast simulation of the CMS ECAL, which
is made of the same crystals as the MUonE one and similar readout electronics. The
algorithm developed in this thesis work is built up starting from the CMS version. It
was adapted for the MUonE geometry and modified to be implemented in the overall
fast simulation code. A detailed description of the code is given in Appendix.

The energy distribution of the shower is factorized into three probability density
functions (PDF):

dE(~r) = Ef(t)dtf(r)drf(φ)dφ (4.4)

where E is the energy of the impinging particle in units of EC , f(t) represents the
longitudinal profile as a function of t, the shower depth in units of X0; f(r) describes
the radial profile as a function of r, the radial distance in units of RM , and f(φ) is the
azimuthal distribution which is assumed uniform. All the material-dependent quantities
X0, RM and EC are related to the development of the shower and it is possible to
eliminate most of the material dependence in the GFLASH parameters by working in
units based on those three.
CMS and MUonE ECALs have the same characteristics in terms of material and cells
configuration, hence the properties in the next Table are in common:

ρ = 8.28 g/cm3 X0 = 7.37 g/cm2 = 0.89 cm
Aeff = 170.87 EC = 8.74 MeV
Zeff = 68.36 RM = 2.19 cm

Aeff and Zeff are calculated by averaging the A and Z of the component elements in
PbWO4 weighted by their mass fractions. The length of the crystals is of 22 cm = 24.7X0.

Starting from the relations which describe the average behavior of the parameter-
ized quantities, the authors developed the parameterization for individual electromag-
netic showers started by electrons in homogeneous calorimeters, taking fluctuations and
correlations into account event-by-event. If the starting particle is a photon, it will be
treated as an electron-positron pair, each one producing a shower starting after a random
length d after the impact point, related to the photon mean free path.

58



4.2.1 Longitudinal Parametrization

The average longitudinal profile is described by a gamma distribution:

f(t) =

〈
1

E

dE(t)

dt

〉
=

(βt)α−1βe−βt

Γ(α)
(4.5)

where α and β are respectively the shape and scaling parameters, which can be evaluated
with MC full simulations. The center of gravity of the shower 〈t〉 and the depth of the
maximum T are given by:

〈t〉 =
α

β
(4.6)

T =
α− 1

β
. (4.7)

The depth of the shower maximum is predicted to scale logarithmically with increasing
energy, as:

T ∝ ln y = ln
E

EC
. (4.8)

The shape parameter α depends on Z, being the only one with an explicit dependence
on the material. For the other variables, the dependence is absorbed through the use
of the quantity y = E

EC
instead of E. In Fig.(4.2) the average depth of the shower

maximum on top and α on bottom are plotted as a function of y. The left plots show
results obtained by a GEANT full simulation of several homogeneous calorimeters, with
the fitted parameterizations [37]:

Thom = ln y + t1, (4.9)

αhom = a1 + (a2 + a3/T ) ln y, (4.10)

where the values of the coefficients are given in Appendix. The plots on the right are
obtained from the MUonE algorithm and are in agreement with the expectations.
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Figure 4.2: Depth of the shower maximum (top) and the shape parameter α (bottom) as
a function of y. GEANT full simulation results are shown at left for several homogenous
calorimeters [37], while on the right the results from the developed algorithm for the
MUonE calorimeter (PbWO4).

Also individual profiles are approximated with a gamma function, but to simulate
the single shower event-per-event, fluctuations and correlations between the parameters
need to be introduced.
Starting with the y-dependence of the fluctuations, it is defined the variable

σ = (s1 + s2 ln y)−1, (4.11)

while the correlation between αhom and Thom is given by:

ρ(lnThom, lnαhom) = r1 + r2 ln y. (4.12)

The values for the parameters s1, s2, r1, r2 are reported in Appendix. The logarithms
of T and α are used since they have approximately normal distributions. The variables
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Figure 4.3: Parameters of the longitudinal profiles in homogeneous media: from GEANT
in marked black boxes, from the developed algorithm according to MUonE calorimeter
(PbWO4) in light gray boxes.

σ and ρ(lnThom, lnαhom) will enter in the definition of the single shower parameters to
introduce event-by-event characteristics. The energy dependence of these parameters is
shown in Fig.(4.3). The results from the algorithm developed for MUonE is in agreement
with the expected results from GEANT full simulation in [37].
The parameters αi and βi = (αi− 1)/Ti for the individual shower profiles are defined as:

(
lnTi
lnαi

)
=

(〈lnT 〉
〈lnα〉

)
+ C

(
z1
z2

)
(4.13)

where 〈lnT 〉 and 〈lnα〉 are given by Eq. 4.9-4.10, z1, z2 are random numbers from a
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gaussian centered in 0 and with σ = 1, while C:

C =

(
σ(lnT ) 0

0 σ(lnα)

)

√

1+ρ
2

√
1−ρ
2√

1+ρ
2
−
√

1−ρ
2


 . (4.14)

The energy deposited in a longitudinal step ∆t = tj−tj−1, taken as 1X0, can be evaluated
through the integral

dE(t) = E

∫ tj

tj−1

dt
(βit)

αi−1βie−βit

Γ(αi)
. (4.15)

In Fig.(4.4) the longitudinal profiles from GEANT and from a parameterized simulation

Figure 4.4: Mean longitudinal profiles and their fluctuations in a lead glass calorimeter
from GEANT and parametrized simulation on the left, from the parametrized simulation
according MUonE calorimeter (PbWO4) on the right.

in a lead glass (SF5) absorber are shown on the left, while on the right from the parame-
terized simulation in the MUonE ECAL. GEANT mean profiles agree very well with the
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parameterizations. Fluctuations are also parameterized quite well at high energy while
they are underestimated at low energies, indicating that the description of individual
profiles by gamma distributions becomes a worse approximation with decreasing shower
energy. The agreement between the longitudinal profile of a lead glass (SF5) calorimeter
and the PbWO4 one shows that the chosen parametrization is fairly independent of the
used material.

4.2.2 Radial Parametrization

The average radial profile is parameterized with a function composed of two distinct pdfs

f(r) =
1

E

dE(t, r)

dr
=

= p
2rR2

C

(r2 +R2
C)2

+ (1− p) 2rR2
T

(r2 +R2
T )2

,
(4.16)

where the first one describes the core of the radial profile, while the second represents the

Figure 4.5: Average transverse profiles in an Uranium calorimeter from GEANT at
different depths of the shower. It is shown how the tail and core pdfs contribute to the
radial profile on the first longitudinal segment 1− 2X0 [37].

tail (Fig.(4.5)). The distribution f(r) is characterized by three parameters: i) RC that
is the median of the core, ii) RT which is the median of the tail, iii) p which represents
the weight of the core in the overall function.
In Fig.(4.6) it is presented the behavior of the parameters increasing the shower depth
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Figure 4.6: Dependency of radial shower parameters on the shower depth for a 100 GeV
electron: for uranium and iron calorimeters on the left [37], for the MUonE PbWO4
calorimeter on the right.

in units of shower maximum (τ = t/T ) for different calorimeters: uranium and iron on
the left and PbWO4 on the right. For the radial profiles, the dependence on the material
is apparent for the tail distribution.
For a given energy and material, the three parameters are modelled as function of the
shower depth τ = t/T in this way:

RC(τ) = z1 + z2τ

RT (τ) = k1(e
k3(τ−k2) + ek4(τ−k2))

p(τ) = p1e

(
p2−τ
p3
−e[

p2−τ
p3 ]

) (4.17)

where z1, ..., p3 are constants or functions of lnE or Z, as given in Appendix.
In Fig.(4.7) the mean radial profiles and their fluctuations are shown for energies of
40 GeV in lead and 100 GeV in uranium. Parameterized simulations are compared with
the GEANT full simulation in black, while in colors the corresponding plots are obtained
for the MUonE ECAL.
The fluctuations of the radial profile are strictly related to the longitudinal ones: at a

given depth t, the released energy dE(t) is not always the same, it is itself subjected to
fluctuations. Thus, the shower maximum T varies event-by-event and so does τ = t/T
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Figure 4.7: First and third columns show mean radial profiles and their fluctuations in
lead (40 GeV) and uranium (100 GeV) [37]. In second and fourth obtained with the
parametrized simulation for the MUonE calorimeter (PbWO4).

at any given depth t. Therefore the radial energy profile changes at a given depth, as it
depends on τ (Eq.4.17).
Having described all the parameters of the used shower model, the Monte Carlo event
simulation proceeds as follows. Let’s assume to divide the longitudinal profile in steps
of 1X0. At each step t the deposited energy dE(t) can be evaluated through the integral
in Eq. 4.15. This energy is divided into Ns(t) energy spots which are distributed in the
radial profile according to f(r) and uniformly in t and φ. Each energy spot is given the
same energy:

Es(t) =
dE(t)

Ns(t)
(4.18)
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The number of spots in the considered step Ns(t) is evaluated starting from the total
number of spots Ns all along the shower:

Nspot = 93 ln(Z)E0.876. (4.19)

The position r of each energy spot is given by a Monte Carlo method, where Eq. 4.16 is
integrated and inverted:

F (r) =

∫ r

0

2r′R2

(r′2 +R2)2
dr′ =

r2

r2 +R2

F−1 (u) = R

√
u

1− u.
(4.20)

Therefore, the generation of the random radius is done using the following expression:

ri =





RC

√
vi

1−vi p < wi

RT

√
vi

1−vi else.
(4.21)

where vi and wi are two normally distributed random numbers. Depending on the value
of wi, the point contributes to the core or to the tail region.
The number of spots in a longitudinal step is parametrized by a gamma function with
parameters:

TSpot = T (0.698 + 0.00212Z),

αSpot = α(0.639 + 0.00334Z),
(4.22)

giving

Ns(t) = NSpot

∫ tj

tj−1

(βSpott)
αSpot−1βSpote−βSpott

Γ(αSpot)
dt (4.23)

Additional correlation between the radial and longitudinal pdfs are introduced with the
redefinition of the individual shower’s center of gravity:

〈ti〉 =
αi
βi

= Ti
αi

αi − 1
. (4.24)

To account for those, τ in Eq. 4.17 is replaced by τi:

τi =
t

〈ti〉
e〈lnα〉

e〈lnα〉 − 1
. (4.25)

Only the simulations using τi are able to predict the fluctuations observed with GEANT
correctly.
To summarize, the steps of the algorithm are:
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1. Segmentation of the longitudinal profile into slices of width 1X0. For each one,
the energy deposited dE(t) is calculated with Eq. 4.15;

2. For each longitudinal interval, Ns(t) energy spots are generated with a given energy
ES(t);

3. Each spot is distributed in the radial profile according to f(r) and uniformly in t
and φ;

4. In the end, for every spot there are four variables [Es, t[X0], r[RM ], φ]. The spatial
coordinates are transformed into cartesian ones [Es, x, y, z] and the energy spot is
set within the defined geometry of the calorimeter to study the energy deposition
in each cell.

As an example, Fig.(4.8) shows a simulated event with an electron of 10 GeV impinging
in the central cell of the MUonE calorimeter in (x, y) = (0, 0).

Figure 4.8: Example simulated event of a 10 GeV electron impinging on the centre of
the ECAL. On the left the 2D grid of the deposited energies (in GeV) on all the cells;
on the right the same event represented as a Lego-plot.
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4.3 Energy distribution inside ECAL cells

After having developed the tool for the EM shower simulation, it is important to study
the mean energy fraction released in each ECAL crystal. The analysis is focused on two
main cases:

1. electron hitting the central region of the central cell (impact point: (x, y) = (0, 0)
on cell N = 13 in Fig.(3.9));

2. electron impinging on the ECAL in a random point generated according to the
beam spot profile.

It is interesting to analyze the energy fraction deposited in:

• i) the cell with the maximum energy deposition (seed cell);

• ii) an array of 3× 3 cells around the seed one.

The first case under study is when particles impact the calorimeter in the origin of
the central cell. It represents the situation of maximum energy released inside a sin-
gle cell, defining the dynamic range of the calorimeter. The test has been made with
Ee = 1.5, 10, 40, 75, 100, 150 GeV. The fraction of energy is defined as Efrac = Ereco

Etrue
,

where Ereco is the reconstructed energy and Etrue is the true electron energy.
In Fig.(4.9), plots on the left show the distributions of the energy fraction inside one
cell and on the right inside the 3 × 3 array. While for the first distributions the fit was
made with a Gaussian, for the second ones a Crystal Ball function was chosen due to the
presence of left tails, caused by shower fluctuations. Although clearly seen, these tails
are not too large, thus the mean value of the histograms almost coincides with the mean
value given by the fits. It results that the mean energy fraction released inside 3×3 cells
averaged over the energies is 0.952.
Fig.(4.10) shows another validation plot for the algorithm, the energy containment as a
function of the integration radius, in units of RM . The plot on the left is the one from
[37], while on the right is the result for the MUonE calorimeter. As it is expected, within
a radius corresponding to the size of one cell, the contained energy is ∼ 82%, while for
a radius corresponding to the 3 × 3 array, the containment is ∼ 95%, coherently with
previous results.
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Figure 4.9: Reconstructed energy fraction inside the central cell and the 3×3 array when
the impact point is in (0, 0), for Etrue = 1.5, 10, 40, 75, 100, 150 GeV. Top statistical boxes
shows fit parameters (mean and sigma of the Gaussian on the left and of the Crystal
Ball on the right) and bottom ones histograms mean and RMS.
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Figure 4.10: Mean energy containment 〈E(r)〉 /E as a function of the radius r in units
of RM . (Left) results from [37] of GEANT full simulation and the GFLASH parameter-
ization; (Right) result for the MUonE calorimeter.

The second case is when the impact point has random coordinates generated ac-
cording to the beam spot profile modelled as a 2D Gaussian centered at the origin
(x, y) = (0, 0) and with spread given by σx = 2.6 cm and σy = 2.6 cm. In Fig.(4.11)
the distributions of the energy fractions in the single seed cell (on the left) and in the
3× 3 array (on the right) have enhanced tails, in particular for the single crystal. This
is due to the randomness of the impact point: if the particle impacts the cell near the
edge, the fraction of energy inside it would be drastically reduced with respect to the
case of central impact point. For this reason, both of the fits have been carried out with
a Crystal Ball function. It results that the mean energy fraction released inside 3 × 3
cells averaged over the energies is 0.940.
The randomness of the impact point does not affect significantly the 3×3 reconstruction:
the average mean value of the histogram is only ∼ 1% lower with respect to the central
impact; while for a seed cell, there is a reduction of ∼ 13%.
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Figure 4.11: Reconstructed energy fraction inside the central seed cell and the 3 × 3
array around it for electrons with impact point corresponding to the beam spot profile,
for Etrue = 1.5, 10, 40, 75, 100, 150 GeV. Top statistical boxes show fit parameters (mean
and sigma of the Gaussian on the left, while of the Crystal Ball on the right) and bottom
ones mean and RMS of the histograms.
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Figure 4.12: Example of a random impact
point inside the central cell N = 13, used
for the study to the dependence of the re-
constructed energy fraction as a function
of the impact point.

Figure 4.13: Average reconstructed energy fraction as a function of the distance of the
impact point from the cell centre, for single cell (top) and the 3× 3 array (bottom).

In order to study the dependence of the reconstructed energy on the impact point,
let us consider the central crystal (N = 13) and particles impinging randomly inside
it, as shown in Fig.(4.12). The reconstructed energy fraction Efrac as a function of the
distance between the origin and the incidence point (r) is plotted in Fig.(4.13) both for
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the single cell, in red, and for the 3×3 cells around it, in blue. As expected, the fraction
in the single cell is strongly dependent on where the particle impacts, going from ∼ 82%
to ∼ 62% at the edge; while it has a flat behavior considering 9 crystals.
Some events may impact the cells around the perimeter of the ECAL, as the ones not

Figure 4.14: Picture of the calorime-
ter, the cells with a green cross are
the ones for which the 3 × 3 array is
totally included in the ECAL.

green crossed in Fig.(4.14). In this situation, the energy would not be reconstructed in
the right way and this fact needs to be taken into account for the final analysis.
Fig.(4.15) shows the mean fractions of energy inside 3×3 arrays centered in each crystal.

Figure 4.15: Mean fraction of energy inside 3 × 3 array for particles impinging in each
cell of the calorimeter. The cell numbering corresponds to Fig.(4.14).

It is clear how stability persists only when the 9 crystals are all contained in the ECAL.
To sum up, in Fig.(4.16) the mean energy fraction and the RMS of the histograms

respectively in the case of impact point (0, 0) and random point (x, y) are shown for the
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Figure 4.16: Mean fraction of energy inside 3× 3 array for particles impinging in (0, 0)
on the left and in a random point on the right. The errors represent the RMS of the
distribution.

Figure 4.17: Calorimeter resolution as a function of E.

3×3 cell array as a function of the true energy. This plot demonstrates that the algorithm
of reconstruction with nine cells is quite stable and the mean energy fraction released is
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weakly dependent on the energy. It will be used for the final analysis of the thesis, but for
future studies the correction of 5% on the reconstructed energy needs to be implemented.
In Fig.(4.17) the energy resolution obtained for the 3 × 3 cell reconstruction algorithm
is shown for the case of central impact. The points are fitted with the functional form:

σ(E)

E
=

√(
p0√
E

)2

+
(p1
E

)2
+ p22 (4.26)

which gives p0, p1, p2 parameters in Fig.(4.17). Due to the non-Gaussian tails, visible in
the previous Fig.(4.9), the effective resolution is slightly worse than the plotted result.
In the next chapter a selection is studied based on the expected energy resolution. To be
conservative the RMS values have been used instead of the Crystal Ball core resolution.
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Chapter 5

NLO events with the complete Fast
Simulation

The simulation of the kinematical properties of the beam and the propagation of the
events through the experimental setup help to figure out the picture of events expected
in the Test Run 2021, while the simulation of the calorimeter response aims to understand
its behavior and how it can be used in this context.
The two tools have been separately developed and need to be implemented in a single
code in order to have a complete fast simulation of the Test Run 2021 setup. NLO events
imply the possible presence of photons in the final state which will not be detected by
the tracker, thus the ECAL may play an essential role. The fast simulation tool will help
studying the identification of these radiative events.

5.1 Analysis

Chapter 4 shows how the reconstruction of an energy deposit can be effectively per-
formed relying on a 3 × 3 matrix centered around the seed cell. However, in order to
ensure the accurate reconstruction of the energy deposit, all the 9 matrix elements have
to be contained in the calorimeter, as shown in Fig.(4.15). The condition of the full
containment defines the fiducial surface for the impact points of the electrons. All the
events which impinge on the ECAL in one of the cells at the borders (without the cross
in Fig.(4.14)) will be excluded.
The area of the fiducial surface is 8.55× 8.55 cm2 (calorimeter core), appreciably smaller
than the entire surface. Fig.(5.1) shows in black the events distribution as a function of
the electron scattering angle, separately for both the targets. In green the same events
requiring the electron inside the fiducial surface. The higher the electron scattering an-
gle, the smaller the probability to be detected.
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Figure 5.1: Scattering angle (mrad) of all the generated electrons in black and of the
electrons which reach the fiducial volume of the calorimeter in green. On the left the
events coming from Target 1 and on the right from Target 2.

In order to get the calorimeter acceptance flat, one needs to reduce the fiducial region
of the beam such that all the generated events, within the foreseen scattering angular
acceptance, effectively reach the calorimeter fiducial surface.

The efficiency is defined as ε = Ncore
Ngen

where Ngen is the number of generated events

while Ncore is the number of events with the scattered electron within the calorimeter
core. Red histograms in Fig.(5.2) show the efficiency plots for electrons outgoing from
Target 1 (top) and from Target 2 (bottom).
The fiducial cut on the beam is imposed requiring the impact point of the incoming
muon on the target rµ < rµ cut. In addition, in order to increase the efficiency at large
scattering angles, a threshold is applied to the reconstructed cluster energy E3×3 .
The chosen combination is:

rµ < 1.7 cm, E3×3 > 1 GeV. (5.1)

As it is shown in the right plots of Fig.(5.2), the selection cuts act remarkably well for
electrons in the small angular region for both Target 1 and Target 2. The θe < 5 mrad
region is crucial, as the µ/e discrimination there is essential. Because of the geometrical
acceptance the constant efficiency, over all the θe range, can be achieved only for collisions
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Figure 5.2: Calorimeter core acceptance as a function of the electron scattering angle. In
red without any cut; in blue with the fiducial cut imposed. Plots on the top correspond
to events when collisions occurred at Target 1, plots on the bottom to events when
collisions occurred at Target 2.

occurring at Target 2. For this reason the analysis has been restricted to events generated
at Target 2, closer to the calorimeter. The preselection cut on the electron scattering
angle is from now on set to 35 mrad.
There are two useful plots which help in the study of a first event classification:

1. The (θe, θµ) in Fig.(5.3), where θi is the generation angle of the lepton;
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Figure 5.3: Correlation between the muon and electron scattering angles. The superim-
posed violet line represents the expected correlation for perfectly elastic events.

Figure 5.4: Correlation between the reconstructed calorimeter energy E3×3 and the elec-
tron scattering angle. The superimposed violet line represents the expected correlation
from perfectly elastic events.

2. The (θe, E3×3) in Fig.(5.4), where E3×3 is the reconstructed energy.

Avoiding the correction of 5% on the reconstructed energy, the points on the (θe, E3×3)
are slightly displaced with respect to the violet elastic curve. For future analysis this
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correction should be taken into account.
Left plots in Fig.(5.3) and Fig.(5.4) are shown without any cut, while right plots have the
fiducial cut rµ < 1.7 cm applied. The fiducial cut starts to thin out some of the events far
from the violet elastic curves (given by Eq.2.19 and Eq.2.21 ), even if not sufficiently. In
this way almost half of the TR2021 events are thrown away, nevertheless it is important
to study the tracking and ECAL combination in the best possible situation, with the
nearest station to the calorimeter, to establish the possible usage of the ECAL in the
event identification. For the other stations and different applications, more analysis are
needed, also taking into account that in the experiment the ECAL will be bigger.
The most useful calorimeter information which will be used for the next analysis are:

• The reconstructed energy in the 3× 3 array E3×3;

• The centroid of the EM shower ~rC , estimating the impact position of the showering
particle.

5.1.1 Effect of the cut on the E3×3 reconstructed energy

Using the calorimeter it is possible to select events with a E3×3 reconstructed energy
greater than 1 GeV. As already seen, this allows to equalize the efficiency curve. More-
over it reduces the high θe events thinning out the band at low muon angle in (θe, θµ)
plot, as shown in Fig.(5.5). Those ones are not interesting for the final analysis of the
experiment as strongly affected by experimental perturbations and do not give important
information for the running of the coupling. Among them there are electrons that, radi-
ating soft photons, scatter at an angle smaller than the predicted elastic one, populating
the low θµ region. In addition there is the contribution from feedthrough of low energy
electrons undergoing large multiple scattering deviations from higher scattering angles.
Using the MC truth, it is possible to study some of the variables of the radiated photons
as the energy Eγ, the emitted angle θγ, the angular distance with the electron ∆θe−γ
and the distance of their impact points on the ECAL face ∆re−γ. Fig.(5.6) shows in
blue the photon distributions in the events passing the fiducial cut rµ < 1.7 cm, while in
red the distributions for events cut off by the E3×3 > 1 GeV threshold. Soft photons at
large angle are mostly affected by this energy cut and the majority of those impact the
calorimeter at a distance from one to several centimeters form the electrons.

5.1.2 Second cut: energy fraction

The first cut is not enough to have a clean sample of elastic events. The second method
adopted is based on the mean energy fraction expected for an elastic event Ereco/E

th
el ,

where Eth
el is the predicted energy from Eq.2.21 at the corresponding scattering angle θe,

known event-by-event.
Chapter 4 describes how the simulation of EM showers enables to study the mean fraction
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Figure 5.5: Correlation between the muon and electron scattering angles for Target 2
events, after the application of the fiducial cut on the distance of the beam muon from the
axis and a cut on the reconstructed electron energy E3×3 > 1 GeV. The superimposed
violet line represents the expected correlation from perfectly elastic events.

of energy released in a 3× 3 array for a given energy Etrue. When this algorithm can be
applied, the reconstructed energy fraction is stable, not depending on the impact point
of the electron (bottom plots in Fig.(4.13)). The only dependence is on the energy of the
impinging particle, shown in Fig.(4.16), which is quite weak but need to be taken into
account.
Starting from this study, it is possible to define the variable:

DE(θe) =
Emeas

3×3
Eth
el (θe)

− 0.952 (5.2)

where 0.952 is the simulated mean energy fraction averaged on different impact energies〈
E3×3

Etrue

〉
. If the event is elastic,

Emeas3×3

Ethel (θe)
should be compatible with the average, within

resolution effects. If not, the true energy of the event does not correspond within the
limits to the predicted elastic one and the event is likely to be a radiative event. The
cut on DE(θe) is defined according to the expected energy resolution, discussed in the
previous chapter. To minimise the fraction of elastic events that could be rejected due
to extreme shower fluctuations, which are observed in the tails, the cut has been con-
servatively taken at four times the RMS of the resolution function. Below an energy of
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Figure 5.6: MC truth distributions of photon energy and generation angle on top and
distance in angle and in cm from the electron on bottom. Blue histograms represent the
photon distributions in events passing the fiducial cut rµ < 1.7 cm, while the red ones
correspond to the events cut off by the condition E3×3 > 1 GeV.

5 GeV this method would not be effective in terms of good classification, hence will not
be applied.
Fig(5.7) and Fig(5.8) show the 2D plots with the additional application of the DE(θe)
cut. It is clear how this latter is effective in terms of radiative events rejection, the
ones which have an energy far from the one predicted by the elastic curve are discarded.
Those represent electrons which have an angle smaller than what is expected because of
radiation.

MC truth distributions are shown in Fig.(5.9) where discarded photons are shown in
red after the two subsequent cuts. It is evident how this second cut works on all type
of photons, from high to low energy with small and large emission angle θγ. The combi-
nation of the two cuts allows to reject almost all the events with photons which impact
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Figure 5.7: Correlation between the reconstructed calorimeter energy E3×3 and the elec-
tron scattering angle with the cuts on 1 GeV and on DE(θe). The superimposed violet
line represents the expected correlation from perfectly elastic events.

the calorimeter at a distance d > 5 cm from the electron, corresponding to large θγ.

5.1.3 Third cut: shower centroid

A useful variable which can be constructed from the shower information is the centroid.
It is the particle impact position estimated by the ECAL and based on the distribution
of energy within the calorimeter cells. The useful definition for MUonE calorimeter is
taken from [38]:

x =

∑
iwixi∑
iwi

, wi = max

{
0,

[
W0 + ln

(
Ei
ET

)]}
, (5.3)

where i stands for the index of the crystal considered inside the 3× 3 array around the
seed cell, Ei the deposited energy inside it, xi the one dimensional coordinate of its center
and ET is the total energy E3×3 inside the cluster, while W0 = 4.0 is an adimensional
parameter. The centroid coordinates (xC , yC) are separately evaluated with Eq.5.3.

Without any bias, it is expected that the differences

∆X = xC − xtrack, ∆Y = yC − ytrack (5.4)
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Figure 5.8: Correlation between the muon and electron scattering angles with the cuts on
1 GeV and on DE(θe). The superimposed violet line represents the expected correlation
from perfectly elastic events.

between the centroid coordinates and the impact point of the extrapolated track prop-
agated from the production vertex through the detector material, (xtrack, ytrack), are
centered in zero. The width of these distributions represents the position resolution of
the calorimeter respectively on the x and y coordinates. The resolution study can be
done simulating monochromatic electrons with different energies, one example is shown
in Fig.(5.10) for Ee = 50 GeV. Given the centroid position, the distance between this
and the extrapolated track is defined as

~R = ~rC − ~rtrack (5.5)

and its resolution results in:
δR =

√
δx2 + δy2. (5.6)

The dependence of the resolution δR on the energy of the impinging particle is shown
in Fig.(5.11). An empirical fit has been done with the form:

δR(E) =

√(
p0√
E

)2

+ p21, (5.7)
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Figure 5.9: MC truth distributions of photon energy and generation angle on top and
distance in angle and in cm from the electron on bottom. Blue histograms represent the
photon distributions in events passing the fiducial cut rmu < 1.7 cm, while the red ones
correspond to the events cut off by the conditions E3×3 > 1 GeV and the DE(θE) cut.

where fit parameters p0 and p1 are given in Fig.(5.11). The presence of a photon, con-
tributing with its own shower, could displace the centroid from the electron impact point.
The cut is imposed on the module of ~R, discarding events with R larger than 4 δR(E),
where δR(E) is given by Eq.5.7).

Fig.(5.12) and Fig.(5.13) show the 2D plots with the addition of the cut on |~R|. In the
(θe, E3×3) plot, the centroid cut helps in cleaning events at large electron angles which
stand above the elastic curve, corresponding at small θµ events in the (θe, θµ) plane.
Looking at Fig.(5.14) those are mostly hard photons events at small θγ, as a matter of
fact the Eγ curve is now almost completely saturated at high energies. It also increases
the number of discarded e−γ pairs impacting the ECAL at small relative distances. The
centroid method is effective when photon energy is high enough to shift significantly the
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Figure 5.10: Difference between centroid coordinates and real impact point for 50 GeV
electrons.

Figure 5.11: Resolution of the position determined by the ECAL shower centroid as a
function of the particle energy.
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Figure 5.12: Correlation between the reconstructed calorimeter energy E3×3 and the
electron scattering angle with the 1 GeV, DE(θe) and |~R| cuts. The superimposed violet
line represents the expected correlation from perfectly elastic events.

shower centroid from the electron impact point. Some of these events include the case
where the photon is more energetic than the electron, thus the centroid of the shower is
nearer to the photon impact position than to the electron one.

5.2 Final results

The three selection cuts help in cleaning up the 2D kinematical plots, as evident in
Fig.(5.12) and (5.13).
Fig.(5.15) shows MC truth distributions for the outgoing electron and muon, obtained
for the events after the full selection, including the fiducial cut on the incoming muon
and the calorimeter cuts. The plots show the true particle angles and energies at the
production vertex for all the events and after the full selection. The LO prediction for
purely elastic events is also shown. It is interesting to notice that the application of the
selection criteria moves the event distributions towards the LO ones, in particular the
electron angle. Here it is evident that the muon scattering angle is a robust observable
even in radiative events, as mentioned in Chapter 2; as a matter of fact the NLO dis-
tributions after the selection cuts mostly overlap with the LO ones. The calorimetric
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Figure 5.13: Correlation between the muon and electron scattering angles with the
1 GeV, DE(θe) and |~R| cuts. The superimposed violet line represents the expected
correlation from perfectly elastic events.

selection cuts mostly muons with low scattering angle, as it is clear from Fig.(5.15).
Fig.(5.16) shows the individual effect of each selection cut applied in sequence. In
Fig.(5.17) MC truth variables are shown for the remaining photons after the calori-
metric selection. The majority of them are soft photons with impact point in the ECAL
at a distance d < 3 cm from the electron, meaning that they are basically collinear with
the electron and will be merged in the same energy cluster.

The selection discussed here is mainly based on the ECAL and appears to be effective
in discarding radiative events. Additional criteria can be applied on the remaining events
with an analysis based on the tracker and kinematical variables as the polar angles,
acoplanarity and the χ2 of the tracks.
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Figure 5.14: MC truth distributions of photon energy and generation angle on top and
distance in angle and in cm from the electron on bottom. Blue histograms represent the
photon distributions in events passing the fiducial cut rµ < 1.7 cm, while the red ones
correspond to the events cut off by the full set of conditions: E3×3 > 1 GeV, the DE(θE)

cut and the cut on |~R|.

89



Figure 5.15: MC truth distributions of muons (left, in red) and electrons (right, in blue)
energy and scattering angle before the calorimetric selection. The effect of the selection
is shown by the green histograms. The black histograms show the LO prediction.
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Figure 5.16: MC truth distributions of photon energy and generation angle on top and
distance in angle and in cm from the electron on bottom. Blue histograms represent
the photon distributions in events passing the fiducial cut rµ < 1.7 cm, while in yellow,
black and red the events cut off by the sequential application of the cuts, respectively
E3×3 > 1 GeV, the DE(θE) cut and the centroid cut.
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Figure 5.17: MC truth distributions of photon energy and angle on top and distance
in angle and in cm from the electron on bottom. The green histograms represent the
remaining events after the selection cuts, while the blue ones correspond to all the events
with real photon emission.
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Conclusions

The present thesis aims to evaluate the performance and possible role of the calorimeter
in the MUonE Test Run planned in 2021.
A fast simulation tool has been developed on this purpose to simulate the running con-
ditions. By considering the kinematical beam properties, already existing NLO Monte
Carlo events have been processed throughout the TR2021 setup. Particles have been
propagated up to the electromagnetic calorimeter surface taking into account the effects
of multiple scattering in the detector material. The response of the calorimeter has been
simulated by means of a fast simulation algorithm that has been developed relying on
an existing parametrization also used by CMS. The validation of the algorithm has been
performed comparing the simulation results to the available literature.
The fast simulation has been used then to study radiative events, which are generated
together with the elastic ones.
The thesis demonstrates that radiative events can be spotted relying on three selection
cuts. The first one requires the total energy measured by the calorimeter to be greater
than 1 GeV. It contributes in discarding electrons with large scattering angles, which are
not interesting for the analysis and are highly affected by experimental perturbations.
It turns out that the majority of photons with large scattering angles are thrown away.
The second cut is based on the ratio of the reconstructed energy with respect to the
energy of the elastic events. An empirical fit function has been introduced to describe
the RMS dependence on the energy and has been then exploited to tune the cut. This
criterium allows to reject the majority of radiative events in an efficient way, either being
soft or hard photons at any distance from the electron cluster.
The last selection cut takes into account the position of the shower centroid provided
by the calorimeter. It acts on the distance between the centroid of the shower and the
electron position extrapolated to the calorimeter surface using tracker information. The
resolution on the impact point has been fitted with an empirical fit function, used to
tune the cut values. This last criterium reveals to be very selective against hard pho-
tons, which, in some cases, may contribute to the electromagnetic shower more than the
electrons themselves.
The thesis proves that the calorimeter can play a fundamental role in the MUonE data
analysis, in particular in the Test Run 2021, allowing to select elastic events with high
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efficiency, just relying on the information it can provide. It is an important result since
the tracking reconstruction can be then applied to the restricted sample of the elastic
candidates.
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Appendix A

Constants and Formulae

A.1 Homogeneous Media

A.1.1 Average longitudinal profiles

Thom = ln y − 0.858

αhom = 0.21 + (0.492 + 2.38/Z) ln y
(A.1)

A.1.2 Fluctuated longitudinal profiles

〈lnThom〉 = ln(ln y − 0.812)

σ (lnThom) = (−1.4 + 1.26 ln y)−1

〈lnαhom〉 = ln(0.81 + (0.458 + 2.26/Z) ln y)

σ(lnαhom) = (−0.58 + 0.86 ln y)−1

ρ(lnT, lnαhom) = 0.705− 0.023 ln y

(A.2)

A.1.3 Average radial profiles

RC,hom(τ) = z1 + z2τ

RT,hom(τ) = k1(e
k3(τ−k2) + ek4(τ−k2))

phom(τ) = p1e
p2−τ
p3
−e

p2−τ
p3

(A.3)
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with

z1 = 0.0251 + 0.00319 lnE

z2 = 0.1162 +−0.000381Z

k1 = 0.659 +−0.00309Z

k2 = 0.645

k3 = −2.59

k4 = 0.3585 + 0.0421 lnE

p1 = 2.632 +−0.00094Z

p2 = 0.401 + 0.00187Z

p3 = 1.313 +−0.0686 lnE

(A.4)

A.1.4 Fluctuated radial profiles

τi =
t

〈t〉i
e〈lnα〉

e〈lnα〉 − 1

NSpot = 93 ln(Z)E0.876

TSpot = Thom(0.698 + 0.00212Z)

αSpot = αhom(0.639 + 0.00334Z)

(A.5)
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Appendix B

Detailed CMS Algorithm

Several modification have been done to the CMS Algorithm, presented in the next pages,
in order to work in the MUonE code. As an example, the geometry class was adapted to
a rectangular shape calorimeter of 25 crystals. The RawParticles class or gammaFunc-
tionGenerator classes were modified in order to fit with our code. Many functions have
been redefined as in the CMS version called methods where spread all over the CMS
Fast Simulation composed by hundreds of files.
In addition, CMS has different steps in the detector: 2 preshowers, an EM calorimeter
and an hadronic one. Therefore, all the additional steps different from the EM calorime-
ter have been cut off.
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Algorithm

This algorithm which i am going to describe is needed for the understanding of how
the energy of a particle (electron, positron or photon) impinging and showering in the
calorimeter spreads inside its crystals.
The CMS class is the EMShower in which all the parameters needed for the evaluation
of the individual shower profiles are defined; the two main methods in the class are:

1. PrepareSteps: it defines the steps for the integration of the longitudinal profiles,
preparing the energy’s slices step by step, before the real computation;

2. compute: given the longitudinal slices, placed at a certain depth in the calorimeter,
it evaluates shower’s longitudinal and lateral development through the definition of
Ns(t) energy spots per slice, which are randomly distributed on the radial profile.
As a result, it collocates the energy spots in the calorimeter, giving the total energy
deposited.

The showers are the individual profiles, hence fluctuations are taken into account in the
algorithm.

EMShower

EMShower : : EMShower( const RandomEngineAndDistribution∗ engine ,
GammaFunctionGenerator∗ gamma,
EMECALShowerParametrization∗ const myParam ,
vector<const RawPartic le∗>∗ const myPart ,
EcalHitMaker∗ const myGrid ,
PreshowerHitMaker∗ const myPresh ,
bool bFixedLength )

: theParam (myParam) ,

↪→ Shower’s parameters from EMECALShowerParametrization.h;

thePart ( myPart ) ,

↪→ Particles showering inside the calorimeter (electron if the starting particle is the elec-
tron, electron and positron if the starting particle is the photon);

theGrid (myGrid ) ,

↪→ Set up for the calorimeter’s geometry;

thePreshower ( myPresh ) ,
random ( engine ) ,
myGammaGenerator (gamma) ,
bFixedLength ( bFixedLength )
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↪→ Boolean variable which define how to prepare the steps: if False the overall ECAL
length is divided into steps of 5χ0, if True the steps are made 1χ0 per 1χ0. A for cycle
is made on all the showering particles (1 or 2) in the calorimeter:

f o r ( unsigned i n t i = 0 ; i < nPart ; ++i ) {
// The p a r t i c l e and the shower energy

Etot . push back ( 0 . ) ;
E . push back ( ( (∗ thePart ) [ i ])−>e ( ) ) ;
tota lEnergy += E[ i ] ;

double lny = std : : l og (E[ i ] / theECAL−>c r i t i c a l E n e r g y ( ) ) ;

All the parameters for the evaluation of the longitudinal and lateral profiles depend
on the impact energy of each individual particle, hence from the definition of ln y = Ei

EC

all the useful parameters are defined: < T >, < α >, < lnT >, < lnα >, σ lnT , σ lnα, ρ,
Nspots. Fluctuations start to be accounted and enters in the definition of some parameters
in this way:

// The l o n g i t u d i n a l shower development parameters
// embedding f l u c t u a t i o n s o f alpha , T and beta

double z1 = 0 . ;
double z2 = 0 . ;

[ . . . ]
z1 = random−>gaussShoot ( 0 . , 1 . ) ;
z2 = random−>gaussShoot ( 0 . , 1 . ) ;

remembering that: (
lnTi
lnαi

)
=

(
< lnT >

< lnα >

)
+ C

(
z1
z2

)
(1)

which defines the development of the lateral shower profile

fi(t) =
(βit)

αi−1 βi e
(βit)

Γ(αi)
(2)

where βi = (αi − 1)/Ti.
Also the parameters needed for the definition of the energy spots per longitudinal step t
are defined:

// The parameters f o r the number o f energy spot s
TSpot . push back ( theParam−>meanTSpot ( theMeanT ) ) ;
aSpot . push back ( theParam−>meanAlphaSpot ( theMeanAlpha ) ) ;
bSpot . push back ( ( aSpot [ i ] − 1 . ) / TSpot [ i ] ) ;

remembering

Ns(t) = Nspot

∫ tj

tj−1

(βspott)
αspot−1 βspot e

(βspott)

Γ(αspot)
. (3)

All the parameters are vectors which are filled up cycle by cycle with the values of the
parameters which, as already mentioned, are different for each particle because of their
depenence on the energy Ei.

PrepareSteps( )

This method prepares the steps which need to be made for the integration before the real
computation takes place. In CMS there are 5 general steps:
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• preshower layer 1: step 0;

• preshower layer 2: step 1;

• ECAL: step 2;

• HCAL: step 3;

• vfcal: step 4;

• gap: step 5.

the last two will not be considered. The main parameters which are defined are:

double dt ;

↪→ length of the step;

double rad len ;

↪→ length of the detector in radiation length;

i n t s tp s ;

↪→ number of steps

i n t f i r s t E c a l s t e p = 0 ;
i n t l a s t E c a l s t e p = 0 ;

// The maximum i s in p r i n c i p e 8 ( with 5X0 s t ep s in the ECAL)
s t ep s . r e s e r v e ( 2 4 ) ;

[ . . . ]

rad l en = −theGrid−>x0DepthOffset ( ) ;

// Preshower Layer 1
rad len += theGrid−>ps1TotalX0 ( ) ;
i f ( rad l en > 0 . ) {

s t ep s . push back ( Step (0 , rad l en ) ) ;
rad l en = 0 . ;

}

// Preshower Layer 2
rad len += theGrid−>ps2TotalX0 ( ) ;
i f ( rad l en > 0 . ) {

s t ep s . push back ( Step (1 , rad l en ) ) ;
rad l en = 0 . ;

}

// add a step between preshower and ee
rad len += theGrid−>ps2eeTotalX0 ( ) ;
i f ( rad l en > 0 . ) {

s t ep s . push back ( Step (5 , rad l en ) ) ;
rad l en = 0 . ;

}
As it can be seen, radlen is the total lengths in χ0 of the different detectors. The vector
steps is filled up with all of these.

3



// ECAL
rad len += theGrid−>ecalTotalX0 ( ) ;

Now the boolean variable bFixedLength is taken into account:

i f ( rad l en > 0 . ) {
If bFixedLength = False, the ECAL step is divided into N steps=stps of 5χ0

i f ( ! bFixedLength ) {
s tp s = ( i n t ) ( ( rad len + 2 . 5 ) / 5 . ) ; //
i f ( s tp s == 0)

s tp s = 1 ;

The width of the step is given by dt

dt = rad len / ( double ) s tp s ;
Step step (2 , dt ) ;
f i r s t E c a l s t e p = s t ep s . s i z e ( ) ;

for each step in the calorimeter (N = stps), the vector steps is filled up with the for cycle
below. The steps in steps which represent the first and last ones in the calorimeter are
registered.

f o r ( i n t i s t = 0 ; i s t < s tp s ; ++i s t )
s t ep s . push back ( s tep ) ;

l a s t E c a l s t e p = s t ep s . s i z e ( ) − 1 ;
rad len = 0 . ;

}
If bFixedLength = True, the ECAL step is divided into N steps stps of one χ0

e l s e {
dt = 1 . 0 ;
s tp s = s t a t i c c a s t <int >( rad len ) ; //
i f ( s tp s == 0)

s tp s = 1 ;
Step step (2 , dt ) ;
f i r s t E c a l s t e p = s t ep s . s i z e ( ) ;
f o r ( i n t i s t = 0 ; i s t < s tp s ; ++i s t )

s t ep s . push back ( s tep ) ;

Now the last step is given by the fact that radlen is not integer hence it can remain a final
ECAL part, which is covered by the last step with width dt:

dt = rad len − s tp s ;
i f ( dt > 0) {

Step stepLast (2 , dt ) ;
s t ep s . push back ( s tepLast ) ;

}
l a s t E c a l s t e p = s t ep s . s i z e ( ) − 1 ;
rad len = 0 . ;

}
}

Now that the steps have been prepared, each one need to include the fraction of the energy
which is deposited in this longitudinal slice (ESliceTot) and the center of gravity (Mean-
Depth) of each slice, both are respectively pushed in depositedEnergy and meanDepth.
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nSteps = s t ep s . s i z e ( ) ;
i f ( nSteps == 0)

return ;
double ESl iceTot = 0 . ;
double MeanDepth = 0 . ;
depos itedEnergy . r e s i z e ( nSteps ) ;
meanDepth . r e s i z e ( nSteps ) ;
double t = 0 . ;

At each step of the overall length t, a for cycle on the number of particle nPart is made, in
which the method deposit is called for the evaluation of the deposited energy and the mean
depth in each slice. The variable realTotalEnergy is the sum up of the energy released by
all the particles in this step.

i n t o f f s e t = 0 ;
f o r ( unsigned iS tep = 0 ; iS t ep < nSteps ; ++iStep ) {

ESl iceTot = 0 . ;
MeanDepth = 0 . ;
double rea lTota lEnergy = 0 ;
dt = s t ep s [ iS t ep ] . second ;
t += dt ;
f o r ( unsigned i n t i = 0 ; i < nPart ; ++i ) {

depos itedEnergy [ iS t ep ] . push back ( depo s i t ( t , a [ i ] ,
b [ i ] , dt ) ) ;

ESl iceTot += depos itedEnergy [ iS t ep ] [ i ] ;
MeanDepth += depos i t ( t , a [ i ] + 1 . , b [ i ] , dt ) / b [ i ] ∗ a [ i ] ;
r ea lTota lEnergy += depos itedEnergy [ iS t ep ] [ i ] ∗ E[ i ] ;

}
The method deposit is defined as

double EMShower : : d epo s i t ( double t , double a , double b , double dt )
{

myIncompleteGamma . a ( ) . setValue ( a ) ;
double b1 = b ∗ ( t − dt ) ;
double b2 = b ∗ t ;
double r e s u l t = 0 . ;
double rb1 = ( b1 != 0 . ) ? myIncompleteGamma( b1 ) : 0 . ;
double rb2 = ( b2 != 0 . ) ? myIncompleteGamma( b2 ) : 0 . ;
r e s u l t = ( rb2 − rb1 ) ;
r e turn r e s u l t ;

}
where myIncompleteGamma is a function defined as

∫ x

0

tα−1 e−t

Γα
dt (4)

and represents the integration needed for the evaluation of the energy dE(t) deposited in
the region (t; t+ dt). From the paper it results:

dE(t) = Ei

∫ tj

tj−1

(βit)
αi−1 βi e

(βit)

Γ(αi)
. (5)

i f ( ESl iceTot > 0 . )
MeanDepth /= ESl iceTot ;
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which represents < t >= α
β .

e l s e
MeanDepth = t − dt ;

meanDepth [ iS tep ] = MeanDepth ;
[ . . . ]
}
[ . . . ]
s t ep sCa l cu l a t ed = true ;

}
The boolean variable stepsCalculated needs to be True in order to enable the method

compute(), needed for the final computation of the longitudinal and lateral profile.

compute( )

void EMShower : : compute ( ) {
double t = 0 . ;
double dt = 0 . ;
i f ( ! s t ep sCa l cu l a t ed )

prepareSteps ( ) ;

EcalHitMaker is a class which permits the creation and addition of the hit in the geometry
of the detector. It collocates the hit in a given region and with a given energy. The element
theGrid belongs to this class, hence represents the geometry of the calorimeter.

// Prepare the g r i d s in EcalHitMaker
[ . . . ]

bool s t a t u s = f a l s e ;

// Loop over a l l segments f o r the l o n g i t u d i n a l development
double totECalc = 0 ;

f o r ( unsigned iS tep = 0 ; iS t ep < nSteps ; ++iStep ) {
// The length o f the shower in t h i s segment
dt = s t ep s [ iS t ep ] . second ;

// The e lapsed l ength
t += dt ;

// In what de t e c t o r are we ?
unsigned de t e c t o r = s t ep s [ iS t ep ] . f i r s t ;

The following indicators are the ones defined in the previous section, hence those are the
numbers of the step related to the different detectors.

bool presh1 = de t e c t o r == 0 ;
bool presh2 = de t e c t o r == 1 ;
bool e c a l = de t e c t o r == 2 ;
bool hca l = de t e c t o r == 3 ;
bool v f c a l = de t e c t o r == 4 ;
bool gap = de t e c t o r == 5 ;

[ . . . ]
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What is done now is to identify at which depth the energy of the slice will be deposited,
the variable which is used to govern this settlement is the boolean usePreviousGrid, it is
True if the amount of energy released in the slice is lower than 1 MeV. Therefore, if it is
False, the particle is energetic enough to release the energy in the grid at the depth tt. In
this case, the boolean variable status is switched to True through the call of the method
getPads belonging to the class EcalHitMaker.
getPads is defined as

// computes the c r y s t a l s−plan i n t e r s e c t i o n at depth
// i f i t ’ s not p o s s i b l e to go at such a depth , the r e s u l t i s
f a l s e bool getPads ( double depth , bool inCm = f a l s e ) ;

and it is true when at the depth depth is it possible to release the energy. The depth at
which the energy is released is the one defined in the previous section for each step as
meanDepth.

// Build the g r id o f c r y s t a l s at t h i s ECAL depth
// Actual ly , i t might be u s e f u l to check i f t h i s g r id i s
// empty or not . I f i t i s empty ( because no c r y s t a l
// at t h i s depth ) , i t i s o f no use ( and time
// consuming ) to generate the spot s

// middle o f the s tep
double t t = t − 0 .5 ∗ dt ;

double rea lTota lEnergy = 0 . ;
f o r ( unsigned i n t i = 0 ; i < nPart ; ++i ) {

rea lTota lEnergy += depos itedEnergy [ iS t ep ] [ i ] ∗ E[ i ] ;
}

// I f the amount o f energy i s g r e a t e r than 1 MeV, new gr id
// otherwi se put in the prev ious one .
bool usePreviousGrid = ( rea lTota lEnergy < 0 . 0 0 1 ) ;

// I f the amount o f energy i s g r e a t e r than 1 MeV, new gr id
// otherwi se put in the prev ious one .

// I f l e s s than 1 kEV. Just sk ip
i f ( iS t ep > 2 && rea lTota lEnergy < 0 .000001)

cont inue ;

i f ( e c a l && ! usePreviousGrid ) {
s t a t u s = theGrid−>getPads ( meanDepth [ iS tep ] ) ;

}
[ . . . ]

It is important to highlight that now no energy is collocated in any place of the grid, it is
just a way to understand until which depth the shower keeps on showering. If the energy
is lower than 1 keV, the cycle is skipped and directly jumps to the beginning of the loop
for next iteration (hence to the next step).

Now, it is evaluated the energy deposited, recalling the one evaluated with the method
PrepareSteps( ).

// The p a r t i c l e s o f the shower are proce s s ed in p a r a l l e l

7



f o r ( unsigned i n t i = 0 ; i < nPart ; ++i ) {

// i n t e g r a t i o n o f the shower p r o f i l e between t−dt and t
double dE = ( ! hca l ) ? depos itedEnergy [ iS t ep ] [ i ] :

1 . − depos i t ( a [ i ] , b [ i ] , t − dt ) ;

// no need to do the f u l l machinery i f nothing to d i s t r i b u t e )
i f (dE ∗ E[ i ] < 0 .000001)

cont inue ;

Fluctuations of the energy deposited are taken into account, its value is extracted randomly
from a gaussian centered in dE:

i f ( e c a l && ! theECAL−>isHom ( ) ) {
double mean = dE ∗ E[ i ] ;
double sigma = theECAL−>resE ( ) ∗ s q r t (mean ) ;

double dE0 = dE ;

dE = random−>gaussShoot (mean , sigma ) / E[ i ] ;

i f (dE ∗ E[ i ] < 0 .000001)
cont inue ;

photos [ i ] = photos [ i ] ∗ dE / dE0 ;
}

totECalc += dE ;

// The number o f energy spot s ( or mips )
double nS = 0 ;

Here also the fluctuations related to photostatistics in the shower are taken into account:

// ECAL: Account f o r p h o t o s t a t i s t i c s and long ’ a l non−un i fo rmi ty
i f ( e c a l ) {

dE = random−>poissonShoot (dE ∗ photos [ i ] ) / photos [ i ] ;
double z0 = random−>gaussShoot ( 0 . , 1 . ) ;
dE ∗= 1 . + z0 ∗ theECAL−>l i g h t C o l l e c t i o n U n i f o r m i t y ( ) ;

The number of spots is now evaluated with the usage of Eq. (3):

// Expected spot number
nS = ( theNumberOfSpots [ i ] ∗ gam( bSpot [ i ] ∗ tt ,
aSpot [ i ] ) ∗ bSpot [ i ] ∗ dt / tgamma( aSpot [ i ] ) ) ;

} e l s e i f ( hca l ) { [ . . . ]
} e l s e i f ( presh1 ) { [ . . . ]
} e l s e i f ( presh2 ) { [ . . . ]
} [ . . . ]

Each spot as an energy defined as Es = dE(t)/Ns(t), hence it is fixed for each spot (NB:
dE is the fraction of energy from depositedEnergy, thus dE(t) = dE × Ei).
// The l a t e r a l development parameters

// Energy o f the spot s
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double eSpot = (nS > 0 . ) ? dE / nS : 0 . ;
double SpotEnergy = eSpot ∗ E[ i ] ;

[ . . . ]
i n t nSpot = ( i n t ) ( nS + 0 . 5 ) ;

The lateral development is represented by the equation

fi(r) = pi
2R2

Cir

(r2 +R2
Ci)

2
+ (1− pi)

2R2
T ir

(r2 +R2
T i)

2
(6)

where all the parameters are defined in EMECALShowerParametrization.h and are func-
tions of τi and Ei.

double tau i = t t / Ti [ i ] ;
double proba = theParam−>p( taui , E [ i ] ) ;
double theRC = theParam−>rC( taui , E [ i ] ) ;
double theRT = theParam−>rT( taui , E [ i ] ) ;

Once we have the longituginal step computed and, in each longitudinal step, a given
number of spots with a given energy, it is necessary to distribute these spots radially in
a random way such that radial fluctuations are accounted. The way through which they
manage to do that is to divide in two sets the number of spots per slice: one set in the
core region and one set in the tail region. The number of spots in the core, thus in the
tail, is extracted randomly by a gussian centered on p×Ns(t) where p is the weight of the
core: this is the definition of dSpotsCore which will define nSpots core and consequently
nSpots tail .

double dSpotsCore = random−>gaussShoot ( proba ∗ nSpot ,
std : : s q r t ( proba ∗ ( 1 . − proba ) ∗ nSpot ) ) ;

i f ( dSpotsCore < 0)
dSpotsCore = 0 ;

unsigned nSpots core = ( unsigned ) ( dSpotsCore + 0 . 5 ) ;
unsigned n S p o t s t a i l = ( ( unsigned ) nSpot > nSpots core ) ?
nSpot − nSpots core : 0 ;

Let’s now cycle on a variable icomp which assumes two values:
• 0, and represents the core;

• 1, and represents the tail.

For each case, an object of the class RadialInterval is defined: it is an interval in the radial
direction, of width R, with N = ncompspots as the number of spots which it contains, of
energy SpotEnergy.

f o r ( unsigned icomp = 0 ; icomp < 2 ; ++icomp ) {
double theR = ( icomp == 0) ? theRC : theRT ;
unsigned ncompspots = ( icomp == 0) ?
nSpots core : n S p o t s t a i l ;

R a d i a l I n t e r v a l r a d I n t e r v a l ( theR , ncompspots ,
SpotEnergy , random ) ;

i f ( e c a l ) {
i f ( icomp == 0) {

s e t I n t e r v a l s ( icomp , r a d I n t e r v a l ) ;
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} e l s e {
s e t I n t e r v a l s ( icomp , r a d I n t e r v a l ) ;

}
}
[ . . . ]

Now the method setInterval is called, it is defined as

void EMShower : : s e t I n t e r v a l s ( unsigned icomp , R a d i a l I n t e r v a l& rad )
{ const std : : vector<double>& myValues ( ( icomp ) ?

theParam−>g e t T a i l I n t e r v a l s ( ) : theParam−>g e t C o r e I n t e r v a l s ( ) ) ;

unsigned nva l s = myValues . s i z e ( ) / 2 ;

where nvals is 1 (hence nvals=0) for the Core and 2 (hence nvals=0,1) for the Tail, it
represents the different regions which compose the two radial profiles. Now a cycle on
these regions is made:

f o r ( unsigned iv = 0 ; iv < nva l s ; ++iv )
{

rad . addInte rva l ( myValues [ 2 ∗ i v ] , myValues [ 2 ∗ i v + 1 ] ) ;
}

}
where again another method of the class RadialInterval is called: addInterval. The vari-
ables which it needs are

void R a d i a l I n t e r v a l : : addInte rva l ( double radius , double s p o t f ){}
which are the radius of the internal interval taken into account and the percentage of spots
in this specific region of the radial profile.
To sum up:

1. there are two radial intervals 1) the tail (icomp = 0), 2) the core (icomp = 1);

2. for each radial interval the method setIntervals is called: it defines in how many
regions the radial interval (core or tail) is divided. The Core has just one re-
gion (iv = 0), while the Tail has two regions (iv = 0, 1) which are (definition in
Calorimetry cff.py): i) where r < 1×RMoliere and ii) where r > 1×RMoliere. Hence
here the method addInterval plays this rule of dividing internally the radial interval.

r a d I n t e r v a l . compute ( ) ;
// i r ad = 0 : c e n t r a l c i r c l e ; i r ad=1 : ou t s i d e

unsigned nrad = r a d I n t e r v a l . n I n t e r v a l s ( ) ;

with nrad = 1 for the Core and nrad = 2 for the Tail. The energy of the spots in the
internal interval is extrpolated through getSpotEnergy and added at the given depth tt in
the Grid which represents the ECAL.

f o r ( unsigned i r ad = 0 ; i r ad < nrad ; ++i rad ) {
double spote = r a d I n t e r v a l . getSpotEnergy ( i r ad ) ;
i f ( e c a l )

theGrid−>setSpotEnergy ( spote ) ;
[ . . . ]

Now the distribution of the Nspots(t) at a given depth need to be done, the maximum
and minimum extremities of the internal interval are taken and used for the definition of
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z3: a random number which enable the definition of the position ri where the spot will
be placed. Once that phi is randomly extrapolated too, the coordinates of all the energy
spots are assigned through the for cycle on the number of spots in the internal interval.

unsigned nradspots = r a d I n t e r v a l . getNumberOfSpots ( i r ad ) ;
double umin = r a d I n t e r v a l . getUmin ( i r ad ) ;
double umax = r a d I n t e r v a l . getUmax( i r ad ) ;

// Go f o r the l a t e r a l development
f o r ( unsigned i s p o t = 0 ; i s p o t < nradspots ; ++i s p o t ) {

double z3 = random−>f l a t S h o o t (umin , umax ) ;
double r i = theR ∗ std : : s q r t ( z3 / ( 1 . − z3 ) ) ;

// Generate phi
double phi = 2 . ∗ M PI ∗ random−>f l a t S h o o t ( ) ;

Only now the hit is added in the calorimetry geometry, given the precise coordinates:

// Add the h i t o f each Nspot in the c r y s t a l
i f ( e c a l ) {
theGrid−>addHit ( r i , phi ) ;
}

[ . . . ]

For each spot of the internal interval there is the energy spote. Etot defines the energy
in all the Radial Interval (tail or core), as it is included in the for cycle made on nrad,
deposited by the particle i at the depth i.

Etot [ i ] += spote ;
} // f i n i s h c y c l e on i s p o t

} // f i n i s h c y c l e on i r ad
} // f i n i s h c y c l e on icomp

} // f i n i s h c y c l e on nPart
} // f i n i s h c y c l e on nSteps
double Etota l = 0 . ;
f o r ( unsigned i = 0 ; i < nPart ; ++i ) {

Etota l += Etot [ i ] ;
}

}
where Etotal is the total energy which all the nPart release inside all the calorimeter, as
is cycled on the number of steps nSteps.

This object EMShower and the method compute() are called in the file Calorime-
tryManager.cc, where, for each event, the hit are simulated and extrapolated from the
Grid.
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