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Abstract

Revealing the nature of the dark matter is among the most puzzling issues of today
particle physics, astrophysics and cosmology. Given the striking evidences for dark mat-
ter at all astrophysical scales, starting from galactic and going to cosmological scales, a
widespread and well motivated assumption on the nature of the dark matter is that it is
made by a new particle that extends the Standard Models of Particle Physics.

Indirect detection of dark matter, which annihilates in over-dense regions like the
galactic centre, is an important probe of a possible dark matter interaction with the
Standard Model particles. It could provide insights both to the underlying production
mechanism of dark matter in the early Universe, on the annihilation properties at present
time in galactic halos and on the underlying particle physics model.

In this master thesis project we will focus on simplified leptophilic models for dark
matter. These models feature an massive boson, called for instance Z ′, and a Dirac dark
matter candidate, that complement the Standard Model of particle physics. We will
study the annihilation of dark matter into leptons, focusing in particular on neutrino
lines and box-shaped energy spectra. These tow signals are smoking gun signature to
discover the dark matter properties. We will perform a numerical analysis using the
dark matter software MadDM to predict the expected flux from the galactic centre,
by performing scans in the model parameter space. We will implement the constrains
from the Fermi-LAT telescope and the XENON1T experiment. Finally we will use the
predictions of those models to assess the reach of the future KM3NeT neutrino telescope.
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Chapter 1

Introduction

Revealing the nature of the dark matter is among one of the most puzzling issues of
today’s particle physics, astrophysics and cosmology. Despite plenty of evidence, which
include the measurement of galactic rotation curves, the Cosmic Microwave Background,
gravitational lensing, and that confirm the presence of non baryonic matter in our Uni-
verse, its nature remains elusive. Currently, we know that dark matter should satisfy a
few properties: it interacts gravitationally and it represents 26% of the energy budget
of the Universe and more than 80% of its total matter content, according to the latest
measurements by the Planck satellite [1].

Given the stunning evidence at all astrophysical and cosmological scales, a widespread
assumption on the nature of the dark matter is that it is composed by new particles that
extend the content of the Standard Model of particle physics. Many different types of
dark matter candidates have been proposed, i.e., axions [2], supersymmetric neutrali-
nos [3], sterile neutrinos [4] just to name a few. They are expected in different mass
ranges and with interaction strength. However, they share the characteristics of being
neutral, stable (or long-lived on Universe timescales), and hopefully interacting with
the Standard Model particles other than gravitationally. In this thesis we will focus on
the so-called Weakly Interacting Massive Paricle (WIMP) scenarios, where massive dark
matter particles can interact weakly with the known particles.

Based on the assumptions above, WIMPs have been in thermal equilibrium in the
early Universe and have decoupled via the freeze-out mechanism to provide the relic
abundance measured today. At present time, the dark matter particles are widespread
in our galaxy, hence they can be detected by Earth or space-based experiments and
satellites. The three main strategies to uncover the dark matter are: (i) indirect detec-
tion, which studies the products of dark matter annihilation in locally over-dense regions
such as the galactic center; (ii) direct detection that studies scattering processes between
nuclei in underground detectors, hit by dark matter particles and (iii) colliders, that can
produce dark matter particles through collision of Standard Model particles to further
search for missing energy signals. These methods and their combination are designed to
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provide insights on the dark matter characteristics.
Indirect dark matter detection is based on the measurement of a flux of stable particles

(e+, e−, p, p, νe, νµ, ντ and γ), which are the primary products of dark matter annihilation
in the galactic halo. Typically, these spectra feature a continuous and smooth energy
distribution of e.g. gamma rays or neutrinos, as a result of the showering, hadronization,
decay of the dark matter annihilation final states. Consequently, such energy spectra are
not clearly distinguishable from the astrophysical background, making the discovery of
dark matter signals a very challenging task. For this reason, it is convenient to focus on
signatures which can provide sharp features in the energy spectra. The spectral features
are considered smoking gun signatures for dark matter detection, because they can be
easily distinguished from the astrophysical background and are hardly mimicked by any
astrophysical source. Striking examples of spectral features are the monochromatic lines
and box-shaped energy spectra. The first are obtained by annihilation of dark matter in
two γ or into a νν pair, while the latter by dark matter decaying into a pair of boosted
and unstable particles which further decay into pairs of photons or neutrinos.

In this thesis we focus on dark matter models that give rise to neutrino line signals
a the tree level, using a simplified model approach. This consists in adding to the Stan-
dard Model a minimal content: a dark matter particle and a mediator particle, which
connects the dark matter to the Standard Model. In particular, we consider a s-channel
simplified model [5, 6] with a Dirac dark matter candidate, χ, annihilating into Stan-
dard Model particles via a massive spin-1 mediator, Z ′. This model features a velocity
independent annihilation cross section 〈σv〉, which proceeds primarily through s-wave.
This is promising because at present time 〈σv〉 is not suppressed by the small velocity
of the dark matter in the galaxy and can give rise to signals in the ball park of detection
of current and future experiments. Moreover, by considering only couplings to leptons
(leptophilic model), this model not only provides potentially visible and detectable sig-
nals but also smoking gun signatures for neutrino telescopes, searching for heavy dark
matter well beyond the reach of colliders.

After computing analytically the cross section leading to neutrino monochromatic
lines, we perform a numerical analysis using the dark matter software MadDM [7] to
predict the expected flux from the galactic centre of those neutrinos. We perform scans
in the model parameter space for different realisations of our leptophilic simplified model.
MadDM is used to compute the annihilation cross section 〈σv〉 relevant for both the relic
density and the indirect detection computations, as well as to compare the theoretical
observables against the experimental results from indirect and direct searches. More
specifically, we consider the experimental bounds of Fermi-LAT [8] for indirect detection
and XENON1T [9] for direct detection.

Our main goal is to use the predictions of this model to assess the reach of the future
KM3NeT [10] neutrino telescope to leptophilic dark matter models. KM3NeT is already
in construction in the Mediterranean sea, hence it has the optimal position to observe
dark matter annihilation from the galactic centre. We use two different predictions for
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KM3NeT sensitivity considering both the angular power spectrum method [11] and the
predictions made with a likelihood analysis and based on ANTARES data [12].

This thesis is organized as follows. In chapter 2, we briefly review the relevant
concepts of cosmology to understand the production of the dark matter in the early
Universe; we further provide a description of the main evidences for dark matter at
different astrophysical scales. In chapter 3, we provide examples of particle dark matter
candidates and describe the main detection methods and experimental limits related to
weakly interacting candidates. Finally in chapter 4 we provide a detailed description of
the work performed during this thesis. We first present the Simplified Model for neutrino
lines and the different realisation we have considered; we then show the results of the
model parameter scans performed with the numerical tool MadDM and further assess
the limits set by current experiments on this parameter space, and most importantly,
we show the reach of the future KM3NeT neutrino telescope. We finally conclude and
discuss future prospects in chapter 5.
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Chapter 2

History of the Universe

This chapter is a brief review of the most important concepts in cosmology. We will
derive a few key concepts of General Relativity and underline the equations that govern
the evolution of the Universe in sec. 2.1.

In sec. 2.2 we will show how to treat the Universe from a thermodynamical point of
view, by describing the early Universe thermodynamics. We further analyse the decou-
pling of species in sec. 2.2.1 using the Boltzmann equation.

We will illustrate how the structures such as galaxies and galaxy clusters can be
explained in terms of perturbation theory in sec. 2.3.

Finally, we will show in sec. 2.4 how the necessity for dark matter emerges in a natural
way and which are the experimental evidences for it. This is just a summary of different
topics; one can find a more complete treatment in different books, such as [13, 14]. For
this thesis we follow [15, 16, 17].

2.1 A brief review of cosmology
Cosmology uses the framework of General Relativity that provides a description of grav-
ity as a geometric property of four-dimensional spacetime, unifying Special Relativity
and Newton’s law of universal gravitation. In particular, the curvature of spacetime is
directly related to the stress-energy tensor. The relation is specified by the Einstein field
equations

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν , (2.1)

where gµν is the spacetime metric tensor, Rµν is the Ricci tensor (1-4 contraction of the
Riemann tensor Rµ

νρσ), R = gµνRµν is the Ricci scalar, Λ is the cosmological constant,
GN is the gravitational constant and finally Tµν is the energy momentum tensor.

Einstein’s eq. (2.1) can be solved assuming the cosmological principle to obtain a
metric that describes the Universe at large scales. The cosmological principle states that
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2.1. A BRIEF REVIEW OF COSMOLOGY

on the largest scales, the Universe is spatially homogeneous and isotropic. Homogeneity
means that the Universe looks identical at every point in space while isotropy that it
looks the same in every direction. Notice that these properties are referred to space,
not to time. The cosmological principle is confirmed by both the Cosmic Microwave
Background (CMB) that we will discuss afterwards in sec. 2.4.2 and by redshift surveys,
according which galaxies are roughly homogeneous at large distances.

Assuming the cosmological principle, the solution of eq. (2.1) is the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.2)

where r, θ, φ are the spherical coordinates, k represents the curvature and a(t) is the scale
factor. The curvature can have 3 different values: k = +1 represents a closed Universe,
k = 0 represents a flat Universe, while k = −1 an open one. The Universe is described
by the FLRW metric with both expansion and contraction captured by the scale factor
a(t). One then needs to find an equation for a(t) taking in account the matter and energy
densities, encoded in Tµν .

The Universe is filled with different matter components. Matter and energy sources
can be represented via perfect fluids i.e. fluids with no shear stresses, viscosity, or heat
conduction. They are characterized by pressure P (t) and density ρ(t) linked by an
equation of state. In particular, the non relativistic matter, called dust, has P = 0 and
the relativistic gas, or radiation, has P = 1/3ρ. Summarizing, the equation of state looks
like

P = wρ , (2.3)
with w = 0 for dust and w = 1/3 for radiation.

As the Universe expands, one expects the energy density to decrease. The way in
which this happens is described by energy conservation, i.e. the continuity equation,
which can be written in a simple way as

ρ̇+ 3H(ρ+ P ) = 0 , (2.4)

where ρ̇ denotes the derivative with respect to time of the density, and H is the Hubble
parameter describing the expansion of the Universe. It is related to the scale factor
according

H =
ȧ(t)

a(t)
, (2.5)

where ȧ(t) is the time derivative of the scale factor. The value of the Hubble parameter
depends on time; its value nowadays is [1]

H0 = (67.36± 0.54) km · s−1 · Mpc−1 . (2.6)
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2.1. A BRIEF REVIEW OF COSMOLOGY

Usually one considers the dimensionless parameter h = (0.6736 ± 0.0054), defined as
h ≡ H0/(100 km · s−1 · Mpc−1). Substituting eq. (2.3) in eq. (2.4), one can obtain the
dependence of the fluid components as a function of the scale factor

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (2.7)

and performing an integration on it, we have

ρ(t) ∝ a−3(w+1) . (2.8)

This becomes

• matter: ρm ∝ a−3

• radiation: ρr ∝ a−4

For the former, the behaviour of ρ simply reflect the expansion of the volume V ∝ a3;
we will see that actually in the Universe two components for the matter are required to
explain the experimental data:

• dark matter represents most of the matter in the Universe in the form of invisible
matter;

• baryonic matter which is the ordinary matter.

The radiation is a gas of relativistic particles, i.e. the energy density is dominated by
the kinetic energy. Radiation is composed for instance by photons, always relativistic
because massless. Actually, at high temperatures as T & 200 GeV all the particle content
of the Standard Model is relativistic.

However, matter and radiation are not enough to describe the evolution of the Uni-
verse. Instead, the Universe today seems to be dominated by a component having a
negative pressure P = −ρ, i.e. w = −1. Usually this component is called vacuum energy
or cosmological constant and its density evolution, according to eq. (2.7), is

ρ ∝ a0 . (2.9)

The last step in our discussion is the understanding of how a perfect fluid affects the
expansion of the Universe. We need to come back to the Eisntein’s equations, eq. (2.1),
and explicit the energy-momentum tensor in the perfect fluid approximation. In this
case it takes the following simple form

Tµν = diag(ρ,−P,−P,−P ) , (2.10)
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2.1. A BRIEF REVIEW OF COSMOLOGY

because we do not have nor heat conduction neither viscosity working in the perfect fluid
approximation and all the components of Tµν which are not diagonal vanish. The dy-
namics is described by solving the Einstein’s equations with the FLRW metric, eq. (2.2),
and considering the energy momentum tensor as in eq. (2.10). The solutions are known
as Friedmann equations:

ȧ2 + k =
8

3
πGρa2 , (2.11)

for the T 00; for T ii one has
ä = −4

3
(ρ+ 3P )a . (2.12)

The first equation, eq. (2.11), has the following solution

H2(t) +
k

a2(t)
= ρ(t)

8πG

3
, (2.13)

which is useful to define the critical density as

ρc =
3H2(t)

8πG
, (2.14)

and which separates an expanding Universe from a collapsing one, having assumed Λ = 0.
It is convenient to define the dimensionless quantity

Ω(t) =
ρ(t)

ρc(t)
. (2.15)

Using the solution in eq. (2.13) together with the above definition, and solving for the
curvature k, one obtains that the curvature is determined by the time-dependent total
energy density of the Universe according to

k = H2(t)a2(t) (Ω(t)− 1) . (2.16)

One can have
• Ω > 1: k > 0 and the Universe is closed;

• Ω < 1: k < 0 and the Universe is opened;

• Ω = 1: k = 0 and the Universe is flat.
From experiments, we know that our Universe is flat, i.e. Ω = 1. This means that

Ω =
ρm + ρr + ρΛ

ρc
= 1 . (2.17)

Hitherto we have described the Universe in terms of the scale factor a(t) and ρ(t)
obeying the Friedmann equations; what we want now is to describe its evolution using
the time variable. We use the power law ansatz a(t) ∝ tβ in the Friedmann eq. (2.12),
obtaining for different components of the total density
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2.1. A BRIEF REVIEW OF COSMOLOGY

Figure 2.1: Composition of the Universe as a function of the scale factor a(t). The figure
is taken from [16].

• non relativistic matter: a(t) ∝ t2/3;

• relativistic radiation: a(t) ∝ t1/2;

• vacuum energy: a(t) ∝ e
√

Λ(t)/3t.

Looking at the composition of the Universe in terms of relativistic states, non-
relativistic and cosmological constant, one notices that at large temperatures the Uni-
verse is dominated by relativistic states. When it starts to expand and a(t) increases,
the relativistic energy drops like 1/a4 while non relativistic energy drops like 1/a3: this
means that as long as the relativistic energy density dominates, the relative fraction of
matter increases linearly in a. The time at which both the radiation and the matter
contributed with the same amount of density to the total density is known as matter-
radiation equality. Being Λ in general constant, its contribution never changed and it
starts to dominate now. This evolution is shown in fig. 2.1. One can conclude that there
are 3 different epochs for the Universe: radiation dominated era in which the expansion
was mostly dictated by the radiation. This era finished at the matter-radiation equal-
ity time, after which matter started to dominate. Nowadays the Universe expansion is
determined mostly by the cosmological constant Λ.

Our next goal is the introduction of the main concepts regarding the thermal history
of Universe.

10



2.2. THERMAL HISTORY

2.2 Thermal History
After Inflation the Universe was hot and dense and the thermodynamical properties were
determined by chemical and kinetic equilibrium ,being all the species in a thermal bath.
This is confirmed by the perfect blackbody spectrum of the CMB, which can be produced
only by an isothermal, opaque and non-reflecting object.

However, as we know, the history of the Universe is a history of cooling: during
its expansion, non equilibrium dynamics took place and different key events such as
Electroweak (EW) and Quantum chromodynamics (QCD) phase transitions, freeze-out
of different species and Big Bang Nucleosynthesis (BBN) happened.

The key point to understand the thermal history of the Universe is the comparison
between the rate of interaction Γ of the species in equilibrium and the rate of expansion
H of the Universe. The rate of interaction is described via

Γ = nσv , (2.18)

where σ is the interaction cross section, v is the average velocity and n is the number
density of the particles. Comparing Γ and H, 3 different scenarios are possible:

• Γ � H: local equilibrium is reached before the expansion becomes relevant;

• Γ ' H: particles decouple from thermal bath;

• Γ � H: expansion is dominating.

2.2.1 Early Universe
The right framework to describe the thermal equilibrium is Statistical Mechanics. The
better choice is the description of particles in phase space, given by particle momenta
and positions. To obtain the number density of particles, it is useful to define the distri-
bution function f(~x, ~p, t) which tells how particles are distributed over the momentum
eigenstates. According to the cosmological principle, f = f(~p, t), because of homogene-
ity, and f(|~p|) because of isotropy. The particle density in phase space is the density of
states multiplied by the distribution function, g/(2π)3 · f(p), hence the number density
of particles is

n =
g

(2π)3

∫
d3pf(p) , (2.19)

where g is the number of internal degree of freedom. Assuming

E(p) =
√
p2 +m2 , (2.20)
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2.2. THERMAL HISTORY

it is a good approximation for weakly interacting particles of the gas, i.e. they are almost
free and their interactions are negligible. The energy density is then defined as

ρ =
g

(2π)3

∫
d3pf(p)E(p) . (2.21)

Analogously for the pressure one has

P =
g

(2π)3

∫
d3pf(p)

p2

3E
. (2.22)

The equilibrium is characterized by the state of maximum entropy in which the distri-
bution functions are given by Fermi-Dirac and Bose-Einstein distributions; the former
describes the collective behaviour of fermions while the second describes bosons. These
distribution functions are

f(p) =
1

e(E(p)−µ)/T ± 1
, (2.23)

where the "+" is for fermions and "-" for bosons; µ represents the chemical potential and
T is the temperature. In the early Universe the chemical potential is very small and can
be neglected in first approximation. This happens because if we have an equilibrium
condition as

1 + 2 � 3 + 4 , (2.24)
it is reflected on chemical potentials as

µ1 + µ1 � µ3 + µ4 . (2.25)

It can be shown that µi is related to the difference of number densities of particles and
antiparticles µi ∝ ni−ni present in the thermal bath and this difference is very small. It
can not be zero because asymmetry is required to have the Universe we observe today.

Substituting eq. (2.23) in eqs. (2.19) and (2.21) and using x = m/T and ξ = p/T one
gets

n =
g

2π2
T 3

∫ ∞

0

ξ2

exp
(√

ξ2 + x2 ± 1
)dξ , (2.26)

ρ =
g

2π2
T 4

∫ ∞

0

ξ2
√
ξ2 + x2

exp
(√

ξ2 + x2 ± 1
)dξ . (2.27)

P =
g

6π2
T 4

∫ ∞

0

ξ4

(exp
(√

ξ2 + x2 ± 1
)
)
√
ξ2 + x2

dξ . (2.28)

It is convenient to study two different limits of the expressions above: the case of rela-
tivistic particles, with m� T , and the case of non relativistic particles, with m� T .
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2.2. THERMAL HISTORY

• For the relativistic case one gets

n =

{
ζ(3)
π2 gT

3 bosons,
3
4
ζ(3)
π2 gT

3 fermions,
(2.29)

ρ =

{
π2

30
gT 4 bosons,

7
8
π2

30
gT 4 fermions ,

(2.30)

P =
ρ

3
. (2.31)

• For non-relativistic case
n = g

(
mT

2π

)
e−m/T , (2.32)

ρ ' mn . (2.33)
Notice that in the case characterized by T � m, the exponential suppression comes
from the distribution function in eq. (2.23): massive particles are exponentially rare
at low temperatures. Moreover, the energy density ρ is simply equal to the mass
density. For what concerns the pressure P , a non relativistic gas of particles acts
like pressureless dust as anticipated in eq. (2.3), being P = nT � ρ. Summarizing,
in the non relativistic limit, the number density, energy density and pressure of
particles are Boltzmann suppressed when the temperature drops below the mass of
the particle. This fact can be interpreted as particle-antiparticle annihilation; at
high energies, when T � m, annihilations occur as well but they are compensated
by production mechanisms. At low temperatures, the thermal particles energies
are not sufficient for pair production and the particle decouple form the thermal
bath and freeze-out.

It is useful to define the effective number of degrees of freedom g? which is a function
of the temperature. Starting with the radiation case, the total radiation density is the
sum over the energy densities of all relativistic species

ρr =
∑
i

ρi =
π2

30
g?(T )T

4 , (2.34)

where g? is the effective number of relativistic degrees of freedom with a fixed temperature
T . We need to consider separately two cases, when relativistic species are in thermal
equilibrium (i) and when they are decoupled from thermal bath (ii).
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2.2. THERMAL HISTORY

Figure 2.2: Evolution of the relativistic degrees of freedom g? considering only the Stan-
dard Model particle content. The maximum value corresponds to the condition when all
the particles are relativistic while the minimum corresponds to today’s value, which is
3.6. The figure is taken from [16].

• For relativistic species in thermal equilibrium with Ti = T � mi the effective
number of degrees of freedom can be expressed as

gth? (T ) =
∑

i=bosons

gi +
7

8

∑
i=fermions

gi . (2.35)

When the temperature T drops below the mass mi, the specie becomes non rel-
ativistic and decouples from the thermal bath. As a consequence, its degrees of
freedom are removed from eq. 2.35. Superscript ”th” stays for thermal (equilib-
rium).

• For relativistic species which are not in thermal equilibrium with Ti 6= T � mi, g?
is

gdec? (T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

; (2.36)

the superscript ”dec” stays for decoupled, to underline that considered species are
not in thermal equilibrium.

Figure 2.2 shows the evolution of g? as a function of the temperature T . At T & 175GeV
(top quark mass) all particles of the Standard Model are relativistic: from eq. (2.35) one
has
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2.2. THERMAL HISTORY

• gbosons = 2 · 1γ + 3 · 3W±,Z + 2 · 8g + 1H = 28,

• gfermions = 12 · 6q + 4 · 3l + 2 · 3ν = 90.

g? then is
g? = gbosons +

7

8
gfermions = 106.75. (2.37)

As the temperature drops, various particle species become non-relativistic and further
on decouple. Being most massive in Standard Model particle content, top quarks become
non-relativistic first and the number of effective degrees of freedom reduced to 96.25. The
Higgs boson and the electroweak gauge bosons become non relativistic next and the g?
dropped to 86.25. Next, bottom and charm quarks as well as tau lepton and g? reduced
to 61.76. Following the solid line in fig. 2.2, notice that at T ' 250 MeV, the QCD phase
transition happened and quarks form bound states knows as baryon and mesons. As
the temperature decreased, other species become non-relativistic and only left are pions,
electrons, muons, neutrinos and photons, all contributing to g? = 17.25.

To describe the evolution of the Universe it is useful to introduce a conserved quantity.
This quantity is the entropy being the expansion of the Universe, to a good approxima-
tion, adiabatic.

2.2.2 Entropy conservation
Considering the second low of thermodynamics

TdS = dU + PdV , (2.38)

with U = ρV , one has

dS =
1

T
(d [(ρ+ P )V ]− V dP ) ,

= d

[
ρ+ P

T
V

]
.

(2.39)

It is convenient to define the entropy density s = S/V , and using eq. (2.21) one has

s =
∑
i

ρi + Pi
Ti

=
2π2

45
g?S(T )T

3 , (2.40)

where g?S is the effective number of degrees of freedom in entropy i.e.

g?S(T ) = gth?S(T ) + gdec?S (T ) . (2.41)

In particular one has
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• for species in thermal equilibrium

gth?S(T ) =
∑

i=boson

gi +
7

8

∑
i=fermion

gi = g?(T ) , (2.42)

• for decoupled species one gets

gdec?S (T ) =
∑

i=boson

gi

(
Ti
T

)3

+
7

8

∑
i=fermion

gi

(
Ti
T

)3

6= gdec? (T ) . (2.43)

The conservation of entropy has an important implication. Considering the relation
eq. (2.40), the conserved entropy is

S = sV ∝ sa3 ∝ g?S(T )T
3a3 . (2.44)

Inverting the latter relation one obtains

T ∝ g
−1/3
?S a−1 . (2.45)

When a particle species becomes non relativistic and decouples from the thermal
bath, its entropy is transferred to the other particles that are still in equilibrium in the
thermal bath. As a consequence,the temperature T of the thermal bath increases while
g?S decreases.

2.2.3 Departure from Equilibrium
The tool to describe the departure from equilibrium, such as decoupling from the thermal
bath, is the Boltzmann equation.

Let’s analyze the moment of the decoupling. We consider a certain species with
number density of particles ni and such that are not interacting. The number of particles
per comoving volume is then a constant

dN

dt
=
d(nia

3)

dt
= 0 → dni

dt
+ 3Hni = 0 . (2.46)

To include interactions, one adds a collision term

1

a3
d(nia

3)

dt
= Ci[{nj}] , (2.47)

where the right-hand side represents the collision term which depends on the specific
interactions. The eq. (2.47) is called the Boltzmann equation.
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2.2. THERMAL HISTORY

Let’s consider as an example the following process

1 + 2 � 3 + 4 , (2.48)

i.e. 1 and 2 annihilating in 3 and 4 and vice versa. Pointing the attention on n1, the
rate of change in the abundance of species 1 is given by the competition of rates for
production and the one of annihilation. In other words, we have

1

a3
d(nia

3)

dt
= −〈σv〉

[
n1n1 −

(
n1n2

n3n4

)
eq
n3n4

]
. (2.49)

where 〈σv〉 is the thermally averaged cross. This expression has two contributions:
looking at the right hand side of the equation, the term with "+" sign represents the
production of particles, while the term with "-" sign denotes the annihilation process. In
terms of number of particles in a comoving volume, eq. (2.49) can be written as

d lnN1

d ln a
= −Γ1

H

[
1−

(
N1N2

N3N4

)
eq

N3N4

N1N2

]
, (2.50)

with Γ1 = n2〈σv〉. The right-hand side of eq. (2.50) contains two crucial factors: outside
the brackets we have the interaction efficiency while inside the brackets the deviation
from equilibrium.

If Γ1 � H the system is described by equilibrium. Indeed, if N1 � N eq
1 then the

right-hand side of the equation is negative and push the N1 to its equilibrium value. In
case of N1 � N eq

1 the right-hand side of eq. (2.50) is positive and the production of N1

is pushed up to its equilibrium value.
When Γ1 < H, the right-hand hand side is suppressed and the comoving density is a

constant. Both cases are represented in fig. 2.3.
A simple case is when n1 = n2 and n3 = n4, that can describe massive dark matter

freeze-out. We will largely study the dark matter properties in next chapters; for the
moment, it is enough to know that dark matter is constituted by massive non baryonic
matter.

In the early Universe, dark matter particles were in equilibrium with the thermal
bath, cosmic plasma at high temperatures but then experienced freeze-out at a critical
temperature Tf . Solving the Boltzmann equation eq. (2.50) it is possible to determine
the epoch of freeze-out and its relic density.

The assumption we need to do is that in the early Universe, heavy dark matter
particles χ and antiparticles χ can annihilate to produce two very light particles l and l
according to

χ+ χ� l + l . (2.51)
Moreover, we assume that the light particles are tightly coupled to the thermal bath
i.e. they maintain their equilibrium with thermal bath and their densities are nl = neq

l .
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2.2. THERMAL HISTORY

Figure 2.3: Schematic representation of particle freeze-out. When T � m the particles
are in equilibrium with the thermal bath. When the temperature decreases reaching
the condition T � m, the particles freeze out and give rise to a constant density (relic
density) that is larger than the equilibrium abundance suppressed by the Boltzmann
factor. Indeed, if a massive particle species remained in thermal equilibrium until the
present, its abundance would be absolutely negligible. The figure is taken from [16].

Finally, we assume that there is no initial asymmetry between dark matter particles and
antiparticles.

The Boltzmann eq. (2.49) then reduces to

dNχ

dt
= −s〈σv〉

[
N2
χ − (N eq

χ )2
]
, (2.52)

considering the evolution of the number of dark matter particles in a comoving volume
Nχ = nχ/s. We are interested to study the dynamics at T ' mχ; it is convenient to
define a new measure of time:

x =
mχ

T
. (2.53)

To write the Boltzmann equation in terms of x rather then t, notice that

dx

dt
=

d

dt

(mχ

T

)
= − 1

T

dT

dt
x ' Hx , (2.54)

considering that T ∝ a−1 for times relevant for freeze-out. Assuming that radiation
dominantes, so H = H(mχ)/x

2, one can define λ as

λ =
2π2

45
g?S

m3
χ〈σv〉

H(mχ)
; (2.55)
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2.2. THERMAL HISTORY

Figure 2.4: Numerical solutions for dark matter particles abundance as a function of x =
mχ/T . There are represented two different values of λ which represents the interaction
rate and determines the today dark matter particles abundance. Being proportional to
the inverse of λ, as interaction rate increases, N∞

χ decreases. The figure is taken from
[16].

With eq. (2.55), the eq. (2.52) becomes the so-called Riccati equation
dNχ

dx
= − λ

x2
[
N2
χ − (N eq

χ )2
]
. (2.56)

A good approximation is that λ in eq. (2.55) is a constant but the equation does not
have an analytic solution. In fig. 2.4 are shown the results of the numerical solutions
for eq. (2.56). For very high values of temperature, x < 1, one has Nχ = N eq

χ ' 1. At
low temperatures, x � 1 and the equilibrium becomes exponentially suppressed with
Nχ ' e−x. Numerically iit s found that the freeze-out happens at xf ' 10. At this point
the number of particles deviate from equilibrium. The final relic abundance, namely
N∞
χ , determines the freeze-out density of dark matter. Considering that at freeze-out

Nχ � N eq
χ , N eq

χ can be dropped in eq. (2.56)

dNχ

dx
' −

λN2
χ

x2
, (2.57)

where x > xf . Integrating from xf to x = ∞, one finds
1

N∞
χ

− 1

Nχ(xf )
=

λ

xf
. (2.58)

Usually, N∞
χ � Nχ(xf ) and a simple analytic approximated solution is

N∞
χ ' xf

λ
. (2.59)
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This means that the abundance of number of particles depends on unknown freeze-out
time xf , estimated xf ' 10 and decreases as the interaction rate λ increases. In other
words, larger interactions maintain equilibrium longer and vice-versa. For small values
of λ the abundance of particles is bigger than for high values of λ, as one verifies in
fig. 2.4.

2.3 Structure formation
Hitherto we have said that at large scales the Universe is homogeneous and isotropic
according to the cosmological principle and this statement is confirmed by measurement
of the CMB radiation and by redshit surveys.

However, on small scales the Universe appears lumpy: the density of galaxies is about
105 times the average density of the Universe and the one of cluster of galaxies is near
102− 103 the average density of the Universe. These structures can be explained consid-
ering small primordial inhomogeneities of density. In other words the homogeneous and
isotropic Universe was disturbed by tiny gravitational wells. These have been amplified
to produce the galaxies, galaxy groups and super-clusters we observe today.

The leading theory for the origin of these perturbation is based on quantum fluctua-
tions of the inflaton field, responsible for the exponential expansion of our Universe after
the Big Bang. As we will see, the evolution of the primordial over-densities during the
expansion of the Universe gives us information about the dark matter density and its
properties.

In general, a density perturbation is defined as

δ =
δρ

ρ
=
ρ− ρ

ρ
, (2.60)

where ρ is the average density. These perturbations are of the order δ ' 102 nowadays
and we need to explain how they evolved to reach such values from an almost smooth
condition in early Universe. The idea is to treat the problem from a Newtonian point
of view, studying the evolution of the matter density in the presence of a gravitational
field.

The matter density ρ with velocity u and its gravitational potential φ satisfy the
following equations

∂ρ

∂t
+∇ · (ρu) = 0 continuity equation , (2.61)

(
∂

∂t
+ u ·∇

)
u = −1

ρ
∇P −∇φ Euler equation , (2.62)

∇2φ = 4πGNρ Poisson equation , (2.63)
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The set of eqs. (2.61) to (2.63) can be solved considering a homogeneously expand-
ing fluid; here we denote with subscript "0" quantities without perturbations for later
convenience

ρ0 = ρ0(t0)
(a0
a

)2
, u0 =

ȧ

a
r = Hr , φ =

4πGNρ0
3

r2 , ∇P0 = 0 . (2.64)

Now the idea is to add small perturbations to the quantities defined above

ρ = ρ0 + δρ , u = u0 + δu , φ = φ+ δφ , P = P0 + δP . (2.65)

Substituting in eqs. (2.61) to (2.63) the assumptions in eq. (2.65), keeping only the
first orders and defining co-moving coordinates, one obtains a second order differential
equation for the density fluctuations δ. By taking the Fourier transform of δ(t,x) to
δ(t,k) = δ, one obtains

δ̈ + 2Hδ̇ −
(
c2sk

2

a2
− 4πGNρ0

)
δ = 0 , (2.66)

where cs is the speed of sound. Basically one can interpret the term in brackets as the
competition of two processes: gravitational compression and a pressure resisting this
compression.

Equation (2.66) is called the Jeans equation. It is then possible to define the constant
Jeans wave number

kJ =
4πGNρ0a

2

c2s
, (2.67)

the corresponding Jeans length (2.67)

λJ =
2π

kJ
, (2.68)

and the Jeans mass
MJ = ρλ3J . (2.69)

The Jeans mass is the mass contained on a sphere of radius equal to the Jeans length.
Equation (2.66) with eq. (2.67) becomes

δ̈ + 2Hδ̇ + 4πGNρ0

(
k2

k2J
− 1

)
δ = 0 . (2.70)

Equation (2.70) can be solved in three special regimes:

• when k � kJ , eq. (2.70) becomes

δ̈ + 2Hδ̇ +
csk

2

a2
δ = 0 , (2.71)
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corresponding to the equation of a damped harmonic oscillator with solution δ ∝
e±iωt with ω = csk/a. This means that the solutions are oscillating with decreasing
amplitude due to the Hubble friction term 2Hδ̇. One concludes that structures with
k � kJ do not grow and can not explain large structures we observe today.

• For k � kJ , eq. (2.70), eq. (2.70) becomes

δ̈ + 2Hδ̇ − 4πGNρ0δ = 0 . (2.72)

Recalling that a ∝ t2/3 for non relativistic matter according to eq. (2.1), one obtains

δ̈ +
4

3t
δ̇ − 2

3t2
δ̇ = 0 , (2.73)

which solution is δ ∝ t2/3. Notice that in this case, in a matter dominated epoch,
the perturbations can grow, differently from the first case. However, using the
outcome of numerical simulations one finds that the cosmic structure observed
today can not be explained by the photon-baryon fluid alone.
If one considers the radiation epoch, eq. (2.72) reduces to

δ̈ +
1

t
δ̇ = 0 , (2.74)

because the evolution is a ∝ t1/2, as shown in eq. (2.1). The solution of the above
equation is

δ ∝ A+B log(t) (2.75)
In this case the the growth of density perturbations is much weaker than for non-
relativistic matter due to the presence of log(t).

• when k � a/a0H corresponding to perturbations larger than Hubble scale; the
Newtonian treatment is not longer possible and from General Relativity one finds
the following scaling

δ =

(
a

a0

)2

δ0 . (2.76)

The growth is a function of the scale parameter for non-relativistic and relativistic
matter. This equation predicts the formation of large structures starting with
relativistic matter. On the other hands, radiation pressure in the photon-baryon
fluid prevents the growth of small baryonic structures but small baryon-acoustic
oscillations, as those predicted by k � kJ case, can be observed. Large structures
in the radiation dominated epoch expand rapidly and non relativistic structures can
explain the matter density measured at the CMB epoch with numerical simulations.
However, it is necessary to consider an additional component for the matter.
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2.4. DARK MATTER EVIDENCES

This additional component is usually called dark matter. Its only properties that we can
derive from this discussion is that it should contribute to the gravitational potential so
it has to be massive, it has to be non relativistic and its pressure should be zero. The
necessity for dark matter comes not only as an explanation of structure formation: in
the next section we will illustrate other observable evidences.

2.4 Dark matter evidences
There are many astrophysical evidences for the dark matter existence. As we have seen
in previous section, it is required for the correct reproduction of structure formations.
In this section we will present other interesting motivation for dark matter.

2.4.1 Rotation curves of galaxies
The study of rotation curves has played a very important role in the evidence for dark
matter. The rotation curve of a galaxy represents the evolution of the radial velocity
v(r) of stars with respect to their distance from the galactic centre. The gravitational
potential φ(r) can be related to the matter density ρ(r) through the Poisson equation,
assuming a spherical mass distribution inside the galaxy:

∇2φ = 4πGNρ . (2.77)
One can therefore deduce the expression of the radial velocity at a distance r from the
centre

v(r) =

√
GNM(r)

r
, (2.78)

where M(r) is the mass contained inside a sphere of radius r with density ρ

M(r) =

∫ r

0

ρ(r′)d3r′ . (2.79)

Assuming that almost all the mass of a galaxy is concentrated in a sphere of radius R
defining its central core, one can write that M(r � R) 'M(r) and therefore one should
expect a velocity decreasing with r according to

v(r � R) =

√
GNM(R)

r
∝ 1√

r
. (2.80)

One of the first physicists to investigate rotation curves of galaxies was Horace Babcock.
In 1939 he presented the measurement of the rotation curve of the M31 galaxy (i.e. the
Andromeda galaxy) realising that radial velocities were not decreasing on large radii as
expected. Moreover, he raised the problem that rotation curves tend to flatten on large
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Figure 2.5: Hydrogen surface density profile (left) and the rotation curves (right) of five
galaxies as obtained by Rogstad and Shostak in 1972. The bars under the galaxy names
indicate the average radial beam diameter, i.e. the effective spatial resolution. R80 is
the radius containing 80% of the observed HI. The figure is taken from [19].

radii, whose explanation can be attributed to the existence of a dark matter halo. To
explain the flat behaviour of the velocity at large distances, the shape of the dark matter
density profile should satisfies M(r) ∝ r and moreover, because of eq. (2.79), ρ ∝ r−2 at
large r.

To measure the velocity distribution v(r) different techniques can be used. One of this
method is the measurement of the 21 cm line of neutral hydrogen. It was discovered in
1951 by H. Ewen and E. Purcell and was suggested as a new way of observing the Universe
and in particular, to measure rotation curves because of its low level of absorption in the
interstellar medium. Figure 2.5 illustrates the results obtained from the analysis done
by D. Rogstad and G. Shostak [18], more specifically the rotation curves of 5 different
galaxies - M33, NGC 2403, IC 342, M101, NGC 6949 - obtained using the radio telescope
at the Owens Valley Radio Observatory. They found that these rotation curves remain
flat out to the largest radii observed, in contrast with eq. (4.16).
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Figure 2.6: CMB temperature anisotropy map as measured by the Plank collaborations.
The figure is taken from [21].

2.4.2 The Cosmic Microwave Background
The observation of the CMB is undoubtedly one of the strongest evidence of the presence
of dark matter in our Universe. At the temperature around 1 eV the thermal photons
have decoupled from the matter and, since then, they have been streaming freely in
every direction in the Universe. These CMB photons are coming from the sphere’s
surface of last scattering, which has the observer in the centre. The temperature of the
CMB photons has dropped with the expansion and the cooling of the Universe to the
current measured value of TCMB = 2.72548 ± 0.00057K [20]. The CMB was detected
accidentally on Earth for the first time by Pensias ans Wilson in 1964, for which they
got the Nobel prize. The CMB can be accurately described today by a black body
spectrum and can be considered almost isotropic, when one subtracts the dipole effect
responsible for anisotropies. Dipole effect indeed arises once one takes in account that
the Solar system moves within our galaxy and the photons arriving on the Earth are
then redshifted and blueshifted due to Doppler effect. After removing the dipole effect
and some other astrophysical contributions, the CMB anisotropies on the surface of last
scattering are of order δT/T ' 10−5. Figure 2.6 shows the map of anisotropies measured
by the Planck satellite [21]. Anisotropies can be explained by considering a non uniform
matter distribution at the time of recombination i.e. formation of first atoms happened
around T = 1 eV.

The best way of analysing temperature anisotropies is to decompose the fluctuations
into spherical harmonics considering angles θ and φ on the sphere of last scattering

δT (θ, φ)

T0
=
T (θ, φ)− T0

T0
=

∞∑
l=0

l∑
m=−l

almYlm(θ, φ) . (2.81)
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Assuming that the value of peak, T0, is known, we want to find the width of peak. This
can be done computing

1

4π

∫
dΩ

(
δT (φ, θ)

T

)2

=
1

4

∑
lm

|alm|2 (2.82)

where we have used the orthonormality of the spherical harmonics. Equation (2.82) can
be simplified considering that the surface of last scattering does not have any privileged
direction and then is m-independent. It is common to define the power spectrum Cl as
the average of |alm|2 over m.

Cl =
1

2l + 1

l∑
m=−l

|alm|2 . (2.83)

By substituting the expression of the power spectrum of eq. 2.83 in eq. (2.82) we obtain

1

4π

∫
dΩ

(
δT

T

)2

=
∞∑
l=0

2l + 1

4π
Cl . (2.84)

Moreover, it can be shown that the Cl give information about angular distances
which contribute to the temperature fluctuations. Figure 2.7 shows the measurement
of the power spectrum using experimental data collected by the Plank satellite. The
spectrum basically consists in a set of peaks, which represent a set of angular scales at
which a strong correlation in temperature is present. These peaks are results of acoustic
oscillations and of the Sachs-Wolfe effect. Acoustic oscillations are due to the competition
between two processes in the early tightly coupled baryon-photon plasma: the pressure
of the photons tends to erase anisotropies, whereas the gravitational attraction of the
baryons, moving at speeds much slower than light, makes them tend to collapse to form
overdensities. These two effects compete to create acoustic oscillations, which give to the
CMB its characteristic peak structure. The Sachs-Wolfe describes the impact of gravity
on CMB photons.

The peak positions provide important information: the position of the first peak
confirms the Universe flatness, the even-numbered peaks are associated with how far
the baryon-photon fluid compresses due to gravitational potential while odd-numbered
peaks indicate the rarefaction effect of radiative pressure.

The dark matter does not cause radiative pressure but contributes to the gravitational
wells enhancing the compression peaks (even-numbered) with respect to the rarefaction
peaks (odd-numbered). Therefore, the presence of dark matter can justify the described
structure needed to match the observations.
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Figure 2.7: Power spectrum of the CMB temperature anisotropies. Experimental data
from the Plank satellite are compared with the solid line, which is the best fit. The figure
taken from [1]

2.4.3 Gravitational lensing
According to General Relativity, in presence of a gravitational potential the light can be
deflected by it and as a consequence not propagate in a straight line. In other words
the matter has the power to curve space-time and therefore light propagates along the
geodesics of the space-time manifold. This deflection is proportional to the mass M of
the object generating the gravitational potential

δφ ' 4GNM

b
, (2.85)

where b is the impact parameter of the propagating photon. With the measurement of
the deflection angle of the incoming photons it is possible to deduce the mass parameter.

One can distinguish between strong lensing and weak lensing. The first one happens
when a very dense region is present between the source and the observer. The light
emitted from the source can follow different geodesics while it propagates to the observer
and results in multiple images of the same source in the field of view. Weak lensing
corresponds to distortions of the apparent shape of luminous objects by the gravitational
potential of a massive source located near the line of sight, between the observer and
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luminous source. The result is a magnification (convergence) or a shear of the source
image.

One of evidences for dark matter is derived from the weak lensing mass contour of
the Bullet cluster. The Bullet cluster is a system of two colliding clusters. The major
components of the cluster pair are stars, gas and dark matter.

The dark matter was indirectly detected using gravitational lensing. The total cluster
mass distribution coincide with the location of the galaxies, displaying spherical shapes
indicating that most of the mass contribution did not interact during the collision of the
clusters showing that the dark matter is collisionless.

Being the presence of dark matter well motivated, the next step is the illustration of
dark matter candidates and detection methods for its studies.
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Chapter 3

Dark matter

In previous chapter we have introduced the concept of dark matter, as an additional
source of collisionless and gravitationally interacting matter which can explain plethora
of astrophysical and cosmological observations.

However, understanding the nature of dark matter is one of the most challenging
problems in physics. Despite decades of searching, the origin and the nature of dark
matter still remains unknown. For over 80 years, astrophysical and cosmological obser-
vations have indirectly indicated its existence.

If the dark matter is assumed to be a particle species, several Beyond the Standard
Model (BSM) models predict valid candidates with very different characteristics: the
range of dark matter mass can go from 10−15 GeV to 1015 GeV producing scattering
cross section from around 10−35 pb to 1 pb. All these candidates share some common
properties: dark matter particles are expected to be stable or with a life-time at least
of the order of the age of the Universe, neutral under electric charge and color charge
and be consistent with a broad range of observations on astrophysical and cosmological
scales.

The aim of this chapter is to approach the dark matter problem from a particle physics
point of view and review the most known particle dark matter models. In sec. 3.1 we
will do a first classification of dark matter as cold, warm and hot seeing the consequence
on structure formation. In sec. 3.2 we will describe different candidates, concentrating
mostly on Weakly Interacting Massive Particles. In sec. 3.3 we will describe different
detection methods for dark matter searches and finally in sec. 3.4 we will provide an
overview of the different experiments.

3.1 A first classification
In early Universe, as we have seen in sec. 2.2.1, particles were in thermal equilibrium
thanks to mechanisms like pair production or collisions/interactions with other particles.
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In other words, heavy particles were converted in light one and vice versa and both
processes had the same rate. As the Universe expanded and cooled two phenomena
occurred:

• lightest particles did not have enough kinetic energy to produce heavier particles
through interactions;

• the Universe’s expansion diluted the number of particles such that interactions did
not occurred as frequently as before.

At a certain point, the density of heavier particles became too low to support the thermal
equilibrium and that species decoupled; particles were said to "freeze-out" and their
comoving number density remained constant [22].

A simple first classification of dark matter particles can be done considering the
velocity they had at freeze-out:

• Cold dark matter (CDM): decoupled from radiation after becoming non relativistic;

• Hot dark matter (HDM): decoupled from radiation while they were still relativistic;

• Warm dark matter (WDM): an intermediate case between CDM and HDM.

The previous classification has an important impact on structure formation described in
sec. 2.3. In fact, even if the pressure of dark matter is negligible, its perturbation can
not collapse towards arbitrary small scales because of the non-zero velocity dispersion.
Indeed, being dark matter collisionless, its speed can not be defined as the sound speed
i.e. cs =

√
∂P/∂ρ, but rather in terms of its thermal velocity, i.e. the thermal motion

of particles that make up the matter. The thermal velocity has fundamental implication
on structure formation because they can delete perturbations below a certain scale [23].
This scale depends on the mass of the dark matter particles. As soon as the velocity of
dark matter particles exceeds the escape velocity of a density perturbation, they stream
away before getting gravitationally bound. This phenomenon is called free streaming.

Let’s consider again eq. (2.70)

δ̈ + 2Hδ̇ = δ

[
4πGρ0 −

(
ceff
s

k

a

)2
]
, (3.1)

which has been rewritten by defining an effective speed, which exact expression depends
on the considered dark matter candidate. The ansatz for ceff

s can be done for the 3 kinds
of dark matter we introduced above:

• CDM is non-relativistic, therefore ceff
s � cs; in this case one has the formation of

halo structures. In this case one has a "bottom up" scenario for structure formation:
galaxies form first and merge into clusters after.
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• HDM is relativistic and can escape from small density fluctuations being ceff
s � cs.

Then, the mass is removed from the fluctuations and essentially smooths out any
fluctuation. HDM predicts the "top-down" approach: firstly large structure are
created and after they undergo a fragmentation.

• WDM has an effective speed of sound which is a function of the temperature
and mass according to ceff

s = T/m. This type of candidate predicts both previous
scenarios: "top-down" is obtained for smaller structures while "bottom-up" appears
to be common for larger ones.

From N-body cosmological numerical simulations of these scenarios for large scale
structure formation in our Universe and their comparison with experimental observa-
tions, "bottom-up" scenario is favoured. This underlines why we believe it is more plau-
sible that the Universe is dominated gravitationally by cold dark matter [24].

3.1.1 The standard ΛCDM model
The ΛCDM model represents the cosmological model used nowadays to describe our
Universe from the Big Bang to our days, and which is consistent with all observations. It
assumes that the Universe contains three major components: (i) a cosmological constant,
denoted by Λ associated with the Dark Energy; (ii) cold dark matter, motivated in the
previous section and (iii) the ordinary baryonic matter. Radiation contribution to the
total amount is very small, as compared to the other components. The free parameters
of the ΛCDM model, which are for instance the densities of different components, can
be fixed with the data collected by observations of the CMB spectrum.

The three major components nowadays have the following values:

• Dark Energy: ΩΛ = 0.6889± 0.0056;

• Matter: Ωm = 0.3111± 0.0056;

• Hubble constant: 67.66± 0.42;

• Radiation: Ωr = 5 · 10−5.

These measurements point out that the dark matter component in the matter energy
budget of the Universe is near 85% and around 25% of the total energy density.

3.2 Overview of dark matter candidates
The identification of dark matter is a question of central importance in both astrophysics
and particle physics.
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In astrophysics the properties of dark matter show how structures form and impact
the past and the future evolution of the Universe. Moreover it also gives relevant hints on
how galaxies and galaxy clusters are gravitationally bounds, being present dark matter
halos.

In particle physics dark matter can be the empirical evidence for new particles, solving
different puzzles in quantum field theory [25]. An example can be hierarchy problem that
can be solved considering supersymmetry (SUSY) [3]; moreover SUSY offers dark matter
candidates as we will see in sec. 3.2.2.

Figure 3.1 shows some of the most popular dark matter candidates, which are denoted
by different masses. However they share some common properties as neutrality and
stability on cosmological timescales.

Notice that the dark matter mass is not completely unbounded: the lower limit is
10−22 eV. It comes from small structure observation of the Universe: if dark matter was
lighter than this limiting value, then its de Broglie wavelenght would be large enough to
suppress them.

Figure 3.1: Schematic representation of the mass range of allowed dark matter candidates
with both particle candidates and primordial black holes. Mass ranges are approximate
and are indicated simply to compare the order of magnitude. The illustration is taken
from [26].

We begin with the review of more historical dark matter candidates: relic neutrinos
and axions, showing that neither of them can satisfy the astrophysical requirements for
dark matter candidates. After we will consider sterile neutrinos and composite dark
matter candidates such as quark nuggets and macros. We will then introduce few con-
cepts of SUSY and Weakly Interacting Massive Particles (WIMPs), which will be the
archetype of dark matter candidates considered further in this thesis.
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3.2.1 Non-WIMP candidates
Relic neutrinos

Among the particle species contained within the Standard Model, neutrinos are the only
example of stable, electrically neutral and not strongly interacting particles. Therefore
they are the only known particles that can be viewed as potentially viable candidates
for dark matter. Actually one considers relic neutrinos: they are called "relic" because
they decoupled from radiation and formed what nowadays is called cosmic neutrino
background [27].

First of all, one needs to verify if neutrinos can reproduce the correct relic density ex-
pected for dark matter. Neutrinos were coupled to the thermal bath via weak interaction
processes like

νe + νe ↔ e+ + e− ,

e− + νe ↔ e− + νe .
(3.2)

The cross section for these interactions was proportional to σ ∝ G2
FT

2 where GF is Fermi
constant. As the temperature decreases, the interaction rate drops, leading to neutrino
decoupling. Indeed, at the time of decoupling, neutrinos decoupled from electrons and
photons loosing as well the ability of annihilation among themselves. To compute the
decoupling temperature one needs to take into account all relevant degrees of freedom
of the thermal bath: electrons, photons and neutrinos. Solving the Boltzmann equation
shown in sec. 2.2.3, one finds that the decoupling temperature of neutrinos is Tdec =
1MeV, below the electron mass. Notice that neutrinos decoupled being relativistic; now
they are non relativistic because of their non zero mass.

Despite this decoupling, neutrinos and photons remained at the same temperature
as the Universe expanded. Photon temperature changed when electrons became non
relativistic causing an enhancement of the temperature:

Tν = Tγ → Tγ =

(
11

4

)1/3

Tν , (3.3)

proportional to relevant degrees of freedom. Knowing the T0,γ which is the radiation tem-
perature measured today, one can compute T0,ν as well as number density. Computing
the neutrino density, one can estimate

Ωh2 =

∑
im

2
i

94 eV . (3.4)

The sum of neutrino masses has cosmological bound of around 0.6 eV and then the relic
density of neutrinos is

Ωh2 < 0.006 , (3.5)
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that is too low to account for dark matter relic density. This means that Standard
Model neutrinos can not be a good dark matter candidate. Another problem is that,
being neutrinos almost massless, they are HDM and as described in sec. 3.1 leading to
problems with structure formation.

Axions

Axions are one of the earliest suggestions of viable dark matter. They were introduced in
the Quantum Chromo Dynamics (QCD) to solve the strong charge-parity (CP) problem.
Indeed, the following term can be embedded into the QCD Lagrangian

LQCD = θ
g2s

21π2
Ga
µνG̃

µν
a , (3.6)

where gs is the strong interaction coupling, Ga
µν is the gluon field strength and G̃a

µν is its
dual tensor. Equation (3.6) introduces CP violation and this creates tension with the
experimental results for instance of the electric dipole moment of neutron. To keep the
contribution of eq. (3.6) small, θ should be close to zero. The solution to this problem was
proposed by Roberto Peccei and Helen Quinn in 1977 [28]. They introduced a new U(1)
global symmetry, which is broken by the spontaneous symmetry breaking mechanism.
According to the Goldstone theorem, there should be a massless Goldstone boson. This
boson was identified with the pseudoscalar axion. The axion interaction term can then
be written as

La = − g2s
32π2

a

fa
εµνρσG̃a

µνG
a
ρσ , (3.7)

where fa is the scale at which the symmetry is broken and contributes to the axion mass.
At cosmological level, the axion mass needed to solve the CP problem can not properly
solves the dark matter problem for a small range of masses. In particular, the axion
mass can be expressed as

ma = 0.62 eV
(
107 GeV
fa

)
. (3.8)

A naive expectation from Grand Unified Theories (GUT) is that fa is related to the
unification scale ∼ 1016 GeV; this drives the axion mass in the range of ma ∼ µeV.
However such a light axion produces an overclose Universe [2]. A more massive axion
can be obtained considering the Spontaneous Breaking of PQ symmetry happened before
inflation; as the consequence the axion mass is in range ma ∼ meV.

On the other hand, being cold dark matter, axion-like particles can reproduce the
correct structure formation.
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Sterile neutrinos

Another candidate for dark matter is the sterile neutrino. Sterile neutrinos are hypothet-
ical particles which are connected and can mix with the known active neutrinos. From
the Standard Model point of view, sterile neutrinos are right-handed fermions with zero
hypercharge and no color: in other words, they are singlets under the Standard Model
gauge group and thus perfectly neutral. The only two ways in which they can interact
are gravitationally and mixing with Standard Model particles. Due to the lack of electric
charge, hypercharge and color charge, sterile neutrinos would not interact electromag-
netically, weakly, or strongly, making them extremely difficult to detect. However, these
properties allow sterile neutrinos to have a mass that does not depend on the Higgs
mechanism. This so-called Majorana mass can exist independently of electroweak sym-
metry breaking. Usually one considers the mass of sterile neutrino in the range of keV
for 2 reasons both arising from astrophysical and cosmological considerations. Strong as-
trophysical bound comes from the non-observation of the monoenergetic X-rays induced
by the decay of sterile neutrinos; the second motivation is the entanglement between
the type of dark matter (particularly its velocity) and the formation of structures in the
Universe [4]. Another problem is linked to the freeze-out of sterile neutrinos which can
happen leading to the possibility of cold, warm and even hot scenarios, depending on
the velocity and mass of axions, which are still debated.

Macro dark matter

Macros represent a general class of composite dark matter candidates with masses and
interaction cross sections characterized in units of grams and cm2. The idea behind
Macros is that they can be effectively or better naturally weakly interacting because of
their huge mass. The interaction rate is proportional to the density and velocity of par-
ticles i.e. Γ ∝ nXσXv, with nX and σX being their density and interaction cross section
respectively. In other words, one can consider that nX ∝ ρXM

−1
X and being ρX fixed

for any dark matter scenario, the event rate is proportional to σXM−1
X . Conventionally

dark matter is weakly interacting because σX is small; however, one can have the other
case in which MX is huge; this is the reason why Macros are considered [29]. Another
advantage is that these objects can be assembled out of Standard Model particles and
no BSM physics is potentially required.

Earth-based experiments, cosmological and astrophysical observations constrain the
Macro parameter space, leaving as allowed region the mass range in between 55 − 1017

g and 2 · 1020 − 4 · 1024 g [29].

Quark nuggets

Quark nuggets are examples of macroscopic dark matter candidates and were proposed
originally by Witten [30]. These particles can be produced in the early Universe at the
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epoch of quark confinement for a wide range of confining theories as QCD-like gauge
theories.

There are two necessary conditions for quark nuggets: a non zero baryon number
asymmetry i.e. a cosmological excess of matter over antimatter and a first order phase
transition i.e. a transition with at least two phases with different energies.

The original Witten’s proposal was the formation of quark nuggets with the first
order QCD phase transition, which guarantees an interface between two region of the
Universe in different phases. In the region with high temperatures phase baryons were
trapped forming stable nuggets. However, lattice QCD calculations have shown that this
mechanism is inapplicable within the well known QCD [31].

Alternative mechanisms can be considered following the same idea. For example the
spontaneous symmetry breaking of a Z(3) symmetry in high temperature phase space,
i.e. the quark-gluon phase and vacuum expectation value act as order parameters for a
first order phase transition.

Quark nuggets can be imagined as macroscopic nucleons with a very large baryon
number, NB > 1030. Their properties depend on the confining scale. For confinement
scales from 10 keV to 100 TeV, quark nuggets have a mass in the range 1023 g - 10−7 g,
with a radius in the range 108 cm - 10−15 cm [32].

3.2.2 WIMP candidates
WIMPs are very common dark matter candidates. These particles, if they exist, have
been created thermally in the early Universe, with a weak interaction cross section and
a mass in the range 1GeV − 100TeV. The main motivation for WIMPs, beside their
natural way of being weakly interacting, is that they can guarantee correct relic density,
in agreement with data. This prediction is known as the "WIMP miracle" [15].

The main WIMP candidates arise once one considers BSM extensions. Among the
most studied BMS models there are SUSY, Extra Dimensions [33] and Little Higgs
theories [34]. In each of these extensions, the WIMP candidates are stable because
they are protected by a conserved quantum number: R-parity, K-parity and T -parity
respectively. Here we briefly discuss the supersymmetric case of WIMP, the neutralino.
In this thesis we will consider dark matter candidate within the WIMP paradigm.

Supersymmetric particles

SUSY is a type of space time symmetry which introduces a superpartner for all the
Standard Model particles, associating to each fermion a boson and vice versa.

SUSY can be considered an elegant solution to many current problems in particle
physics such as hierarchy problem and the gauge coupling unification, being as well a
necessary condition for string theory [3, 35].
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Figure 3.2: Superpartners (usually indicated with a tilde) content of the Minimal Super-
symmetric Standard Model: both the interaction and mass eigenstates are presented.

The Minimal Supersymmetric Standard Model (MSSM) is the minimal extension of
the Standard Model including SUSY. The particle content of Standard Model is doubled
introducing a spin-0 particle for each fermion and a spin-1/2 partner for each gauge
boson. For this Higgs boson another doublet is introduced to avoid gauge anomalies. All
the new SUSY particles are listed in fig. (3.2).

According to SUSY, the particles and their superpartners must have the same mass.
However, no experimental observations have been found for their existence. If they
exist, superpartners are forced to be heavier and for this reason SUSY is expected to be
a broken symmetry. More details can be found in [3].

Considering the superpotential WMSSM , which is a holomorphic function constructed
with all gauge invariant and renormalizable terms, one obtains a theory that violates both
baryon number B and lepton number L. This would predict the proton decay, in contrast
with the experimental data. This problem can be avoided by requiring a new discrete
symmetry called "R-parity"

PR = (−1)3(B−L)+2s , (3.9)
where s is the spin of the particle. For all the Standard Model particles R = 1 while
for superpartners R = −1. With R parity, the decay of proton is forbidden. Moreover,
there is an extremely important phenomenological consequences of R-parity: the lightest
sparticle is called the lightest supersymmetric particle (LSP) and it must be absolutely
stable. If the LSP is electrically neutral, it interacts only weakly with ordinary matter,
and so can make an attractive candidate for the non-baryonic dark matter.

In most of the SUSY models, the LSP is the lightest neutralino, χ̃0
1. There are four

neutralinos, which are given by the linear combination of the bino B̃, supersymmetric
partner of the photon, the neutral wino W̃ 3, superpartner of W boson, and the two
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Higgsinos H̃0
d and H̃0

u, superpartners of the Higgs.

χ̃0
i = a

(i)
1 B̃ + a

(i)
2 W̃

3 + a
(i)
3 H̃

0
d + a

(i)
4 H̃

0
4 i = 1, . . . , 4 . (3.10)

Neutralinos are the mass eigenstates of the following mass matrix

Mχ̃0 =


M1 0 −mZcβsθW mZsβsθW
0 M2 mZcβcθW −mZsβcθW

−mZcβsθW mZcβcθW 0 −µ
mZsβsθW −mZsβcθW −µ 0

 , (3.11)

where for convenience we have set cφ = cos(φ) and sφ = sin(φ) with φ = β, θW . β is
defined as the ratio of two Higgs vacuum expectation values

tan β = 〈H0
u〉/〈H0

d〉 = vu/vd , (3.12)

and θW is the Weinberg angle. The µ parameter comes from the Higgs mixing mass term
in the superpotential

WMSSM ⊃ µ(Hu)α(Hd)βε
αβ = µ(H+

u H
−
d −H0

uH
0
d) . (3.13)

M1 and M2 are the bino B̃ and winos W̃ i mass terms present in the SUSY soft breaking
Lagrangian

Lsoft
MSSM ⊃ −1

2
(M1B̃B̃ +M2W̃

iW̃ i + . . . ) . (3.14)

If M1, M2 and µ term are greater than the EW scale, i.e. M1,M2, µ� mZ , the neutralino
eigenstates can be expressed as

χ̃0
i '

{
B̃, W̃ 3,

1√
2
(H̃0

d − H̃0
u),

1√
2
(H̃0

d + H̃0
u)

}
, (3.15)

with the mass values
mχ̃0 ' {M1,M2, |µ|, |µ|} . (3.16)

Approximately, for large values of M1 and M2, the LSP neutralino χ̃0 is "higgsino"-like
with the mass depending mainly on µ, roughly speaking mχ̃0 ' µ. For large value of µ,
the LSP neutralino is "bino-like" and mχ̃0 'M1.

3.3 Detection methods
There exist several ways of searching for dark matter with Earth-based experiments and
satellites. All the detection methods assume that the dark matter interacts with ordinary
matter not only gravitationally. Therefore searches for dark matter are done by looking
at its interactions with other particles.

There are 3 main dark matter detection methods:
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Figure 3.3: Schematic representation of the three main dark matter detection methods.
Indirect detection is obtained via the process χχ→ pp, direct detection is characterised
by the process pχ → pχ, and finally collider searches are interested in the process
pp→ χχ.

• Indirect detection: intends to detect the products of dark matter annihilation or
decay in galactic halos;

• Direct detection: intends to study the elastic scattering between dark matter and
Standard Model particles in underground detectors;

• Collider searches: intend to produce dark matter particles via the scattering of
Standard Model particles in a collider.

Figure 3.3 shows a schematic representation for the three different detection methods.
We focus mostly on indirect detection, as this method has been largely used in our
analysis. From now on we will use χ for dark matter particles and χ for dark matter
antiparticles. In this section we review the main peculiarities of these methods.

3.3.1 Indirect detection
Indirect detection focuses on searching for Standard Model particles produced by the
annihilation or decay of dark matter particles or their secondary effects.

Indirect detection faces challenges because dark matter is known to interact only
weakly with the Standard Model so the rate of produced particles is expected to be
small and many possible detection channels have large backgrounds from astrophysical
particle production.

Dark matter is concentrated in structures called halos, where its density is largely
enhanced, so that the annihilation processes can be significant and detectable signals
can be produced.

In halos, dark matter particles are considered nearly at rest being their kinetic energy
very small, because the typical velocities in galactic halos are of the order v ∼ 10−3c.
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The centre-of-mass energy of the dark matter annihilation is then s = 4m2
χ, where mχ

is the mass of the dark matter particle. The annihilation of dark matter particles can
produce a pair of all possible kinematically allowed particles. These final state particles
can be stable, as for example neutrinos, metastable and even BSM particles, subsequently
decaying into Standard Model particles. These products can undergo hadronisation and
decay unless or until stable products are realized. We can consider the following example
for a dark matter annihilation process

χχ→ qq → pp+X , (3.17)

where two dark matter particles annihilate into a pair of quarks. These quarks then
hadronize producing different unstable products, which subsequently decay in stable
particles which are in this example a proton and an antiproton. All the other products
are indicated with X.

More in general, one can consider χχ→ e+e−, µ+µ−, τ+τ−,νlνl, qq, cc, bb, tt, W+W−,
ZZ, gg, γγ, hh as annihilation products.

Almost all of the above annihilation products are unstable and suffer hadronization,
showering, Bremsstrahlung and decay into lighter stable particles. The final results gen-
erate what we identify with secondary channels. Stable particles, arising after different
physical processes listed above, are: positrons e+, antiprotons p, gamma rays γ, antideu-
terium d, electron neutrino νe, muon neutrino νµ and tau neutrino ντ . Notice that we
usually consider anti-matter (positrons, antiprotons, antideuterium) because it is easier
to detect with respect to matter (electrons, protons and deuterium), which are typically
produced in large number as consequence of different astrophysical events. Of particular
interest are photon and neutrino final states because these particles are not affected by
the electromagnetic fields of the galaxy and interstellar medium on their way of propa-
gation to reach the Earth, and travel unaffected in astrophysical environment. Therefore
they point directly back to the location they were produced, giving precious information
on dark matter sources. It is convenient to focus the search on regions of the Universe
where we suppose the dark matter concentration is larger, to maximize the expected flux
of particles.

The observable which is considered in indirect detection is the flux of particles, Φ.
Considering a generic dark matter candidate that annihilates into the SM species i with
branching ration Bi, the flux is given by

Φ(E,ψ) =
〈σv〉
2mχ

∑
i

dN

dE

1

4π

∫
ψ

dΩ

∆ψ

∫
l.o.s.

ρ2(ψ, l)dl , (3.18)

where we have considered dark matter annihilation from the direction ψ in the sky
averaged over an opening angle ∆ψ [7]. Here redshift or absorption effects are neglected.
The above expression encapsulates three important aspects for the dark matter
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• 〈σv〉 represents the velocity averaged annihilation cross section of the dark matter;
in case of decaying dark matter this quantity is replaced with the decay width
Γ = 1/τ , where τ is the dark matter lifetime.

• dN/dE is the energy spectrum of the final state stable particles arising from the
annihilating or decaying dark matter particle. Depending on dark matter mass,
different amounts of energy can be imparted to the products. Depending on the
particle species, the energy spectrum can be very different.

• The last part of (3.18) arises from astrophysics and is related to the dark matter
density. Usually this is defined as J factor, which contains the information about
the chosen dark matter density profile in the system of interest. Notice that for
decay processes one should consider ρ instead of ρ2 in the integral. From now we
consider only annihilation processes for dark matter and do not discuss further the
case of decaying dark matter.

The distribution of dark matter is a key input for indirect detection. There exist
several standard density profiles. Here we list the most used ones, which for simplicity
consider ρ as a spherically-symmetric distribution depending only on the radial part i.e.
ρ(~r) = ρ(r)

• The Navarro-Frenk-White (NFW) profile is given by [36]

ρNFW = ρ0

(
r

rs

)−γ (
1 +

r

rs

)γ−3

, (3.19)

where rs is the scale radius and r is the distance from the galactic center. This is
an example of a cuspy profile.

• Einasto profile [37]

ρEin(r) = ρ0 exp

{
− 2

α

[(
r

rs

)α
− 1

]}
, (3.20)

where rs is the scale radius and α controls the parameter of the curvature of the
profile. It is an exponential profile.

• Burkert profile [38]

ρBur(r) = ρ0

(
1 +

r

rs

)−1(
1 +

r2

r2s

)−1

. (3.21)

This last density profile is characterised by a flatter density behaviour at small r,
because it has a constant density inside the radius R. It is an example of cored
profile.
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Figure 3.4: dark matter galactic density halo profile as a function of the distance from
the centre of the galaxy r, comparing Burkert, Einasto and NFW profiles. Data are
taken from [15]

.

These density profiles are illustrated in fig. 3.4: one can notice that while NFW and
Einasto profiles present a similar behaviour, Burkert profile presents different orders of
magnitude smaller density profile in the vicinity of the galactic centre. The J factor
plays an important role because the flux Φ is proportional to this astrophysical factor:
this means that a strong signal corresponds to a huge dark matter density. One of the
main target for dark matter searches is the Milky-Way galactic centre, which additionally
holds different large substructures. Other promising dark matter targets are the dense
satellites of the Milky Way called dwarf spheroidal galaxies. In our analysis we will
consider the indirect detection bounds coming from the latter targets.

A convincing explanation of dark matter detection based on measurement of Φ, which
is not clearly distinguishable from astrophysical background, appears particularly chal-
lenging [39]. For this reason, it is often much better to focus on the pronounced spectral
features that are expected in many dark matter models. In other words, dark matter
annihilations can lead to sharp spectral features which can be easily distinguished from
the background and can be considered as smoking gun signatures for discoveries. Such
spectral features can be classified into two categories: (i) monochromatic lines and (ii)
box-shaped spectra.

The first one arises in the annihilation directly into pairs of neutrinos or photons.
Box-sharped spectra appear when dark matter annihilates into BSM mediators, which
subsequently decay into neutrinos or photons. All these kinds of signatures are charac-
teristic with respect to featureless soft background [40]. Let’s describe the main features
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of these two kind of characteristic signatures.

Monochromatic lines

The direct annihilation of dark matter pairs into a pair of photons or neutrinos leads
to monochromatic signatures, which are extremely difficult to explain with astrophys-
ical contributions. However, these signatures are often loop-suppressed and can arise
only in specific models. Comparing γ and ν lines, the experimental sensitivities re-
ported for photons are orders of magnitude better than for neutrinos. For instance, for
mχ = 100GeV (10TeV) the upper bounds provided by IceCube, a neutrino telescope,
are 〈σv〉 ' 0.5 ·10−23 cm3/s (4 · 10−23 cm3/s) [41], orders of magnitude weaker than those
given for monochromatic photons, 〈σv〉γγ ' 2 · 10−28 cm3/s by the Fermi-LAT satel-
lite [42]. However, this should not discourage the search for neutrino-line signals: it
means that one must look into specific models where the production of monochromatic
photons is suppressed with respect to neutrinos. This kind of model is for example one
with suppressed quark production and with heavy dark matter candidates. For our work,
as we will see in the next chapter, we have considered a leptophilic model. In this case
direct annihilation into γγ is always at 1-loop level [5], while neutrino lines arise at tree
level. Additionally, notice that the next generation of neutrino telescopes are expected
to largely improve their sensitivity to the flux of monochromatic neutrinos produced by
dark matter in our galaxy.

Considering the mononchromatic neutrino line signal, in general the total cross sec-
tion is the sum over all the neutrino flavor final states

σv =
∑

α,β=e,µ,τ

σvνανβ . (3.22)

This definition is convenient because it is independent on how neutrinos oscillate.
Neutrino oscillations are described by the three flavour leptonic mixing matrix, UPMNS,
as in [43]. If one assume an equal production of νe, νµ and ντ , in the case of dark
matter annihilation in the galactic centre, the distance travelled by neutrinos to reach the
detector on Earth is very huge, hence the neutrino flavor final state can be approximated
with νe : νµ : µτ = 1 : 1 : 1 [7], no matter what is the initial state. Namely even if only
electron neutrino are produced at source, those oscillate and populate the other flavours
with equal probability.

For χχ → νν, which has a two-body final state with two monochromatic neutrinos,
we have

dN

dEν
= δ

(
Eν −

mχ

2

)
. (3.23)

The line picks at mχ. However, the delta function is smeared out by the velocity dis-
tribution and detector resolution. The line usually appears as a gaussian rather than a
line.
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The galactic center and the Sun are preferred targets of observation for neutrino
telescopes.

Box-shaped spectra

To discuss this kind of signature, let’s consider a simple example in which we have
the annihilation of dark matter pair into massive bosons χχ→ Z ′Z ′ which subsequently
decay into two neutrinos, namely Z ′ → νν. We want to investigate the resulting neutrino
spectrum, which is box-shaped and depends only on the polarization of the massive
boson. In our case we have considered an unpolarized boson. In the dark matter centre
of mass frame, the energy of the neutrino can be expressed as

Eν =
m2
Z′

2mχ

(
1− cos θ

√
1− m2

Z′

m2
χ

)−1

, (3.24)

where the cos θ is the angle between the outgoing neutrino and its parent boson. The
spectrum has sharp ends depending on mχ and mZ′ . Being the considered boson unpo-
larized, the emission of the neutrinos is isotropic. The box then is

dNν

dEν
=

4

∆E
Θ(E − E−)Θ (E+ − E) , (3.25)

where Θ is the Heaviside function, ∆E =
√
m2
χ −m2

Z′ is the box width and E± =

mχ/2
(
1±

√
1−m2

Z′/m2
χ

)
represents the box edges. Our results agree with [40, 44]. If

the masses of χ and Z ′ are comparable, the box is indistinguishable from a line while if
mχ � mZ′ , the box is very wide.

We can calculate the total neutrino flux from dark matter annihilation as

Φν =
〈σv〉
8πm2

χ

dNν

dEν

1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s

ds ρ2DM , (3.26)

where 〈σv〉 is the thermal annihilation cross section, ρDM is the dark matter density
and s is the distance along the line of sight.

If the boson Z ′ were polarized the box would be deformed into different shapes which
are determined by the initial polarization: for longitudinally polarized bosons, one would
have a concave shape around the center of the box while for transverse it would lead to
convex spectrum [40].

Electroweak corrections

When dark matter annihilates into a pair of highly energetic Standard Model particle-
antiparticle states, it is possible to radiate Electroweak boson, besides the usual photons
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Figure 3.5: Feynman diagram for hard positron and electron production in dark matter
annihilation. The resulting spectrum is altered by both virtual emissions as green photon
lines and real Z via their subsequent decays [45].

and gluons. All these radiated particles are usually unstable, therefore decay and modify
significantly the shape of the secondary energy spectra and can even modify its com-
position because of production of new final states. Taking for example a neutrino final
states, including Electroweak corrections, one has all spectra of stable particles, contrary
to the case when they are not considered.

For electroweak radiation, the fundamental requirement is that the dark matter mass
mχ should be larger than the electroweak scale. In fact, at such energies, soft electroweak
gauge bosons are copiously radiated from high energy products of annihilation [45].
What happens can be understood using standard collider physics argument. At energies
much larger than the electroweak scale, soft electroweak gauge bosons are copiously
radiated from hard final states becauseW± and Z are basically massless at those energies,
similarly to the QED and QCD radiation. This is illustrated in fig. 3.5, where the e+e−
final state is considered as example. The hard positron spectrum is slightly altered by the
emission of real and virtual bosons (γ and Z) and new hadronic channels are opened:
for instance, looking at the diagram, one immediately understands that antiprotons
are produced, while those would not be present without those radiative corrections.
Moreover, a large number of pions are produced, subsequently decaying into photons
and low energy positrons according to e.g. π0 → γγ, and π+ → µ+ + X → e+ + X
respectively.

The exchange of real and virtual bosons lead to the appearance in the final spectrum
of all the stable particles and not only the ones initially emitted by the dark matter
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annihilation when one considers e−, ν and µ.

3.3.2 Direct detection
The direct detection strategy is based on measuring the recoil of a nucleus, after this
one has scattered with a dark matter particle. Dark matter particles scatter off the
atom nucleus and the transferred momentum gives rise to a nuclear recoil which might
be detectable. The direct detection detectors are usually set up underground in order to
isolate them from the most important backgrounds as natural radioactivity and cosmic
radiation.

Additional to the measurement of the nuclear recoil, directional information is impor-
tant because it could lead to more precise measurements of intrinsic particle properties
of dark matter as well as astrophysical information (for example dark matter velocity
distribution and irreducible neutrino background), but we will not consider this case
further.

The expected event rate of dark matter scattering off a target nucleus of mass mN is
given by

dR

dEnr
=

ρ�M

mNmχ

∫ vesc

vmin

vf(v)
dσ

dEnr
dv , (3.27)

where ρ� is the dark matter density, Enr is the nuclear recoil energy, mχ is the dark
matter mass, M is the target mass of the detector, σ is the scattering cross section, f(v)
is the normalized dark matter velocity distribution and ρ0 is the local dark matter density
[46]. The velocity vesc ' 544 km · s−1 [47] represents the escape velocity of dark matter
particles from the galactic halo at the Sun position. The minimal velocity required for a
dark matter particle to induce a nuclear recoil of energy Enr is

vmin =

√
EnrmN

2µ2
N

, (3.28)

where µN is the reduced nucleon-dark matter mass

µN =
mχmN

mχ +mN

. (3.29)

Because of its large de Broglie wavelength, being the dark matter non relativistic,
the dark matter particles interact with the nucleons in the target. The eq. (3.27) is both
velocity and recoil-energy dependent and is given by [46]

dσ

dEnr
=

mN

2v2µ2
N

(
σ0
SIF

2
SI(Enr) + σ0

SDF
2
SD(Enr)

)
, (3.30)

or in other word it can be written as a sum of spin independent (SI) and spin dependent
(SD) contribution, each of which is weighted by its form factor F . Since the interaction
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of dark matter with the baryonic matter is a priory unknown, different Lagrangians
can produce the same effective interaction. For instance with a scalar LS ∼ χχNN
or a vector LV ∼ χγµχNγµN , give rise to the same spin independent cross section.
On the other hand, the axial vector L = χγµγ5χNγµγ5N produces the spin dependent
interaction.

In the spin independent case, the cross section is expressed as

σ0
SI =

µ2

µ2
N

(fpZ + fn(A− Z))2

f 2
n

, (3.31)

where µN is the dark matter-nucleus reduced mass, A is the mass number and Z is
the atomic number; fp and fn describe the effective dark matter coupling strength to
protons and neutrons respectively. The interaction is called spin independent because
the dark matter see the nucleus as a whole and it is proportional to A2, hence it is larger
for heavier nuclei. For spin dependent interactions, the dark matter particle with spin
different from zero interacts with the spin of the nucleus (namely given by the unpaired
nucleon). Adopting the result in [48], the cross section is

σSD0 =
32

π
µ2
AG

2
F [ap〈Sp〉+ an〈Sn〉]2

J + 1

J
(3.32)

where J is the total nuclear spin and ap,n are effective proton and neutron couplings.
〈Sp,n〉 are expectation value of the nuclear spin content due to the proton and neutron.

3.3.3 Collider searches
Collider searches for dark matter require basically two conditions: first, the dark matter
particles are coupled to the Standard Model, directly to colliding quarks and leptons or
indirectly through a mediator. Second, the existence of a detector able to detect missing
energy associated with weakly interacting particles, similarly to the neutrinos case.

Collider searches have several advantages. Most of the collider detectors are so-
called multi-purpose detectors able to measure a large number of observables: they
will be able to detect the kinematic configurations of dark matter production processes.
Moreover, the large number of collisions can give more events with missing energy, which
can be associate to new BSM physics. The main advantage is that all background
processes and all systematic uncertainties can be studied, understood and simulated
with great precision.These properties makes the collider searches very promising. The
are two different colliders: electron colliders and hadron colliders.

Electron collider

In an electron collider, e+ and e− are the colliding particles. Production of dark matter
particles can happen in several ways. In this collider we control the initial 4-momenta
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and the value of the centre-of-mass energy. A pair of dark matter particles of mass mχ

can be produced only if
√
s ≥ 2mχ: this signal however is difficult to detect because being

dark matter particles stable, they elude the detector. One then can consider the dark
matter production along with another particle as for example a photon, with sufficiently
large transverse momentum. This photon is assumed to be radiated by the initial state:
this is called initial state radiation. Experimentally this photon recoils against the two
dark matter candidates. The experimental signature of this process is often called γ plus
missing momentum.

The disadvantage of lepton colliders in the past years was the fact that they can not
reach high centre-of-mass energy. Considering the Large Electron Positron collider (LEP)
[49], its maximum centre-of-mass energy was near 200 GeV and consequently heavy dark
matter particles such as WIMPs could not be produced. Nevertheless, lepton colliders
contributed to constrain different regions of parameter space of dark matter particle
masses.

High energy lepton colliders with a centre-of-mass energy in the multi-TeV range
could be constructed in the future. An example of such a collider is the proposed muon
collider, which would feature a clean environment with respect to an hadron collider,
high luminosity in the range of L = 1035 cm−2·s−1 and up to several TeV centre-of-mass
energy [50]. A collider with the above characteristics would open prospects for precision
measurements for Standard Model and Standard Model Effective Field Theory (EFT)
frameworks as the Higgs’s self coupling and the top quark’s EW couplings, as well as for
new physics, such as the simplified extensions of the Standard Model.

Hadron colliders

Hadron colliders are characterized by high centre-of-mass energies but have a more com-
plicated experimental environment due to the QCD background. Moreover, when we
search for dark matter particles at hadron colliders, we do not have information on ini-
tial state kinematics. Hadron colliders as the Large Hadron Collider (LHC) [51] are
able to collide protons beams with the energy of 7GeV each. At these energies, we do
not consider protons but their internal constituents which are quarks and gluons. Their
energy distribution depends on the parton distribution functions (PDFs) [52] which can
be determined only through experiments.

Without the possibility of computing the 4 momenta of the created dark matter
particles, a useful variable for our purpose is the missing transverse momentum. The
transverse momentum of a particle is defined as

~pT,i = ~pi sin θ , (3.33)

where ~pi is the momentum of a particle i and sin θ is its outgoing angle. The missing

48



3.4. EXPERIMENTAL CONSTRAINS

Figure 3.6: Feynman diagrams representing examples of processes for dark matter par-
ticle production using a hadron collider. The left panel represents the pair production
starting with a BSM particle Z ′ and a weak gauge boson; the right panel represents the
production associated with the gluon, called mono-jet event.

transverse momentum is defined as

~pmiss
T = −

∑
i

~pT,i . (3.34)

A missing transverse momentum different from zero can be a signal of a new invisible
particle.

In this case, as in the lepton collider search, one looks for dark matter pair production
plus the initial state radiation composed by gluon, photon or weak gauge boson W± and
Z, as depicted in fig. 3.6. The monojet channel (right plot) is expected to give the
strongest contribution due to the gluon emission [53].

However, several experimental problems can occur to mask a potential dark mat-
ter signal: for example there will always be particles which are not observed in the
calorimeters, hadronic jets are not fully reconstructed leading to fake missing energy in
the direction of this jet, mis-measurements of the momenta or a systematic bias cause
non-functional parts of the detector.

3.4 Experimental constrains
The aim of this section is a brief review of the main experiments currently running, for
the dark matter searches presented in sec. 3.3, and the status of the current constraints
to the dark matter annihilation or scattering cross section.

3.4.1 Indirect detection experiments
The indirect detection as described in sec. 3.3.1 looks for photons, charged cosmic rays
and neutrinos, which offer a promising means for dark matter identification.

For the detection of γ rays, currently there are the data provided by the Fermi-LAT
and the HESS collaborations [42, 54], as well as HAWC [55], in the range of interests for
WIMPs.
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Figure 3.7: Summary plot for the comparison of upper limits on 〈σv〉 considering dark
matter in dSphs in bb final states, obtained from Cherenkov observatories and telescopes,
as labelled. The figure is taken from [56].

FERMI-LAT, acronym of Fermi Gamma-ray Large Area Space Telescope, is a space
observatory. It is able to detect photons with energy from about 20 MeV to more than
1 TeV, measuring their arrival times, energies and directions thank to the large area
telescope (LAT) which is its major component [8]. FERMI-LAT works similarly to high
energy physics colliders: gamma rays incident on the detector are converted in a pair of
e+e−.

HESS (High Energy Stereoscopic System) is an Earth based system of 5 telescopes
located in Namibia. It is able to investigate gamma rays in the photon energy range of
3 MeV to 100 TeV using the Cherenkov light. The latter is created by the high energy
γ-rays when they interact with the atmosphere producing an extensive electomagnetic
shower [57].

For the detection of gamma rays, also promising is the High Altitude Water Cherenkov
Observatory (HAWC). HAWC is a cosmic rays observatory located in Sierra Negra in
Mexico [55]. It has a one-year sensitivity of 5% − 10% of the flux of the Crab Nebula
and is designed to observe gamma rays and cosmic rays between 100 GeV and 100 TeV
using Cherenkov light. Model independent values for upper limits on 〈σv〉 with 95% CL
to the dark matter annihilation cross section can be found in [58].
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Figure 3.8: Summary of results on the velocity weighted dark matter annihilation cross
section from different experiments. Solid lines show limits, dashed lines sensitivities of
future facilities assuming five years data taking . The heart symbols represent analyses
performed by the authors of [60]. All upper limits are given at 90% CL (confidence level).
The figure is taken from [60]

Upper limits on dark matter velocity averaged annihilation cross section are shown in
fig. 3.7. In particular, there is considered annihilation of dark matter in dwarf spheroidal
galaxies in bb final states. The best upper limit is given by Fermi-LAT able to cover the
bigger range of dark matter mass. In fig. 3.7 are considered data from Veritas [59] as
well.

For neutrinos signals, one needs neutrino telescopes such as IceCube, ANTARES and
KM3NeT. The telescopes operation principle is based on the detection of the Cherenkov
light induced by the relativistic leptons produced in the interaction of high energy neu-
trinos in the water or ice.

IceCube [61] is a neutrino telescope at the South Pole. Its sensors are distributed
under the Antartic ice, covering a surface of 1 km3. The detector is designed to de-
tect neutrinos of all flavors thank to its spherical optical sensors called Digital Optical
Modules each with a photomultiplier tube and a single-board data acquisition computer
which sends digital data to the counting house on the surface above the array.

The ANTARES detector is located in the French coast close to Toulon and was
completed in 2008. It is composed of 12 detection lines hosting photomultiplier cameras
enclosed in optical modules [12]. Upper limits for the ANTARES data can be found in
[62].

The KM3NeT [10] detector is already under construction and partly operating. Its
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Figure 3.9: Current status of the experimental constraints for the spin independent
WIMP-nucleon cross section. The space above the lines is excluded at 90% CL. The
different experimental bounds are labelled in the figure, which is taken from [46].

full set up will have two configurations: ORCA (Oscillation Research with Cosmics in
the Abyss) located close to Toulon and designed for conducting oscillation research with
atmospheric neutrinos and ARCA (Astroparticle Research with Cosmics in the Abyss)
situated close to Sicily and optimized for high energies. KM3NeT will instrument a total
of 1 km3 of water, with 3 blocks of 115 lines each, in different geometries.

In fig. 3.8 are compared the upper limits on 〈σv〉 considering different experiments.

3.4.2 Direct detection experiments
As we have seen in sec. 3.3.2, the elastic scattering of a dark matter particle off a target
material induces an energy transfer to the nuclei, which can be observed. Basically there
are three different experimental techniques to detect the nuclear recoil: (i) production
of heat (photons in a crystal), (ii) an excitation of the target nucleus which de-excites
releasing scintillation photons, (iii) direct ionisation of the target atoms [48]. All the
detectors must be constructed underground in order to minimize the background. There
are different experiments for direct detection of dark matter.

The Large Underground Xenon (LUX) experiment [63] is installed at the Sanford
underground laboratory in the US. This experiment uses a dual phase (liquid-gas) xenon
(LXe) detector; events in the LXe target create direct scintillation light while electrons
escaping recombination at the event site are drifted to the liquid surface and extracted
into the gas phase with an electric fields, where they create electroluminescent light [64].
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XENON1T detector [65] provides so far the strongest limits on spin-independent dark
matter-nucleus interaction for dark matter mass up to 104 GeV. It is based on dual
phase liquid gas xenon time-projecting chamber with an active target of 2 tonnes. It
operates at the Laboratori Nazionali del Gran Sasso in Italy. SuperCDMS detector [66]
is one of the experiments of the Cryogenic dark matter Search Collaboration. It is made
of the germanium and silicon crystals and use superconducting technology [67]. More
specifically, SuperCDMS detectors are designed with the primary function of detecting
the minute crystal lattice vibrations and ionization generated after scattering. Being
the energy deposited by the interaction ∝ eV, the detector is maintained at a very low
temperature.

We show in fig. 3.9 the different bounds on the WIMP-nucleon interaction cross
section, considering not only experiments treated in this section but also DAMA [68],
CRESST [69] , DarkSide-50 [70], COSINE [71], DEAP [72] and CDMSlite [73]. The
neutrino floor [74] is included as well. All the experiments provide model-independent
upper limits at 90% CL (confidence level), as a function of the dark matter mass, except
for the long-standing controverse DAMA result.

3.4.3 Experimental bounds from collider searches
As described in sec. 3.3.3, collider searches contribute to exclude different regions of the
dark matter parameter space, in terms of interaction cross section and mass.

The most relevant collider nowadays is the LHC. It is the largest and highest-energy
particles collider in the world: the total cente-of-mass energy can reach ' 13 TeV.
The collider has four crossing points, around which are located 4 main detectors, each
designed for certain kinds of research: (i) ATLAS and (ii) CMS are both general-purpose
detector; their main aims are the Higgs physics and search for signs of new physics; (iii)
ALICE is specialized for quark-gluon plasma studies, trying to understand the origin of
quark masses; (iv) LHCb investigates for instance CP violation.

With the missing energy measured with big precision by ATLAS and CMS it is
possible to constrain the parameter space for dark matter production. In fig. 3.10 are
shown the constrained regions in parameter space mχ and mZ′ considering different kinds
of events linked to dark matter production. These limits are considered with 95% CL
Notice that, however, these limits are not model-independent: as we will see in the next
section, it is necessary to assume an interaction Lagrangian to describe how the dark
matter interacts with the Standard Model particles, with few free parameters, which are
the dark matter and mediator masses and the coupling strengths. It is possible to keep
all them as free parameters; however for simplicity one usually fixes two of them as in
this case both coupling strengths, keeping as free parameters both masses.
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Figure 3.10: Parameter space of the dark matter and mediator masses in a s-channel
simplified model, excluded by the ATLAS experiment considering different topologies,
such as dilepton, dijet and bb resonant production. The different excluded regions are
labelled as in the figure. The figure is taken from [75].
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Chapter 4

Simplified models

This chapter is the heart of the thesis. After having illustrated the necessity for dark
matter in our Universe in chapter 2 and described its main features in chapter 3, we
can discuss how to build viable dark matter models and compute observables to com-
pare with the experimental data. Our main interest is towards assessing the reach of
the future KM3NeT neutrino telescope on dark matter models, comparing it with other
experimental constrains. In particular, we focus our attention on models where cou-
plings with neutrinos and more in general with leptons are favoured with respect to the
couplings to quarks, i.e., leptophilic models. In this case, neutrino telescopes become
competitive with respect, for instance, to collider bounds, which rely on couplings to
strongly interacting particles.

We introduce the idea of simplified models, a large class of models where the dark
matter is a particle, and compare them to the EFT approach in sec. 4.1. We describe their
main features in sec. 4.2 illustrating the philosophy and the advantages. In particular,
we will discuss the Lagrangian of "spin 1-s-channel" leptophilic model in sec. 4.2 stressing
its main features, such as the possibility for dark matter to annihilate into leptons and
to lead to velocity independent 〈σv〉. We analytically compute the annihilation cross-
section in sec. 4.3. We then perform a numerical analysis using the MadDM package
described in sec. 4.4.1 to predict the expected flux of neutrinos and gamma rays from
the galactic center, a locally overdense region of dark matter, by performing scans in the
model parameter space. In sec. 4.6 we discuss the results of the scans and how the current
experimental data (both direct and indirect detection), described in sec. 4.5, constrain
this model. Finally, we determine the reach of the future KM3NeT experiment.

In sec. 4.7 we introduce a special class of simplified models, the so-called secluded
models characterized by a small coupling with the Standard Model particles. We explore
two different ranges of mediator mass: first, considering its mass comparable with the
dark matter mass (sec. 4.7.2) and, second, when its mass is much lighter (sec. 4.7.3). In
the latter case we include Sommerfeld enhancement effects, as described in sec. 4.7.1.

In the last sec. 4.8, we discuss a consistent ultraviolet completion of the simplified
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model, obtained by gauging the Lµ − Lτ symmetry and constrain its parameter space.

4.1 Simplified models vs EFT approach
Given the large number of dark matter models proposed and available in the literature,
the main challenge is to identify scenarios that can produce detectable signals and be
compatible with the all known constraints. The most natural dark matter candidate is a
neutral and stable particle that was copiously produced in the early Universe and then
decoupled from the SM thermal bath leaving a relic density compatible with measure-
ments ΩDM ' 0.26 [76].

There are different theoretical approaches to dark matter model building and phe-
nomenological analyses. The EFT approach adds to the Standard Model a set of (higher-
dimensional) operators, that parametrise the interaction of the dark matter particles with
the Standard Model fields. In this case, the only relevant parameters are the dark matter
mass, mχ, the strength of the couplings and the scale Λ to correctly normalise the higher
dimensional operators [76]. The advantage of an EFT approach is its minimal model
dependence (the only new state with respect to the Standard Model is the dark mat-
ter candidate). A possible downside is that having higher-dimensional operators leads
to an intrinsic energy limitation, which has to be chosen E < Λ: at higher energies
the contribution of higher dimensional operators to the scattering cross section becomes
comparable to the lower order operators and the perturbative expansion is no longer
valid.

Another approach to study BSM scenarios is represented by employing simplified dark
matter models. These models are characterized by the introduction of two states, the
dark matter candidate and a mediator that is responsible of the interaction between the
dark matter sector and the Standard Model. These models are still somewhat minimal,
but are typically (even though not always) characterised by a larger set of parameters
with respect to an EFT. In general, simplified models are also predictive/flexible enough
to provide detectable signals on the one hand, and to respect the known observational
constraints.

Most of the simplified models considered in the literature can be understood as a
minimal description of the lowest lying states of a more general and richer scenario,
possibly with a larger spectrum of particles, and therefore can be embedded in a more
fundamental theory. They also offer a generalisation of the EFT approach, as by requir-
ing the mediator mass to be large, simplified models reduce to EFTs whose couplings
are fully determined by the underlying simplified model parameters. In this respect,
the two approaches are not really independent and can be also used at the same time.
For instance, while resonances can be important in determining the annihilation cross
section and relic density of the dark matter, resonances could be integrated out in di-
rect detection predictions and directly use the corresponding EFT. It is worth noting,
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however, that similarly to the EFT, also the simplified models might lead to unitarity
violating behaviours at high energy and might need an ultraviolet completion. In any
case, being easy to use and encompassing the EFT approach, they remain among the
preferred choices to explore the reach of present of future experiments.

4.2 Model building and motivations
The starting point for constructing a simplified model is the Standard Model Lagrangian,
complemented with a dark matter field and a mediator that couples to both the dark
matter field and Standard Model fields through renormalizable interactions. Distinct
types of simplified models can be built, considering different quantum numbers (spin,
charges) for both the dark matter particles and the mediator particles and their couplings
which are all free parameters associated with the model.

By studying the set of tree-level diagrams with all possible combinations of charged
and flavour conserving renormalizable dimension-four operators compatible with Lorentz
invariance, one is able to explore different types of dark matter models [6].

For the dark matter particle and the mediator any allowed combination of spin 0,
1/2 and 1 can be considered and the interactions can have the following general form

Ls ⊃ (DM DM mediator) + (SM SM mediator) , (4.1)

Lt ⊃ (DM SM mediator) + h.c , (4.2)
where DM and SM stay for dark matter and Standard Model particles respectively

and two subscripts s and t label two different channels. Configurations as in eq. 4.1
arises in scenarios in which the dark matter stability is guaranteed by a Z2 symmetry,
a discrete symmetry under which all Standard Model fields and the mediator are even
while the dark matter particle is odd [77]. In t channel case in eq. 4.2 the annihilation of
dark matter particles occurs through the exchange of a charged mediator which is also
even under the Z2 symmetry; in this case the mediator mass is conventionally chosen to
be higher than the dark matter mass, otherwise the mediator would become the dark
matter itself.

Vertices describing the interactions, on the other hands, can be: (i) scalar 1, (ii)
pseudoscalar γ5, (iii) vector γµ and (iv) axial vector γµγ5. One needs then to understand
which combination of spins and interactions are allowed by the observations.

For our purpose, we look at velocity averaged cross section 〈σv〉: to bring it in an
observable range, it is necessary to require that the dark matter is a thermal relic whose
annihilation proceed largely through s-waves processes. Any other partial wave would
be suppressed today and could not lead to any observable flux [5]. For s-waves, 〈σv〉
is velocity independent while in case of p-waves, 〈σv〉 suppression is proportional to v2.
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Which combinations of dark matter and mediator spins allow 〈σv〉 independent on v in
the simplified models?

For the case of s-channel, it can be shown [5, 6] that unsuppressed terms are those
with a Dirac fermion dark matter and scalar or vector mediators, with both vector and
axial couplings in first case and only pseudoscalar for the second; notice that in these
cases, if the mass of the mediator is less that of the dark matter particles, annihilation
could potentially be dominated by the production of mediator pairs rather than annihi-
lation into Standard Model particles. With scalar dark matter, there can be only scalar
and pseudoscalar interactions with Standard Model fermions as well as with vector dark
matter.

For the t-channel there can be the following cases: Dirac fermion dark matter and a
vector or scalar mediator, vector dark matter and Dirac fermion mediator.

Once we have specified the annihilation properties of the simplified models, it is
possible to fix the interaction couplings with the Standard Model species, according to
the study we want to perform. For instance the mediator can couple to all Standard
Model fermions, or to leptons only (leptophilic models) or to quark only (leptophobic
models).

All these models can be studied considering different combinations of masses and
couplings, provided they produce viable dark matter scenarios. For each point in param-
eter space, it is possible to compare the theoretical predictions with the results of direct,
indirect and collider searches.

4.3 Spin 1-s-channel mediator
In this thesis, we consider the simplified model "spin 1-s-channel mediator" where the
dark matter is composed by a single species.

The dark matter particle χ with mass mχ is a Dirac fermion, singlet under Standard
Model gauge group SUC(3) × SUL(2) × UY(1); we consider its mass up to 10 TeV,
comparable with the expected WIMP mass scale.

The mediator is a boson with spin 1, a Z ′, belonging to a new group U ′(1). Its mass,
mZ′ , is non zero. We do not discuss the mechanism through which the Z ′ acquires a mass.
Nevertheless, let us mention that the Z ′ can become massive through the spontaneous
breaking of the U ′(1) symmetry with the introduction of a scalar field. We assume that
this new scalar field is not relevant for our phenomenology, because it is very heavy.
Another possibility to generate mZ′ is to leave the symmetry unbroken and introduce
it via the Stueckelberg mechanism [78]. The "spin 1-s-channel mediator" model is one
of the simplest possible extensions of the Standard Model featuring an additional gauge
boson.

As we have seen in sec. 4.2, this kind of model leads to a velocity in dependent
〈σv〉: the annihilation proceeds largely through s-waves. As mentioned earlier, in this
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thesis we consider leptophilic models because we are interested in making predictions
to assess the reach of the future KM3NeT neutrino telescope to leptonic annihilation
signals, especially neutrino lines.

The Lagrangian of the model can be written as

L = LSM + LDM + LZ′ , (4.3)

where the three terms are the Lagrangians of the Standard Model, of the dark matter
and of the vector boson mediator respectively. Expliciting the Lagrangian in eq. (4.3)
for the Dirac fermion χ and the massive boson Z ′, one obtains

L = LSM − 1

4
F ′µνF ′

µν +
1

2
m2
Z′Z ′µZ ′

µ + χ(i/∂ −mχ)χ+ JµDMZ
′
µ + JµSMZ

′
µ , (4.4)

with the following definitions

F ′
µν = ∂µZ

′
ν − ∂νZ

′
µ , (4.5)

for the field strength tensor of the massive boson and

JµDM = χγµ
(
gVDM + γ5gADM

)
χ ,

JµSM =
∑
i

liγ
µ
(
gVSM + γ5gASM

)
li ,

(4.6)

for the interaction terms; the index i runs over the sum of all the Standard Model
leptons. This Lagrangian can be extended to quarks in a similar manner; however, being
interested in leptophilic scenarios, we refrain from adding interactions with quarks.

Notice that the Z ′ is treated analogously to the Z gauge boson of the Standard Model:
we are using a generalisation of universality of weak interactions, considering all leptons
coupled with the same coupling strength, i.e. coupling gSM is generation independent.
Indeed, if we had used a Yukawa-like coupling and a scalar mediator we would have
obtained the dependence on the type of particles, being the coupling different for the
various flavours.

Considering vector and axial-vector models, if the interaction mediated via Z ′ does
not respect the gauge invariance perturbative unitarity may be violated. In particular, if
the couplings to the two components of a doublet of Standard Model leptons are different,
SUL(2) gauge symmetry is not respected. To restore the unitarity, the Z ′ then has to be
embedded in a new U ′(1) gauge group. To break this gauge group and give a mass to
the Z ′ one should introduce a dark Higgs singlet S [79]. The Lagrangian then has a new
term LS which represents the extended Higgs sector. However, our intention here is not
to fit the parameters of a complete model, but rather to study the minimal set leading
to an interesting phenomenology.
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One then can consider pure vector interactions i.e. gAi = 0 (i =DM, SM); however,
in this case the branching ratio of particles is not equal for all the leptons. Indeed, if
gA = 0, then right-handed charged leptons are considered as well

L ⊃ gSMZ
′
µ

[
qLli,Lγ

µli,L + qRli,Rγ
µli,R

]
i = 1, 2, 3 , (4.7)

with li lepton doublet. This behaviour might be a problem for our purposes as we are
looking for scenarios where the cross section for neutrinos is enhanced. To obtain the
same branching ratio for annihilation into charged leptons or neutrinos, the couplings
must be both vector and axial. We can redefine the couplings in following way

gVSM =
1

2
gSM(qR + qL) , gASM =

1

2
gSM(qR − qL) . (4.8)

Choosing then qR = qL, we have the same branching ratios, and all the contributions are
written in a vector like form. From now on, we consider gVSM = gSM.

It should be noted that the model allows for the following term

L = −1

2
sin εF ′µνBµν , (4.9)

which generates a kinetic mixing between the Z ′ and B hypercharge gauge boson of
the Standard Model [79]. Even if at the tree level the kinetic mixing is assumed to
be negligible, this mixing term is necessarily generated at the one-loop level and might
induce relevant effects in the phenomenology of the model, as we show later.

Considering the Lagrangian in eq. (4.4), we can have two different annihilation pro-
cesses for the dark matter particles, represented via the Feynman diagrams in fig. 4.1.
While the process associated to the left-hand side Feynman diagram is always possible
because the boson is virtual, the Feynman diagram on the right-hand side represents
the annihilation of the dark matter particle in two bosons which, being metastable, will
further decay into Standard Model particles. The dominant contribution comes when
the process is kinematically allowed, i.e. when mχ ≥ mZ′ .

We now compute the total velocity averaged cross section. To obtain it, we firstly
compute the annihilation cross section for both the processes and after we multiply the
obtained result by v. Notice that for our purpose we consider all the leptons massless
because we are working at much higher energies with respect to their mass scale. This
assumption is kept all along our analysis, except for the case when the Z ′ is considered
very light.

In the non-relativistic limit, the velocity of a particle with momentum ~k and energy
k0 is

vk =
| ~k |
k0

≈ | ~k |
mχ

� 1 . (4.10)
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Figure 4.1: Tree-level Feynman diagrams describing the dark matter annihilation into
Standard Model leptons through a Z ′ vector boson mediator. The left one has two
lepton final states while the right one represents the annihilation of dark matter into
intermediate bosons which decay subsequently into Standard Model particles.

The external momenta of the two fermions can be written as

k2 = k20 − ~k2 = k20 − (mχvk)
2 ⇐⇒ k0 =

√
m2
χ +m2

χv
2
k ≈ m2

χ

(
1 +

v2k
2

)
. (4.11)

For a 2 → 2 process we need to distinguish between the velocities of individual particles
and their relative velocity v. The energy of the initial state is s = (p1+p2). For incoming
particles with the same mass, one obtains

s = (p1 + p2)
2 = 4m2

χ(1 + v21) , (4.12)

and
m2
χv

2 = 4m2
χv

2
1 = s− 4m2

χ . (4.13)
The relative velocity of the two incoming particles in the non-relativistic limit is

v =

∣∣∣∣∣ ~k1k01 −
~k2
k02

∣∣∣∣∣ , (4.14)

that in centre-of-mass reference frame is just

v = 2v1 ⇐⇒ m2
χv

2 = 4m2
χv

2
1 = s− 4m2

χ . (4.15)

Finally
v = 2v1 = 2

√
s

4m2
χ

− 1 . (4.16)
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We can expand the averaged annihilation cross section as

〈σχχv〉 = σχχv +O(v2) (4.17)

The velocity averaged cross section for the left diagram of fig. 4.1 is

〈σv〉(χχ→ ll) =
g2SMg

2
DM

π

m2
χ

(4m2
χ −m2

Z′)2 +m2
Z′Γ2

. (4.18)

The decay width Γ of the Z ′ is

Γ =
mZ′g2SM
12π

(
1− 4m2

l

m2
Z′

)1/2(
1 +

2m2
l

m2
Z′

)
+
mZ′g2DM
12π

(
1−

4m2
χ

m2
Z′

)1/2(
1 +

2m2
χ

m2
Z′

)
. (4.19)

Repeating the same steps for the right-hand side Feynman diagram of fig. 4.1, one
obtains as leading contribution

〈σv〉(χχ→ Z ′Z ′) ' g4DM
32π

(m2
χ −m2

Z′)3/2

mχ(2m2
χ −m2

Z′)2
. (4.20)

Notice that the last result is independent from gSM: as we will see in sec. 4.7 this kind of
model is called secluded. It is secluded because the coupling with the Standard Model
can be taken to be very small while the relic density of the dark matter is governed by the
coupling strength gDM, which can have sizeable values. Notice that both of annihilation
cross sections are velocity independent, as we pointed out in sec. 4.3.

These results have be cross-checked with Mathematica using the FeynArts [80]
and FeynCalc [81] packages. These results are additionally in agreement with the
findings of refs. [82, 83].

4.4 Numerical tools
The aim of this section is a brief illustration of the numerical tools we used for this thesis.
To compute 〈σv〉, do analysis of energy spectra and find the Fermi limits on the velocity
averaged cross section, we have used MadDM.

As we have seen in sec. 4.3, our model is leptophilic, i.e. it does not have coupling
with quarks and no tree level processes are allowed. However, being MadDM currently
unable to handle loop processes, for the dark matter-Nucleon cross section we have used
runDM in order to find the interaction spin-independent cross section.

62



4.4. NUMERICAL TOOLS

4.4.1 MadDM
In the last decade, several tools and frameworks have been proposed and developed with
the purpose of computing dark matter model predictions for relic density, direct and
indirect detection observables: MicrOMEGAs [84], DarkSUSY [85] just to cite some
of them. In this work we have used for numerical simulations MadDM.

MadDM [7] is a numerical tool to compute dark matter observables within generic
Universal FeynRules Output (UFO) models. UFO models for dark matter can be
obtained using the FeynRules package [86], which computes the Feynman rules for
generic physics models. It is enough to load in the package two separate documents in
the .fr format, one describing the Standard Model Lagrangian and one for dark matter
Lagrangian. The latter contains the description of the new fields, new couplings and new
interaction terms. FeynRules merges the two files, computes the Feynman rules and
provides them in the complete UFO output that is suitable for various high energy tools:
one of this is MadDM. Model files, including different models for dark matter studies,
can be downloaded from the FeynRules website.

MadDM provides a simple, user-friendly and all-in-one dark matter phenomenol-
ogy framework. It can be used by experimentalists and theorists to calculate accurate
signatures of generic dark matter models for indirect, direct and collider searches.

Its first release [87] provided the possibility to compute the relic density, considering
a certain dark matter model. In its second release [88] the computation of dark matter-
nucleon cross section for direct detection was added. The last version [7] implements
indirect detection module, which allows the computation of several observables for indi-
rect detection. In addition, it is possible to have theoretical predictions for the velocity
averaged cross section at present time, generate energy spectra from dark matter anni-
hilation and compute fluxes at source. Being a plug in of MG5aMC [89], MadDM
inherits most of its architecture, including its matrix element generator which allows to
compute automatically the energy spectra for dark matter annihilation into generic n
final states [7]. For the computation of 〈σv〉, MadDM uses the MG5aMC’s event gen-
erator MadEvent [90]. The energy spectra of gamma rays, positrons, antiprotons and
neutrinos coming from dark matter annihilation can be determined via the parton level
event generation and then passing these events through Pythia8 [91] for showering and
hadronization; this is called the ‘precise running mode’ of MadDM. There is as well
a ‘fast mode’ downloading PPPC4DMID [92] numerical tables and then the energy
spectra of the model are interpolated using those tables.

Moreover, MadDM incorporates a simplified functionality for testing model points
against experimental constraints for direct and indirect experimental constrains. For
indirect detection, MadDM has implemented Fermi-LAT likelihood for prompt γ-rays
while, for what concerns direct detection, for direct detection MadDM considers the
following limits: XENON1T [9] and LUX [93] for spin-independent dark matter-Nucleon
interaction and LUX [94] and Pico60 [95] for spin dependent cross section.
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Notice that MadDM can compute annihilation cross section for direct detection and
velocity averaged cross section for indirect detection only at the tree level.

4.4.2 runDM
As our model does not have any coupling to quarks, it is not possible to have any
process contributing to the scattering cross-section between dark matter particles and
the nucleons. However, this interaction is possible at loop-level, once one considers the
mixing terms between the Z ′ and the neutral Standard Model gauge bosons γ and Z or
an EFT approach.

The connection between simplified model valid at high energy with its non relativistic
manifestation at the nuclear level is non trivial. Such a scale connection can be achieved
by employing techniques from an EFT framework, performing a Renormalization Group
Evolution (RGE) of the dark matter interactions [96].

The RGE introduces mixing between different dark matter-Standard Model interac-
tions, affecting the size of the couplings or even introducing new coupling arising via
Standard Model loops.

At two different scales, the theory looks quite different and the connection between
simplified models and EFT at low energies can be achieved in two steps: integrating out
the mediator and doing RGE down to the nuclear scale. The mediator is integrated out
because its mass usually is significantly larger than the momentum exchanged in direct
detection processes. Moreover, the interaction between the dark matter and Standard
Model can be described in terms of a dimension 6 operator

LEFT = −JµDMJ
µ
SM

m2
Z′

, (4.21)

where the currents are those specified in eq. (4.6). The couplings obtained from eq. (4.21)
are defined at the energy scale mZ′ and have to be evolved down to the nuclear scale.
Through this procedure one obtains the description of the interactions between quarks
and dark matter. Finally one has to embed the dark matter interactions with quarks at
the nuclear level. The effective Lagrangian for the nucleon field is

LN = −J
µ
DM
m2
Z′

[
CVNγµN + CANγµγ5N

]
, (4.22)

whereN stands for nucleon, proton (p) or neutron (n). The coefficients have the following
form

C(p)
V = 2C(u)

V + C(d)
V ,

C(n)
V = C(u)

V + 2C(d)
V .

(4.23)
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The total dark matter-nucleon cross section for the Lagrangian in eq. (4.22), for both
spin dependent (SD) and spin independent (SI) interactions [96], is

σNSI =
µ2
N

π

(
cχV CNV

)2
m4
Z′

, (4.24)

σNSD =
3µ2

N

π

(
cχACNA

)2
m4
Z′

, (4.25)

where µN is the dark matter-nucleon reduced mass i.e. µN = mχmN/(mχ +mN).
Equation (4.23) can be computed with the runDM [97, 98, 96] function called DD-

CouplingsQuarks. After specification of the couplings for the interactions, the running is
performed down to the nuclear energy scale of 1GeV and this function returns a vector
of the low-energy coupling to light quarks u, d and s. These couplings are namely

Cq =
(
C

(u)
V , C

(d)
V , C

(u)
A , C

(d)
A , C

(s)
A

)
. (4.26)

Taking the first two element of the above array evaluated for each value of mediator mass
and plugging them into eq. (4.23), we finally obtain eq. (4.24) and eq. (4.25).

For our purpose we have considered only spin independent cross section and we
will compare it to the experimental bounds of XENON1T. We considered only spin-
independent cross section because we are considering a pure vector model; as we have
shown in sec. 3.3.2, spin dependent cross section arises only once axial-vector current is
considered as well.

4.5 State of the art of the experimental constraints
The aim of this section is the introduction of experimental bounds that we have consid-
ered for both indirect and direct detection.

For the indirect detection we used three different constrains: Fermi-LAT data, future
KM3NeT from [12] which we label as KM3NET(1), KM3NET limits described in [11]
which is indicated by KM3NET(2) and for the direct detection we used XENON1T data.

For the first constrain we have used MadDM which provide likelihood for diffuse
gamma rays from dSPhs which are optimal targets to test the hypothesis of annihilating
dark matter in galactic halo. The analysis implemented in MadDM is based on the
public data released by Fermi-LAT collaboration [99]. MadDM finds the 95% CL cross
section upper limit for a given model point. Its likelihood method to compare theoretical
predictions with the Fermi-LAT data is very generic and can constrain any dark matter
model [7].

KM3NeT (2) are obtained considering 11 years of data taken with the ANTARES
neutrino telescope. Computing the test statistic of the data after having re-assigned
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the real coordinates to each event in [12] was obtained an upper limit on 〈σv〉 with a
sensitivity defined as the 90% CL. In particular, for our analysis we have considered
sensitivities of a first sub-block of KM3NeT-ARCA with 2 blocks of 115 lines for NFW
profile with 1 year of effective lifetime.

KM3NeT (2) are obtained considering angular power spectrum (APS) of simulated
neutrino sky maps for the neutrino telescope adopting NFW profile. For our purpose we
have considered upper limits with 90% CL.

XENON1T exclusion limit on the spin-independent dark matter-nucleon interaction
with a 90% CL are taken from [9].

4.6 Spin 1-s-channel results
In sec. 4.3 we have illustrated our s-channel simplified model and we have motivated
our choice for leptophilic model. Now we want to sample the model parameter space
by varying the free parameters of our theory, which are mχ, mZ′ , gSM and gDM. In
particular, we fix gDM = 1 and gSM = 1, considered universal for all flavours of leptons,
and we vary the mass parameters to compute 〈σv〉. We further complement the study
by confronting the scan with the experimental constrains described in sec. 4.5.

The simulations for the theoretical predictions have been done with MadDM, as de-
scribed in sec. 4.4.1. We have performed a scan grid for the following mass ranges:
[191− 105] GeV for dark matter mass, and [100− 105] GeV for the mediator mass.
MadDM provides the computation of 〈σv〉 using MadEvent. In addition, the en-
ergy spectra at source are computed using the PPPC4DMIDew [92] table interpolation.
These tables provide the energy spectra with the electroweak corrections described in
sec. 3.3.1.

Being the branching ratio the same for all final leptons, we considered 6 · 〈σv〉ll for
the total velocity averaged cross section, where l is a single lepton. Few considerations
can be done by looking at fig. 4.3. The 2D panel shows the values of 〈σv〉max chosen for
each value of mχ, varying different masses of mZ′ . These values are represented via the
continuous bordeaux line. This line is bumpy because it follows the resonance region.
The valuse of 〈σv〉 decreases with increasing mχ, as one expects. They are compared
with the experimental constrain of Fermi-LAT and predictions for the future KM3NeT as
described in sec. 3.4 labelled as in figure. We can find three intersection points between
line of 〈σv〉max and those representing Fermi-LAT constrain and predictions for the future
KM3NeT: (i) mχ = 2 TeV corresponding to intersection with Fermi-LAT, mχ = 3.7 TeV
corresponding to intersection with KMENeT(2) and mχ = 16.1 TeV for intersection
with KM3NeT(1). Considering these points, one can conclude that while Fermi-LAT
limits on 〈σv〉 can exclude dark matter masses up to 2 TeV, the future KM3NeT is more
promising. Indeed, KM3NeT(1) can constrain mχ up to 16.1 TeV and KM3NeT(2) up
to 3.7 TeV.
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Figure 4.2: 2D plot representing the Fermi-LAT constrain and future predictions for
KM3NeT we have considered for our analysis in the plane 〈σv〉 and mχ, as labelled. The
experimental bound and projections are compared with the value of 〈σv〉max for each
value of mZ′ (bordeaux solid line). This line is bumpy because it follows the resonance
region.

The left panel of fig. 4.2 illustrates the 〈σv〉 behavior as a function of mχ and mZ′

through a colormap. The central region on the panel in dominated by the enhancement
due to the resonance. As expected according (4.18), 〈σv〉 values are larger for smaller
mass of both χ and Z ′; it decreases for small values of mχ-large values of mZ′ and
for mirrored-case as well. Black lines are added just to have a reference. The right
figure represents the experimental exclusions/predictions. Different regions of the plot
are excluded by experimental bounds labelled in the figure; both direct and indirect
data are considered. The main portion of parameter space is excluded by XENON1T
which incorporate regions excluded by Fermi-LAT and in the range of exploration of
KM3NeT(2). KM3NeT(1) will be still promising, being able to constrain regions with
dark matter mass up to 6.8 TeV and boson mass up to 12 TeV.

4.7 Secluded WIMP dark matter
The secluded dark matter scenario regards models in which dark matter particles an-
nihilate into a pair of non-Standard Model mediators, which subsequently decay into
Standard Model particles, differently from the previous situation. This model is the
second case of simplified model described in sec. 4.3 and is motivated with the same
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Figure 4.3: spin-1-s-channel: 2 → 2 case The left panel represents the velocity av-
eraged cross section 〈σv〉 as a function of mχ and mZ′ . Black lines represent different
numerical values for 〈σv〉 for sake of reference. The left panel figure shows the experimen-
tal exclusions on the averaged cross section for the annihilation of dark matter particles
into leptons. Experimental constrains are labelled as in figure. Large region of parameter
space is excluded by XENON1T data and by KM3NeT (1) prediction which overwrites
both Fermi-LAT limit and KM3NeT (2) prediction.

reasons.
The secluded models aim at analyzing the parameter space characterised by mχ >

mZ′ and gSM � 1. The first requirement guarantees kinematically allowed region of
the parameter space for the process in fig. 4.1 i.e. χχ → Z ′Z ′, with the mediator
bosons being on shell but metastable because of a non zero coupling with the Standard
Model particles. The second condition is dictated by the requirement of not spoiling the
predictions of BBN. In fact, the mediator lifetime should be shorter than 1 s in order to
guarantee its decay before the beginning of BBN. Otherwise it would inject energy into
the thermal bath and delay the formation of the primordial nuclei. This however does
not provide strong constraints on gSM, as we will show later.

The assumption of having gSM � 1 allows the dark matter sector to be secluded
from the Standard Model in a natural way, thanks to a very small cross-section for
direct detection and collider searches. Actually, the reduction of the coupling of the dark
matter and Standard Model suppresses the collider and direct detection rates by many
orders of magnitude, because they scale as g2SM.

In contrast, indirect detection signatures from dark matter annihilation are consistent
with a small gSM, because eventually the Z ′ boson will decay and provide potentially
observable signals.

We have considered the same conditions as for the generic simplified model described
in sec. 4.3: fermionic dark matter annihilating in a pair of mediators that decay sub-
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sequently in leptons with couplings gSM. This process is described via the Feynman
diagram in fig. 4.1 (right panel).

The annihilation averaged cross section 〈σv〉 which is described with eq. (4.20), de-
pends on g4χ and we has to take it up to perturbative limit i.e. gχ = 4π. Moreover, 〈σv〉
is independent on gSM and for this reason we can choose it as small as we desire. This
is the main advantage of the secluded models. To fix the coupling with the Standard
Model, one looks at the expression of the decay width Γ in eq. (4.19) and requires that
the decay width is less than 1 s for the reasons we explained before. Being the lifetime
of Z ′ the inverse of Γ, one obtains

τ . 1 s → gSM & 10−13 . (4.27)

which is the upper bound, requiring the minimum value of mZ′ , for our case it is 100
GeV. To illustrate the phenomenology of this simplified secluded model, we consider two
different scenarios:

• mχ ' mZ′ in the mass range GeV − TeV;

• mχ � mZ′ : a boson mediator significantly lighter than the dark matter particle.
In this case we have considered the Sommerfeld enhancement, described in the
next section, because of the significant gap between the mediator and dark matter
masses.

The experimental limits described in sec. 3.4 are included in both the considered cases.

4.7.1 Sommerfeld enhancement
The theory of the Sommerfeld enhancement was developed by Arnold Sommerfeld [100].
The Sommerfeld enhancement plays an interesting role when a light force carrier is
present in a theory. If there is an attractive (repulsive) interaction, creating a Yukawa
potential, the mediator, in fact, can distort the wave function of the incoming particles
away from the plane-wave approximation, yielding significant enhancement (or suppres-
sion) to annihilation cross section [101]. Including Sommerfeld enhancement, the left
Feynman diagram of fig. 4.1 must be modified in the left panel of fig. 4.4.

Although annihilation of dark matter in early Universe and nowadays is determined
by the same particle physics processes, the kinematics is very different in terms of velocity.
As the Universe continues to cool down after the dark matter freeze-out, its velocity
decreases. In fact, at freeze out, thermal relics have velocity v ' 0.3 c while today the
velocity is estimated near the value v ' 10−3 c. One of the consequences is that the
numerical values of the annihilation cross section may be different, if 〈σv〉 depends on v,
because of the Sommerfeld effect.
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Figure 4.4: The left panel represents the Feynman diagram describing annihilation of
dark matter including Sommerfeld effect; the right panel is an illustration of the Som-
merfeld enhancement factor S as a function of εZ′ = mZ′/(αχmχ), keeping constant the
value of εv = v/αχ.Considered mass ranges are [500− 5000] GeV and [1− 100] GeV for
χ and Z ′ respectively and as coupling gχ = 1

We will see that the Sommerfeld enhancement is proportional to the velocity of dark
matter particles

S ∝ 1

v
. (4.28)

This means that for dark matter freeze out at early times the Sommerfeld effect is
negligible and the thermal cross section is 〈σv〉0 ' 3 · 10−26 cm3/s; nowadays the Som-
merfeld enhancement should be included because, being inversely related with v, it gives
a significant contribution.

For our model, thermal annihilation cross section in the early Universe at tree level
is dominated by s-wave processes as we point out in sec. 4.2, i.e. it is not suppressed at
low velocities being velocity independent.

To understand better the origin of the Sommerfeld enhancement, let’s considering
a simple example of two non-relativistic particles moving towards an annihilation zone.
One can include an interacting potential affecting both the particle before the annihi-
lation; this interaction can be parametrized with V (~r). The Sommerfeld enhancement
factor S is defined as the ratio of the annihilation cross section with and without the
potential V (~r) is

S =
σ

σ0
. (4.29)

Being the cross sections proportional to the squared of the system wavefunction, one can
explicit the above definition as

S =
|χ(0)|2

|χ0(0)|2
, (4.30)
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where χ is the wavefunction under the effect of the potential V (~r) before annihilation
and χ0 is the one without the interacting potential. We are considering r = 0 because
the annihilation happens at zero separation. This means that to find the Sommerfeld
factor, one needs to solve the Schrödinger equation including the interaction potential.
The latter can take different forms depending on the mass of the mediator causing the
effect, as described later.

In the simplest scenario, one has a single dark matter particle component χ and a
light force carrier Z ′, with fine structure constant αχ ≡ g2DM

4π
, massless or significantly

lighter with respect to dark matter mass i.e. mZ′ � mχ. It is possible to define two limits
of Sommerfeld factor: S0 in limit of the massless force carrier, mimicking the Coulomb
potential and S in limit of massive Z ′ with Yukawa potential.

In case of the attractive Coulomb potential one has to solve the following Schrodinger
equation with the potential V (r) = −αχ

r
. The two body wavefunction obeys the radial

Schrodinger equation [101]

1

mχ

χ
′′
(r) +

αχ
r
χ(r) = −mχv

2χ(r) . (4.31)

S0 in the case is
S0 =

παχ
1− e−παχ/v

, (4.32)

where v = vrel/2 is the dark matter particle’s velocity in the centre-of-mass frame [102].
In the case of Yukawa potential

V (r) = −gDM

4πr
e−mZ′r = −αχ

r
e−mZ′r , (4.33)

where gDM is the coupling parameter and mZ′ is the mass of the force carrier. One has
to solve numerically Schrodinger equation with the above potential

1

mχ

d2χ

dr2
+
αχ
r
e−mZ′rχ = −mχv

2χ (4.34)

with the boundary condition χ′(r) = imχvχ(r) and χ(r) = eimχvr when r → ∞.
The resulting analytic approximation for the Sommerfeld enhancement is

S =
π

εv

sinh
(

2πεv
π2εZ′/6

)
cosh

(
2πεv

π2εZ′/6

)
− cos

(
2π
√

1
π2εZ′/6

− ε2v
(π2εZ′/6)

) , (4.35)

where by definition εv = v/αχ and εZ′ = mZ′/αχmχ. At low velocities, the Sommerfeld
factor saturates as S ∼ 1/εZ′ . For specific values of εZ′ , the Yukawa potential develops
threshold bound states and these give rise to resonant enhancements of the Sommerfeld
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enhancement [101]. Notice that while in regions away from the resonances the enhance-
ment is proportional to v−1, near the resonances, the Sommerfeld is enhanced by a
factor v−2. For αχmZ′ � mχv

2, the Yukawa potential becomes indistinguishable from
the Coulomb potential and no strong resonances appear in S. This behaviour of the
Sommerfeld factor is illustrated in the right panel of fig. 4.4, where is plotted S factor
as a function of the parameter εZ′ . Notice that the S factor presents typical resonance
structure: they are, for εv � εZ′ , at

mZ′ =
6αχmZ′

π2n2
, (4.36)

with n ∈ N. At this resonances, for low v, Sommerfeld enhancement factor is given by
[102]

S ' π2αχmZ′

6mχv2
. (4.37)

4.7.2 Secluded model: mZ ′ ' mχ case
In this section we discuss our study of the first scenario of secluded dark matter, where
dark matter and mediator have comparable masses.

For this case we have considered dark matter mass in range [500− 5000]GeV and
the mass of mediator Z ′ in [200− 2000] GeV. We have considered gχ =

√
4π to enhance

the 〈σv〉 in the detectable range.
The numerical simulations have been made with MadDM. In this case we have used

directly MG5aMC, asking the mediators decay into Standard Model leptons rather
than using Pythia8 for Z ′ decay. Notice that in this case is not possible to use
PPPC4DMIDew because tables do not contain BSM particles.

We were not able to produce the gamma-ray energy spectra coming from the 4 leptons
final state with MadDM because of numerical instabilities. Hence in order to be able to
derive the Fermi-LAT upper limits for the secluded model in this scenario, we adopted the
following approximation. This approximation amounts to consider a single boson with
mass mZ′ decaying in Standard Model particles. This is a reasonable approximation
given that bosons can be considered as produced at rest. We show in fig. 4.5 the energy
spectra for the two cases. These distributions are for γ, νe, νµ and ντ , obtained from a
µ− and µ+ final state from dark matter annihilation. The continuous lines represent
the energy spectra for νe, νµ, ντ and γ, coming from χχ → µ+µ− and the dashed lines
those coming from subsequently decaying of Z ′Z ′ into 4 muons. In the first case we
considered mχ = 10TeV and mZ′ = 9800GeV while in the second one we considered
mZ′ = 4900GeV. For both the cases we have used Pythia8 and we required 5 · 105
events.

This approximation is adequate for γ and ντ energy spectra. For νe and νµ it can be
considered valid as long as X ' 0.0025 or K ' 24.5GeV.
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Figure 4.5: Comparison of stable particle energy spectra dN/d log x coming from χχ→
µ+µ− and χχ → Z ′Z ′ subsequently decaying into muons. We have considered mχ =
10TeV and mZ′ = 9800 GeV for 2 → 2 and mZ′ = 4900 GeV for 2 → 4 case. Different
colours in the panel label the various energy spectra: γ, νe, νµ and ντ . Continuous lines
represent the products of dark matter annihilation into two muons while the dashed lines
represent final products of muons originated from decays of the 2 Z ′. Both cases were
simulated with Pythia8 requiring 5 · 105 events and include EW showering effects.

Being the energy spectra approximately similar we have adopted the approximation of
2 → 2 case for the 2 → 4 case. We used this approximation for the KM3NeT predictions
as well.

We report in fig. 4.6 the results of numerical simulations. The left panel shows
illustrates the interplay between 〈σv〉 and the experimental constraints, as labelled in
the figure. The solid red line represent the maximum value of 〈σv〉 for each value of Z ′.
In this case, the intersection points are: (i) mχ = 1.5 TeV for Fermi-LAT upper limit and
(ii) mχ = 2.4 TeV for KM3NeT (2). One can conclude that Fermi-LAT probes the region
of the parameter space with mass up to 1.5 TeV, while KM3NeT (2) will be sensitive to
masses up to 2.4 TeV. Notice that KM3NeT (1) line is completely below with respect to
the red line, meaning that it probably would be able to constrain the entire considered
mass range.
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Figure 4.6: Secluded: mχ ' mZ′ case The left panel is a 2D plot in mχ − 〈σv〉 plane
representing the considered experimental constrain provided by Fermi-LAT data and
predictions for upper limit of the future KM3NeT compared to max values of 〈σv〉max for
each value of m′

Z , as labelled. The right panel represents the model parameter space with
the experimental constrains. The grey region is not allowed kinematically; experimental
constrains are labelled as in the figure. The whole parameter space considered here can
be probed by KM3NeT (1).

The left panel of fig. 4.6 shows the excluded regions of parameter space mχ−mZ′ . The
grey region is not kinematically allowed for the considered process. All the parameter
space is excluded by the prediction of the upper limit of KM3NeT (1) which incorporate
both KM3NeT (2) prediction and Fermi-LAT experimental bound. Moreover, Fermi-
LAT can exclude region of parameter space for mχ ' 1.5 TeV and mZ′ ' 0.6 TeV, while
KM3NeT (2) would be able to explore region with mχ ' 2.2 TeV and mZ′ ' 1 GeV.

4.7.3 Secluded models: mZ ′ � mχ case
For this case we have considered the mχ in range [500− 104] GeV and mZ′ in range
[10−3 − 240] GeV. We have included the Sommerfeld enhancement factor described in
sec. 4.7.1. To compute the S factor we considered eqs. (4.32) and (4.35): in the limit
of negligible mass boson, we have considered the S factor due to a Coulomb potential;
otherwise we have considered the S factor from a Yukawa potential. The two different
expressions are normalized introducing a factor between eq. 4.32 and eq. 4.35, taking a
benchmark point for each of them.

In left panel of fig. 4.7 is the 3D plot of 〈σv〉 including Sommerfeld enhancement.
The enhancement of 〈σv〉 is nearly two orders of magnitude. Notice that it shows the
typical resonance structure due to the Sommerfeld resonances. In right panel of fig. 4.7
is shown the parameter space of mχ −mZ′ with excluded regions by two experimental
constrains. Fermi-LAT excludes the region with mχ up to 0.7 TeV and mZ′ up to 0.08
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Figure 4.7: Secluded: mZ′ � mχ case Left panel shows the velocity averaged cross
section 〈σv〉 including Sommerfeld enhancement as a function of mχ−mZ′ . It shows the
typical resonance structure. Black lines are added as reference for numerical values. The
right panel shows the parameter space of 〈σv〉 explored with Fermi-LAT upper limit and
potential prediction for the future KM3NeT (2) which are labelled as in figure. A large
portion of the parameter space would be excluded by KM3NeT (2).

TeV. The prediction for KM3NeT (2) limit overwrite completely Fermi-LAT exclusion
and potentially can probe the region of parameter space with mχ ' 3.3 TeV and mZ′ up
to 0.1 TeV.

4.8 Lµ − Lτ gauge model
A possible ultraviolet completion for the Dark Sector can be obtained considering the
gauging of Lµ − Lτ symmetry associated to U ′(1) abelian group. If this symmetry is
broken a massive Z ′ boson is present, with model independent mass and couplings to
the Standard Model particles. Actually, with in the particle content of the Standard
Model it is possible to gauge one of the three differences of lepton flavours Le − Lµ,
Le − Lτ or Lµ − Lτ without introducing an anomaly. In particular, Lµ − Lτ should
be preferred over the two other two combinations because in the limit of conserved
symmetry, the neutrino mass matrix is automatically µ − τ symmetric and predicts
one degenerate neutrino pair. The necessary breaking of the symmetry will split their
masses and generate small departures from the µ−τ symmetry, reproducing the neutrino
phenomenology in agreement with current data [103].

An important property of the gauged Lµ−Lτ symmetry is that it does not affect the
first generation of leptons, but only muons and taus. This symmetry was introduced to
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explain an anomaly in the rare B → K∗, µ+µ− observed by the LHCb collaboration in
2013 [104]. Another motivation for the model is the possibility of an explanation for the
anomalous magnetic moment of the muon using loop-contribution of the heavy Z ′ gauge
boson present in this kind of theories [103].

The model has further been extended to include a dark matter candidate. On con-
siders dark matter candidate connected to Standard Model particles via the new gauge
interaction [105, 106, 107].

The simplified model discussed in the previous sections can be embedded in the
framework of this theory. Indeed, we consider the minimal Dark sector composed by Z ′

boson associated to the Lµ − Lτ symmetry and by Dirac fermionic dark matter which
we assume to be charged under the new local symmetry.

The dark matter phenomenology is then dictated by gauge interactions mediated
by the massive Z ′ which couples to the second and third lepton generations. All these
requirements are the same as for sec. 4.3.

Here we repeat our consideration in more rigorous way. Gauging the symmetry, the
new gauge boson couples to the Standard Model fields via the covariant derivative

Dα = ∂α + ig′qµ−τZ
′ , (4.38)

where g′ is the U(1)µ−τ coupling strength and qµ−τ the corresponding charge; the inter-
action with leptons then is

LSM ⊃ qlg
′(l2γαl2 − l3γαl3 + µRγαµR − τRγατR)Z

′α , (4.39)

where ql is the free parameter which quantifies the overall charge of the considered leptons
under the Lµ − Lτ symmetry. Making explicit the above equation

LSM ⊃ qlg
′(µγαµ− τγατ + νµγαPLντ − ντγαPLντ )Z

′α . (4.40)

dark matter, singlet under the Standard Model gauge group, is charged under this new
U(1)µ−τ as well. The gauge boson Z ′ interacts with the dark matter through

LDM ⊃ qχg
′χγαχZ

′α , (4.41)

where qχ is the dark matter charged under the U(1)µ−τ symmetry. In our case we keep
ql = 1 without loss of generality and qχ = ql or in other words we assume that Dirac
fermionic dark matter χ features a "universal coupling" to the Z ′, equal to that of leptons.

Notice that the Lagrangian is the same of eq. (4.4), except that the first generation
of leptons is excluded, and the same processes shown in fig. 4.1 are allowed. 〈σv〉 is
the same as in eq. (4.18) for 2 massless lepton final state and as in eq. (4.20) for the
production of two bosons subsequently decaying in the Standard Model particles.

Since in this model dark matter particles do not interact directly with quarks, scat-
tering off of nuclei occurs only through a loop. The basic idea is that dark matter-nucleon
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Figure 4.8: Feynman diagrams describing spin-independent dark matter-nucleon scat-
tering at the loop level. The left diagram describes one loop interaction while the other
two are 2-loop diagrams which are suppressed. Diagrams taken from [105].

scattering can be described in terms of virtual charged leptons running in the loop that
couple to both the mediator Z ′ and the photon which couples to nucleons. This process is
described by the Feynman diagrams in fig. 4.8. The 2-loop diagrams are suppressed and
therefore negligible. Adopting the result in [108], the expression for dark matter-nucleon
interaction cross section is

σSI =
1

A2

µN
9π

(
αemZg

2qχql
πm2

Z′
log

(
m2
µ

m2
τ

))2

, (4.42)

where A is the mass number, Z is the atomic number, mN is the nucleus mass, ql
and qχ are gauge-group charges. σSI is v-independent because Z ′ boson has vector-like
interactions with both the charged leptons and dark matter.

For direct detection, we have considered XENON1T upper limit. Xenon has Z = 54
and mN ' 129GeV. (4.42) has the dependence on (log(mµ/mτ ))

2 because it is a leading
log approximation to the Renormalization Group Equation [105].

We have compute the same analysis as in sec. 4.6 and 4.7 looking at how the parameter
space can be excluded via the experimental constrains described in sec. 3.4.

In the first case we have analyzed the annihilation of dark matter particles in mass
range [190− 105] GeV, assuming massless final states considering Z ′ couplings to both the
dark matter and the Standard Model with gSM = gDM = 1. The numerical simulations
has been performed with MadDM computing energy spectra of stable particles with
the PPPC4DMIDew tables [92]. Being the branching ratio the same for all the final
state leptons, we have considered 6 · 〈σv〉 of single lepton. Left panel of fig. 4.9 is a 2D
plot showing the comparison between 〈σv〉max chosen for each value of mχ, considering
different masses ofmZ′ . These values are represented via the solid bordeaux line. Looking
at intersection points of Fermi-LAT experimental upper limit and prediction for future
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Figure 4.9: Lµ − Lτ : 2 → 2 case The 2D left plot represents the comparison between
〈σv〉max chosen for each value of mZ′ (solid bordeaux line) compared with the experimen-
tal constrains, as labelled in the legend, as function of mχ. The right panel represents
the 3D colormap showing the model parameter space excluded via different experimental
upper limits, as labelled. The parameter space of the model is mostly constrained by
XENON1T and will be probed by KM3NeT (1) which incorporates both Fermi-LAT and
KM3NeT (2).

KM3NeT, labelled as in figure, and red line, we can find the following values: (i) Fermi-
LAT arrives up to 2.3 TeV, (ii) KM3NeT (1) up to 13 TeV and (iii) KM3NeT (2) up
to 5 TeV. The right panel shows the 3D plot with excluded regions. The main part of
the parameter space is excluded by XENON1T: we have used the analitic expression
of eq. 4.42 and we compared it with XENON1T upper limit. Indeed, it probes the
parameter space up to 2.2 TeV for mZ′ and mχ up to 9.8 TeV. Fermi-LAT upper limit
on 〈σv〉 excludes the region of mχ −mZ′ plane up to 0.7 TeV and 1.3 TeV respectively.
KM3NeT (2) would overlap Fermi-LAT upper limit and would arrive to exclude regions
with masses up to 1.8 TeV for mχ and mZ′ ' 3.8 TeV. The KM3NeT (1) would explore
the region with mχ ' 7 TeV and mZ′ ' 12 TeV. The black lines in the plot are only
indicative and are used just for easier reading of the colormap.

For the second case we have considered a dark matter mass in the range [500− 104]
GeV while mZ′ varies between [0.1− 240] GeV. The theoretical predictions for the veloc-
ity averaged cross sections have been done with MadDM using MadEvent for the 〈σv〉
computation and Pythia8 for the computation of energy spectra of stable particles. In
this case we have added the Sommerfeld enhancement, as described in sec. 4.7.1. We
have used both limits for the Sommerfeld factors: for a light boson with mZ′ < 0.9GeV
and high masses of dark matter mχ > 5000GeV we used S factor from Coulomb potential
being the mediator mass very light compared with the mass of dark matter. Otherwise
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Figure 4.10: Comparison of 〈σv〉 with and without Sommerfeld enhancement. The left
panel shows the results without including S, while the right one represents 〈σv〉 adding
the Sommerfeld factor. The right panel shows the typical resonant structure. Black lines
are added as a reference for the numerical values.

we considered the S factor from the Yukawa potential. Moreover, we have found the
normalization matching between two expressions eq. (4.32) and eq. (4.35), computing
both of them in a benchmark point. In left panel fig. 4.10 are compared two plots: the
left one represents 〈σv〉 with Sommerfeld enhancement factor. The enhancement of the
cross section is nearly two orders of magnitude and it shows the typical resonances due
to the Sommerfeld factor.

In the right panel of fig. 4.11 we have implemented the Fermi-LAT and XENON1T
experimental bounds and prediction for the upper limits of future KM3NeT. To compute
the scattering cross section between dark matter and Xenon nucleous we have used
eq. (4.42) with A = 131 and mN = 129GeV and we compared the result with the upper
limit for SI cross section of XENON1T experiment. This upper limit excludes the lower
part of the parameter space, constraining mZ′ masses up to 1.9 GeV. The Fermi-LAT
upper limit explores the parameter space for low values of mχ, namely up to 1.7 TeV and
mZ′ up to 17 GeV. The larger part of parameter space would be excluded by KM3NeT
(2), which would constrains mχ −mZ′ masses up to 3.5 TeV and 240 GeV respectively.

79



4.8. Lµ − Lτ GAUGE MODEL

Figure 4.11: Lµ − Lτ : 2 → 4 case 3D 〈σv〉 plot in mχ −mZ′ parameter space, where
the experimental constrains for direct and indirect detection are compared with the
theoretical predictions and to the future sensitivity of KM3NeT, as labelled. A large
part of the parameter space will be probed via KM3NeT(2), while the lower part is
constrained by the XENON1T experiment.

[109]
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Chapter 5

Conclusions and outlook

In this thesis we analyzed a spin 1-s-channel simplified model describing dark matter
annihilation into leptons through a massive Z ′ boson. We motivated our choice for lep-
tophilic model, by our interest in establishing the reach of the future KM3NeT neutrino
telescope. In particular, the neutrino energy spectrum can lead to very clear signatures
of dark matter annihilation. Moreover, this model provides an annihilation cross section
which is velocity independent and as a consequence it is not velocity suppressed.

We considered Dirac fermionic dark matter, singlet under the Standard Model gauge
group, and a Z′ massive boson which couples to both the Standard Model sector and
the dark matter sector. After having built the Lagrangian describing the interactions
between the dark matter and the Standard Model, we studied two different processes:
(i) 2 → 2 and (ii) 2 → 4.

In the first case (i), we considered the dark matter and Z ′ masses in the range
GeV-TeV and both couplings of Z ′ gSM = gDM = 1. We explored the parameter space
importing experimental constrains for indirect and direct detection: for the former we
implemented the Fermi-LAT upper limit on 〈σv〉 while for the direct detection we con-
sidered the XENON1T exclusion bound for spin independent interactions.

For second case (ii), we introduced a secluded scenario in which two mediator bosons
are produced from the annihilation of dark matter particles. These bosons subsequently
decay producing four leptons in total. For our analysis, we considered two different mass
range: (1) same settings as in case (i) and (2) mZ′ � mχ, namely a very light vector
mediator, which can give rise to Sommerfeld enhanced annihilation cross sections. In
both cases we tested how the parameter space of the sampled models can be probed by
the future neutrino telescope KM3NeT.

In the last part of our analysis, we treated the Lµ − Lτ gauge symmetry: in this
case the Z ′ is the gauge boson associated to this U(1) Abelian symmetry. Even if the
phenomenology is expected to be similar to simplified model we treat, this model is
anomaly free. We repeated an analysis similar to the case of the minimal Z ′ model,
focusing the attention on the 2 → 2 and 2 → 4 annihilation processes. We further
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implemented the experimental constrains and projections for the reach of KM3NeT for
this scenario, on the line of the above studies.

Our numerical results was obtained with the dark matter software MadDM: this
numerical tool, using an UFO model, can compute relevant observables for dark matter
detection and provide experimental constrains. Another numerical tool that we used is
runDM: being MadDM unable to handle loops, to compute the dark matter-Nucleon
interaction cross section. We run our coupling from the GeV-TeV scale of the mediator
mass down to the nuclear scale, relevant for direct detection.

For our analysis, we have used two different predictions for KM3NeT sensitivity,
considering the angular power spectrum method (a) and the prediction made with a
likelihood analysis based on the ANTARES data (b). Both of them have been considered
for 2 → 2 processes and we have found that (b) is more promising, being able to exclude
a larger region of the parameter space with masses up to 10 TeV along the resonance
region mZ′ = 2mχ, as one can see considering right panels of fig. 4.3 and 4.9. In the
case of 2 → 4 process and for the secluded model with mχ ' mZ′ , we could approximate
the energy spectra of four leptons with those of two leptons but with Z ′ mass twice
the standard case. In this case, (b) is able to exclude a larger part of the parameter
region as well, as shown in the right panel of fig. 4.6. For the secluded model with
mχ � mZ′ , we have available only the (a) prediction for KM3NeT: in both the secluded
scenario and the secluded Lµ − Lτ case, it was able to exclude the model parameter
space up to few TeV for mχ and 240 GeV for mZ′ , as shown in right panel of fig. 4.9
and fig. 4.11. KM3NeT predictions are very promising, compared with Fermi-LAT data,
being able to constrain larger regions of the parameter space; this is true for all the
considered cases. Furthermore, it is interesting to notice that XENON1T upper limits
are able to constrain large regions as well, even if the considered models are leptophilic:
the dark matter-nucleon scattering can occur only through loops. In case of simplified
model loops are independent on dark sector and are due only to Standard Model particle:
runDM provides the correct RGE for couplings. In case of Lµ − Lτ gauge symmetry,
the strongest constraint comes from the kinetic mixing between the Z ′ and the Zgauge
boson, generated at one loop level.

There are several possibilities to improve the present analysis. Concerning the theo-
retical part, one can sample other promising simplified models, as for example a t-channel
model for Dirac fermionic dark matter and a scalar mediator. This model in particular
is well motivated by supersymmetric models in which the neutralino is a pure wino and
interacts solely with the supersymmetric scalars and the fermions. Furthermore, other
well known gauge symmetries can be extended to embed a dark matter candidate: for
example, instead of gauging the lepton number symmetry, one can gauge B − L, the
difference between baryon number and lepton number, which is a global accidental sym-
metry of the Standard Model. In the latter case the couplings to quarks are turned on,
implying that the model will receive additional constraints from collider searches.

From a numerical point of view, it is possible to improve the software MadDM by
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adding the capability to compute one-loop interactions for direct detection, as these were
the leading contributions in our case. Moreover, the KM3NeT exclusion limits can be
included among the experimental constrains released with the software, once the neutrino
telescope construction is completed and it becomes fully operative.
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