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Abstract

The axion is one of the favored candidates to form the cold dark matter in the universe.
This pseudo-scalar field may form compact objects called axion stars, whose physics is
well captured by means of non-relativistic effective field theory coupled to Newtonian
gravity. The interplay between gradient energy, self-interactions and gravity gives rise to
both dilute and dense axion stars. While the existence of the dilute axion stars is well
established, the situation is more complicated in the case of the so-called dense axion
stars, an extra physically stable solution of the system of differential equations describing
the dynamics of the axion field in the regime where self-interactions play an important
role. The existence of the dense axion stars has not been settled in the literature.

In this thesis, we discuss first the appropriate non-relativistic formalism for the study
of these clumps by means of the various non-relativistic reductions found in the literature.
We analyze the stability, for different sizes and number of particles, of these objects
considering quartic self-interaction potentials. This allows us to corroborate the results
for these cases already presented by other authors. We also go beyond the simplest case,
by analyzing more complicated potentials describing with higher precision the axion
self-interactions. By employing the correct non-relativistic axion effective field theory
we show that the dense branch is an artefact of the non-relativistic reduction procedure.
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Chapter 1

Introduction

The relevance of the scalar fields in our description of the universe has grown over
the years. The most relevant one among them is the Higgs field. In the mechanism
suggested by Higgs [1] and Anderson [2] for the introduction of mass in a theory (the
so-called Higgs mechanism, see Chapter 10 in [3] for further details). Crucial for a
theoretical completeness of the Standard Model of particle physics (SM), its existence
was experimentally demonstrated in 2012 [4].

However, there are several reasons for the existence of other spin-0 fields in nature.
One of them is the so-called inflaton [5, 6]. This scalar field is central in the most ac-
cepted solution for the fine tunning problems of conventional Big Bang theory, this is,
the high homogeneity in the different causally disconnected patches of the early universe
and the necessity of a very concrete initial conditions to obtain the current structure
of our universe at large scales [7]. These issues are fixed by introducing an exponential
expansion period called inflation. The simplest models describing this early period in-
clude a single scalar field φ, the already mentioned inflaton, whose dynamics are fully
determined by the potential V (φ) describing its self-interactions. Its particular shape
continues being discussed and diverse models have been introduced, as natural inflation,
whose potential shows a cosine shape, or others with more complicated forms as the
Coleman-Weinberg potential [8].

Scalar can be also relevant in the context of cold dark matter (CDM). Since dark
matter was postulated by F. Zwicky in 1933 [9] and S. Smith in 1936 [10], many ex-
perimental evidences of its existence have been accumulating, such as the flat galactic
rotation curves (see [11] and references therein), the Chandra satellite X-rays observa-
tions [12] or the circular gravitational lensing images [13]. However, the particle physics
origin of the CDM remains unknown. Currently, the possible candidates include inco-
herent spin-0 particles or coherent oscillations of scalar fields, to name a few. In the
former category we have the weakly interactive massive particles (WIMP) or their de-
caying products and in the latter the bosonic collective motion of particles such as the
axion. Both of them arise in different extensions of the SM as remarkable solutions for
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diverse issues. Unification of couplings and the hierarchy problem, for instance, require
certain kinds of WIMP. On the other hand, the strong CP problem and the unification
with gravity within string theory are deeply related with axions.

So far, the direct detection of the WIMP in the different colliders or through other
kind of experiments has been unsuccessful in its most highly motivated regime of the
parameter space. Nonetheless, in the case of axions, its more obvious regime has not been
fully explored up to now, although different experiments in this direction are planned.
Henceforth we are going to center our analysis in the axion.

An example of this pseudo-scalar field, whose existence is solid from a theoretical
point of view, is the so-called QCD axion. Particularly, its existence was suggested as
a consequence of the introduction of the Peccei-Quinn mechanism, the most accepted
solution to the so-called strong CP problem of QCD. More in detail, the spontaneous
breaking of the Peccei-Quinn symmetry U(1)PQ at a scale of the axion decay constant
f ∼ 1011 GeV, leads to the appearance of this pseudo-Goldstone boson [14, 15].

Nevertheless, during the rest of this discussion, we will not be focused on this axion
specifically. In our case we are going to consider always a generic axion field in diverse
momentum regimes giving a more general view, easy to particularize in future work for
a specific case, such as the already mentioned QCD axion.

To be more concrete, our analysis will be centred in certain hypothetical objects
composed by axions, the so-called axion stars. They are included in a bigger category
of compact clumps, the solitons, which are physically stable solutions of the equations
of motion of scalar fields in general. They are divided in two subcategories. If their
stability is ensured by the existence of a topological charge, we talk about topological
solitons, such as vortexes or kinks. If not, we have the so-called non-topological solitons.
In the later case, the stability is ensured by the conservation of a Noether charge. A
slightly different kind of object is also included here, the so-called non-topological pseudo-
solitons, which are just meta-stable instead. This kind of objects are long-lived due to
approximate symmetries, as we are going to discuss later.

In particular, among the diverse possible non-topological (pseudo-)solitons, we will
consider the ones composed by just one single scalar field or scalar stars, which are also
divided in

– Complex Scalar Stars:

Solitons composed by a single complex scalar field with a L showing an explicit
U(1) symmetry, which ensures their stability.

� Q-balls : Complex scalar stars arising in the regime in which gravity is negli-
gible and the gradient energy is compensated by attractive self-interactions.

� Bosons stars : Complex scalar stars appearing in the regime in which gravity is
relevant and compensates the gradient energy. Self-interactions could be also
present and their intensity is linked with the mass of these compact objects,
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in such a way that weak self-interaction lead us to the so-called Mini-bosons
stars

– Real Scalar Stars:

Pseudo-solitons composed by a single real scalar field. Although their L does not
present any conserved quantity, they are extremely long-lived, as shown in many
numerical simulations [16].

� I-balls/Oscillons : Real scalar stars arising in the regime in which gravity is
negligible and the gradient energy is compensated by attractive self-interactions.
A typical example of an object of this category are the so called Moduli stars
[17, 18], whose scalar field is a moduli field, common in string theory.

� Oscillatons : Real scalar stars appearing in the regime in which gravity is rel-
evant and compensates the gradient energy. Self-interactions are also present
and will play a crucial role in the meta-stability regimes of these objects.
Axion stars are considered in this category.

The meta-stability of real scalar stars is at first sight problematic. As the Lagrangian
does not present any evident symmetry we could expect no formation of such a compact
objects. This statement is refuted by numerical simulations which do not only support
their existence, but also prove them really long-lived.

This issue was studied in detail at [19]. In their effective field theory, Mukaida et al.
separate relativistic and non-relativistic modes of the axion field. Then the former are
integrated out and the resulting non-relativistic effective field theory shows an approx-
imate global U(1) symmetry. Now, we have two conserved quantities: the energy and
charge associated to this already mentioned symmetry. The justification for this treat-
ment is also given, as it is demonstrated that the decay rate induced by the imaginary
part is much slower that the frequency of the typical solutions for the QCD axion. Thus,
at each time step, we can safely regard its energy and charge as conserved quantities,
discussing its decay as an adiabatic process.

More in detail, these compact objects are nothing but a type of Bose-Einstein conden-
sates (BEC) or axion BEC in our case. The existence of this kind of axion condensates
has been suggested by various authors [20, 21] with their stability being linked with the
interplay between self-interactions and gravity. Even though they are expected to be
formed in the early universe, leaving a signature in the form of background gravitational
waves (GW), their appearance at later times is not discarded, being in this case part of
the current CDM forming the universe.

Concerning the characteristics of this axion BEC, its most relevant properties are
linked with the fact that we are not talking about a conventional BEC with a long range
order but about a type of localized clump [22]. This BEC formation is directly associated
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with the fact that the ground state is a bound state due to the attractive nature of either
gravitation and self-interactions. In [20, 23] the idea of gravitational interactions leading
axions in the early universe to thermal equilibrium is introduced. This thermalization
may produce these BEC and also drive them locally towards the lowest-energy accessible
state.

We study the stability of these condensates considering the quartic potential, going
also beyond this simplest case, repeating our analysis for more complicated potentials
describing with higher precision the axion self-interactions.

The outline of our discussion is as follows: In Chapter 2 we will review the proper
formalisms for the study of the axion field in the diverse momentum regimes paying
special attention the diverse non-relativistic reductions present in the literature. In
Section 3.1 the equations describing the dynamics of the axion will be introduced. In
Section 3.2 and 3.3, we will consider the simplest self-interaction potentials and study the
stability regimes of the axion stars in these cases. Finally, in Section 3.4, we will consider
more complicated and accurate non-relativistic self-interaction potentials, allowing us
to probe the dense branch of solutions and to show that it is an artefact of the non-
relativistic reduction procedure.
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Chapter 2

Non-relativistic Reductions

The theoretical framework for the proper study of axions, depends mainly on the mo-
mentum scale. For momenta small compared with the axion decay constant (f) but
higher the axion mass (ma), the axion is represented by an elementary quantum real
Lorentz scalar field φ(x). In this interval, it presents local self-interactions generated by
a periodic potential V(φ) and it is perfectly described by means of relativistic effective
field theory.

On the other hand, when we consider a momentum scale below the axion mass
ma, a non-relativistic effective field theory treatment (NREFT), also called axion EFT,
captures in a simpler way its properties. Here instead of a real field, the axion will be
represented by an elementary complex scalar field ψ(x), with self-interactions generated
by an effective potential V(ψ∗ψ).

Even if the last regime is most relevant one for our discussion, we are going to review
first the former regime and the relativistic effective field theory describing the axion field
on it, as it will be the starting point for the axion EFT.

After that, we will be fully concentrated in the lower momentum regime, paying
special attention to the non-relativistic reduction, this is, to how could we obtain our
complex scalar field ψ(x) from the relativistic real scalar field φ(x) in an accurate manner.
Along with this non-relativistic reduction, the specific shape of the already mentioned
effective potential will be obtained. At last, we will consider different formulations
proposed by diverse authors, which have been shown equivalent, for the calcultation of
valid non-relativistic reductions.

One of the main applications of this NREFT treatment, concerns axionic dark matter.
The non-relativistic axions produced by the vacuum misalignment mechanism presents
huge occupation numbers, so they are commonly described by means of a real-valued
classical field φ(r, t) that evolves according to relativistic field equations. Nevertheless, if
axions form a BEC, they will be readily treated by means of a complex-valued classical
field ψ(r, t) with an evolution described by the non-relativistic field equations of axion
EFT. In general, many of the theoretical problems concerning axionic dark matter could
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be faced more appropriately by means of axion EFT.

2.1 Relativistic Axion Field Theory

As said, for momenta between the axion decay constant f and the axion mass ma, the
axion could be studied easily by means of relativistic field theory treatment, represented
by a real scalar field φ(x) with self-interactions mediated by a relativistic axion potential
V(φ). The Lagrangian density describing this scalar field and its self interactions in this
interval will be then

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − V(φ) (2.1)

by means of Legendre transformation, the Hamiltonian density may be also obtained,
taking the form

H =
1

2
φ̇2 +

1

2
∇φ∗.∇φ+ V(φ), (2.2)

being the axion potential a periodic function of φ(x) in such a way that V(φ) = V(φ +
2πf).

In our treatment we are going to account only for field theories with a Z2 symmetry,
so that the relativistic potential is going to be an even function of the scalar field. By the
right election of an additive constant, we are able to ensure a minimum of the potential
equal zero at φ = 0.

The starting point for the axion self-interactions is the so-called instanton potential

V(φ) = m2f 2[1− cos(φ/f)]. (2.3)

This relativistic potential was first derived by Peccei and Quinn [24] for the QCD
axion in two different ways: keeping only terms that are leading order in Yukawa coupling
constants and in the self-interaction coupling constants for the complex scalar field with
U(1)PQ, or at all orders in the coupling constants by means of the dilute instanton gas
approximation. As none of them is fully valid, and there is no way to systematically
improve upon them, the instanton potential should be seen, at best, as a model giving
just a qualitative picture of axion self-interactions in this momentum regime.

Other options for this potential have been also suggested, as the chiral potential [25],
but they are also limited approximations.

The power-series expansion of the instanton potential in powers of φ2 will take the
form

V(φ) = m2f 2

∞∑
n=2

λ2n
(2n)!

(
φ2

f 2

)n
, (2.4)

being the coefficients λ2n dimensionless coupling constants.
Notice that f , being positive definite, give us a loop-counting device: if the relation

m/f is small, loop diagrams are suppressed by a factor of m2/f 2 for every loop. This is
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the main reason why, in the case of the QCD axion for example, the relativistic axion
field theory can be treated as a classical field theory, as this already mentioned factor is
roughly 10−48 in that case.

The dimensionless coupling constants λ2n for the axion self interactions, defined pre-
viously in (2.3), are found to be λ2n = (−1)n+1. As λ4 = −1, the axion pairs self-
interactions are attractive.

2.2 Non-relativistic Axion Effective Field Theory

Before considering this new momentum regime below the axion mass ma, a brief comment
is needed concerning the non-relativistic reduction of a real scalar field φ(x) by means
of a complex scalar field ψ(x).

At first sight, one may think that, as the real and imaginary parts of the complex
scalar field are in fact two fields, we are describing a different number of degrees of
freedom before and after this reduction, what makes no sense.

However, this is not the case. The crucial point to understand why, lies in the fact
the relativistic equations of motion for the real scalar field are second order in time
derivatives, while for the complex scalar field, the non-relativistic equations of motion
are instead first order in time. As it is known, the number of propagating degrees of
freedom in the former case is equal to the number of real fields, while in the last case it is
equal to half the number of real fields, what makes this real to complex non-relativistic
reduction perfectly valid.

Having clarified this point and as a first step, lets consider what will be called the
naive non-relativistic reduction. In this case, the relation between the real and complex
scalar fields is simply

φ(r, t) =
1√
2ma

[ψ(r, t)e−imat + ψ∗(r, t)eimat], (2.5)

where ψ(r, t) is a slowly varying complex scalar field.
Performing this transformation in the original Lagrangian (2.1) and dropping the

rapidly oscillating terms, we obtain a Lagrangian density of the form

Lnaive =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)− 1

2ma

∇ψ∗.∇ψ − Vnaive(ψ∗ψ) (2.6)

Something similar is done concerning Vnaive(ψ∗ψ). Once again, if we drop the terms
containing a rapidly oscillating phase factor einmt, being n a nonzero integer, and also
the terms proportional to ψ̇ and ψ̇∗, the nth term in the power series expansion (2.4) will
be (

φ

f

)2n

=
(2n)!

(n!)2

(
ψ∗ψ

2maf 2

)n
(+ rapid oscillations).
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Considering this the naive potential will take the form

Vnaive(ψ∗ψ) = m2
af

2

∞∑
n=2

λ2n
(n!)2

(
ψ∗ψ

2maf 2

)n
. (2.7)

Here, only the first order term in the expansion (2.7) will lead us to the right coeffi-
cient as it will be clearly seen when we compare it with the effective potential obtained
using effective field theory matching methods. More specifically, what will be done is to
assume the general form of the effective potential in a power-series expansion and each
term’s coefficient is going to be obtained by matching low-energy n → n axion scatter-
ing amplitudes. With this objective, the procedure exposed in [25] (together with some
corrections subsequently introduced in [26]) will be followed. Moreover, we are going
to consider other two completely different treatments, leading to valid non-relativistic
reductions, which are later shown as equivalent.

The effective Lagrangian density in axion EFT, a non-relativistic effective field theory
describing the axion field and its self-interactions at momentum scales smaller than the
axion mass ma, takes the form

Leff =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)−Heff (2.8)

where Heff depends on ψ∗, ψ and their spatial derivatives. The term explicitly shown
in Leff is the only one containing time derivatives. The effective Lagrangian density
presents a global U(1) symmetry in which the field ψ(x) is multiplied by a phase. The
invariance under this transformation suggest that every term in Leff must present equal
number of factors of ψ and ψ∗. In this spirit, we will refer to a term with n factors of ψ
and n factors of ψ∗ as a n-body term.

The effective Hamiltonian density in (2.8) is

Heff = Teff + [Veff +Weff ]− i[Xeff + Yeff ]. (2.9)

In particular all the 1-body terms, with two gradients or more at each term will be
contained in the first addend of the Hamiltonian density, generally called kinetic energy
density Teff . The other four addends are interaction terms which are 2-body or higher,
may be separated in two groups, each one with its real and an imaginary part. While
the effective potential Veff − iXeff is a function of ψ∗ψ, the term Weff − iYeff have at
least two gradients acting on ψ and ψ∗.

Just by analyzing the kinetic energy density, we have an idea of the limitations of
the previous naive reduction. This first term of Heff is

Teff =
1

2ma

∇ψ∗.∇ψ − 1

8m3
a

∇2ψ∗.∇2ψ +
1

16m5
a

∇(∇2ψ∗).∇(∇2ψ) + ... (2.10)
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As may be easily seen, Lnaive contains only the first term in Teff , this is, just the
one body term with two gradients, what makes the naive non-relativistic reduction lead
to a poor reproduction of the relativistic energy momentum relation E =

√
m2
a + p2.

On the other hand, taking into account that the dots in (2.10) stand for terms with
higher number of gradients, the axion EFT Lagrangian density will reproduce the already
mentioned relation accurately at higher orders in p2/m2

a. In [25], only the first term in
the kinetic energy density was included, being corrected later in [26].

Lets focus now on the rest of Heff . In particular, for the derivation of the real part of
the effective potential, EFT matching methods are going to be used. Our first step will
be to assume that low-energy axions could be described by means of the the Lagrangian
for the relativistic real scalar field φ(x) (2.1) and by the effective Lagrangian for the
non-relativistic complex field ψ(x) on axion EFT (2.8), in an precise and equivalent
manner.

More specifically, Veff will be also expressed as a power-series expansion

Veff (ψ∗ψ) = m2
af

2

∞∑
j=2

vj
(j!)2

(
ψ∗ψ

2maf 2

)j
, (2.11)

and what will be determined by matching low-energy scattering amplitudes in the rela-
tivistic theory and in axion EFT will the coefficient of each term.

In this process, we consider only tree diagrams. This assumption is in principle
well justified for specific case as the QCD axion. For it, loop diagrams are suppressed
in relativistic theory, being only necessary to match the contributions to low-energy
scattering amplitudes from tree-level diagrams in the relativistic theory with tree-level
diagrams in axions EFT. In the situations in which this assumptions is not justified, the
loop diagrams should be also considered in the calculations of the coefficients presented
below.

Some clarifications are also needed concerning the expansion (2.11). First of all, stress
that an additive constant have been included in Veff in such a way that the potential
presents a minimum of zero at ψ∗ψ = 0. Also say that, in [25], the mass-energy term
maψ

∗ψ was included in the effective potential. With this, the equations of motion include
a term with the form ψ(r, t)eimat, having large frequencies of order ma. Nevertheless,
in EFT seems more appropriate to eliminate the scale ma, in such a way that ψ(r, t)
presents only frequencies much smaller than ma.

Now, in order to give a more clear vision of the already mentioned matching process,
we are going to consider the calculation of the three first coefficients, this is v2,v3 and
v4. However, nothing stop us to continue to higher vn.

Concerning the very first coefficient, the only contribution at tree-level comes from
the 2 → 2 vertex diagram. While the Feynman rule for that vertex in the relativistic
theory is −iλ4m2

a/f
2 in axion EFT will be −i(4m2

a)v2/4f
2, where squared axion mass

factor arises to keep the standard relativistic normalization of single-particles states in
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Figure 2.1: The tree-level diagrams for low-energy 3 → 3 scattering in the relativistic
axion theory. The thicker line appearing in the last diagram represent virtual axion with
∼ 3m. Figure obtained from [25].

the scattering amplitude, multiplying by four factors of
√

2ma. Matching the scattering
amplitudes, we obtain

v2 = λ4. (2.12)

Slightly more complicated are the next two coefficients. For v3 we have to consider
obviously the 3 → 3 axion scattering amplitudes. The tree-level diagrams for 3 → 3
axion vertexes are shown in Figure 2.1. The first diagram is simply the 3 → 3 vertex.
In the second one, a virtual axion line connects the two 2→ 2 vertices.

While the former two diagrams contribute to the axion EFT, the last one do not, as
the virtual axion line connecting both vertexes is in fact relativistic, with ∼ 3ma. The
third diagram has 3 axions scattering into a single virtual axion and then back into three
axions. The matching procedure, as previously done for the previous v2, lead us to

v3 = λ6 −
17

8
λ24. (2.13)

At last, v4 is determined by matching the 4→ 4 scattering from the tree-level diagrams
in Figure 2.2. From these 11 diagrams only 6 of them contribute to axion effective field
theory, for the already mentioned reason. The value for v4 will be

v4 = λ8 − 11λ4λ6 +
125

8
λ34. (2.14)

As said before, simply by comparing these coefficients with obtained for the naive
potential, we see once again the limitations of that non-relativistic reduction, as it leads
to the correct result just for the first coefficient v2 as may be seen in (2.12). The other
two, and presumably any other at higher order, are not correctly calculated as (2.13)
and (2.14) suggest.

The final form for Veff is then

Veff (ψ∗ψ) =
λ4

16maf 2
(ψ∗ψ)2 +

[
λ6 −

17

8
λ24

](
(ψ∗ψ)3

288maf 4

)
+

+

[
λ8 − 11λ4λ6 +

125

8
λ34

](
(ψ∗ψ)4

9216m2
af

6

)
+ ... ,

(2.15)
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Figure 2.2: The tree-level diagrams for low-energy 4 → 4 scattering in the relativistic
axion theory, where only the first 6 diagrams are also diagrams in axion EFT. The thicker
line appearing in the last 5 diagrams represent virtual axion with ∼ 3m. Figure obtained
from [25].

where the dots stand for higher order terms.
Before conclude this section, a brief comment concerning the imaginary part of the

interaction terms is necessary. The imaginary terms iXeff and iYeff are the only two
non-Hermitian addends (being in fact anti-Hermitian) of the Hamiltonian density Heff .
In their absence, a global U(1) symmetry will be present and the particle number

N =

∫
d3r ψ∗ψ, (2.16)

should be conserved.
Because of this, the rate of decrease in the particle number will be directly linked

with them, in such a way that

d

dt
N = −2

∫
d3r [X ′

eff (ψ
∗ψ)ψ∗ψ + ... ], (2.17)

being X ′

eff the derivative of Xeff with respect to ψ∗ψ and where the dots stand for
additional terms linked with the interaction terms in Yeff , with gradients of ψ and ψ∗.

2.3 Improved effective potentials

In general, if ψ∗ψ is much less than maf
2, truncate the power-series expansion defining

the effective potential Veff (2.11) at a certain power (as for instance keeping only the
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terms explicitly shown in (2.15)) it is, considering enough terms, a good approximation.
On the other hand when this is not the case, we need to keep terms of each power

of ψ∗ψ. A first approximation to the effective potential for the axion EFT that includes
terms of all orders in ψ∗ψ is calculated from the previous naive non-relativistic reduction.

In [25], Braaten et al. denote the naive effective potential (2.7) as V(0)
eff (ψ

∗ψ). This
suggest that it will be taken as the first of a series of improved effective potentials.

The crucial point to understand this identification lies in the fact that the naive
effective potential may be obtained by approximating the coefficients in the power series
(2.11) for the effective potential Veff by v

(0)
n ≡ λ2n. In EFT, this is equivalent to matching

the contributions to the n → n scattering amplitudes, at all n, only for diagrams with
no virtual propagators. These diagrams are the 2n axion vertex in the relativistic theory
and the n→ n vertex in axion EFT. In the cases of n = 3 and n = 4 they correspond to
the first diagrams in Figure 2.1 and Figure 2.2 respectively.

So, matching the n→ n scattering amplitude for all n, considering diagrams with at
most k virtual propagators, we are able to define a series of effective potentials V(k)

eff , being
k = 0, 1, 2, .... As said before, the non-relativistic reduction potential or naive potential
V(0)
eff will be the first term of this series, with k = 0, and the rest of the potentials V(k)

eff

with k ≥ 1, are the so called improved effective potentials, defined as

V(k)
eff (ψ

∗ψ) = m2
af

2

∞∑
n=2

v
(k)
n

(n!)2

(
ψ∗ψ

2maf 2

)n
. (2.18)

In general, the coefficients v
(k)
n agree with the exact coefficients vn for n = 2, ..., k +

2. Considering this, as k increases, the different V(k)
eff (ψ

∗ψ) will be more accurate at
large ψ∗ψ, as bigger classes of diagrams are summed. At last, we expect the sequence
V(k)
eff (ψ

∗ψ) to converge to Veff as k →∞, as all diagrams are included in this limit.
See [25], for the details concerning the explicit calculation of the first improved effec-

tive potential V(1)
eff (ψ

∗ψ).

2.4 Other Classical Non-Relativistic EFT

Even though the derivation we have just presented is perfectly complete and correct,
other diverse classical non-relativistic effective field theories (CNREFT) have been sug-
gested, being their equivalence shown explicitly in [26]. In this section, we are going
to briefly review the main characteristics and the effective Lagrangian of two of them:
the non-local field transformation of Namjoo, Guth and Kaiser [27] and the Mukaida,
Takimoto and Yamada CNREFT [19].
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2.4.1 Non-Local Field Transformation

The main innovation introduced in [27] was an exact but non-local transformation be-
tween a relativistic real valued scalar field φ(x) and a complex field ψ(x). In particular,
they consider a relativistic scalar field of mass m and a λφ4 self-interaction described by

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4, (2.19)

with canonical momentum field π(x) = φ̇(x).
By contrast the Lagrangian density for a free non-relativistic field will be

L =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)− 1

2m
∇ψ∗.∇ψ, (2.20)

with an explicit global U(1) symmetry, linked with the particle number conservation, as
expected. Here, ψ(x) and ψ∗(x) obey the standard Poisson bracket relation, what means
that the standard commutation relations, when quantized, will be fulfilled.

As a starting point in the process leading us to this new non-local reduction, lets
consider once again the naive non-relativistic reduction (2.5). Even though, is not usually
written explicitly, the uniqueness of ψ(r, t) demands a similar relation concerning the
canonical momentum field,

π(r, t) = −i
√
m

2
[ψ(r, t)e−imt − ψ∗(r, t)eimt]. (2.21)

The systematical way of obtaining the relativistic corrections to the non-relativistic
theory suggested by Namjoo et al. consist in a similar non-relativistic reduction with a
non-local field operator, this is

φ(r, t) =
1√
2m
P−1/2[ψ(r, t)e−imt + ψ∗(r, t)eimt] (2.22)

π(r, t) = −i
√
m

2
P1/2[ψ(r, t)e−imt − ψ∗(r, t)eimt], (2.23)

where we have that

P ≡
√

1− ∇
2

m2
, (2.24)

being mP the total energy of a free relativistic particle.
The crucial fact which needs to be understood at this stage is that, in the non-

relativistic limit, the new fields ψ(x) and ψ∗(x) will be well behaved despite the non-local
operator, as in this limit the operator P could be expanded in powers of ∇2/m2. Notice
also that, considering just the leading order in this expansion of the non-local operator
P , we recover the naive non-relativistic reduction.
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Once this has been clarified, it is straightforward to obtain the equation of motion
for ψ(r, t), this is

iψ̇ = m(P − 1) +
λeimt

24m2
P−1/2[e−imtP−1/2ψ + eimtP−1/2ψ∗]3, (2.25)

and the Lagrangian density for this non-local formulation will be

L =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)−mψ∗(P − 1)ψ − λ

96m2
[e−imtP−1/2ψ + eimtP−1/2ψ∗]4. (2.26)

Now, lets try to obtain the description for this model in the non-relativistic regime.
In general, the objective is to take the non-relativistic limit but incorporating relativistic
corrections systematically. So, apart from expanding the non-local operator P in powers
of∇2/m2, it is necessary to account for the effect of fast-oscillating terms on the behavior
of the slowly varying field.

The idea introduced in [27] is to construct a perturvative approach, which considers
the contribution to the time evolution of the slowly varying portion of the field ψ(x) of
the fast-oscillating terms.

The final form of the resulting effective Lagrangian will be

Leff =
i

2
(ψ∗s ψ̇s − ψ̇s

∗
ψs)−

1

2m
∇ψ∗s .∇ψs −

λ

16m2
|ψs|4+

+
1

8m3
∇2ψ∗s .∇2ψs −

λ

32m4
|ψs|2(ψs∇2ψ∗s + ψ∗s∇2ψs) +

17λ2

2304m5
|ψs|6,

(2.27)

where ψs is the ν = 0 mode in the expansion

ψ(r, t) =
∞∑

ν=−∞

ψν(r, t)e
iνmt, (2.28)

being each ψν(r, t) slowly varying on a time scale of the order m−1, and

ψν=0(r, t) ≡ ψs(r, t). (2.29)

Notice that the effective Lagrangian for ψs(x) in (2.27) presents interaction terms
that lead us both to 2 → 2 and 3 → 3 scatterings. Also, including more terms of the
iterative expansion (2.28) for ψν(x) with ν 6= 0 would lead us to operators in Leff for
each n→ n for n > 1.

The final effective Lagrangian obeys a global U(1) symmetry and this characteristic
holds at all orders in the NREFT. Processes as 4 → 2 scattering, in which the two
outgoing particles are relativistic, with energies E � m, lie beyond the validity of Leff .

At last, in [27], an application of this treatment for case of the QCD axions in the
non-relativistic limit is presented, compared first with the one reviewed preivously [25]
and also, in Appendix C, with a different treatment introduced in [19] that we are going
to review in the next subsection.
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2.4.2 MTY Effective Theory

Mukaida et al. [19] consider instead the following relativistic real scalar field theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − Vint(φ), (2.30)

being φ(x) the real scalar field with mass m and Vint the interaction term.
Their method consists in the derivation of an effective field theory which describes

the non-relativistic behaviour of φ(x) by integrating out the relativistic modes from the
Lagrangian.

For this propose, the scalar field is separated in two parts, one of them completely
non-relativistic and the rest

φ(x) = φnr(x) + δφ(x), (2.31)

being

φnr(x) ≡
∫
K∈nr

dK e−iKxφ(K), (2.32)

δφ(x) ≡
∫
K∈nr

dK e−iKxφ(K). (2.33)

with Kµ = (k0, k). Here, nr indicates the region close to the on-shell poles of non-
relativistic excitations, i.e., nr ≡ {(k0, k|±k0 ∼ m+O(mv2), k ∼ O(mv)} with |v| � 1.
nr is defined as the complementary set.

φ(K) is the Fourier coefficient of the real scalar field, which satisfies φ(K) = φ∗(−K).
The non-relativistic part of the scalar filed φnr(x) is expressed as a function of the a
complex scalar field ψ(x) by means of the naive non-relativistic reduction (2.5).

Concerning the interaction potential, it will present a minimum at φ = 0 with the
usual expansion in even powers previously presented. The case with an extra cubic term
is also treated in the original paper.

Once the complex field has been properly re-scaled in such a way that the coefficient
of the ∇ψ∗.∇ψ term is the usual −1/2m, the real part of the MTY effective Lagrangian
will be

Re[LMTY ] =
i

2
(ψ∗ψ̇ − ψ̇∗ψ) +

1

2m
ψ̇∗ψ̇ − 1

2m
∇ψ∗.∇ψ − VMTY −WMTY , (2.34)

where VMTY is a function of ψ∗ψ and WMTY consist of terms with gradients or time
derivatives of ψ(x) and ψ∗(x). Both of them are explicitly shown in [26].

Even though the form of LMTY seems to the differ at first sight from Leff (2.8), as the
former contains, among other things, a term with two time derivatives, these two effective
Lagrangian are shown equivalent in Section V of [26] as they lead to the same T -matrix
elements. The discrepancy is shown to be simply due to a different definition of the
complex field ψ(x) and the redefinition needed to obtain the same effective Lagrangian,
following any of the two paths, is also given.
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Chapter 3

Scalar Stars

Now that we have clarified the main points concerning the non-relativistic reduction and
the axion EFT, we are ready for the analysis of the meta-stability of the axion stars. It
will be performed by means of the non-relativistic effective field theory, well justified as
said before, while we work in the momentum regime below the axion mass.

In this chapter we will first obtain the so called Schrodinger-Newton system of equa-
tions, crucial for the study of the stability regimes of the scalar and axion stars. After
that we are going to perform our analysis considering diverse self-interaction potentials,
from the simplest cases to others containing higher order terms.

3.1 Schrodinger-Newton equations

For the moment, we are going to consider the naive non-relativistic reduction (2.5). Its
use is justified by the fact that, for now, we are going to take only the leading non-linear
term in potential (2.7). As previously calculated in (2.12), the first coefficient obtained
by means of this naive relation coincide with the exact one, obtained by means of axion
EFT.

The Lagrangian describing the dynamics of the axion is very similar to (2.6) but con-
sidering the weak field Newtonian metric g00 = 1 + 2ϕN(ψ∗, ψ), being ϕN the Newtonian
potential, to account for the gravitational effects

Lnaive =
i

2
(ψ∗ψ̇ − ψ̇∗ψ)− 1

2ma

∇ψ∗.∇ψ − Vnaive(ψ∗ψ)−maψ
∗ψ ϕN(ψ∗, ψ). (3.1)

Here, axion self-interactions will be generated in the relativistic regime by the in-
stanton potential (2.3), and then the power-series expansion of the cosine leads us to
λ4 = −1. Therefore the leading non-linear term in the non-relativistic potential is

Vnaive(ψ, ψ
∗) = −ψ

∗2ψ2

16f 2
. (3.2)
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By performing a Legendre transformation, the total naive Hamiltonian can be ex-
pressed by the sum of three terms

Hnaive = Hkin +Hint +Hgrav, (3.3)

where

Hkin ≡
1

2ma

∫
d3x ∇ψ∗.∇ψ, (3.4)

Hint ≡
∫
d3x Vnaive(ψ, ψ

∗), (3.5)

Hgrav ≡ −
Gm2

a

2

∫
d3x

∫
d3x

′ ψ∗(x)ψ∗(x
′
)ψ(x)ψ(x

′
)

|x− x′|
, (3.6)

where G is the gravitational constant. Hkin, Hint and Hgrav represent the kinetic energy,
the self-interaction energy and the gravitational energy, respectively and an overall rest
mass energy term has been dropped, as it leads merely to a constant.

The full equation of motion will be

iψ̇ = −∇
2ψ

2ma

−Gm2
aψ

∫
d3x

′ ψ∗(x
′
)ψ(x

′
)

|x− x′ |
− ∂

∂ψ∗

(
ψ∗2ψ2

16f 2

)
. (3.7)

In order to describe the full non-linear evolution of the axionic field, with the added
assumption of spherical symmetry, we solve the system of coupled equations formed by
the previous equation of motion for the axion field (3.7) together with the Poisson equa-
tion for the Newtonian potential, the so-called Schrodinger-Newton system of equations
with the form

i
∂ψ̃

∂t̃
= − 1

2r̃

∂2

∂r̃2
(r̃ψ̃) + ϕ̃N ψ̃ −

1

8
|ψ̃|2ψ̃ (3.8)

1

r̃

∂2

∂r̃2
(r̃ϕ̃N) = 4π|ψ̃|2 (3.9)

where ψ̃(r̃, t̃) represents the axion field, ϕ̃N(r̃, t̃) the Newtonian potential and r̃ and t̃
are the radial and time variables. All the variables have been rendered dimensionless by
means of suitable rescalings.

In Section 4 of [16], this system of coupled differential equations is solved numerically
using the Crank-Nicholson method.

In our case, we are going to assume that the ground state configuration takes the
form

ψ(r, t) = ψ(r)e−iµt (3.10)

being µ the chemical potential. Here the radial and time dependence have been separated,
being the first concentrated in ψ(r), while the time dependence lies in the exponential.
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The assumption of spherical symmetry is both driven by simplicity and by the fact
that such configurations are the lowest energy states of the system. As in the well known
case of the Hydrogen atom, the ground state is in fact spherically symmetric while the
non-spherically symmetric eigenstates, with Ylm and l > 0, have higher energy. Also,
as this discussion concerns a scalar field, there is no mechanism to spontaneously break
the spherical symmetry of the ground state, as could occur for a vector field. As we will
be mainly focused in this ground state with a fixed N , the spherical symmetry will be
guaranteed.

With these assumptions we now have to solve the stationary version of this system
of coupled differential equations

Ẽψ̃ = − 1

2r̃

∂2

∂r̃2
(r̃ψ̃) + ϕ̃N ψ̃ −

1

8
|ψ̃|2ψ̃ (3.11)

1

r̃

∂2

∂r̃2
(r̃ϕ̃N) = 4π|ψ̃|2 (3.12)

being Ẽ the dimensionless energy eigenvalue.
To solve this system of non-linear coupled differential equations, we are going to use

the procedure introduced by Moroz et al. in [28]. In the next subsection, we will review
the details of this method and its application to a simpler case of the Schrodinger-Newton
equations, that is, the same system of equations but with negligible self-interactions,
eliminating the last term in (3.11). Once these details are clear, this procedure will be
used to obtain the axion field solution of the system of equations (3.11) and (3.12), paying
special attention to the difference between both cases. After that, by means of diverse
ansatzs for the radial part of the solution, we are going to find an analytical version
of the Hamiltonian, which will allow us to study the physical stability of the solutions.
At last, we will study the phase diagram, where the stability regimes are shown. This
full analysis will be repeated in the case with a single self-interaction term of equations
(3.11) and (3.12), but also considering more complicated self-interactions potentials.

3.2 Negligible Self-interactions

Although the Schrodinger-Newton equations emerge in [28] in the context of a totally
different problem, the procedure proposed will be fully applicable to our case. In partic-
ular, this system of equations is introduced in the context of quantum state reduction.
The original shape of this pair of partial differential equations (equation (1a) and (1b)
in the already mentioned paper) is

Eψ = − ~2

2m
∇2ψ + ϕNψ, (3.13)

∇2ϕN = 4πγ|ψ|2, (3.14)
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where the notation has been adapted to coincide with the previous one. Here, γ = Gm2

and being ~ the reduced Plank constant.
As a first step, we are going to redefine the two variables as

ψ(x) = αS(x), (3.15)

E − ϕN(x) = βV (x), (3.16)

where α and β are constants defined as

α ≡
[

~2

8πG3

]1/2
, (3.17)

β ≡ ~2

2m
. (3.18)

Assuming also, without loss of generality, that ψ(x) is real, we find that the Schrodinger-
Newton system can be recast as

∇2S = −SV, (3.19)

∇2V = −S2. (3.20)

Note that there is a scale invariance in the system of equations (3.19) and (3.20) under
the transformation

(S, V, r) −→ (λ2S, λ2V, λ−1r), (3.21)

λ being real.
For now on, we are going to limit ourselves to the spherically symmetric case, in such

a way that S and V will be functions of r only. This leads us to

(rS)
′′

= −rSV, (3.22)

(rV )
′′

= −rS2, (3.23)

where the prime denotes, from now on, differentiation with respect to r. This will be
the form of the Schrodinger-Newton equations that are going to be analyzed, with the
boundary conditions requiring a well defined Laplacian at the origin r = 0, what is
translated into vanishing S

′
(r) and V

′
(r) there.

Before going on with the numerical procedure itself, we will consider some analytical
results which could help us to better understand this system and its solutions.

At first sight the system composed by equations (3.22) and (3.23) will present three
different solutions from a pure analytical point of view. The first one is the triv-
ial solution S = 0 and V = constant, together with two extra solutions, namely
(S, V ) = (±2r−2,−2r−2). Nevertheless, these two last solutions are unbounded at r = 0.
Therefore they will not be taken into account as they do not meet the well defined
Laplacian at the origin criterion previously introduced.
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If the initial values are expressed as S0 = S(0) and V0 = V (0), integrating twice
the system of coupled differential equations (3.22) and (3.23), we obtain its equivalent
system of integral equations

S(r) = S0 −
∫ r

0

x[1− x

r
]S(x)V (x)dx, (3.24)

V (r) = V0 −
∫ r

0

x[1− x

r
]S2(x)dx, (3.25)

The uniqueness of the solutions will be ensured by means of a modified version of the
Picard’s theorem (see [29]), given the initial values S0 and V0. So for a particular initial
conditions, solutions will exist and be unique, at least for an interval [0, a) in r, where a
depends upon both S0 and V0.

The rescaling freedom in (3.21) will allow us to shorten the range of possible values
of S0 and V0 without any lost of generality. The first discarded value will be S0 = 0,
as for it the uniqueness of solutions will lead us to the trivial solution S(r) = 0 and
V (r) = constant. We are also able to fix S0 = 1, finding all the range of solutions for the
system varying V0 or vice versa, reducing the dependence to just V0 or S0. In particular,
our choice will be to fix V0 = 1 and find the diverse solutions by changing the value of
S0. Finally, considering the scale invariance of the system will be able to consider only
negative or positive values of S0 as it is easy to replace S by −S if necessary. In what
follows we make the choice of taking only S0 > 0.

Another relevant analytical property, lies in the fact that V (r) decrease monotonically,
as its derivative suggests, obtained by differentiating once (3.25)

V
′
(r) = − 1

r2

∫ r

0

x2S2(x)dx. (3.26)

If we fix S0 = 1, the previous equation shows a slightly different behaviour for positive
or negative values of V0. In the case with V0 ≤ 0, it may be shown that S(r)→∞ while
V (r) → −∞. But for V0 > 0 we have instead an initially positive value of V (r), which
sooner or later turns into negative, according to (3.26).

Additionally, we will find also a different general behaviour of rS(r), deduced from
(3.22) and (3.23), depending on the sign of the potential V (r). While it will be oscillatory
for V (r) > 0, an exponential dependence is found if V (r) < 0, containing a mixture of
growing and decaying terms. This tells us that divergences to both plus or minus infinity
are possible. Also, together with the fact, deduced from (3.25), that V (r) diverges to −∞
leads us to expect unbounded states, diverging at finite values of r. Our only chance to
avoid these unbounded solutions is to have only exponentially decaying terms in rS(r).

The numerical integrations described below will tell us that this can be realized
for a discrete set of values V0/S0, the so-called bound states. For them, rS(r) decays
exponentially so that the wave functions are square-integrable and V (∞) remains finite
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by (3.25). Notice due to the fact that these bound states appear for certain values of the
ratio V0/S0, we are able to fix one of them equal one and vary the other without lost of
generality.

The fact that S(r) and V (r) are finite at r = 0 together with the condition of a well
defined Laplacian at the origin previously introduced, allow us to expand in power-series
both of them about r = 0

S = S0 −
1

6
S0r

2 +
1

120
S0(S

2
0 + 1)r4 + ... , (3.27)

V = 1− 1

6
S2
0r

2 +
1

60
S2
0r

4 + ... . (3.28)

Close to r = 0, the solution only depends on S0 as expected. Different numerical
studies have verified the accuracy of this power-series expansion.

What arises from the numerical integration is an infinite set of discrete unstable bound
states, which seems to accumulate at S = 0. By unstable it is understood that an infinite
precision in the value of S0 is required to ensure that the solution do not diverge as r
grows. Taking this into account, the more precisely determined our value of S0 is, the
later in r will our solution diverge. Other crucial property of these bound states is that
each of them marks the transition form a solution with (S, V )→ (+∞,−∞) to another
with (S, V ) → (−∞,−∞). In order to simplify our notation, we will refer to the first
kind as (+,−) states/solutions, while the second ones will be (−,−) states/solutions.

It is crucial to distinguish the stability mentioned here, purely mathematical, from
the previously discussed physical (meta-)stability of the axion stars, which is instead
completely related with their evolution in time. While all bound state solutions are
mathematically unstable in the former sense, from the physical stability point of view,
we are going to find both kind of solutions (stable and unstable) in the next sections.
From now on, when we talk about stable or unstable solutions, we will be referring to
the mentioned physical stability.

So, going back and applying an order four Runge-Kutta method to solve numerically
the system of coupled differential equations (3.22) and (3.23), as it is done in [28], for
S0 > 1.09 we find that S(r) blow up to +∞ at a finite value of r and it does not
present any zero. On the other hand for S0 < 1.08 at certain finite value of r, we
find a (−,−) solution. This allows us to interpret that we have a bound state in the
interval S0 = [1.08, 1.09], for which S(r) do not diverge, but an infinite precision in S0

is necessary to reach it. Now, we move on to the next decimal. As for S0 > 1.089
the solution is (+,−), while for S0 < 1.088 it is (−,−), the interval where the bound
state is placed is reduced to S0 = [1.088, 1.089]. This process continues iterativelly
up to the desired precision, always with a fixed V0 = 1. In Figure 3.1 we clearly see
what has been previously suggested, that is, a higher accuracy in S0 is related with the
divergence appearing at a bigger value of r, simply by comparing the two (−,−) solutions,
represented by blue lines. In Figure 3.2, a representation of V (r), obtained with high
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Figure 3.1: The red dotted line represents the first bound-state wavefunction with S0 =
1.0886472, while the solid blue line stands for the first bound-state wavefunction with
S0 = 1.0886471. The solution with the dashed blue line has instead a S0 = 1.0886471184.
All of them have been obtained using the Runge-Kutta method, with V0 = 1 for all of
them.

Moroz et al [28] RK4 Euler
n = 0 1.0886370794 1.0886471184 1.0890934531
n = 1 0.8264742841 0.8264612205 0.8261073336

Table 3.1: S0 values obtained using the order four Runge-Kutta method (RK4) and the
Euler method, up to O(10−10), for the first bound state (n = 0) or the second bound
state (n = 1) compared with the one obtained in the original paper [28], with V0 = 1.

precision in S0, is shown. We see the expected monotonically decreasing behaviour until
the divergence takes place.

Even though is not something relevant for our discussion, this process may be ex-
tended to solutions with higher number of zeros. For instance, if in the interval of S0 the
upper end has a single zero before diverging to minus infinity, while the lower has two
zeros before going to plus infinity, we talk about the second bound-state. An example is
shown in Figure 3.3.

Apart from the already mentioned order four Runge-Kutta method, we have also
calculated the first bound state by means of a simple Euler method, see Figure 3.4, and
the different values obtained for S0 with equal precision have been compared in Table
3.1.
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Figure 3.2: Newtonian potential V (r) with S0 = 1.0886471184, being V0 = 1, obtained
using the Runge-Kutta method.

Figure 3.3: Second bound-state wavefunction with S0 = 0.8264612205, obtained using
the Runge-Kutta method, with V0 = 1.
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Figure 3.4: First bound-state wavefunction with S0 = 1.0890934531, obtained using the
Euler method, with V0 = 1.

We have successfully solved the Schrodinger-Newton equations in the stationary case
considering the spherically symmetric ground state configuration (3.10), leading us to the
axion field and Newtonian potential. Now, we will be interested in clarifying the regimes
for which our solutions will be stable or unstable. Two different quantities will be crucial
for this aim: the number of particles N = 4π

∫∞
0
dr′ r′2ψ(r′)2 and the clump size R. They

will be plotted in the so-called phase diagram, providing a picture of the stability and
instability regimes for our solutions. Eventually, when we include self-interactions, these
diagrams will capture other relevant properties for these clumps such as the possible
maximum values for this particle number, acting as a frontier for the existence of such
compact objects. They will be constructed both analytically and numerically.

These axion field, obtained for diverse V0, will lead us to the numerical part of the
phase diagram. Anyway, first, we are going to consider different ansatzs for the radial
part of the solution ψ(r). Once introduced in the Hamiltonian, this one will lead us to
an analytical version for the phase diagram.

As explained before, considering the spherical symmetry of the ground state (3.10)
and solving the trivial angular integrals, the first term of the Hamiltonian (3.3) takes
the form

Hkin =
2π

ma

∫ ∞
0

dr r2
(
dψ

dr

)2

. (3.29)

Obviously Hint, as we do not have self-interactions in this case, does not appear here
but will be a prominent feature of the next section.
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A slightly more complicated situation concerns the remaining part of this Hamilto-
nian, Hgrav. In this case, as done in [16], the inverse distance is treated by means of the
spherical expansion

1

|x− x′|
=
∞∑
l=0

4π

2l + 1

(
rl<
rl+1
>

) l∑
m=−l

Y m∗
l (θ, ϕ)Y ∗l (θ′, ϕ′) (3.30)

being r< and r> the lesser and greater r = |x| and r′ = |x′| respectively. The gravitational
term in the Hamiltonian will be substantially simplified taking into account that the
angular integrals eliminate all the terms but the one with l = m = 0, leading us to

Hgrav = −8π2Gm2
a

∫ ∞
0

dr r2
∫ ∞
0

dr′ r′2
ψ(r)2ψ(r′)2

r<
. (3.31)

Now, let us consider three different ansatzs for ψ(r). Before starting, it is important
to stress that they will only give us a qualitative idea of the behaviour of the system.
The degree of precision of each of them will be clarified in a direct comparison with the
numerical result. For a deeper review of most of the different ansatzs appearing in the
literature see [30].

In particular we will take into account a simple exponential ansatz, a hyperbolic secant
ansatz, and a linear + exponential ansatz, which will be, respectively

ψR(r) =

√
N

πR3
exp (−r/R), (3.32)

ψR(r) =

√
3N

π3R3
sech(r/R), (3.33)

ψR(r) =

√
N

7πR3
(1 + r/R) exp (−r/R) (3.34)

where the prefactors multiplying each of them ensure that N = 4π
∫∞
0
dr r2ψ(r)2 and

R is left free and acts as a variational parameter.
Let us try to clarify how good these solutions are for different small and big values

of r. We are going to compare the different ansatzs with the exact numerical result
obtained from solving numerically the system of coupled equations (3.22) and (3.23).
For this aim, it will be necessary to set the same N value for the all ansatzs but also for
the numerical result.

As it can be seen in Figure 3.5, the exponential ansatz is not a good approximation
when r → 0. On the other hand, the hyperbolic secant and linear + exponential ansatzs
get closer to numerical result in this regime, being also really similar between themselves.

Our next step is the introduction of these ansatzs in each of the three terms of the
Hamiltonian. Then, solving the integrals, we will be able to obtain the explicit form of
H for each ansatz. For example, in the case of the exponential ansatz, we obtain
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Figure 3.5: The dimensionless axion field ψ̃(r) for the different ansatzs versus the di-
mensionless radius r̃, together with the numerical result obtained in the previous section.
The exponential ansatz is represented by lined dotted green plot, the dashed black line
stands for the linear + exponential ansatz, the dotted red line represents the hyperbolic
secant ansatz and finally, the solid blue line stands for the numerical result. They are
all normalized, in such a way that Ñ = 1.
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H(R) =
N

2maR2
− 5Gm2

aN
2

16R
, (3.35)

where the first term corresponds to the kinetic term (3.29) and the second one to the
gravitational term (3.31).

In order to simplify our analysis, it will be better to work with the dimensionless
version of this Hamiltonian, H̃, considering also the dimensionless clump size R̃ and the
dimensionless particle number Ñ , needed also for the dimensionless version of each axion
field ansatz represented in Figure 3.5. They are defined through the relations

H̃ ≡ ma√
G
H, (3.36)

Ñ ≡ m2
a

√
GN, (3.37)

R̃ ≡ ma

√
GR. (3.38)

The final dimensionless version of the Hamiltonian for the exponential ansatz will be

H̃(R̃) =
Ñ

2R̃2
− 5Ñ2

16R̃
. (3.39)

In fact, the shape of the Hamiltonian for each of the other two ansatzs will be really
similar. As expected they all share the same two terms, with the same powers of Ñ and
R̃ in the numerator and denominator, but different coefficients,

H̃(R̃) = a
Ñ

R̃2
− bÑ

2

R̃
, (3.40)

where

a =
12 + π2

6π2
, b =

6(12ζ(3)− π2)

π4
, (sech ansatz), (3.41)

a =
3

14
, b =

5373

25088
, (linear + exp. ansatz). (3.42)

In Figure 3.6, the dimensionless Hamiltonian H̃ for each of the ansatzs is shown.
The local minimum appearing in the Hamiltonian tell us that the bound state solution
previously obtained is in fact physically stable. When self-interactions are included, a
maximum linked with an unstable solution will appear, as we will see in the next section.
Also notice that the shape of H̃ coincides for the three ansatzs.

At last, extremazing H̃ with respect to R̃ leads us to

R̃ =
5

16Ñ
, (3.43)

for the exponential ansatz.
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Figure 3.6: Representation of the Hamiltonian H̃ for the different ansatzs versus the
dimensionless clump size R̃ in the case without self-interactions. The exponential ansatz
is represented by lined dotted green line, the dashed black line stands for the linear +
exponential ansatz, the dotted red line represents the hyperbolic secant ansatz. Here
Ñ = 9.

On the other hand,

R̃ =
2a

bÑ
, (3.44)

stand for the sech and linear + exponential ansatzs.
As commented before, apart from the analytical results (3.43) and (3.44), we will

include exact numerical ones represented by individual dots in Figure 7, obtained by
solving the Schrodinger-Newton equations (3.22) and (3.23) for different values of V0.
The numerical values relative to each individual black point in Figure 7 are shown in
Table 3.2, together with the particular values of S0 and V0. Remember that, when the
axion field S(r) was obtained previously by solving numerically the Schrodinger-Newton
equations, the V0 remained fixed during the process, arbitrarily set equal one.

The calculation of the dimensionless particle number is straightforward. Considering
its definition

N = 4πα2

∫ ∞
0

dr′ r′2S(r′)2, (3.45)

with α previously defined (3.17), all we have to do is to solve the integral numerically,
for what we have used a composite trapezoidal rule. Notice that this is not the first
time Ñ is obtained, as it has been already calculated in the normalization of the results
appearing in Figure 3.5, for instance.
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Figure 3.7: Phase diagram (R̃90 versus Ñ) in the case without self-interactions, obtained
analytically for the exponential ansatz, represented by lined dotted green line, and for
the hyperbolic secant ansatz shown as a red dotted line. The black individual dots stand
for the numerical result, obtained solving the Schrodinger-Newton equations for different
V0 values, see Table 3.2 for further details.

In general, our phase diagrams will be a representation of the dimensionless particle
number Ñ , already defined, versus the dimensionless radius enclosing 90% of the mass,
defined by means of the relation

0.9N = 4πα2

∫ R90

0

dr′ r′2S(r′)2. (3.46)

Also, remember that, when we discussed the analytical part of these phase diagrams,
in equations such as (3.43) or (3.44), we obtained originally a relation between Ñ and
R̃. However, in Figure 6, we consider instead R̃90 versus Ñ , so a relation between R̃
and R̃90 has been needed for each ansatz. They are easily obtained by substituting the
different ansatzs in (3.46), leading us to

R̃90 ≈ 2.661R̃ (exponential ansatz), (3.47)

R̃90 ≈ 2.799R̃ (sech ansatz). (3.48)

Now that we have fully studied the case with negligeble self-interactions, we are going
to repeat the analysis including them at different orders and in diverse forms.
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R̃90 Ñ V0 S0

4.223 0.80899 0.4 0.615872
2.67 1.27896 1 1.5397453
1.541 2.21466 3 4.619632
1.089 3.13121 9 9.2400418
0.889 3.8342 12 18.4822873
0.77 4.42665 15 23.103971
0.689 5.42005 18 27.7259724
0.629 5.85363 21 32.3482641
0.582 6.25711 24 36.9708246

Table 3.2: Detail of the numerical values represented as individual black dots in Figure
3.7

3.3 Quartic Self-interactions

The self-interaction potential considered in this section, is the already introduced (3.2).
It arises when we consider the naive non-relativistic reduction at first order. As it was
shown previously by means of axion EFT, this naive reduction only leads to the right
coefficient at this leading order.

Our first step will be finding solutions for the Schrodinger-Newton system of equations
(this time (3.11) and (3.12)) using once again the method suggested by Moroz et al. for
the previous case.

We introduce then the redefinition U(r) ≡ E − ϕN(r). For numerical purposes, we
are going to work with a system of four first order coupled differential equations instead
of the two second order coupled differential equations system. After certain calculations
we have

ψ̃′r = −2

r̃
ψ̃r − 2Ũψ − 1

4
|ψ̃|2ψ̃, (3.49)

Ũ ′r = −2

r̃
Ũr − 4π|ψ̃|2, (3.50)

where
ψ̃r = ψ̃′, (3.51)

Ũr = Ũ ′, (3.52)

being the prime, once again, derivative over the radius r̃. As in the original equations
(3.11) and (3.12), the variables with tilde are dimensionless.

At this stage, we apply the process introduced in the previous subsection. As bound
states are expected to be placed between a solution for which (ψ̃, Ũ) −→ (+∞,−∞)
(we will refer to this kind once again as (+,−) solution) and another with (ψ̃, Ũ) −→
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(−∞,−∞) (which will be also called (−,−) solution). Setting Ũ0 = 1, the bound state
will be determined calculating the value of ψ̃0 with arbitrary precision, as previously
done with S0 and V0. Now, let us analyze the solutions obtained and compare them with
the previous case.

The first difference introduced by this extra self-interaction term is related with how
our solutions diverge. While the value of ψ̃(r) grows, the last term in (3.11) or the
self-interaction term, gets more relevant. Then, we do not have just a simple exponen-
tial divergence, as in the previous case, but when ψ̃(r) gets big enough an oscillatory
behaviour on top of the exponential divergence. The shape of this divergence is shown
in Figure 3.9. In essence, this behaviour does not change our treatment, as in fact solu-
tions are clearly blowing up to positive or negative values and bound states have been
found numerically where expected, in the point where the divergent behaviour changes,
as detailed below.

The second difference, crucial for our future discussion, lies in the fact that not only
one but two solutions are found for each bound state. To avoid confusion, let us focus
only in the first bound state. As in the previous section, if we start increasing ψ̃0 (always
with fixed Ũ0 = 1) from values close to zero, at the beginning all the solutions will be
(−,−). At certain ψ̃0, as happened before in the transition from S0 = 1.08 to S0 = 1.09,
a (+,−) solution appears. Then, a bound state is expected between these two solutions
with opposite behaviour in the divergence, as explained before. Following the path
introduced for the previous case, the particular value of ψ̃0 for this bound state may be
calculated up to the desired precision. See Figure 3.8 for further details.

In the case without self-interactions, if once we have (+,−) solutions we continue
increasing the value of S0, we find only solutions with S(r) diverging to +∞. On the
other hand, when the self-interaction term is included and we increase enough the value
of ψ̃0, at a certain point the behaviour of the solutions changes once again, and above
it, for any value of ψ̃0, we will only find (−,−) solutions. As before, this transition is
linked with the existence of an extra bound state shown in Figure 3.9.

A couple of extra comments are necessary. First of all, we will refer to this new extra
solution as unstable solution, while the former one, also appearing in the case without
self-interactions, is the so-called stable solution. Here we are discussing the already
introduced physical stability and, linked with the time evolution of these solutions. In
[16] after perturbing away the solutions by a small finite amount, time evolution of both
of them is tracked. While physically stable solutions merely oscillate, independently of
the sign of the perturbation, the physically unstable solution runs away. Note, once
again, that this has nothing to do with the mathematical instability, related with the
infinite precision in S0 or ψ̃0 to find a non divergent bound state solution.

Also here, by means of the introduction of different ansatzs for the axion field, we will
be able to find an analytical expression for the Hamiltonian. This one will show a local
maximum linked with the already mentioned unstable solution and a local minimum
related with the stable solution, now that a self-interaction term has been included.
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Figure 3.8: The red dotted line represents the first bound-state wavefunction with ψ̃0 =
0.4394655, while the solid blue line stands for the first bound-state wavefunction with
ψ̃0 = 0.4394654. The solution represented by a dashed blue line has instead a ψ̃0 =
0.4394654657. This is the so-called stable solution. All of them have been obtained using
the Runge-Kutta method.

Figure 3.9: The red dotted line represents the first bound-state wavefunction with ψ̃0 =
91.7158035, while the solid blue line stands for the first bound-state wavefunction with
ψ̃0 = 91.7158036. The solution represented by a dashed blue line has instead a ψ̃0 =
91.7158035591. This is the so-called unstable solution. All of them have been obtained
using the Runge-Kutta method.
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Figure 3.10: Newtonian potential Ũ(r) with ψ̃0 = 0.4394654657, being U0 = 1, obtained
using the Runge-Kutta method.

At last, notice than the Newtonian potential Ũ(r) keep the expected monotonically
decreasing shape, as it is shown in Figure 3.10 and Figure 3.11.

Now, let us focus our efforts in obtaining and studying the analytical Hamiltonian
and the phase diagram. In particular, we will construct the latter both analytically, by
means of different ansatzs and approximations, and numerically.

The terms of the Hamiltonian in which we are going to substitute the different ansatzs
will be (3.29) and (3.31), but with the contribution of an extra term directly related
with the self-interaction term which, considering the spherically symmetric ground state
configuration (3.10), takes the form

Hint = 4π

∫ ∞
0

dr r2 Vnaive(ψ). (3.53)

The next step is the introduction of the ansatzs (3.32), (3.33) and (3.34) in each of
the three terms of the Hamiltonian (3.3). Then, solving the integrals, we will be able
to obtain the explicit form of Hnaive for each ansatz. For example, in the case of the
exponential ansatz, we obtain

Hnaive(R) =
N

2maR2
− 5Gm2

aN
2

16R
− N2

128πf 2R3
(3.54)

where the first addend corresponds to the kinetic term (3.29), the second one to the
gravitational term (3.31) and the third one to the interaction term (3.53).

In order to simplify our analysis, it will be better to work with the dimensionless
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Figure 3.11: Newtonian potential Ũ(r) with ψ̃0 = 91.7158035591, being U0 = 1, obtained
using the Runge-Kutta method.

version of this Hamiltonian, H̃, considering also the dimensionless clump size R̃ and the
dimensionless particle number Ñ . They are defined as

H̃naive ≡
ma

f 3
√
G
Hnaive, (3.55)

Ñ ≡ m2
a

√
G

f
N, (3.56)

R̃ ≡ maf
√
GR. (3.57)

The final dimensionless version of the Hamiltonian for the exponential ansatz will be

H̃naive(R̃) =
Ñ

2R̃2
− 5Ñ2

16R̃
− Ñ2

128πR̃3
. (3.58)

In fact, the shape of the Hamiltonian for each of the other two ansatzs will be rather
similar. As expected they all share the same three terms, with the same powers of Ñ
and R̃ in the numerator and denominator, but different coefficients. For the remaining
two ansatzs, we have

H̃naive(R̃) = a
Ñ

R̃2
− bÑ

2

R̃
− cÑ

2

R̃3
. (3.59)

where the coefficients a and b have been previously introduced in (3.41) and (3.42) and
the coefficient c is

c =
π2 − 6

8π5
(sech ansatz), (3.60)
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Figure 3.12: Representation of the Hamiltonian H̃ for the different ansatzs versus the
dimensionless clump size R̃ in the case with a single self-interaction term. The exponen-
tial ansatz is represented by lined dotted green line, the dashed black line stands for the
linear + exponential ansatz, the dotted red line represents the hyperbolic secant ansatz.
Here Ñ = 9.

c =
437

200704π
(linear + exp. ansatz). (3.61)

In Figure 3.12 the analytical Hamiltonian for each ansatz is shown. As expected their
shapes are very similar, with a local maximum linked with the unstable solution and a
local minimum related with the stable solution.

At last, we are going to extremize H̃ with respect to R̃. In the case with self-
interaction term and for the exponential ansatz, we have

R̃− 5

16
ÑR̃2 − 3

128π
Ñ = 0. (3.62)

Its solutions will be

R̃ =
8

5Ñ
±
√

512π − 15Ñ2

10
√

2πÑ
. (3.63)

On the other hand, for the other two ansatzs the solutions will be instead

R̃ =
a±

√
a2 − 3bcÑ2

bÑ
, (3.64)

being a, b and c the already introduced coefficients (3.41), (3.42), (3.60) and (3.61).
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At first sight, we notice that these solutions are going to present a maximum value
of Ñ being

Ñmax =

√
512π

15
≈ 10.36, (3.65)

in the exponential case and

Ñmax =
a√
3bc

, (3.66)

for the other two ansatzs, giving Ñmax ≈ 10.12 for the hyperbolic secant and Ñmax ≈
10.15 for the linear + exponential.

Together with these analytical results we will include the exact numerical ones in
the phase diagram, represented as black individual dots in Figure 3.13. To obtain them,
we are going to use the axion field ψ(r), solution of the Schrodinger-Newton equations
(3.11) and (3.12) that we have just obtained.

The calculation of the dimensionless particle number is straightforward. Considering
its definition

Ñ = 4π

∫ ∞
0

dr̃′ r̃′2ψ̃(r̃′)2, (3.67)

all we have to do is to solve it numerically, for what we have used again a composite
trapezoidal rule.

On the other hand, the dimensionless radius enclosing 90% of the mass will be

0.9Ñ = 4π

∫ R̃90

0

dr̃′ r̃′2ψ̃(r̃′)2. (3.68)

In order to obtain each exact numerical value represented by an individual dot in
Figure 3.13, explicitly shown in Table 3.3 and Table 3.4 together with the initial values
of ψ̃(r) and Ũ(r), we will consider different values of Ũ0. Remember that, when the axion
field was originally obtained at the beginning of this section by solving numerically the
Schrodinger-Newton equations, this value remained fixed during the process, arbitrarily
set equal one.

To clarify these diagrams some comments are necessary. First of all, color have been
used to distinguish the stable solutions, appearing in the diagram for bigger clump sizes,
in blue an unstable solutions and with a smaller R̃90 in red. As can be seen in Figure
3.13, the hyperbolic secant ansatz gets values closer to the exact numerical ones, at least
for the stable branch.

To conclude this section, lets transform back some dimensionless quantities to their
original form, in order to have a more clearer physical picture of the results obtained. In
particular we will consider the mass and the PQ scale of the QCD axion. For instance,
the maximum number of particles already defined and the relative maximum mass are

Nmax =
f

m2
a

√
G
Ñmax ∼ 8× 1059(m̃−2a f̃), (3.69)
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Figure 3.13: Phase diagram (R̃90 versus Ñ) in the case with a single self-interaction term,
obtained analytically for the exponential ansatz, represented by lined dotted line, and for
the the hyperbolic secant ansatz shown as a dotted line. While in blue we represent the
stable branch of solutions, the red lines stand for the unstable ones. The black individual
dots stand for the numerical result, obtained solving the Schrodinger-Newton equations
for different Ũ0 values. See Table 3.3 and Table 3.4 for further details.
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R̃90 Ñ Ũ0 ψ̃0

2.157 3.09773 1.5 0.6620276
1.861 3.56318 2 0.8875352
1.508 4.33009 3 1.3461569
1.15 5.50151 5 2.295703
0.92 6.5993 7.5 3.5495011
0.78 7.45564 10 4.8882538
0.606 8.708 15 7.8822804
0.477 9.64544 21 12.2687743
0.346 10.07969 29.5 21.6400533

Table 3.3: Detail of the numerical values represented as individual black dots in Figure
3.13 for the stable branch of solutions.

Mmax = maÑmax ∼ 1.4× 1022 g (m̃−1a f̃), (3.70)

where f̃ ≡ f/(6× 1011) GeV and m̃a ≡ ma/(6× 10−5) eV.
On the other hand, the minimum clump size for the stable branch (represented in

blue in Figure 3.13) will be

R90,min =
a

bGm3
aÑmaxR̃

R̃90,min ∼ 1.3× 105 m (m̃−1a f̃−1). (3.71)

In this section, we have first reproduced the results exposed in [28] and extended
their analysis studying the stability of the bound state solution arising by means of the
analytical Hamiltonian and the phase diagram. However, we have fully reproduced the
results in [16] but obtaining the solutions for the Schrodinger-Newton system of equations
using a different method and studying their stability with the analytical Hamiltonian.

Now, we are free to extend this analysis to more complicated potentials, specially to
cases which describe more accurately the axion self-interactions in this regime, as the
effective potential arising from axion EFT.

3.4 Other Self-interaction Potentials

At this stage, we have successfully studied the physical stability, by means of the phase
diagrams and the local extremes in the analytical Hamiltonian, of the axion stars in the
cases with negligible self-interactions and with the naive self-interaction potential just
at first order. The natural next step is to consider other more complicated effective
potentials, containing higher order terms, and repeat our analysis, allowing us to go
beyond the cases already studied in the literature. We are going to do it via the analysis
of two different effective potentials.
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R̃90 Ñ Ũ0 ψ̃0

0.2389 9.17295 34 40.0000817
0.203 8.36681 32 51.0870249
0.1746 7.53233 26 63.2597965
0.1532 6.79272 17 75.4744423
0.1422 6.38114 10 83.132929
0.1217 5.56302 -10 100.9640338
0.0995 4.61121 -50 128.3146132
0.0742 3.47762 -150 178.1476512
0.0468 2.20487 -500 290.7992029

Table 3.4: Detail of the numerical values represented as individual black dots in Figure
3.13 for the unstable branch of solutions.

In the first part of this section we will consider the effective potential of a generic
scalar field introduced by Mukaida et al. [19], going beyond axion stars to consider the
more generic case of a real scalar star. As this potential will contain two self-interaction
terms, we are going to get a feel for the effect of higher order corrections, being crucial
the relative sign of the different self-interaction terms.

Then, in the second part we will go back to the effective self-interaction potential
(2.11), derived using EFT matching methods, which gives us a much more accurate
picture of the axion self-interactions. At last, we will compare the stability regimes
in this case with the ones obtained considering higher order terms in the naive self-
interaction potential (2.7), proving that, the later suggests the existence of a branch of
dense axion stars which do not arise when considering the proper effective self-interaction
potential.

3.4.1 Generic Scalar Field Potential

In this subsection we will consider a potential introduced in [19]. At the higher mo-
mentum regime, where a real scalar field φ(x) is more appropriate for our analysis, the
potential takes the form

V (φ) =
g3
3
φ3 − g4

4
φ4 +

g6
6
φ6, (3.72)

being g3, g4 and g6 dimensionless coupling constants.
Before applying the non-relativistic reduction and obtaining its form in the regime

of our interest, it is important to stress that this is not the potential of an axion field,
but a generic scalar field of mass m.
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The effective potential obtained after the non-relativistic reduction by means of the
MTY effective field theory, as a function of the complex scalar field ψ(x), will be

Veff (ψ
∗ψ) =

[
− 5g23

12m2
− 3g4

8

]
(ψ∗ψ)2 +

[
5g6
24

+
g24

128m2

]
(ψ∗ψ)3. (3.73)

First of all, as we are interested mainly in theories with Z2 symmetry, we will take
g3 = 0, in such a way that the final expression for the effective potential that will be
considered is

Veff (ψ
∗ψ) = −3g4

8
(ψ∗ψ)2 +

[
5g6
24

+
g24

128m2

]
(ψ∗ψ)3. (3.74)

Notice that, for a suitable value of g4, we could end up having the self-interaction
potential of the previous section plus a higher order term.

Furthermore, the Schrodinger-Newton system of equations in this case will be

i
∂ψ̃

∂t̃
= − 1

2r̃

∂2

∂r̃2
(r̃ψ̃) + ϕ̃N ψ̃ −

3g̃4
4
|ψ̃|2ψ̃ +

[
5g̃6
8

+
3g̃24
128

]
|ψ̃|4ψ̃ (3.75)

1

r̃

∂2

∂r̃2
(r̃ϕ̃N) = 4π|ψ̃|2, (3.76)

As in earlier sections, we are going to be focused in the ground state configuration
with spherically symmetry configuration, whose form will be once again (3.10)

ψg(r, t) = ψ(r)e−iµt,

being ψ(r) purely radial and all the time dependence lies in the exponential.
Then, the system of coupled differential equations that we are going to solve, will be

the one of the stationary case, that is

Ẽψ̃ = − 1

2r̃

∂2

∂r̃2
(r̃ψ̃) + ϕ̃N ψ̃ −

3g̃4
4
|ψ̃|2ψ̃ +

[
5g̃6
8

+
3g̃24
128

]
|ψ̃|4ψ̃ (3.77)

1

r̃

∂2

∂r̃2
(r̃ϕ̃N) = 4π|ψ̃|2. (3.78)

For this process, we use once again the method introduced by Moroz et al. [28],
making use of the redefinition U(r) ≡ E −ϕN(r) too. It helps us, from a computational
efficiency point of view, to transform the Schrodinger-Newton equations in a system of
four first order differential equations, this is,

ψ̃′r = −2

r̃
ψ̃r − 2Ũψ − 3g̃4

2
|ψ̃|2ψ̃ +

[
5g̃6
4

+
3g̃24
64

]
|ψ̃|4ψ̃, (3.79)
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Ũ ′r = −2

r̃
Ũr − 4π|ψ̃|2, (3.80)

being
ψ̃r = ψ̃′, (3.81)

Ũr = Ũ ′, (3.82)

with the primes denoting derivatives with respect to r̃.
Before continuing solving this system of equations, we have to fix the values of the

dimensionless coupling constants g̃4 and g̃6. As we would like to compare directly the
results of this section with the previously presented ones, the former coupling constant
will be fixed in such a way that the coefficient of the third term in (3.77) and in (3.11)
coincide, leading us to

g̃4 =
1

6
. (3.83)

On the other hand, the value of the other coupling constant, will be

g̃6 ' −1.082577× 10−3. (3.84)

The reasons for the particular choice of this value will be clarified in the study of the
local extremes of the analytical Hamiltonian later on.

What needs to be observed here is the fact that with these particular choices of the
coupling constants g̃4 and g̃6, the self-interaction terms, this is the last two terms in
(3.77) and (3.79), will present opposite signs. While the first self-interaction term is, as
in the previous section, negative, the second one will be otherwise, positive.

Setting Ũ0 = 1 and varying ψ̃0, the different solutions will diverge either to (ψ̃, Ũ) −→
(+∞,−∞) (named as (+,−) solution) or (ψ̃, Ũ) −→ (−∞,−∞) (which will be also
called (−,−) solution). As in the case containing a single self-interaction term coming
from the leading order in the naive potential, we start the process with a small value of
ψ̃0. As we increase it, the sign of the divergence of ψ(r) change, going from a (−,−) to
a (+,−) solution. This is related with the existence of a bound state solution, shown in
Figure 3.14, and an infinite precision in the initial value of ψ(r) is needed to avoid the
divergence, what allow us to determine ψ0 with high precision.

Above this bound state solution, a second one arises as expected. This time it lies
between a (+,−) and a (−,−) solution, like in the already mentioned previous case.
When the analytical Hamiltonian is introduced, a physically unstable solution will be
identify, linked with the local maximum appearing on H. This bound state solution is
shown in Figure 3.15.

Notice that the values of ψ0 for the solutions represented in Figure 3.14 and Figure
3.15, are similar to the ones represented in Figure 3.8 and Figure 3.9. This is something
expected considering that, in this new case with two self-interaction terms, the first is
identical to the one appearing in (3.11), while the second presents a small coefficient g̃6.
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Figure 3.14: The red dotted line represents the first bound-state wavefunction with ψ̃0 =
0.4389736, while the solid blue line stands for the first bound-state wavefunction with
ψ̃0 = 0.4389735. The solution with dashed blue line has instead a ψ̃0 = 0.4389735709.
This is the so-called stable solution. All of them have been obtained using the Runge-
Kutta method.

Figure 3.15: The red dotted line represents the first bound-state wavefunction with ψ̃0 =
86.4857618, while the solid blue line stands for the first bound-state wavefunction with
ψ̃0 = 86.4857619. The solution with dashed blue line has instead a ψ̃0 = 86.4857618965.
This is the so-called unstable solution. All of them have been obtained using the Runge-
Kutta method.
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Figure 3.16: The red dotted line represents the first bound-state wavefunction with
ψ̃0 = 184.101973, while the solid blue line stands for the first bound-state wave-
function with ψ̃0 = 184.1019729. The solution with dashed blue line has instead a
ψ̃0 = 184.1019729976. This is the new dense stable solution. All of them have been
obtained using the Runge-Kutta method.

Even with this, an extra solution in this new case with a second self-interaction term
of higher order appears once we have overcome this physically unstable bound state
solution, represented in Figure 3.16. If we continue increasing the value ψ0, we reach
a new change in the behaviour of the solutions, going as initially, from a (−,−) to a
(+,−) solution, what is related with the existence of other extra bound state solution
which obviously does not appear in the case with a single self-interaction term. As
demonstrated below, it is associated with a local minimum in the Hamiltonian and
therefore considered a physically stable bound state solution. In general we will refer to
these new stable solutions as dense. This is clarified in the study of the phase diagram,
as they will have a lower R90 for the typical N values, if compered with the regular stable
solutions.

Now, once that we have obtained these three bound state solutions, with the as-
sumption spherical symmetry and with the previous shape for the time evolution in the
ground state (3.10) we are going to consider the exponential ansatz for the radial part
of the ground sate configuration

ψR(r) =

√
N

πR3
exp (−r/R), (3.85)

to obtain an analytical version of the Hamiltonian, which will allow us to study the
physical stability of our solutions.
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The Hamiltonian will be composed of three terms. While Hkin and Hgrav take exactly
the same form as in (3.29) and (3.31) respectively, Hint changes in this new case, as
we have a different self-interaction potential. Introducing the ansatz and solving the
equations we obtain

H(R) =
N

2mR2
− 5Gm2N2

16R
− 3g4

64π

N2

R3
+ (

5

648
g6 +

g24
3456m2

)
N3

π2R6
, (3.86)

where the last three terms arise from Hint. By means of the introduction of the dimen-
sionless variables

H̃ =
G√
m
H, (3.87)

Ñ = G
√
m3N, (3.88)

R̃ =
√
m3R, (3.89)

g̃4 =
m

G
g4, (3.90)

g̃6 =
m4

G2
g6 (3.91)

we obtain a more simplified and dimensionless version of the previous equation

H̃(R̃) =
Ñ

2R̃2
− 5Ñ2

16R̃
− 3g̃4

64π

Ñ2

R̃3
+ (

5g̃6
648π2

+
g̃24

3456π2
)
Ñ3

R̃6
. (3.92)

For the chosen values for the dimensionless coupling constants g̃4 and g̃6, our Hamil-
tonian will show three extremes when represented against R̃ in Figure 3.17. Once the
value of g̃4 was properly set, g̃6 was chosen in such a way that H̃ shows the three local
extremes. For example, when g̃6 was slightly closer to zero, the maximum shows positive
values.

The extra minimum appearing in H̃, suggests that the new stable bound solution is in
fact physically stable. The other two extremes stand for the regular stable and unstable
bound state solutions, as in the previous case with a single self-interaction term.

At last, lets consider the phase diagram. Extremising the Hamiltonian (3.92), we
obtain

5

16
Ñ2R̃5 − ÑR̃4 +

9g̃4
64π

Ñ2R̃3 −
[

15g̃6
324π2

+
g̃24

576π2

]
Ñ3 = 0, (3.93)

taking the form shown in Figure 3.18. Comparing it with Figure 3.13, we see clearly the
emergence of an extra branch of solutions previously identified as physically stable.

In general this section gives us a clear picture of the stability regimes of the scalar
stars whose self-interaction potential takes the form (3.72). But another conclusion,
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Figure 3.17: Representation of the Hamiltonian H̃ for the exponential ansatz versus the
dimensionless clump size R̃ in the case with two self-interaction terms. Here Ñ = 9.
The first local minimum, associated with the new dense stable solution, is placed at
H̃ ' −5391.88489.

Figure 3.18: Phase diagram (R̃90 versus Ñ) in the case of a scalar field with two self-
interaction term, obtained analytically from the exponential ansatz. The green dotted
line represents the usual stable branch of solutions, the blue solid line represents the
unstable branch of solutions while the dashed red line stands for the new dense stable
branch of solutions.
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central for the next part, we could come to, is that the existence of this extra dense
branch of solutions is directly related to the fact that the two self-interaction terms in
the effective potential have opposite signs.

3.4.2 Axion EFT Potential and Dense Axions Stars

In this section, returning to the axion field case, we will see how the naive non-relativistic
reduction and in particular the sign of the coefficients of its effective potential, ends up
suggesting the arising of an extra stable branch of solutions, in agreement with previous
section conclusion, whose existence is refuted when the proper self-interaction potential
is considered.

First of all, let us considering the already obtained self-interaction potential from
axion EFT

Veff (ψ∗ψ) =
λ4

16maf 2
(ψ∗ψ)2 +

[
λ6 −

17

8
λ24

](
(ψ∗ψ)3

288maf 4

)
+

+

[
λ8 − 11λ4λ6 +

125

8
λ34

](
(ψ∗ψ)4

9216m2
af

6

)
+ ... ,

(3.94)

where ma is the axion mass and the dots stand for higher order terms in the power-series
expansion.

As in the relativistic regime, the axion self-interactions are mediated by the instanton
potential (2.3), the power-series expansion of its cosine leads us to λ2n = (−1)n+1.

Our analysis here will be centred in the analytical Hamiltonian, once again obtained
by means of the exponential ansatz. Concerning the effective potential, we will consider
only the three terms explicitly shown in (3.94). Even though here we are truncating the
power-series expansion, as we do it a order 8, this expansion will capture the behaviour
of the cosine accurately.

First of all, within the spherically symmetric configuration, the ground state takes
the typical form (2.10).

As occurred with the previous cases, we are only changing the effective potential, and
subsequently only Hint will be different among the addends composing the Hamiltonian.
As done before, the ansatz for the radial part ψ(r) in each of the parts of H (3.4), (3.5)
and (3.6) we obtain

H =
N

2maR2
− 5Gm2

aN
2

16R
+

λ4N
2

128πf 2R3
+

[
λ6 −

17

8
λ24

]
N3

7776π2maf 4R6
+

+

[
λ8 − 11λ4λ6 +

125

8
λ34

]
N4

589824π3m2
af

6R9
,

(3.95)
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where, as always, the first two terms correspond to Hkin and Hgrav respectively, while
the remaining terms are linked with Hint.

The common adimnesionlization process leads us to

H̃nr =
Ñ

2R̃2
− 5Ñ2

16R̃
+

λ4Ñ
2

128πR̃3
+

[
λ6 −

17

8
λ24

]
f 2G

7776π2

Ñ3

R̃6
+

+

[
λ8 − 11λ4λ6 +

125

8
λ34

]
f 4G2

589824π3

Ñ4

R̃9
,

(3.96)

where the dimensionless variables are defined as

R̃ ≡ mf
√
GR, (3.97)

Ñ ≡ m2
√
G

f
N, (3.98)

H̃ ≡ m

f 3
√
G
H. (3.99)

As a last step, we substitute the explicit values of λ2n, leading us to

v2 = λ4 = −1, (3.100)

v3 = λ6 −
17

8
λ24 = −9

8
, (3.101)

v4 = λ8 − 11λ4λ6 +
125

8
λ34 = −45

8
. (3.102)

and then

H̃ =
Ñ

2R̃2
− 5Ñ2

16R̃
− Ñ2

128πR̃3
− f 2G

6912π2

Ñ3

R̃6
− 45f 4G2

4718592π3

Ñ4

R̃9
. (3.103)

If we observe in detail the coefficients vn here obtained and we compare them with
the ones of the naive case λ2n ≡ (−1)n+1, the fundamental difference concerns v3 and λ6.
While the former is negative, sharing the sign with the other two vn shown, the latter is
positive, contrary to λ4 and λ8.

This tells us that, if we perform our stability analysis considering the higher or-
der terms in the naive effective potential we will always find an extra dense branch
of solutions, usually called dense axion stars, as suggested by the result obtained in
Section 3.4.1. However, these dense compact objects do not appear when the right non-
relativistic reduction coming from axion EFT is considered, at least up to n = 5. As we
have explained the sign of the coefficient v3 leads us only to the existence of the regular
stable and unstable branches, as it is easily deduced from the form of the Hamiltonian
(3.103), with only two local extreme: a maximum and a minimum.
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The discussion of the existence or not of these dense branch of solutions is one of
the most controversial points in the recent literature concerning axion stars. While the
existence of the common stable branch of solutions (whose associated compact objects
are commonly called dilute axion stars) is clear, as it arises in a lower density regime
where taking the leading order in the effective potential is justified, the situation is more
complicated in the dense case, where the higher order terms in the power-series expansion
get more relevant.

In [31] this dense axion star solution is discussed. Here, Braaten et al., consider the
naive non-relativistic reduction (2.5) including the full cosine expansion in the potential,
by means of

Veff (ψ∗ψ) =
1

2
maψ

∗ψ +m2
af

2[1− J0(n1/2)] (3.104)

where n = 2ψ∗ψ/maf
2 and J0(z) is a Bessel function. See [32] for further details in this

expression. Here, in the dense axion stars regime, the Schrodinger-Newton equations
take the form

∇2ψ = −2ma[µ− (V ′eff (ψ∗ψ)−ma)−maϕN ]ψ, (3.105)

∇2ϕN = 4πGmaψ
∗ψ. (3.106)

where once again both ψ and ϕN are radial functions. For the study of this new branch,
the Thomas-Fermi approximation was introduced, simplifying the treatment by elimi-
nating the kinetic energy term, this is, the gradient in (3.105). As expected, considering
that the effective potential (3.104) was obtained from the naive non-relativistic reduction,
this extra stable branch of solutions arose (see Figure 1 in [31]).

However, Visinelli et al. [33] are in disagreement with the result in [31], as it is
obtained within the Thomas-Fermi approximation, not valid in the regime where Brateen
et al. expect dense scalar stars to appear. They state also that the single-harmonic
approximation is not valid either here. This approximation was used in [16] as a first
step in a discussion that concluded the existence of this extra dense branch of solutions.

What our work has shown is that the naive non-relativistic reduction is not valid
beyond the leading order. We have seen that even at second order it produces a dense
branch of solutions whose existence is refuted considering the self-interaction potential
(3.94) up to this very same power instead. This generates doubts concerning the results
in [31], as they are obtained with the power-series expansion of the cosine at all orders,
after performing the naive non-relativistic reduction. A more accurate alternative, that
we leave for future work, could be to consider higher orders in (2.11) to figure out if this
dense branch of solutions arises at some point or if the behaviour that we have observed,
with the different vn sharing the same sign, remains.
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Chapter 4

Summary and Conclusions

The axion, one of the favoured candidates to form the cold dark matter in the universe,
may form compact objects called axion stars. The interplay between gradient energy,
gravity and self-interactions gives rise to dilute and dense axion stars. Being more
concrete, these objects are simply axion BEC, which justifies their study in the non-
relativistic regime.

One of the most controversial points of the study of the axion field with momenta
below the axion mass, lies in the non-relativistic reduction. Commonly in the literature,
the process of redefining the real scalar field φ, representing the axion field in a higher
momentum regime, by means of a scalar field ψ, which leads us to a simpler description
below ma, is performed through a naive non-relativistic reduction. Using effective field
theory methods, the limitations of this reduction have been clarified, and the right form
of the effective self-interaction potential obtained, coinciding with the naive one only at
first order.

The resulting system of axion interacting with gravity is described by the Schrodinger-
Newton equations and the method suggested by Moroz et al. in [28] has allowed us to
solve them numerically for a wide range of different self-interaction potentials.

In the simplest case, without self-interactions, we have confirmed the results from
[28] but we have also tested the existence of just this single physically stable branch of
solutions by means of the local minimum in the analytical Hamiltonian, obtained through
the introduction of diverse ansatzs for the radial part of the axion field in the spherical
symmetry case, and by means of the phase diagram, comparing the clump size R90 and
the number of particles N . The form of this diagram has suggested also the existence of
these compact objects for any N value.

The same process have been followed in the case of a single self-interaction term
arising by taking just the first order in the naive self-interaction potential. Here our
studies coincide with the results obtained by Schiappacasse and Hertzberg in [16], who
studied the stability of the solutions by tracking their time evolution. An extra physically
unstable bound state solution was obtained besides the stable one. The study of the phase
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diagram leads us also to the existence of a maximum number of particles, above which
no compact object could be formed.

Afterwards, we analyse the case of a scalar field, with a self-interaction potential as
a function of φ(x) to the fourth power and to the sixth. After the proper non-relativistic
reduction and for the right values of the coupling constants, we obtained an effective
self-interaction potential formed of two opposite sign terms. This was crucial for the
appearance of an extra stable branch of solutions, located in the phase diagram below
the unstable branch in R90. This case mimics the dense branch of axions stars in a
simplified manner and serves as a warm up for a more complete analysis of the axion
self-interaction potential.

Finally, we returned to the axion field case, considering the effective potential deduced
directly from axion EFT. In this case all the self-interaction terms appearing in the
analytical Hamiltonian share the same sign and we obtained just two extrema in H,
a minimum and a maximum, directly related with a physically stable and a physically
unstable solutions. This would not have been the case if we had considered the self-
interaction potential arising from the naive non-relativistic reduction, whose second order
term is in fact of opposite sign. This difference in the sign is directly related with an
extra minimum in the analytical Hamiltonian, leading us to the existence of the dense
branch of solutions as the one shown in Figure 3.18 which does not appear when the
correct axion EFT self-interaction potential is considered.

So, apart from the results and phase diagrams that have just been exposed, something
more important and general could be concluded, this is, that the naive non-relativistic
reduction, beyond the first order in the power-series expansion of its effective potential,
is not able to properly capture the properties of the system. Being more concrete, when
the already mentioned naive effective potential was included, it wrongly suggested the
existence of a dense branch of solutions even when just a second order term was included,
as it has been shown by comparison with the case for the exact effective potential derived
from axion EFT. This clearly advises against the use of the naive reduction for this kind
of analysis, even more when higher orders of the power-series expansion needs to be
considered, as in [31]. This is the main result of our work.

It could be interesting to strengthen these conclusions by employing the non-local
field redefinition (3.22) suggested by Namjoo et al. [27], keeping all orders in the power-
series expansion of the cosine through an expression similar to (3.104). We leave this for
future work.
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