
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA
CAMPUS OF CESENA

Engineering and Architecture Faculty
Master’s Degree in Computer Science and Engineering

ANALYSIS, DESIGN AND
IMPLEMENTATION OF A PARKING

RECOMMENDATION SYSTEM APPLYING
MACHINE LEARNING TECHNIQUES

Subject

MACHINE LEARNING AND DATA SCIENCE

Thesis supervisor

Prof. MARCO ANTONIO
BOSCHETTI

Thesis co-supervisor

Eng. DAVIDE ALESSANDRINI

Presented by

GABRIELE GUERRINI

Single graduation session
Accademic Year 2019 – 2020

KEYWORDS

Urban mobility
Parking recommendation system

Machine learning
Data mining

myCicero

Table of Contents

Introduction vii

1 State of the art 1
1.1 Related works revision . 1
1.2 myCicero . 3
1.3 Competitors . 5

1.3.1 EasyPark . 5
1.3.2 APParked . 6

2 Data analysis 7
2.1 Data exploration . 7

2.1.1 myCicero . 8
2.1.2 Parking meters . 8
2.1.3 Verifiers dataset and seasonal tickets 10

2.2 Time series model . 12
2.3 Preprocessing . 13

2.3.1 Timestamp approximation 13
2.3.2 Aggregation of near parking meters 14
2.3.3 Drop of outliers . 16
2.3.4 Filling of missing values 17

2.4 Time analysis . 19
2.4.1 myCicero . 19
2.4.2 Parking meters . 21
2.4.3 Seasonal tickets . 23

2.5 Spatial analysis . 26
2.5.1 University area (north wing) 26
2.5.2 Area #2 . 30
2.5.3 Conclusions . 36

2.6 Miscellaneous . 37
2.6.1 Arrivals vs Stops . 37
2.6.2 Stop length and late afternoon factor 39

v

vi TABLE OF CONTENTS

3 Problem formalization 43
3.1 Occupation status estimation 43

3.1.1 OPV estimation . 43
3.1.2 Forecasting model: Prophet 45
3.1.3 Capacity estimation . 48
3.1.4 Occupation percentage to occupation status mapping . . 50

3.2 Geometric models . 51
3.2.1 Polygon-oriented models 51
3.2.2 Graph-oriented models 53

4 Solution development 57
4.1 System architecture . 57
4.2 SystemSetup . 58

4.2.1 Geometric model . 59
4.2.2 Further setup tasks . 63

4.3 RunningSystem . 65
4.4 ForecastingService . 68
4.5 StorageService . 70
4.6 RoadCutterService . 71

5 Performance evaluation 73
5.1 Experimental setup . 74
5.2 Real-world gap . 74
5.3 Generalization error . 75
5.4 Forecasting error . 76
5.5 Behavior goodness . 81

6 Conclusions 89
6.1 Summary . 89
6.2 Future developments . 90

Introduction

Nowadays, smart city and urban mobility topics are focusing growing in-
terest for business and R&D purposes both, and one of its trendy application
regards the study and the realization of parking recommendation systems.
As a matter of fact, understanding the parking behavior and making effective
predictions play a key role in multiple optimization aspects. Besides the facil-
itation of the parking operation itself when looking for a free parking lot, the
understanding of the existing dynamics also enables the possibility to better
frame the traffic conditions and, consequently, to dislocate resources such as
the traffic police. Furthermore, vehicles looking for free parking spaces nega-
tively impact the traffic speed, and long queue can often be observed during
peak hours. Accurate feedbacks to users about the current availability of park-
ing lots can reduce the traffic congestion by limiting the “cruising for parking”
phenomenon that is affecting the city centers increasingly.

In our case, a parking recommendation system is going to be developed
for the city of Bologna. After a brief revision of similar proposed solutions
and their approaches and findings, a first data analysis phase is going to be
executed to explore the data and to mine any useful information about the
parking behavior. Then, once the adopted forecasting model has been exposed,
the design and the development of the system are going to be described. In the
end, the performances of the system are going to be evaluated under multiple
points of view, considering some project-specific constraints too.

vii

Chapter 1

State of the art

Firstly, it follows a revision of the related works about parking forecasting
topic in Section 1.1. Then, it is executed a deepening about the application
where the parking recommendation system is going to be integrated (Section
1.2) and the competitors in the Italian market that already introduced a similar
functionality (Section 1.3).

1.1 Related works revision
Many different projects have already been developed to model and predict

the occupation of parking lots, and very different ideas and approaches have
been explored. Such a great variance is mainly due to the fact that the domain
is very complex, and so each singular project deals with different scenarios
depending on multiple factors, among which the features of the available data.

Available data
Besides the occupation of parking lots, information about exogenous fac-

tors are often exploited too, including weather data, traffic speed and outlier
temporary conditions. This latter aspect is comprehensive of car crashes, city
market day, closed roads, holidays.
Also, we can identify further aspects that make it possible to provide different
capabilities to the solution, namely:

• Usage of real-time data against usage of the historical data solely: the
usage of real-time data permits to have accurate information that other-
wise must be approximated (e.g., exact arrival and/or departure time).

• Historical depth of the datasets: the period covered by the data influences
the type of seasonalities that can be found.

1

2 CHAPTER 1. STATE OF THE ART

• Sampling period of the data: it influences the minimum period a new
prediction can be generated (every 5 minutes, 15 minutes, etc.).

Forecasting model
As well as the commonplace approach based on neural networks, statis-

tical predictors (e.g., ARIMA, [2]) and other well-known machine learning
techniques (e.g., random forest, [3]) have been applied too. However, an ac-
knowledged best performing standard is still not present among the different
forecasting models, and there is not a compliance in the type of problem to be
solved neither (regression against classification).
Also, further models have been enriched using the fuzzy logic principles to es-
timate the uncertainty of parking availability during the peak parking demand
period [6].

When a regression problem is faced, the time series concept has been used
to model the stops trend in most of the cases. Though, the way the time series
are built is not always the same and depends upon the forecasting goal of each
singular project (find out an occupation percentage, find out a delta in number
of arrivals and departures, find out the time a parking lot is going to remain
occupied/free, etc.).

Concerning the neural network domain, we have different adopted method-
ologies straddling between more architectures. Indeed, besides classical MLP
networks that are still used, Recurrent Neural Networks (RNN) are widely
employed to catch time dependences and, in some cases, Graph Convolutional
Neural Networks (CGNN) are employed to catch spatial dependences too [4].
Farther, more complex techniques have also been tried by:

• Ad-hoc redesigning the architecture of the LSTM unit [5]: the input gate
is modified to merge the regular input with information about weather
conditions and recurrent patterns at three different granularity level (day,
week, month).

• Training the neural network using genetic algorithms [1].

• Combining more neural networks and merging their partial results [4]
(similarly to bagging techniques principle).

Geometric model
When dealing with the geometric aspect, the common solution is to split

the territory up in different regions so that situated forecasts can be executed.
The number of regions a city can be divided in highly varies case by case,

CHAPTER 1. STATE OF THE ART 3

and the methodology adopted to split the territory is generally handmade by
considering the districts on the map or the road network.
The correct detection of regions is a crucial aspect since it has been found that
different areas may assume completely different behaviors depending on the
time of the day, the day of the week and weather conditions. This latter factor
significantly influences performances in general, and it has been discovered that
different areas suffer occupation changes on different type of weather. Indeed,
business areas expose higher values on adverse weather (storm, snow, etc.),
while recreational areas follow an opposite behaviour.
Moreover, areas containing the more parking lots seem to perform better be-
cause the occupation rate variance is lowered, and so more stable and accurate
forecasts can be made. On the contrary, areas containing just a bunch of
parking lots are susceptible to fluctuations.
Furthermore, a time correlation between adjacent areas has been found in some
cases [4]. Such areas reach a high occupation in similar times during the day,
except for a little shift. This is probably due to the filling of a certain block
where it is contained a major place of interest firstly. Then, once such a block
is full, people begin to look for more distant parking lots, and so near blocks
start to grow their occupation too.

In the end, notice that few projects worked on a simplified scenarios where
the incoming data covers just one or more restricted areas. Hence, the domain
had been considered as atomic, and no particular geometric model had been
adopted.

1.2 myCicero
“myCicero” [7] is a digital platform developed by the “Pluservice” [8] com-

pany and whose goal is the offering of different services, including info mobility,
mobile ticketing, shopping promos, points of interest (POI).
The application is based on a MaaS architecture (Mobility-as-a-Service), and
already integrates more than 200 mobility operators.

When talking about the ticketing area, the application handles different
typologies of transport, such as railways, taxis, bus routes, car pooling.
The “on street parking” functionality handles the paid parking lots manage-
ment, and Figure 1.1 reports an example of its usage.

4 CHAPTER 1. STATE OF THE ART

Figure 1.1: The “on street parking” functionality of “myCicero” application.
Different colors identify different hourly rates.

This latter functionality enables the payment of the parking through the mobile
application so that users can get rid of parking meters just by using their mobile
phone. The main advantages are:

• Faster parking: the user does not need to reach a parking meter by
foot anymore.

• Easier payment: the is no need for the user to use coins to pay.

• Increased flexibility: the application is going to charge only the effec-
tive minutes of the stop. Moreover, the user can extend the stop remotely

CHAPTER 1. STATE OF THE ART 5

without coming back to the car.

The parking recommendation system to be developed will be integrated in
this parking functionality, and there is no previous version of it. The goal is
to provide a visual feedback for each street on the map ideally.

1.3 Competitors

1.3.1 EasyPark
“EasyPark” [9] is the first competitor that introduced a parking recommen-

dation system in the Italian market, and the company already launched the
functionality in several European cities. In Italy, Verona had been the first one
in 2018, but then other cities were included too (such as Milan and Rome).
The “Find & Park” functionality allows the users to check the probability to
find parking for each street, and such probability is expressed using different
colors on the map (Figure 1.2). The goal is to save time when looking for a
parking lot, and it has been confirmed that the time spent by the users is cut
down from a couple of minutes to the half depending on the situation.
It has been declared that the recommendation system considers the following
factors:

• “EasyPark” data: stops executed by the users that pay through the
application.

• Data provided by the local mobility operator, also including exogenous
factors such as temporary closed streets and city market day.

In the end, as well as displaying the map containing the status of each street,
users can also activate a navigator whose calculated journeys are optimized
upon the availability of the parking lots instead of the travel time.

6 CHAPTER 1. STATE OF THE ART

Figure 1.2: Example of the “Find & Park” functionality.

1.3.2 APParked
“APParked” [10] is another application providing a similar functionality.

However, even though the goal is way similar, the application uses a com-
pletely different approach. Indeed, it is based upon the social idea and the
collaboration of the users so that free parking lots are reported.
A user can ask for a free parking lot, and the platform will return all the
nearby availabilities. Then, the user notifies the platform when the parking
lot is effectively occupied (park-in), and a suggested duration of the stop can
be provided so that it is known an expected time for the parking lot to be
released. Obviously, the user can also notify to the platform when he is leaving
(park-out).
Besides the common benefits, users are enticed to use the application through
various rewards. The more information they provide, the more reward they
can obtain.

Chapter 2

Data analysis

Firstly, it follows a description of the available data in Section 2.1. Then,
once the model adopted to shape the stops has been explained (Section 2.2)
and the datasets have been preprocessed (Section 2.3), a data analysis phase
is executed to mine any useful information that may be considered during the
development of the system itself1.

Premise: Notice that there is no info about night hours since the parking
is free during such period and, consequently, there is no check made by police
officers too. Hence, no analysis can be executed nor any feedback to users can
be given using the provided data for the time being.
Moreover, a similar reasoning can be made for holidays where the parking is
free too.

2.1 Data exploration
There are three admissible ways to occupy a paid parking lot, that is:

• Use a near parking meter to pay the required amount.

• Use an application that allows the payment using a digital wallet (or
any similar feature). We focus on information coming from “myCicero”
application since data of competitors is obviously unknown.

• Use a seasonal ticket (or any similar special convention).

A dataset for each payment method is available grouping transaction that
happened in the period 01-01-2019/31-12-2019.

1Analysis that did not lead to any interesting result are not reported for conciseness.

7

8 CHAPTER 2. DATA ANALYSIS

2.1.1 myCicero
The dataset contains an overall of 310k records with a size of 20MB.

Each record represents a payment made in a certain moment and in a certain
point of the space. Hence, each entry contains few useful information such as:

• Longitude and latitude coordinates

• Transaction timestamp representing the moment the stop begun

• Stop length (minutes)

Records are provided in the format:

(longitude: float, latitude: float, stop length: int, timestamp: string)

Timestamps, already rounded to quarter of hours, are provided in the following
format:

Y-M-D h:m:s

Table 2.1 reports few example records.

Longitude Latitude Stop length Timestamp
11.347791 44.508027 27 2019-01-01 11:15:00
11.311599 44.491037 60 2019-01-01 11:15:00
11.354347 44.487044 197 2019-01-01 13:00:00

Table 2.1: Sample of the “myCicero” transactions dataset.

2.1.2 Parking meters
We need information about location, time and length for each stop but,

unfortunately, such information is split up among multiple datasets. Indeed,
besides the transactions dataset storing the arrival time, we must use two more
datasets to calculate stop location and length, namely the parking meters’
registry (storing location) and the hourly rates dataset (storing the required
information to correctly calculate stop length from the paid amount).

CHAPTER 2. DATA ANALYSIS 9

Transactions dataset

The dataset contains an overall of 3800k records with a size of 380MB.
Each record represents a payment made in a certain moment to a certain
parking meter. Hence, each entry contains few useful information such as:

• Parking meter’s id

• Transaction timestamp

• Paid amount

A first preprocessing operation2 is required to correctly shape the data
since column separator and amount values use the comma character both.
Therefore, amounts containing decimal digits are split upon two columns, and
records do not have all the same shape.
After such operation, the records are provided in the format:

(parking meter id: int, paid amount: float, timestamp: string)

Timestamps are provided in the following format:

Y-M-D h:m:s.ms

Table 2.2 reports few example records.

Parking meter id Amount (€) Timestamp
10001 2.0 2019-01-01 23:04:00.000
10001 1.0 2019-01-02 08:23:00.000
5516 0.9 2019-01-26 18:31:00.000

Table 2.2: Sample of the parking meters’ transactions dataset.

Hourly rates dataset

A parking area is a region of the city where a same hourly rate is applied
to all parking lots within it.
Each record of the dataset includes the name of an area and the information
associated to such area. The rate values hold just for regular days since free
parking is applied during holidays (the rate is “0”).
Table 2.3 reports the complete hourly rate dataset (just 4 areas).

2Such operation is not exposed in next preprocessing section since it is required to actually
have a dataset that, otherwise, is not usable.

10 CHAPTER 2. DATA ANALYSIS

Area Rate (€) Validity
Cerchia del Mille 2.4 8:00 20:00
Centro Storico 1.8 8:00 20:00

Corona Semicentrale 1.5 8:00 18:00
Zona Bolognina-Arcoveggio 1.2 8:00 18:00

Table 2.3: Hourly rate of each area.

Registry dataset

The dataset stores the registry of parking meters (819 records in total) with
information about:

• Parking meter id

• Longitude and latitude coordinates

• Parking area where a parking meter is located

• Other info of no interest (e.g., human readable location where the parking
meter is placed in term of street name and house number)

Table 2.4 reports few example records.

Id Longitude Latitude Area
10001 11.348345 44.508008 Corona Semicentrale
3032 11.348821 44.485008 Cerchia del Mille
3023 11.346152 44.8913 Centro Storico

Table 2.4: Sample of the parking meters’ registry. Only columns of interest
are shown.

2.1.3 Verifiers dataset and seasonal tickets
The verifiers dataset includes all the checks made by police officers during

the selected period3 and it contains an overall of 1800k records with a size
greater than 500MB.
Each record represents a check made in a certain location at a certain time,
and so it includes the following useful info, that is:

3Checks about stops in order are included too.

CHAPTER 2. DATA ANALYSIS 11

• Longitude and latitude coordinates representing the point of the space
where the check has been registered (and so where the vehicle is parked
approximatively)

• Timestamp representing the time the check has been registered

• Type of ticket (regular parking meters’ ticket, seasonal tickets, etc.)

• Id of the street (useful to execute aggregated analysis)

The remaining columns report information of no interest and so they are omit-
ted.

Few ETL transformations are required to generate the dataset from the
input raw files. Indeed, even though the data is already organized in columns
and separated by commas, it is split among 12 text files (one for each month)
that need to be converted to CSV format and then merged. When doing the
above operations, a preliminary projection is executed contextually in order to
drop useless columns.

Besides the complete verifiers dataset that may be useful during the next
performance evaluation stages, the target is also to create a dataset repre-
senting the slice of occupied parking lots that can not be framed using the
two aforementioned datasets, that is stops that did not require any payment
thanks to seasonal tickets, hotel conventions, school conventions, etc. Hence,
the verifiers dataset is filtered to select only the records of interest, and the
resulting dataset’s size is about 100MB, reduced by 80% from the starting one.

When talking about the seasonal tickets data, records are provided in the
format:

(longitude: float, latitude: float, timestamp: string, street id: string, ticket
type: string)

Timestamps are provided in the following format:

D-M-Y 00:00:00 h:m

Table 2.5 reports few example records.

Longitude Latitude Timestamp Ticket type Street id
11.3412 44.5153 01/10/2019 00:00:00 08:08 ABBONAMENTO 32760
11.316 44.4932 26/11/2019 00:00:00 09:21 ABBONAMENTO 10750
11.316 44.4932 26/11/2019 00:00:00 09:21 INVALIDI 10750

Table 2.5: Sample of the verifiers’ dataset after the ETL operations.

12 CHAPTER 2. DATA ANALYSIS

2.2 Time series model
Times Series (TS) with different time intervals and sampling periods are

employed to describe the stop trend at different granularity levels.
Table 2.6 reports the adopted taxonomy for different types of TS.
Note: TS spread over multiple years may be used to find high-level behaviors
that live aside the single year (such as an expected lower occupation during
summer period), but this would require a dataset with a historical depth of
few years.

Type Time interval Sampling period Number of values on time axis
Day by quarters 1 day quarter (of an hour) 96 1

Year by quarters 1 year quarter 35040-35136 2

Month by days 1 month day 31
Year by days 1 year day 365-366

Year by months 1 year month 12

Table 2.6: All types of time series along with respective defining info.

Any value of a given TS represents the number of occupied parking lots in
such time. Let us consider, for example, the following TS:

[1, 5, 4, 3, 2, 10, 7, 8, 3, 2]

We have 1 occupied parking lot at time 0, 5 at time 1, 4 at time 2 and so on.

It follows a detailed explanation of the day by quarters TS. A similar rea-
soning, omitted for conciseness, can be made for other types of TS too.

Day by quarters TS

Quarters are indexed in range [0; 95] using the following criteria:

00:00 -> 0, 00:15 -> 1, 00:30 -> 2, . . . , 23:45 -> 95

Each record of the dataset contributes as “1” for any quarter the stop covers,
and the number of quarters it contributes to is given by the stop length using
the formula:

n quarters = round(stop length/15) + 1
124 hours per day * 4 quarters per hour
2365/366 day per year depending on leap years * 96 quarters per day

CHAPTER 2. DATA ANALYSIS 13

Once covered quarters for each transaction is calculated, we generate the
TS just by counting how many times each quarter appears.

It follows a clarifier example. Table 2.7 reports few records and the respective
information required to generate the TS.

Input info Calculated values Output
Arrival time Stop length Arrival quarter index # quarters Covered quarters

10:00 48 32 4 [32, 33, 34, 35]
10:15 63 33 5 [33, 34, 35, 36, 37]
23:30 68 94 5 [94, 95, 0, 1, 2]

Table 2.7: Examples of covered quarters calculation.

Once we have stop lengths in term of covered quarters, we can merge them all
and generate the following TS by counting the number of occurrences of each
quarter:

[
1, 1, 1, 0,
0, 0, 1, 2, 2, 2, 2, 1, 1, 0,
0, 0,
0, 0, 0, 0, 1, 1
]

The first element of the TS (i.e., time 00:00 having index “0”) has value “1”
since we have only one “0” in the covered quarters array.
The second element of the TS (i.e., time 00:15 having index “1”) has value “1”
since we have only one “1” in the covered quarters array.
The 34th element has value “2” since we have two values “34” in the covered
quarters array.
Similarly for all other items of the TS.

2.3 Preprocessing

2.3.1 Timestamp approximation
It is required an approximation of timestamps to execute further analysis

because of two main reasons, that is:

• All datasets should use the same time detail on timestamp to correctly
merge/compare them. However, “myCicero” timestamps are already

14 CHAPTER 2. DATA ANALYSIS

rounded to quarters, and so such a round must be executed on other
datasets too.

• Even if we had minutes detail for all datasets, such fine-grained infor-
mation would be an overkill, and it should be reduced since there is no
point on dividing between transaction occurred in one-minute distance.
On the other hand, just dropping minutes information may be excessive
since we may lose dynamics happening within hours. Thus, the quarter
approximation may be a reasonable tradeoff.

Therefore, we approximate timestamps using quarter of an hour. There
are several possibilities to do such an approximation (to the nearest quarter,
to the previous one, etc.). Notice that there is no wrong option, and each one
would lead to a different modeling of the data.

The approximation to the nearest quarter has been chosen4 (Figure 2.1
reports a graphical explanation).

Figure 2.1: Approximation of each minute to the nearest quarter.

2.3.2 Aggregation of near parking meters
It is required an aggregation of parking meters for data mining and solution

development both. The problem arises from the distribution of parking meters
over the territory, and it is addressed to the excessive proximity of few couples
of them. This problematic situation occurs in two main casuistries, that is:

• Two parking meters located at the two sides of a street.
4Actually, since “myCicero” data is already rounded to quarters, the same approximation

should be used to keep consistent data. Unfortunately, the type of that approximation is
not known for the time being.

CHAPTER 2. DATA ANALYSIS 15

• Two parking meters located at the opposite corners of a crossroad.

Indeed, parking meters of given couple likely share a similar behaviour (in-
tended as the trend of the stops along daylight hours), and so they can be
aggregated and reduced to one. Figure 2.2 reports a clarifier example.

Figure 2.2: It is reported the trend of stops along the day for three different
parking meters (1016, 1045, 10007). 1016 and 1045 are located at the two sides
of the same street (“Via Irnerio”) and expose an identical trend. Meanwhile,
10007, exposing a totally different behaviour, is a randomly chosen parking
meter far from to above ones.

By aggregating close parking meters, we obtain the following advantages:

• Reduction of the amount of computation to be done.

• Collapse of different items that actually represent the same underlying
concept.

This operation is executed iteratively by aggregating couples one by one.
When a couple is aggregated, the new parking meter will be located in the
middle of the segment that connects the two starting points (Figure 2.3), and
the resulting parking meter will own one of the two starting id (it does not
matter which one).
The metric used when calculating the distance between any couple of parking
meters is the Haversine distance.

16 CHAPTER 2. DATA ANALYSIS

Figure 2.3: Two points (blue) and their middle point (red). (xAB, yAB) =
((xA + xB)/2, (yA + yB)/2) = ((2 + 8)/2, (2 + 5)/2).

The starting cardinality of parking meters is 816 (3 already dropped from
starting 819 due to missing values). The minimum allowed distance for two
parking meters that avoid them from being aggregated is a parameter. Table
2.8 reports few attempts when tuning such a parameter so that only parking
meters with same behaviour are collapsed.

Minimum allowed distance (m) Number of dropped parking meters
50 122
20 38
10 23

Table 2.8: Number of aggregated parking meters when varying the minimum
allowed distance.

By analyzing the behaviour of a sample of the aggregated parking meters,
the usage of 20m distance seems to be a good trade-off. The aforementioned
assumption (i.e., merge only parking meter with similar behaviors) cannot be
considered true any more when using higher distances (such as 50m), while
few couples may be lost and not aggregated when going under 20m.
Thus, the number of aggregated couples is 38, resulting in 778 final parking
meters.

2.3.3 Drop of outliers
The considered territory is included in range [44.47; 44.55] and [11.30;

11.38] for latitude and longitude respectively, and records detected to be out-
side the domain are dropped.

By analyzing “myCicero” dataset, 37 records are detected to be located in
different Italian cities, namely:

CHAPTER 2. DATA ANALYSIS 17

• Riva del Garda (TN): area 10.83/45.88, 22 records

• Rimini (RN): area 11.71/44.36, 10 records

• Imola (BO): area 12.56/44.06, 5 records

Such outliers are dropped even though it is not clear why they are present in
the datasets.

By analyzing parking meters registry, the ones with id 3017, 14109, 15025
are dropped. Such outliers clearly are typing errors (wrong values, missing
digits, etc.) but the involved parking meters result on being outside of the
domain, and so they are dropped.

In the end, seasonal tickets dataset is cleaned too. In this case, a bunch of
records are dropped since they have latitude or longitude set to “0”. Actually,
such records are dropped now since they are located outside the domain, but
it is obvious how they are not real outliers (probably, “0” value has been put
as placeholder to fill missing information).

2.3.4 Filling of missing values
There are four fields to be filled or calculated, namely:

• Stop length for parking meters transactions

• Stop location for parking meters transactions

• Stop length for seasonal tickets

• Stop location for few seasonal tickets records

Parking meters: stop length and location

The location in term of longitude and latitude coordinates is not carried
with each transaction, but it can be easily retrieved from the registry dataset.
In reverse, there is no explicit stop length for parking meters transactions, but
it can indirectly be calculated from the paid amount and the hourly rate using
the following formula:

length = (amount/hourly rate) ∗ 60 (2.1)
The stop length is expressed in minutes. The hourly rate varies on the parking
area where the parking meter is located in.

In order to retrieve the missing values, parking meters registry is firstly
joined with the hourly rates dataset on the “area” column to retrieve the

18 CHAPTER 2. DATA ANALYSIS

hourly rate associated to each parking meter. Next, the transactions dataset
is joined with the registry on the “id” column in order to retrieve location and
hourly rate both for each transaction, and then the Formula (2.1) is applied
to find the stop length out.
In the end, the transaction dataset may contain few missing values if any
parking meter’s id in the transaction dataset is not also present in the registry
(failed join operation). Such records are simply dropped.

Seasonal tickets: stop length and location

The main issue is that there is no information about the stop length for
seasonal tickets data. However, this latter value is mandatory to create a TS,
and such info is set up to 1 minute. Notice that, since a same value is going to
be used for all records, the chosen length is not a knot or an error because any
other greater value would just modify the TS by widening the “bells” created
by the peaks, and so the overall trend would just be blurred while keeping the
same overall shape of the time series (Figure 2.4).

Figure 2.4: Trend of stops along the day with stop length set to 1 (left) and 80
(right) minutes, respectively.

All the records contained in the period April 7th - June 11th have missing
information about location. This is not a problem when talking about aggre-
gated analysis since they can be dropped, and the remaining dataset is still
significant for most of the techniques.
However, it may become an issue of primary importance when executing situ-
ated analysis or forecasting tasks. Hence, such an aspect must be kept in mind
and fixed if required (e.g., by interpolating missing values of the TS).

CHAPTER 2. DATA ANALYSIS 19

2.4 Time analysis

2.4.1 myCicero
Figure 2.5 reports three different time series along with respective Pearson

autocorrelation values and normality tests (using Q-Q plots).

Figure 2.5: Three different TS along with information about Pearson autocor-
relation and normality test using Q-Q plot for daylight hours.

Day by quarters
It is quite easy to identify a neat division between day and night hours with

very low values on the latter ones. From now on, daylight hours are estimated
to be the ones in the interval 8 a.m. – 6 p.m., and most of the analysis will be
executed on such period since it is the one of interest.

During daylight hours, the time series is shaped as a bimodal one since
the almost constant trend occupation is interrupted in the middle. This is

20 CHAPTER 2. DATA ANALYSIS

probably due to the launch break, and so it is not a novel fact of particular
interest.
In the end, the distribution of data can be assumed as normal if not considering
few outliers.

Month by days
The times series does not show any major regularity among different periods

of the month, and this is formally confirmed by the Pearson autocorrelation.
Anyhow, we can detect a slightly 7-lags autocorrelation. This may point

a similar trend out for the days of the week independently from the month.
The issue that may mask such a correlation can be addressed to the shift of
the days as months proceed (that is, the 1st of a month is not always Sunday
or Monday, etc.).
Hence, we use a different time series modelling each day of the year (year by
days), and we look to the Pearson autocorrelation index (Figure 2.6). As we
can notice, the seasonality is now clear, and the period’s length is seven (one
week). Moreover, we can conclude there is no sub-seasonality on midweek
days.

Figure 2.6: Year by days TS along with associated Pearson autocorrelation
index for “myCicero” data.

In the end, the distribution of data can be associated to a normal one
except for 2 outliers that have lower values, that is:

• 1st day of the month: a lower number of stops seems to occur on such
day. This is probably due to a combination of holidays and Sundays that
occurred in that year so we just have 8 values out of 12 (1st January
and 1st November are holidays, 1st September and 1st December are
Sundays).

CHAPTER 2. DATA ANALYSIS 21

• 31st day of the month: obviously, only 7 months out of 12 have such
a day, and so it is normal to find a lower value. Hence, it cannot be
considered a real outlier.

Year by months
The time series cannot be analyzed to find any recurring pattern since only

one-year period data is available (e.g., higher values and growing trend after
summer till the end of the year can be either a general trend among multiple
years or a recurrent seasonality within the year). However, as we expected, we
find a fall on number of stops in August.
Moreover, we do not have enough values to correctly apply the normality test
(or better, to trust its results).
Thus, nothing can be said about autocorrelation and normality, but the re-
spective plots are reported for completeness.

2.4.2 Parking meters
Figure 2.7 reports three different time series along with respective Pearson

autocorrelation values and normality tests (using Q-Q plots).

22 CHAPTER 2. DATA ANALYSIS

Figure 2.7: Three different TS along with information about Pearson autocor-
relation and normality test using Q-Q plot for daylight hours.

Day by quarters
The TS trend is very similar to the one of “myCicero” data, and so similar

consideration can be exposed. The only outstanding element is the presence of
few periodic little spikes that break the “linear trend” of the TS (a deepening
about such aspect is made in Section 2.6).

Month by days
Similar considerations to the ones stated for “myCicero” data can be ex-

ecuted here too since similar trends and patterns are observed. Figure 2.8
reports the year by days time series.

CHAPTER 2. DATA ANALYSIS 23

Figure 2.8: Year by days TS along with associated Pearson autocorrelation
index for parking meters.

Year by months
Despite similar patterns to “myCicero” data such as a fall in stops on

August, there is one main difference which resides in the number of stops.
Indeed, now the growth of stops after the summer period does not occur any
more (may be seen clearly by comparing Figure 2.6 to Figure 2.8). There are
three main possibilities that may produce such a gap, namely:

• Parking meters and “myCicero” are used by different classes of people,
and so it is normal that they do not share the same trend since they
represent different underlying concepts, even though all the other time
series create a match between parking meters and “myCicero” with very
similar trends.

• The difference is given by a spread of the “myCicero” company and
more people using the application, while the parking meters are of public
domain and so its usage remains constant. This would imply that there
is no real difference in term of habits of the customers.

• The increase is simply given by an outlier period.

None of the three hypotheses can be discarded with the provided data.

2.4.3 Seasonal tickets
Figure 2.9 reports three different time series along with respective Pearson

autocorrelation values and normality tests (using Q-Q plots).

24 CHAPTER 2. DATA ANALYSIS

Figure 2.9: Three different TS along with information about Pearson autocor-
relation and normality test using Q-Q plot for daylight hours.

Day by quarters
The time series shows a well-defined recurrent pattern: high and low valued

are interleaved during the daylight hours. This is probably due to the checking
activity following a regular frequency along the day, and so the trend of stops
is not trustable to be coherent with the real one. Indeed, while for parking
meters and “myCicero” we can exactly model the arrival of a customer and
the associated stop by using the timestamp and the stop length, now we do
not know the real arrival time nor the length of the stop (length is mocked as
exposed in previous Section 2.3.4, arrival timestamp is the one when the check
had been made).
The TS actually takes snapshots of the occupation of parking lots at a given
time, while not considering the stop over the time passing. To better under-
stand this issue, we may just look to night hours where the recorded number
of stops is exactly always zero since checking are not executed during such pe-

CHAPTER 2. DATA ANALYSIS 25

riod. This is not a problem since the occupation during night hours would be
low anyway, but such a concept becomes a big issue when considering daylight
hours.

Hence, low peaks on daylight hours can not be assumed as true since they
do not represent a real decrease in the number of occupied parking lots. As
exposed Section 2.3.4, a possible solution is to create a “blurred” TS by using
length set to any random value (e.g., 60 minutes) so low peaks are filled.
However, this way we do not obtain any useful information anymore since the
trend becomes almost constant, except for a little peak in middle morning.

Month by days
Similar considerations to the ones already stated in previous analysis can

be made. Year by days TS is exploited to assess that the seasonality is seven.
The gap in spring months is not unexpected since those records have been
removed during outliers dropping stage.

Figure 2.10: Year by days TS along with associated Pearson autocorrelation
index.

Year by months
Similar considerations to the ones already stated in previous analysis can

be made about seasonality, normality test, etc. There are only two remarkable
thing that may be underlined, that is:

• As already discovered, the falling during spring period is due to the
missing data in such period.

• There is not a clear fall during August month, and this implies that the
slice of the population that makes use of seasonal tickets is not greatly
affected by summer variations.

26 CHAPTER 2. DATA ANALYSIS

2.5 Spatial analysis
Parking meters and “myCicero” data are compared on different areas.

The area sampling is handmade and, in order to minimize the sample bias,
different areas are chosen considering few characteristics, such as:

• Downtown areas vs suburbs areas.

• Different shapes: stretched areas, rounded areas, etc.

• Completely random areas vs areas with known potential peculiarities
(e.g., university).

It follows an analysis on two of the sampled areas5 over multiple abstrac-
tion levels (analysis on whole area and on sub-areas both). In some cases, a
robustness check has been executed too.

2.5.1 University area (north wing)
The considered area, whose schema is reported in Figure 2.11, is the north

wing of the university district.
5Just few examples are shown since the description of all the analyzed areas would be

too much verbose.

CHAPTER 2. DATA ANALYSIS 27

Figure 2.11: Schema of the selected area. Blue markers identify parking meters
(each one with its own id).

We firstly consider parking meters to understand the trend of stops along
the day in Figure 2.12.
We notice different behaviours among different areas. Indeed, as we can see
for parking meters 2012, 2013 and 2014, the trend is strongly influenced by
the territory peculiarities: they are all located on the same street (S.Giacomo)
within the university context, and they share the same monotonic increasing
trend. This is not true for other parking meters that are located nearby the
university though.

Moreover, we understand that the distance is a tricky dimension. Indeed,
d(2012, 2014) > d(2012, 1041)6, but parking meters 2012 and 1041 do not share
the same behaviour (while it is true for 2012 and 2014). Thus, we can conclude
that the little the distance the similar the behaviour (et vice versa) is not a
fair assumption in general.

6Euclidean distance.

28 CHAPTER 2. DATA ANALYSIS

Figure 2.12: Trend of stops (expressed using the day by quarter TS) of few
parking meters within the considered area.

Now, we look for any evidence of similar behaviors on “myCicero” data. In
particular, we consider “S.Giacomo” street (Figure 2.13) and, then, we look to
corresponding time series (Figure 2.14).
As we can notice, there is not any correspondence between parking meters
and “myCicero” in this area with the two data source modelling completely
different behaviours.

Moreover, there is no correspondence neither between the two halves of the
street within the solely “myCicero” data. Indeed, by splitting the street up
into two halves, the first exposes a peak in the middle of the day and low levels
for other hours, while the second one has an almost constant trend.

CHAPTER 2. DATA ANALYSIS 29

Figure 2.13: S.Giacomo street on the map. The street is split up in two halves
so it can be approximated by the two red rectangles in the best way.

Figure 2.14: Day by quarters TS for area S.Giacomo street (part 1 on the left,
part 2 on the right) using myCicero data.

Thus, we can conclude that the two data sources are not interchangeable,
nor an accurate forecast can be made by using just one of the twos since
different behaviours may appear for a same considered area. The mean of such
difference is still unknown, and it may rely on two different classes of people
that use parking meters and “myCicero”. However, by using the provided
information, it is impossible to deepen such a speculation.

Moreover, it is quite evident how territory peculiarities influence the trend
of stops along daylight hours, and so they should be taken in consideration
when developing the solution.

In the end, we understand how each prediction must rely on a limited

30 CHAPTER 2. DATA ANALYSIS

portion of territory since the behaviour may vary quite suddenly for nearby
points of the space.

2.5.2 Area #2
The selected area is a sampling of the downtown having a circular-like

shape (Figure 2.15).

Figure 2.15: Area made up by the intersections of few different streets: Via
delle Lame, Via Riva del Reno, Via Marconi, Via Minzoni, SS9. Parking
meters (along with their ids) are highlighted by the blue markers.

First of all, the stops trend along the day is reported in Figure 2.16. While
for “myCicero” data the behavior is not informative at all (almost a constant
time series), the parking meters one can provide few novel information about
the area with a higher occupation in the afternoon hours at the expense of the
morning ones.

CHAPTER 2. DATA ANALYSIS 31

Figure 2.16: Times series “day by quarters” for “myCicero” and parking meters
on the sampled area.

However, the area is still too wide to be considered atomic since differ-
ent sub-areas may show completely different patterns, resulting in misleading
results. We split the whole area in five sub-areas, namely:

• “Via Gardino” and surrounding area

• “Via Caduti del Lavoro” and surrounding area

• “Via Castellaccio” and surrounding area

• “Via Riva del Reno” and surrounding area

• “Via delle Lame” and surrounding area

It is confirmed that different areas expose completely different behaviors, and
such behavior is less informative as the number of parking lots inside that area
increases.

Riva del Reno
“Riva del Reno” area, whose behavior is reported in Figure 2.17, exposes

the less informative behaviour among the five areas and it is the only one
containing a big parking (more than 100 parking lots, map in Figure 2.18).
This may underline a correlation between the number of parking lots and the
information a time series can provide (a deepening in such direction for all the
territory in general is going to be executed in Chapter 5).

32 CHAPTER 2. DATA ANALYSIS

Figure 2.17: “Riva del Reno” area, day by quarters TS for “myCicero” and
parking meters both.

Figure 2.18: Street view of “Riva del Reno” area.

Via delle Lame
Boundary and behavior of the area are reported in Figure 2.19 and 2.20,

respectively. The parking meters within such area are {5017, 5018, 5030,
5031}. As we can notice, “myCicero” and parking meters follow a compliant
trend with an increase of stops during afternoon hours.

CHAPTER 2. DATA ANALYSIS 33

Figure 2.19: “Via delle Lame” area.

Figure 2.20: “Via delle Lame” area, day by quarters TS for “myCicero” and
parking meters both.

Now, we execute a robustness check by adding some jitter to the area
positioning. The goal is to detect if the behavior substantially changes and
how much the positioning may affect the results.
The initial area is identified by the rectangle with vertices: bottom-left =
(44.5005, 11.3337), top-right = (44.5022, 11.3345). The jitter will make the
area out of phase by moving it along any axis by a quantity equal to the half

34 CHAPTER 2. DATA ANALYSIS

of its length, that is ±0.008 on latitude and ±0.004 on longitude. Results
reported in Figure 2.21 show that:

• LEFT : the behavior changes in a non-negligible way since novel parking
lots, now considered in the area, influence the results.

• RIGHT : similar behavior with little variations. By moving the cell on the
right, the introduced portion of the area does not contain paid parking
lots at all, and so it is irrelevant for the analysis; meanwhile, we are
losing on the left few parking lots, but such a loss does not compromise
the behavior that is still captured by the remaining ones.

• UP: Almost the same behavior, similar considerations to the RIGHT
case.

• DOWN : Behavior changed in non-negligible way, similar considerations
to the LEFT case.

Thus, we can conclude that the identified behavior highly depends upon a
correct positioning of the area. Obviously, areas containing no paid parking
lot will not falsify the results, and so they can be put in one region rather than
another. Hence, it is confirmed as a random division of the territory without
considering the road network and/or the districts’ boundaries is not the best
solution at all.

CHAPTER 2. DATA ANALYSIS 35

Figure 2.21: “Via delle Lame” behavior (center) and the four out of phase ones
using “myCicero” data.

Via Castellaccio
In the end, the “Via Castellaccio” area (map in Figure 2.22, behavior in

Figure 2.23) is reported to underline two concepts, namely:

• The is no compliance at all between the trends, with the two data sources
exposing opposite behaviors (peak of the stops in morning for “myCicero”
against peak in the afternoon for parking meters).

• The area has been selected since there is a little number of stops and, at
the same time, it is one of those having the most informative behavior.
As stated before, a correlation may exist between the number of parking
lots and the information provided by the trend of stops.

36 CHAPTER 2. DATA ANALYSIS

Figure 2.22: Map of “Via Castellaccio” area.

Figure 2.23: “Via Catellaccio” area, day by quarters TS for “myCicero” and
parking meters both.

2.5.3 Conclusions
We can summarize the following findings from the previous analysis, namely:

• Usage of a random division of the territory might be impossible if the
solution must be focused on effectiveness since it does not consider local
territory peculiarities that emerged to be of primary importance. Indeed,
the correct positioning of regions is essential, and little variations so that

CHAPTER 2. DATA ANALYSIS 37

regions with different behaviors are intersected and/or mixed make the
solution lose effectiveness.

• Euclidean distance is a tricky dimension when dealing with this domain
since “the little the distance the similar the behavior (et vice versa)” is
not a fair assumption in general since local peculiarities create behavioral
patterns in clusters of arbitrary shapes. Hence, equal regions having
trivial shapes (circle, rectangle, etc.) for all the territory will not fit well
the problem.
Moreover, regions size must be accurately tuned and very little (edges
over 150m might already mix different behaviors) but, on the other hand,
creating a division using too shorter edges would generate a huge number
of regions, and this might affect the feasibility in term of computational
complexity and in term of quantity of data required to correctly gen-
eralize assumptions (i.e., too much regions correspond to a too meager
quantity of data for each region).

• Given an area, parking meters and “myCicero” data are not compliant in
term of behavior during daylight hours in most of the cases. Hence, the
usage of “myCicero” data solely might be impossible if solution must be
focused on effectiveness. Notice that this is not due to wrong territory
split up since analysis on such direction has been executed starting from
parking meters (that partially reflects the street network that, in turn,
reflect territory features), and then considering “myCicero” data in such
portion of the territory.

• Parking meters and “myCicero” data become more and more similar as
the size of the considered area grows and as the number of parking lots
in such area increases.

2.6 Miscellaneous
Very interesting results emerged from further analysis. However, the utility

of such results may live aside from the current project itself or they have no
precise classification, and so they are reported in this dedicated section.

2.6.1 Arrivals vs Stops
Datasets have been analyzed by counting the arrivals instead of modeling

the stop along the time (merely associating the stop length to 1 minute so
that each transaction is exactly associated just to one quarter of an hour).

38 CHAPTER 2. DATA ANALYSIS

The main goal is to understand if such simplified model still correctly shapes
the behavior of the stops (and so the TS model exposed in Section 2.2 is an
overkill).

The comparison of the two models is shown in Figure 2.24 using the day
by quarters time series for parking meters and “myCicero” both. As expected,
the times series trends for arrivals and stops are quite different.

Rather, the most interesting aspect emerges from the arrivals time series of
parking meters. Indeed, it is surprising how it comes out an exact seasonality
of length four (Pearson autocorrelation diagram is not reported for conciseness)
with the values arranged in a “lightning bolt” shape. We have local minimum
and maximum associated to the first and fourth quarters, respectively. The
difference maximum-minimum in term of number of arrivals in too high to
be associated to fluctuations (almost 3x factor), and this pattern is probably
explainable by the fact that most of the planned activities (meetings, lessons,
openings, etc.) start at the stoke of the hour, and so people tend to arrive
few minutes before. Consequently, the minimum is reached just after since the
aforementioned activities have just begun, and so few people are expected to
arrive.
Moreover, we can suppose that people using parking meters and “myCicero”
aim for different goal, and such aspect partially emerged in the Section 2.5
when it was found out that often times series of parking meters and “myCi-
cero” do not share the same behavior along the day when executing situated
analysis on restricted areas. Such hypothesis is now strengthened since there
is no strong seasonality is “myCicero” data, and so it means that the above
motivations do not hold any more for “myCicero” customers. On the con-
trary, they probably are usual customers that use the application for various
purposes (against occasional customers for parking meters).

CHAPTER 2. DATA ANALYSIS 39

Figure 2.24: Comparison between arrivals (first column) and stops (second
column) for parking meters (first row) and “myCicero” (second row) both.

2.6.2 Stop length and late afternoon factor
The subject of the analysis is the stop length, and the distribution of its

values is reported in Figure 2.25 for “myCicero” and parking meters both.
Firstly, we notice that “myCicero” data is almost all concentrated in few

different values corresponding to multiple of hours (60 minutes, 120 minutes
etc.), while it does not happen for parking meters values. This is indirectly due
to the “myCicero” application logic that hints a default length of one hour to
users, and such time seems to be kept by most of the users since the exceeding
amount will be refunded if they are going to leave before the validity of the
stop expires (for example, a user activates a stop with length 60 minutes, but
he leaves after 48 minutes. The cost of the remaining 12 minutes will be paid
back). By keeping in mind such principle, few users may select two or more
hours if they are going to stay that long just by tapping on hours knob, and
so the minutes one is not going to be used so much.

When talking about parking meters, the main subject is the user and the
coins it disposes. Hence, there is different type of reasoning that is no more
focused on the stop length expressed using time measure (minutes and hours).

40 CHAPTER 2. DATA ANALYSIS

Figure 2.25: Distribution of stop lengths for “myCicero” and parking meters.
Just stops with length less or equal to 180 minutes are considered (few tail
values are dropped so that a nice visualization can be provided).

Seen the previous considerations, the goal is to discover if different types
of user do exist. In particular, the main question is about which type of user
is going to set a stop length detailed to the exact number of minutes and why.
We divide the stops in two groups by their length: the ones that have a stop
length multiple to hours and the ones that do not. The stops trend is reported
in Figure 2.26.
As we can notice, there is a peak in the late afternoon for the stops whose
length is not multiple to hours, and such peak dramatically increases when
considering only stops shorter than one hour. Moreover, the major peak before
6 p.m is followed by a minor one just before 8 p.m.
On the contrary, the peak for stops with length multiple to hours are mainly
distributed on morning hours.
Such a phenomenon, that actually can be slightly found in parking meters data
too where the peak is not so high even though it exists (figure not reported for
conciseness), can be addressed to the fact that the paid period ends at 6 p.m.
or 8 p.m. depending on the area, and so people tend to do shorter stops during

CHAPTER 2. DATA ANALYSIS 41

the previous hour to avoid a waste of money. However, while it is justifiable
for parking meters, it should not happen for “myCicero” since any minute in
excess out of the paid period is not going to be charged.
The cause of the abnormal peak probably resides in the logic of the application.
Indeed, the default suggested length is one hour for the cases when the paid
period expires before too (e.g., paid period expires at 6 p.m., user arrives at
5:20 p.m., stop straddling between paid and free parking periods if using a
one hour long stop). When in these cases, even though the application is not
going to charge the costumer for the exceeding minutes, users normally set
the stop length so that an exact length till 6 p.m. (or 8 p.m.) is considered.
In order to do that, the minutes are fine-tuned using the proper knob in the
application, and so stops with the most disparate minutes emerge (e.g, user
arrives at 5:24 p.m. and sets a 36 minutes stop to avoid a possible extra charge
of 24 minutes).
This means that most of the users do not trust the application from charging
the correct amount when the stop is straddling between the paid and the free
parking periods. Hence, in order to solve such a problem, a suggested length
till the end of the paid period may be the hinted one instead of the regular
value of 60 minutes (or at least, without changing the application logic, a
textual feedback may be displayed to tell the safety of the operation).

Figure 2.26: Different day by quarters time series selecting only particular
transactions for “myCicero” data.

Chapter 3

Problem formalization

We should find out a high-level indication of the parking occupation in a
given area A and in a given time t. Obviously, such a value cannot be estimated
as once for all the territory. Therefore, the domain must be split up in several
regions so that a different occupation value can be estimated for each one.

Section 3.1 exposes the way the occupation status is calculated, while Sec-
tion 3.2 exposes different ways and approaches that can be exploited to obtain
a division of the territory.

3.1 Occupation status estimation
Given a time t and an area A, the goal is to obtain a categorical occupation

status for the area A at time t. In order to find such occupation status out, we
firstly calculate the Occupation Percentage Value (OPV), that is a numerical
value in range [0,1] representing the fraction of occupied parking lots, and then
we map the OPV to a categorical value.

3.1.1 OPV estimation
For the time being, the number of occupied parking lots can be modeled

by the sum of the three following components: “myCicero”, parking meters,
seasonal tickets. Hence, the optimal solution would be calculated using the
following formula:

OPV (t) = min{1, MC(t) + PM(t) + ST (t)
C

} (3.1)

where:

43

44 CHAPTER 3. PROBLEM FORMALIZATION

MC(t) = estimated number of occupied parking lots for “myCicero” at time
t;
PM(t) = estimated number of occupied parking lots for parking meters at
time t;
ST (t) = estimated number of occupied parking lots for seasonal tickets at time
t.
C = capacity of the area in term of number of parking lots1.

The number of occupied parking lots is not a ground value, but it can be
forecasted in any way. In our case, it will be formalized as a regression problem,
and the TS model already explained in Section 2.2 will be used to shape the
data.
The capacity of the area is not known too, and it must be calculated.
For safety, the “min” operator is used to bring the final OPV back in [0,1].

As projects constraints force, it must be possible to easily add further data
sources (or update the employed ones) to an already existing system, and so the
Formula (3.1) can not be directly applied since all data is mixed together2 and
the capacity is calculated once and for all. Hence, each data source should be
separately considered, and this does not represent a problem when forecasting
the number of occupied parking lots (just creating three different time series
and executing a forecast on each one).
The question raises when considering the capacity because it can not be esti-
mated as a unique value, and so partial capacities are going to be calculated on
each data source. This way, each data source has its own estimated capacity
and it is completely independent from the others.

Given a region, we use the following formula to merge the partial results
into the final OPV:

OPV = min{1,
∑n

i=0 forecasti∑n
i=0 capacityi

}

where:

n = number of employed data sources.
forecasti = estimated number of occupied parking lots for the i-th data source.
capacityi = partial capacity of the i-th data source.

1Obviously, it is intended as the number of paid parking lots solely.
2Indeed, all dataset would be merged, and a unique time series representing the overall

stop trend would be created.

CHAPTER 3. PROBLEM FORMALIZATION 45

Simply, the idea is to calculate the total number of occupied parking lots by
summing partial forecasts on each data source, and then to divide the resultant
by the sum of partial capacities.
Notice that it is equivalent to a weighted arithmetic mean on the singular
OPVs with weights imposed by the partial capacities.
The different weighting is required since the amount of data can highly differ
from data source to data source.
For example, let us consider two data sources where we have 3 out of 10
occupied parking lots and 80 out of 100, respectively. This would lead in a
resulting OPV of 0.55 ((0.3 + 0.8) / 2) when using a simple mean, while the
weighted one will return an OPV of 0.75 ((80 + 3) / (100 + 10)) by implicitly
giving more importance to the prominent data source, and this intuitively
better represents the real occupation.

3.1.2 Forecasting model: Prophet
The “Prophet” forecasting model is the one adopted to estimate the number

of occupied parking lots. The model, developed by Sean J. Taylor and Ben-
jamin Letham in 2018 [11] and based on the previous work of A. C. Harvey and
S. Peters [12], has been properly designed to catch recurrent business factors
that other common approaches may not consider without the development of
ad hoc solutions.

The main distinguishing feature of the model is that it straddles between
the statistical forecasting approach and the judgemental one, and so it at-
tempts to inherit the advantages of them both, namely:

• Flexibility: the model can be easily tuned to handle multiple season-
alities and trend changes. This is a key factor that emerged during the
previous data analysis stage (see Chapter 2).

• Computational complexity: the computation time of the training
stage is limited. This feature is of primary importance because hundreds
of models may be potentially created (one for each different region).

• Explainability: the model allows to easily tune each additive compo-
nent, thus producing interpretable changes in the solution.

• Sampling time: it is not required a regular sampling over time, and
so sparse missing values do not need to be interpolated. Taking into
account that we have the availability of full observations for the training
stage, this peculiarity may be relevant in the condition where the data
of a specific region is temporally unavailable.

46 CHAPTER 3. PROBLEM FORMALIZATION

The main idea is to use an additive model to decompose a time series into
four components:

y(t) = g(t) + s(t) + h(t) + εt (3.2)

where:

y(t) = value assumed by the time series at time t.
g(t) = function that models the non-periodic changes, i.e. the trend.
s(t) = function that represents the periodic changes, i.e. seasonality.
h(t) = bias function that represents the effect of holidays.
εt = error (any idiosyncratic changes not accommodated by the model).

Trend component

Two different designs of the trend are proposed: saturating growth (non
linear), piecewise trend (linear).
The piecewise trend was assumed in order to simplify the model and alleviate
potential overfitting.

The trend changes its growing rate periodically depending on various fac-
tors (especially when dealing with business aspects), and so the change-point
concept is to be defined. A change-point is a point in the time where the
high-level trend changes significantly.
Let us consider S change-points at times sj, j = 0, ..., S, and a basic growing
rate of k. The linear model considers a constant growing rate between any two
change-points, and variations in the growing rate are stored in a vector δ where
δi is the rate change that occurs at change-point si

3. Hence, the trend at time
ti is calculated from the starting rate k and summing all changes occurred till
ti.
The total trend component is calculated using the Formula (3.3).

g(t) = (k + a(t)T δ)t+ (m+ a(t)Tγ) (3.3)

where:

m = offset parameter to connect the endpoints of adjacent segments identified
by the change-points.
γ = vector used to make the function continuous (γj = −sjδj).

3Notice that it is the relative change that occurs from the previous rate, and not the
overall variation from the basic rate k.

CHAPTER 3. PROBLEM FORMALIZATION 47

A proper vector a ∈ {0, 1}S is defined to so that the rate a time t simply is
k + a(t)Tγ where:

aj(t) =
1, if t ≥ sj

0, otherwise

Change-points can be manually or automatically selected both. In the
latter case, a sparse prior Laplace(0, τ) is added to δ so that few change-
points are selected from a large number of candidates (conceptually equivalent
to L1 regularization). The parameter τ controls the flexibility of the model in
altering its rate (the higher the τ , the higher the trend variations that can be
imposed by the model).

Seasonality component

The seasonality component summarizes information about seasonalities at
different granularity levels (daily, weekly, etc.).
A periodic function of time s(t) is required to catch recurrent patterns, and
a Fourier series is adopted to approximate it (Formula (3.4)). Indeed, terms
of the series may be seen as refining patterns at different time granularities,
and so an increase in number of terms allows the model to consider shorter
seasonalites. On the other hand, an higher number of terms increases the
overfitting of the model obviously.

s(t) =
N∑

n=0
ancos

(2πnt
P

)
+ bnsin

(2πnt
P

)
(3.4)

where:

N = number of terms;
P = seasonality length in days (e.g., weekly patterns -> 7);
an, bn = parameters to be tuned by the model.

Holiday component

The holiday component just biases values in correspondence of any holiday.
A hyper-parameter ki (holidays prior scale) that represents the effect on the
predicted value is to be defined for each detected holiday. Such effect can be
an increase or a decrease either depending on the domain (in our case, it will
be a decrease since the parking is free during holidays).

48 CHAPTER 3. PROBLEM FORMALIZATION

Moreover, the component of a certain holiday may be suffered by the days
before and after both, and so the effect is propagated to a window of days
(such aspect can be tuned by apposite parameters).

Fitting and forecasting

The fitting is executed by exploiting the L-BFGS technique (an optimiza-
tion algorithm in the family of Quasi-Newton methods) to find a maximum a
posteriori estimate, namely to find the best parameters configuration to fit the
observed data.

Let H be the time horizon adopted for the current forecasting, i.e. the
period in the future we are going to predict (e.g., 1 day).
We define ŷ(t|T) as the forecast at time t made with historical data up to time
T and d(y, y′) as a distance metric to measure the error. The choice of the
distance metric is problem-specific (MAE, MAPE, etc.).

3.1.3 Capacity estimation
The capacity of a given area A and calculated on a given data source DS is

the ever-maximum observed number of simultaneously occupied parking lots,
and such a value can be banally retrieved by taking the maximum value of the
year by quarters TS. For quite small portions of the territory, such approach
would quite well approximate the real capacity of the area since we can fairly
assume that (almost) all parking lots were occupied at least in one moment
of the history (1-year historical depth should be enough), while it can not be
considered true when dealing with wider areas. However, this latter aspect is
not a problem of particular importance since predicted values and capacities
are both calculated on the same time series coherently.

An issue emerges when considering each data source singularly. Indeed,
even though the average number of parking lots occupied by a certain data
source may be quite stable over time to an high-level look, an outlier (higher
parking occupation than the normal one) may influence the estimated partial
capacity in a not negligible way, and so the relative total capacity will be
overestimated4. On the other hand, this cannot happen if all the data sources
were used together: indeed, if the time series reached such a maximum value, it
means that (an approximation of) such number of parking lots actually exists.
If follows a clarifier example in Figure 3.1. As we can see, an outlier value sets
the maximum of B up to a very high value respect to the average ones, and so
the partial capacity estimated for B will be distorted.

4Overestimated respect to the values registered by the time series, not the actual capacity
of the territory.

CHAPTER 3. PROBLEM FORMALIZATION 49

Figure 3.1: Three example TS are created by data sources A and B. The orange
one is the sum element-wise of A and B (i.e., AB(t) = A(t) + B(t) ∀t). The
maximum value of B can potentially vary in range [0; max(A+B)] (0 if B is
constant with value 0, max(A+B) if B(t) = MAXA+B and A(t) = 0).

The correct estimation of partial capacities has a primary importance since
it will influence the final OPV, and a too high partial capacity dictated by an
outlier value will lower all the final occupation results. Hence, to deal with
such an issue, the capacity is estimated once outlier values have been fixed.
A value v is considered an outlier if its distance from the mean value of the
series is greater than N times the standard deviation:

abs(v −mean) > N ∗ std

where:
mean = mean of the TS;
std = standard deviation of the TS;
N = an hyper-parameter to be tuned; the common suggested value is 3.

Now, the total detected capacity is going to be underestimated, and this
carries a further implicit advantage when dealing with uncertain values that
can be associated to one status or another depending on the adopted parame-
ters (see Section 3.1.4). Indeed, the underestimation of the capacity is preferred
to the previous overestimation since higher occupation status are going to be
predicted in the first case, and this may produce “false negatives” where the
users can find parking even though the application shows an high occupation
(it can be seen as a fluke, and divert the user focus away from the application).
On the contrary, when capacities are overestimated and lower occupation sta-
tus are calculated, the user may not easily find a free parking lot despite the
hinted value indicates the opposite, resulting in low a satisfaction of the users.

50 CHAPTER 3. PROBLEM FORMALIZATION

3.1.4 Occupation percentage to occupation status map-
ping

We consider four different occupation status, namely:

• Low occupation (displayed color: green);

• Average occupation (displayed color: yellow);

• High occupation (displayed color: red);

• Very high occupation (displayed color: purple).

Any OPV must be mapped to one of the above values.

The range [0,1] is split up in K bins, each one associated to a specific
occupation status. We consider four different status, so we use 4 bins (K =
4). Hence, we have K-1 hyper-parameters H* (H1, H2, H3 in this case) to be
tuned (Figure 3.2).

Figure 3.2: Four probability bins with length tuned by three H*.

It is clear that a model that contemplates bins of equal length does not suit
well to the problem (for example, we would already have a high occupation at
50%). There is not a unique optimal solution but, as common sense suggests,
a good tuning for such H* may be [0.6, 0.8, 0.95] (Figure 3.3).

Though the goodness of such a configuration is also supported from data
mined about occupation trend along the daylight hours in Section 2.4, it is
a theoretical one, and it is made a priori from the development of the solu-
tion itself. Hence, such parameters, if required, may be fine-tuned during the
performance evaluation step in order to suit the developed models.

Figure 3.3: Split points set up in [0.6, 0.8, 0.95]. This way we have a good
tradeoff, having low occupation till 60%, average occupation from 61% till 80%,
and so on.

CHAPTER 3. PROBLEM FORMALIZATION 51

3.2 Geometric models
The territory must be split in several regions so that a forecast can be

executed upon each one. We consider two different approaches, namely:

• Polygon-oriented solutions

• Graph-oriented solutions

It follows a brief description of each one (explanation of the theoretical model,
pros, cons).

3.2.1 Polygon-oriented models
Given a starting set of points, the whole area is divided in polygons by

assigning each point of the space to the closest starting point (i.e., Voronoi
tessellation).
There are few different possibilities for the choice of the starting points, namely:

• Usage of random points equally distributed over the territory.

• Usage of the locations of parking meters.

• Usage of equally spaced points over the territory.

The latter possibility is a remarkable one since it creates identical squared
regions by implicitly imposing the following two constraints, that is:

• Each region will have a squared shape.

• Each region will have the same length of sides.

Figure 3.4 reports an example of all the three possibilities.

Figure 3.4: An example of the three possible approaches to choose the start-
ing points: 500 random points, location of parking meters (about 800 points),
equally spaced points (8 on longitude axis, 12 on latitude axis).

52 CHAPTER 3. PROBLEM FORMALIZATION

Figure 3.5 exposes an example of a Voronoi tessellation, and so a possible
result.

Figure 3.5: Example of a Voronoi tessellation.

Pros:

• Geolocated data can be easily managed (just need to associate each trans-
action to the right region using latitude and longitude).

• It is possible to partially catch each area behaviour by using parking
meters coordinates as the set of starting points. Indeed, parking meters
reflect the road network that, in turn, reflects the territory peculiari-
ties. If parking meters data source is not available, the solution is still
applicable by choosing a different configuration of starting points.

• The model is open to novel approaches for the choice of the starting
points (e.g., centroids of the districts using the territory map).

Cons:

• Each region is shaped as a convex polygon, and this implies it is not
possible to have interwoven regions. Hence, the expected result will be
a map with spots of different colors.

• Since the final feedback to users should be a color to be displayed for each
road, it is required a service that permits to extract all roads contained
in a given region.

CHAPTER 3. PROBLEM FORMALIZATION 53

• As shown is Chapter 2, the Euclidean distance may be a tricky dimension
in such a context.

• When the starting points are not configured to be the locations of parking
meters, the solution does not consider at all any territory peculiarity and
the region positioning is quite random (aspects that emerged to be of
primary importance both in Chapter 2), and so the solution effectiveness
may be limited (Figure 3.6).

Figure 3.6: Let us consider a point of interest (any facility, public park etc.)
whose features may influence its surrounding area (blue). In the best case, the
behaviour will be correctly seized by the region (displayed as a square for sim-
plicity) if its positioning is right. Otherwise (red), a cell may contain partial
information that will mix up with external ones, resulting in an informative
power loss. When the division of the territory is totally random, such a casu-
istry is not avoidable.

3.2.2 Graph-oriented models
The territory is directly evaluated on the street network using a graph

where edges are streets and vertices are their intersections. The weight of
each edge is the Euclidean distance between the two vertices it connects. The
workflow would be divided in few steps, namely:

• Generate a set of starting vertices in the graph. If any point of interest is
not already a vertex, the graph is adapted to suit all the starting points.

54 CHAPTER 3. PROBLEM FORMALIZATION

• Label the graph to associate each edge to the nearest starting point on
graph routes.

• Associate each transaction of any data source to an edge using longi-
tude and latitude coordinates and, then, assign such transaction to the
starting point the edge is associated to.

Let us consider a slice of the road network (graph reported in Figure 3.7).
Then, we suppose to divide such graph in two regions. Figure 3.8 reports the
solutions realized by applying the two different approaches. Notice that, taken
in consideration the information mined on previous analysis stage too, the
graph-oriented approach will likely create a better solution than the polygon-
oriented one.

Figure 3.7: An example graph. Given an edge, its weight is the distance between
the two nodes it connects.

Figure 3.8: Result of polygon-oriented and graph-oriented models by creating
two regions (red, blue) on an example graph. Blue and red nodes are the
starting points.

Pros:

CHAPTER 3. PROBLEM FORMALIZATION 55

• The behaviour of each area is quite well caught since the division of the
territory is made upon the road network (against polygon-oriented mod-
els where the division is totally random or such aspect is approximated
by using the parking meters locations).

• The distance metric is very accurate since it is calculated on the street
network (differently from the Euclidean one that resulted to be tricky,
as exposed in Chapter 2).

• There is no need of any auxiliary service to extract roads within a given
area since the output is already an estimation for each street (or street
segment).

• The street segment is the building block, and so regions of arbitrary
shapes can be created and interlaced.

Cons:

• The street network is mandatory to apply the model.

• Complexity5 of this approach may be higher than to the one required for
polygon-oriented models.

5Time and space complexity as well as the effort to develop and implement the solution.

Chapter 4

Solution development

4.1 System architecture
Figure 4.1 reports the complete high-level architecture of the system.
The “myCicero” platform is represented by the component MyCicero, and it
is the only front-end access point to the forecasting service.
The back-end architecture relies upon the Service-Oriented Architecture idea
(SOA) and it is made up of seven components, namely:

• RunningSystem: Main service of the back-end that periodically up-
dates the occupation status of each region.

• SystemSetup: Application used to execute one-off setup tasks.

• RoadCutterService: Service used to extract the road segments con-
tained in a given area. Such a service in not included in the System-
Setup component since it has been developed separately.

• ForecastingService: Service that contains the forecasting engine to
estimate the number of occupied parking lots.

• StorageService: Service that stores any kind of worthwhile information
about regions in a persistent way.

• ParkingOccupationService: Facade service used to access the over-
all forecasting service. It also handles some aspects required to make
the functionality work on the final mobile application (e.g., find out all
regions close to the user).

• GatewayService: Broker service that forwards incoming requests to
the right inner service. Indeed, aside from the ParkingOccupation-
Service, other functionalities exploited by the “myCicero” application

57

58 CHAPTER 4. SOLUTION DEVELOPMENT

are provided by different services. Actually, the broker service already
exists, and its routing is just to be extended to handle the new requests.

Besides the above components, it is also present an application that encapsu-
lates all the code used to execute the data analysis stage explained in Chapter
2. Such part has been realized using a Python notebook.

Actually, considering that the integration of the system with “myCicero”
application is still in progress, the ParkingOccupationService has not been
implemented yet, and so no detailed description is going to be executed in next
sections. Moreover, that service and the StorageService may be collapsed
into one depending on the adopted solution. For the time being, they are
separately considered for a better separation of concerns (prevent incoming
requests from contacting the StorageService directly).

Figure 4.1: UML component diagram of the high-level architecture of the sys-
tem.

4.2 SystemSetup
This component of the system is responsible for all setup tasks, including:

• Definition of the geometric model

• Setup of the regions: split of transactions, calculation of capacities

• Training of the forecasting model

• Setup of the information saved in the StorageService

CHAPTER 4. SOLUTION DEVELOPMENT 59

No particular diagram representing the architecture of the system is reported
since the application can be described as a linear process with no particular
underlying design except for few utility classes used to gather common aspects
(e.g., Region class to group all regions related concepts).

This setup process has been developed using Python since many useful
libraries and functionalities to deal with dataframes (e.g., pandas) and geo-
metric aspects (e.g., scipy.spatial, shapely) are provided. Moreover, since
the data analysis part has been executed using Python too, further functional-
ities can easily be reused (e.g., creation of time series compliant to the model
described in Section 2.2). In the end, the requests module has been used to
easily handle the HTTP client.

4.2.1 Geometric model
The territory is split up using the polygon-oriented model described in Section
3.2.1.

Firstly, we need to create the set of starting points, and all the three al-
ternatives are implemented. The class VoronoiModel, containing few useful
utility functions and metadata, exposes the respective methods.

Moreover, when talking about the regular grid solution, we consider four
different granularity levels (L1, L2, L3, L4).
The L1 grid is initially set up so identical cells of size 792m x 792m1 are created
and, then, we proceed by splitting each cell up in four sub-cells (L2). This way,
we double the number of cells along each axis, and the length of the cells’ sides
is halved (396m x 396 m). Similarly, for L3 and L4 grids.
Within the VoronoiModel class, the regular grid shape dictionary stores the
metadata of each grid level (i.e., number of cells along each axis).

It follows a snippet of code showing the three available alternatives to
generate the set of starting points (Listing 4.1).

points = VoronoiModel.regular grid(∗VoronoiModel.regular grid shapes[”L1”])
points = VoronoiModel.random points(500)
points = VoronoiModel.parking meters locations(pm registry) #pm registry:

dataframe storing locations of parking meters

Listing 4.1: The three different methods to set the starting points up.

Once the starting points are defined, it is required a feature that allows to
split the domain area up by creating a Voronoi tessellation using the Euclidean

1A value of 0.1 degrees on the longitude axis is chosen for convenience, corresponding to
792 meters. Then, the same length is used for latitude too since the cells must be squared.

60 CHAPTER 4. SOLUTION DEVELOPMENT

distance as metric2. Such an algorithm is not created by scratch, but the
scipy.spatial package is exploited. Indeed, the class scipy.spatial.Voronoi
will automatically create the expected result just by providing the set of start-
ing points arranged as a tensor of shape (n points, n dimensions) containing
the coordinates of each point (Listing 4.2).

from scipy. spatial import Voronoi, voronoi plot 2d
voronoi = Voronoi(points)
fig = voronoi plot 2d(voronoi, show vertices = False, show points = False)

Listing 4.2: Creation of the Voronoi tessellation and plot of the result.

Figure 4.2 shows the basic solution merely applying the algorithm to create
the tessellation.

Figure 4.2: A Voronoi tessellation created by using 500 random points uni-
formly distributed among the domain.

We need to extract the edges of each region. Inter alia, we need to point out
the vertices so that each region can be expressed as a closed polygon using the
shapely.Polygon class. As we can notice, it emerges an issue since few regions
are unbounded (the ones containing ridge vertices), and no closed polygon can
be associated to them. We can avoid such a problem quite easily by adding
few additional ad hoc points (control points) so that only these new points will
be the ones associated to an unbounded region (control points will be ignored
on next steps, and so it is not a problem if they have an infinite region).

2The usage of the Haversine distance would be an overkill since each region is quite small,
and so the introduced error is very low.

CHAPTER 4. SOLUTION DEVELOPMENT 61

The minimum required number of points to create a subset of the 2-D space is
three, but we use four to keep it simpler by creating a rhombus around the real
domain. The “real” starting points now handle a limited subset of the whole
2-D space and the remaining part is split upon the control points (Figure 4.3).
Note: Attention must be paid to grant a correct positioning to the control
points so that it is impossible for any of them to have part of the domain
inside its own region. The proof of the minimum required distance from the
domain is trivial, and so it is omitted for conciseness.

Figure 4.3: Bounded Voronoi tessellation using 500 random points and 4 con-
trol points (blue markers). The “real” points now handle only the middle finite
rhomboid area.

In the end, once the unbounded regions have been dropped, we finalize each
region with the assignment of an id and the clipping of portions exceeding from
the domain by intersecting the region with the domain bounds. Code stub in
Listing 4.3 reports the execution of such operations.

#Create a Polygon for each region of the Voronoi tessellation .
#For each region:
#1. Get index of its vertices
#2. Drop empty regions (the first returned region is always empty, len == 0) or

with ridge vertices (only ctrl points, index == −1) so that only finite
regions are kept

#3. Get coords of vertices from indices (map function)
#4. Create Polygon from list of vertices coords
#5. Intersect region with bounds so that only the part within the domain is kept

62 CHAPTER 4. SOLUTION DEVELOPMENT

#6. Associate an id to each region (zip)
from shapely.geometry import Polygon
region boundaries = [for in zip(

list (range(len(voronoi.regions) − len(control points) −
1)), # Drop 4 ridge regions + 1 empty one by default

[Polygon(list(map(lambda index: voronoi.vertices[index],
region vertices indices))) . intersection (domain bounds)

for region vertices indices
in voronoi.regions
if not −1 in region vertices indices # Drop ridge

regions associated to control points
and len(region vertices indices) > 0

]
)]

Listing 4.3: Final operations on the regions: clip points out of the domain,
assign a progressive id.

Figure 4.4 shows the clipped regions. As we can see, the territory is quite
uniformly covered by regions with almost/exactly the same area when using
the random points/regular grid solution, while we notice a different distribution
with edge regions having a huge area respect to others in the middle if parking
meters locations are employed (parking meters are not uniformly distributed
over the domain since Bologna is not a perfect rectangle). This is not a problem
during forecasting tasks, but it must be taken into consideration if any analysis
based upon regions’ area is going to be executed in the future.

Figure 4.4: Voronoi tessellation with clipped regions using 500 random points
(left), regular grid (center) or parking meters locations (right) as set of starting
points.

In the end, it is also present a feature that permits to load an already
existing setup of regions. As well as for convenience (avoid to build the same
model each time), this is useful for reproducibility if a same specific setup of
regions is to be used once the runtime is reset (e.g., same boundaries when

CHAPTER 4. SOLUTION DEVELOPMENT 63

using random starting points). Obviously, it is present the dual feature that
allows to export a given setup of regions too.
Regions’ boundary is stored in a Json file structured as in Listing 4.4.

{
regions : [
{

id : number
boundary: [
{

longitude: number
latitude : number

}
]
}

]
}

Listing 4.4: Format of the Json file containing the regions’ boundary.

Such features are simply realized be exploiting the json package.

4.2.2 Further setup tasks
Once the boundaries have been defined and data have been preprocessed,

the first step is to split the transactions between the regions. Seen the amount
of data and the cardinality of the regions for the time being, a trivial algorithm
can be implemented and no particular solution is required (e.g, particular
arrangement or shuffling of data).
Given a transaction, a shapely.Point object is created so that it can be discov-
ered the region containing that transaction using the contains method of the
shapely.Polygon class.
Since any transaction is going to be associated to only one region, an early
stopping strategy might be applied when the first matching region is found.
It follows a stub of code showing the core of such task in Listing 4.5.

for arrival in df .values : # (lon, lat , timestamp, length)
location = Point(arrival [0], arrival [1])
admissible region = next((r for r in regions if

r .boundary.contains(location)), None)
if (admissible region is not None):

admissible region . add arrival (data source name, arrival [2], arrival [3])

Listing 4.5: Split of the transactions between the regions.

64 CHAPTER 4. SOLUTION DEVELOPMENT

Then, the ground truth must be modeled, and so a time series year by
quarters is created for each data source of each region.
Code stub in Listing 4.6 reports the core function containing the workflow used
to generate a time series from a given dataset.
The ArrivalTimeIndex class is just a container that stores a bunch of time
information at different abstraction levels: day in year [1;366], month in year
[1;12], etc.
At this point, the time series is created to adhere the model explained in
Section 2.2 using an utility function (calculate counts).

def create TS year by quarters(
df : pd.DataFrame,
day parsing strategy: Callable [[str], list],
time parsing strategy : Callable [[str], list],
timestamp split strategy: Callable [[str], list],
quarter round strategy: Callable [[int], int],
time column: str = ”timestamp”,
length column: str = ”length”
) −> list:

period type = YEAR BY QUARTERS PERIOD
arrivals = extract arrival info (df , day parsing strategy,

time parsing strategy , timestamp split strategy, time column,
length column)

for arrival in arrivals :
arrival . indices . arrival quarter in day =

calculate arrival quarter index (arrival , quarter round strategy)
arrival . indices .day in year = calculate day in year index(arrival)
arrival . indices .quarters in day = calculate stop quarter index(

arrival . indices .day in year ∗ N QUARTERS IN DAY +
arrival.indices.arrival quarter in day,

math.ceil(arrival .length / N MINUTES IN QUARTER),
period type.length

)
return calculate counts ([quarter for arrival in arrivals for quarter in

arrival . indices .quarters in day], period type.length)

Listing 4.6: Function used to create a time series from a given dataframe and
using the given strategies. The documentation of the function (that should be
placed between the declaration and the body) is omitted for conciseness.

Once all the time series have been defined, the capacity is calculated for
each data source of each region as specified in Section 3.1. Moreover, the
service hosting the forecasting engine is contacted so that the training phase
is executed.

CHAPTER 4. SOLUTION DEVELOPMENT 65

In the end, the regions’ data is saved using the StorageService so that
it can eventually be exploited by the Running system and the MyCicero
application both.

4.3 RunningSystem
This is the core component of the system and it manages the execution of

real-time predictions.
It has been developed in Scala using an actor model, and the akka library has
been used to handle all actor related aspects. Moreover, the sprayJson library
has been used to handle serialization/deserialization of objects.
Regarding tests, the scalatest and akka.test libraries have been used to
perform unit tests on passive components and actors, respectively. WordSpec
and FlatSpec are the test styles adopted as they seemed, among many, the
most expressive ones.

Figure 4.5 reports an high-level state diagram of the application. After the
starting bootstrap state where all setup tasks are executed, the application
cycles between the “IDLE” and “ExecutingForecast” states.

Figure 4.5: High-level UML state diagram of the system.

The application architecture is quite simple and it includes an overall of four
different actors, namely:

• CoreAgent: core of the application that orchestrates other components.

• ForecastingAgent: it handles all forecasting aspects (contact the NN-
ForecastingService to get updated forecasts, estimate the OPVs, merge
partial results, etc.).

• StorageManager: it intermediates all the communications between the
application and the StorageService.

• HttpClient: utility actor that handles HTTP logic (requests, responses,
data format, etc.). For any information about the http requests, the
REST interface of each service is described in the proper section.

66 CHAPTER 4. SOLUTION DEVELOPMENT

Figure 4.6 reports the bootstrap operations executed to retrieve the infor-
mation about each region from the storage service.

Figure 4.6: UML sequence diagram for the bootstrap operations illustrating
interactions between actors.

Once the system completed the setup, it starts executing a period forecast-
ing. Figure 4.7 reports the adopted workflow.
The CoreAgent periodically sends a message (ExecuteForecast) to the Fore-
castingAgent to execute a new forecast. The periodic behavior is simply cre-
ated using a timer that sends a message to the CoreAgent at regular intervals.
The ForecastingAgent asks for updated predictions to the ForecastingService
and updates the forecasted value about number of occupied parking lots for
each data source of each region. As soon as the new predicted values are
available, the agent calculates the new occupation status for each region. New
status are communicated to the RegionManager that, in turn, updates the
StorageService coherently.

CHAPTER 4. SOLUTION DEVELOPMENT 67

Figure 4.7: UML sequence diagram for the forecasting operations illustrating
the interactions between actors.

Particular attention must be paid to the outgoing http requests. Indeed,
the simple pattern used to send http requests will not work properly when
dealing with bursts of requests (sometimes we have a request for each data
source of each region, and so too much simultaneous open connections to the
same endpoint).
The trivial solution would be the change of the maximum allowed number of
connections in the akka configuration file. However, such solution statically
depends on the number of regions and data sources both, and a high number
of parallel connections may slow the system down excessively.
Hence, a different approach has been applied by using the reactive streams,
functionality provided by the akka.stream library.
A dynamic stream of HttpRequest is created using the Source.queue method.
The stream can use a same http connection for all outgoing requests if config-
ured with the proper Flow object, and an handler can be defined to manage
the responses (HttpResponse). In the end, the stream provides also backpres-
sure functionalities so that the processing rate of requests is correctly handled.
Any request to be sent is offered to the stream.
Notice that a stream is “closed” if no information is offered for more than

68 CHAPTER 4. SOLUTION DEVELOPMENT

a certain amount of time (5 seconds by default), and so data can not flow
through it any more. To solve such a problem, the ForecastingAgent sends
a RefreshAllStreams message to the HttpClient before the beginning of the
forecast so that all the streams are reactivated.
Code stub in Listing 4.7 shows an example of creation and configuration of a
stream.

private val forecastSourceDeclaration = Source.queue[HttpRequest](bufferSize,
OverflowStrategy.backpressure)

private val forecastFlow = http.outgoingConnection(Routes.Forecast.address,
Routes.Forecast.port)

private val (forecastSourceMaterialized, forecastSource) =
forecastSourceDeclaration.preMaterialize()

forecastSource via forecastFlow runForeach { res =>
Unmarshal(res).to[ForecastResponse] onComplete {

case Success(value) =>
forecastingAgent ! ForecastInfo(value)
res .discardEntityBytes()

case Failure(exception) => forecastingAgent ! FailResponse(exception)
}
}

Listing 4.7: Creation of a stream (Source) and definition of its
flow and handler. The stream will handle all requests sent to the
forecasting service. Once created, new requests can be submitted using the
“forecastingSourceMaterialized.offer” method.

4.4 ForecastingService
This component contains the forecasting engine used to predict the number

of occupied parking lots, and its REST interface is reported in Table 4.1.

CHAPTER 4. SOLUTION DEVELOPMENT 69

Http
Method

Path Payload Description

POST /regions {id:int,
ds:string,
values:array}

Create and train the model
for the given region and data
source.

GET /regions/:id/:ds
/forecast

None Get an updated forecast for the
time being.

Table 4.1: REST interface of the forecasting service.

Python has been used as programming language, and the service imple-
ments the forecasting model exposed in Section 3.1.2 using the library fbprophet.

The fbprophet library is compliant to other machine learning well-known
API (e.g., keras, scikit-learn), exposing the fit and predict main functions.
During the training stage and differently from other machine learning libraries
where data is usually shaped using tensor-like structures, the input data must
be arranged on a pandas.Dataframe object containing two columns “ds” and
“y” representing datestamp3 and time series values, respectively.
Proper APIs make it possible to setup all model’s aspects such as seasonalities,
holidays, etc. In our case, daily and monthly seasonalities have been specified
both, and local holidays such as the patron day have been added to the Italian
regular festivities.
In the end, a log transform operation on time series values is executed before
the training of the model. Obviously, predicted values are then subjected to
the reverse operation (exp).
It follows a stub of code in Listing 4.8 summarizing the training of a model
and the execution of the forecasting.

Creation of the model
model = Prophet(changepoint prior scale=0.9, holidays=patron) # tau = 0.9
model.add seasonality(name=’daily’,period=1, fourier order=5)
model.add seasonality(name=’monthly’,period=30.5, fourier order=5)
model.add country holidays(country name=’IT’)

Training
model.fit (df)

Forecasting
3All timestamp formats accepted by pandas can be provided.

70 CHAPTER 4. SOLUTION DEVELOPMENT

predicted period = model.make future dataframe(periods =
N QUARTERS IN DAY, freq = ”15min”)

predictions = model.predict(predicted period)

Listing 4.8: Example of training and forecasting upon a Prophet model. The
observed data is contained in the “df” variable.

4.5 StorageService
Data about regions must be stored persistently, and the StorageService

fulfils this purpose. Indeed, such service simply creates a layer upon a database
storing the required information.
The service has been realized as a web-service using the MEAN stack, and its
REST interface is reported in Table 4.2.

Http
Method

Path Payload Description

GET /regions None Retrieve info about all regions.

GET /regions/:id None Retrieve info about the speci-
fied region.

POST /regions Json file of the
region (Listing
4.9)

Create a new region.

PUT /regions/:id/status { status: string } Update the status of the given
region.

GET /regions /deleteAllRe-
gions

None Utility service: remove all the
data in the database about re-
gions.

Table 4.2: REST interface of the service.

The database contains just one collection “regions” whose documents are
shaped as in Listing 4.9.

{

CHAPTER 4. SOLUTION DEVELOPMENT 71

id : number,
boundary: [{

latitude : number,
longitude: number
}],
data sources: [{
name: string,
capacity: number
}],
roads: string ,
status : string
}

Listing 4.9: Structure of a region using JSON format.

The adopted architecture of the service is a classical one and it is organized
into three main packages, namely:

• routes: it administrates routing by declaring handlers for all allowed
requests.

• controllers: it contains the application logic specifying callbacks for
incoming requests.

• models: it defines the format of data.

The app.js file is the entry-point of the application and it is responsible for all
preliminary configuration tasks (connection to DB, enabling of CORS requests,
running of the server).

4.6 RoadCutterService
Table 4.3 reports the REST interface of the service: there is only one utility

service that permits to extract all the roads contained within a given area.
The boundary of a region, submitted as a set of (latitude, longitude) pairs, is
defined in the query string by the parameters “lat” and “lon”, and the desired
information is returned using the WKT format (Well-Known Text).
It follows an example request using three points {(0,0), (1,1), (2,3)}:

http://serverAddress:port/extractRoads?lat=0&lon=0&lat=1&lon=1&lat=2&lon=3

72 CHAPTER 4. SOLUTION DEVELOPMENT

Http
Method

Path Payload Description

GET /extractRoads None Retrieve all roads segments
contained within the given
area in WKT format.

Table 4.3: REST interface of the RoadCutter service.

The implementation of the logic itself has not been executed personally,
and so it is not described in detail.

Chapter 5

Performance evaluation

Independently from the adopted solution, there is an error between the
forecasted occupation of parking lots and the real one. More precisely, we can
distinguish three different components illustrated in Figure 5.1, that is:

• Real-world gap: the difference between the real occupation and the
one considered as ground truth (Section 5.2).

• Generalization error: the difference between the occupation modeled
using total and partial data (Section 5.3).

• Forecasting error: The classical error introduced by the forecasting
model (Section 5.4).

Each type of error can be limited, but none of them can be completely
eliminated.

Figure 5.1: Each type of error and the stage where it is introduced.

Remind: The generalization error must be considered as a component
because only “myCicero” data source is mandatory. Taken in consideration
that all data sources are available in the Bologna case study, such a fact is not
ensured to be true anymore in other cities the model will applied to.

73

74 CHAPTER 5. PERFORMANCE EVALUATION

5.1 Experimental setup
The system is tested using the following setup:

• Data sources: For the time being, verifiers data is not used because
of the motivations already explain in Chapter 2 (that is, a long period
of missing values still to be filled and incoherences in the trend to be
solved). Hence, just “myCicero” and parking meters data are exploited.

• Period: all the available data is used (01-01-2019/31-12-2019).

• Geometric model: the L2 grid solution is the one chosen at the mo-
ment.

• Prophet

– Trend: automatic selection of change-points, τ = 0.9.
– Seasonalities: we select a Fourier order of 10, 5 and 5 for yearly,

monthly and daily seasonality respectively.
– Holidays: No particular setup besides the basic configuration.

5.2 Real-world gap
Differently from other classical domains where the ground truth can be

modeled with a high confidence despite little approximations (sales, stocks,
etc.), the parking occupation of real scenarios can hardly be represented if
proper data is not provided since it must be rebuild from scratch. Indeed,
the usage of information registering the real-time occupation of each parking
lot is the only way to create trustworthy values for occupation and capacities
both. Actually, similar real-time sensors already exist (e.g., positioned under
the asphalt), but their spread is still restricted to some limited areas.

In our case, we do not have the aforementioned type of information, and
so the comparison of the ground truth is going to be executed against the
the data registered by verifiers for the number of occupied parking lots and
handmade calculated values for the capacities. Obviously, only few example
regions will be compared since the whole process cannot be automatized.
Though, quantitative analysis in this direction have not been executed yet.

CHAPTER 5. PERFORMANCE EVALUATION 75

5.3 Generalization error
As emerged from previous analysis, the forecast can be quite inaccurate if

only partial data is employed since different data sources can expose totally
different behaviors even in a same region.
For the time being, we only consider the daily trend since it is the most infor-
mative one, but similar analysis can be executed at different granularity levels
too.

As we can notice in Figure 5.2, the ratio between parking meters and
“myCicero” data, which is about 10:1 considering the total territory, highly
varies from region to region. Moreover, it assumes very different values without
any marked detectable pattern, except for a specific restricted area of the old
town where find a widespread low ratio (green spot on the map, area included
in [11.33, 11.35] and [44.49, 44.50] for longitude and latitude, respectively).

Figure 5.2: Ratio of parking meters and “myCicero” data on the different
regions. Boxplot outliers having ratio greater than sixteen are not reported so
that a nice representation can be obtained. The heatmap gives a qualitative
information about the distribution of the ratio values on the territory: green
− > low ratio, yellow − > average ratio, red − > high ratio.

Figure 5.3 shows few example regions exposing opposite situations (different
ratio, different behavior).

76 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.3: Comparison of “myCicero” and parking meters behaviors on some
example regions ad hoc chosen to show different possible casuistries: compliant
and opposite behaviors, high and low ratio, cases where “myCicero” data even
is higher than the parking meters one.

The exploiting of the parking meters solely is going to work quite well
in regions where a high ratio is found because “myCicero” trends become
irrelevant when considering the total ones, and so they represent a negligible
factor during the OPV calculation.
On the contrary and differently from parking meters, the exploiting of the
“myCicero” data solely is not feasible since a quite erroneous prediction is
going to be made in most of the regions.
Thus, we can conclude that no rule can be inferred to model the total trend
from a partial data, and none of the data sources can be dropped if an accurate
forecast is required in all regions.

5.4 Forecasting error
The forecasting error is the classic error made by a predictor when com-

paring the forecasted values with the ground truth. We consider the following
two metrics to evaluate the model: MAE, r2score.

CHAPTER 5. PERFORMANCE EVALUATION 77

MAE

Firstly, we merely measure the error made by the Prophet model when
estimating the number of occupied parking lots. Figure 5.4 reports raw in-
formation about the mean absolute error in all regions for “myCicero” and
parking meters both. As we can notice, though a different order of magni-
tude in the values, the errors share a very similar distribution, and the higher
errors are mostly associated to regions within a same restricted critic area
(approximatively, [11.33, 11.34] for longitude and [44.50, 44.51] for latitude).

Figure 5.4: MAE information about “myCicero” (left) and parking meters
(right). Heatmaps give a qualitative information about the errors distribution
above the territory, and their parameters are not reported for conciseness.

78 CHAPTER 5. PERFORMANCE EVALUATION

Obviously, the adopted measure is tricky, and we can find a remarkable
positive correlation between the capacity of a region and the introduced error
for “myCicero” and parking meters both. Hence, we refine the evaluation by
considering the OPVs so that we can compare regions independently by their
capacities, and Figure 5.5 reports the respective information.
The errors now assume values in the same domain [0, 1]. Hence, they can be
compared, and novel interesting information emerges.

Though a same median (about 7% of the capacity), “myCicero” errors
expose a great variance, while parking meters one assume a very little set of
values. This implies a great robustness for parking meters’s forecasting model,
independently from region specific traits.

As a matter of fact, notice how the previous critic area does not create any
real particular problem when considering parking meters, and its performances
are absolutely average. Just a small cluster of red regions can be found in a
small area of the old town (outliers with high errors) while, on the contrary,
outliers representing low errors are distributed on suburban areas, and can be
all associated to region with very low capacities.
On the contrary, we notice that the same critic area initially identified is still
present for “myCicero”, and so the model truly does not perform well in such
regions.

Besides, a further surprising finding can be observed when considering the
correlation between capacity and MAE. Indeed, the behavior of parking meters
resembles the dynamics of a complex system, exposing a phase transition at a
precise critical value of the capacity (about 10-15): errors are sparse with no
particular logic or pattern for regions having low capacities, while the system
reaches a steady state and the MAE suddenly stabilizes as the threshold is
overcome.

On the other hand, such observation can not be tested on “myCicero” data
since the capacities all assume low values (beneath 15).
Anyhow, lower errors for regions having the little capacities were expected,
and they can be addressed to an excessive bias, despite of a low variance1.
To be exact, the issue does not reside on the forecasting model itself, but
instead on the TS that can not frame the behavior of the region. Indeed, TS
associated to such regions contain just sparse peak values in the extreme cases
where the capacity is close to zero, and the forecasting model, that tends to be
very simple (like a constant function), correctly foresees the value that is “0”
in most of the cases. For increasing capacities until fifteen, TS progressively
become more and more “complex”, and so the errors start to increase. This
justifies the positive correlation between capacity and MAE for “myCicero”

1Bias and variance terms are referred to the bias-variance decomposition model.

CHAPTER 5. PERFORMANCE EVALUATION 79

(Spearman correlation = 0.98), but it is not clear yet why such correlation
is not also present on parking meters regions having low values (Spearman
correlation = 0.25).
Then, when a TS is build using enough data and so the capacity estimated
on it increases, the error gets quite stable independently from the employed
amount since the behavior gets “complete”, exposing well-defined seasonalities
and trends.

Figure 5.5: MAE information normalized by the capacities about “myCicero”
(left) and parking meters (right). Heatmaps give a qualitative information
about the errors distribution above the territory, but their parameters are not
reported for conciseness.

80 CHAPTER 5. PERFORMANCE EVALUATION

r2score

Besides the corroboration of the above considerations, the r2score results
also expose novel findings.

Firstly, we discover a positive correlation between the capacity and the
r2score in Figure 5.6. It may seem contradictory to previous results emerged
from MAE analysis where little errors were detected for the lowest capacities
but, actually, it is not and we can understand why it happens by properly
looking to r2score definition formula where the numerator is zero in most of
the cases. Anyway, we can conclude that the model better explains regions
containing the more data, and it is compliant with the previous findings since
these are the regions where the behavior is not particularly influenced from
fluctuations and can be predicted easily.

Figure 5.6: Correlation between the capacity and the r2score for “myCicero”
(left) and parking meters (right).

Furthermore, we notice a general better evaluation for parking meters val-
ues despite “myCicero” ones (Figure 5.7). Coherently with previous consid-
erations, such a difference is partially smoothed out when considering only
regions having a low capacity for parking meters, but there is still a significant
difference between the two medians.

CHAPTER 5. PERFORMANCE EVALUATION 81

Figure 5.7: Distribution of the r2score for “myCicero” (1), parking meters
having capacity lower than fifteen (2), all parking meters (3).

5.5 Behavior goodness
The goal is to check how well the adopted geometric model may catch

situated behaviors, and so somehow measure its expressiveness. Indeed, as
emerged from previous analysis in Chapter 2, the correct split of the territory
is a key factor when framing behaviors dictated by local peculiarities of the
territory, and it depends upon a set of parameters the regions can be defined
on: shape, size, correct positioning. Obviously, there are portions of the terri-
tory which expose a high occupation all day long, and so an almost constant
daily trend will be detected independently from the applied division. On the
other hand, some trends of that type are instead given by a mix of two or
more different behaviors that are caught within the same region because of an
erroneous split of the territory (see Section 2.5).
The issue is that even a system that exactly predicts the real occupation is
quite useless from a business point of view if a same occupation is provided
all day long for almost all the regions because of a too raw split of the terri-
tory, and so the adoption of a good geometric model assumes an even more
important role than the achievement of a great accuracy on the prediction
model itself. Indeed, the choice of a particular set of regions will detect be-
haviors consequently, and the evaluation of its optimality is the matter of the
following analysis. Contrariwise, the evaluation of the forecasting model on
the identified behaviors is the subject of the previous analysis (real-world gap
to measure compliance to real scenarios, forecasting error, etc.).

82 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.8 reports a clarifier example that may help to distinguish the above
two factors. An erroneous split may consider only the region C, and so the
situated behaviors would be lost. At the same time, the forecasting model
might behave very well on region C, exposing accurate predictions and high
compliance to real scenarios.

Figure 5.8: Graphical example of behaviors mixing: region A daily trend ex-
poses a peak during afternoon hours, region B daily trend exposes a peak during
morning hours, region C will merge the partial behaviors and create an almost
flat daily trend.

We define a measure of performances (goodness) to estimate how well a
region behaves so that we can compare the different areas in a quantitative
way. The analyzed behavior is the trend of stops along the day, and so the day
by quarters time series will be the exploited one.

Figure 5.9 reports two example time series: the one on the left is considered
“bad” since its trend is almost constant, while the one on the right is consid-
ered “good” since there are sharp peaks and great variance in the number of
occupied parking lots. Intuitively, we can understand that in the first case
no useful forecast can be made (always high occupation), while in the latter
one the forecasted values can range over very different values (and worthwhile
feedbacks can be provided during the different times of the day). Obviously,
considering that the occupation is always close to zero during night hours, such
arguments refer to daylight hours solely.

CHAPTER 5. PERFORMANCE EVALUATION 83

Figure 5.9: Example of what is considered to be “bad”/“good” time series.

Firstly we execute two simple preprocessing operations, that is:

• x-axis: we keep only the daylight hours values [32;72].

• y-axis: we normalize the TS values in range [0;1] so that different time
series can be compared.

The idea is to consider the area under the curve (i.e., the integral of the
function). Such value and the goodness are bound by an inverse proportionality
since the time series tends to flatten as its area increases. The minimum value
is 0, while the maximum theoretical value is 40 (period length * value range
= 40 * (1-0) = 40).
In the end, the calculated values are normalized in [0;1] for convenience, and
then complement is taken (1− normalized area) since the goodness increases
as the area decreases.
Such a construction works since we know that each TS will take value “1” at
least in one point (so flat series with low values are not possible). Moreover,
assuming we have enough data to correctly2 model a TS and considering that
TS model stops for each quarter, it is not possible that the maximum is reached
in just one peak point. Indeed, as confirmed by empiric corroboration, we have
that the TS trend can vary quite quickly but always in a “differentiable” way
to an high-level description (in other words, cannot have values [1,1,2,100,3,2]
where there is an isolated peak, but it will presumably be something like
[1,10,60,100,80,30,2]). Figure 5.10 shows a clarifier example.

2The term “correctly” refers to the modeling of well-defined seasonalities, trends and
holidays. As observed in previous sections, few regions have too little data to frame a
proper behavior.

84 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.10: The TS is enclosed in [32; 72] on x-axis and [0; Max] on y-axis.
The TS area (blue) is always lower than the one of the worst casuistry (red
rectangle). Notice that that is the worst case since it is the only way to create
a constant series that reaches the Max value at least once.

Figure 5.11 reports the goodness for each region of the L2 grid. As we can
notice, low goodness values are mainly gathered in the old town and downtown
areas, and parking meters seem to hold better behaviors in general.

Figure 5.11: Goodness for each cell of the grid G2. Red -> [0, 0.25], Yellow
-> (0.25, 0.4], Red -> (0.40, 1], White -> Areas with no data.

CHAPTER 5. PERFORMANCE EVALUATION 85

We compare grids L1, L2 and L3 and the solution based upon the locations of
parking meters in Figure 5.12, and we notice the following findings, namely:

• Goodness values tend to increase as the grid refines, and so a correlation
between the size of the cells and the goodness may be found. Indeed,
it is confirmed that too wide area show an aggregate behavior whose
informative power is limited.

• Goodness of parking meters is slightly higher than the one for “myCicero”
for the L1 and L2 grids, while the contrary is found when considering L3
grid or model built using the parking meters locations.

• “myCicero” values have higher variance than the parking meters one.
Indeed, the first ones range over a wider set of values considering the
solely IQR or all values including outliers both.

Furthermore, by looking to the notches of the boxplots:

• Considering a same grid granularity, notches of “myCicero” and parking
meters do intersect in all the cases, and so we can conclude there is not
a statistically significant difference between the medians.

• Notches never intersect considering grids of different granularities on
“myCicero” data, and so the refinement of the grid leads to an increased
effectiveness of the solution by gradually detecting situated behaviors.

• Considering parking meters data on different grid granularities, notches
intersect only for L1-L2.

86 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.12: Distribution of the goodness values for different geometric solu-
tions. Areas with no values, whose goodness is 1, are not considered. From
left to right: (1) L1 “myCicero”, (2) L1 parking meters, (3) L2 “myCicero”,
(4) L2 parking meters, (5) L3 “myCicero”, (6) L3 parking meters. In the end,
also goodnesses obtained using the parking meters locations as set of starting
points are reported (7,8).

In the end, Figure 5.13 reports the scatter plot for the grid L2 (the others grids
are very similar, and so omitted for conciseness) and for the model built using
the locations of parking meters.
In the first case, there is a quite strong non linear negative correlation between
the goodness and the quantity of data for “myCicero”. Moreover, by looking
to values reported in Table 5.1, we find out that such correlation increases as
the cells shrink.
On the contrary, such sharp correlation does not exist for parking meters, but
it tends to increase as the grid refines.
The existing correlation confirms that areas where the most of the stops are
located may provide limited information when considering “myCicero” data,
while such a problem does not subsist when dealing with parking meters. Fur-
ther analysis should be executed in this direction to understand the cause of
this difference.
When considering the model built using the locations of parking meters, we
find out that there is no correlation at all, and so the behavior goodness of a
region does not depend on the quantity of available data.

Thus, we can conclude that this latter model generally performs better
since it equalizes the best results in term of goodness exposed by the L3 grid,

CHAPTER 5. PERFORMANCE EVALUATION 87

but it goes beyond since no region is privileged depending on the quantity of
available data, factor that emerged to be of a primary importance in previous
analysis3.

L1 L2 L3
myCicero -0.77 -0.71 -0.69

Parking meters -0.33 -0.31 -0.41

Table 5.1: Correlation between goodness and quantity of data using the Spear-
man correlation index on grids G1, G2, G3.

Figure 5.13: Correlation between goodness and quantity of data (number of
stops) for grid G2 (top row) and model built using the locations of the parking
meters (bottom row).

3Talking about capacity or quantity of data is equivalent since they are bound by a very
strong positive correlation.

Chapter 6

Conclusions

6.1 Summary
Firstly, a data analysis stage was executed to explore the data and to

mine any useful information that might come handy during the development
of the system itself. In particular, the datasets were probed on time and spa-
tial dimensions both, and new interesting information emerged about trends,
seasonalities and features that influence the results (e.g., local territory pecu-
liarities).

Then, starting from the previous findings and considering the topics ex-
plored by related works, the underlying mathematical and geometric models
were defined to handle few critical aspects such as the division of the terri-
tory in regions, the estimation of the capacities, the merging of partial results
coming from different data sources.
The prediction of the number of occupied parking lots was framed as a regres-
sion problem, and the “Prophet” model [11] was employed so that recurrent
business aspects could be caught without any ad hoc countermeasure. For
the time being, the forecasting model exploits “myCicero” and parking meters
data both.

Finally, all the components of the system were developed exploiting a SOA
approach, and various technologies and programming paradigms were to used
develop all the services.

In the end, few performance evaluation tasks were executed, and it was
found out that the model better behaves in regions containing more than a
certain fixed quantity of data and that the adopted geometric model highly
influences the final results. Hence, particular attention must be paid to the
correct split of the territory so that situated behaviors can be correctly de-
tected. Moreover, different data sources exposed different type of errors and

89

90 CHAPTER 6. CONCLUSIONS

different critic areas of the territory.

6.2 Future developments
Besides the deploy of the system and the completion of some performance

evaluation tasks, the following improvements can be made to refine the solu-
tion, that is:

• Change of the geometric model and switch to a graph-oriented solution.
As emerged from the data analysis stage, this latter solution should bet-
ter perform than the current one based on a Voronoi tessellation.

• Inclusion of seasonal tickets data into the final forecast.

• Addition of further exogenous factors that resulted to be decisive in re-
lated works (e.g., weather).

• Testing of different forecasting models to predict the parking occupation.

Bibliography

[1] Eleni I. Vlahogianni, Konstantinos Kepaptsoglou, Vassileios Tsetsos,
Matthew G. Karlaftis. A Real-Time Parking Prediction System for
Smart Cities. Journal of Intelligent Transportation Systems, 2015,
10.1080/15472450.2015.1037955.

[2] Eleni I. Vlahogianni, Matthew G. Karlaftis. Testing and Comparing
Neural Network and Statistical Approaches for Predicting Transporta-
tion Time Series. Transportation Research Record, 2013, 2399(1):9-22,
10.3141/2399-02.

[3] Ningxuan Feng, Feng Zhang, Jiazao Lin, Jidong Zhai, Xiaoyong Du. Sta-
tistical Analysis and Prediction of Parking Behavior. Network and Parallel
Computing, Springer International Publishing, 2019.

[4] Shuguan Yang, Wei Ma, Xidong Pi, Sean Qian. A deep learning ap-
proach to real-time parking occupancy prediction in transportation net-
works incorporating multiple spatio-temporal data sources. Transportation
Research Part C: Emerging Technologies, Volume 107, 2019, 248-265,
ISSN 0968-090X.

[5] Feng Zhang, Ningxuan Feng, Yani Liu, Cheng Yang, Jidong Zhai, Shuhao
Zhang, Bingsheng He, Jiazao Lin, Xiaoyong Du. PewLSTM: Periodic
LSTM with Weather-Aware Gating Mechanism for Parking Behavior Pre-
diction. Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, 2020, 4424-4430, 10.24963/ijcai.2020/610.

[6] Zhirong Chen, Jianhong (Cecilia) Xia, Buntoro Irawan. Development of
Fuzzy Logic Forecast Models for Location-Based Parking Finding Services.
Mathematical Problems in Engineering, 2013, 10.1155/2013/473471.

[7] https://www.mycicero.it/

[8] https://www.pluservice.net/it/

[9] https://easyparkitalia.it/

91

92 BIBLIOGRAPHY

[10] https://www.digithon.it/startups/apparked

[11] S. J. Taylor, B. Letham. Forecasting at scale. The American Statistician,
2018, 72(1), 37-45.

[12] A. Harvey, S. Peters. Estimation procedures for structural time series mod-
els. Journal of Forecasting 9, 1990, 89–108.

