
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Prediction of cancer trajectories by
statistical learning on radiomic features

Supervisor:

Prof. Gastone Castellani

Co-supervisor:

Dr. Claudia Sala

Submitted by:

Gianluca Carlini

Academic Year 2019/2020

2

Abstract

Radiomics refers to the analysis of quantitative features extracted from medical im-
ages including Positron Emission Tomography (PET), Computerized Tomography (CT),
Magnetic Resonance Imaging (MRI), and other medical imaging techniques. Radiomic
features can be used to build models providing diagnostic, prognostic, and predictive
information.
The aim of this work was to build a machine learning model able to predict survival
probability in 85 cervical cancer patients, using the radiomics features extracted from
CT and PET medical images. A thorough feature selection process was conducted em-
ploying different techniques to select the best predictors among the original features in
the dataset. In particular, the Genetic Algorithm revealed to be the best of the feature
selection methods employed, with promising applications in the field of radiomics.
Two different survival models have been developed, a Cox proportional hazard model
and a Random Survival Forest. A Decision Tree Classifier was also implemented as a
further model to evaluate.
All the models were trained on 80% of the available data and tested on the remaining
20%. The Concordance Index (CI) was used as the evaluation metric for the two survival
models, while the area under the Receiver Operating Characteristic curve (ROC AUC)
was used as the evaluation metric for the classifier.
The Cox model trained using 9 selected CT features was superior to all the other models
tested. It achieved a Concordance Index score of 0.71 on the test set, showing promising
predictive capabilities on external data.
Finally, the recurrence outcome was used as an additional feature, producing a general
improvement of all the models.

3

4

Contents

1 Introduction 7
1.1 Radiomics . 7

1.1.1 Applications and Challenges of Radiomics 10
1.2 Purpose of the Work . 12

2 Materials and Methods 13
2.1 Dimensionality Reduction . 13

2.1.1 t-distributed Stochastic Neighbor Embedding (t-SNE) 14
2.1.2 Correlation . 15
2.1.3 LASSO Regression . 16
2.1.4 Genetic Algorithms . 18

2.2 Models . 23
2.2.1 Decision Trees . 23
2.2.2 Random Forests . 27
2.2.3 Cox Proportional Hazards Model 28

2.3 Model Evaluation . 30
2.3.1 Precision and Recall . 31
2.3.2 The ROC Curve . 31
2.3.3 Concordance Index . 32
2.3.4 Akaike Information Criterion (AIC) 33
2.3.5 Cross-Validation . 33

2.4 Methods . 36
2.4.1 Data Acquisition and Preliminary Analysis 36
2.4.2 Feature Selection . 36
2.4.3 Model Selection and Fine Tuning 43
2.4.4 Data visualization and Model Evaluation 45

3 Results 47
3.1 Visualization . 47
3.2 Models . 52

3.2.1 Cox Model . 52
3.2.2 Random Survival Forest . 56
3.2.3 Decision Tree Classifier . 56
3.2.4 Adding Recurrence . 58

3.3 Discussion of the Results . 60

4 Conclusions 63

Bibliography 67

5

6

Chapter 1

Introduction

1.1 Radiomics

Radiomics refers to the field of medicine and data science in which a large number of
quantitative imaging features are extracted from medical images and successively ana-
lyzed to build models providing diagnostic, prognostic, and predictive information.
One of the most interesting aspects of this research field resides in the fact that the fea-
tures we mentioned, extracted from Computerized Tomography (CT), Positron Emission
Tomography (PET), and Magnetic Resonance Imaging (MRI), are completely meaning-
less for a human observer, while a machine learning model can find useful patterns in
them.
The radiomics workflow can be structured in the following five phases (Kumar et al.,
2012; Lambin et al., 2017):

(i) Image acquisition and reconstruction

(ii) Image segmentation and rendering

(iii) Feature extraction

(iv) Exploratory analysis

(v) Model development

Image acquisition and reconstruction

The first step in radiomic analyses is the choice of an imaging protocol, the volume of
interest (VOI), and a prediction target, e.g., recurrence or survival.
In routine clinical imaging, there are a lot of acquisition parameters that can widely vary,
such as slice thickness, image resolution, the intensity of the beam, and so on. Moreover,
the reconstruction algorithms themselves can be largely different, introducing additional
variations. This broad set of possible configurations makes the comparison of images
obtained in different institutions very difficult and represents one of the most important
challenges to overcome in the field of radiomics.

7

Image acquisition

CT

PET

MRI

Image segmentation

Manual

Semi-automatic

Automatic

Feature extraction

Tumor intensity histogram

Texture-based

Shape-based

Exploratory analysis

Dataset construction

Adding clinical variables

Standardization

Model development

Model training and validation

Model selection

Feature selection

Figure 1.1: Schematic representation of the radiomics workflow

8

Image segmentation and rendering

The image acquisition is followed by the image segmentation step, in which the VOIs
are identified. The segmentation process is a crucial step in the radiomic workflow since
it directly affects the features that will be extracted from the image. Images can be
segmented either manually or by using segmentation algorithms. Manually segmented
images are often considered as the ground truth, however, the manual segmentation
process is very time consuming, therefore it becomes infeasible when a great number of
images is acquired; moreover, it is also highly dependent on the operator who performs
the segmentation.
Many segmentation algorithms, like region-growing methods or snake algorithms, are
commonly employed in medical imaging. They are much more rapid than the human
counterpart, but the final result depends on the algorithm used, and it is also influenced
by the image noise and initialization parameters of the algorithm.

Feature extraction

An incredibly high number of radiomic features can be extracted from a medical image.
Starting from the tumor intensity histogram, it is possible to obtain a wide number of
explanatory variables, such as minimum, maximum, kurtosis, skewness, and so on.
From the 3D representation of the tumor, shape-based features can be extracted, like
volume and surface, from which is possible to calculate other informative variables, as
the surface-volume ratio or the sphericity of the tumor.
Finally, a huge number of texture-based features can be extracted, such as energy, entropy,
contrast, gray level non-uniformity, and many more.
It is not unusual to end up with a number of features that largely exceed the number
of available samples. Some of those features are likely to be redundant, and others may
not be informative for the problem at hand; for this reason, it is important to define a
strategy to identify and keep the useful features only.

Exploratory analysis

Once the features have been extracted, they can be used to build a radiomic dataset. To
do this, we first need to organize the extracted data in a format that can be used in a
machine learning model, i.e., typically, a matrix with features as columns and samples
as rows. Successively, the data have to be combined with the target outcomes. When
possible, non-radiomic features, like age or sex, can be added to the dataset since they
could provide additional information and improve the overall performance of the model.
It is also important to examine the goodness of the data, for example, by checking the
presence of null values and outliers. Moreover, depending on the model we want to use,
it can be helpful to standardize the data.

Model development

The last step of the radiomic workflow is the construction of the model to analyze the
data. Usually, as we said earlier, the first thing to do is to use one or more feature selection
techniques to identify the most informative feature subset. The feature selection process
is crucial since the performance of a machine learning model strongly depends on the
features used. In particular, including a large number of features in a model will probably
cause it to overfit the training set, compromising its prediction capabilities on new data.

9

Once we identified the candidate feature subset, it is important to carefully choose the
optimal machine learning model for the problem at hand. When possible, it can be
helpful to build more than one model and compare their performance.
Finally, the model has to be validated using an adequate score function or metric. It
is possible to verify the model performance on the training data using methods like
cross-validation, however, it is preferable to also validate the model on a test dataset
containing unseen data. The performance obtained for the training and the test sets
should be coherent, showing that the employed model is solid.

1.1.1 Applications and Challenges of Radiomics

Applications of Radiomics

In the last few years, radiomic features were revealed to be promising predictors in sev-
eral cancer-related studies (Yip and Aerts, 2016). Those features provide quantitative
measures of tumor characteristics that would otherwise be inaccessible.
In an MR study conducted on patients with head-and-neck cancer, a significantly greater
increase in average ADC (apparent diffusion coefficient) was observed in tumors that re-
sponded badly to treatment when compared to tumors with a better response (King
et al., 2013).
Lucia et al. (2018) showed that radiomic features extracted from PET/CT and MR im-
ages, such as Grey Level Non Uniformity and Entropy, have been found to be significant
predictors of recurrence in patients with cervical cancer, with higher prognostic power
than usual clinical variables.
Also, features extracted from CT images of 182 lung cancer patients were revealed to be
predictive for the risk of developing distant metastasis (Coroller et al., 2015).
Moreover, in some situations, machine learning models trained on radiomic features
showed better prediction capabilities than expert physicians. In particular, Mattonen et
al. (2016) conducted a study on lung cancer patients comparing physician assessment
to a radiomic model for the detection of recurrence. They found that when determin-
ing early prediction of recurrence, within 6 months before the treatment, physicians
judged the majority of lesions as benign, i.e., no recurrence, with a false-negative rate
of 99%. The radiomic model, instead, demonstrated better prediction capacities, with
a false-negative rate of 24%, suggesting that statistical models can detect early changes
associated with local recurrence that are usually neglected by physicians.
The aforementioned researches show that radiomic features can be employed for the pre-
diction of treatment response and outcomes. These results open to the possibility of
developing personalized treatment plans based on the radiomic features extracted from
medical images.

Furthermore, various studies revealed that radiomic features can also be employed
to investigate tumor staging and to differentiate between malignant and non-malignant
tissues. For instance, Mu et al. (2015) showed that machine learning models can be
built using radiomic features to classify early-stage and advanced-stage tumors. The
early identification of the tumor stage provides important information that can be used
to accordingly adapt the treatment plan. Nie et al. (2008) built a neural network that,
utilizing multiple radiomic features extracted from MR images of breast lesions, was able
to discriminate between malignant and benign tumors.

Finally, radiomic variables have also been related to tumor genetics. A famous study

10

by Aerts et al. (2014) showed that some radiomic features extracted from CT images of
lung tumors could be associated with underlying gene-expression patterns.
Gutman et al. (2015) also found that MRI volumetric radiomic features were strongly
associated with mutation status and could predict several DNA mutations in glioblas-
toma. Similarly, in a very recent study, Jacob et al. (2021) showed that MRI radiomic
variables were associated with specific gene-expression profiles in endometrial cancer
patients. The encouraging connection between features extracted from medical images
and tumor genetics may help in developing powerful prognostic models and personalized
treatment strategies.

Radiomics limitations

Several factors can influence the radiomic features extracted from medical images, and
consequently, the models developed using those features.
First of all, the acquisition processes suffer from high variability. For instance, the image
resulting from a CT acquisition depends on a wide range of parameters, such as the beam
intensity and energy, or the slice thickness. The final result is also strongly affected by
the reconstruction algorithm used by the specific CT scanner. Modern CT machines use
iterative reconstruction algorithms while, until lately, the vast majority of CT scanners
used filtered backpropagation. Moreover, reconstruction artifacts due to the presence of
metallic objects, respiratory motion, and beam hardening are often produced.
Several studies (Galavis et al., 2010; Yan et al., 2015; Pfaehler et al., 2018) showed that
the extracted radiomic features can be very sensitive to acquisition and segmentation
modalities, and it is still not clear why some radiomic variables are more robust than
others. In addition, before the feature extraction, the voxel intensities within tumor
volumes have to be discretized to a limited grey level range, and the number of gray
level values can strongly influence the extracted variables.

Another significant obstacle, especially for PET acquisitions, is the scanner resolu-
tion. For small-size tumors, indeed, textural features fail to quantify the intratumoral
heterogeneity, due to the resolution limits. For instance, Hatt et al. (2015) conducted
a study on textural features extracted from 555 PET images, showing that, for tumors
with volumes less than 10 cm3, the textural features were highly correlated with the tu-
mor volume, adding almost no further information. For bigger tumors, instead, volume
and textural features were found to be independent predictors. CT acquisitions are less
affected by tumor dimension because CT scanners generally have a better resolution.

A further impediment in radiomics is the small amount of available data. Generating
a radiomic dataset is an extremely time-consuming and expensive task. For instance,
years are typically required for patient follow-up. Moreover, sharing data between dif-
ferent institutions is often impossible due to the high variability in the data acquisition
process, as we said before, and also because of privacy limitations. As a consequence, it
is common to end up with datasets having many more features than samples. The main
issue resulting from having a small and highly-dimensional dataset is that, even with a
careful process of feature selection, it is possible to find features that accurately predict
the outcome by purely random chance. For this reason, it would always be preferable to
validate the model using unseen data.

Hopefully, in the next future, we will witness a progressive standardization of the
processes of image acquisition, segmentation, and feature extraction, which will lead to
easier data sharing between institutions and better reproducibility of the results. The
availability of large and reliable radiomic datasets will be the basis for the construction

11

of powerful machine learning models that will assist physicians in planning personalized
treatment plans, improving the general quality of healthcare.

1.2 Purpose of the Work

The purpose of this work was to build a machine learning model to predict survival
probability in cervical cancer patients using radiomic features extracted from PET/CT
images as predictors. Cervical cancer is both the fourth most common cause of cancer
and the fourth most common cause of death from cancer in women. For this reason, it
is essential to develop novel techniques to cope with this type of disease.
The research was conducted in collaboration with the S. Orsola University Hospital of
Bologna to develop machine learning systems that will help physicians in planning better
treatment plans. In particular, the feature selection process employed in this work has
never been adopted before within the S. Orsola research group.
Since the dataset used in the work had a number of features that greatly exceeded the
number of samples, particular attention was put in the feature selection process, aiming
to obtain a substantially smaller set of predictive features. Various techniques have thus
been employed for feature selection, ranging from the well-known LASSO regression to
the more sophisticated and powerful Genetic Algorithms.
The modeling process consisted of the development of three different types of machine
learning models, two survival models, and a classifier. The first survival model was the
famous Cox proportional hazard model, which is one of the most used models in
survival analysis due to its robustness and simple interpretability.
The second survival model was a Random Survival Forest, used primarily to explore
the capability of these kinds of models of intrinsically performing feature selection.
Finally, since the outcome could also be considered a binary variable (survival or death),
a Decision Tree Classifier was built. The choice of the Decision Tree Classifier was
made mainly because of its superior interpretability; in fact, we did not expect any
classifier to perform well in this case since a classifier does not take into account the
time of the event and the censoring of the data. However, the Decision Tree graph can
provide valuable information to understand the relations between features and data.
All the models have been trained on the 80% of the data and tested on the remaining 20%.
The survival models were evaluated using the concordance index, as it is one of the
most commonly used metrics in survival analysis. The classifier, instead, was evaluated
using the area under the receiver operating characteristic curve (ROC AUC).

The entire analysis was conducted in parallel for CT and PET features, meaning that
the feature selection process was performed for CT and PET features separately, and so
was the modeling. Thus, in the end, for each type of model, a version was built using
the PET features and a version using the CT features.

12

Chapter 2

Materials and Methods

This chapter is divided into two main parts: the first part will be a theoretical in-
troduction and explanation of the techniques used in the work, while, in the Methods
section, their actual implementation will be shown and discussed. Following the pipeline
of the project, we will first introduce the dimensionality reduction procedures, then the
Machine Learning models will be presented, and, finally, we will discuss the evaluation
metrics and processes.

2.1 Dimensionality Reduction

The number of features that can be extracted from a medical image, like a CT scan,
is extraordinarily high; it is not uncommon to end up with a database having more
features than samples. When building a machine learning model, this can be a serious
issue, known as the curse of dimensionality.
The problem is that there is plenty of space in high dimensions. For example, if we
randomly pick two points in a unit square, the distance between these two points will
be, on average, roughly 0.52. If we do the same in a unit three-dimensional cube, the
average distance becomes roughly 0.66, and things get worse and worse as the number
of dimensions increases.
As a result, in high-dimensional datasets, most of the training instances are likely to be
far away from each other, making those kinds of datasets very sparse; consequently, new
instances will likely be far away from any training instance, yielding predictions much
less reliable than in lower dimensions.
Increasing the size of the dataset could be a solution, but, usually, acquiring new data,
especially labeled data, is a very expensive, time-consuming task. Furthermore, the
number of instances required to reach a given density grows exponentially with the
number of dimensions.

The field of dimensionality reduction can be divided into two macro areas: Feature
Selection and Feature Extraction. The main difference between them is that the for-
mer tries to reduce the dimensionality of the dataset by finding a subset of the original
feature set, while the latter creates a new set of features capable to describe the data.
For the purpose of this work, we mostly used feature selection techniques, but, for visual-
ization reasons, a feature extraction method has been employed, and it will be presented
first.

13

2.1.1 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a powerful manifold learning technique, proposed by Van der Maaten and
Hinton (Maaten and Hinton, 2008), that converts the affinities of data points to proba-
bilities. The affinities in the original space are represented by Gaussian joint probabilities
and the affinities in the embedded space are represented by Student’s t-distributions.
When compared to other existing techniques, t-SNE shows several advantages:

• It is particularly sensitive to local structure

• Reveals the structure at many scales on a single map

• Reveals data that lie in multiple different manifold or clusters

• Reduces the tendency to crowd points together at the center

The ability of t-SNE to group samples based on local structures makes it one of the best
candidates for visualizing high-dimensional data in two or three dimensions.

To understand how the algorithm works we first define our conditional probabilities
pj|i and qj|i.
pj|i is the conditional probability that xi would pick xj as its neighbor if neighbors
where picked in proportion to their probability density under a Gaussian centered at xi.
Mathematically, it is defined as:

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖2/2σ2

i)
(2.1)

It represents the similarity of the point xj to the point xi. σi is of course the variance of
the Gaussian centered on xi.
A similar conditional probability can be defined for the lower-dimensional counterparts
of xj and xi, yj and yi; we will call this conditional probability qj|i. The variance of the

Gaussian that is employed to calculate the conditional probabilities qj|i is set to 1/
√

2,
which will only produce a rescaled version of the final map. In this way, qj|i takes the
form:

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

(2.2)

Now, the purpose of the algorithm is to minimize the sum of Kullback-Leiber di-
vergences of the joint probabilities in the original space and the embedded space by
gradient descent. The Kullback-Leiber divergence is a nonsymmetric measure of the dif-
ference between two probability distributions P and Q. More specifically, it is a measure
of the information lost when Q is used to approximate P.
So, finally, the cost function of the algorithm is given by:

C =
∑
i

DKL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i
qj|i

(2.3)

in which Pi represents the conditional probability distribution over all other data points
given data point xi, and Qi represents the conditional probability distribution over all
other map points given map point yi.
Note that the Kullback-Leiber divergence is not convex, so multiple restarts with different
initialization will end up in a local minimum of the KL divergence.
Even if t-SNE is capable to produce almost miraculous mappings, it has some important
drawbacks that should be considered:

14

• It is computationally expensive; its complexity is O(dN2), where d is the number
of output dimensions and N is the number of samples.

• The algorithm is stochastic, so multiple restarts lead to different embeddings.

• Global structure is not explicitly preserved.

Furthermore, it is not straightforward to interpret the maps produced by t-SNE and they
can also be misleading, as they strongly depend on the parameters of the algorithm.
Among those parameters, one of the most important is perplexity, which loosely says
how to balance attention between local and global aspects of the data.
Perplexity can in some sense be thought of as an estimation of the number of close
neighbors each point has.

Figure 2.1: t-SNE diagrams for three Gaussian clusters with 200 point each, showing
how the produced maps are affected by the perplexity value (Wattenberg et al., 2016)

To have an idea of how this parameter affects the resulting map, we can take a look at
Figure (2.1), from which we can also infer another important characteristic of the t-SNE
algorithm: the distance between the identified clusters can be meaningless; as we can
see, in fact, the original distances are not preserved in any of the produced maps.

2.1.2 Correlation

Usually, when we have to reduce the dimensionality of the data, the first thing to do is
to check the correlations between features.
A feature that is highly correlated to another, in fact, does not really provide new in-
formation about the data; instead, it will add a certain amount of noise to the data and
will likely end up penalizing the performance of the predictive model.
There are several types of correlation coefficients, but the Pearson’s correlation co-
efficient, usually called the Pearson’s r, is by far the most famous one.
Given a set of n pairs of data {xi, yi}, with i = 1, . . . , n the Pearson’s correlation coeffi-
cient rxy is defined as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.4)

where x̄ and ȳ are the average x and y values.
The value of r is between -1 and 1, with -1 being a total negative linear correlation, 0
being no linear correlation and 1 being a total positive linear correlation.
Notice that Pearson’s correlation only measures the linear correlations between data. This

15

is a rather important point because it means that the r coefficient gives us no information
about more complicated correlations, as we can see in Figure (2.2).

Figure 2.2: Multiple datasets with their own Person’s correlation coefficients. The bot-
tom row shows how Pearson’s correlation does not detect non-linear correlations. The
middle row, instead, shows how the value of r reflects the strength and direction of the
linear correlation, but not its slope.

As a prior step in a feature selection process, thus, it is possible to calculate the
Pearson’s correlation coefficient for all the features and then discard the ones with a
coefficient higher than a certain threshold. The main issue with this procedure is that,
among the two correlated features, it is not possible to know which one is the most
informative, we can only discard one of the two arbitrarily.

2.1.3 LASSO Regression

LASSO is the acronym of Least Absolute Shrinkage and Selection Operator; it performs
two main tasks: regularization and feature selection (Fonti and Belitser, 2017).
To understand how it works, we introduce the method for the simplest case: the linear
regression.
A linear model is a model that describes the relationship between the response Yi and
the explanatory variables Xij. The case of one explanatory variable is known as Simple
Linear Regression, while the case with two or more explanatory variables is called Mul-
tiple Linear Regression.
A linear model can be represented as follows

Yi = β0 + xi1β1 + . . .+ xikβk + εi , i = 1, . . . , n (2.5)

where the parameters β0, . . . , βk are the regression coefficients, k is the number of ex-
planatory variables, and εi represents the error. We can also write the (2.5) in vector
form:

~Y = β0 + X~β + ~ε (2.6)

where here ~Y is the n× 1 vector of responses, X is the n×k matrix of the n occurrences
with k explanatory variables, ~β is the k × 1 coefficient vector, and ~ε is the n × 1 error
vector.

16

The goal of linear regression is to fit a straight line to a set of points minimizing some
objective function, for example, the mean squared error (MSE).
The LASSO regression also minimizes the mean squared error, but it adds a constraint
on the model parameters; mathematically:

β̂ = min
~β

(
‖~Y −X~β‖22

n
+ λ‖~β‖1

)
(2.7)

where ‖ · ‖p is the Lp norm and λ ≥ 0 is the parameter that controls the strength of the
penalty, the larger the value of λ, the greater the amount of shrinkage. With λ = 0 the
problem becomes an ordinary least square optimization.
When we solve the optimization problem (2.7), some of the ~β coefficients are shrunk to
zero and, in this way, the features with coefficients equal to zero are excluded from the
model.

Geometric Interpretation

Figure 2.3: Difference between the LASSO regression (left) and the Ridge regression
(right).

To better visualize how the feature selection is performed, it is useful to consider the
geometrical point of view. In Figure (2.3) we can see a comparison between the famous
Ridge Regularization and the LASSO regularization.
The constraint region for the Ridge regression is given by the condition: β2

1 + β2
2 ≤

t, corresponding to the equation of a circumference. On the other hand, the LASSO
condition is β1 + β2 ≤ t, yielding a constraint region equal to a diamond (here t = 1/λ).
The ellipses in the figure are the borders of the mean squared error function, which has
its minimum in correspondence with the point β̂. The minimum of the overall objective
function is found on the intersection between the ellipse and the constraint region.
Hence, the fundamental difference between these two methods is given by the shape
of the constraint region; in particular, the diamond shape of the LASSO method has

17

corners, while, of course, the circular shape of the Ridge method has not. When the
intersection point is found on one of the corners of the diamond region, one of the two
coefficients will be equal to zero, and this cannot happen in the circular region case. The
Lasso method, however, has some limitations:

• When the number of features p is greater than the number of samples n, LASSO
can select at most n features.

• If there are grouped features (i.e. highly correlated features), LASSO tends to
select one feature from each group ignoring the others.

2.1.4 Genetic Algorithms

Genetic Algorithms (GA) are a class of search algorithms inspired by the famous Darwin’s
theory of evolution. By imitating the process of natural selection, they can be used to
solve various problems in the field of artificial intelligence, and they are also optimal
candidates to perform feature selection.
In short, the Darwinian evolution principle states that, in a population of individuals,
the ones who better adapt to the environment are more likely to survive, reproduce,
and pass their characteristic traits to their offspring. In this way, as generations go by,
species become more and more adapted to live in their environment.
In the case of Genetic Algorithms, each individual represents a candidate solution for
the problem in exam. All the individuals are iteratively evaluated and those who better
solve the problem get a higher chance of being selected and pass their characteristics
to the next generation of individuals. So, like in Darwin’s theory, as generations go
by, candidate solutions will get better and better in solving the problem at hand. The
function used to evaluate the individuals is called the Fitness function.

Figure 2.4: Example of a population of chromosomes with binary genes (Wirsansky,
2020)

18

Once again, trying to mimic natural processes, we say that an individual is represented
by a chromosome, which, in turn, is just a sequence of genes. So, for example, a
chromosome could be a binary string, where each gene is either a zero or a one. It
follows that our collection of candidate solutions, i.e., the population, can be thought of
as an ensemble of chromosomes.
The general workflow of a genetic algorithm is shown in Figure (2.5).

Figure 2.5: Genetic Algorithm flowchart. At first, the population is initialized, then the
fitness of each individual is evaluated. Successively, if the stop condition is satisfied, the
algorithm outputs the results, else, it performs crossover and mutation operations.

Fitness Function

The Fitness function gives us a measure of the goodness of the solution to the problem
at hand, so it is the function we want to optimize to obtain the best possible solution.
We can either minimize or maximize it, depending on the specific situation.
One of the greatest advantages of using a fitness function is that the genetic algorithm
needs the fitness value only, so it does not require derivatives or other information. This
means that genetic algorithms can also optimize functions that are hard to differentiate,
or that cannot be differentiated at all.
Moreover, relying on fitness, we can solve problems that do not have a mathematical
representation, as long as we can obtain a fitness score. For instance, imagine we have
a driving simulator in which we can tune some parameters of the car. We could use the
genetic algorithm to find the parameter setting that produces the fastest car, using as
fitness the time of the lap.
As an example, we can see in Figure (2.6) the minimization of one of the functions we
used as fitness for our genetic algorithm.

19

Figure 2.6: Evolution of the fitness value over the generations, with the average fitness
value in green and the minimum fitness value in red.

The fitness is independently calculated for each individual at the beginning of the gen-
eration; the individuals with the best fitness value will have the greatest chance to be
selected for the next generation.

Selection

Right after the fitness calculation of every individual, a selection process is used to pick
the individuals that will get to reproduce and create the next generation of candidate
solutions. As we said, the individuals with the higher (or lower, depending on the prob-
lem) fitness value will have a greater probability of being selected; however, individuals
with a low fitness value can still be chosen, in order to encourage genetic variety.
There are many possible selection strategies (Goldberg and Deb, 1991; Blickle and Thiele,
1996), inspired by both mathematical principles and similarities in nature.

We will only focus on the selection scheme used in this work: the Tournament Se-
lection. In tournament selection (Fang and li, 2010), k individuals are randomly chosen
from the population, then the one with the highest fitness score wins and gets selected.
The process is repeated N times to obtain the parents population. The tournament size,
i.e., the number of individuals picked for the tournament, strongly influences the result
of the process, in fact, increasing it decreases the probability of weaker individuals being
selected.

20

The most common implementation of the tournament selection is the binary tourna-
ment, in which two individuals are picked to compete.

Figure 2.7: Example of Tournament Selection with tournament size equal to three. Three
individuals, namely B, E and J, are randomly chosen, then, the one with the highest
fitness, B, is selected.

The tournament selection does not require any population sorting, so it can be imple-
mented very efficiently: its time complexity is O(N), where N is the number of repeti-
tions.
Another interesting property of this selection method is that, as long as it can compare
the individuals and determine which one is better, it does not require the actual fitness
values. This may seem trivial but it is in fact an advantage; some selection techniques,
for example, cannot work with negative values of the fitness function.

Crossover

Once the selection process is ended and we have our population of parents, we are ready
to let them reproduce to create the next generation.
The crossover step is quite simple: two parents are chosen from the current selected
population and parts of their chromosomes are exchanged to create two new chromosomes
representing the offspring. Typically, crossover is not always applied, it just happens with
a high probability. When crossover is not applied, both parents are directly copied to
the next generation.

Once again, there are many crossover techniques, but we will focus only on the one
used in this work, the two-point crossover.
In the two-point crossover, as the name suggests, two crossover points are randomly
selected on the chromosomes of both parents, then, the genes in the middle of those two
points are swapped between the two parents. The process is shown in Figure (2.8).
This method can be generalized to n crossover points; the easiest one, with n = 1 is
known as single-point crossover.

21

Figure 2.8: Example of a two-point crossover on binary chromosomes. Here the first
crossover point is between the third and the fourth genes, while the second point is
between the sixth and the seventh genes.

Mutation

The last of the operators in the genetic algorithm is the mutation one. The mutation
operator is applied to the individuals resulting from the previous selection and crossover
operations.
The purpose of mutation is to provide a further element of randomness, in order to
promote the exploration of the solution space. As opposite to the crossover operation,
however, mutation is usually applied with a very low probability, because a high mu-
tation rate could prejudice the results of the genetic algorithm, making it similar to a
random search.

Figure 2.9: Example of a flip bit mutation. The values of the the second and eighth
genes are flipped.

The mutation method used in the work is called flip bit mutation, and it is quite
simple. When the flip bit mutation is applied to a binary chromosome, each gene of
the chromosome has a certain probability of being flipped, i.e., of becoming the boolean
negation of itself, as we can see in Figure (2.9).
Notice that the process just described can be subdivided into two steps, each with its
own probability. First, there is the probability of mutation, that is the probability for a
chromosome of being mutated; then, there is the probability of flipping, i.e., the prob-
ability for a gene of being flipped. These two probabilities are independent and can
be controlled separately. As an example, consider the case in which the probability of
mutation is equal to 1 and the probability of flipping is equal to 0. In a similar situation,
all the chromosomes would be mutated, but the mutation would not have any effect.
It is also worth to explicit the fact that the flip bit mutation can only be used with binary
chromosomes, as it would make no sense to use it with other types of chromosomes.

22

Stopping Conditions

The easiest way to stop the genetic flow is to simply define a maximum number of
generations after which the algorithm must stop.
The other common solution involves the fitness function. If there is no substantial
improvement of the fitness value over a certain number of generations, then the algorithm
stops. A threshold can be used to define the minimum value improvement required.
In this implementation, we used the first of these two stopping conditions.

Elitism

The selection process we described has an intrinsic, important consequence: it does not
guarantee that the best individual in the population will be selected.
Consider a population of 50 individuals and a tournament size of 2. In this case, if we
repeat the tournament 50 times, the probability for the best individual not being selected
is around 13 percent, so it is not negligible at all. Note that we are implicitly assuming
that the same individual cannot be picked two times in a single tournament.
This is not really a big problem, because, even if the best individuals are lost during the
selection process, it is probable that they will be reintroduced in the next generations.
However, if we do not want to lose our best individuals during the evolution process, we
can apply an elitism strategy.
The idea is very simple: before the selection operation takes place, the n best individ-
uals are selected and duplicated into the next generation. Those n individuals can still
be picked in the selection process, so n should be a reasonably small number because
otherwise we risk to prematurely saturate the population with sub-optimal solutions.
Applying an elitism strategy can really improve the performance of the genetic algorithm;
in particular, it can reduce the time needed to find the best solutions.

2.2 Models

In the field of Machine Learning, we can distinguish two main types of algorithms:
supervised and unsupervised. The principal difference between these two classes
of algorithms is that the former need labeled data to learn, while the latter do not.
Clustering is an example of unsupervised learning because it can learn relations in
data without needing for labels.
When labels are available for the problem at hand, generally, supervised techniques
perform better, so, since we had labeled data, we only used supervised algorithms.
The two major applications of supervised learning are classification and regression.
Classification is the task of associating a categorical value, i.e., a class, to the input
sample; regression, instead, is the action of mapping the input sample to a real number,
or, more in general, to a vector of real numbers.
The data used in this work were suitable for both classification and regression.

2.2.1 Decision Trees

Decision Trees are versatile supervised machine learning algorithms that can perform
both classification and regression. A tree is made up of a root node, internal nodes,
branches, and leaf nodes. The root node is the starting point of the tree and both root

23

and internal nodes contain questions or criteria to be answered (e.g., is x greater than
y?); branches are just connections between nodes and, finally, leaf nodes are the terminal
nodes of the tree. Unlike real trees, Decision Trees grow upside down, with the root node
at the top.
Each internal node of the tree, as well as the root node, can have two or more child
nodes, depending on the algorithm implementation, however, we will focus on binary
trees, i.e. trees in which each internal node has exactly two children because it is the
implementation used for this work.

Decision Trees have various great qualities that contribute to their popularity and
broad usage in machine learning.
First of all, they are white box models, meaning that the decision made by a tree is
easily and clearly explainable by boolean logic; they are thus optimal candidates when
the interpretability of the model is crucial. In contrast, machine learning models like
neural networks are black box models, because the interpretation of a decision made by
the model is not straightforward.

Figure 2.10: Decision Tree of the famous Iris Dataset (Géron, 2019).

Another major advantage is that Decision Trees require little data preparation, or even
no data preparation at all. In fact, they can handle both numerical and categorical data
and, thanks to their boolean nature, it is not required to normalize or scale the data.
Finally, the computational cost of using a tree is logarithmic in the number of data points
used to train the tree.
To understand how Decision Trees make their decisions, we refer to Figure (2.10). As we
can see, the root node contains the whole data, 150 samples equally partitioned in three
classes: setosa, virginica and versicolor. The class associated with a node is the one with
the greatest number of instances in that node. The dataset is divided into two subsets

24

by the condition petal length ≤ 2.45, producing the corresponding child nodes. The left
node is a terminal one, i.e., a leaf, since it holds only samples of the setosa class, so no
further splitting is needed. The node on the right, instead, is an internal node, which,
using the condition petal width ≤ 1.75, generates the two final leaf nodes.
Moreover, all the nodes in the tree have an attribute in common, named gini. The gini
attribute measures the node impurity, also known as Gini Impurity, defined as follows:

Gi = 1−
n∑
k=1

p2i,k (2.8)

where i indicates the ith node and p2i,k is the ratio of the class k instances among the

training instances in the ith node. So, for example, the leaf node on the lower right has
a Gini Impurity equal to 1− (0/46)2 − (1/46)2 − (45/46)2 ' 0.043.

Figure 2.11: Decision Trees used to fit a sinusoidal curve with some noisy points. It can
be seen how the hyperparameter max depth influences the final result (Pedregosa et al.,
2011).

A Decision Tree is built using the CART (Classification and Regression Tree) algo-
rithm, which performs a greedy search trying to minimize a cost function. Given the
feature set ~k, the algorithm works by searching for the pair (ki, tki) that produces the
purest subsets, where tki is a threshold value. To do this, at each node the algorithm
tests various pairs and chooses the one that minimizes the following cost function:

Jclass(ki, tki) =
nl
n
Gl +

nr
n
Gr (2.9)

25

where Gl and Gr are the gini impurities of the left and the right subsets respectively,
nl and nr are the numbers of samples in the left and right subsets, and n is the total
number of samples. In other words, the (2.9) is a weighted sum of the gini impurities of
the subsets.
Note that the (2.9) is the cost function used when the Decision Tree is a classifier; if we
are performing a regression task the CART algorithm will minimize the Mean Squared
Error (MSE):

Jreg(ki, tki) =
nl
n
MSEl +

nr
n
MSEr (2.10)

Note also that, due to its greedy nature, the CART algorithm will find a reasonably good
solution, but it is not guaranteed that it will find the optimal one. This is a consequence
of the fact that finding the optimal tree is known to be an NP-Complete problem, so it
would be infeasible even for small datasets.
Once the tree is trained, it can make predictions in a very simple way. Given a new
instance, the tree uses the thresholds found during training to assign the instance to one
of the leaf nodes, then, the predicted class will be the one associated with that node. In
the same way, it is possible to determine the class probabilities. For example, referring
to figure (2.10), the class probabilities associated with the lower right node are: 0 for
setosa (0/46), 0.02 for versicolor (1/46) and 0.98 for virginica (45/46).

Figure 2.12: Rotating the training set by 45° causes an evident modification of the
decision boundaries of the tree (Géron, 2019).

Decision Trees have many remarkable properties: they are simple, powerful, and
versatile; however, they also have some important drawbacks that must be considered.
First of all, if the tree has no constraints, the CART algorithm will continue the splitting
until it cannot find a split that further reduces the impurity. As a consequence, a tree
that can grow without restrictions will almost certainly overfit the data. We can clearly
see this behavior in Figure (2.11), where two Decision Trees are used to fit a sinusoidal
wave. Here the hyperparameter max depth is used to stop the trees from growing when
a certain depth is reached. The tree with max depth equal to five is obviously overfitting
the data, while the tree with max depth equal to two is not.
In general, Decision Trees are naturally prone to overfitting, so it is very important
to carefully choose the regularization hyperparameters to restrict their freedom during
training. The max depth is one of the most used, but there are also some alternatives,
like min samples split, which identifies the minimum number of samples required to split

26

a node, and max leaf nodes, that restricts the maximum number of leaf nodes the tree
can have.
Another major issue of Decision Trees is their sensitivity to small variations in the
training data; for example, removing a single instance may result in the generation of a
completely different tree. On the left side of Figure (2.12) we can see a linearly separable
dataset. The right side of the figure shows the same dataset, but rotated by 45°. In
both cases, the Decision Tree can easily separate the two classes, however, the decision
boundaries for the rotated set are clearly more complicated, and the correspondent tree
will not generalize as well as the one trained on the original set.
The instability of Decision Trees can be reduced by using them in an ensemble.

2.2.2 Random Forests

Random Forests (Breiman, 2001) are among the most powerful Machine Learning al-
gorithms currently available; they are a so-called ensemble method because they ag-
gregate the predictions of a group of predictors. Specifically, a Random Forest is an
ensemble of Decision Trees: each tree is trained on a bootstrap sample of the original
training set, then the predictions of the trees are combined to give the final prediction.
Bootstrapping (Horowitz, 2001) is a sampling technique in which new data sets are built
by randomly drawing samples from the original set of data, allowing the same instance
to be sampled more than once; in this way, each tree in the forest is built from a different
data set. Typically, the size of the bootstrap sample is the same as the original dataset.

Figure 2.13: Example of Bootstrap sampling (Galdi and Tagliaferri, 2018).

Moreover, when splitting the nodes during the construction of the trees, the best feature
for the division is found among a random subset of the original features.
Random Forests usually perform better than a single Decision Tree, being less prone to
overfit, less sensitive to data variation and having an overall smaller variance. On the
other hand, a Random Forest is not a white box model anymore: explaining why it gives
a certain prediction is not straightforward. As it was for Decision Trees, Random Forests
can be used both for classification and regression, and they also have some other notable
properties.

First of all, Random Forests have the intrinsic ability to perform feature selection.
In fact, by looking at the features that, on average, over the entire forest, mostly reduce
the impurity of the dataset, we can obtain the relative importance of the features.
Although this can be very useful, it has to be used carefully, in fact, the feature impor-

27

tance is calculated using the training instances, so it does not necessarily apply to the
test data too. Furthermore, the process favors the features with many unique values.
Another interesting advantage of Random Forests is the possibility of evaluating the
model using the Out-of-Bag evaluation. A consequence of bootstrap sampling, in fact,
is that, on average, only about 63% of the training instances are sampled for each pre-
dictor. The remaining portion of the data, called out of bag samples, can thus be used
as a test set for that predictor. It follows that the ensemble itself can be evaluated by
averaging the out-of-bag scores of each predictor in the ensemble.

Random Survival Forests

Random Survival Forests (Ishwaran et al., 2008) are an extension of regular Random
Forests capable of handling right-censored data and performing survival analysis. They
are a non-parametric alternative to other popular parametric and semi-parametric sur-
vival models, such as the famous Cox proportional hazards model.
Random Survival Forests share many of their properties with standard Random Forests;
one of the main differences between them is in the splitting criteria used to grow the trees.
Several splitting rules have been proposed over the years (Bou-Hamad et al., 2011); a
common implementation uses the log-rank statistic to compare the two groups formed
by the child nodes (LeBlanc and Crowley, 1993). The retained split is the one with the
largest significant test statistic value. The log-rank test indicates whether survival be-
tween the two groups is significantly different. The null hypothesis tested by the log-rank
is that the two groups have identical hazard functions, i.e., equal event-time distribution.
The rejection of this hypothesis thus means that the event rates differ between the two
groups. The use of the log-rank test yields a split that assures the best separation of the
median survival times in the two children nodes.

2.2.3 Cox Proportional Hazards Model

The Cox proportional hazards model (Cox, 1972) is by far one of the most used models
in survival analysis. The Cox model gives an expression for the hazard at time t for an
individual with a given set of explanatory variables ~x = {x1, . . . , xn}:

h(t, ~x) = h0(t) exp

[n∑
i=1

βixi

]
(2.11)

where h0 is the baseline hazard and ~β = {β1, . . . , βn} are the parameters of the model.
We can also rewrite the (2.11) in vector form:

h(t, ~x) = h0(t)e
~β~x (2.12)

The first noticeable feature of the (2.11) is the fact that the baseline hazard depends
only on t, while the expression inside the exponential is time independent: this is the
proportional hazards assumption. This assumption essentially states that, while
hazards can vary over time, the ratio of the hazards for any two individuals remains
constant. Another important property of the Cox model is that the baseline hazard
function h0(t) is not specified. This makes the Cox model a semi-parametric model,
in fact, in a parametric model the functional form is completely specified.
Its semi-parametric nature is one of the reasons why it is so popular. Even if the baseline

28

hazard is not specified, the results obtained using the Cox model will closely approximate
the ones obtained by the correct parametric model (Kleinbaum and Klein, 2010); for this
reason, the Cox model is said to be a robust model.
A further implication of equation (2.11) is that the hazards given by the model will
always be non-negative, as they should be.
Finally, another remarkable property of the Cox model is the possibility to measure
the effect of the explanatory variables without actually estimating the baseline hazard
function; all we need are the estimated of the βi parameters. The measured effect of an
explanatory variable is known as the Hazard Ratio (HR).

Estimating the parameters: the Partial Likelihood

The Cox model parameters are derived by maximizing a likelihood function, as it happens
for other models, like logistic regression. The likelihood function gives us a measure of
the goodness of the fit of a statistical model to a sample of data for given values of the
unknown parameters. In general, the formulation of a likelihood function is built upon
the distribution of the outcome, e.g., if we toss a coin, we expect the outcomes to be
Bernoulli distributed.
For the Cox model, however, this is not possible, because there is no assumed distribution
for the outcome. The approach used to define the Cox likelihood is thus based on the
observed order of the events. Since it only considers the probability of the subjects who
experience a failure, the Cox likelihood is usually called partial likelihood, and we will
now derive its mathematical formulation.

Suppose we observe (ti, δi, ~xi) for the i-th patient, where ti is a failure or censoring
time, δi is the failure indicator (1 if failure, 0 if censored) and ~xi is the set of features. We
then define the risk set as the set of individuals who are at risk at time t: R(t) = (i | ti >
t). Suppose now that the patient j experiences a failure at time tj. The probability for
this to happen is equal to the conditional probability for an individual j of being chosen
from the risk set to fail:

Lj(~β) = P (individual j fails | one failure fromR(tj))

=
P (individual j fails | at risk at tj)∑

l∈R(tj)
P (individual l fails | at risk at tj)

(2.13)

If we then substitute the probabilities in (2.13) with the hazard identified in the (2.12),
we get:

Lj(~β) =
h(tj, ~xj)∑

l∈R(tj)
h(tj, ~xl)

=
h0(tj)e

~β~xj∑
l∈R(tj)

h0(tj)e
~β~xl

(2.14)

A noticeable thing of the (2.14) is that the baseline hazard is not needed to calculate
the likelihood, if fact, by factoring h0(tj) in the denominator, we can cancel it out from
the equation. This explains why we do not need the baseline hazard to estimate the
parameters.
Finally, suppose we have N events at times t1 < t2 < . . . < tN , where an event can be
either a failure or a censoring, and let Li be the contribution to the likelihood corre-
sponding to the i-th event time. Recall that δi is equal to 1 if the event is a failure and
to 0 if the event is a censoring. Then, the Cox likelihood will be the product of all the

29

Li corresponding to a failure:

Lcox = (L1)
δ1 × (L2)

δ2 × . . .× (LN)δN =
N∏
i=1

(Li)
δi (2.15)

which, using the (2.14), becomes:

Lcox =
N∏
i=1

(
e
~β~xi∑

l∈R(ti)
e~β~xl

)δi

(2.16)

Once we have obtained the formula for the Cox likelihood, we can derive the regression
parameters by setting the partial derivatives of the natural logarithm of the likelihood
to zero and solving the resulting system of equations:

∂ lnLcox
∂βi

= 0 , i = 1, 2, . . . , p (2.17)

with p being the number of parameters of the model.

Hazard Ratios and Survival curves

When doing survival analysis, two quantities of particular interest are the estimated
Hazard Ratios (HR) and the estimated survival curves.
The hazard ratio is defined as the hazard for one individual divided by the hazard for
a different individual. Mathematically, the hazard ratio for two individuals i and j will
be:

HRi,j =
h(t, ~xi)

h(t, ~xj)
=
h0(t)e

~β~xi

h0(t)e
~β~xj

(2.18)

so, finally
HRi,j = exp

[
~β(~xi − ~xj)

]
(2.19)

As we can see, according to what we said earlier, the hazard ratio in (2.19) is constant
over time.

A survival curve, instead, defines the probability of surviving after time t. One
interesting result of using a Cox model to fit the data is that we can obtain survival
curves adjusted for the explanatory variables, called adjusted survival curves. We
can use the hazard function of the Cox model to obtain the corresponding survival curve
(Kleinbaum and Klein, 2010):

S(t, ~x) =
[
S0(t)

]e~β~x
(2.20)

where S0(t) is the baseline survival function. Baseline hazard and survival functions are
usually estimated using the Breslow’s method (Lin, 2008).

2.3 Model Evaluation

When building and training a model, it is extremely important to choose the right metric
to evaluate its performance. To have a better idea about the importance of the evaluation
metric, we will first consider one of the most used to evaluate classification models: the

30

accuracy. Accuracy is very simple to define, it is just the fraction of predictions that
our model got right, or, more formally:

Accuracy =
Number of correct predictions

Total number of predictions
(2.21)

Now, imagine we have a dataset made of one thousand samples belonging to two different
classes, denoted with 0 and 1. Imagine then in the aforementioned dataset 900 instances
belong to class 0, and the other 100 to class 1. In a similar situation, we could simply
build a model that always predicts 0 to achieve a 90% accuracy.

2.3.1 Precision and Recall

An interesting metric to look at is called Precision, it is the accuracy of the positive
predictions and it is defined as follows:

Precision =
TP

TP + FP
(2.22)

where TP are the True Positives and FP are the False Positives. An easy way to get a
perfect precision is to make one single positive prediction and ensure it is correct; that’s
why precision is typically used along with another metric, known as Recall. The Recall
is defined as the ratio of positive instances that are correctly detected by the classifier:

Recall =
TP

TP + FN
(2.23)

These two metrics are often combined to make another metric, called F1 Score, which
is the harmonic mean of Precision and Recall:

F1 =
2

1
P

+ 1
R

= 2
P ·R
P +R

=
TP

TP + FN+FP
2

(2.24)

The F1 Score can be a really solid metric since it will have a high value only if both
Precision and Recall values are high. On the other hand, however, the major criticism
of the F1 Score is that it gives the same importance to Precision and Recall, favoring
classifiers that achieve similar values of those two metrics. In many real-life scenarios,
however, one of the two can be much more important than the other. For example, if you
have trained a classifier that detects if a certain component of an airplane is defective,
it would probably be preferable to have a very high Recall, making sure that all the
defective component are detected, even if the precision is low, i.e. some of the good
components are labeled as defective. Unfortunately, increasing Precision reduces Recall,
and vice versa; this is known as the Precision/Recall trade-off.

2.3.2 The ROC Curve

Another famous instrument to evaluate the performance of a binary classifier is the
Receiver Operating Characteristic (ROC) curve. It displays the true positive rate,
i.e., the Recall, against the false positive rate (FPR) for various threshold values. The
FPR is the ratio of negative instances that are incorrectly classified as positive, namely:

FPR =
FP

FP + TN
(2.25)

31

Figure 2.14: Plot of two dummy ROC curves with the associated area under the curve
(AUC). The dotted line represents the ROC curve of a random classifier.

To have a better idea about the general shape of a ROC curve we can refer to Figure
(2.14) in which two ROC curves are depicted; note that they are not derived from real
data and serve us only as an example. In the figure, the dotted line represents the ROC
curve of a random classifier; a good classifier stays as far away as possible from that
line, toward the top left corner. For example, looking again to figure (2.14), a classifier
producing the blue curve would be better than a classifier producing the orange curve,
which, in turn, would of course be better than a random classifier.
The Area Under the Curve (AUC) of the ROC curve is a commonly used metric to
compare two classifiers; a perfect classifier would have a ROC AUC equal to 1, while a
random classifier would have a ROC AUC equal to 0.5.

2.3.3 Concordance Index

The metrics we have seen so far are used with classifiers. For survival analysis, we use
regression models, thus, we have to rely on other kinds of metrics.
One of the most used performance measures for survival models is the Concordance
Index (CI). It is a generalization of the ROC AUC we just introduced (Uno et al., 2011;
Steck et al., 2008). The concordance index corresponds to the fraction of all pairs of
subjects whose survival times are correctly ordered among all the subjects that can be
compared. A pair of subjects is comparable if we can determine which of them was
the first to experience an event. For example, consider three subjects i, j and k with i

32

experiencing a failure at time ti and j and k being censored at times tj > ti and tk < ti.
In this case, we can compare i and j because we are sure that i experienced the event
before j, but we cannot compare i and k, because k was censored before ti.
Mathematically, the concordance index can be defined as follows (Longato et al., 2020):

CI =

∑N
i=1 δi

∑N
j=i+1 I(tobsi < tobsj) · I(hi > hj)∑N

i=1 δi
∑N

j=i+1 I(tobsi < tobsj)
(2.26)

where:

• I(x) = 1 if x is true, 0 otherwise

• δi = 1 if subject i experienced a failure, 0 if censored

• tobsi and tobsj are the observed survival times for subjects i and j respectively

• hi and hj are the predicted hazards for subjects i and j respectively (note that an
higher predicted hazard corresponds to a lower predicted survival time)

Similarly to the ROC AUC, the value of the concordance index is between 0 and 1;
the higher the value, the better the model. Again, a concordance index of 1 indicates a
perfect predictor, while a concordance index of 0.5 means that the model is as good as
a random predictor.

2.3.4 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) (Akaike, 1998) was first introduced by Hirotogu
Akaike as an extension to the method of maximum likelihood estimation. The likelihood
function, in fact, gives us a measure of the goodness of the fit, but it does not take
into account the number of parameters of the model. The problem is that, in general,
the higher the number of parameters, the higher is the risk for the model to overfit.
AIC, instead, considers both the goodness of the fit and the simplicity of the model by
introducing a penalty that is directly proportional to the number of parameters. It is
formulated as follows:

AIC = 2k − 2 ln(L̂) (2.27)

where k is the number of parameters of the model and L̂ is the maximum value of the
likelihood function for the model.
It follows that AIC can be used for model selection: given a set of candidate models
we prefer the one with the lowest AIC value. Note that AIC can be used to compare
different models, but gives no information about the absolute quality of a model.

2.3.5 Cross-Validation

To evaluate a model, usually, the entire dataset is divided into two mutually exclusive
sub-sets: the train set and the test set, with the latter being generally smaller, typically
20-30 percent of the whole data. This procedure is sometimes referred to as holdout. As
their names suggest, the train dataset is used to fit the model and the test dataset is used
to evaluate it. However, the train-test split approach alone may not be sufficient, and in
some situations it can also lead to erroneous conclusions, especially when used incorrectly.
In particular, the problem arises when we want to fine-tune the hyperparameters of our

33

model. In fact, if we tweak the hyperparameters of the model to achieve the best possible
performance on a given test set, we are implicitly giving to it information about the
actual test data. This will probably produce a model that does not generalize well to
new, unseen data.
To partially solve this problem, another part of the original data can be held out, ending
up with three datasets, the usual train and test ones and the new one, called validation
set. The issue, however, is that in this way we are drastically reducing the number
of available samples that we can use to train the model. Assuming that the model
performance increases as more instances are seen, it is clear that the holdout method is
a pessimistic estimator because only a portion of the data is given to the classifier for
training.

Figure 2.15: k -fold Cross-Validation. The dataset is divided into k folds, then k − 1
folds are used for training and the one left is used for testing. The process of training
and testing is repeated k times.

An alternative, famous way to evaluate a model: is the Cross-Validation. The
basic approach, named k-fold Cross-Validation, consists in splitting the original data into
k subsets of equal dimension (if possible), then k − 1 folds are used to train the model,
and the remaining one is used to test it. The process is repeated k times, each time using
a different fold as the test set, and the remaining data as the training set, in this way,
all the folds are used exactly once as test data. The entire operation can be visualized
in Figure (2.15). The final performance score of the cross-validation procedure is the
average of the values obtained at each iteration. We can thus write the cross-validation
estimate of the prediction error as follows:

CV (f) =
1

K

K∑
i=1

L(yi, fi(xi)) (2.28)

where K is the number of folds, fi(xi) are the predicted values for the samples in the
i-th fold, yi are the true values associated to those samples, and L is the metric.
The greatest advantage of cross-validation is that it allows to effectively test the model
without wasting data, and this can be crucial in situations in which very few training
instances are available, as it was in this work. However, even if we use cross-validation
to tune and test the model, it is a good practice to hold out a certain amount of data to
use as a final estimate of the model performance.

34

Recommended choices of k are usually 5 or 10 (Kohavi et al., 1995; Kim, 2009); the
case in which the number of folds is equal to the number of samples in the dataset is
known as leave-one-out cross-validation. In this scenario, the cross-validation estimator
is approximately unbiased for the true, expected, prediction error, but the variance is
likely to be very high because the training sets are similar to one another; also, the
computational burden is not negligible.
Both 10-fold and 5-fold cross-validation have a lower variance than the leave-one-out,
but bias can be a problem, depending on how the performance of the learning method
varies with the size of the training set.

Figure 2.16: Hypothetical learning curve for a model on a given training set (Hastie
et al., 2009)

Referring to Hastie et al. (2009) we consider Figure (2.16), showing a hypothetical
learning curve for a model trained on a given dataset. The learning curve rises quickly
until a certain number of training samples is reached, around 150, then increasing the
number of training data points only produces a slight improvement of the performance.
So, if we had a dataset with 200 observations, with a 5-fold cross-validation, the model
would be trained on 160 samples; its score would be nearly identical to the one obtained
by the same model trained on the whole dataset, yielding an almost unbiased cross-
validation result. On the other hand, if the dataset had just 50 samples, a 5-fold cross-
validation would train the model on 40 samples, producing an underestimate of 1−Err,
i.e., the cross-validation estimate of the error would be biased upward.

That said, in some cases, as shown by Rao et al. (2008), the performance estimated
by cross-validation is no longer an effective estimate of generalization. For example,
consider a scenario in which we have a dataset with a small number of instances and a
great number of features, and we want to perform feature selection using cross-validation.
Under these conditions, probably, the process of feature selection will eventually find a
lucky subset of features yielding a good cross-validation result, but the selected features
could have no predicting power on the test set. The same can happen when we use
cross-validation to perform model selection over a large number of models.

35

2.4 Methods

2.4.1 Data Acquisition and Preliminary Analysis

Data Acquisition

The data acquisition, which was not performed by me, was organized in the following
way. First, all the patients underwent a PET/CT scan. The acquired images were
then segmented in a semi-automatic procedure using a threshold algorithm and the PET
EdgeTM algorithm. To extract the radiomic features, the Pyradiomics python library
(Van Griethuysen et al., 2017), based on 3D Slicer, was used. In this way, shape-based
features, first-order features, and texture-based features were extracted.

Data Preparation

The very first step in data analysis is of course the data preparation. The dataset used in
this work contained radiomic features extracted from CT and PET images of 99 patients.
Five of them had a number of features that was too low to include them in the study,
so they were dropped. Each remaining patient had a set of 114 CT features and a set
of 114 PET features. Also, each patient had a set of 4 outcomes: recurrence, time to
recurrence, survival and survival time.
First of all, the info features have been removed since they could not be used in the
machine learning model, resulting in two sets of 105 features each. All the null values
of the features were filled with 0. Nine patients had feature values about ten orders of
magnitude higher than the others, so they were excluded as outliers, leading to a total
of 85 remaining patients.
Successively, all the features were standardized by removing the mean µ and dividing by
the standard deviation σ:

zni =
xni − µ
σ

(2.29)

where xni is the value of the feature n for sample i, and zni is the correspondent stan-
dardized value.
Survival and the associated survival times were used as labels. The former was a binary
variable with value 1 for the event death and value 0 for censored event. Among the 85
subjects, 24 experienced a failure, the others were censored. Survival time was of course
the time until death or censoring, it was measured in months.
Finally, the dataset was divided into a training and a test set; 80% of data (68 samples
with 19 deaths) was used for training and the remaining 20% (17 samples with 5 deaths)
for testing.
We wanted to predict the hazards of the patients. Recall that a higher predicted hazard
corresponds to a lower predicted survival time.

2.4.2 Feature Selection

The core part of the work was the feature selection process. Correlation, LASSO regres-
sion, and Genetic Algorithms were used and compared to find the best feature subsets;
also, t-SNE was used for visualization purposes. Note that all the following processes
were applied to CT and PET features separately. Note also that all the operations of
feature selection were performed using the train data only.

36

Correlation

To remove the correlated features, first of all, the correlation matrix was built using the
Pandas library (Team, 2020). Successively, for each feature, the correlation coefficients
with respect to the other features were evaluated, if one of those coefficients was higher
than a certain threshold, the feature was dropped.
The threshold was set to 0.9 so that only the highly correlated features were dropped.
It gives in output the dataframe of the uncorrelated features and the list of the correlated
ones, i.e, the features that were dropped. The central part of the algorithm is shown in
the following code snippet:

1 correlation_matrix = features.corr() # calculate the correlation matrix

2

3 correlated_features = set()

4

5 for i in range(len(correlation_matrix.columns)):

6 for j in range(i):

7 if abs(correlation_matrix.iloc[i, j]) > threshold:

8 colname = correlation_matrix.columns[i]

9 correlated_features.add(colname)

10

11 correlated_features = list(correlated_features)

12

13 features = features.drop(correlated_features , axis = 1)

This technique was the easiest to implement and the less computationally expensive. It
is also quite versatile since it allows to directly act on the number of selected features
by controlling the threshold value. The main weakness is that between the two features
being compared, we cannot know which of the two is more informative.

LASSO Regression

To compute the correlation matrix we only need the feature values, to perform feature
selection using LASSO, instead, we actually need to fit a model to the data. The model
used was a Cox model with LASSO penalty, also known as l1 penalty. We introduced
the LASSO technique for the linear regression case to make it clearer; the only difference
here is that, instead of using the Mean Squared Error as objective function, we use the
log-likelihood defined for the Cox model:

β̂ = min
~β

[
− ln(Lcox(~β)) + λ‖~β‖

]
(2.30)

Note that the minus sign before the log-likelihood comes from the fact that usually the
log-likelihood is maximized to find the best parameters, but the problem of maximizing
it is the same as minimizing the negative log-likelihood.
The number of parameters β of the model that will be shrunk to 0 depends on the
penalization parameter λ: higher values of λ will result in fewer features being selected.

Finding the optimal value for the penalization parameter is not straightforward. The
process adopted in this work was the following: 100 Cox models, each with a different
penalization value, have been evaluated using a 5-fold cross-validation repeated 5 times ;
the parameter producing the best performance was selected as the optimal one. In a re-
peated cross-validation, at each repetition, before performing cross-validation, the data
are randomly shuffled, and the final score is the average of the scores obtained for each

37

cross-validation. This should give a more solid estimate of the model performance and
should also slightly mitigate the risk of overfitting.
Regarding the values of the penalization parameters, they were 100 evenly spaced real
numbers ranging from 10−4 to 1.
Once the best penalization parameter was identified, a Cox model was built using that
parameter, then the model was fitted to the training data to get the β values. The
features selected were the ones with an associated nonzero value of beta.
The Cox model was implemented using the scikit-survival library (Pölsterl, 2020), while
the repeated cross-validation was built upon scikit-learn (Pedregosa et al., 2011).
This algorithm is way more computationally intensive than the correlation one; here, in
fact, each of the 100 models must be trained and tested 25 times. The code used to find
the best penalization parameter is shown below:

1 # generate the penalization values

2 alphas = 10 ** np.linspace(-4, 0, 100)

3

4 # define the Cox model with LASSO penalization

5 coxLasso = CoxnetSurvivalAnalysis(l1_ratio =1)

6

7 scores = [] # store the scores

8

9 # define the repeated Cross -Validation

10 cv = RepeatedKFold(n_splits=5, n_repeats=5, random_state =0)

11

12 for alpha in alphas:

13 # set the penalization parameter

14 coxLasso.set_params(alphas =[alpha])

15

16 # calculate and append the scores

17 score = np.mean(cross_val_score(coxLasso , X_scaled , Y, cv=cv))

18 scores.append(score)

19

20 # select the best penalization parameter

21 best_alpha = alphas[np.argmax(scores)]

Genetic Algorithm

The Genetic Algorithm was the most sophisticated technique implemented in the work.
It was based on the DEAP library (Fortin et al., 2012).
To perform feature selection, binary chromosomes were used. A chromosome had a
number of genes equal to the number of features in the dataset. The features associated
with genes with value 0 were dropped, whereas the features associated with genes with
value 1 were kept. In this way, each chromosome identified a subset of the original set of
features. Successively, for each chromosome, a Cox model was built using the subset of
features selected by that chromosome. The resulting models were then evaluated using
different metrics; the scores of the models were used as fitness values so that the best
chromosomes were the ones producing the best models, i.e., the ones selecting the best
features.

The prior step of feature selection was made using the partial AIC as the metric to
evaluate the models (Note that “partial” comes from the fact that the Cox model uses
a partial likelihood).

38

Figure 2.17: Example of a chromosome used for feature selection. The number of genes
is equal to the number of features. The features corresponding to a gene 1 are selected.

As we saw, the AIC penalizes models with a higher number of parameters, so it is a
natural candidate to use for feature selection. The Genetic Algorithm architecture was
the following: binary tournament was used as selection method, two-point crossover
as crossover method and flip-bit mutation as mutation method. The probabilities of
crossover and mutation were 0.9 and 0.2 respectively, with the probability of the single
gene being flipped equal to 1/(n. genes). An elitism strategy was used to always keep in
the population the 5 best individuals. The population was made by 50 individuals and
the evolution process lasted for 200 generations.

Figure 2.18: Partial AIC minimization using PET features. The minimum fitness and
the average fitness are showed in red and green respectively.

39

The library used to implement the Cox model, in this case, was lifelines (Davidson-Pilon
et al., 2020), because it provided direct access to the partial AIC associated with the
model, so it was easier to use in the Genetic Algorithm. The process of minimization
of the partial AIC is shown in Figure (2.18). In particular, by looking at the average
fitness, we can see that the partial AIC of all the models was substantially reduced.

The second and last step of feature selection was performed on the features selected
in the previous step, in order to get an even smaller subset of informative features.
The main difference with the previous process was in the fitness function; this time, we
wanted to maximize the following:

Fitness = µ(CV5)− σ(CV5) (2.31)

with µ(CV5) being the average score obtained in a 5-fold cross-validation repeated 5
times and σ(CV5) being its standard deviation. As it was in the first part, for each
individual, a Cox model was built using the features selected by that individual. For
each of those models, a 5-fold cross-validation repeated 5 times was performed, using
the concordance index as metric, and the average score of the repeated cross-validation
and its standard deviation were computed. The best individuals were the ones who max-
imized equation (2.31), i.e., the difference between the average score and the standard
deviation. The purpose of that fitness function was to maximize the score obtained in
the overall repeated cross-validation, and, at the same time, to achieve a similar score
for all the folds, by minimizing the standard deviation.

Figure 2.19: Maximization of the fitness function (2.31) for PET features. The maximum
fitness and the average fitness are showed in red and green respectively.

40

The general architecture of the Genetic Algorithm was almost the same, the only differ-
ence was in the number of generations. This time, the maximum number of generations
was reduced to 50, for two main reasons. The first is that the computational burden of
the process is not negligible, in fact, in a single generation, each of the 50 Cox models
is trained and tested 25 times. The second is that, this time, the features were selected
among a smaller number of initial features, so it was easier for the algorithm to find a
good solution. The process of maximization of the (2.31) for PET features is shown in
Figure (2.19); as we can see, the best solution was found in just 11 generations.
The functions written to calculate the fitness (2.31) in the genetic algorithm are the
following:

1 # repeated cross -validation calculation

2 def Repeated_CrossValidation(X, Y, estimator , ZeroOneList , folds=5,

3 rand_state =1, std=False):

4

5 # if no feature is selected , return 0.5

6 if sum(ZeroOneList) == 0:

7 return 0.5

8 else:

9 # drop features corresponding to a gene 0

10 zeroIndices = [i for i, n in enumerate(ZeroOneList) if n == 0]

11 X_deleted = np.delete(X, zeroIndices , 1)

12

13 cv = RepeatedKFold(n_splits=5, n_repeats=5,

14 random_state =0)

15 score = cross_val_score(estimator , X_deleted , Y, cv=cv)

16

17 if std:

18 return score.mean(), score.std()

19 else:

20 return score.mean()

21

22 # actual fitness of an individual

23 def CrossValidation(individual):

24

25 avg , std = Repeated_CrossValidation(X_genetic_scaled , Y, skCox ,

26 individual , folds=5, std=True)

27 return (avg - std),

Best Features Subset

To decide which of the feature selection techniques used was the best, each of the sub-
sets of features found with the three methods was used to build a Cox model, then those
models were evaluated using again a 5-fold cross-validation repeated five times with con-
cordance index as the metric. The models that achieved the best results were considered
the candidate ones, and, consequently, the features used in those models were considered
the candidate predictors.
The results are shown in Figure (2.20), with the average cross-validation score in the
y-axis and the number of selected features in the x-axis. As we can see, the features se-
lected by the Genetic Algorithm produced the best results, followed by the ones selected
by the LASSO regression. Features selected with the correlation method, instead, gave
very poor results; in particular, for PET features, the fit did not converge.

41

(a)

(b)

Figure 2.20: Repeated 5-fold cross-validation performance comparison for Cox models
built on different features subsets. Results for CT and PET features are showed in (a)
and (b) respectively.

42

As a reference, the baseline score, i.e., the one obtained using all the features, was
calculated. It is depicted in red in Figure (2.20) and clearly shows the substantial
improvement obtained with feature selection.
In the end, considering the results obtained with the different methods, the subsets of
features selected by the Genetic Algorithm, both for PET and CT, were kept as the
candidate ones and used for the rest of the work.

2.4.3 Model Selection and Fine Tuning

Once the subsets of candidate predictors were identified, the following step was to fine-
tune the parameters of the Cox models and also to build the Random Survival Forest
models and the Decision Tree Classifiers as alternative models to test.

Cox Model Fine Tuning

The parameter we wanted to tune for the Cox models was the famous Ridge regular-
ization parameter, also known as l2 penalty. The procedure adopted to find the best
regularization was almost the same used previously with the LASSO regression. The
only difference was that, for LASSO, we searched for the parameter that maximized the
cross-validation average score, while in this case, we wanted to find the parameter maxi-
mizing the (2.31), i.e., the difference between the average score obtained in the repeated
5-fold Cross-Validation and its standard deviation.

1 # generate the penalization values

2 alphas = 10 ** np.linspace(-3, 0, 100)

3

4 # define the Cox model without penalty

5 cox = CoxPHSurvivalAnalysis ()

6

7 scores = [] #store the scores

8

9 # define the repeated Cross -Validation

10 cv = RepeatedKFold(n_splits=5, n_repeats=5, random_state =0)

11

12 for alpha in alphas:

13 # set the penalization parameter

14 cox.set_params(alpha = alpha)

15

16 # calculate and append the scores

17 score = (np.mean(cross_val_score(cox , X_scaled , Y, cv=cv)) -

18 np.std(cross_val_score(cox , X_scaled , Y, cv=cv)))

19 scores.append(score)

20

21 # select the best penalization parameter

22 best_alpha = alphas[np.argmax(scores)]

The same process, partially shown in the code above, was employed for both the CT and
the PET Cox models. The best values of the regularization parameters were found to
be 0.05 for the CT features and 0.06 for the PET features.

43

Random Survival Forest

As we saw, Random Forests have the intrinsic property of performing feature selection,
in fact, each tree is built using random subsets of the original set of features, then, the
predictions of the trees are combined to give the final prediction.
Therefore, the idea was to build two Random Survival Forests, one for PET and one
for CT, utilizing all the features in the dataset and compare its performance to the Cox
models built with the selected features. The advantage with this approach is that we
do not have to worry about finding the best predictors, because the model should be
able to handle that. On the other hand, however, it is extremely important to use the
right hyper-parameters, because the performance of a Random Forest deeply depends
on them.

To find the best parameters for the Random Survival Forests, a Grid-Search strategy
(Pedregosa et al., 2011) was used. Basically, in a grid search, we define the set of
parameters we want to tune for the model, and, for each of those parameters, we identify a
series of possible values. The grid-search algorithm, then, tests all the value combinations
for those parameters and selects the one that produces the best result. Once again, the
models are evaluated using a 5-fold cross-validation repeated five times, with the CI as
the metric, hence, the model with the best parameters is the one that maximizes the
score in the repeated cross-validation.
The parameters, with their associated values, tested in the grid-search were the following:

• n estimators = {100, 200, 500}: the number of trees in the forest

• min samples split = {8, 10, 12, 14}: the minimum number of samples required to
split a node

• max features = {5, 6, 7, 8, 9, 10}: the number of features to consider when looking
for the best split

A part of the code is shown below:

1 # define the set of parameters and associated values

2 param_grid = {’n_estimators ’ : [100, 200, 500],

3 ’min_samples_split ’ : [8, 10, 12, 14],

4 ’max_features ’ : [5, 6, 7, 8, 9, 10]}

5

6 # repeated 5-k Cross -Validation

7 cv = RepeatedKFold(n_splits=5, n_repeats=5, random_state =0)

8

9 # grid search

10 grid = GridSearchCV(rsf , param_grid=param_grid , cv=cv)

11 grid.fit(X_scaled , Y)

12

13 results = grid.cv_results_ # results

14 best = grid.best_params_ # best parameters

The process was repeated for both CT and PET features. Notice that the grid-search
process can be quite slow. In this case, for example, 72 models were evaluated (3×4×6),
and each of them had to be trained and tested 25 times.
For CT features, the best parameters combination found was: n estimators = 100,
min sample split = 12 and max features = 6. The respective cross-validation average

44

score, with the concordance index as metric, was 0.737, with a standard deviation of
0.107.
For PET, instead, slightly different parameters were found: n estimators = 200,
min sample split = 12 and max features = 5. The respective cross-validation average
score was 0.721, with a standard deviation of 0.138.
The cross-validation scores of the Random Survival Forest were promising, in fact, it
performed slightly worse than the Cox model built using the features selected by the
Genetic Algorithm, but better than all the Cox models built with the other subsets of
selected features.

Decision Tree Classifier

Since the data were also suitable for a classification study, two Decision Tree Classifiers
were built, one for PET and one for CT, using the features selected for the Cox model, to
evaluate if it was able to effectively discern among the patients who experienced a failure
and the ones who did not. The choice of a Decision Tree as a reference classifier was made
because it is easy to interpret and the actual tree can be plotted for visualization. As it
was for the Random Survival Forest, a grid-search was used to find the combination of
parameters that maximized the cross-validation repeated five times. This time, however,
because the algorithm is a classifier, the area under the ROC curve was used as the
metric in the cross-validation. With respect to Random Forests, Decision Trees have
fewer parameters to adjust, since we mostly want to control the depth of the tree. The
parameters, with their associated values, defined in the grid-search were the following:

• min samples split = {8, 10, 12, 14, 16, 18}

• class weight = {balanced, None}

The class weight parameter was introduced because with classifiers it is important to
pay attention to the balancing of the data. In fact, the presence of a dominant class in
the training set could cause the classifier to be biased toward that class. This is exactly
the case of this project, since 49 samples of the training set are associated with the class
0, and the remaining 19 with the class 1.
When the class weight is set to balanced, it automatically adjusts the weights of the
classes in the following way:

wi =
nsamples

nclasses × ni
(2.32)

where wi is the weight associated with class i, nsamples is the total number of samples in
the dataset, nclasses is the number of classes, and ni is the number of samples of the class
i. If class weight is None, no weight is applied.
The optimal configuration for both PET and CT features was found to be: min samples split
= 12 and class weight = None. It gave an average cross-validation score of 0.675 with a
standard deviation of 0.148 for CT features and an average score of 0.616 with a standard
deviation equal to 0.158 for PET features.

2.4.4 Data visualization and Model Evaluation

Various techniques were used to visualize the data and the results. First of all, t-SNE
was used to obtain a two-dimensional representation of the data. It was applied to the
features already selected by the genetic algorithm because it generally produces better

45

results with lower dimensional data. Various perplexity values were tried, but they had
no substantial impact on the generated maps, so, at the end, a perplexity of 20 was
chosen both for PET and CT features.
Data distributions were generated using the kernel density estimation provided by
the Seaborn library (Waskom et al., 2020). The kernel density estimation is very useful
to visualize the distributions of the variables for the two groups of patients, i.e., the
patients who survived and the ones who died. A snippet of the code used to plot the
distributions of the features selected by the genetic algorithm is shown next.

1 # generate a plot for each feature in the dataset

2 for i in range(len(dataArray [0])):

3

4 fig = plt.figure(figsize =(12, 9))

5 ax = fig.add_subplot (1, 1, 1)

6

7 # kernel density estimation plot for the two groups

8 ax = sns.kdeplot(dataOnes[:, i], color=’orange ’, label=’Death’,

9 shade=True)

10 ax = sns.kdeplot(dataZeros[:, i], color=’green’, label=’Survival ’,

11 shade=True)

12

13 ax.legend(fontsize =16)

14

15 # set the x-axis label according to the name of the feature plotted

16 ax.set_xlabel(Data.columns[i], fontsize =20)

17 ax.set_ylabel(’Probability Density ’, fontsize =20)

18 ax.set_title(’Data Distribution (Standardized)’, fontsize =22)

19 ax.tick_params(axis=’both’, labelsize=’x-large’)

20

21 # save the plot with the name of the feature and the distinction

PET/CT

22 plt.savefig(’{} _Distribution_ {}’.format(Data.columns[i], WHAT), dpi

=300)

Moreover, the lifelines library was employed to plot the adjusted survival curves
obtained with the Cox model, both for PET and CT features. Note that all the plots
and adjusted survival curves have been produced using the training data only.

Finally, the Cox models and the Random Survival forests were evaluated on the
test sets (PET and CT) that were held out at the beginning of the study, using the
concordance index as metric. The Decision Tree Classifier, instead, was evaluated using
the area under the ROC curve.
After the testing, the recurrence outcome was added to the models as an additional
feature to determine if it could improve the models’ performance.

46

Chapter 3

Results

3.1 Visualization

Initially, we had two feature sets, PET and CT, with 105 features each. Using the
Genetic Algorithm, it was possible to reduce the number of features to 9, for both CT
and PET features. The plots produced with the kernel density estimation showed a
clear difference in the distribution of most of the selected features for the two groups
of patients. Below, three distribution plots of CT features and three of PET features
are displayed. The green distributions are associated with the patients who did not
experience a failure during the study time, while the orange ones are associated with the
patients who did.

Figure 3.1: Distribution plot of the Energy CT feature for the two groups of patients.

47

(a)

(b)

Figure 3.2: Distribution plots of the SmallDependenceHighGrayLevelEmphasis (a) and
Imc1 (b) CT features for the two groups of patients.

48

(a)

(b)

Figure 3.3: Distribution plots of the Maximum2DDiameterSlice (a) and SurfaceVol-
umeRatio (b) PET features for the two groups of patients.

49

Figure 3.4: Distribution plot of the Energy PET feature for the two groups of patients.

For what concerns the t-SNE maps, instead, the algorithm was unable to effectively
divide the two groups of patients. Various perplexity values have been used, but they
gave similar results. In particular, no significant structure or cluster arises from the
plots produced by t-SNE. Also, no noticeable difference can be found between the image
produced with the CT features and the one produced with the PET features.
In my opinion, the poor results of the t-SNE mapping can be attributed to the combi-
nation of two main factors. The first one is the noise. CT and PET acquisitions are
likely to be rather noisy, and t-SNE is particularly affected by the noise in the data. In
fact, noise can act as a sort of bridge connecting two parts of the manifold that oth-
erwise would be well separated. The second reason is the censoring of the data. The
probability of experiencing an event, and thus of belonging to one of the two classes,
indeed, strongly depends on the time of the study. In other words, two patients with
similar feature values may belong to two different classes just because one of them has
not experienced the event yet.
That said, however, the result of the t-SNE mapping does not mean that there are no
relations between the features and the probability of the event, it simply suggests that
the data are not suitable for a two-dimensional representation.
The t-SNE plots obtained for CT and PET features are shown next. The green points
are the subjects who did not experience a failure, while the orange points are the subjects
who did.

50

(a)

(b)

Figure 3.5: Two-dimensional representations of the data, obtained applying the t-SNE
algorithm to the CT (a) and PET (b) selected features. Note that all the features had
been previously standardized.

51

3.2 Models

3.2.1 Cox Model

First of all, we present the results of the fits of the Cox models to the training data,
because they give us useful information about the features found using the genetic algo-
rithm. Starting from the CT features, we refer to Table (3.1).

coef HR se(coef) coef lower 95% coef upper 95% z p

Covariate

SmallDepHighGLEmph 2.579 13.178 0.781 1.048 4.109 3.303 0.001

LargeDepLowGLEmph -1.069 0.343 0.546 -2.139 0.001 -1.957 0.050

JointAverage -4.234 0.014 1.240 -6.665 -1.803 -3.414 0.001

DifferenceEntropy -1.124 0.325 0.527 -2.157 -0.091 -2.132 0.033

Imc2 -1.258 0.284 0.911 -3.044 0.529 -1.380 0.168

Imc1 -2.679 0.069 1.339 -5.304 -0.054 -2.000 0.045

Skewness -1.458 0.233 0.603 -2.640 -0.276 -2.417 0.016

Energy 1.054 2.868 0.295 0.476 1.632 3.573 0.000

Contrast1 -2.093 0.123 1.122 -4.292 0.106 -1.865 0.062

Table 3.1: Results of the Cox model fitted to the training data using the subset of
candidate CT features. Note that the names of the first two features have been shortened
for a better visualization.

By looking at the last column of the table, we can see that most of the explanatory
variables are highly significant, in fact, only three of them have an associated p-value
greater than 0.05. The other interesting quantities obtained from the fit are the hazard
ratios (HR), which give us the point estimates of the effects of the variables. However, it
is also important to consider the confidence intervals of the hazard ratios. We can obtain
the confidence intervals for the hazard ratios by exponentiating the two limits obtained
for the confidence intervals for the regression coefficients. For instance, the hazard ratio
of the SmallDependenceHighGrayLevelEmphasis is roughly 13.2, but its 95% confidence
interval is given by the range of values 2.85-60.9, which is very broad. This means that
the point estimate of the effect of that variable is somewhat unreliable.

Similar considerations can be made for the results obtained by fitting the Cox model
to the training data using the PET features. In this case, however, by looking at the
p-values in Table (3.2), we can see that only four of the candidate PET features can be
considered highly significant. It is also interesting to notice that the Energy feature is
present in both the CT and PET subsets of selected features, and the coefficient asso-
ciated with it in the two models is almost identical. Moreover, the Energy feature can
be considered highly significant both for the PET and the CT models. The similarity
between the CT and PET Energy feature, indeed, can also be seen in the distribution
plots (3.1) and (3.4).
An important consideration has to be made for two of the selected PET features:
ZoneEntropy and Correlation. They have a very low variance, and this could mean
that they have been selected because the model uses them to overfit the data, achieving
a good score. As a consequence, it is possible that these two variables will not really
have predictive power on the test data.

52

coef HR se(coef) coef lower 95% coef upper 95% z p

Covariate

Max2DDiamSlice 0.884 2.421 0.621 -0.333 2.101 1.424 0.155

SurfaceVolumeRatio 1.270 3.562 0.480 0.329 2.212 2.645 0.008

Max2DDiamRow 1.052 2.864 0.598 -0.119 2.223 1.761 0.078

Correlation -2.408 0.090 1.238 -4.835 0.019 -1.945 0.052

Energy 1.046 2.846 0.474 0.118 1.974 2.208 0.027

Maximum 1.560 4.758 0.861 -0.128 3.248 1.811 0.070

Minimum 1.815 6.140 0.832 0.185 3.445 2.182 0.029

10Percentile -3.731 0.024 1.360 -6.397 -1.065 -2.743 0.006

ZoneEntropy -3.393 0.034 1.812 -6.945 0.158 -1.873 0.061

Table 3.2: Results of the Cox model fitted to the training data using the subset of
candidate PET features. Note that the names of the first and third features have been
shortened for a better visualization.

As we said, from a fitted Cox model we can obtain the survival curves adjusted for
the explanatory variables. Below, four plots of adjusted survival curves are shown, two
for the CT model and two for the PET model. They are generated by varying the value
of a single feature while the others are kept constant.

Figure 3.6: Effect of the variation of the Energy CT feature on the predicted survival.

53

(a)

(b)

Figure 3.7: Effect of the variation of the Skewness CT feature (a) and the SurfaceVol-
umeRatio PET feature (b) on the predicted survival.

54

Figure 3.8: Effect of the variation of the Energy PET feature on the predicted survival.

Here, the baseline curve is equal to the predicted curve generated using the mean value
of each feature.

Cox Models Evaluation

Finally, to assess the quality of the Cox models, we evaluated them on the test sets using
the concordance index as the metric. Recall that each of the two test sets (PET and
CT) contains 17 samples, with 5 failures. The results are summarized in Table (3.3).

n. params l2 penalty concordant pairs discordant pairs CI

Model

Cox CT 9 0.05 41 17 0.707

Cox PET 9 0.06 17 41 0.293

Cox CT (base) 105 0.05 36 22 0.621

Cox PET (base) 105 0.06 33 25 0.569

Table 3.3: Results of the CT and PET Cox models evaluated on the test sets.

As we can see in the table above, the CT Cox model achieves a very good result, correctly
ordering 41 of the 58 possible pairs of subjects, reaching a 0.707 concordance index score.

55

This is perfectly in agreement with the cross-validation score obtained by the model,
which was 0.798± 0.105 (Figure (2.20a)).
The PET Cox model result, instead, is exactly the opposite. It correctly orders only 17
pairs of subjects, achieving a concordance index score of 0.293. This is somewhat strange
since it shows that the PET Cox model is anti-concordant, meaning that it predicts the
risks at the inverse of how it should.
Referring to (Harrell et al., 1982), a concordance index near to 0, in principle, could also
be considered good, because we could flip the risks predicted by the model to achieve
a good concordance. However, I deem that, in this case, it wouldn’t be legit to flip the
model predictions. The reason is that the best features were explicitly picked in order
to maximize the concordance index score obtained in a cross-validation, and, in fact, the
PET Cox model achieved a cross-validation score of 0.801± 0.127 (Figure 2.20b). This
means that by flipping the predictions, we would be using information deriving from the
test data; information that we shouldn’t have.
As a reference, in Table (3.3) are also showed the baseline results of the CT and PET
Cox models, trained and tested using all the available features. The baseline PET model
performs better than the one built using the selected features, but its concordance index
score is still too low to be considered significant. The baseline CT model, instead,
performs fairly well, but its score is lower than the one obtained by the CT Cox model
built with the selected features.

3.2.2 Random Survival Forest

The results of the Random Survival Forest CT and PET models, evaluated on the re-
spective test sets, are showed in Table (3.4).

n. estimators min samples split max features concordant pairs discordant pairs CI

Model

RSF CT 100 12 6 16 42 0.276

RSF PET 200 12 5 30 28 0.517

Table 3.4: Results of the CT and PET Random Survival Forest models evaluated on the
test sets.

From the previous table, it is clear that none of the two Random Survival Forest models
is able to correctly predict the risk of the patients. The CT RSF model correctly orders
only 17 of the 58 possible pairs of subjects, achieving a concordance index score of 0.276,
substantially worse than the score obtained by the CT Cox model. This is also in con-
trast with the cross-validation score obtained by the CT RSF, which was 0.737± 0.107
The PET RSF model, instead, correctly orders 30 pairs of subjects, reaching a score of
0.517, similar to the score obtained by the baseline PET Cox model. This result can be
considered compatible with the cross-validation score obtained by the PET RSF, which
was 0.721± 0.138.

3.2.3 Decision Tree Classifier

First, we start by showing the graph of the Decision Tree Classifier built using the
selected PET features. In the graph, the nodes of the tree are substituted with the
stacked histograms of the class occurrences.

56

Figure 3.9: PET Decision Tree Classifier graph. The Survival class is depicted in yellow,
while the Death class in green. Note that to generate this graph, the tree was fitted to
the training data only.

57

From Figure (3.9) we can see that the tree uses only 3 of the 9 available features to split
the data. Moreover, it is clear that the data are not easily separable, in fact, none of the
leaf nodes of the Death class is pure. When evaluated on the test data, the PET Decision
Tree achieves a ROC AUC score of 0.275, meaning that it is not able to correctly classify
the samples.
For the CT Decision Tree the result is almost the same; it reaches a ROC AUC score of
0.292 on the test set.

3.2.4 Adding Recurrence

Recurrence should be a good predictor for the risk of death of a patient, therefore, we
used it as an additional feature in the models. The results obtained are summarized in
Table (3.5).

concordant pairs discordant pairs CI

Model

Cox CT 45 13 0.776

Cox PET 36 22 0.621

RSF CT 26 32 0.448

RSF PET 30 28 0.517

Table 3.5: Results of the CT and PET Cox and RSF models evaluated on the test sets
with recurrence added as a feature.

As expected, the performance of all the models improved, except for the PET RSF
model, which performed the same. The greatest improvement is achieved by the PET
Cox model. The CT Cox model obtains an exceptionally good result, confirming to be
the best of the models. Note that all the hyper-parameters of the models remained the
same.
Regarding the Decision Tree Classifiers, adding the recurrence as a feature drastically
changes the shape of the produced trees, in particular for the PET one, which is shown
in Figure (3.10). As we can see, recurrence is used as the first feature for the splitting,
meaning that it is very important to separate the two groups of subjects. Moreover, the
tree now has more pure leaf nodes and uses more features to split the data.
The ROC AUC score achieved by the PET Decision Tree is now 0.612, way higher
than the score obtained without the recurrence feature, but still far from being a good
classifier. The CT Decision Tree, instead, has no improvement when recurrence is added
as a feature; it obtains a ROC AUC score of 0.283, slightly lower than its score without
recurrence, however, the difference is negligible.

58

Figure 3.10: PET Decision Tree Classifier graph, with recurrence added as a feature.
Note that the recurrence is a real number because the features were standardized.

59

3.3 Discussion of the Results

Starting from the results obtained using the radiomic features only, we saw that the
best of the models built was the CT Cox model, which achieved a very solid score
when evaluated on the test set. The PET Cox model, instead, was not capable to
correctly predict the risks of the patients. The fact that, in general, CT features revealed
to be better predictors can be explained considering that CT images have a greater
resolution than the PET ones, so they can naturally provide more information. This is
true especially for small-size tumors.
The fact that the PET Cox model performed very well in cross-validation and poorly
when evaluated on the test set is a clear sign of overfitting. The 9 PET features found
by the genetic algorithm, indeed, allowed the Cox model to fit the training data almost
flawlessly, but they revealed to be bad predictors when applied to unseen data. This
shows that, even if two steps of feature selection have been performed with the genetic
algorithm, first using AIC and successively cross-validation, the risk of overfitting is still
concrete when the dataset has few samples and many features.

Regarding the Random Survival Forest models, we showed that they both were not
able to make correct predictions on the test set. This is probably due to the fact that,
even if tree ensembles are capable of performing feature selection internally, the number
of features was too high, especially considering the small number of subjects in the
dataset. In particular, it is reasonable to believe that many of the available features
could have no predicting power at all, hence, adding them to a model would only make
its performance worse.
The Decision Tree models clearly showed that classifiers are not suited for a survival
analysis, since they cannot take into account the censoring of the data. However, the
tree graphs can be useful to visualize the relations between the features and the groups
of patients. For instance, the fact that the SurfaceVolumeRatio feature is used to split
both the shallower child nodes (Figure ((3.10)) indicates that it could be an important
predictor.

Using recurrence as an additional feature improved the performance of almost all the
models tested. The models that benefit most from the recurrence addition were the CT
and PET Cox models. This is easily explainable by the fact that both the Cox models
were built using small subsets of selected features, so the addition of a strong predictor
actually resulted in a great performance improvement.
Conversely, adding recurrence to the Random Survival Forest model resulted in an almost
negligible difference, because the sets of features used for those models were way larger,
so the recurrence predictor had a minor effect.
The important result arising from the comparison of the Cox models built with the
selected features and the Random Survival Forest models built with all the features is
that a good process of feature selection can allow a simple model to perform better than
a more powerful and sophisticated one.
A great advantage of using a simpler model with a subset of selected features is the
interpretability of the result, which is of primary importance in studies like the one
conducted in this work. From the Cox model, in fact, we can obtain information about
the relations between the features and the predicted outcomes. For example, according
to the CT Cox model, a higher value of the Energy feature corresponds to an increasing of
the hazard. Likewise, the model fitted using recurrence as a feature reveals that patients
who experienced recurrence have a higher death probability, as we could expect. Similar

60

information can be obtained only using white box models.
In conclusion, of all the models tested, the only one that showed clear predictive

properties was the CT Cox model, both with and without the addition of the recurrence
feature. In particular, the best CT Cox model, the one with recurrence, achieved a
concordance index score of 0.776, which is exceptionally high, and clearly demonstrates
the robustness of the model. The result also suggests that the CT radiomic features may
be more descriptive than the PET ones, however, this could also depend on the feature
selection process and not on the features themselves.

61

62

Chapter 4

Conclusions

The achieved results show that it is possible to develop machine learning models to pre-
dict the risk of death in cervical cancer patients using radiomic features as predictors.
The performance of the CT Cox model, indeed, was good both for the training data
and for the test data, showing that the model is reliable. This is true both with and
without the recurrence added as a feature. In particular, the CT Cox model trained
on the selected features was clearly superior to all the other models tested. This result
indicates that the feature selection process is a crucial step of the analysis, especially
when few data are available, as it usually happens in radiomics.
Concerning the feature selection, we showed that the best of the feature selection tech-
niques employed was the Genetic Algorithm. Genetic Algorithms are rarely used in
radiomics, however, they have several advantages with respect to other common meth-
ods. First, Genetic Algorithms can be used with any type of model and can optimize any
kind of function, so they are much more versatile than methods like the LASSO regres-
sion. Moreover, it is possible to tune a wide range of parameters, allowing a profound
control of the feature selection process.
The main weakness of the Genetic Algorithm feature selection process implemented in
this work is that it does not provide any measure of the feature importance.

As future work, a process to measure the feature importance could be implemented
in the algorithm. This could be accomplished in different ways. For example, consider
that after several generations, usually, the mean fitness value of the population is close
to the maximum fitness value achieved by the best individual, meaning that most of
the individuals in the population are good candidate solutions. Consequently, it could
be possible to count how many times a feature has been selected by the individuals of
the population and use the result as a metric of the feature importance. However, this
should be investigated further because it is possible that, at the end of the evolution
process, many of the individuals are almost identical, so they would not provide reliable
information.
Another way to measure the feature importance could be to run the Genetic Algorithm
several times with different initialization and count how many times each feature is
selected by the best individual in the population; similarly to the procedure used to em-
pirically calculate the p-value. This should provide a more trustworthy measure because
Genetic Algorithms are stochastic in nature, so it is unlikely to obtain the same solution
more than once, especially if the initial number of features is high. The main drawback of
a similar process is the computational burden. In fact, depending on the method used to
calculate the fitness function, the number of individuals, and the number of generations,

63

a single evolution process, i.e., a single execution of the Genetic Algorithm, could last
hours. With the proposed method, to have a significant measure of the feature impor-
tance, the algorithm should be executed tens of times, hence the entire process would be
very time-consuming, especially if compared to a simple LASSO regression.

As further research, the algorithms and procedures developed to predict the survival
probability could be easily adapted to predict the probability of recurrence. Recurrence
outcome has a higher number of positive events, and this can benefit the learning process
of survival models as the Cox model. The construction of the Cox partial likelihood,
indeed, is made using the positive events only. However, before using recurrence as the
outcome, it has to be discussed how to include subjects that experienced recurrence more
than once.
Moreover, the recurrence could be used as a time-varying feature. We said that one of the
assumptions of the Cox proportional hazard model is that the features do not depend
on time, however, it is possible to extend the Cox model to take into account time
dependencies. In particular, if tr is the time at which the patient experiences recurrence,
we can consider the patient to be in the state 0, i.e., no recurrence, from the initial time
of the study to tr, then, from time tr to the final time of the study, the patient would
be in state 1. A Cox model built in this way is called multi-state Cox model. Again, the
implementation in the case of patients experiencing recurrence more than once should
be further discussed.

The dataset used in this work also contains information about the tumor staging and
the tumor type. As a future study, thus, it would be possible to investigate the relation
between radiomic features and the aforementioned tumor characteristics. For example,
machine learning models could be built to classify tumors into early-stage and advanced-
stage. A great advantage of a classification study would be the possibility to use all the
images acquired from a patient. For the survival analysis, in fact, only the first image of
a patient has been employed, being it the image corresponding to the initial time of the
study. For classification purposes, instead, also the follow-up images could be included
since the only goal would be to predict the tumor type or staging. The resulting dataset
would have more than twice the number of samples of the one used for the survival
analysis. This would make the feature selection process more manageable, reducing the
risk of overfitting.

Finally, the entire analysis could also be performed without dividing CT and PET
features, i.e., selecting the best predictors out of the dataset containing both CT and
PET features and ultimately developing a model with the selected features.
Also, clinical features could be added to the ones already selected in this work, to inves-
tigate if they are capable of improving the models’ performance.

64

65

66

Bibliography

Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho,
S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., et al. (2014). De-
coding tumour phenotype by noninvasive imaging using a quantitative radiomics
approach. Nature communications, 5 (1), 1–9.

Akaike, H. (1998). Information theory and an extension of the maximum likelihood prin-
ciple. Selected papers of hirotugu akaike (pp. 199–213). Springer.

Blickle, T., & Thiele, L. (1996). A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation, 4 (4), 361–394.

Bou-Hamad, I., Larocque, D., Ben-Ameur, H., et al. (2011). A review of survival trees.
Statistics surveys, 5, 44–71.

Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5–32.
Coroller, T. P., Grossmann, P., Hou, Y., Velazquez, E. R., Leijenaar, R. T., Hermann, G.,

Lambin, P., Haibe-Kains, B., Mak, R. H., & Aerts, H. J. (2015). Ct-based radiomic
signature predicts distant metastasis in lung adenocarcinoma. Radiotherapy and
Oncology, 114 (3), 345–350.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society: Series B (Methodological), 34 (2), 187–202.

Davidson-Pilon, C., Kalderstam, J., Jacobson, N., Reed, S., Kuhn, B., Zivich, P., Williamson,
M., AbdealiJK, Datta, D., Fiore-Gartland, A., Parij, A., WIlson, D., Gabriel,
Moneda, L., Moncada-Torres, A., Stark, K., Gadgil, H., Jona, Singaravelan, K.,
. . . Golland, D. (2020). Camdavidsonpilon/lifelines: V0.25.7 (Version v0.25.7).
Zenodo. https://doi.org/10.5281/zenodo.4313838

Fang, Y., & li, J. (2010). A review of tournament selection in genetic programming,
181–192. https://doi.org/10.1007/978-3-642-16493-4 19

Fonti, V., & Belitser, E. (2017). Feature selection using lasso. VU Amsterdam Research
Paper in Business Analytics, 30, 1–25.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Re-
search, 13, 2171–2175.

Galavis, P. E., Hollensen, C., Jallow, N., Paliwal, B., & Jeraj, R. (2010). Variability
of textural features in fdg pet images due to different acquisition modes and
reconstruction parameters. Acta Oncologica, 49 (7), 1012–1016. https://doi.org/
10.3109/0284186X.2010.498437

Galdi, P., & Tagliaferri, R. (2018). Data mining: Accuracy and error measures for clas-
sification and prediction. https://doi.org/10.1016/B978-0-12-809633-8.20474-3

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow,
2nd edition. O’Reilly Media, Incorporated. https://books.google.it/books?id=
O2VJzQEACAAJ

67

https://doi.org/10.5281/zenodo.4313838
https://doi.org/10.1007/978-3-642-16493-4_19
https://doi.org/10.3109/0284186X.2010.498437
https://doi.org/10.3109/0284186X.2010.498437
https://doi.org/10.1016/B978-0-12-809633-8.20474-3
https://books.google.it/books?id=O2VJzQEACAAJ
https://books.google.it/books?id=O2VJzQEACAAJ

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in
genetic algorithms. Foundations of genetic algorithms (pp. 69–93). Elsevier.

Gutman, D. A., Dunn, W. D., Grossmann, P., Cooper, L. A., Holder, C. A., Ligon, K. L.,
Alexander, B. M., & Aerts, H. J. (2015). Somatic mutations associated with mri-
derived volumetric features in glioblastoma. Neuroradiology, 57 (12), 1227–1237.

Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati, R. A. (1982). Evaluating
the yield of medical tests. Jama, 247 (18), 2543–2546.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
Data mining, inference, and prediction. Springer Science & Business Media.

Hatt, M., Majdoub, M., Vallières, M., Tixier, F., Le Rest, C. C., Groheux, D., Hindié,
E., Martineau, A., Pradier, O., Hustinx, R., Perdrisot, R., Guillevin, R., El Naqa,
I., & Visvikis, D. (2015). 18f-fdg pet uptake characterization through texture
analysis: Investigating the complementary nature of heterogeneity and functional
tumor volume in a multi–cancer site patient cohort. Journal of Nuclear Medicine,
56 (1), 38–44. https://doi.org/10.2967/jnumed.114.144055

Horowitz, J. L. (2001). The bootstrap. Handbook of econometrics (pp. 3159–3228). El-
sevier.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., Lauer, M. S., et al. (2008). Random
survival forests. The annals of applied statistics, 2 (3), 841–860.

Jacob, H., Dybvik, J. A., Ytre-Hauge, S., Fasmer, K. E., Hoivik, E. A., Trovik, J.,
Krakstad, C., & Haldorsen, I. S. (2021). An mri-based radiomic prognostic in-
dex predicts poor outcome and specific genetic alterations in endometrial cancer.
Journal of Clinical Medicine, 10 (3). https://doi.org/10.3390/jcm10030538

Kim, J.-H. (2009). Estimating classification error rate: Repeated cross-validation, re-
peated hold-out and bootstrap. Computational statistics & data analysis, 53 (11),
3735–3745.

King, A., Chow, K., Yu, K., Mo, F., Yeung, D., Yuan, J., Bhatia, K., Vlantis, A., & Ahuja,
A. (2013). Head and neck squamous cell carcinoma: Diagnostic performance of
diffusion-weighted mr imaging for the prediction of treatment response. Radiology,
266 (2), 531–538. https://doi.org/10.1148/radiol.12120167

Kleinbaum, D. G., & Klein, M. (2010). Survival analysis. Springer.
Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy estima-

tion and model selection. Ijcai, 14 (2), 1137–1145.
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K.,

Aerts, H. J., Dekker, A., Fenstermacher, D., et al. (2012). Radiomics: The process
and the challenges. Magnetic resonance imaging, 30 (9), 1234–1248.

Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., Van Timmeren,
J., Sanduleanu, S., Larue, R. T., Even, A. J., Jochems, A., et al. (2017). Ra-
diomics: The bridge between medical imaging and personalized medicine. Nature
reviews Clinical oncology, 14 (12), 749–762.

LeBlanc, M., & Crowley, J. (1993). Survival trees by goodness of split. Journal of the
American Statistical Association, 88 (422), 457–467. http://www.jstor.org/stable/
2290325

Lin, D. (2008). On the breslow estimator. Lifetime data analysis, 13, 471–80. https :
//doi.org/10.1007/s10985-007-9048-y

Longato, E., Vettoretti, M., & Di Camillo, B. (2020). A practical perspective on the
concordance index for the evaluation and selection of prognostic time-to-event
models. Journal of Biomedical Informatics, 103496.

68

https://doi.org/10.2967/jnumed.114.144055
https://doi.org/10.3390/jcm10030538
https://doi.org/10.1148/radiol.12120167
http://www.jstor.org/stable/2290325
http://www.jstor.org/stable/2290325
https://doi.org/10.1007/s10985-007-9048-y
https://doi.org/10.1007/s10985-007-9048-y

Lucia, F., Visvikis, D., Desseroit, M.-C., Miranda, O., Malhaire, J.-P., Robin, P., Pradier,
O., Hatt, M., & Schick, U. (2018). Prediction of outcome using pretreatment 18f-
fdg pet/ct and mri radiomics in locally advanced cervical cancer treated with
chemoradiotherapy. European Journal of Nuclear Medicine and Molecular Imag-
ing, 45. https://doi.org/10.1007/s00259-017-3898-7

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research, 9 (Nov), 2579–2605.

Mattonen, S. A., Palma, D. A., Johnson, C., Louie, A. V., Landis, M., Rodrigues, G.,
Chan, I., Etemad-Rezai, R., Yeung, T. P., Senan, S., et al. (2016). Detection
of local cancer recurrence after stereotactic ablative radiation therapy for lung
cancer: Physician performance versus radiomic assessment. International Journal
of Radiation Oncology* Biology* Physics, 94 (5), 1121–1128.

Mu, W., Chen, Z., Liang, Y., Shen, W., Yang, F., Dai, R., Wu, N., & Tian, J. (2015).
Staging of cervical cancer based on tumor heterogeneity characterized by texture
features on18f-FDG PET images. Physics in Medicine and Biology, 60 (13), 5123–
5139. https://doi.org/10.1088/0031-9155/60/13/5123

Nie, K., Chen, J.-H., Hon, J. Y., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative
analysis of lesion morphology and texture features for diagnostic prediction in
breast mri. Academic radiology, 15 (12), 1513–1525.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pfaehler, E., Beukinga, R., Jong, J., Slart, R., Slump, C., Dierckx, R., & Boellaard, R.
(2018). Repeatability of 18 f-fdg pet radiomic features: A phantom study to ex-
plore sensitivity to image reconstruction settings, noise, and delineation method.
Medical Physics, 46. https://doi.org/10.1002/mp.13322

Pölsterl, S. (2020). Scikit-survival: A library for time-to-event analysis built on top of
scikit-learn. Journal of Machine Learning Research, 21 (212), 1–6. http://jmlr.
org/papers/v21/20-729.html

Rao, R. B., Fung, G., & Rosales, R. (2008). On the dangers of cross-validation. an
experimental evaluation. Proceedings of the 2008 SIAM international conference
on data mining, 588–596.

Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P., & Raykar, V. C. (2008).
On ranking in survival analysis: Bounds on the concordance index. Advances in
neural information processing systems, 1209–1216.

Team, P. D. (2020). Pandas-dev/pandas: Pandas 1.2.0 (Version v1.2.0). Zenodo. https:
//doi.org/10.5281/zenodo.4394318

Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., & Wei, L.-J. (2011). On the c-
statistics for evaluating overall adequacy of risk prediction procedures with cen-
sored survival data. Statistics in medicine, 30 (10), 1105–1117.

Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V.,
Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. (2017). Compu-
tational radiomics system to decode the radiographic phenotype. Cancer research,
77 (21), e104–e107.

Waskom, M., Gelbart, M., Botvinnik, O., Ostblom, J., Hobson, P., Lukauskas, S., Gem-
perline, D. C., Augspurger, T., Halchenko, Y., Warmenhoven, J., Cole, J. B., de
Ruiter, J., Vanderplas, J., Hoyer, S., Pye, C., Miles, A., Swain, C., Meyer, K.,

69

https://doi.org/10.1007/s00259-017-3898-7
https://doi.org/10.1088/0031-9155/60/13/5123
https://doi.org/10.1002/mp.13322
http://jmlr.org/papers/v21/20-729.html
http://jmlr.org/papers/v21/20-729.html
https://doi.org/10.5281/zenodo.4394318
https://doi.org/10.5281/zenodo.4394318

Martin, M., . . . Brunner, T. (2020). Mwaskom/seaborn: V0.11.1 (december 2020)
(Version v0.11.1). Zenodo. https://doi.org/10.5281/zenodo.4379347

Wattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-sne effectively. Distill.
https://doi.org/10.23915/distill.00002

Wirsansky, E. (2020). Hands-on genetic algorithms with python - applying genetic algo-
rithms to solve real-world deep learning and artificial intelligence problems. Packt
Publishing.

Yan, J., Chu-Shern, J. L., Loi, H. Y., Khor, L. K., Sinha, A. K., Quek, S. T., Tham,
I. W., & Townsend, D. (2015). Impact of image reconstruction settings on texture
features in 18f-fdg pet. Journal of Nuclear Medicine, 56 (11), 1667–1673. https:
//doi.org/10.2967/jnumed.115.156927

Yip, S. S., & Aerts, H. J. (2016). Applications and limitations of radiomics. Physics in
Medicine & Biology, 61 (13), R150.

70

https://doi.org/10.5281/zenodo.4379347
https://doi.org/10.23915/distill.00002
https://doi.org/10.2967/jnumed.115.156927
https://doi.org/10.2967/jnumed.115.156927

	Introduction
	Radiomics
	Applications and Challenges of Radiomics

	Purpose of the Work

	Materials and Methods
	Dimensionality Reduction
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	Correlation
	LASSO Regression
	Genetic Algorithms

	Models
	Decision Trees
	Random Forests
	Cox Proportional Hazards Model

	Model Evaluation
	Precision and Recall
	The ROC Curve
	Concordance Index
	Akaike Information Criterion (AIC)
	Cross-Validation

	Methods
	Data Acquisition and Preliminary Analysis
	Feature Selection
	Model Selection and Fine Tuning
	Data visualization and Model Evaluation

	Results
	Visualization
	Models
	Cox Model
	Random Survival Forest
	Decision Tree Classifier
	Adding Recurrence

	Discussion of the Results

	Conclusions
	Bibliography

