
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Engineering Angle-of-Arrival-based
Indoor Localization Systems

via Simulation

Tesi di laurea in
Sistemi Autonomi

Relatore
Prof. Andrea Omicini

Correlatore
Dott. Giovanni Ciatto
Dott. Salvador Santonja

Candidato
Shapour Nemati

Quarta Sessione di Laurea

Anno Accademico 2019-2020

ii

Abstract

Indoor localization is a hot research topic yet to find a shared agreement on the key
methods and technologies enabling a satisfactory solution to the problem. Among
the plethora of techniques currently being studied, “Angle of Arrival” (AoA) has
recently gained momentum as the Bluetooth Special Interest Group introduced it
in the new Bluetooth 5.1 standard as the release’s major enhancement.

In Bluetooth-based AoA, a set of locator nodes are able to compute the angle
between themselves and a to-be-located device sending an ad-hoc crafted Bluetooth
packet. Given the angles and the positions of the locators, a data fusion algorithm
can compute the approximate relative position of the observed device.

In the right conditions, AoA can reach sub-meter accuracy. However only the
lowest levels of the stack are already provided, and the implementation of the data
fusion layer is left to the developers. Correctly engineering this layer is not an
easy task, as it would require a complex tuning process through trial and error,
involving cumbersome real world tests.

The goal of this thesis is to build a tool aimed at supporting the engineering of
AoA-based localization applications, both in-silico and in practice. Along this line,
we develop an actor-based software framework that (i) is agnostic with respect to
the specific technology used to realize AoA, and (ii) can work with both simulated
and real AoA-based sensors.

The proposed framework is developed in the context of the European project
“PRYSTINE”, and aims at achieving a full-stack localization system based on
Bluetooth-based AoA as the physical medium, and particle filtering as the data-
fusion algorithm. The proposed framework, however, is general enough to support
any other technology capable of calculating AoA, and any other filtering algorithm
for data fusion.

iii

iv

A mio padre,
che scherzando riesce a prendere tutto con filosofia

v

vi

Acknowledgements

Throughout my master thesis, I have received much support from family, friends,
and University staff.

First, thanks to everyone who helped me prepare my thesis, starting from the
researchers of ITI and UPV for trusting me in taking important decisions for their
projects. Thanks to my supervisor Andrea Omicini, for granting me the freedom
over the choice of the thesis’ matter. Thanks to my co-supervisor Giovanni Ciatto,
for always shedding light on the thesis, leading me to the correct path.

Thanks to my friends, for being there in all moments of life, important and
ordinary alike, both when we were distant and when we were close. Thanks to my
family for always supporting me, respecting my time and choices, and cheering my
achievements.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 State of the Art 5
2.1 Indoor Localization . 5

2.1.1 Trilateration . 6
2.1.2 Triangulation . 7

2.2 Data Fusion . 8
2.2.1 Hidden Markov Models . 11
2.2.2 Kalman Filters . 11
2.2.3 Dynamic Bayesian Networks 12

2.3 Bluetooth 5.1 localization . 13
2.3.1 Angle of Arrival and Angle of Departure 13
2.3.2 Technical details . 15
2.3.3 Performance . 16

3 Design 17
3.1 Requirements Analysis . 17
3.2 Problem Analysis . 18

3.2.1 AoA and data fusion . 18
3.2.2 Heterogeneous distributed system 20

3.3 Architecture . 20
3.3.1 Structure . 21
3.3.2 Interaction . 21
3.3.3 Behavior . 23

4 Implementation 27
4.1 Actor System . 28
4.2 Particle Filtering . 31
4.3 Simulation . 33

ix

x CONTENTS

4.4 Situated System . 34

5 Validation 37
5.1 Experimental Results . 37

5.1.1 Simulation . 38
5.1.2 Physical Experiments . 42

5.2 Code Quality . 45
5.2.1 Static Analysis . 45
5.2.2 Testing . 46

6 Conclusions 47
6.1 Future works . 48

List of Figures

2.1 A simple example of trilateration, where pointA is the ObservedItem,
while points B, C, and D are Locators. 8

2.2 Angle of arrival method, with a multi-antenna array on the receiver.
Source: [10] . 14

2.3 Angle of departure method, with a multi-antenna array on the trans-
mitter. Source: [10] . 14

2.4 How trigonometry is used to compute angle of arrival. Source: [10] 15

3.1 A component diagram showing the overall system structure and its
main actors. 22

3.2 The sequence diagram describing the overall interaction flow. 24

3.3 The state diagram, divided in three lanes. The leftmost lane con-
tains the ObservedItem behavior, the central one describes the
Locator, and the rightmost is for the LocalizationService. . . 24

4.1 The sequence diagram describing the overall message exchange re-
volving around the “step” and “stop” messages for coordination. . . 29

4.2 The state diagram of the ObservedItem. “LLD” is short for low
level data. 30

4.3 The state diagram of the Locator. 31

4.4 The state diagram of the LocalizationService. 32

4.5 An architectural overview of the situated system. The “transmitter”
is the ObservedItem, the “receivers” are the Locators. 35

5.1 Visual representation of the particle filtering applied to simulated
data where the ObservedItem moves at constant speed. 39

5.2 Visual representation of the particle filtering applied to simulated
data where the ObservedItem moves at constant speed and then
stops. 39

xi

xii LIST OF FIGURES

5.3 Average distances for different parameters values, with the Ob-
servedItem moving at constant speed. The four graphs each rep-
resent scenarios with a different number of Locators: cyan has 2,
red has 3, blue has 4, and green has 5. Each line in each graph rep-
resents the number of particles employed: the solid line represents
10 particles, the dashed one 50, and the dash-dot one 100, and the
dotted one 500. 40

5.4 Average distances for different parameters values, with the Ob-
servedItem moving at constant speed for the first half, and stand-
ing still for the second half. The four graphs each represent scenarios
with a different number of Locators: cyan has 2, red has 3, blue
has 4, and green has 5. Each line in each graph represents the num-
ber of particles employed: the solid line represents 10 particles, the
dashed one 50, and the dash-dot one 100, and the dotted one 500. . 41

5.5 Position of the two Locators (A and B), and the points through
which the Locator passes through in the different scenarios (C,
D, E, and F). 42

5.6 Average distances for different parameters values, using real data
in which the ObservedItem moves at a constant speed. Each line
in the graph represents the number of particles employed: the solid
line represents 10 particles, the dashed one 50, and the dash-dot
one 100, and the dotted one 500. 43

5.7 Average distances for different parameters values, using real data
in which the ObservedItem stands still for the whole duration.
Each line in the graph represents the number of particles employed:
the solid line represents 10 particles, the dashed one 50, and the
dash-dot one 100, and the dotted one 500. 44

5.8 Visual representation of the particle filtering applied to real world
data where the ObservedItem stands still. 44

5.9 Visual representation of the particle filtering applied to real world
data where the ObservedItem moves along two lines. 44

Listings

5.1 Setup of parameters in the framework for fine tuning 38

xiii

xiv LISTINGS

Chapter 1

Introduction

The recent advancements in computing are making situated systems increasingly
frequent [11]. Be it IoT [6], Smart Cities [4], or robotics [9], nowadays many
complex systems rely on location-awareness for providing advanced functionalities.
While some techniques such as GPS are widespread, standardized, and perform
well [2], they also have a major downside: they do not work or do not provide
accurate measurements in indoor environments.

The need for indoor localization opened new research paths as many fields are
deeply entangled with situatedness [11]. A variety of techniques and technologies
has been proposed through the years, none of them really solving the problem in
a satisfactory manner, as many issues such as accuracy, energy efficiency, cost,
range, and scalability are still problematic.

Recently, the Bluetooth Special Interest Group (SIG) issued a new version
of Bluetooth: the 5.1 specification, which comes with a localization functionality
based on Angle-of-Arrival (AoA) [8]. This technique is not new but never found
a fertile field in any specific technologies that could enable its usage in modern
contexts. Bluetooth is a promising technology that could actually bring this new
technique to become a standard, as Bluetooth itself is already widespread, and
little hardware modification is required.

AoA is a good fit for situated systems as it does not require complex new
topologies and additional nodes, instead, it just blends in easily at the only cost of
adding antenna arrays to some nodes. Furthermore, triangulation-based systems
scale well with the size of the system: just two locator nodes are enough for a
2D localization, but increasing their number would provide more data that can be
used for better estimating the true position of the observed object.

Among the most promising results, some studies on the technique [5] show that
it is possible to achieve sub-meter accuracy using AoA and specialized hardware.
However, these studies are made in perfect conditions, such as anechoic chambers,
or using expensive hardware, whereas real-world scenarios need to deal with in-

1

2 CHAPTER 1. INTRODUCTION

terferences, cheap hardware, and many other problems. This kind of issue has
already been addressed multiple times when dealing with other problems, so the
scientific literature already has much information on methods made for dealing
with uncertainty [2].

While these methods have strong theoretical foundations, they need to fit the
specific use case by tuning complex sets of parameters. This activity is rather
time-consuming and error-prone, on top of being deeply related to the specific
system at hand, which means solving the problem once does not imply the same
solution can be used in a different setting.

The goal of this thesis is thus to provide a tool that could aid professionals in
the process of correctly engineering their system so that it performs as requested,
without the need for repetitive and expensive experiments in a real-world scenario.
The framework has been developed in a context where the technology of reference
was the novel Bluetooth 5.1 standard but does not rely on it as an essential part,
instead, it can leverage any technology providing an angle between the locator and
the observed object. The same goes for the data fusion algorithm: particle filtering
has been chosen for the specific case, but any other algorithm or methodology could
be implemented and used in this scenario.

Data fusion is essential for this kind of system, because the sensor’s measure-
ments can be noisy, and without employing any additional technique, the end
result would yield an unstable sequence of positions. In particular, filtering is es-
sential as it is the technique that enables the data fusion to be applied in real time,
estimating the current position of an object base on the information available up
to that moment of time.

One of the most important aspects of the system is the possibility of performing
simulations, which just need the sensor’s noise’s statistical model to get started
with simulating with the end of fine-tuning the system even before it is actually
built. When the system is in use and some data are available, it is possible to
record the data and use it later as an input to the framework in order to run the
fusion algorithm with different settings, finding the parameters which best fit the
real-world case.

To prove the effectiveness of the approach, we discuss a scenario where a few
devices collect real world data to feed into the system. The use case is based on
Bluetooth 5.1’s new specifications, powered by Texas Instruments’ development
boards, and three simple movement patterns.

Thesis Structure. The remainder of this thesis is structured as follows. Chap-
ter 2 discusses the different localization techniques that can be used in an indoor
environment, makes an overview of the possible models and algorithms for data
fusion, and provides an explanation of the novel Bluetooth 5.1 standard’s local-

3

ization capabilities. Chapter 3 describes the rigorous approach that takes the
system’s requirements and turns them into an architecture that could satisfy the
specified needs. Chapter 4 comprises of some lower-level details that are still in-
teresting for understanding how the system was built and what are the reasons
behind their decision-making. In particular, Actor-paradigm, python program-
ming language, particle filtering, and simulation, are the major topics addressed.
Chapter 5 explains the metrics used for understanding if the system was successful
or not in delivering the expected outcome. More information on the case study is
provided here. Finally, Chapter 6 concludes this thesis by summarizing its main
contributions and envisioning possible future works.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

This chapter discusses the theoretical concepts that are fundamental for indoor
localization, data fusion, and Bluetooth-based localization. Section 2.1 provides
information on indoor localization, why it is different from outdoor localization,
and the two main techniques used: trilateration and triangulation. Section 2.2
explains the mathematical and algorithmic approaches in dealing with uncertainty
and multiple sources of data, describing the main methods that could apply to
indoor localization. Finally, Section 2.3 briefly describes the novel Bluetooth (BT)
5.1 specification that enables localization services to be implemented on top of the
BT stack.

In what follows we denote relevant, domain-specific terms in small caps. Such
terms are then further analysed and discussed in the remainder of this thesis,
because of their pivotal role.

2.1 Indoor Localization

We define Localization as a process where one ore more Observed items
are recognized, and their coordinates in a given reference system is continuously
provided by means of a disembodied Localization Service that aggregates
the data of multiple Locators. Each Locator is a situated node capable of
acquiring partial information about the location of one or more Observed items,
and send it to the Localization Service for data fusion.

Indoor localization and outdoor localization might seem very similar problems
at first glance, as they both fulfill the definition above, but a deeper study of the
two shows very different scenarios. Just to name a few, indoor positioning usually
relies on low to medium range communication technologies, needs to establish its
reference system, and works in environments where the satellite signals could be
inaccurate or not work at all.

5

6 CHAPTER 2. STATE OF THE ART

The definition above mentions coordinates, which means we are more specifi-
cally speaking about a positioning system. This is an important remark, as among
the most successful indoor localization techniques many of them are based on
proximity detection [12]. In this case, the item to be located is not tracked con-
tinuously, and its position is not given only as coordinates. Instead, some locators
called beacons act as reference points: if the item can exchange messages with
them, then they are within communication range. If we consider a 2D scenario,
this means the item could be located anywhere inside the area of the circle which
has its center in the beacon and the communication range as its radius.

The proximity solution can be turned into a full positioning system employ-
ing additional measurements and multiple beacons, as explained in Section 2.1.1.
However, things are not as easy as they seem, because the sensing layer always
introduces some considerable noise, which leaves us with circles that do not have
the right radius, causing the intersection points to either be 0 or more than 1. This
problem is addressed in Section 2.2, here we work with the theoretically perfect,
mathematical models.

There is a variety of enabling technologies, ranging from communication-based
ones, to image analysis. The different technologies can provide different perfor-
mance and trade-offs in cost, efficiency, accuracy, and many other metrics, but
the fundamental techniques are completely independent of them. Whether the
angle-of-arrival is calculated by sampling radio frequencies with different antennas
or obtained employing computer vision algorithms based on a video stream, the
same algorithms can be applied, possibly tuning the parameters that help to cope
with the different noises caused by the underlying technology.

In the next subsections, we discuss the two major positioning techniques: tri-
lateration and triangulation.

2.1.1 Trilateration

Trilateration is a technique used for localization where multiple Locators that
are stationary and at known locations compute their distance from the item, so
that the Localization Service can use this information to compute the position
of the Observed Item.

The working principle of trilateration is easily understood when explained in
the two-dimensional case, referencing basic geometrical concepts that still apply in
3D. We can first think of a single Locator and a scenario similar to the proximity
detection, but with the additional information of the distance between the beacon
and the item. Knowing a point and a distance we also know that the Observed
Item’s location belongs to the circumference that has the Locator as its center,
and the distance as the radius.

We now consider two circles on the plane and their possible intersections.

2.1. INDOOR LOCALIZATION 7

• No intersection if their centers have a distance greater than the sum of
their radii;

• One point if their centers have a distance exactly equal to the sum of their
radii;

• Two points if their centers have a distance greater than 0 but lower than
the sum of their radii;

• Infinite points if the two centers are the same.

In the trilateration technique, the first option can be discarded as we only
consider beacons that have an item within range, and the last one can be discarded
as two beacons will not be placed in the same spot. We are left with the option
of one point, which is only true for exactly one point of the space, and thus
improbable, and the one with two points, which is the most likely situation. Given
the ambiguity of the two possible points, a different point of view is needed to
solve the issue. This is done with an additional Locator that will provide other
sets of points, and the intersection of those with the set mentioned above is one
point: the location of the item. The same concepts apply in 3D, just with a bit
more technicalities.

If we now imagine having multiple beacons scattered around an internal en-
vironment, making sure their “circles” overlap, it is possible to use trilateration
to find the coordinates of the item, which turns the proximity solution into a
fully-flagged positioning system, as shown in Figure 2.1.

2.1.2 Triangulation

Triangulation is a localization technique that only uses angles from fixed (and
known) locations to the ObservedItem to determine its location. In a two-
dimensional scenario, a point could theoretically be found by intersecting two
non-parallel lines. In three dimensions, it is still possible to find the intersection
point with just two lines, which need 2 angles each: one for the orientation on the
2D plane, and the other for its elevation angle.

However, real measurements are affected by noise. In a 2D scenario, if we had 3
Locators and noisy measurements, it would be very likely that the three lines do
not meet in the exact point, rather each couple of lines would meet at a different
point, leaving us with the ambiguity of knowing which point is the correct one.
This problem is tackled with the usage of data fusion, as described in Section 2.2.

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: A simple example of trilateration, where point A is the Ob-
servedItem, while points B, C, and D are Locators.

2.2 Data Fusion

Sensors used in situated systems make use of physical properties to make measure-
ments that are digitally encoded and saved in some memory or directly sent to the
device. The theoretical models based on ideal working conditions, the manufac-
ture of the sensor, and the quantization of information, are just some of the factors
that make the measurements noisy. A single sensor read could yield a result that
greatly differs from the real world conditions, however, multiple measurements can
be used to find the most likely world state.

Data fusion is the discipline employing different techniques in order to make
use of different data (possibly from different sources and in different moments of
time) to infer the most accurate world state based on the given measurements
and some background knowledge. It makes use of well-studied mathematical and
statistical concepts, theories, and models to approach the problem [7].

A very strong model is the Bayesian network, a directed acyclic graph where
each node represents a random variable, and each edge a conditional probability.
The topology of such a graph is based on cause-effect relationships in the domain,
where a node has influence on another node if there is an edge connecting them.
This simple model is the theoretical foundation of the next ones discussed in the
rest of the section.

Before proceeding, it is important to recall the Bayes’ rule, which states the

2.2. DATA FUSION 9

relation between a conditional probability and its parts:

P (Y | X) =
P (X | Y)P (Y)

P (X)
. (2.1)

If some background evidence e is known, it can be used in the formula as follows:

P (Y | X, e) =
P (X | Y, e)P (Y | e)

P (X | e)
. (2.2)

With the given premises, we are ready to discuss a specific kind of data fusion
that addresses time and uncertainty, studying dynamic systems and their state
over time. It is thus necessary to model such dynamic situations in a formal way.

Modeling dynamic situations. The model comprises of a series of time slices
characterized by a set of random variables. Some of these variables, Et, are ob-
servable, while others, Xt, are not. An observation at time t is expressed as the
random variable taking a concrete value: Et = et. Since this is a dynamic system,
some models describing its evolution are needed: in particular the transition model
and the sensor model are defined.

The transition model is the probability of the random variable X at time t,
given the previous values of X: P (Xt | X0:t−1). For the sake of simplicity we
can employ the Markov assumption writing this as a first-order Markov process:
P (Xt | X0:t−1) = P (Xt | Xt−1). This means that the current state only depends
on the previous one. Another assumption we can make is that the process is
stationary, which means the state does change over time, but following the same
laws at any given time. These assumptions just make the explanations easier,
and the formulas more clear, but without them all of the following discussion still
holds.

The sensor model (also called observation model) is the probability of the sensor
read given the current state variable: P (Et | Xt).

Finally, the the prior probability distribution at time 0, P (X0) needs to be
specified. This represents the initial conditions of the system.

Inference in temporal models. With the previously described model it is
possible to perform many different inference tasks, such as prediction, smoothing,
most likely explanation, learning, and filtering. We are interested in the last one.

Filtering computes a state estimation given the previous evidence. This is done
by starting with an initial belief state, and updating it every time a new measure-
ment is available instead of calculating everything from scratch. This process is
also known as recursive estimation, and can be expressed with the formula below,
for a function f .

P (Xt+1 | e1:t+1) = f(et+1, P (Xt | e1:t))

10 CHAPTER 2. STATE OF THE ART

This can be seen as a two-part process: first, the transition model is applied to
the current belief state, then it is updated through the new sensor data, using the
sensor model. The algorithm details depend on the f function, which is specified
by the concrete model. We can rearrange the formula to explicitly state the two
steps. We first expand the evidence in two parts.

P (Xt+1 | e1:t+1) = P (Xt+1 | e1:t, et+1)

Then, we use Bayes’ Rule Equation (2.2).

P (Xt+1 | e1:t, et+1) = αP (et+1 | Xt+1, e1:t)P (Xt+1 | e1:t)

Here, α is a normalizing constant that makes probabilities sum up to 1. Finally,
we apply the sensor Markov assumption.

αP (et+1 | Xt+1, e1:t)P (Xt+1 | e1:t) = αP (et+1 | Xt+1)P (Xt+1 | e1:t) (2.3)

In Equation (2.3), the first term P (et+1 | Xt+1) represents the sensor model, and
the second one P (Xt+1 | e1:t) the transition model.

It is possible to rewrite this as a one-step prediction formula, which can be later
used for recursive computation. We substitute the second term of the equation
(the one representing the transition model) with a summation that is conditioned
on the current state Xt.

P (Xt+1 | e1:t+1) = αP (et+1 | Xt+1)
∑
xt

P (Xt+1 | xt, e1:t)P (xt | e1:t)

Again, the Markov assumption can be employed for simplifying the formula.

P (Xt+1 | e1:t+1) = αP (et+1 | Xt+1)
∑
xt

P (Xt+1 | xt)P (xt | e1:t) (2.4)

The P (Xt | e1:t) can be seen as a “message” f1:t propagated along the sequence,
modified by every transition and observation.

f1:t+1 = αForward(f1:t, et+1)

where Forward is the update described in Equation (2.4), and the initial “mes-
sage” is f1:0 = P (X0).

In the following subsections we are going to describe three of the most impor-
tant concrete models.

2.2. DATA FUSION 11

2.2.1 Hidden Markov Models

Hidden Markov Models have the peculiarity of using a single discrete random
variable, which enables an elegant algorithmic solution. We start by defining the
transition and sensor models in terms of the state variable Xt and the evidence
variable’s concrete value et.

Transition model: a matrix T of dimensions S × S, where S is the number
of different values that Xt can assume.

Tij = P (Xt = j | Xt−1 = i).

It should be read as: Tij is the probability of transitioning from state i to state j.
Sensor model: a diagonal matrix Ot, of dimensions S×S, whose iths elements

on the diagonal are P (et | Xt = i), and everywhere else the value is 0.
With the given information, it is possible to write Equation (2.4) as

f1:t+1 = αOt+1T
>f1:t

.
The single variable is not a major impediment, as it is possible to use tuples

as the random variable’s values. However, the fact that it is discrete does make it
unsuitable for many applications.

2.2.2 Kalman Filters

Kalman filters solve the problem of the discrete variable by treating the uncertainty
in the problem as a Gaussian Distribution. The key idea is directly applying the
transition model as a mathematical formula, and then adding some Gaussian noise
to account for external factors that are not directly addressed by the mathematical
model. The same goes for the sensor model, which is assumed to be affected by
gaussian noise as well.

From a practical point of view, since Gaussian distributions keep their prop-
erties after the operations used in Bayesian networks, we can just update the
distribution after each step obtaining another Gaussian distribution, so we can
keep on applying in the same way. The prediction step can be written as

P (Xt | e1:t) =

∫
xt

P (Xt+1 | xt)P (xt | e1:t)dxt

The updated distribution is

P (Xt+1 | e1:t+1) = αP (et+1 | Xt+1)P (Xt+1 | e1:t)

12 CHAPTER 2. STATE OF THE ART

Each step and each message of the Forward operator, are then characterized by
the Gaussian distribution’s parameters: µt and Σt.

With this formulation it is possible to tackle a variety of problems that require
continuous random variables, but it has one intrinsic problem: not every real-world
scenario can be assumed to have noise that is correctly modelled by a Gaussian
distribution. This applies to both the external factors acting on the real state
(the ones which are not part of the transition model’s calculations) and the noise
of the measurements. Regardless of these limitations, Kalman filters do perform
well, and are widely used in practice. However, a more general model exists, that
enables a variety of more complex noise models to be taken into account when
performing filtering: dynamic Bayesian networks.

2.2.3 Dynamic Bayesian Networks

A dynamic Bayesian network, or DBN, is an extension of the Bayesian network that
takes time into account. According to the previously described dynamic system,
each step in time can be seen as a different Bayesian network, which represents
how the model has changed after the new evidence has become available. This new
model is a more general description of the already presented HMM and Kalman
filters, which are just more restrictive cases of DBNs. For example, an HMM is a
DBN having only one discrete variable.

The previous models favor simplicity and performance over the possibility of
tackling a wider set of possible problems [7]. DBN, on the other hand, has an high
computational cost exponential in the number of state variables [7]. To solve this
problem, we rely on approximate methods, such as particle filtering.

Particle Filtering

Particle filtering is a family of algorithms whose working principle is based on the
usage of samples to approximate the current state distribution. Each sample is a
possible value that the random variable can assume.

The algorithms work as follows:

1. An initial set of N values is sampled from the prior distribution P (X0);

2. The next state xt+1 is computed for each sample xt, using the transition
model;

3. Each sample is weighted according to the new measurements and the sensor
model;

4. Via resampling, a new set of samples is produced;

2.3. BLUETOOTH 5.1 LOCALIZATION 13

5. Steps 2 to 4 are repeated until an ending condition is met, usually the end
of available data.

This simple algorithm family is very successful from a pragmatic point of view.
However, its success is tied to the selection of its parameters which is far from
simple and inexpensive. Starting from the initial samples distribution, passing
through the usual transition and sensor models, and finally the weighting and
resampling criterias, the great amount of parameters needs a deep knowledge of
the domain and a great number of tries for correctly tuning the system.

As a final remark, a great advantage of particle filtering is that it effectively
deals with multiple hypothesis even if they are greatly different from each other,
since it can represent any probability distribution.

2.3 Bluetooth 5.1 localization

Bluetooth has been among the most important technologies for indoor localization
ever since the introduction of beacons, establishing a de-facto standard for prox-
imity solutions. There are many reasons for its success, the most important ones
being its relatively low cost, and its presence on a wide variety of “smart devices”,
which could exploit it directly, without the need of additional hardware.

Recently, the Bluetooth SIG introduced a new standard: Bluetooth 5.1, which
contains the specifications for an angle measurement system. This new technology
only acts as an enabling mechanism which deals with the low-level parts of the
stack, defining the protocols that allow a set of devices with defined roles to be
able to compute the angle between them. The upper parts of the stack, where the
angles are used for triangulation, is left to the developers.

2.3.1 Angle of Arrival and Angle of Departure

The Bluetooth 5.1 localization system can employ one of two possible methods:
angle of arrival or angle of departure. The first one requires the receiving device
to have a multi-antenna array, and enables it to compute the angle between itself
and any transmitting device, as shown in Figure 2.2. The second one requires the
sending device to have the multi-antenna array, computing the angle between itself
and any receiving device, as shown in Figure 2.3.

Since the major inconveniences of implementing a localization system based on
5.1 revolve around the multi-antenna array, the two operating modes are crucial, as
either one of them can perform better based on the scenario and its requirements.
For example, for a robot localizing itself in a vast area, the angle of departure
would be the best fit, as the robot will use the only antenna array, while the
anchor devices would just work with regular Bluetooth hardware. On the other

14 CHAPTER 2. STATE OF THE ART

Figure 2.2: Angle of arrival method, with a multi-antenna array on the receiver.
Source: [10]

Figure 2.3: Angle of departure method, with a multi-antenna array on the trans-
mitter. Source: [10]

2.3. BLUETOOTH 5.1 LOCALIZATION 15

Figure 2.4: How trigonometry is used to compute angle of arrival. Source: [10]

hand, a system with a multitude of Observed Items and a relatively small area,
where a few Locators are sufficient, would benefit more from a angle of arrival
mode.

2.3.2 Technical details

Radio direction finding has quite a long history, starting from Henrich Hertz’s
experiments which involved comparing the signal strenghts measured when the
antenna pointed at different location. Since then, more accurate techniques have
been developed, yet they just rely on fundamental wave properties and simple
trigonometry. Bluetooth 5.1’s angle detection is also based on such ideas, as it
uses phase difference to determine signal direction. For brevity, only the technique
based on the angle of arrival is explained, as the angle of departure is based on
the same concepts.

Given a pair of receiving antennas at a fixed and known distance d, a third
antenna emits a radio wave characterized by some phase values ψ1 and ψ2 based
on the antennas and on their position relative to the transmitter and the wave
length λ. Knowing the phase difference Ψ, antennas distance d and wave length
λ, it is possible to use trigonometry to compute the angle θ

θ = arccos
Ψλ

2πd
(2.5)

as shown in Figure 2.4.
Although the only hardware change that needs to be done is related to the

multi-antenna array, it is important to point out that the rest of the devices will

16 CHAPTER 2. STATE OF THE ART

still need an upgrade to the 5.1 firmware, as it enables specific packet types and
roles. More specifically, a new packet containing a constant tone extension (CTE)
is introduced. It comprises of a regular packet with a final sequence of symbols
representing the binary 1. This sequence is used for performing the phase sampling
used in the previous calculations.

2.3.3 Performance

To the best of our knowledge, there is no research testing the performance of the
Bluetooth 5.1 with a full-stack implementation. However, a research [5] based on
the same working principle but on specialized hardware claims that it can achieve
sub-meter accuracy.

Chapter 3

Design

In this chapter, we design a system to facilitate the analysis and tuning of indoor
localization systems, based on the requirements and the theoretical aspects intro-
duced in Chapter 2. Here, we clarify the meaning of names and verbs present
in the requirements text, and define a logical architecture using the formalized
vocabulary. The resulting architecture is described by means of UML diagrams,
which are to be intended in a broader way as logical artifacts independent from
the specific paradigm, and not implementation-specific diagrams deeply connected
with object-oriented programming.

This project can be seen as composed of two major parts: the framework itself,
and the Bluetooth 5.1 case study. This chapter is mostly concerned about the
framework, but does make some analysis of the specific use case when necessary.

The remainder of this chapter is organized as follows: in Section 3.1 a formal-
ized requirements description is given, in Section 3.2 the problem is analyzed, with
particular attention to the matter of data fusion, and finally, in Section 3.3, an
architecture of the analyzed system is presented.

3.1 Requirements Analysis

A requirements text is introduced to clarify which are the specifications of the
system, then it is analyzed and formalized to reduce the possible natural language
inconsistencies and misunderstandings. The text is as follows:

The “AoA localization system” is required to be a framework that
enables the execution of a data fusion algorithm which uses angle of
arrivals from a range of locator devices to compute the position(s) of
one or more target items. The data can either come from real devices
connected to the system, old data that was recorded and has been
played back, or simulated data.

17

18 CHAPTER 3. DESIGN

The system will be used for fine-tuning the parameters so that the
specific localization service’s performance can be improved.

This minimal requirements text is the base for the discussion presented here,
in which every aspect of the described system is analyzed.

The requirements show that this is an heterogeneous distributed system, which
requires us to identify its participants. First, we have the ObservedItem, which
is an item whose location is unknown. The objective of the system is to find
ObservedItem’s location. Then, the Locator is the entity responsible for mea-
suring an angle between itself and one or more ObservedItems. Finally, the
LocalizationService is the one accumulating all the necessary information and
performing the data fusion step. These three entities are the very core of the sys-
tem, as both the simulated and real-world cases need to deal with those entities.

The ObservedItems and the Locators are both characterized by their loca-
tion, which makes them situated. On the other hand, the LocalizationService
is not required to have any specific position in space, and as such it is a disem-
bodied computational node.

These few specifications clarify the meaning of the requirements text, providing
a formalized vocabulary to refer to the main entities involved. Moreover, they
suffice to identify a set of challenges that need to be addressed. In the following
sections, these problems are analyzed and possible solutions are proposed.

3.2 Problem Analysis

The requirements analysis identifies two main threads that need to be further
studied and discussed: data fusion applicability and the distributed nature of the
system.

3.2.1 AoA and data fusion

The requirements identify the specific problem of localization through angle-of-
arrival usage, which is characterized by other aspects based on the specific domain.
For example, a scenario in which a car is the ObservedItem the system could
have additional information about the speed at which the car is moving. Here,
we discuss the problem according to its base specification, then briefly discuss the
specific Bluetooth use case.

Before diving deep into data fusion, it is important to understand which in-
formation are actually flowing into the system, and what are their characteristics.
The “location” is a central information to the system, and as such we need to de-
fine how it should be represented. A standard way of doing so, is using cartesian

3.2. PROBLEM ANALYSIS 19

coordinates in an arbitrary reference system. Another piece of data that is crucial
is the measurement of an angle. Using a tuple of numbers to represent it should
accommodate both degrees and radians in different dimensions.

Given the problem of localization via triangulation, to find the position of
an ObservedItem we need at least two Locators, their positions, and the
rays passing through them and the ObservedItem. Such rays are identified
by one point in space and, depending on whether we are working in two or three
dimensions, either one or two angles. This is the minimum required information for
performing data fusion on the problem at hand, but a better result can be obtained
if a greater number of entities are involved. As previously said, in ideal conditions
all the rays would just meet in one point: the ObservedItem’s location. However,
considering the measurements are noisy, it is more likely that there are multiple
intersection points, and even pairs of rays that do not intersect at all, which
implies data fusion is needed to have any useful results. To identify the best suited
model, it is crucial to know what kind of noise is interfering with the sensors, and
what external forces act on the ObservedItem to change its position over time.
However, these are case-specific information, and thus should not influence any
decision about the structure of the framework, which should be general enough to
accomodate the needs of all the possible scenarios. Summarizing, the data fusion
algorithm to be employed is deeply connected to the specific case, even though
some solutions can be partially employed for different scenarios.

The Bluetooth case study can indeed be analyzed in a more specific manner,
soving both its problem, and providing a test case used to validate the correctness
of the framework. First, the noise affecting the sensors is not known a-priori, so
a solution like Kalman filters would not be suitable, as it assumes the noise is
Gaussian. Then, the ObservedItem does not have any on-board sensors capable
of tracking how it moves in space (e.g. no odometer), or at least such information
is not integrated into the system. One assumption that can be made is that it
behaves as an inertial body, making use of the estimated movements in space to
predict its speed. This can be said because of the scenarios considered for the usage
of the system, which mainly comprises of wearable devices and smart vehicles.

All these considerations about the uncertainty of this case study indicate that
particle filtering should be used. The first advantage is the possibility of keeping
multiple hypothesis at the same time, considering a non-gaussian random variable
distribution. This is very important because the noise affecting the angle mea-
surements could make the different rays meet in points which create more than
one cluster, and this technique would accomodate such an event by keeping the
different particles around the various clusters at the same time. Moreover, such a
complex distribution would be difficult and error-prone to update explicitly using
a random variable, while it can be handled in a relatively simpler way by updating

20 CHAPTER 3. DESIGN

the particles.
Additional information about the actual implementation of the particle filtering

algorithm for the Bluetooth case study is given in Section 4.2.

3.2.2 Heterogeneous distributed system

Heterogeneous distributed systems pose a wide range of problems, the most im-
portant ones being coordination and interfaces definition. The former is deeply
tied to the distributed aspect, the latter with the heterogeneous one.

Coordinating a distributed system requires some protocol that the different
nodes of the network need to follow. The protocol enforces message ordering,
makes sure that all the relevant information is being exchanged, and defines the
overall flow of the system.

Node heterogeneity requires the different nodes to be able to communicate with
each other. The commnication should abstract from the underlying physical nature
of the device, using a common technology for exchanging information between all
nodes of the system.

3.3 Architecture

After analyzing the requirements and the problems, the nature of the system is
clear, and its critical aspects are identified. With these information, an high-level
architecture can follow as a logical consequence.

The first aspect that directly derives from the problem analysis is the need
of using a paradigm that can handle a distributed heterogeneous system in the
correct way. The Actor paradigm[1] is the model of choice, as it is message-based
and directly addresses the previously discussed problems. This is optimal for the
heterogeneous nature of the system, as it provides a standard messaging interface
that is independent from the location and nature of the devices. Another important
aspect that it deals correctly with, is the protocol definition, thanks to both the
fact that it is message-based, and the run-to-completion semantic. Moreover, the
Actor paradigm is particularly suited for describing a system from a high-level
perspective, making use of UML diagrams.

This section does not depend on any particular programming language, it just
provides an architecture that can be implemented with the best suited technology.

The remainder of this section describes the system through its three main
dimensions: structure, interaction, and behavior. The order of discussion is im-
portant as we first need to define which actors are part of the system, then explain
the way they interact with each other, and finally describe how each one singularly
behaves to accomplish the whole system’s goal.

3.3. ARCHITECTURE 21

3.3.1 Structure

When describing an Actor-based system, the structure is greatly influenced by
the main actors and their relationships. The system is also heterogeneous, so
the coarsest grained structural description should take that in consideration by
defining two main parts: the situated system, and the disembodied one.

The situated part comprises of ObservedItems and Locators. These can
be present in a variable number of instances, with a required minimum of one
ObservedItem and two Locators. Each situated actor is in charge of handling
the communication with the other, creating an abstraction over the embedded
nature of the device and its internal state. The advantage of using the actor
paradigm is that we are not concerned with knowing the physical topology of the
system, as two different Locators could run on the same board that manages
two different antenna arrays, and the system would still work the same way as it
would if the Locators were on two different physical devices.

The disembodied part of the system has the LocalizationService as its
main actor, but since it is the part which computes the final result it is likely that
it will be also concerned with communicating this information to an interested
user. That can be done in several possible ways, but is a lower level, technology-
dependent detail discussed in Chapter 4.

Once the main entities are specified, it is possible to discuss the main interfaces
that define the relationships between them, as shown in Figure 3.1. First, the sit-
uated system is characterized by the possibility of exchanging some low level data,
as it happens for example in the Bluetooth use case, where the ObservedItems
send the CTE packet to the Locators, which can compute the angle with that in-
formation. Then, it is required that the LocalizationService provides a mean
to register the angle which can be use by Locators to communicate the perceived
data.

3.3.2 Interaction

An Actor-system is message-based, which means its fundamental way of communi-
cating is via message exchange. All of the discussions about interaction are based
on message exchange patterns to deal with unknown delay, with the end goal of
synchronizing the system. The triangulation problem only requires the exchange
of a few messages, at least from an high-level perspective. We can define two main
steps: the initialization and the working loop.

When initializing a distributed system like this, the main concern is synchro-
nization, which means we want all of the Locators to be ready to work before we
start the actual localization. This requires the LocalizationService to know
which Locators should be part of the system, then wait for a message by them

22 CHAPTER 3. DESIGN

Figure 3.1: A component diagram showing the overall system structure and its
main actors.

3.3. ARCHITECTURE 23

that communicates they are ready. Once all of the Locators are ready, the Lo-
calizationService can broadcast a message to the Locators, indicating that
the system is ready to work.

The actual localization is a rather simple loop, where each ObservedItem
sends the low level data if that is required, and upon receiving it each locator
computes the angle and communicates it to the LocalizationService. At that
point, the system can start a new cycle of the loop, after the LocalizationSer-
vice optionally communicates the currently estimated location to some output
node.

Even though the messages exchange is rather simple, two considerations need to
be made. First, the ObservedItems are not part of the first initialization step, as
their presence in the system can be dynamic. This means that an ObservedItem
can enter and exit from the situated system area, possibly because it is temporarily
turned off, and that any number of ObservedItem can be plugged into the system
at runtime. The only requirement is that each ObservedItem has a unique ID,
which must be included in the low level data message, or that it has some other
way of being uniquely identified (for example, that could be useful in a use-case
that makes use of computer vision to compute the angles).

The other important remark is that there is the need for some synchronization
during the loop: if one Locator misses some messages and then communicates a
new angle of arrival to the LocalizationService it must not be matched with
the previous angles computed from the other Locators, because these would be
angles that refer to different moments of time. How this problem is solved can
be a low-level detail, but it is relevant to discuss it here as one of the possible
solutions could also be adding some metadata to the angle of arrival message (e.g.
a timestamp).

A visual representation of the interaction explained here is available in Fig-
ure 3.2.

3.3.3 Behavior

The behavior of each main actor is described by means of finite state machines, as
depicted in Figure 3.3, and in accordance with the information about the interac-
tion described in the previous subsection.

The ObservedItem simply has one logical state in which it is active and, if
needed, sends data to the Locators. The decision of keeping this actor rather
simple is a conscious effort in handling the complexity on the framework side,
limiting the embedded devices’ effort to the low-level parts.

The Locator starts in an idle state, and after the registration to the service is
successful, it loops through two states: waiting and sending. It alternates between
the two each time new data arrives from the ObservedItem and each time it is

24 CHAPTER 3. DESIGN

Figure 3.2: The sequence diagram describing the overall interaction flow.

Figure 3.3: The state diagram, divided in three lanes. The leftmost lane contains
the ObservedItem behavior, the central one describes the Locator, and the
rightmost is for the LocalizationService.

3.3. ARCHITECTURE 25

sent to the LocalizationService. Any policy about waiting for more data or
not sending the data can be enforced in the state that best fits the case.

Finally, the LocalizationService acts similarly to the Locator, with an
initial state that waits for the registrations for the service, and a loop. The biggest
difference here, is that the way steps are handled is directly addressed: the Lo-
calizationService stays in the waiting state until all of the Locators send
the angle for the current step. Once that happens, the LocalizationService
transitions in the compute state, where it performs the data fusion task, and at
the end goes back to waiting for the next step’s angle messages to arrive.

26 CHAPTER 3. DESIGN

Chapter 4

Implementation

This chapter is concerned with explaining how the system has been implemented
and the technologies in use. A reader that desires to use or extend the framework,
can find useful insights here. The source code of the project is available at its
GitLab repository1.

Based on the discussion of the problems in the previous chapter, the program-
ming language of choice is python. The main reason for this is that the end goal of
the system is to perform fine-tuning of data fusion algorithms in specific scenarios,
which can be a strategic part of the development of a system, so the possibility
of shortening the time-to-market, or to rapidly evaluating a prototype are the top
priorities. Python is particularly goof in this case thanks to both its extremely
succinct syntax and the abundance of libraries, especially in the field of mathemat-
ics, which not only speed up the first stages of development, but also ensure that
they are error-free, as the most complex aspects of the data fusion part might be
already handled by some external library. On top of that, python is very popular
among professionals whose primary job is not programming (e.g. mathematicians),
and has a good predisposition to both being a scripting language, and performing
data analysis and visualization. That being said, python is not the only suitable
language for a system of that type, and any other programming language would
have been appropriate for developing the system at hand.

In this chapter, data fusion is mostly discussed referring to particle filtering in
particular, because of the use case using it. The relevant encapsulation mechanisms
that make the framework robust and easy to use and expand, are described later
in Section 4.2.

The remainder of this chapter is organized as follows: first, in Section 4.1, the
actor system’s low-level details are explained, then in Section 4.2, the mathemati-

1https://gitlab.com/pika-lab/theses/thesis-nemati-ay2021/

particle-filter-localization

27

https://gitlab.com/pika-lab/theses/thesis-nemati-ay2021/particle-filter-localization
https://gitlab.com/pika-lab/theses/thesis-nemati-ay2021/particle-filter-localization

28 CHAPTER 4. IMPLEMENTATION

cal model is interpreted for the Bluetooth use case, defining the specific algorithm.
Section 4.3 presents an overview of how the system handles simulations, and fi-
nally in Section 4.4 the physical part of the use case and its integration with the
framework are described.

4.1 Actor System

The actor system implementation is based on the pykka library2, version 2.0.3.
It is a python library that provides a simple implementation of the actor model,
proposing two main working interfaces: basic actors, and proxy actors. The for-
mer explicitly uses the actor model’s primitives, like send and receive, the latter
provides an abstraction that incapsulates the behavior of the actor in an object
that has a separate method for each possible action. In the case of a proxy actor,
the different methods return a future.

While the proxy can be a fairly useful abstraction to keep the code clean, the
basic actor implementation is a more explicit representation of the distributed
system, so it is the standard way actors are implemented in this project. However,
any extension to the system might use the proxies, as they are just wrappers and
can thus be used in conjunction with the basic actors.

The use of pykka provides important support for dealing with the challenges
of concurrent systems, but on the other hand it is not a very mature technology,
and as such it lacks some fundamental features. The most important one is the
absence of the “become” primitive, necessary for a good mapping between the state
diagrams and the implementation. While it could be possible to make a brand new
actor every time the state changes, it would be cumbersome and error-prone to
work that way. In the project, a BaseActor class is provided to compensate for
the lack of the “become” primitive. This class handles the state change by keeping
a state variable and a dictionary that maps each state to a function handling a
message. That way, each state is modelled by a function that specifies how the
actor implements the “receive” primitive, and when a message is received, the
function that needs to be called is selected depending on the current actor’s state.

Using that mechanism, each of the actors described in the architecture is im-
plemented, using a more fine-grained state diagram as a reference. In the following
paragraphs, each actor is described.

Before looking at each single actor, it is necessary to first describe how the
actual coordination protocol is defined. Since the main focus of the framework
is on simulation and fine-tuning, the actual mechanism for synchronizing each
actor has been chosen prioritizing simplicity over partition tolerance: a centralized

2https://www.pykka.org

https://www.pykka.org

4.1. ACTOR SYSTEM 29

Figure 4.1: The sequence diagram describing the overall message exchange revolv-
ing around the “step” and “stop” messages for coordination.

solution based on explicit messages stating the transition to the next step of the
computation. More specifically, the LocalizationService first notifies all the
other actors about the start, then enters a loop in which it first waits until it
receives all of the messages from the other actors, then computes, and finally
sends out a “step” message when it is ready to transition to the following time
slice. When the computation must be interrupted, the LocalizationService
sends a “stop” message. This overall flow is shown in Figure 4.1.

Observed Item actor. This actor’s behavior is a bit more detailed if compared
to what is described in the design phase, as it needs to both handle the step and
stop commands, and be easily used in simulation scenarios. It has three possible
states: idle, waiting, and send low level data. The idle state is useful for handling
the life-cycle of the ObservedItem, as it is possible to react to “start” and

30 CHAPTER 4. IMPLEMENTATION

Figure 4.2: The state diagram of the ObservedItem. “LLD” is short for low
level data.

“shutdown” messages, and it is the state in which the actor transitions when the
“stop” message is received. The send state is present on a logical level, but is not
necessary to include it in the implementation, as the run-to-completion semantic
of the actor system already handles the required behavior. In case no low level
data needs to be sent to the Locators, the send state can simply be ignored.
Finally, the waiting state is crucial for the synchronization with other actors.

A visual representation of the ObservedItem’s behavior is depicted in Fig-
ure 4.2.

Locator actor. The Locator actor’s behavior, in terms of states and transi-
tions, is very similar to the previously described ObservedItem. This is because
they are treated in a uniform way from the LocalizationService, which uses
the same kind of messages to synchronize both types of actors. What changes is
the actual behaviour in the working state, which, in that case, is the read angle
state. Here, it is necessary that this state is present in the implementation as well,
as it is used to wait for the low level data coming from the ObservedItems. In
case no low level data is needed, a simple self-message can be used. The state
diagram is shown in Figure 4.3.

Localization Service actor. Its LocalizationService serves two important
functions: it both performs the computation and synchronizes the whole system.

4.2. PARTICLE FILTERING 31

Figure 4.3: The state diagram of the Locator.

The state diagram is presented in Figure 4.4. The computing state does not nec-
essarily need to be explicitly present in the implementation, however, for complex
computations that might require usage of external services it can be fairly useful.

4.2 Particle Filtering

The use case’s analysis in the previous chapter identifies particle filtering as the ap-
propriate data fusion algorithm to deal with the specific problem’s characteristics.
Being it a family of algorithms, it is necessary to define how it actually works, in
particular describing the chosen transition model, sensor model, and re-sampling
strategy.

Transition model. Usually, the transition model takes into account some in-
formation about how the state is changing. An example in the domain of locating
a moving object is a robot moving in space which has an odometer on board,
or that has a battery level indicator. The former directly provides the necessary
information to update the particles state, the latter can influence the transition
model if the assumption that it goes slower as the battery depletes can be made.
However, the ObservedItems do not provide any information about their current
state themselves. One assumption that is possible to make is that they move in an
inertial way, so knowing the velocity at the previous time is enough for computing
the transition model.

32 CHAPTER 4. IMPLEMENTATION

Figure 4.4: The state diagram of the LocalizationService.

An important remark is that the transition model is based off of a probabil-
ity density function, which means the particles are not updated using the exact
equations of motion. Instead, a probability density function that has its highest
probability values in a vector that matches the exact equations of motion is used
for updating the particles’ state.

To infer the approximate velocity of the ObservedItem, the center of mass of
the particles is computed at the previous step and the current step. The difference
between the two provides a reasonable vector to be used for updating the transition
model.

The transition model is dynamic, as it changes at each step of the computation
based on the inferred velocity. The probability density model used is a Gaussian,
leveraging the fact that the velocity should be uni-modal.

Sensor model. The sensor model is used to assign a greater weight to the par-
ticles that better fit the angles recorded by the Locators. An implementation
that is scalable with respect to the number of Locators is based on the average
minimum distances between a particle and each ray corresponding to a Locator
and its angle read. The random factor is already taken into account by the natural
noise affecting the angle measurements.

4.3. SIMULATION 33

Re-sampling strategy. Re-sampling is based on the weights assigned by the
sensor model, which get normalized and used as weights for randomly choosing N
elements from the current particles, which has N elements itself. This means that
the total number of particles remains the same, which is computationally intense,
but grants a robust mechanism to deal with very noisy spikes. Moreover, particle
filtering works better with a great number of particle, and the overall complexity
stays stationary over the course of the computation.

Without any additional information, the best suited initial distribution is gen-
erated by uniformly placing samples in a given bounding box. This is just the
general case, however, some ad-hoc initial distributions can improve the results in
both terms of accuracy and number of iterations needed to form the first clusters.

4.3 Simulation

The framework has a major focus on simulation, which, however, is not discussed
in detail in the previous part of the thesis. This is because the system is modelled
in such a way that accommodates both real and simulated data using the same
abstractions and overall structure. More details on the simulation capabilities
of the system are presented in this section, discussing a way of generating data
at run-time, and a way of generating the data before the computation (possibly
using some external tool) and then replaying it inside the framework. Both of
these modes of operation are based on the usage of custom actors which inherit
from the original ObservedItem.

The simulated observed item’s actor takes an ordered list of positions as in-
put, and for each Locator computes the data that needs to be sent so that the
resulting angle is affected by some noise, but still based on the actual one. The
implementation provided in the framework applies a Gaussian noise to the simu-
lated data, but it is possible to plug any other kind of distribution to be used for
sampling the value. This way of simulating is particularly suited for a scenario in
which the focus is on the correct tuning in specific movement patterns.

The replay observed item’s actor works in a similar fashion, taking as an input
the raw data, and playing it back as the simulation proceeds, without altering it
in any way. This approach is useful when dealing with real data for fine-tuning,
or when it is more convenient to generate the simulated data in another tool, and
this framework is used for the fine-tuning step.

Using the already provided functionalities, it is rather simple to setup a simula-
tion environment, with an arbitrary number of Locators and ObservedItems.
This is useful for performing various experiments and not only fine-tuning the data
fusion algorithm’s parameters, but also the number of devices used.

34 CHAPTER 4. IMPLEMENTATION

Moreover, the reproducibility of the simulation is granted by the option to
specify a custom seed that is used throughout the whole framework for generating
every random number. The deterministic behavior of the simulation is an impor-
tant feature as it makes it possible to compare various parameters’ values in an
accurate way, since they would work on exactly the same numbers.

4.4 Situated System

The process of choosing a development kit that suits the Bluetooth use case’s
requirements could be a chapter of its own, but for the sake of only discussing
computer-science related topics, here we only described the devices which have
been used. The main reason for the choice is the compatibility with the BT 5.1
standard, and the availability of a custom antenna array ready to use for the use
case.

The devices of choice consist of 3 LAUNCHXL-CC26X2R13 boards, and 2
BOOSTXL-AOA4 antenna arrays, all by the producer Texas Instruments5 (TI).
With the given hardware, two Locators and ObservedItem have been imple-
mented, relying on the dedicated libraries for the low-level embedded system part.

The software that runs on the boards must be written in the C programming
language, making use of some proprietary libraries. Texas Instruments provides
ready-to-use software that can be run on the physical devices, which have been
used. The given software is set to use UART ports to make the embedded device
communicate with a central PC node, as shown in Figure 4.5.

The “Node manager” provided by TI is written in python, and is fairly easy
to edit. For the specific use case, it has been modified to record the angles so that
these could be later replayed in the framework.

The details about the experimental setup and yielded results are presented in
Chapter 5.

3https://www.ti.com/tool/LAUNCHXL-CC26X2R1
4https://www.ti.com/tool/BOOSTXL-AOA
5https://www.ti.com/

https://www.ti.com/tool/LAUNCHXL-CC26X2R1
https://www.ti.com/tool/BOOSTXL-AOA
https://www.ti.com/

4.4. SITUATED SYSTEM 35

Figure 4.5: An architectural overview of the situated system. The “transmitter”
is the ObservedItem, the “receivers” are the Locators.

36 CHAPTER 4. IMPLEMENTATION

Chapter 5

Validation

A framework’s value is based on its impact on the development of a specific ap-
plication, while a localization system’s value lies within its performance. The
former can be expressed in various metrics such as development time, and a first
evaluation can be made with respect to the Bluetooth use case. However, more
applications need to be developed to really test the strength of the framework.
The latter is application-specific, but the same metrics apply to all the systems.

The remainder of this chapter is organized as follows: in Section 5.1 the tested
scenarios are explained and evaluated, in Section 5.2 a brief overview of the code
quality tools used is given.

5.1 Experimental Results

When evaluating a localization system, there are many performance indicators that
need to be taken into account[3]. They are: accuracy, precision, latency, energy
consumption, cost, complexity, coverage, robustness. While all of these are very
important, in this section we are only concerned with the first two indicators, as
they are able to tell if the parameters fine-tuning is yielding better results or not.
The remainder of the indicators can be evaluated independently of the framework,
even though it can have some influence on them. For example, tuning the system
to achieve some target accuracy and precision with the least number of Locators
can have an impact on the overall cost and energy consumption.

Accuracy is an indicator of the error distance between the estimated and actual
positions. Using data fusion, however, the location of an ObservedItem is not
just one point in space, but a probability density function which assigns higher
probabilities to certain points, and lower values to others. This can be solved in
different ways, but since the actual localization process requires one position, and
should not be concerned with the mathematical technicalities, here accuracy is

37

38 CHAPTER 5. VALIDATION

Listing 5.1: Setup of parameters in the framework for fine tuning�
1 position_1 = (0, 21)

2 position_2 = (60, 21)

3 position_3 = (30, 21)

4

5 positions = [position_1 , position_2 , position_3]

6 particle_numbers = [10, 50, 100, 500]

7 sigmas = [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4]

8

9 settings = generate_settings(positions , particle_numbers , sigmas)

10

11 for setting in settings:

12 particle_filtering_simulation(setting)
� �
computed with respect to the global maximum of the probability function, or the
highest-weighted particle in case of particle filtering.

Precision can be expressed as the percentage of correct localizations, where
“correct” is relative to a desired accuracy value. The target accuracy should be
based on the domain and requirements constraints.

Examples of experiments evaluation for both a simulated case and the Blue-
tooth use-case are presented here. The two experiments are connected as the
simulation is an initial step in exploring the fine-tuning of a particle-based system,
and the use-case is a test scenario for the optimized parameters found during the
simulation.

Throughout this section, space measurements are to be intended in centimeters,
and the studied value is the mean distance between the points proposed by the
system and the real positions of the ObservedItem.

5.1.1 Simulation

There are a variety of parameters that can be modified to improve the accuracy
of the system, and testing all of them can be quite challenging. However, the
simulation framework provides an easily customized environment which allows a
rather complete experimental setup to be employed. The experiments shown here
have been set up with a combination of parameters as easily as shown in Listing 5.1.

The major factors impacting the end result are the number of Locators, the
number of particles, and the probability density distributions used for the transi-
tion model. Different possible values are chosen for each of these parameters, then
each combination is played in turn, and the results are compared. The scenarios
have an impact as well, so the previous combinations are tested in two different

5.1. EXPERIMENTAL RESULTS 39

Figure 5.1: Visual representation of the particle filtering applied to simulated data
where the ObservedItem moves at constant speed.

Figure 5.2: Visual representation of the particle filtering applied to simulated data
where the ObservedItem moves at constant speed and then stops.

cases: with an ObservedItem moving with constant speed, and with it first
moving at constant speed, and then stopping. A visual representation of the sim-
ulations is provided in form of screen captures in Figure 5.1 for the scenario of an
ObservedItem moving at constant speed, and in Figure 5.2 for the scenario in
which it first moves at constant speed and then stops. In these figures the points
in black represent the current particles, the red ones are the real positions, and
the blue ones are the best hypothesis, one for each time frame.

The different values used for tuning are: 2, 3, 4 and 5 different Locators;
10, 50, 100, and 500 particles, and 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4 for the
standard deviation of the transition model’s Gaussian. The results are presented
in Figure 5.3 for the case in which the ObservedItem moves at constant speed
and in Figure 5.4 for the one where it first moves at constant speed and then stops.
Each figure comprises of 4 different graphs; in order from left to right, and top to
bottom, they are for 2, 3, 4, and 5 different Locators. Each line in each graph
represents the mean distance between the real position and the one guessed by
the system based on how many particles are employed: the solid line represents 10
particles, the dashed one 50, and the dash-dot one 100, and the dotted one 500.
The graph shows how the mean accuracy varies based on the value of sigma for
the different scenarios.

40 CHAPTER 5. VALIDATION

Figure 5.3: Average distances for different parameters values, with the Ob-
servedItem moving at constant speed. The four graphs each represent scenarios
with a different number of Locators: cyan has 2, red has 3, blue has 4, and
green has 5. Each line in each graph represents the number of particles employed:
the solid line represents 10 particles, the dashed one 50, and the dash-dot one 100,
and the dotted one 500.

Looking at the graphs, it is possible to state that both the constant speed
and the one that goes at constant speed only at first, follow the same overall
pattern: increasing the number of particles and Locators improves the result,
and small values of sigma grant a more accurate estimate. While increasing the
particles count, the computational cost must be taken into account, as increasing
the number even further would degrade performance of a real-time localization
system. The case analyzed in Figure 5.4 has a less predictable behavior, most likely
caused by the sudden stop of the ObservedItem. The most notable difference
is, in fact, the higher overall mean distance, which indicates it is more difficult to
predict the real location in that kind of scenario, but ensures the parameters make
a similar impact on the result even in different scenarios.

Another interesting difference between the two cases is that the peak in average
distance is for sigma = 0.0, while for the second this is not always the case. That
can be caused by the ObservedItem stopping at a certain point, which is better
modelled by a transition model that favours a stationary position of the particles.

5.1. EXPERIMENTAL RESULTS 41

Figure 5.4: Average distances for different parameters values, with the Ob-
servedItem moving at constant speed for the first half, and standing still for
the second half. The four graphs each represent scenarios with a different number
of Locators: cyan has 2, red has 3, blue has 4, and green has 5. Each line in
each graph represents the number of particles employed: the solid line represents
10 particles, the dashed one 50, and the dash-dot one 100, and the dotted one 500.

42 CHAPTER 5. VALIDATION

Figure 5.5: Position of the two Locators (A and B), and the points through
which the Locator passes through in the different scenarios (C, D, E, and F).

5.1.2 Physical Experiments

The physical experiments based on the Bluetooth use case provide the angle mea-
surements to be replayed in the framework. Because of physical and time con-
straints (mainly related to the Covid-19 pandemic), only two Locators have been
employed, and few, imprecise scenarios are taken in consideration. Three scenarios
have been selected and analyzed, all of which are characterized by the two Loca-
tors standing still in positions (0, 21) and (60, 21), respectively. First, the Ob-
servedItem moves in a straight line from position (0, 0) to (0, 60), then it stands
still in (29, 0), and finally it moves along two lines: first (0, 0) to (30, 21), then
to (60, 0). It is important to remark that the precision of the ObservedItem’s
movements is limited, so it adds up to the expected noise that is already taken
into account for the angle measurements.

The physical setup is depicted in Figure 5.5, where the Locators correspond
to points A and B, and the previously described coordinate the ObservedItem
passes through are labelled C, D, E, and F . The results with different parameters
are shown in Figure 5.6 for the case in which the ObservedItem moves at con-
stant speed, and in Figure 5.7, where it stands still for the whole duration. A first
visual feedback of the process is shown in Figure 5.8, where the ObservedItem
stands still, and in Figure 5.9 where it moves along two lines. As the simulation
proved, with a greater number of particles a better result is achieved. The overall
mean distances are rather high compared to the simulation, but real data has more
unstable noise interfering with its sensors and real movements. Overall, errors be-
low one meter are achieved, which is an improvement over other state-of-the-art

5.1. EXPERIMENTAL RESULTS 43

Figure 5.6: Average distances for different parameters values, using real data in
which the ObservedItem moves at a constant speed. Each line in the graph
represents the number of particles employed: the solid line represents 10 particles,
the dashed one 50, and the dash-dot one 100, and the dotted one 500.

44 CHAPTER 5. VALIDATION

Figure 5.7: Average distances for different parameters values, using real data in
which the ObservedItem stands still for the whole duration. Each line in the
graph represents the number of particles employed: the solid line represents 10
particles, the dashed one 50, and the dash-dot one 100, and the dotted one 500.

Figure 5.8: Visual representation of the particle filtering applied to real world data
where the ObservedItem stands still.

Figure 5.9: Visual representation of the particle filtering applied to real world data
where the ObservedItem moves along two lines.

5.2. CODE QUALITY 45

solutions.

An interesting fact is that the graph in Figure 5.7 shows the lowest mean
distances for sigma = 0.0. Since the scenario considers an object standing still
for the whole duration, this is a special case in which the transition model is
likely to introduce additional noise instead of coping with it. This aspect has been
anticipated by the experiments carried out in the simulation. The usefulness of the
system lies also in these scenarios, where a particular case can be identified and
analyzed to understand how different parameters affect the accuracy in specific
settings.

When performing fine-tuning, small adjustments can be made, which have
a relatively minor impact on overall accuracy, but such improvements are very
consistent among different cases, and as such it is wise to exploit them. Another
use of the system is to test completely different models, when it is not simple
to choose the model that best approximates the system being studied. Testing a
variety of different models against real data can provide an easy way of deciding
which one should be applied, and with which parameters.

5.2 Code Quality

Code quality is important in every software product, but it is even more so in this
case, both because of it being a framework (thus imposing the coding standards
to the systems made with it) and because the python language is very flexible.
When a framework has poor code quality, the users of the framework are going
to produce similar results, so the methods for ensuring that the standards are
high are crucial. Not only that, the same tools can be used for any project that
makes use of the framework. The fact that python gives the programmers a lot of
freedom is both a good and risky. To avoid producing a framework that is hard
to understand we relied on static analysis tools to enforce widespread standards
of the python language.

Testing is also essential, as it provides a set of guarantees that the system works
as expected, and simplifies refactoring.

5.2.1 Static Analysis

The static analysis employed is based on basic linting, style enforcement, and static
typing. For the linting part, pylint is used, so that any potential error-provoking
code is caught before it can cause any damage. The style enforcement is done with
flake8, which is based on the community’s python enhancement proposals (PEPs)
and thus reflects the de-facto standards in python coding style. Finally, the static

46 CHAPTER 5. VALIDATION

Name Statements Miss Cover

localization\base actor.py 13 0 100%
localization\localization service.py 138 82 41%
localization\locator.py 29 5 83%
localization\math utils.py 43 6 86%
localization\messages.py 25 3 88%
localization\observed item.py 57 25 56%
localization\particle filtering.py 14 1 93%
localization\view.py 68 45 34%
tests\localization service test.py 22 0 100%
tests\locator test.py 14 0 100%
tests\math util test.py 27 0 100%
tests\observed item test.py 16 0 100%
tests\particle filtering test.py 7 2 71%

Table 5.1: Code coverage.

typing is done via mypy, which provides a custom syntax for specifying the types
of variables, parameters, return types, etc.

These tools need to be run each time the code is changed to ensure its correct-
ness, but if that is not done, the actual execution of the program is not hindered
by the presence of problems with the static analysis. To improve this aspect,
the static analysis is executed as part of a continuous integration process using
GitLab’s CI tools.

5.2.2 Testing

Pytest is the testing framework in use for the project, as it provides a fairly
widespread and simple approach to test writing, together with automation tools
to be used in the previously described continuous integration processes. The tests
written for the framework are mainly concerned with the aspects that need to be
extended by the users. An overview of the coverage is presented in Table 5.1.

Chapter 6

Conclusions

The thesis’ main concern is about the design and implementation of a framework
that can aid in the development of indoor localization systems based on the angle-
of-arrival. Nevertheless, the path to achieve such a result is filled with other
challenges and research topics that have been discussed and dealt with. Thus, the
thesis provides various contributions to the scientific community.

First and foremost, the development of a framework that is both a tool for
companies to fine tune their products, and for researchers. The academia can ben-
efit from this framework by using it to validate the performance of new telecom-
munication technologies that can be used for indoor localization, using it as a
benchmarking tool. Another important contribution is that someone developing a
new data fusion algorithm could easily test it in a variety of scenarios with mini-
mum effort, possibly even using real world data from other researchers so that it
is tested against specific use-cases.

Another important aspect, mostly discussed in Chapter 2, is an overview of the
localization problem using angle-of-arrival. Even though this is not a new topic
itself, most surveys just treat it as a small part of the whole indoor-localization
landscape, and while that is not completely false, the new Bluetooth specification
made it one of the most promising enabling technologies.

Finally, this thesis is, to the best of our knowledge, the first work to actually
implement an indoor localization system based on the novel Bluetooth 5.1 speci-
fication. The hardware in use is development hardware not suited for commercial
use, and the tested scenarios are very limited as well, so this is just the first step
towards understanding and approaching the development of this kind of system.

The achievements of this thesis are all promising starting points for new re-
searches and for improving the currently obtained results. Some of the most imme-
diate and important paths that should be taken from this point on are presented
in next section.

47

48 CHAPTER 6. CONCLUSIONS

6.1 Future works

Among the possible future works that stem from the research done, the ones
concerning improvements of the framework are discussed the most, as they are
deeply connected with the main point of the thesis.

The first and most immediate action to be taken that would improve the quality
of the proposed work, is the gathering of new experimental data using the presented
situated system. This time, it would be necessary to provide a more stable means
of moving the ObservedItem, a room that is fully isolated from electromagnetic
interferences, and a broader range of tests. The additional tests need to be done in
larger areas compared to the few centimeters used here, possibly adding a larger set
of Locators which would provide interesting insight on the actual improvements
that additional Locators can bring to the system. Experimenting with different
hardware could also be interesting, but the main focus remains on repeating the
same experiments in controlled scenarios.

Implementing different data fusion techniques is another important improve-
ment that would give the system another important feature, as it might sometimes
be useful to perform data fusion using different techniques, without the burden
of implementing them from the ground up. HMM and Kalman filters are just
some of the most important ones that could be the subject of this enhancement,
but also more sophisticated, ad-hoc, or neural-network-based techniques are eligi-
ble for improving this side of the framework. While particle filtering is the best
suited algorithm due to the problem’s characteristics discussed in Chapter 3, each
scenario and use case has its peculiarities and should be dealt with in the most
appropriate way.

Finally, it is important to talk about GUI features that would enable the use
of the framework as a fully-fledged user application with the aid of few extra
steps. Most of the setup that needs to be done could be moved to the graphic
interface, so that an end user could choose the number of ObservedItems and
Locators, their positions, their movement over time, the dimensions of the room,
and so on. Another key aspect of that would be tuning the parameters of the data
fusion algorithm directly from the GUI. All of these could be seen just as minor
inconveniences from a computer scientist’s point of view, but if the tool needs to
be used by someone with poor programming skills, the aid of a user interface would
greatly reduce the chance of making mistakes.

The graphic interface could also be used for providing a standardized way of
presenting and analysing the results of some batch testing, showing the average
accuracy and precision based on the different values for each parameter.

Additional GUI developments would be concerned on commands to control the
execution of the simulation, providing step, stop, and start functionality, config-
uring the speed of the displayed simulation, and the possibility to go backwards.

6.1. FUTURE WORKS 49

These options could be used by an end user to check some specific moments of
time in which the system is not behaving as expected.

50 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Gul A. Agha. ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press, 1990.

[2] Ahmed Yassin Al-Dubai, Youssef Nasser, Mariette Awad, Ran Liu, Chau
Yuen, Ronald Raulefs, and Elias Aboutanios. Recent advances in indoor
localization: A survey on theoretical approaches and applications. IEEE
Commun. Surv. Tutorials, 19(2):1327–1346, 2017.

[3] C. BASRI and A. El Khadimi. Survey on indoor localization system and
recent advances of wifi fingerprinting technique. In 2016 5th International
Conference on Multimedia Computing and Systems (ICMCS), pages 253–259,
2016.

[4] Federico Bonafini, Dhiego Fernandes Carvalho, Alessandro Depari, Paolo Fer-
rari, Alessandra Flammini, Marco Pasetti, Stefano Rinaldi, and Emiliano
Sisinni. Evaluating indoor and outdoor localization services for lorawan in
smart city applications. In 2nd Workshop on Metrology for Industry 4.0 and
IoT MetroInd4.0&IoT 2019, Naples, Italy, June 4-6, 2019, pages 300–305.
IEEE, 2019.

[5] Marco Cominelli, Paul Patras, and Francesco Gringoli. Dead on arrival: An
empirical study of the bluetooth 5.1 positioning system. In Yiannis Pe-
fkianakis and Kate Ching-Ju Lin, editors, Proceedings of the 13th Interna-
tional Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, WiNTECH@@MobiCom 2019, Los Cabos, Mexico, October
25, 2019, pages 13–20. ACM, 2019.

[6] Khaldon Azzam Kordi, Abdulraqeb Alhammadi, Mardeni Roslee, Mo-
hamad Yusoff Alias, and Qazwan Abdullah. A review on wireless emerging
iot indoor localization. In Nur Idora Abdul Razak, Mohd Fais Bin Mansor,
Nani Fadzlina Naim, and Wan Norsyafizan W. Muhamad, editors, 5th IEEE
International Symposium on Telecommunication Technologies, ISTT 2020,
Shah Alam, Malaysia, November 9-11, 2020, pages 82–87. IEEE, 2020.

51

52 BIBLIOGRAPHY

[7] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Ap-
proach, Third International Edition. Pearson Education, 2010.

[8] Nitesh B. Suryavanshi, K. Viswavardhan Reddy, and Vishnu R. Chandrika.
Direction finding capability in bluetooth 5.1 standard. In Navin Kumar
and R. Venkatesha Prasad, editors, Ubiquitous Communications and Network
Computing, pages 53–65, Cham, 2019. Springer International Publishing.

[9] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust
monte carlo localization for mobile robots. Artif. Intell., 128(1-2):99–141,
2001.

[10] Martin Woolley. Bluetooth direction finding: A technical
overview. https://www.bluetooth.com/bluetooth-resources/

bluetooth-direction-finding/. (Accessed: 11.03.2021).

[11] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung. A survey of in-
door localization systems and technologies. IEEE Commun. Surv. Tutorials,
21(3):2568–2599, 2019.

[12] Augustin Źıdek, Shyam Tailor, and Robert Harle. Bellrock: Anonymous prox-
imity beacons from personal devices. In 2018 IEEE International Confer-
ence on Pervasive Computing and Communications, PerCom 2018, Athens,
Greece, March 19-23, 2018, pages 1–10. IEEE Computer Society, 2018.

https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/

	Abstract
	Introduction
	State of the Art
	Indoor Localization
	Trilateration
	Triangulation

	Data Fusion
	Hidden Markov Models
	Kalman Filters
	Dynamic Bayesian Networks

	Bluetooth 5.1 localization
	Angle of Arrival and Angle of Departure
	Technical details
	Performance

	Design
	Requirements Analysis
	Problem Analysis
	AoA and data fusion
	Heterogeneous distributed system

	Architecture
	Structure
	Interaction
	Behavior

	Implementation
	Actor System
	Particle Filtering
	Simulation
	Situated System

	Validation
	Experimental Results
	Simulation
	Physical Experiments

	Code Quality
	Static Analysis
	Testing

	Conclusions
	Future works

