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Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid

quantum-classical algorithm for solving combinatorial optimization problems.

Since most of combinatorial optimization problems may be thought as partic-

ular instances of Ising Hamiltonians, the study of the QAOA is very relevant

from the physical point of view for its potential applications in describing

physical systems. In the QAOA a quantum state is prepared and, through 2p

parameterized quantum evolutions, a final state which represents an extreme of

cost function and encodes the approximate solution of the problem is obtained.

The 2p parameters are determined through a classical parameter optimization

process. In this work we apply QAOA to two different problems, the Max Cut

and the random bond Ising Model (RBIM). For both problems we perform

an analysis of the optimization efficiency, verifying that the quality of the ap-

proximation increases with p. For the Max Cut we perform a further analysis

of the p = 1 case for which we obtain an analytical expression for the cost

function and make observations regarding the choice of the initial parameters

in the optimization procedure. For the RBIM, for different disordered config-

urations we obtain the ground states energies and magnetizations for different

lattice sizes and different level p of the optimisation. We observe that, even

if the magnetisation is obtained for small lattice sizes, its behaviour suggests

the presence of a transition separating a ferromagnetic from a paramagnetic

phase.
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Introduction

Quantum computing is based on computational models that integrate the laws of
quantum mechanics to perform certain computational tasks. The fundamental unit
of quantum computation is the qubit, quantum mechanical counterpart of the bit for
classical computation. Every quantum computational task consists in the manipu-
lation of qubits with unitary gates and the extraction of the output of the quantum
computation through quantum measurement operations. One of the achievements
that are hoped to be reached with quantum computation, is the so called "quantum
advantage", that will help to implement quantum algorithms for solving problems
that are inaccessible for classical computation, due to their extremely high compu-
tational cost. Examples of these problems are simulation of large quantum systems,
search an unstructured database, solving large-scale linear algebra problems [1], [2].
However, the implementation of such quantum algorithms requires quantum error
correction (QEC) protocols, [3], to reduce the effect of quantum noise, an unavoid-
able effect due to the interaction of the system with the environment, which induces
decoherence, i.e. corruption of the quantum information in the qubits manipulation
or outcome reading trough quantum measurement. At present days the proposed
QEC protocols require millions of physical qubits to allow the implementation of
nearly noise-free quantum algorithms [2], however currently realizable quantum de-
vices range from 50 to 100 qubits [1].

Even though the availability of an error-corrected quantum computer with mil-
lions of qubits is still decades away [1], currently realized quantum computers are
the noisy intermediate-scale quantum (NISQ) devices [4]. NISQs are devices that
may work with a limited size number of qubits, about 100 ("intermediate-scale")
and have an imperfect control over those qubits ("noisy") [5]. Among the main goals
in the near-term, is one to achieve quantum advantage with these devices [5] and to
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Introduction

develop new techniques that will be useful also for long-term devices [2]. Many al-
gorithms have been proposed to be implemented in near-term devices, among these
the hybrid quantum-classical algorithms have emerged to be well suited to account
for the constraints imposed by the NISQs devices and be promising candidate for
reaching quantum advantage [1]. The idea behind these algorithms is that they
delegate the classically difficult part of some computation to the quantum computer
and perform the classically tractable part on some classical device.

One of the first proposals of hybrid quantum-classical algorithms is the Quantum
Approximate Optimization Algorithm (QAOA) [6] proposed to solve combinatorial
optimization problems. Besides the fact that QAOA is the most studied gate model
approach for optimization using near-term devices [7], it is well suited for physi-
cal applications because most of the combinatorial optimization problems may be
thought as particular Ising Hamiltonians [7].
In the QAOA a quantum state is prepared as an input of a circuit with p levels,
specified by 2p variational parameters. Using measurement outputs, the parameters
are then optimized by a classical computer and fed back to the quantum computer
that evolves the state in a closed loop. At the end the quantum state prepared using
these optimal parameters encodes the approximate solution of the problem. Many
features and properties of QAOA are yet to be completely understood, like its per-
formance beyond its lowest depth variant [8], the prospects for achieving quantum
advantage [7] or the difficulty of the parameter optimization [9], as the difficulty to
efficiently optimize in the nonconvex, high-dimensional parameter landscape [8].

In this work we implement the QAOA in a noise-free environment, through
classical quantum simulations using QuTiP, an open-source framework written in
the Python programming language [10] designed for simulating the dynamics of
quantum systems. We analise the QAOA and, through these simulations, we study
the performances of the algorithm for different QAOA p-levels, by verifying that they
improve as p increases. We provide also an analysis about the initial parameters
choice in the optimization procedure for the lowest QAOA level case, by leaving an
open question if this analysis may be extended to higher p levels. Lastly we show an
application of QAOA to a physical problem and how it behaves efficiently in finding
the expected system ground states.

For the parameter optimization we exploit a gradient based optimizer, the gradi-
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Introduction

ent descent optimizer, with finite differences [11] as derivative estimator and Adam
[12] as the algorithm to implement the parameters update.

We apply the QAOA to two different problems: in the first for finding the maxi-
mum cut of a given graph and in the second for finding the ground state of a classical
spins Hamiltonian. The first problem is called Max Cut, it is a problem applied to
graphs, where one looks for a bi-partition of vertices with higher number of edges
that go from on partition to the other (the maximum cut). For different graphs we
perform an analysis of the optimization behaviour and of the quality of the QAOA
approximation for different QAOA p levels. We perform a further analysis of the
QAOA level p = 1 case, where we study the behaviour of the optimization steps in
the parameters landscape and discuss the choice of the initial parameters for efficient
optimizations. Then we show that the QAOA returns the expected solutions for the
three graphs.

The second problem is the random bond Ising model (RBIM) [13], which de-
scribes the interaction of classical spins in a two-dimensional (2D) lattice, where the
couplings are ferromagnetic or antiferromagnetic and are distributed randomly with
probability λ, where λ = 1 corresponds to all ferromagnetic couplings. Here, for
three different lattices, we apply QAOA many times to find the spin configurations
corresponding to the ground states of the system for different probabilities λ. We
analyze the optimization procedure for different cases and show that also for this
problem the QAOA finds the optimal parameters. In this problem we also ana-
lyze the behaviour of the classical magnetization and energies of the ground states
obtained from the QAOA for different disorder configurations probabilities and ob-
serve that the returned ground states for different probabilities λ represent states
that go from ordered regions to the disordered ones as λ decrease, as expected. Fur-
ther, even if we consider small finite size lattices, we are able to observe that the
evaluated magnetization has higher values in the smallest lattice for λ smaller than
a certain probability and inverts its behaviour for λ higher than that probability
value, which is the expected behaviour of the order parameter near a critical point.

The structure of this work is the following:

• In Chapter 1 we give an overview of the basic concepts of quantum com-
putation. In Section 1.1 we introduce qubits and the fundamental quantum
mechanical framework on which quantum computation is based. In Section
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1.2 we describe the quantum circuit model, one of the principal gate models
in quantum computation. Here we show the most important quantum gates
and we present the concept of universality. In Section 1.3 we introduce the
basic concepts and ideas behind the realization of a quantum computer. Then
we briefly describe few examples of possible experimental realizations. We
conclude the chapter with the idea behind the near-term devices (NISQ), be-
cause they are the ones that at the present day are experimentally available
and we introduce QuTip, the open-source framework written in the Python
programming language that we’ve used for the QAOA implementation.

• In Chapter 2 we give an overview of the principal ideas behind algorithms and
quantum algorithms, then we give a more detailed description of the quantum
approximate optimization algorithm. In Section 2.1 we introduce algorithms
and we give a brief description of the complexity classes, that are used in the
study of algorithms’ performances and resource requirements. In Section 2.2
we describe briefly few fundamental features of quantum algorithms. Then
we describe the Grover’s algorithm, a quantum search algorithm, one of the
principal quantum algorithm families. We conclude this section by giving
an overview of the variational quantum algorithms (VQAs), a quantum algo-
rithms family to which QAOA belongs to, focusing on their main components.
In Section 2.3 we introduce and define the QAOA, and we describe its pro-
cedure for a generic computational optimization problem. We then describe
the optimization method used in our QAOA implementation, a gradient-based
method, implemented through the Adam algorithm. In the subsection 2.3.2
we describe the Max Cut problem, and we show how it is formulated its cost
functions in terms of the QAOA. After the Max Cut we describe the random
bond Ising model, we show its formulations in terms of the QAOA and also
we give a brief overview of the predicted phase transition that occurs in the
system.

• In Chapter 3 we show our results for the QAOA applied to the Max Cut and
the RBIM. In Section 3.1 we describe our application of QAOA to Max Cut
on three different graphs and for different QAOA levels. We show the steps of
the optimization method for the different cases and we check that it behaves
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as expected. We then analyze the special case of the QAOA level p = 1,
that allows us to discuss about the choice of the initial parameters in the
optimization method procedure. For the Max Cut application we show lastly
that the QAOA results coincide with the expected solutions. In Section 3.2
we describe the application of QAOA to RBIM on three different lattices, for
different QAOA levels, and for different coupling configurations for a picked
probability. Here, we show the steps of the optimization for some probabilities
and check that it behaves as expected. For the RBIM, we show also the plots
of the evaluated classical magnetizations and energies vs. different disorder
configurations probabilities from which we see that the QAOA returns for
each lattice the expected ground states. We observe that, even in small finite
size lattices, the magnetization vs. probability plot presents features of the
expected phase transition. In Section 3.3 we present our outlook and draw our
conclusions.
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1

Quantum computation

In this chapter we introduce the fundamental concepts of quantum computation,
starting with the qubit and all the implications derived from its quantum mechan-
ical nature followed by the basic building blocks for quantum circuits, a universal
language for describing quantum computations.
In the last part of the chapter we present an overview of the actual quantum comput-
ers existent nowadays, by ending with a brief description of NISQ devices and quan-
tum simulations, among which there is the classical quantum simulation through
QuTiP that have been used for the considerations and results about the QAOA
exposed in Chapter 3. The main reference used for this part is [14].

1.1 Qubits and Hilbert space

All computing systems rely on a fundamental ability to store and manipulate infor-
mation. Current computers manipulate individual bits, which store information as
binary 0 and 1 states. Quantum computers leverage quantum mechanical phenom-
ena to manipulate information. To do this, they rely on quantum bits, or qubits. A
qubit is described as a quantum mechanical object which, in analogy to a classical
bit, may be in two states |0〉 and |1〉. The difference between bits and qubits is that
a qubit may also be in a linear combination, or superposition, of the states |0〉 and
|1〉:

|ψ〉 = α|0〉+ β|1〉. (1.1)
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1. Quantum computation

The coefficients α and β are complex numbers, so the state of a qubit is a vector
in a two-dimensional complex vector space, a Hilbert space H . The special states
|0〉 and |1〉, known as computational basis states, form an orthonormal basis for this
vector space.
In a classical system, a bit would have to be in one state or the other, it can be
examined to determine whether it is in the state 0 or 1. However it is not possible
to measure a qubit directly to determine its quantum state, that is, the values of α
and β. To understand that difference, we need to introduce the concept of evolution
of a quantum state and in particular of quantum measurement.

The evolution of a closed quantum system is described by a unitary transforma-
tion. Given the state |ψ〉 at time t1, it evolves to the state |ψ′〉 at time t2 by an
unitary operator U ,

|ψ′〉 = U |ψ〉. (1.2)

Applying an unitary operator on a quantum state changes it, but a hypothetically
observer cannot get any information about the state, to achieve that, a quantum
measurement, which is an interaction that makes the system no longer closed, must
be performed.
Quantum measurements are described by a collection {Mm} of measurements oper-
ators, where the index m refers to the measurement outcomes and the measurement
operators satisfy the completeness equation

∑
mM

†
mMm = I. Given a state |ψ〉, the

probability that the result m occurs is

p(m) = 〈ψ|M †
mMm|ψ〉, (1.3)

and the state after the measurement is

Mm|ψ〉√
p(m)

. (1.4)

For a single qubit, there’s an important measurement, the measurement of a qubit
in the computational basis or single qubit projective measurement, defined by the
two measurements operators M0 = P0 = |0〉〈0|, M1 = P1 = |1〉〈1|, the projectors on
the computational basis states |0〉 and |1〉.
Thus, when a qubit is measured in the computational basis, that measurement leads
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1. Quantum computation

to outcome an 0, corresponding to the state |0〉, with probability |α|2 and an outcome
1, corresponding to the state |1〉, with probability |β|2. It is clear that:

|α|2 + |β|2 = 1, (1.5)

thus, in general, a qubit’s state is a unit vector in a two-dimensional complex vector
space.
From Equation (1.5) follows the geometric interpretation of a qubit, Equation (1.1)
may be rewritten, up to a global phase, as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, (1.6)

where θ and ϕ are real numbers. Thus, by considering the spherical coordinates
rx = sin θ cosϕ

ry = sin θ cosϕ

rz = cos θ

, (1.7)

the possible quantum states for a single qubit can be visualized on the unit three-
dimensional sphere, often call the Bloch sphere, as shown in Figure 1.1.

In general, for any computational task, many qubits are required, so we have
to consider multimple qubits systems. The state space of a quantum system made
up of more than one distinct physical systems, a composite system, is the tensor
product of the state spaces of the distinct physical systems. Thus, if the component
systems are numbered through 1 to n and system number i is prepared in the state
|ψ〉i, then the joint state of the total system is

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉n. (1.8)

From its defintion, it naturally follows that the vector space of that joint vector is
the Hilbert space H ⊗n = H1 ⊗H2 ⊗ . . .⊗Hn.

In the context of a composite system is generalized the definiton of prjective
measurement seen for the single qubit case. A projective measurement is described
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1. Quantum computation

Figure 1.1: Bloch sphere representation of a qubit. Taken from [14]

by an observable, M , with spectral decomposition,

M =
∑
m

mPm, (1.9)

where Pm is the projector onto the eigenspace of M with eigenvalue m. Upon
measuring the state |ψ〉, the probability of getting result m is given by

p(m) = 〈ψ|Pm|ψ〉. (1.10)

Given that outcome m occured, the state of the quantum system immediately after
the measurement is

Pm|ψ〉√
p(m)

(1.11)

1.1.1 Open systems and the density operator

Real systems are open systems that interact with the outside world. Among these
interactions, random interactions exist which cannot be completely controlled and
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1. Quantum computation

they are referred as quantum noise. It is crucial to understand and control such noise
processes in order to build useful quantum information processing systems [15].
Until now the description of a quantum system has been formulated in terms of
state vectors, whose state is completely known, a pure state. An alternate formu-
lation is possible in terms of the density operator or density matrix. This alternate
formulation is mathematically equivalent to the state vector approach, but its func-
tionality relies in the description of quantum systems as mixed states whose state is
not completely known due to presence of noise. A quantum system is described by a
mixed state when it is in one of a number of states |ψi〉 with respective probabilities
pi, with {pi, |ψi〉} an ensemble of pure states. The density operator for the system
is defined by

ρ ≡
∑
i

pi|ψi〉〈ψi|. (1.12)

Unitary evolution and measurement can be rephrased in the language of density
operators, for proof see [14].
Thus, given an unitary operator U , the evolution of the density operator is described
by

ρ′ = UρU †, (1.13)

and, for a measurement described by measurement operators Mm, the probability
of obtaining result m is

p(m) = tr(M †
mMmρ), (1.14)

with the state after the measurement which yields the result m described by the
density operator

ρm =
MmρM

†
m

p(m)
. (1.15)

The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have systems numbered
1 through n, and system number i is prepared in the state ρi, then the joint state
of the total system is ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn. We introduce here an important operator
in the study of density matrices, the trace of a mtrix. Given a matrix A, the trace
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1. Quantum computation

of A is defined to be the sum of its diagonal elements,

tr(A) ≡
∑
i

Aii. (1.16)

Density operators can be characterized by the following theorem [14]:

Theorem 1 (Characterization of density operators). An operator ρ is the density
operator associated to some ensemble {pi, |ψi〉} if and only if it satisfies the condi-
tions:

1. (Trace condition) tr(ρ) = 1.

2. (Positivity condition) ρ is a positive operator.

One of the deepest application of the density operator is as a descriptive tool for
subsysyems of a composite quantum system, via the reduced density operator. In a
system, composed by the subsystems A and B, described by ρAB = ρA ⊗ ρB , the
reduced density operator for system A is defined by

ρA ≡ trB(ρAB), (1.17)

where trB is the partial trace over system B, defined by

trB(|a1〉A〈a2|A ⊗ |b1〉B〈b2|B) ≡ |a1〉A〈a2|A tr(|b1〉B〈b2|B), (1.18)

where |a1〉A and |a2〉A are any two vectors in the state space A, and |b1〉B and |b2〉B
are any two vectors in the state space B.

The last argument exposed in this introductory section regards the concept of
fidelity. One of the most important requirements for being able to perform a useful
computation is to be able to prepare the desired input. In preparing the initial state,
as it has been stated previously, it not possible to exactly know the produced state,
so it is needed a quantity to express the distance between two states. A measure of
distance between quantum states is the fidelity, defined, given two states ρ and σ

as,
F (ρ, σ) ≡ tr

√
ρ1/2σρ1/2. (1.19)

where, for any ρ and σ:

12



1. Quantum computation

• F (ρ, σ) = F (σ, ρ)

• 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, ρ) = 1.

1.2 Quantum gates and quantum circuits

Changes occurring to a quantum state can be described using the language of quan-
tum computation. Analogous to the way a classical computer is built from an elec-
trical circuit containing wires and logic gates, a quantum computer is built from
a quantum circuit containing wires and elementary quantum gates to carry around
and manipulate the quantum information. Classical computer circuits consist of
wires and logic gates. The wires are used to carry information around the circuit,
while the logic gates perform manipulations of the information, converting it from
one form to another.

Operations on a qubit must preserve its unitary norm, and thus are described
by unitary matrices. Of these, some of the most important are the Pauli matrices:

X ≡

[
0 1

1 0

]
; Y ≡

[
0 −i
i 0

]
; Z ≡

[
1 0

0 −1

]
. (1.20)

Three other fundamental single qubit gates are the Hadamard gate (H), phase gate
(S) and π/8 gate (T):

H ≡ 1√
2

[
1 1

1 −1

]
; S ≡

[
1 0

0 i

]
; T ≡

[
1 0

0 exp( iπ
4

)

]
. (1.21)

Symbols for the common single qubit gates are shown in Figure 1.2.
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1. Quantum computation

Figure 1.2: Names, symbols, and unitary matrices for the common single qubit gates. Taken from [14]

The Pauli matrices give rise to three classes of unitary matrices, the rotation
operators about the x̂, ŷ and ẑ axes of the Bloch sphere, defined by:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − isinθ

2
X =

[
cos θ

2
−isin θ

2

−isin θ
2

cos θ
2

]
(1.22)

Ry(θ) ≡ e−iθX/2 = cos
θ

2
I − isinθ

2
Y =

[
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

]
(1.23)

Rz(θ) ≡ e−iθX/2 = cos
θ

2
I − isinθ

2
Z =

[
e−iθ/2 0

0 eiθ/2

]
. (1.24)

In computation, one of the most useful operation is the controlled operation. In
the generalization from one to multiple qubits, the prototypical multi-qubit quantum
logic gate is the controlled -NOT or CNOT gate. This gate has two input qubits,
known as the control qubit (|c〉) and the target qubit (|t〉), respectively. The circuit
representation is shown in Figure 1.3. In terms of the computational basis, the
CNOT performs the action |c〉|t〉 → |c〉|t ⊕ c〉, where |c〉, |t〉 ∈ [|0〉, |1〉] and ⊕ is
the XOR gate. Thus, in the computational basis |c, t〉 the matrix representation on
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1. Quantum computation

CNOT is

UCN =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.25)

As for the single qubit case, the requirement that probability be conserved is ex-

Figure 1.3: Circuit representation for the controlled-NOT gate. The top line represents the control qubit, the
bottom line the target qubit.

pressed in the fact that UCN is a unitary matrix, that is, U †CNUCN = I. More
generally, wuth U is an arbitrary single qubit unitary operation. A controlled -U
operation is a two qubit operation, again with a control and a target qubit. If the
control qubit is set then U is applied to the target qubit, otherwise the target qubit
is left alone; that is, |c〉1|t〉2 → (1+Z1

2
+ 1−Z1

2
U2)|c〉1|t〉2. The controlled-U operation

is represented by the circuit shown in Figure 1.4.

Figure 1.4: Controlled-U operation. The top line is the control qubit, and the bottom line is the target qubit.

We just show here other two very important unitaries in quantum computing.
One is the the SWAP operator. The SWAP operator exchanges the state of two
qubits. That is, in the computational basis SWAP maps

|00〉 → |00〉, |01〉 → |10〉, |10〉 → |01〉and|11〉 → |11〉 (1.26)

15



1. Quantum computation

The SWAP gate is equivalent to the matrix

SWAP ≡


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (1.27)

with respect to the computational basis.
In quantum information, perhaps the most common three-qubit unitary dis-

cussed is the Toffoli gate [16]. This gate is similar to the CNOT except that the
Toffoli gate has two controls instead of one; thus, the Toffoli gate is also known as
the CCNOT gate. The Toffoli gate can therefore be represented as

Toffoli ≡ (II − |11〉〈11|)⊗ I + |11〉〈11| ⊗X =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


, (1.28)

in the computational basis.

1.2.1 Quantum measurement

A special kind operation left as last in this section is measurement. As a circuit
element, a projective measurement in the computational basis is denoted using a
’meter’ symbol, illustrated in Figure 1.5. In the theory of quantum circuits it is
conventional to not use any special symbols to denote more general measurements,
because they can always be represented by unitary transforms with ancilla qubits
followed by projective measurements [14].

Two important priciples in quantum circuits regarding measurements are, as
stated in [14]:

• Principle of deferred measurement: Measurements can always be moved
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1. Quantum computation

Figure 1.5: Symbol for projective measurement on a single qubit.

from an intermediate stage of a quantum circuit to the end of the circuit; if the
measurement results are used at any stage of the circuit then the classically
controlled operations can be replaced by conditional quantum operations.

• Principle of implicit measurement: Without loss of generality, any un-
terminated quantum wires (qubits which are not measured) at the end of a
quantum circuit may be assumed to be measured.

This section ends with the concept of universality and of it is achieved in quantum
computation. A set of gates is said to be universal for quantum computation if any
unitary operation may be approximated to arbitrary accuracy by a quantum circuit
involving only those gates.

Here follows three universality constructions for quantum computation, for proofs
see [14],

• Two-level unitary gates are universal: an arbitrary unitary operator may
be expressed exactly as a product of unitary operators that each acts non-
trivially only on a subspace spanned by two computational basis states.

• Single qubit and CNOT gates are universal: an arbitrary unitary oper-
ator may be expressed exactly using single qubit and CNOT gates.

• Any single qubit operation may be approximated to arbitrary accuracy using
the Hadamard, phase, and π/8 gates.

Thus, these three imply that any unitary operation can be approximated to arbitrary
accuracy using Hadamard, phase, CNOT, and π/8 gates.
It may be shown [14] that this universality approximation is achieved also with
Hadamard, phase, CNOT and Toffoli gates.
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1. Quantum computation

1.3 Quantum computers and quantum simulators

A quantum computer is a device that can arbitrarily manipulate the quantum state
or part of itself. The experimental requirements for building a quantum computer
concern the elementary units of the theory, the quantum bits. To realize a quantum
computer, as stated in [14], we need to:

• give qubits some robust physical representation (to assure that they retain
their quantum properties)

• select a system in which they can be made to evolve as desired, in particular
where its possible to perform a universal family of unitary transformations

• be able to prepare qubits in some specified set of initial states

• be able to measure the final output state of the system

The challenge of experimental realization is that these basic requirements can often
only be partially met [14]. A quantum computer has to be well isolated in order to
retain its quantum properties, but at the same time its qubits have to be accessible
so that they can be manipulated to perform a computation and to read out the
results. Thus, a realistic implementation must strike a delicate balance between
these constraints.
Here follows some complete physical models for a realizable quantum computer:

• Optical photon quantum computer: single photons can serve as good
qubits. Considered two cavities, we use the states |01〉 and |10〉, states that
represent whether the photon is in one cavity or the other, to be as logical 0

and 1. However conventional nonlinear optical materials which are sufficiently
strong to allow single photons to interact inevitably absorb or scatter the
photons.

• Optical cavity quantum electrodynamics: cavity-QED is a technique by
which single atoms can be made to interact strongly with single photons. It
provides a mechanism for using an atom to mediate interactions between single
photons.
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• Ion traps: trapped ions can be cooled to the extent that their electronic and
nuclear spin states can be controlled by applying laser pulses. By coupling
spin states through center-of-mass phonons, logic gates between different ions
can be performed.

• Nuclear magnetic resonance: nuclear spins are nearly ideal qubits, and
single molecules would be nearly ideal quantum computers if their spin states
could only be controlled and measured. Nuclear magnetic resonance makes
this possible using large ensembles of molecules at room temperature, but at
the expense of signal loss due to an inefficient preparation procedure.

Another kind of quantum computer realization is achieved with superconducting
qubits, for more exhaustive description see [17]:

• Superconducting qubits: in a superconductor, the basic charge carriers are
pairs of electrons (known as Cooper pairs), rather than the single electrons in
a normal conductor. At every point of a superconducting electronic circuit,
the condensate wave function describing the charge flow is well-defined by
a specific complex probability amplitude [18]. Research in superconducting
quantum computing is conducted by companies such as Google, IBM, IMEC,
BBN Technologies, Rigetti, and Intel.

Most of the originally proposed quantum algorithms where thought to be imple-
mented on the theories surrounding fault-tolerant quantum computation [2]. Fault-
tolerant quantum computing refers to the framework of ideas that allow qubits to be
protected from quantum errors introduced by poor control or environmental inter-
actions (Quantum Error Correction, QEC) and the appropriate design of quantum
circuits to implement both QEC and encoded logic operations in a way to avoid these
errors cascading through quantum circuits [3]. For tasks theoretically proposed to
be performed by this kind of devices, would be required millions of physical qubits
to incorporate these QEC techniques successfully [19]. Unfortunately, building an
error-corrected quantum computer with millions of physical qubits may take decades
[2].

Currently realized quantum computers are the so called “Noisy Intermediate-
Scale Quantum (NISQ)” devices, i.e. those devices whose qubits and quantum op-
erations are substantially imperfect. One of the goals in the NISQ era is to extract
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the maximum quantum computational power from current devices while developing
techniques that may also be suited for the long-term goal of the fault tolerant quan-
tum computation [5]. Quantum algorithms specially developed to be run on current
quantum computing hardware or those which could be developed in the next few
years, the term near-term quantum computation has been coined [2]. The NISQ
era corresponds to the period when only a few hundred noisy qubits are available,
in contrast, the nearterm era involves any quantum computation performed in the
next few years.
As exposed previously, in many fields such as quantum optics, trapped ions, super-
conducting circuit devices, and most recently nanomechanical systems, it is possible
to design systems using a small number of effective oscillator and spin components,
excited by a limited number of quanta [10]. In 2019, the Google AI Quantum team
implemented an experiment with the 53-qubit Sycamore chip, in which single-qubit
gate fidelities of 99.85% and two-qubit gate fidelities of 99.64% were attained on
average [18].

1.3.1 Quantum simulation and classical computing tech-

niques

As stated in subsection 1.1.1, every quantum system encountered in the real world
is an open quantum system. For although much care is taken experimentally to
eliminate the unwanted influence of external interactions, there remains, if ever so
slight, a coupling between the system of interest and the external world. In addi-
tion, any measurement performed on the system necessarily involves coupling to the
measuring device, therefore introducing an additional source of external influence.
Consequently, developing the necessary tools, both theoretical and numerical, to
account for the interactions between a system and its environment is an essential
step in understanding the dynamics of practical quantum systems [10].

One of the most important practical applications of computation is the simula-
tion of physical systems. Classical computers cannot simulate a quantum system
efficiently, the number of complex numbers needed to describe a quantum system
generally grows exponentially with the size of the system, rather than linearly, as
occurs in classical systems. In general, storing the quantum state of a system with n
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distinct components takes something like cn bits of memory on a classical computer,
where c is a constant which depends upon details of the system being simulated,
and the desired accuracy of the simulation [14].

By contrast, a quantum computer can perform the simulation using kn qubits,
where k is again a constant which depends upon the details of the system being
simulated. This allows quantum computers to efficiently perform simulations of
quantum mechanical systems that are believed not to be efficiently simulable on a
classical computer [14].

In general, for all but the most basic of Hamiltonians, an analytical description
of the system dynamics is not possible, and one must resort to numerical simulations
[10]. In absence of a quantum computer, these simulations must be carried out using
classical computing techniques, where the exponentially increasing dimensionality of
the underlying Hilbert space severely limits the size of system that can be efficiently
simulated. However, nowadays the available quantum computers are the NISQ
devices, that are amenable to classical simulation in a truncated Hilbert space.

Thus, in this this context, can be studied and implemented algorithms suited to
be executed with this kind of devices, with a limited number o maximum qubits.
Among NISQ algorithms there is the QAOA, which applications and performances
we’ve studied through classical quantum simulations using QuTiP. The Quantum
Toolbox in Python, or QuTiP, is an open-source framework written in the Python
programming language, designed for simulating the dynamics of open quantum sys-
tems.

21





2

Quantum algorithms

Quantum computers are designed to outperform standard computers by running
quantum algorithms [19]. In this chapter we introduce algorithms focusing then
on how to analyze an algorithm by giving an explanation about computational
resources requirement and complexity classes. Then, after the fundamental concepts
about algorithms are stated, we describe quantum algorithms, giving descriptions of
the Grover algorithm and the Variational Quantum Algorithms (VQAs), family of
algorithms which Quantum Approximate Optimization Algorithm (QAOA) belongs
to. The last section of the chapter is dedicated to QAOA, the idea behind it, its
properties and applications.

2.1 Algorithms and complexity classes

In mathematics and computer science, an algorithm is a finite sequence of well-
defined, computer-implementable instructions, typically to solve a class of problems
or to perform a computation. Algorithms are always unambiguous and are used
as specifications for performing calculations, data processing, automated reasoning,
and other tasks.

As an effective method, an algorithm can be expressed within a finite amount
of space and time, and in a well-defined formal language for calculating a function.
Starting from an initial state and initial input, the instructions describe a computa-
tion that, when executed, proceeds through a finite number of well-defined successive
states, eventually producing "output" and terminating at a final ending state. The
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transition from one state to the next is not necessarily deterministic; for example
some algorithms, known as randomized algorithms, incorporate random input or
quantum algorithms, by the intrinsic probabilistic quantum mechanical nature of
quantum states.

The study of algorithms is referred to the model of computation they’re imple-
mented to be run, there are many model of computation, both for classical and
quantum computation, some examples are the Turing machine, probabilistic Turing
machine or circuit model for classical computation and the quantum circuit model
exposed in Section 1.2.

In the study of algorithms, the two fundamental properties to be analyzed are:

• computational task which can be performed

• required resources to perform it

Different models of computation lead to different resource requirements for com-
putation [14]. However, many general considerations may be done about a quanti-
tative analysis of resource requirements.

One of the tools to perform this analysis is the asymptotic notation, which can
be used to summarize the essential behaviour of a function [19]. The asymptotic
notation is used to express information about the growth rate of an algorithm.
Given a resource of consumption of f , suppose f(n) and g(n) are two functions on
the non-negative integers, there are three notations [14]:

• O-notation: f(n) is O(g(n)) if there exist M , c such that |f(n)| ≤ c|g(n)| for
all n > M

• Ω-notation: f(n) is Ω(g(n)) if there exist M , c such that |f(n)| ≥ c|g(n)| for
all n > M

• Θ-notation: f(n) is Θ(g(n)) if there exist M , c1, c2 such that c1|g(n)| ≤
|f(n)| ≤ c2|g(n)| for all n > M

The asymptotic notation is important also in the introduction to complexity
classes, another fundamental tool in the algorithms’ analysis. Computational com-
plexity is the study of the time and space resources required to solve computational
problems. The task of computational complexity is to prove lower bounds on the
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resources required by the best possible algorithm for solving a problem, even if
that algorithm is not explicitly known [14]. The chief distinction made in compu-
tational complexity is between problems which can be solved using resources which
are bounded by a polynomial in n, or which require resources which grow faster than
any polynomial in n. In the latter case it is said that the resources required are ex-
ponential in the problem size. A problem is regarded as easy, tractable or feasible if
an algorithm for solving the problem using polynomial resources exists, and as hard,
intractable or infeasible if the best possible algorithm requires exponential resources.
Complexity classes are groupings of problems by hardness, namely the scaling of the
cost of solving the problem with respect to some resource, as a function of the “size”
of an instance of the problem [2]. Here follows some of the fundamental complexity
classes:

• P: decision problems, problems with a yes or no answer, that can be solved in
time polynomial with respect to input size by a deterministic classical com-
puter.

• NP: a problem is said to be in NP, if the problem of verifying the correctness
of a proposed solution lies in P, irrespective of the difficulty of obtaining a
correct solution.

• NP-Complete: NP-complete problems are a set of problems to each of which
any other NP-problem can be reduced in polynomial time and whose solution
may still be verified in polynomial time.

• NP-Hard: NP-hard problems are those at least as hard as NP problems

In Figure 2.1 there’s a representative scheme.

2.2 Quantum algorithms

Quantum algorithms are algorithms that run on any realistic model of quantum
computation. The most commonly used model of quantum computation is the
circuit model, and the quantum Strong Church-Turing thesis states that the quantum
circuit model can efficiently simulate any realistic model of computation [21].
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Figure 2.1: Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Taken from [20]

The study of quantum algorithms is very important for several reasons. Com-
putationally secure cryptography is widely used in society today, and relies on the
believed difficulty of a small number of computational problems. Quantum compu-
tation appears to redefine what is a tractable or intractable problem, and one of the
first breakthroughs in the development of quantum algorithms was Shor’s discovery
of efficient algorithms for factoring and finding discrete logarithms [22].

In the next section we describe one of the principal quantum algorithms, the
quantum search algorithm or Grover’s algorithm. Then, in the following section, we
expose the variational quantum algorithms, a family of quantum algorithms that
has been proposed for essentially all applications that researchers have envisioned
for quantum computers, and they appear to the best hope for obtaining quantum
advantage [1].

2.2.1 Quantum search algorithm

The quantum search algorithm was invented by Grover, and it offers a quadratic
speed-up over classical algorithms for searching an unsorted database [23]. Suppose
you are given a telephone directory sorted according to the names in alphabetic
order. Suppose we know the telephone number or address of a person whose name
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we want to find. For that purpose, the telephone directory is a usual unsorted
database. To find out the person’s name, we would need to identify the line ω that
contains also his telephone number and address.

Given an unstructured database search, with N � 1 items the task is to locate
one particular term ω. Denoted the size of the database N = 2n, it is possible to
encode the entire database in the quantum state |s〉 given by

|s〉 ≡ |+〉⊗n =
∑

z∈{0,1}n

1√
N
|z〉, (2.1)

The idea of the algorithm is that the wanted state in all the database is |ω〉, which
is one of the states encoded in |s〉

|s〉 =
1√
N
|ω〉+

1√
N

∑
z∈{0,1}n

z 6=ω

|z〉

=
1√
N
|ω〉+

√
N − 1

N
|ω⊥〉,

(2.2)

where
|ω⊥〉 ≡ 1√

1−N

∑
z 6=ω

|z〉. (2.3)

The state |s〉 is stated as a state vector in the two-dimensional Hilbert space H2 =

Span{|ω〉, |ω⊥〉}, as shown in Figure 2.2. Therefore, with

θ ≡ arcsin
1√
N
, (2.4)

we have
|s〉 = sin θ|ω〉+ cos θ|ω⊥〉. (2.5)

The idea of the algorithm is that, by applying certain rotation operators on |s〉,
eventually |s〉 will end up in the wanted state |ω〉. Here we will show how to find
|ω〉 from |s〉 in the following steps.
1° Apply

Uω ≡ I2 − 2|ω〉〈ω|, (2.6)
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Figure 2.2: State |s〉 as a state vector in the two-dimensional Hilbert space H2 = Span{|ω〉, |ω⊥〉}.

to |s〉 and obtain
|s′〉 = Uω|s〉

= − sin θ|ω〉+ cos θ|ω⊥.
(2.7)

The geometric implication of operator Uω is reflecting the state |s〉 around the |ω⊥〉
axis, as can be seen in Figure 2.3.

Figure 2.3: The first reflection operator Uω in the geometrical picture. The state |s〉 is reflected around the axis
|ω⊥〉.

2° Apply
Us ≡ 2|s〉〈s| − I2, (2.8)

to |s′〉 and obtain, for proof see [24],

|s′1〉 = Us|s′〉

= − sin 3θ|ω〉+ cos 3θ|ω⊥〉.
(2.9)

The geometric implication of operator Us is reflecting the state around the |s〉 axis,
as can be seen in Figure 2.4 3° Define
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Figure 2.4: The second reflection from the state |s′〉 to the |s′1〉 with the second reflection operator Us.

Rgrov ≡ Us ◦ Uω, (2.10)

therefore
|s′1〉 = Rgrov|s〉. (2.11)

As we can see that the Rn
grov rotates the original state |s〉 by the angle 2θ. Thus, we

can define further that

Rn
grov = Rgrov ◦Rgrov ◦ . . . ◦Rgrov︸ ︷︷ ︸, (2.12)

and we obtain

Rn
grov|s〉 = sin(2n+ 1)θ|ω〉+ cos(2n+ 1)θ|ω⊥〉, (2.13)

which is called Grover iteration.
So, supposing that with T -iteration we can get the marked |ω〉, therefore(2T + 1)θ = π

2

sin θ = 1√
N

⇒

T = π
4θ
− 1

2

θ ' 1√
N
,

(2.14)

namely

T =

√
Nπ

4
[1 +O(N−1/2)] ∝

√
N. (2.15)

Thus, we have shown that the steps of the Grover algorithm find the solution with
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O(
√
N) operations, surpassing the classical counterpart which would require O(N)

operations. Moreover, the quantum search algorithm is general in the sense that it
can be applied far beyond the database search example just described to speed up
many classical algorithms that use search heuristics [14].

2.2.2 Variational quantum algorithms

Most of the current NISQ algorithms relies on harnessing the power of quantum
computers in a hybrid quantum-classical arrangement [2]. Such algorithms delegate
the classically difficult part of some computation to the quantum computer and per-
form the classically tractable part on some sufficiently powerful classical device [1].
These algorithms variationally update the parameters of a parametrized quantum
circuit and hence are referred to as Variational Quantum Algorithms (VQA), some-
times also called Hybrid Quantum-Classical Algorithms. One of the firs proposed
VQA was the Quantum Approximate Optimization Algorithm [6], proposed to solve
combinatorial optimization problems.

A variational algorithm comprises several modular components that can be read-
ily combined, extended and improved with developments in quantum hardware and
algorithms [1]. Chief among these are:

• the cost function, the equation to be variationally minimized/maximized;

• one or several Parameterized Quantum Circuit (PQC), with the quantum cir-
cuit unitaries whose parameters are manipulated in the minimization/maximization
of the cost function;

• the measurement scheme, which extracts the expectation values needed to
evaluate the cost function;

• and the classical optimization, the method used to obtain the optimal circuit
parameters that minimize/maximize the cost function.

Here follows a more detailed description of this components, to show features
and potentiality of VQAs:

Objective function: the Hamiltonian H encodes information about a given
system, and it naturally arises in the description of many physical systems, such
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as in quantum chemistry problems. Its expectation value yields the energy of a
quantum state, which is often used as the minimization target of a VQA. Other
problems not related to real physical systems can also be encoded into a Hamiltonian
form, thereby opening a path to solve them on a quantum computer. Hamiltonian
operators are not all that can be measured on quantum devices; in general, any
expectation value of a function written in an operational form can be extracted from
a quantum computer. After the Hamiltonian of a problem has been determined it
must be decomposed into a set of particular operators that can be measured with a
quantum processor. Such a decomposition is an important step of many quantum
algorithms in general and of VQA in particular [2].

Parameterized quantum circuits (PQC): following the objective function,
the next essential constituent of a VQA is the quantum circuit that prepares the
state that best meets the objective. It is generated by means of a unitary operation
U~θ that depends on a series of parameters ~θ, the PQC. Finding the parameter values
of the PQC that deliver the optimal unitary, on the other hand, is the task of the
classical optimization subroutine. The PQC is applied from an initial state |ψ0〉
that can be the state at which the quantum device is initialized or a particular
choice motivated by the problem at hand. Similarly, the initial parameters and
the structure of the circuit are unknown a priori. However, knowledge about the
particular problem can be leveraged to predict and postulate its structure [2].

Measurement: The main task in most quantum algorithms is to gain informa-
tion about the quantum state that has been prepared on the quantum hardware.
In VQA, this translates to estimate the expectation value of the objective function
〈H〉U~θ . The most direct approach to estimate expectation values is to apply a uni-
tary transformation on the quantum state to the diagonal basis of the observable
H. Then, one can read out the expectation value directly from the probability of
measuring specific computational states corresponding to an eigenvalue of H. Here,
one needs to determine whether a measured qubit is in the |0〉 or |1〉 state. However,
on NISQ devices, the transformation to the diagonal basis mentioned before can be
an overly costly operation [2]. As a NISQ friendly alternative, most observables of
interest can be efficiently parameterized in terms of Pauli strings.

Parameters optimization: In many VQAs, a core task that is allocated to the
classical computer is the optimization of quantum circuit parameters. In principle,
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this problem is not different from any multivariate optimization procedure and stan-
dard classical methods can be applied [25]. However, in the NISQ era, the coherence
time is short, which means that complicated analytical gradient circuits can not be
implemented [2]. At the same time, objective measurements take a long time, which
means that algorithms with few function evaluations should be favored. As a last
criterion, the optimizer should be resilient to noisy data coming from current devices
and precision on expectation values that is limited by the number of shots in the
measurement. These three requirements make that certain existing algorithms are
better suited for PQC optimization and are more commonly used, and that new
algorithms are being developed specifically for PQC optimization [2].

In the next section we introduce the Quantum Approximate Optimization Algorithm,
where all the elements and considerations exposed for VQAs may be found specifi-
cally for this algorithm.

2.3 Quantum Approximate Optimization Algorithm

The quantum approximate optimization algorithm (QAOA) is a quantum algorithm
that produces approximate solutions for combinatorial optimization problems or con-
straint satisfaction problems (CSP), which can in general be reduced to that of
finding the ground state of particular Ising models [9].

Combinatorial optimization problems are specified by n bits and a set {Cα(z)}
of m clauses, or constraints. Each clause is a constraint on a subset of the bits
which is satisfied for certain assignments of those bits and unsatisfied for the other
assignments, of the form

Cα(z) =

1 if z satisfies the clause α

0 otherwise,
(2.16)

where z = z1z2...zn is the bit string, z ∈ {0, 1}n. Typically, clauses only evaluate a
few bits; therefore, we will restrict all Cα(z) to evaluate the satisfiability of at most
k bits, where k is some fixed integer. In other words, each clause is k-local [16].
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The objective function, defined on n bit strings, is the number of satisfied clauses,

C(z) =
m∑
α=1

Cα(z), (2.17)

and, depending on the problem request, solutions are the bitstring for which the
cost function is maximized or minimized.

The aim of the algorithm is to explore the space of bitstring states for a superpo-
sition which is likely to yield a close value for the HC operator to the classical Cmax
or Cmin value upon performing a measurement in the computational basis. Thus,
the idea is to find, through an optimization parameters procedure, the optimal pa-
rameters for which the quantum estimation is close as possible to the ideal classical
value of the cost function.

The quantum computer works in a 2n dimensional Hilbert space with computa-
tional basis vectors |z〉, to encode the problem, the classical cost function (2.17) can
be converted to a quantum problem Hamiltonian by promoting each binary variable
zi to a quantum spin Zi [8]:

HC = C(Z1, Z2, . . . , Zn), (2.18)

which is diagonal in the computational basis. This Hamiltonian, for combinatorial
optimization problems, has the general expression of the Ising model one

HC =
∑
j<k

ljkZjZk, (2.19)

where ljk correspond to scalar weights with real values [7].

We now describe the QAOA steps, a schematic of a p-level Quantum Approxi-
mation Optimization Algorithm is shown in Figure 2.5, where p is a positive integer
which defines the number of alternate parameterized operations applied to the initial
state.

QAOA starts with a uniform superposition over the n bitstring basis states,

|s〉 = |+〉⊗n =
1

2n

∑
z∈{0,1}n

|z〉. (2.20)
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Then, chosen 2p variational parameters (~γ, ~β) = (γ1, ..., γp, β1, ..., βp), a variational
state is obtained through 2p evolutions applied to the initial state

|~γ, ~β〉 = U(HB, βp)U(HC , γp) . . . U(HB, β1)U(HC , γ1)|s〉, (2.21)

where the evolution operators are defined as

U(HC , γ) = e−iγH
C

=
m∏
α=1

e−iγH
C
α , (2.22)

and

U(HB, β) = e−iβH
B

=
m∏
j=1

e−iβH
B
j , (2.23)

with

HB =
n∑
j=1

Xj, (2.24)

indicated as mixing hamiltonian.

Consequently, the expectation value of HC is determined in this variational state

Fp(~γ, ~β) = 〈~γ, ~β|HC |~γ, ~β〉, (2.25)

which is done by repeated measurements of the quantum system in the computa-
tional basis. After a measurement a bitstring zi ∈ {0, 1}n is obtained as outcome
and, after N measurements each zi is obtained with occurrency wi, thus Fp is eval-
uated as

Fp =

∑N
i wiC(zi)∑N

i wi
. (2.26)

A classical computer is used to search for the optimal parameters (~γ∗, ~β∗) so as to
maximize the averaged measurement output Fp(~γ∗, ~β∗),

(~γ∗, ~β∗) = argmax
~γ,~β

Fp(~γ, ~β). (2.27)

This is typically done by starting with some initial guess of the parameters and
performing simplex or gradient based optimization. The idea of the QAOA is to
perform an optimization method over the circuit parameters (~γ, ~β) to maximize Fp.
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This will specify a state |~γ, ~β〉 which is likely to yield an approximately optimal
partition |z〉 upon performing a measurement in the computational basis. A figure
of merit for benchmarking the performance of QAOA is the approximation ratio

r =
Fp(~γ

∗, ~β∗)

Cmax
. (2.28)

In this work we use the approximation ratio to check performances of QAOA for dif-
ferent instances and QAOA levels. The approximation ratio, from how it is defined,
lies in the range 0 < r ≤ 1, where the quality of the approximation is proportional
to r. We expect the quality of the approximation improves as p is increased, as
stated in [6].

Figure 2.5: Schematic of a p-level Quantum Approximation Optimization Algorithm. In this scheme the rotation
operator RXj (βi) that the operator HB applies on the jth qubit is indicated as Xβi . Taken from [8]

The quantum circuit that implements the algorithm consists of unitary gates
whose locality is at most the locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p times (at worst) the number
of constraints [6].

Just to give a grasp of a physical realization of QAOA in a real quantum com-
puter, we give here realization in quantum circuit model the initial state preparation
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and of the QAOA unitaries . The initial state is prepared Hadamard gates as

|s〉 = H⊗n|0〉⊗n =

|0〉 H

|0〉 H

...
...

|0〉 H

. (2.29)

Each of the Pauli-X interactions in the mixing Hamiltonian (2.24) can be imple-
mented with a one-qubit gate [9],

e−
i
2
βXj ≡ Rx(β) (2.30)

and each of the two-qubit ZuZv interactions in the cost Hamiltonian (2.19) can be
implemented with two CNOT gates, plus a local one-qubit gate [9],

e−
i
2
γ(I−ZuZv) ≡

Rz(−γ)
. (2.31)

2.3.1 Optimization method

Hybrid quantum-classical optimization with parameterized quantum circuits pro-
vides a promising approach for understanding and exploiting the potential of noisy
intermediate-scale quantum (NISQ) devices [26]. While a variety of gradient-free
optimization methods have been proposed and studied [27], in this work we exploit
a gradient based optimizer, the gradient descent optimizer, with finite differences
as derivative estimator and Adam as the algorithm to implement the parameters
update.

Given a model parameterized by ~θ ∈ Rd and a cost function F : Rd → R which
depends on ~θ, the exact gradient descent update rule is

~θ(t+1) = ~θ(t) − η∇F (~θ(t)), (2.32)

where, for QAOA, ~θ = (~γ, ~β), d = 2p and F = Fp, the expectation value of the cost
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Hamiltonian HC for the QAOA level p. In the context of hybrid quantum-classical
optimization, it is not possible to evaluate the exact gradient of the cost function,
but it is computed by repeating the state preparation and measurement steps and
accumulating enough outcome statistics to estimate the expectation value of HC .
Thus, the gradient descent update rule is replaced with a stochastic update rule of
the form

~θ(t+1) = ~θ(t) − η∇g(t)(~θ(t)), (2.33)

where g(t)(~θ) is the estimator of the gradient.
A general way of approximating the gradient is to use a finite-difference es-

timator, which requires to experimentally measure expectation values for slightly
different values of the parameters. We evaluate the estimators of the gradient with
the central finite difference method. Given a fixed step size h > 0, the symmetric
finite difference estimator for the ith element of the gradient can be defined as:

g
(t)
i (~θ(t)) =

F (~θ + h~ei)− F (~θ − h~ei)
2h

, (2.34)

where ~ei is the ith element of the canonical base vector in the d-dimentional param-
eters space.

There are many algorithms for gradient descent optimization [28], in this work
we use the Adaptive Moment Estimation (Adam) method proposed in [12]. Adam
is an algorithm for first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moments [12]. The method
computes individual adaptive learning rates for different parameters from estimates
of first and second moments of the gradients. The method is straightforward to
implement, is computationally efficient, has little memory requirements, is invari-
ant to diagonal rescaling of the gradients, and is well suited for problems that are
large in terms of data and/or parameters [12]. Empirical results demonstrate that
Adam works well in practice and compares favorably to other stochastic optimization
methods [12].

Here we show the pseudo-code of the algorithm,
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Algorithm 1 Adam, with hyperparameters set as η = 0.05, β̂1 = 0.9, β̂2 = 0.999,
ε = 10−8, F (~θ) evaluated as (2.26) with 100 samplings and h = 0.1, ~θ0 initialized
with each θi chosen randomly near 0.
Require: η : Stepsize
Require: β̂1, β̂2 ∈ [0, 1) : Exponential decay rates for the moment estimates
Require: ε : smoothing term that avoids division by zero
Require: F (~θ) : Stochastic objective function with parameters ~θ
Require: ~θ0 : Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
for N steps do
t← t+ 1
gt ← ~g(t)(~θ(t−1)) (Get gradients w.r.t. stochastic objective at timestep t as in
(2.34))
mt ← β̂1 ·mt−1 + (1− β̂1) · gt (Update biased first moment estimate)
vt ← β̂2 · vt−1 + (1− β̂2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− β̂t1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− β̂t2) (Compute bias-corrected second raw moment estimate)
if cost function has to be minimized
~θt ← ~θt−1 − η · m̂t/(

√
v̂t + ε) (Update parameters)

if cost function has to be maximized
~θt ← ~θt−1 + η · m̂t/(

√
v̂t + ε) (Update parameters)

end for
return ~θt (Resulting parameters)
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The algorithm updates exponential moving averages of the gradient (mt) and
the squared gradient (vt) where the hyper-parameters β̂1, β̂2 ∈ [0, 1) control the
exponential decay rates of these moving averages. The moving averages themselves
are estimates of the 1st moment (the mean) and the 2nd raw moment (the uncentered
variance) of the gradient. However, these moving averages are initialized as (vectors
of) 0’s, leading to moment estimates that are biased towards zero, especially during
the initial timesteps, and especially when the decay rates are small (i.e. the β̂s
are close to 1). This initialization bias is counteracted, resulting in bias-corrected
estimates m̂t and v̂t.

2.3.2 QAOA applications: Max Cut and RBIM

In this work, we perform the classical simulation of QAOA for the Max Cut problem
and in the study of ground state configurations of spins in the Random Bond Ising
Model (RBIM). Here we briefly introduce the two problems.

Max Cut

The Max Cut problem is an example of a CSP and can be defined as follows: given
a set of vertices V and a set of edges E between the vertices in V , Max Cut on a
simple graph G = (V ;E) is the problem of finding a bi-partition of V , a maximum
cut, that maximizes the number of edges that run between the two partitions. Note
that the edge between vertices u and v will be indicated by 〈u, v〉. Since we will
only consider undirected graphs, 〈u, v〉 is equivalent to the set {〈u, v〉}. The choice
of objective function for Max Cut is

C(z) =
∑
〈u,v〉∈E

Cuv(z), (2.35)

where
Cuv(z) =

1

2
(zu − zv)2. (2.36)

On inspection, we see that for an edge 〈u, v〉 the clause C〈u,v〉(z) assigns the value
1 if zu 6= zv and 0 if zu = zv. Thus, C(z) is maximized when the number of edges
whose vertices are not in the same partition is maximized.
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Thus, in the QAOA implementation, the Max Cut cost function translates into
the Hamiltonian

HC =
∑
〈u,v〉∈E

1

2
(I − ZuZv), (2.37)

which shows that this problem can be reduced to that of finding the ground state
of an antiferromagnetic Ising model [9], defined on the graph G.
For p > 1 the QAOA procedure is the one exposed previously, however, for MAx
Cut, there’s a theorem, [29], which gives an analytical expression of Fp for the p = 1

case

F1(γ, β) = 〈C〉 =
∑
〈u,v〉∈E

〈Cuv〉 =

∑
〈u,v〉

1

2
+

1

4
(sin 4β sin γ)(cosdu γ + cosdv γ)− 1

4
(sin2 2β cosdu+dv−2λuv γ)(1− cosλuv 2γ),

(2.38)
with du: degree of vertex u − 1, dv: degree of vertex v − 1, λuv: number common
neighbours of vertices u and v, for proof see appendix A. So, for the p = 1, QAOA
for Max Cut has a complete classical implementation, and its performances are
confronted with the hybrid implementation for higher QAOA depths.
Max Cut is the most used problem for many QAOA analysis, [9],[8], [7] just to
cite few of the many references about QAOA performance studies applied for Max
Cut. In this work we analyze my QAOA implementation, correct behaviour and
performances firstly for Max Cut. Consequently we apply the QAOA in another,
more physical relevant, situation, the random bond Ising model, where we check the
classical behaviour of the spin configurations of 2D lattices, for different probability
distributions of the two different natures (ferromagnetic or antiferromagnetic) of the
links between nearest neighbours sites.

Random bond Ising Model (RBIM)

Ising-type models play an important role as the simplest nontrivial models for de-
scribing magnetically ordered phases and corresponding phase transitions [13]. Here
the focus is on the random bond Ising model (RBIM), which serves as a simple
model for phase transitions in a system with quenched disorder [13].

The random bond Ising model consists of the standard Ising Hamiltonian with
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nearest neighbour couplings on the two-dimensional (2D) square lattice

HI = −J
∑
〈i,j〉

KijSiSj, (2.39)

where Si, Sj are Ising variables that take on values±1, J is the coupling constant and
Kij is a random coupling given by the probability distribution P (Kij). In particular,
by considering the RBIM on a square lattice with a binary probability distribution

P (Kij) = λδ(Kij −K) + (1− λ)δ(Kij +K), (2.40)

withK > 0. In words, the couplingKij are ferromagnetic with probability λ and an-
tiferromagnetic with probability 1−λ. For this system, a phase transition is expected
from the ferromagnetic to paramagnetic phases as shown in Figure 2.6. For λ = 1,

Ferromagnetic

Paramagnetic

11/2 λc λ

T

Figure 2.6: Phase diagram (λ vs. T = 1/K) for the 2D RBIM on a square lattice with fixed points, phase boundaries
(solid line), ferromagnetic and paramagnetic phases. Taken from [13]

the system is a pure ferromagnetic Ising model with T−1
c = ln

(√
2 + 1

)
/2 ≈ 0.44

[13]. The pure ferromagnetic case can be mapped onto the antiferromagnetic case by
sending Si → −Si for i on one sublattice [13]. More generally, this transformation is
equivalent to sending p→ 1− λ. Hence only the region 0 ≤ λ ≤ 1/2 is considered.
The solid line is a phase boundary which separates the ferromagnetically-ordered
from the paramagnetic phase. For λ < 1, this critical temperature is reduced by
frustration induced by the bond configuration until it vanishes at λ = λc ≈ 0.88

[13].

In this work, we consider only the ground state of the system for the T = 0 limit.
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For different probabilities, the Ising Hamiltonian

HI = −J
∑
〈j,k〉

KjkZjZj, (2.41)

is minimized through the QAOA and the classical energy E and magnetization M
of the system are evaluated. What we expect is that, around pc, the behaviours of E
and M show an observable change, with respect to the probability. It is important
to notice that, the considerations and results exposed in [13] about the phase transi-
tion expected for T = 0 at λ ≈ 0.88 has been obtained in the thermodynamic limit.
Thus, here, my purpose is principally to show another application of my QAOA im-
plementation and to see if, even for small number of lattice sites, a more qualitative
than quantitative result may be obtained.
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3

QAOA results for Max Cut and

RBIM

In this chapter we show and describe the results of our implementation of the quan-
tum approximate optimization algorithm (QAOA) applied to Max Cut and random
bond Ising model (RBIM) optimization problems. The Max Cut is a combinato-
rial optimization problem, well suited for optimization and performances analysis.
The other problem, the RBIM, which describe the interaction of classical spins in
a two-dimensional (2D) lattice, offers an application example of our algorithm to a
physical problem. In Section 3.1 we show the results for the Max Cut problem, in
Section 3.2 we show the results for the RBIM.

3.1 Max Cut: QAOA results

The Max Cut problem introduced in chapter 2 is a combinatorial optimization prob-
lem and can be defined as follows: given a set of vertices (or nodes) V and a set of
edges E between the vertices in V , Max Cut on a simple graph G = (V ;E) is the
problem of finding a bi-partition of V , a maximum cut, that maximizes the number
of edges that run between the two partitions.
The Max Cut problem may be stated in terms of finding the maxima of the cost
function

C(z) =
∑
〈u,v〉∈E

1

2
(zu − zv)2, (3.1)
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3. QAOA results for Max Cut and RBIM

where 〈u, v〉 indicates the edge between vertices u and v, see for details subsection
2.3.2 in chapter 2. expressed in (2.35), i.e. finding the configurations of nodes after
a cut, expressed as z = z1z2...zn, where n is the number of nodes of the graph and
each zu takes value 1 the node u belongs to one partition or 0 otherwise. If we denote
with z∗ a possible maximum cut partition we have that C(z∗) = Cmax, where Cmax
is maximum number of edges that go from one partition to the other.

We apply the QAOA on three different graphs, with 5, 7 and 9 nodes, labelled
as G1, G2 and G3 respectively. The three graphs are shown in Figure 3.1, where we
highlight one of the possible maximum cuts for each graph, i.e. one of the solutions
to the Max Cut problem. For example, in the graph G1 a maximum cut is expressed
by the bitstring z∗ = 00011 and Cmax = 6, in the graph G2 a maximum cut is
expressed by the bitstring z∗ = 0111010 and Cmax = 11 and in the graph G3 a
maximum cut is expressed by the bitstring z∗ = 001101010 and Cmax = 14.

0

1

2

3

4

(a)                   G1

0

1
2

3

4

5
6

(b)                   G2

0

1

2
3

4

5

6
7

8

(c)                   G3

Figure 3.1: (a): 5 nodes graph G1, (b): 7 nodes graph G2, (c): 9 nodes graph G3. For each graph we highlight one
of the maximum cuts, for (a): z∗ = 00011 and Cmax = 6, (b): z∗ = 0111010 and Cmax = 11, (c): z∗ = 001101010
and Cmax = 14.

We describe here the QAOA steps to find the approximate solution (for details
see Section 2.3 of chapter 2):

1. we consider a graph G of which we want to compute the Max Cut. This defines
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3. QAOA results for Max Cut and RBIM

the number of qubits, the Hilbert space the cost function C(z) (3.1) and the
cost Hamiltonian

HC =
∑
〈u,v〉∈E

1

2
(I − ZuZv), (3.2)

where the configuration nodes zu and zv in C(z) translate into the Pauli op-
erators Zu and Zv, for details see subsection 2.3.2 in chapter 2. For example
here we want to find solution to Max Cut for a given graph and the number of
nodes corresponds to the number of qubits and the edges defines the expression
of the cost function.

2. all the possible configurations are encoded in the initial state

|s〉 =
∑

z∈{0,1}n
|z〉, (3.3)

which is the uniform superposition of all the computational base states |z〉 with
z ∈ {0, 1}n. That is, each |z〉 is the quantum state which encodes the classical
counterpart bitstring z, one of the possible configurations of the problem, for
details see Section 2.3 in chapter 2.

3. we choose a level p of the QAOA. This implies that we use 2p parameters
(~γ, ~β) = (γ1, ..., γp, β1, ..., βp) and then apply 2p evolution operations to |s〉 to
obtain the final state

|~γ, ~β〉 = U(HB, βp)U(HC , γp) . . . U(HB, β1)U(HC , γ1)|s〉, (3.4)

where U(HC , γ) = e−iγH
C and U(HB, β) = e−iβH

B , with HB =
∑n

j Xj (for
more details see Section 2.3 in chapter 2). The idea of the QAOA is that
for certain optimal parameters, indicated as (~γ∗, ~β∗), the obtained final state
encodes the problem solution. That is, the optimal final state is expected to be
a superposition of all the possible configurations, where the optimal solutions
are encoded as the states with higher probability in the superposition.

4. find the optimal parameters by applying an optimization method. Here we
use a gradient based method, implemented through the Adaptive Moment
Estimation (Adam) algorithm, described in Section 2.3.1. At each step of the
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optimization, we perform the steps 2. and 3., evaluate the gradient of the
expectation value of the cost function Fp(~γ, ~β) = 〈~γ, ~β|HC |~γ, ~β〉 over the final
state and use the gradient to update new parameters. Fp is obtained through
N quantum measurements on the computational states, where each returns
as output a classical bitstring z, corresponding to one of the possible problem
configurations and Fp is evaluated through the classical mean over all the N
outcomes, as stated in (2.26).

5. thus, after the classical optimization procedure, the obtained parameters are
the ones which maximize the expectation value of the cost function Fp and for
which the optimal final state |~γ∗, ~β∗〉 encodes the problem solution.

We use the approximation ratio

r =
Fp(~γ

∗, ~β∗)

Cmax
, (3.5)

with 0 < r < 1, that gives a benchmark in the analysis of the quality of the QAOA
approximation, i.e. its performance. The idea is that, the closer r is to 1, the
better the approximation is. We expect the QAOA performances to increase with
the QAOA level p, in particular theoretically is expected that

r −→
p→∞

1, (3.6)

as stated in [6].

In the next subsection we show the results about the optimization method and
the performances of the QAOA for different p-levels in terms of r, applied to the
three graphs G1, G2 and G3. We also present results and analysis for the special
case of p = 1 and the solutions for the three graphs obtained with QAOA for the
p = 1 and p = 6 levels.

3.1.1 Optimization method and results

We show in Figure 3.2 the approximation ratio as a function of the optimization
steps for the three graphs G1, G2 and G3. In all the optimization procedures, we
initialize the parameters randomly near zero, and perform 200 Adam steps. For all
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the graphs, the approximation ratio increases and reach a maximum value in the
Adam steps and the performance of the optimization increase with the QAOA level
p as expected.
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Figure 3.2: The approximation ratio r = Fp/Cmax of QAOA on the Max Cut optimization problem as a function
of gradient descent steps, for different QAOA levels, for (a): 5 nodes graph, (b): 7 nodes graph, (c): 9 nodes graph.
The approximation ratio increases with p, as expected.
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We may perform a further analysis about the optimization procedure for the
QAOA level p = 1 case. For the p = 1 case, we have an analytical expression of the
expectation value of the cost function

F1(γ, β) =
∑
〈u,v〉

1

2
+

1

4
(sin 4β sin γ)(cosdu γ+cosdv γ)−1

4
(sin2 2β cosdu+dv−2λuv γ)(1−cosλuv 2γ),

(3.7)
with du: degree of vertex u − 1, dv: degree of vertex v − 1, λuv: number common
neighbours of vertices u and v, for proof see appendix 3 and (for more details see
subsection 2.3.2 in chapter 3). Thus, for the p = 1 case, the parameters optimization
may be performed classically by maximizing F1 and by finding the optimal (γ∗, β∗).
Additionally we are able to study the parameters landscape with respect to F1. We
plot the values of the approximation ratio r = F1/Cmax in a grid o parameters
(γ, β), with β ∈ [−π

4
; π

4
] and γ ∈ [−π

2
; π

2
]. We show, for the graph with 5 nodes, G1,

in Figure 3.3 the Adam steps towards the maximum in the parameters landscape.
The optimization starts with parameters generated randomly near zero in the point
A ≈ (0, 0) and moves towards a maximum in the point B ≈ (−0.48,−0.27) with 200

Adam steps.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
gamma

0.6
0.4
0.2
0.0
0.2
0.4
0.6

be
ta A

B
0.27

0.33

0.39

0.45

0.51

0.57

0.63

0.69

0.75

0.81

Figure 3.3: Adam steps towards maximum of the approximation ratio r = Fp/Cmax for graph with 5 nodes G1. The
optimization starts at the point (γ, β) ≈ (0, 0) labeled as "A" in the figure and moves towards the maximum labeled
as "B" in the figure. The maxima are indicated as an increasing opacity of black and the minima are indicated as an
increasing opacity of red. The steps of the optimization are indicated as green dots that change color from darker
to lighter green.

Another consideration that we can do with the p = 1 case is about the initial
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parameter of the optimization. We always start with parameters near zero in the
optimization procedure. We show in Figure 3.4 the F1 values in grid of different type
of graphs. We may see that for not-regular graphs, for fixed γ, there are regions
where, for any β, the cost function shows plateaux. Thus, for not-regualar graphs,
the parameters optimization may starts in one of these points and will not be able
to reach one of the global maxima. For this reason we initialize the parameters near
zero, to avoid starting points regions of function plateaux.
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Figure 3.4: Plot of analytical F1 in the parameter landscape for (a): not-regular, not-connected graph, (b): regular,
not-connected graph, (c): not-regular, connected graph, (d): regular, connected graph. The periodicity and shape
of F1 depend on the regularity of the graph and for not-regular graphs, the function presents plateaux, which we
want to avoid as starting points of the optimization
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We have shown that the optimization step in our implementation of the QAOA
behaves as expected. We show now that the QAOA returns the expected approxima-
tion solution. In the QAOA steps, after the classical optimization is performed, we
have the optimal parameters (~γ∗, ~β∗) from which we obtain the final state |~γ∗, ~β∗〉. In
Figures 3.5, 3.6, 3.7 we show the probability distributions of the optimal final states
for the graph G1, G2, G3 respectively, for QAOA levels p = 1 and p = 6, where the
optimal parameters are the ones obtained after the optimizations showed in Figure
3.2. For G1 the only maximum cut is the configuration z∗ = 00011 (or z∗ = 11100

equivelently). For G2 the only maximum cut is the configuration z∗ = 0111010 (or
z∗ = 1000101 equivalently). For G3 the maximum cuts are the configurations z∗ =

001101010, 010010011, 010010101, 010010111, 010011010, 010011011, 011010101 (or the
equivalently configurations with the zu flipped). We observe that, for all the three
graphs, both for p = 1 and p = 6 in the superposition of all the possible states,
the ones with higher probability in the final states are the ones corresponding to
the solutions. In particular, we also show that the quality of the approximation for
p = 6 is higher that the one for p = 1.
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Figure 3.5: Probability distributions of all the possible configurations in the Max Cut problem for the 5 nodes graph
G1 encoded in the final states obtained after the optimizations showed in Figure 3.2 for (a): p = 1 QAOA level and
(b): p = 6 QAOA level. The configurations are encoded as the computational basis states |z〉, with z ∈ {0, 1}5, and
the final state is a superposition of these states. For G1 the maximum cut is z∗ = 00011 (or z∗ = 11100 equivalently)
and for both levels the most probable states are the ones corresponding to the maximum cut. In particular, for the
level p = 6 the approximation is higher than the p = 1 case.
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Figure 3.6: Probability distributions of all the possible configurations in the Max Cut problem for the 7 nodes graph
G2 encoded in the final states obtained after the optimizations showed in Figure 3.2 for (a): p = 1 QAOA level and
(b): p = 6 QAOA level. The configurations are encoded as the computational basis states |z〉, with z ∈ {0, 1}5,
and the final state is a superposition of these states. For G2 the maximum cut is z∗ = 0111010 (or z∗ = 1000101
equivalently) and for both levels the most probable states are the ones corresponding to the maximum cut. In
particular, for the level p = 6 the approximation is higher than the p = 1 case. Note that here we label only the
first tick 0000000 and the last tick 1111111.
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Figure 3.7: Probability distributions of all the possible configurations in the Max Cut problem for the 9 nodes
graph G3 encoded in the final states obtained after the optimizations showed in Figure 3.2 for (a): p = 1
QAOA level and (b): p = 6 QAOA level. The configurations are encoded as the computational basis states
|z〉, with z ∈ {0, 1}5, and the final state is a superposition of these states. For G3 the maximum cut are
z∗ = 001101010, 010010011, 010010101, 010010111, 010011010, 010011011, 011010101 (or the equivalently configura-
tions with the zu flipped) and for both levels the most probable states are the ones corresponding to the maximum
cut. In particular, for the level p = 6 the approximation is higher than the p = 1 case. Note that here we label only
the first tick 000000000 and the last tick 111111111.
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3.2 RBIM: QAOA results

The random bond Ising model consists of the standard Ising Hamiltonian with near-
est neighbour couplings on the two-dimensional (2D) square lattice

HI = −J
∑
〈i,j〉

KijSiSj, (3.8)

where Si, Sj are Ising variables, spins, that take on values ±1, J is the coupling
constant and Kij is a random coupling given by the probability distribution P (Kij).
In particular, by considering the RBIM on a square lattice with a binary probability
distribution

P (Kij) = λδ(Kij −K) + (1− λ)δ(Kij +K), (3.9)

with K > 0. Thus, the coupling Kij are ferromagnetic with probability λ and an-
tiferromagnetic with probability 1 − λ. In the following we fix the energy scale by
setting J = 1. In this model, in the thermodynamic limit at T = 0, a phase transi-
tion from the ferromagnetic to the paramagnetic phase is expected for λc ≈ 0.88 (for
more details see Section 2.3.2). We remark that many combinatorial optimization
problems can be thought as particular Ising Hamiltonians (3.8). Thus the RBIM
may be treated with the QAOA, where the problem consists in finding the minima
of the classical Hamiltonian (3.8), i.e. the energy of the system. The minima are the
groundstate configurations of the spins lattices, expressed as S∗ = S∗1S

∗
2 ...S

∗
n, where

n is the number of sites of the lattice, are obtained after the Adam parameters opti-
mization described in Section 3.1. Thus, an analysis about the phase transition may
be performed by finding the groundstate configurations S∗ for different probabilities
λ and then evaluate the classical magnetizationM =

∑n
i S
∗
i and the classical energy

E = −
∑
〈ij〉KijS

∗
i S
∗
j .

We apply the QAOA on three different lattices, with 4, 6 and 9 sites, shown in
Figure 3.8 , for different probability links configurations λ = [0.70, 0.98] with steps
of 0.04.
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(a) (b)

(c)

Figure 3.8: Lattices with (a): 4 sites, (b): 6 sites, (c): 9 sites

As described in 3.1, with the QAOA we obtain an approximate state |~γ∗, ~β∗〉
which encodes the solution to the problem, where the classical Hamiltonian (3.8)
translates into the quantum Hamiltonian operator

HI =
∑
〈i,j〉

KijZiZj. (3.10)

Thus, for the RBIM, we can find the groundstate spin configurations S∗ of the sys-
tem. We describe here the steps that we use to evaluate the classical magnetization
and energy for different probabilities λ in the chosen lattice:

1. we choose a probability λ and obtain the couplings Kjk of the lattice through
the binary probability distribution (see (2.40))

2. we perform the optimization method described in Section 3.1 for 100 steps,
with the only difference that here the expectation value of the problem Hamil-
tonian Fp = 〈~γ, ~β|HI |~γ~β〉 is minimized

3. with the optimal parameters (~γ∗, ~β∗) given by the optimization procedure, we
obtain the optimal final state which encodes the ground state spin configura-
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tions of the lattice

4. from the final state we obtain the most probable sites configuration
S∗ ∈ {−1, 1}n, with n is number of sites in the lattice

5. evaluate the classical magnetization M and energy E for this configuration

The previous steps are repeated for N = 100 different disorder configurations, so, for
each probability, we evaluate the mean values of the magnetization M̄ =

∑N
l Ml

N
±∆M

and energy Ē =
∑N
l El
N
±∆E, where ∆M and ∆Eare the respective standard errors

of M and E.

Here we also use the approximation ratio defined in (2.28) for benchmarking the
QAOA performances, where, for the RMIM, we evaluate it as

r =
Fp(~γ

∗, ~β∗)

Hmin

, (3.11)

where Hmin is the minimum value of the classical Ising Hamiltonian in (3.8). Here,
for each probability λ, in each of the N = 100 trials, the distribution of the couplings
in the lattice is different each time. Thus, for each trial, we determine classically
which is the Hmin to evaluate the approximation ratio. In this problem the approx-
imation ratio as a tool in the analysis of the QAOA performances is quite useful
because of the random nature of the cost function that is to be minimized. Here,
with small number of sites, we may allow ourselves to evaluate classically each time
Hmin for the known coupling distribution.

3.2.1 Optimization method and results

Here we show, for λ= 0.7 and 0.9, the Adam steps for three lattices, in figure 3.9,
3.10, 3.11.

We show in Figures 3.9, 3.10, 3.11 the approximation ratio as a function of the pa-
rameters optimization steps for the three lattices with 4, 6 and 9 nodes respectively.
The optimizations are shown for one of the N = 100 trials for λ = 0.7 and 0.9. For
each optimization, we find the classical Hmin, by knowing the randomly generated
binomial distribution of the couplings and we evaluate the approximation ratio with
(3.11). In all the optimization procedures, we initialize the parameters randomly
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3. QAOA results for Max Cut and RBIM

near zero, and perform 100 Adam steps. For all the graphs, the approximation ratio
increases and reach a maximum value in the Adam steps. The performance of the
optimization increases with the QAOA level p for most of the cases shown. For some
cases, the p = 2 level gives an approximation slightly better than the p = 3, but
that probably is due to the fact that, for different couplings distribution Hmin in
general is different each time and so the comparison of the approximation ratio for
different levels could not be relevant in this case.
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r
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level 2
level 3
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level 1
level 2
level 3

Figure 3.9: The approximation ratio r = Fp/Hmin of QAOA on the RBIM optimization problem as a function
of gradient descent steps in a lattice with 4 sites, for different QAOA levels, for (a): probability λ = 0.7, (b):
probability λ = 0.9.
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Figure 3.10: The approximation ratio r = Fp/Hmin of QAOA on the RBIM optimization problem as a function
of gradient descent steps in a lattice with 6 sites, for different QAOA levels, for (a): probability λ = 0.7, (b):
probability λ = 0.9.
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Figure 3.11: The approximation ratio r = Fp/Hmin of QAOA on the RBIM optimization problem as a function
of gradient descent steps in a lattice with 9 sites, for different QAOA levels, for (a): probability λ = 0.7, (b):
probability λ = 0.9.

We show now the obtained classical values of the magnetization and energy for
different probabilities λ. In Figure 3.12, we show the plot of M per site and E per
site for different probabilities λ in the lattices with 4, 6 and 9 sites, where, for each
lattice, the QAOA levels p = 1, 2 and 3 are compared. In Figure 3.13, we show the
plot of M and E per site for the QAOA levels p = 1, 2 and 3, where, for each level,
the lattices with 4, 6 and 9 sites the are compared. Even though strong observations
about the phase transition cannot be stated because we analyze small lattices and
so it is impossible for us to make considerations concerning the thermodynamic
limit condition, some features may still be highlighted. All the magnetizations, for
all lattice and levels, increase with λ and the energy decreases, as expected. This
shows that a phase transition occurs for a certain probability, because, by decreasing
the probability λ, the magnetization per site goes from the maximum possible value
of 1, representing an ordered region, to lower values, indicating more disordered
regions. The same is deduced from the energy, which, by decreasing the probability,
goes from the minimum energy per site, −1,−7

6
and −12

9
for lattices with 4, 6 and 9

sites respectively, representing a completely polarized state, a ferromagnetic state,
to higher values, were the ferromagnetic state is lost. In particular, in Figure 3.13 we
may observe that, before λ = 0.9 the magnetization is higher for the smallest lattice
size and decreases as the lattice size increases, whereas after that point, we observe
the opposite behaviour. That is the expected behavior of an order parameter in
proximity of a critical point and that is more evident for the p = 3 case, the one

60



3. QAOA results for Max Cut and RBIM

with higher QAOA approximation quality.
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Figure 3.12: Magnetization M and energy E per site for the lattices with 4 ((a) and (b) respectively), 6 ((c) and
(d) respectively) and 9 ((e) and (f) respectively) sites, where, for each lattice, the QAOA levels p = 1, 2 and 3 are
compared. All the magnetizations, for all levels, increase with λ and the energy decreases, as expected. This is an
evidence for a phase transition for a certain probability, because, by decreasing the probability λ, the magnetization
per site goes from the maximum possible value of 1, representing an ordered region, to lower values, indicating
more disordered regions. The same is deduced from the energy, which, by decreasing the probability, goes from the
minimum energy per site, −1,− 7

6
and − 12

9
for lattices with 4, 6 and 9 sites respectively, representing a completely

polarized state, a ferromagnetic state, to higher values, were the ferromagnetic state is lost.

61



3. QAOA results for Max Cut and RBIM

0.7 0.8 0.9
probability 

0.4

0.6

0.8

1.0

M
 p

er
 si

te
(a)           level 1

sites 4
sites 6
sites 9

0.7 0.8 0.9
probability 

1.2

1.0

0.8

E 
pe

r s
ite

(b)           level 1

sites 4
sites 6
sites 9

0.7 0.8 0.9
probability 

0.4

0.6

0.8

1.0

M
 p

er
 si

te

(c)           level 2
sites 4
sites 6
sites 9

0.7 0.8 0.9
probability 

1.2

1.0

0.8
E 

pe
r s

ite

(d)           level 2

sites 4
sites 6
sites 9

0.7 0.8 0.9
probability 

0.4

0.6

0.8

1.0

M
 p

er
 si

te

(e)           level 3
sites 4
sites 6
sites 9

0.7 0.8 0.9
probability 

1.2

1.0

0.8

E 
pe

r s
ite

(f)           level 3

sites 4
sites 6
sites 9

Figure 3.13: M and E per site for the level p = 1 ((a) and (b) respectively), p = 2 ((c) and (d) respectively) and
p = 3 ((e) and (f) respectively) sites, where, for each level, the lattices with 4, 6 and 9 sites are compared. All
the magnetizations, for all sites, increase with λ and the energy decreases, as expected. This is an evidence for a
phase transition for a certain probability, because, by decreasing the probability λ, the magnetization per site goes
from the maximum possible value of 1, representing an ordered region, to lower values, indicating more disordered
regions. The same is deduced from the energy, which, by decreasing the probability, goes from the minimum energy
per site, −1,− 7

6
and − 12

9
for lattices with 4, 6 and 9 sites respectively, representing a completely polarized state,

a ferromagnetic state, to higher values, where the ferromagnetic state is lost. In particular, we may observe that,
before λ = 0.9 the magnetization is higher for the smallest lattice size and decreases as the lattice size increases,
whereas after that point, we observe the opposite behaviour. That is the expected behavior of an order parameter in
proximity of a critical point and that is more evident for the p = 3 case, the one with higher QAOA approximation
quality.
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3.3 Outlook and conclusions

In this work we have implemented the QAOA through classical simulations. We have
applied it for finding the Max Cut of a graph and finding the ground state of the
random bond Ising model (RBIM). In the QAOA steps we performed the classical
optimization procedure using a gradient descent method implemented via the Adam
algorithm, with hyper parameters η = 0.05, β̂1 = 0.9, β̂2 = 0.999 and ε = 10−8. In
the gradient descent method the gradients were evaluated with the central finite
differences method with increment h = 0.1. The quantum expectation value of
the cost Hamiltonian Fp (see (2.25)), which was to be optimized, was estimated at
each step of the optimization by sampling 100 outcomes of simulated quantum mea-
surements. For Max Cut in the optimization procedure we expected, starting from
parameters picked randomly near zero, the optimization to move in the parameter
landscape towards parameters for which the expectation value Fp becomes closer
to the maximum of the classical cost function C(z) (see (3.1)) which encodes the
problem. In particular, we expected the optimization efficiency to increase with the
QAOA level p. For Max Cut we have verified both these expected behaviours for
different graphs, thus verifying that our QAOA implementation behaves correctly.

Further, in the p = 1 case for Max Cut, we have studied the two-dimensional
parameters landscape using the analytical expression of the expectation value of
the cost function F1 (see (2.38)), and we discuss that the parameter landscape
presents plateaux for not-regular graphs that we want to avoid as starting point in
the parameters optimization. These plateaux never include the point (0, 0), that is
why, we started all our optimization procedures near (0, 0). A further investigation
about this observation is beyond the scope of this work, but it leaves open a more
in-deep study for a general demonstration or to generalize it to the p > 1 cases.

For the RBIM, for each randomly generated coupling configuration, we expected
the optimization to move in the parameter landscape towards parameters for which
the expectation value Fp becomes closer to the minimum of the classical Ising Hamil-
tonian Hi (see (3.8)) for these couplings. In the RBIM we evaluated, for different
coupling configuration, the magnetizations M and energies E of the groundstates
obtained after the optimization procedures. Since a probability λ = 1 corresponds
to all ferromagnetic couplings, decreasing λ means moving from an order region to
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the disordered one. We have verified that the QAOA for each probability returned
the actual graundstates for the specific coupling configuration, because the energies
values per site decreases as λ increases whereas the magnetization increases along
with λ verifying the expected behaviour.

In the RBIM, in the thermodynamic limit at T = 0, a phase transition occurs
for a certain critical probability λc and we observed that, even if we considered only
small finite size lattices, the ordered parameter magnetization behaves as expected
near the critical point. Infact the magnetization is higher in the smallest lattice
for probabilities smaller than the critical one and it’s higher in the larger lattice for
probabilities higher than the critical one. These two results strengthened further the
fact that the QAOA is well suited for the study of groundstates of physical systems
described by Ising Hamiltonians. In particular, even for small lattices, with QAOA
we are be able to perfom analysis of the phase transition of a physical system.

This work and its results may be pursued further on several aspects. Here we
have applied the QAOA to only two different problems, one possible aspect to be
checked can be the application of this QAOA implementation to other combinato-
rial optimization problems. For how it was designed, the code of this algorithm was
thought to be implemented on an actual real quantum device, with just a needed
transposition between the operators and the corresponding quantum gates. Thus,
its performances and limitations when implemented on a real device may be subject
to further study. Another aspect that can be investigate further is the implemen-
tation of different optimization methods. Where balance between performances
and resource requirements may be compared. This analysis would be very relevant
contextualized in the possible eventuality of implementation in a real quantum com-
puter, where the actual device put strong constraints on the resource requirements.
As stated above, a further study may be done about the parameters landscape, by
investigating more thoroughly the analytical expression for the p = 1 case for Max
Cut and in general try to understand better the p > 1 cases for different problems.
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A

Proof of analytical expression

of F1 for Max Cut

We have to prove that, for edge 〈u, v〉,

〈Cuv〉 =
1

2
+

1

4
(sin 4β sin γ)(cosdu γ+cosdv γ)−1

4
(sin2 2β cosdu+dv−2λuv γ)(1−cosλuv 2γ),

with du: degree of vertex u − 1, dv: degree of vertex v − 1, λuv: number common
neighbours of vertices u and v.

Proof :

〈Cuv〉 = 〈s|eiγHC

eiβH
B

[
1

2
(I − ZuZv)]e−iβH

B

e−iγH
C |s〉

=
1

2
− 1

2
〈s|eiγHC

eiβH
B

ZuZve
−iβHB

e−iγH
C |s〉

.

〈ZuZv〉 = 〈s|eiγHC

eiβH
B

ZuZve
−iβHB︸ ︷︷ ︸

(?)

e−iγH
C |s〉

= 〈s|eiγHC

(ZuZv cos2 2β)e−iγH
C |s〉︸ ︷︷ ︸

(I)

+ 〈s|eiγHC

(ZuYv + YuZv) cos 2β sin 2βe−iγH
C |s〉︸ ︷︷ ︸

(II)
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+ 〈s|eiγHC

(YuYv sin2 2β)e−iγH
C |s〉︸ ︷︷ ︸

(III)

(?) =
∏
j

eiβXjZuZv
∏
j

e−iβXj = eiβXuZue
−iβXueiβXvZve

−iβXv

=
↑

(1′)

[Zu cos 2β + Yu sin 2β][Zv cos 2β + Yv sin 2β]

= ZuZv cos2 2β + (ZuYv + YuZv) cos 2β sin 2β + YuYv sin2 2β

(I):

〈s|eiγHC

ZuZve
−iγHC |s〉 =

↑
(2′)

〈s|ZuZv|s〉 =
↑

(3′)

0

(II):

〈s|eiγHC

YuZve
−iγHC |s〉 = 〈s|

∏
jk

ei
γ
2

(I−ZjZk)YuZv
∏
jk

e−i
γ
2

(I−ZjZk)|s〉

= 〈s|
∏
jk

e−i
γ
2
ZjZkYuZv

∏
jk

ei
γ
2
ZjZk |s〉

=
↑

(4′)

〈s|
d+1∏
r

[cos
γ

2
− iZuZwr sin

γ

2
]YuZv

d+1∏
r

[cos
γ

2
+ iZuZwr sin

γ

2
]

=
↑

(1′)

〈s|[cos γ − iZuZv sin γ]
d∏
r

[cos γ − iZuZwr sin γ]YuZv|s〉

=
↑

(3′)

〈s|(−i sin γ cosd γZuZvYuZv︸ ︷︷ ︸
(−iXu)

)|s〉+ 0 + 0 + . . .+ 0︸ ︷︷ ︸
2(d+1)−1 terms

= 〈s| − i sin γ cosd γXu|s〉 = − sin γ cosd γ

〈s|eiγHC

YuZve
−iγHC |s〉 = . . . = − sin γ cose γ,
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(III):

〈s|eiγHC

YuYve
−iγHC |s〉 =

↑
(5′)

〈s|ei
γ
2 e−i

γ
2
ZuZveiγH

C
u eiγH

C
v eiγH̄

C
YuYve

−i γ
2 ei

γ
2
ZuZve−iγH

C
u e−iγH

C
v e−iγH̄

C |s〉

=
↑

(1′)

〈s|ei2γHC
u ei2γH

C
v YuYv|s〉

= 〈s|
d∏
r

[cos γ + iZuZwr sin γ]
e∏
q

[cos γ + iZuZwq sin γ]YuYv|s〉

=
↑

(6′)

1

2
cosd+e−2f γ(1− cosf 2γ)

with d = du, e = dv and f = λuv.

(1’): with L ⊆ K, K ⊆ [n], [n] = {1, ..., n}, σiL = ⊗
u∈L

σiu, σiu Pauli matrix and

i, j, k ∈ {x, y, z}

eiασ
i
LσjLe

−iασiL = [cosα + iσiL sinα]σjL[cosα− iσiL sinα]

= σjL cos2 α + σiLσ
j
Lσ

i
L sin2 α + i[σiL, σ

j
L] sinα cosα

=
↑

(1.1′)

σjL cos2 α + (i)2|L|σjL sin2 α + (i)|L|+1(−iεjikσjLσ
i
L)[(εijk)

|L| − (εjik)
|L|] sinα cosα

= σjL{cos2 α + (−1)|L| sin2 α + (i)|L|+2[(εijk)
|L|+1 + (εjik)

|L|+1]σiL sinα cosα}

=

σ
j
L{cos 2α− iσiL sin 2α} = σjLe

−i2ασiL = εjikσ
k
L sin 2α, if L = {u}

σjL{cos2 α + sin2 α} = σjL, if L = {u, v}

(1.1’):

σiLσ
j
Lσ

i
L = σiL ⊗

u∈L
σjL⊗σ

i
L = σiL(i)|L|(εjik)

|L|σkL

= (i)2|L|(εjik)
|L|(εikj)

|L|σjL = (i)2|L|σjL

i(σiLσ
j
L − σ

j
Lσ

i
L) = i[(i)|L|(εijk)

|L|σkL − (i)|L|(εjik)
|L|σkL]

= [(εijk)
|L| − (εjik)

|L|](i)|L|+1σkL
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(2’):

HC =
∑
〈j,k〉

1

2
(I − ZjZk) and σiσj = δijI ⇒ HC and ZuZv commute

(3’):

〈s|σi|s〉 =

1, if i = x

0, otherwise

(4’):

YuZv
∏
〈j,k〉

ei
γ
2
ZjZk =

∏
〈j,k〉
k,j 6=u

e−i
γ
2
ZjZkYuZv

d+1∏
i

ei
γ
2
ZuZwi ,

where, in d = du are taken all the edges with vertex u, except 〈u, v〉

(5’):

HC =
1

2
(I − ZuZv) +HC

u +HC
v + H̄C ,

where HC
u : terms with only u, HC

v : terms with only v, H̄C : terms with neither u
nor v

(6’):

〈s|
d∏
r

[cos γ + iZuZwr sin γ]
e∏
q

[cos γ + iZuZwq sin γ]YuYv|s〉 = (∗)

in (∗) the only non-null terms are the ones for which ZwrZwq = I, so, by listing the
terms:

(i sin γ)2ZuZwrZvZwqYuYv︸ ︷︷ ︸
−XuXv

cose+d−2 γλuv+
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(i sin γ)4ZuZwrZvZwqZuZw′rZvZw′qYuYv︸ ︷︷ ︸
YuYv

cose+d−4 γ

(
λuv

2

)
+

(i sin γ)6(−XuXv) cose+d−6 γ

(
λuv

3

)
+

...

the idea of are written the above terms is that in the product there are λuv "i sin2 γ"
terms that can be "arranged" in groups of 1, 3, 5, ... terms. So, with λuv = f

(∗) =

(
f

1

)
cosd+e−2 γ sin2 γ +

(
f

3

)
cosd+e−6 γ sin6 γ +

(
f

5

)
cosd+e−10 γ sin1 0γ + . . .

=

f∑
i=1,3,5,...

(
f

i

)
cosd+e−2i γ sin2i γ = cosd+e−2f γ

f∑
i=1,3,5,...

(
f

i

)
cos2(f−i) γ sin2i γ

=
↑

(6.1′)

cosd+e−2f γ
1

2
[(cos2γ + sin2 γ)f − (cos2γ − sin2 γ)f ] =

1

2
cosd+e−2f (1− cosf2γ)

(6.1): from binomial theorem, with a, b ∈ R

(a+ b)f =

f∑
i=0

(
f

i

)
af−ibi =

f∑
i=0,2,4,...

(
f

i

)
af−ibi +

f∑
i=1,3,5,...

(
f

i

)
af−ibi

(a− b)f =

f∑
i=0

(
f

i

)
(−1)iaf−ibi =

f∑
i=0,2,4,...

(
f

i

)
af−ibi −

f∑
i=1,3,5,...

(
f

i

)
af−ibi

⇒
f∑

i=1,3,5,...

(
f

i

)
af−ibi =

1

2
[(a+ b)f − (a− b)f ]

Thus, we have that:

〈Cuv〉 =
1

2
[1− cos 2β sin 2β(− sin γ cosd γ − sin γ cose γ) + sin2 2β(

1

2
cosd+e−2f γ(1− cosf2γ))]

=
1

2
+

1

4
(sin 4β sin γ)(cosdu γ + cosdv γ)− 1

4
(sin2 2β cosdu+dv−2λuv γ)(1− cosλuv 2γ)

73



A. Proof of analytical expression of F1 for Max Cut

74



Bibliography

[1] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum
algorithms (2020), arXiv:2012.09265 [quant-ph] .

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,
M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim,
L.-C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum (nisq)
algorithms (2021), arXiv:2101.08448 [quant-ph] .

[3] A. Paler and S. J. Devitt, An introduction to fault-tolerant quantum computing
(2015), arXiv:1508.03695 [quant-ph] .

[4] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, New Journal of
Physics 18, 023023 (2016).

[5] J. Preskill, Quantum 2, 79 (2018).

[6] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization
algorithm (2014), arXiv:1411.4028 [quant-ph] .

[7] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute, K. Arya,
J. Atalaya, J. C. Bardin, R. Barends, S. Boixo, and et al., Nature Physics
10.1038/s41567-020-01105-y (2021).

[8] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, Physical Review
X 10, 10.1103/physrevx.10.021067 (2020).

[9] G. E. Crooks, Performance of the quantum approximate optimization algorithm
on the maximum cut problem (2018), arXiv:1811.08419 [quant-ph] .

75

https://arxiv.org/abs/2012.09265
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/1508.03695
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1103/physrevx.10.021067
https://arxiv.org/abs/1811.08419


BIBLIOGRAPHY

[10] J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 183,
1760 (2012).

[11] G. G. Guerreschi and M. Smelyanskiy, Practical optimization for hybrid
quantum-classical algorithms (2017), arXiv:1701.01450 [quant-ph] .

[12] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017),
arXiv:1412.6980 [cs.LG] .

[13] I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Physical Review B 63,
10.1103/physrevb.63.104422 (2001).

[14] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation (Cambridge University Press, 2000).

[15] M. M. Wilde, Quantum Information Theory , 2nd ed. (Cambridge University
Press, 2017).

[16] C. Ryan-Anderson, Quantum algorithms, architecture, and error correction
(2018), arXiv:1812.04735 [quant-ph] .

[17] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, Applied Physics Reviews 6, 021318 (2019).

[18] B. R. e. a. Arute F., Arya K., Nature 574, 505–510
https://doi.org/10.1038/s41586-019-1666-5 (2019).

[19] A. Montanaro, Quantum algorithms: an overview (2016).

[20] Brilliant.org., Complexity classes (2021).

[21] M. Mosca, Quantum algorithms (2008), arXiv:0808.0369 [quant-ph] .

[22] P. W. Shor, in Proceedings 35th Annual Symposium on Foundations of Com-
puter Science (1994) pp. 124–134.

[23] P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and
Quantum Information (Springer-Verlag, Berlin, Heidelberg, 2006).

[24] Y. Zhang, Lecture notes on quantum information and computation (2015).

76

https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://arxiv.org/abs/1701.01450
https://arxiv.org/abs/1412.6980
https://doi.org/10.1103/physrevb.63.104422
http://gen.lib.rus.ec/book/index.php?md5=a44c9a09001636de1b886b950669077a
https://arxiv.org/abs/1812.04735
https://doi.org/10.1063/1.5089550
https://doi.org/https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/npjqi.2015.23
https://brilliant.org/wiki/complexity-classes/
https://arxiv.org/abs/0808.0369
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
http://physics.whu.edu.cn/dfiles/wenjian/2_02_v4_QIC_wuda_August_01_2015_teach-in-plan.pdf


BIBLIOGRAPHY

[25] W. Lavrijsen, A. Tudor, J. Müller, C. Iancu, and W. de Jong, Classical opti-
mizers for noisy intermediate-scale quantum devices (2020), arXiv:2004.03004
[quant-ph] .

[26] R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Faehrmann, B. Meynard-
Piganeau, and J. Eisert, Quantum 4, 314 (2020).

[27] D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N. H. Nguyen, C. H.
Alderete, A. Perdomo-Ortiz, N. Korda, A. Garfoot, C. Brecque, L. Egan,
O. Perdomo, and C. Monroe, Science Advances 5, 10.1126/sciadv.aaw9918
(2019), https://advances.sciencemag.org/content/5/10/eaaw9918.full.pdf .

[28] S. Ruder, An overview of gradient descent optimization algorithms (2017),
arXiv:1609.04747 [cs.LG] .

[29] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Physical Review A 97,
10.1103/physreva.97.022304 (2018).

77

https://arxiv.org/abs/2004.03004
https://arxiv.org/abs/2004.03004
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.1126/sciadv.aaw9918
https://arxiv.org/abs/https://advances.sciencemag.org/content/5/10/eaaw9918.full.pdf
https://arxiv.org/abs/1609.04747
https://doi.org/10.1103/physreva.97.022304

	Introduction
	Quantum computation
	Qubits and Hilbert space
	Open systems and the density operator

	Quantum gates and quantum circuits
	Quantum measurement

	Quantum computers and quantum simulators
	Quantum simulation and classical computing techniques


	Quantum algorithms
	Algorithms and complexity classes
	Quantum algorithms
	Quantum search algorithm
	Variational quantum algorithms

	Quantum Approximate Optimization Algorithm
	Optimization method
	QAOA applications: Max Cut and RBIM


	QAOA results for Max Cut and RBIM
	Max Cut: QAOA results
	Optimization method and results

	RBIM: QAOA results
	Optimization method and results

	Outlook and conclusions

	Appendices
	Proof of analytical expression of F1 for Max Cut
	Bibliography

