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Sommario

Le criptovalute stanno acquisendo straordinaria importanza come asset finanziari
nell’economia contemporanea. Le loro caratteristiche rivoluzionarie, l’innovativa
struttura sottostante e la crescente capitalizzazione incentivano lo studio del mercato
delle criptovalute. Anche se la ricerca è ancora limitata, l’effettiva disponibilità
di opzioni e futures negoziati su piattaforme di scambio indipendenti incoraggia la
costruzione e la formalizzazione di un mercato apposito. Vista la mancanza di una
regolamentazione centrale e l’assenza di opzioni ufficialmente negoziate sul mercato,
comprendere la peculiare evoluzione del prezzo delle criptovalute è essenziale per lo
sviluppo di un mercato per gli strumenti derivati. In questa tesi, proponiamo un
meccanismo basato sul modello a volatilità stocastica (SVCJ) proposto da Duffie,
Pan e Singleton (2000) per la simulazione dell’andamento dei prezzi delle criptovalute.
Viene proposta una calibrazione del modello tramite l’utilizzo dei dati storici relativi
al prezzo dei Bitcoin (BTC). I risultati delle analisi svolte corroborano l’ipotesi
iniziale, ossia che il modello SVCJ risulta essere una scelta ragionevole per simulare
le dinamiche di prezzi e ritorni dei BTC.
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Abstract

Cryptocurrencies have become extraordinarily important financial assets in
contemporary economy. Their revolutionary characteristics, innovative underlying
structure and the growing market capitalization are stimulating the study of
cryptocurrency market. Even if research on cryptocurrency are still limited, the
actual availability of options and futures traded on independent exchange platform
encourages the creation and formalization of a derivatives market for cryptocurrencies.
Given the lack of central regulation and the absence of fundamentals, understanding
the peculiar evolution of cryptocurrencies price is essential to the development of
a contingent claims market. In this thesis, we propose a mechanism based on the
stochastic volatility correlated jump (SVCJ) model proposed by Duffie, Pan and
Singleton (2000) for simulating cryptocurrencies price paths. We perform model
calibration using Bitcoin (BTC) historical data and verify that the goodness of fit
reached makes the SVCJ model a reasonable choice for simulating BTC price and
return evolution.
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Introduction
In the research on option pricing, the dynamics of the asset price is usually represented
by a geometric Brownian motion. Brownian motion paths are characterized by
continuity and scale invariance, then using such dynamics to simulate and reproduce
stocks evolution lead to strong assumption over options underlying trajectory that
are generally inconsistent with their actual behaviour.

Removing the hypotheses of continuity and scale invariance is our first objective.
In this perspective, we need to modify the underlying framework to preserve the
robustness of important results that may be threatened by the presence of jumps in
prices and non-continuous paths. Therefore, we move from diffusion models to jump-
diffusion ones, where the evolution of price is driven by a diffusion process interrupted
by randomly occurring jumps representing rare crashes and abrupt changes in price
dynamics. Such an evolution can be represented by modeling the price as a Lévy
process.

A jump-diffusion model is substantially build up from a Brownian motion (for
the diffusion part) and a Poisson process (for the jump part). In the first chapter we
present and discuss several aspects related to building jump-diffusion models and the
main theorems needed. The final scope of this section is to introduce the Stochastic
Volatility Correlated Jump (SVCJ) model formalized by Duffie, Pan and Singleton,
[1], that will be used in Chapter 3 to estimate Bitcoin prices and returns dynamics.

Once the model of interest for our dissertation is introduced, it is essential
to identify a suitable method to estimate the diffusion process to real data. For
stochastic volatility models, a particularly well suited method is represented by the
Markov chain Monte Carlo (MCMC), as suggested by Jacquier, Polson, and Rossi
(1994) [2]. The MCMC approach is, among all estimation models, one of the most
computationally efficient and flexible, and it gives an accurate estimations of latent
volatility, jump sizes and jump times.

Chapter 2 is entirely devoted to the description of these methods, that provide
the theoretical background for extracting coherent information about latent state
variables, structural parameters and market prices from observed data.

The practical part of our work is presented in Chapter 3. Here we apply our studies
to a new digital asset class that is gaining attention and challenging contemporary
financial markets. The focus is then on the so-called cryptocurrencies, i.e., digital
currencies that rely on cryptographic proofs for confirmation of transactions. The
reason why these kind of currencies are having an incredible diffusion is that
they achieve a unique combination of three features: ensuring limited anonymity,
independence from central authority and double spending attack protection. As the
interest in cryptocurrencies grow, it becomes more and more vital to have the right
tools to study and model the dynamics of this asset.

Due to the strong presence of sudden and frequent jumps in cryptocurrencies
prices, the classical methods for simulating possible price paths cannot be applied.
Therefore, we inspect cryptocurrencies dynamics from a double-jump-diffusion point
of view and reproduce price evolution through the stochastic volatility correlated
jump model of Duffie Pan and Singleton.
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1 Jump-Diffusion Models
At the very beginning of financial modelling studies, the price St of an asset was
proposed to be modeled as:

St = S0 + σWt (1.1)

where Wt is a Brownian motion, i.e., a random process with independent and
stationary increments that follow a Gaussian distribution. The multiplicative version
of (1.1) leads to the commonly used Black-Scholes model [3] where the log-price lnSt
follows a Brownian motion:

St = S0 exp[µt+ σWt]. (1.2)

The dynamics of a stock price is usually represented by its relative change, dSt
St

, i.e.,
the local form of (1.2):

dSt
St

= σdWt + (µ+
σ2

2
)dt. (1.3)

The process S is called geometric Brownian motion (GBM). The first part of the
right hand side of (1.3), σdWt, simulates the random change in the asset price in
response to external effects, such as uncertain events. While, the second part reflects
a predictable, deterministic and anticipated return which is similar to the return of
the investment in banks.

Even if, at a first sight, a Brownian motion path seems to resemble a stock price
evolution, the two curves are in fact pretty different. The continuity of Brownian
motion’s sample paths represents the first main difference: a typical path t 7→ Wt is a
continuous function of time while the stock price undergoes several abrupt downward
jumps, which appear as discontinuities in the price trajectory. Another property of
Brownian motion that does not match with the evolution of a stock price is its scale
invariance: the statistical properties of Brownian motion are the same at all time
resolutions. Going down on an intraday scale, the Brownian model still retains its
continuous behaviour while the stock price moves essentially through jumps.

The Black-Scholes model is not the only continuous time model built on Brownian
motion. The stochastic volatility model, introduced by Heston [4], is an additional
continuous time model that relies on Brownian motion: the price St is the first
component of a bivariate diffusion (St, σt) process driven by a two-dimensional
Brownian motion (W 1

t ,W
2
t ): 

dSt
St

= σtdW
1
t ,

σt = f(Tt),

dYt = αtdt+ γtdW
2
t .

(1.4)

While Heston model has more flexible statistical properties, it still shares with the
Brownian motion the property of continuity, in contrast with the real prices behavior
over time scales. In the diffusion-based models presented, the continuity of paths
plays a fundamental role. Removing the hypothesis of continuity in such models,
many results obtained are not robust to the presence of jumps in prices and this
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leads to the necessity of changing, at least in part, the underlying framework.
From an investor’s point of view, describing the price trajectories is not as

important as predicting the increments of log-prices. Analysing such quantities for
a Brownian motion, it emerges that the returns generated have roughly the same
amplitude, while real returns can manifest frequent peaks, corresponding to jumps
in the price, and vary in amplitude. This huge variability is historically experienced
in financial asset returns and, statistically, results in heavy tails in the empirical
distribution of returns. This is the so-called asymmetric leptokurtic features: the
return distribution is skewed to the left, and has a higher peak and two heavier tails
than those of the normal distribution.

However, nonlinear diffusion processes such as (1.4) are not Gaussian processes,
even though the driving noise is Gaussian, and an appropriate choice of coefficients
can generate arbitrary heavy tails. The point is that, due the lack of degrees of
freedom for tuning the local behaviour, producing heavy tail translates automatically
into obtaining non-stationarity or unrealistic high values of volatility in diffusion-
based stochastic volatility models. The strongest argument that leads to the necessity
of switching from diffusion-based and continuous models to discontinuous ones is the
presence of jumps in the stock price. In fact, diffusion models cannot generate such
discontinuous and abrupt movements in prices. In order to reproduce or capture the
state of the options market at a given time, the model’s parameters must be chosen
to fit the market prices of options or, at least, reproduce the main features of the
prices. The second shortcoming of models based on Brownian motion is that, even
when they can reproduce fairy well the profile of implied volatility, they give rise to
non-intuitive profile of local volatility (in the case of diffusion models) and cannot
yield a realistic term structure of implied volatilities (in the case of diffusion-based
stochastic volatility models).

For Black-Scholes model, even if in some cases it is straightforward to calculate
the value of an option (e.g. a vanilla option) and fit the observed market price,
the resulting value for volatility parameter cannot lead to a realistic profile of the
implied volatility surface. In fact, the flat profile, predicted by Black-Scholes model,
for implied volatility surface contradicts empirically verified properties such as:

• The dependence with respect to the strike price, that may be decreasing
("skew") or U-shaped ("smile");

• The flattening of the smile/skew profile as maturity increases;

• The floating smiles, which read as implied volatility patterns vary less in time
than when expressed as a function of the strike.

By contrast, jump models lead to a variety of smile/skew patterns and allow
to explain the distinction between skew and smile in terms of asymmetry of jumps
anticipated by the market.

The need for changing the underlying framework comes from the awareness that
diffusion models have the wrong qualitative properties and therefore can convey
erroneous intuitions about price fluctuations and the risk resulting from them. In
some sense, when viewed as a subset of the larger family of jump-diffusion models,
diffusion models should be considered as singularities. For jump-diffusion models,
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the normal evolution of price is given by a diffusion process, involving randomly
occurring discontinuous jumps. Here the jumps represent rare crashes and large
drawdowns. Such an evolution can be represented by modeling the price as a Lévy
process, i.e., a process with stationary independent increments which is continuous
in probability. The two basic building blocks of every jump-diffusion model are the
Brownian motion (the diffusion part) and the Poisson process (the jump part).

This chapter aims at laying the foundation for understanding and building jump-
diffusion models, that can then be implemented to perform option pricing. First of
all, the most important features of Poisson and Lévy processes are presented in order
to stress the differences between Brownian motion and jump processes. Subsequently,
we define and inspect different jump-diffusion models focusing on their property
and limitations. At the end of the chapter, we present the double-jump-diffusion
model proposed by Duffie, Pan and Singleton, [1], that represents a milestone for
the discussion in the rest of this thesis.

1.1 The Poisson Process
The first element needed for building a jump process is the Poisson process, i.e., a
stochastic process with discontinuous paths. The Poisson process can be defined in
a constructive way from a sequence (τn)n≥1 of independent random variables with
exponential distribution with parameter λ > 0.

Definition 1.1. (Poisson Process) Let (τi)i≥1 be a sequence of independent random
variable such that τi ∼ Expλ, for λ > 0 and i ≥ 1. Let Tn :=

∑n
k=1 τk, then a

Poisson process is the process (Nt)t≥0 defined by

Nt =
∑
n≥1

1t≥Tn .

It is worth noticing that

E[Tn − Tn−1] = Eτn =
1

λ
, n ∈ N,

and 1
λ
is the average distance among subsequent jumps, i.e., λ jumps are expected in

a unit time interval. For this reason, λ is also called the intensity parameter.
The Poisson process Nt counts the number of jumps that occur at or before time

t. In particular Nt takes only non-negative integer values.

Proposition 1.2. Let (Nt)t≥0 be a Poisson process. Then:

1. For any t > 0, Nt is finite a.s.;

2. For any ω, the sample path t→ Nt(ω) is piecewise constant and increases by
jumps of size 1;

3. The sample paths t 7→ Nt are càdlàg 1;
1Càdlàg is the French acronym for "continue à droite, limite à gauche" and refers to a function

that is right continuous with left limits.
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4. For any t > 0, Nt− = Nt with probability 1;

5. (Nt) is continuous in probability;

6. For any t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P (Nt = n) = e−λt
(λt)n

n!
.

7. The characteristic function of Nt is given by

E[eiuNt ] = exp{λt(eiu − 1)}, ∀u ∈ R.

8. (Nt) has independent increments: for any t1 < · · · < tn,

Ntn −Ntn−1 , . . . , Nt2 −Nt1 , Nt1

are independent random variables.

9. The increments of N are homogeneous: for any t > s,

Nt −Ns ∼ Nt−s.

10. (Nt) has the Markov property:

∀t > s, E[f(Nt)|Nu, u ≤ s] = E[f(Nt)|Ns].

Proof. See [5] Chapter 2.5.

In addition, notice that from the preceding proposition we have

E[Nt+1 −Nt] = E[N1] =
∑
n≥1

nP (N1 = n) = e−λ
∑
n≥1

λn

(n− 1)!
= λ,

which confirms that the number of jumps expected in a unit time interval is
represented by the intensity λ.

Remark 1.3. Any counting process with stationary independent increments is a
Poisson process.

Remark 1.4. Let (Ft) be the filtration generated by a Poisson process N . By the
independence of increments, for any t > s ≥ 0 we have

E[Nt|Fs] = E[Nt −Ns] +Ns = λ(t− s) +Ns.

As a consequence, the process Nt−λt is a martingale and is usually called compensated
Poisson process. Compensated Poisson process is no longer integer valued and it is
not a counting process.



6 1.2 Lévy processes

Definition 1.5. (Compound Poisson process) Let N be a Poisson process with
intensity λ and let Y = (Yn) be a sequence of i.i.d. random variables in Rn with
distribution η, i.e., Yn ∼ η for n ≥ 1, and which are independent of N . The
compound Poisson process is defined as

Xt =
Nt∑
n=1

Yn, t ≥ 0. (1.5)

The jumps of the compound Poisson process X in (1.5) occur at the same times as
the jumps of N and X is a càdlàg process. However, the jumps in X are not of fixed
size, they present random sizes with distribution η. A compound Poisson process
has independent and stationary increments. Moreover, if we set m = E[Z1] ∈ Rd,
then we have

E[Xt] = mλt.

Definition 1.6. (Compensated compound Poisson process) Let X be a compound
Poisson process with intensity λ and distribution of jumps η. The process

X̃t = Xt − E[Xt] = Xt −mλt,

where
m =

∫
Rd
xη(dx) = E[Y1],

is called compensated compound Poisson process.

A compensated compound Poisson process is a martingale with respect to the
filtration generated by N and Y .

1.2 Lévy processes
The Brownian motion and the Poisson process are fundamental examples of Lévy
processes. In fact, they represent the starting point for building a Lévy process: it is
a superposition of a Brownian motion and a number of independent Poisson processes.
The Lévy processes retains the property of the independence and stationarity of the
increments.

An important consequence is the infinite divisibility of distributions, which implies
that Xt at a fixed time, say t = 1, can be expressed as the sum of a finite number
of i.i.d. random variables: this provides a motivation for modeling price changes as
resulting from a large number of shocks in economy. The Brownian motion is a very
special example, since it is the only Lévy process with continuous trajectories; on the
other hand, the presence of jumps is one main motivation that has led to consider
Lévy processes in finance. Hereafter, we assume we are given a filtered probability
space (Ω,F , P, (Ft)) satisfying the usual hypotheses 2.

2Following [6], we say that (Ft) satisfies the usual hypotheses with respect to P if:

• F0 contains the family of P -negligible events;

• the filtration is right-continuous, i.e., for every t ≥ 0, Ft =
⋂

ε>0 Ft+ε.
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Definition 1.7. (Lévy process) A Lévy process is a càdlàg adapted stochastic process
X = (Xt)t≥0 defined on the space (Ω,F , P, (Ft)) with values in Rd, such that

i) X0 = 0 a.s.;

ii) X has increments independent of the past, that is, Xt −Xs is independent of
Fs for 0 ≤ s < t;

iii) X has stationary increments, that is, Xt − Xs has the same distribution of
Xt−s for 0 ≤ s < t;

iv) X is stochastically continuous, that is, for all ε > 0 and for all t ≥ 0, we have

lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0.

The following lemma, proved in [6], leads to the specification of an important
property of Lévy processes, i.e., the fact that such processes can have infinitely
(countably) many small jumps but only a finite number of large ones.

Lemma 1.8. Let I = [0, T ] be a compact interval and let f be a càdlàg function
defined on I. Then, for any n ∈ N , the number of jumps of f , ∆f , of size greater
than 1

n
is finite:

#{t ∈]0, T ] | |∆f(t)| ≥ 1

n
} <∞.

In particular, f has at most a countable number of jumps.

Proof. See [6].

As a consequence of Lemma 1.8, given a Lévy process X, T > 0 and H ∈ B(Rd)
such that 0 /∈ H̄ so that

dist(H, 0) = inf{|x| | x ∈ H} > 0,

we have that, with probability one, (Xt)t∈[0,T ] has only a finite number of jumps of
size belonging to H.

Definition 1.9. (Finite activity Lévy process) Let X be a Lévy process having only
a finite number of jumps in any bounded time interval, then we say that X is a finite
activity Lévy process.

Definition 1.10. (Infinite activity Lévy process) Let X be a Lévy process, if X is
not a finite activity Lévy process, then we say that it has an infinite activity.

We observe that the natural filtration of a Lévy process X completed by the
negligible events, (FXt ), is right-continuous and therefore it satisfies the usual
hypotheses. In addition, X is a Lévy process with respect to FX .
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1.2.1 Characteristic function of Lévy processes

A huge part of option pricing theory under Lévy processes builds on Fourier transform
methods. Below we recall some useful facts that are strictly linked to this approach.

The characteristic function of a Lévy process X is given by

ϕXt(ξ) = E[eiξ·Xt ],

where ξ ∈ Rd and t ≥ 0.
A notable property of the characteristic function of a Lévy process is expressed

by the following

Theorem 1.11. Let X be a Lévy process, then there exists and it is unique a function
ψ ∈ C(Rd,C) such that ψ(0) = 0 and

ϕXt(ξ) = etψ(ξ), t ≥ 0, ξ ∈ Rd.

Proof. See [6].

Definition 1.12. (Characteristic exponent) Let X be a Lèvy process. The function ψ,
whose existence and uniqueness are given by Theorem 1.11, is called the characteristic
(or Lévy) exponent of X.

Since the distribution of a random variable is determined by its characteristic
function, Theorem 1.11 suggests that the law of Xt is only determined by the
characteristic exponent ψ or equivalently by the law of X1. Therefore the distribution
of a Lévy process X can be completely specified through the distribution of Xt for a
single time.

1.2.2 Jump measures of compound Poisson process

Let us now consider a jump-diffusion process X in Rd of the form

Xt = µt+Wt +
Nt∑
n=1

Yn (1.6)

where µ ∈ Rd, W is a d-dimensional correlated Brownian motion with correlation
matrix C, N is a Poisson process with intensity λ and (Yn)n≥1 are i.i.d. random
variables in Rd with distribution η. The Brownian and Poisson components are
considered to be independent.

For any I ×H ∈ B([0,+∞[×Rd), we put

J(I ×H) :=
∑
n≥1

δTn(I)δYn(H) (1.7)

where δ denotes the Dirac delta and (Tn) is the increasing sequence of jump times.
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Note that for I = [0, t] (1.7) reduces to

J([0, t]×H) =
Nt∑
n=1

δYn(H),

and J([0, t] ×H) counts the number of jumps occurring in the time interval [0, t]
such that their size is in H. The first sum has a finite number of terms and J is
well-defined since, with probability one, only a finite number of jumps occurs on any
bounded time interval. Moreover, J is a finite sum of Dirac deltas and therefore
it is a σ-finite measure on B([0,+∞[×Rd) taking values in the set of non-negative
integers N0: notice that J is a measure taking random values, i.e. it is a random
measure.

Definition 1.13. (Jump measure) The random measure J in (1.7) is called jump
measure of X.

It is possible to calculate the expectation of J :

E[J([0, t]×H)] = tλη(H),

and it follows that
E[J([0, t]×H)] = tE[J([0, 1]×H)].

Defining then
ν(H) := E[J([0, 1]×H)] (1.8)

for H ∈ B(Rd), we find that ν(H) = η(H) and ν defines a finite measure on B(Rd)
such that ν(Rd) = λ.

Definition 1.14. (Intensity measure) The measure ν in (1.8) is called the intensity
(or Lévy) measure of X.

The intensity measure ν(H) determines the expected number, per unit time, of
jumps of X whose amplitude belongs to H. The definition of ν implies that this
measure cannot be integer-valued.

Remark 1.15. The characteristic exponent of the jump part of X in (1.6) (i.e. the
compound Poisson process

∑Nt
n=1 Zn), can be expressed in terms of the Lévy measure

as follows:
ψ(ξ) =

∫
Rd

(eiξ·x − 1)ν(dx), ξ ∈ Rd.

The Lévy measure thus characterizes the jump part of X.
More generally, the Lévy process X in (1.6) is completely identified by the triplet

(µ, C, ν) where:

• µ is the coefficient of the drift part;

• C is the covariance matrix of the diffusion part;

• ν is the intensity measure of the jump part.
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A similar characterization holds for the general class of Lévy processes.

It is possible to obtain a representation of X in terms of its jump measure J since
it holds:

Theorem 1.16. Let X be a jump-diffusion process of the form (1.6) with jump
measure J and Lévy measure ν. For any function f = f(t, x) we have

∑
0<s≤t, ∆Xs 6=0

f(s,∆Xs) =

∫ t

0

∫
Rd
f(s, x)J(ds, dx). (1.9)

Let us assume, in addition, that f ∈ L1([0,+∞[×Rd, ds⊗ ν) and defining

Mt =

∫ t

0

∫
Rd
f(s, x)J̃(ds, dx)

where
J̃(dt, dx) := J(dt, dx)− dtν(dx)

is called the compensated jump measure of X. ThenM is a martingale and E[Mt] = 0.
Moreover, if f ∈ L2([0,+∞[×Rd, ds⊗ ν), then we have

var(Mt) =

∫ t

0

∫
Rd
f 2(s, x)ν(dx)ds.

Proof. See [6]

Choosing f(x) = x, it is then possible to represent the process X in (1.6) as

Xt = µt+Wt +

∫ t

0

∫
Rd
xJ(ds, dx).

Moreover, if f(x) = x is η-integrable (and therefore ν-integrable) then we have

E[Xt] = t
(
µ+

∫
R
xν(dx)

)
.

1.2.3 Lévy-Itô decomposition

Given a jump-diffusion process X and its jump measure J , it is then possible to
express the process as

Xt = µt+Wt +

∫ t

0

∫
Rd
xJ(ds, dx). (1.10)

In the case of compound Poisson process, X has a finite number of jumps in any
bounded time interval and this leads to a measure J([0, t]× Rd) finite a.s.; however,
in general, Lévy processes do not necessarily share this property. It is worth, then,
investigate if every Lévy process X admits a representation of the form (1.10). First
of all we need to inspect the definition of the jump measure J . When analysing
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finite activity processes (compound Poisson processes) J is well defined since the
sum in (1.6) has only a finite number of terms. On the other hand, when infinitely
many jumps are expected in finite time, J may become infinite. However, a Lévy
process X can only have a finite number of “large” jumps and this make it possible
to define the jump measure for a generic Lévy process. More precisely, if H ∈ B(Rd)
and 0 /∈ H̄ then X has only a finite number of jumps with size in H. This allows to
define J(I ×H) for any I ×H ∈ B([0,+∞[×Rd) with I bounded and H such that
0 /∈ H̄:

J(I) := #{t ∈ I | ∆Xt ∈ H}

Then, J can be extended to a σ-finite random measure on B([0,+∞[×Rd \ {0}). In
this context, the Lévy measure of X,

ν(H) := E[J([0, 1]×H)], H ∈ B(Rd),

gives the expected number, per unit time, of jumps of X whose amplitude belongs
to H. Even if ν is a measure on B(Rd), it is not a probability measure nor it is
necessarily finite.

Lemma 1.17. Let X be a Lévy process with jump measure J and Lévy measure ν.
Then

i) if H ∈ B(Rd), 0 /∈ H̄, then the process

t 7→ Jt(H) := J([0, t]×H) = #{s ∈]0, t] | ∆Xs ∈ H}

is a Poisson process with intensity ν(H) and the compensated process

t 7→ J̃t(H) = Jt(H)− tν(H)

is a martingale;

ii) if H ∈ B(Rd), 0 /∈ H̄, and f is a measurable function, then the process

t 7→ Jt(H, f) :=

∫ t

0

∫
H

f(s, x)J(ds, dx) =
∑

0<s≤t

f(s,∆Xs)1H(∆Xs) (1.11)

is a compound Poisson process;

iii) if f, g are measurable functions and H,K are disjoint Borel sets such that
0 /∈ H̄ ∪ K̄, then the processes Jt(H, f), Jt(K, g) are independent.

Proof. See [6].

Let X be a Lévy process with jump measure J and Lévy measure ν. For any
Borel function f = f(t, x) on R≥0 × Rd one can construct the integral∫ t

0

∫
Rd
f(s, x)J(ds, dx)
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with respect to the random measure J proceeding as in the deterministic case. In
case the number of jumps is finite, this definition coincides with that given by (1.9)
or (1.11).

Given these remarks, the results of Theorem 1.16 can be generalized.

Theorem 1.18. Let (Xt)t≥0 be a d-dimensional Lévy process with Lévy measure ν
and jump measure J . For any measurable function f such that∫ t

0

∫
|x|≤ε
|f(s, x)|ν(dx)ds <∞

for some ε > 0, we have∫ t

0

∫
Rd
f(s, x)J(ds, dx) =

∑
0<s≤t, ∆Xs 6=0

f(s,∆Xs) <∞ a.s.

If f ∈ L1([0,+∞[×Rd, ds⊗ ν), then the process

Mt =

∫ t

0

∫
Rd
f(s, x)J̃(ds, dx)

is a martingale and E[Mt] = 0. Moreover, if f ∈ L2([0,+∞[×Rd, ds ⊗ ν) then
Mt ∈ L2 and we have

var(Mt) =

∫ t

0

∫
Rd
f 2(s, x)ν(dx)ds.

Proof. See [6].

The structure of the paths of a Lévy process can be characterized by the following

Theorem 1.19. (Lévy-Itô decomposition) Let (Xt)t≥0 be a d-dimensional Lévy
process with jump measure Jt and Lévy measure ν. Then the Lévy measure ν satisfies∫

|x|≥1

ν(dx) <∞,

∫
|x|<1

|x|2ν(dx) <∞.

Moreover, there exists a d-dimensional correlated Brownian motion W and, for any
R > 0, there exists µR ∈ Rd such that

Xt = µRt+Wt +XR
t +MR

t (1.12)

where

XR
t =

∫ t

0

∫
|x|≥R

xJ(ds, dx),

MR
t =

∫ t

0

∫
|x|<R

xJ̃(ds, dx),
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and J̃ denotes the compensated jump measure. The terms in (1.12) are independent.

Proof. See [7] Section 2.4.

Given the decomposition (1.12), a continuous and a jump part can be isolated:
the first two terms in (1.12) correspond to a Brownian motion with drift while the
remaining terms are discontinuous processes incorporating the jumps of X and only
depend on the jump measure. In particular, XR

t can be expressed as

XR
t =

∑
0<s≤t

∆Xs1{|∆Xs|≥R},

and by lemma 1.17, XR is a compound Poisson process responsible for the large
jumps of X (XR has a finite number of jumps in [0, t], which correspond to the
jumps of X with absolute value larger than R). While MR is a L2-martingale which
is responsible for the small jumps:

MR
t = lim

ε→0+
X̃ε,R
t

where
X̃ε,R
t =

∑
0<s≤t, ε≤|∆Xs|<R

∆Xs − tE[∆X11{ε≤|∆X1|<R}]

is the compensated compound Poisson process of the jumps of X with size between
ε and R. From the results above, it is straightforward to deduce, [[8], Chapter 13,
Section 3.3] that for 0 < S ≤ R it holds

µS = µR −
∫
S<|x|≤R

xν(dx), (1.13)

when the drift coefficient µ is modified.
By the Lévy-Itô decomposition, every Lévy process is determined by the triplet

(µR, C, ν) where µR is the drift coefficient in (1.12), C is the covariance matrix of the
Brownian motion and ν is the Lévy measure.

Definition 1.20. (Characteristic triplet) We call (µR, C, ν) the characteristic R-
triplet of X.

There are two special triplets that allow to separate the continuous from the
jump part and the martingale from the drift part of the process X. In particular,

• If the jump part of X has bounded variation, equivalently∫
|x|≤1

|x|ν(dx) <∞,

such as for the compound Poisson process, we get the following Lévy-Itô
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decomposition

Xt = µ0t+Wt +

∫ t

0

∫
Rd
xJ(ds, dx)

= µ0t+Wt +
∑

0<s≤t

∆Xs,

where the last term is a pure jump process containing all the jumps of X and
has its own drift and martingale parts;

• if ∫
|x|≥1

|x|ν(dx) <∞,

i.e., X has finite expectation, we can let R go to infinity in (1.13) and we get

µ∞ := lim
R→∞

µR = µS +

∫
|x|>S

xν(dx).

Then X has ∞-triplet (µ∞, C, ν) and the alternative Lévy-Itô decomposition

Xt = µ∞t+Wt +

∫ t

0

∫
Rd
xJ̃(ds, dx)

= µ∞t+Wt +
( ∑

0<s≤t

∆Xs − tE[∆X1]
)
.

The last term is a martingale (it is a process with a jump part that is
compensated by a continuous part) and therefore the drift of X is entirely
contained in the term µ∞t.

It is always possible to split a Lévy process into the sum of a martingale with
bounded jumps and a process with bounded variation.

Corollary 1.21. Let X be a Lévy process. Then X = M + Z where M and Z are
Lévy processes, M is a martingale such that Mt ∈ Lp(Ω) for any p ≥ 1 and Z has
(locally in time) bounded variation.

Proof. See [6].

In practical terms, the second and fourth terms in (1.12) (i.e. Brownian motion
and compensated small jumps) form the martingale part of X, while the first and
third terms (i.e. drift term and large jumps) govern the drift of the process.

It is also possible to show that any local martingale X can be written X = M +Z
where M is a local martingale with bounded jumps and Z has (locally in time)
bounded variation.

The Lévy-Itô decomposition has also fundamental practical implications since
every Lévy process can be approximated with arbitrary precision by a jump-diffusion
process which is an independent sum of a Brownian motion with drift and a
compound Poisson process. This fact lets the simulation of Lévy processes be
more straightforward.
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1.2.4 Lévy-Khintchine representation

From Theorem 1.19 it is possible to deduce the most general form for the characteristic
exponent of a Lévy process: this is provided by the Lévy-Khintchine formula.

Theorem 1.22. (Lévy-Khintchine representation) Let X be a Lévy process in Rd

with characteristic triplet (µ1, C, ν). Then we have

ϕXt(ξ) = E[eiξ·Xt ] = etψX(ξ)

where the characteristic exponent ψX is equal to

ψX(ξ) = iµ1 · −
1

2
〈Cξ, ξ〉+

∫
Rd

(eiξ·x − 1− iξ · x1{|x|<1})ν(dx).

Proof. See [6].

An equivalent Lévy-Khintchine representation may be obtained by using the
Lévy-Itô decomposition with a generic R > 0:

ψX(ξ) = iµR · ξ −
1

2
〈Cξ, ξ〉+

∫
|x|≥R

(eiξ·x − 1)ν(dx)

+

∫
|x|<R

(eiξ·x − 1− iξ · x)ν(dx)

where
µR = µ1 +

∫
Rd
x(1{|x|≤R} − 1{|x|≤1})ν(dx).

Corollary 1.23. Let X be a Lévy process with characteristic triplet (µ1, C, ν) and
Lévy measure ν such that

ν(Rd) <∞,

then X is a jump-diffusion process with intensity λ = ν(Rd) and distribution of jumps
η = λ1ν.

Proof. See [6].

The integrability condition, i.e.,∫
|x|≤1

|x|ν(dx) <∞,

characterizes the Lévy processes that (up the Brownian term) have the trajectories
with bounded variation. Indeed, we have:

Proposition 1.24. Let X be a Lévy process with triplet (µ1, C, ν). Then X has
(locally in time) bounded variation if and only if

C = 0 and
∫
|x|≤1

|x|ν(dx) <∞.
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Proof. See [6].

Let us collect the main results on Lévy processes with bounded variation.

Corollary 1.25. Let X be a Lévy process with (locally in time) bounded variation
and characteristic triplet (µ1, C, ν). Then we have the Lévy-Itô decomposition

Xt = µ0t+

∫
Rd
xJ(ds, dx),

where
µ0 = µ1 −

∫
|x|≤1

xν(dx).

Moreover the characteristic exponent takes the form

ψX(ξ) = iµ0 · ξ +

∫
Rd

(eiξ·x − 1)ν(dx).

Finite activity models, by Corollary 1.23, are based on jump-diffusion processes
that are independent sums of a Brownian motion with drift and a compound Poisson
process: the jumps are “rare” events and the evolution of the process is similar to that
of a diffusion. On the contrary, for an infinite activity process, we have ν(Rd) =∞,
where ν is the Lévy measure of the process, and it is known that the set of jump
times of every trajectory is countable and dense in R≥0: in this case, jumps arrive
infinitely often and the dynamics of jumps can be considered rich enough to avoid
the introduction of the Brownian component. Concerning the construction of Lévy
processes, the simplest way to define a Lévy process is via the Lévy-Khintchine
representation, that is by giving the characteristic triplet of the process.

1.3 Lévy models with stochastic volatility
In the following, we will focus on models that can be constructed starting from Lévy
processes.

Merton (1976) was the first who actually introduced jumps in stock distribution.
In his jump-diffusion model, the evolution of the price is driven by a Lévy process with
a nonzero Gaussian component and a compound Poisson process with finitely many
jumps in every time interval. The Merton jump-diffusion model [9] with Gaussian
jumps extends the Black-Scholes model to a model that attempts to capture the
negative skewness and excess kurtosis of the log stock price density by a simple
addition of a compound Poisson jump process. The Poisson process and the jumps
are assumed to be independent of the Brownian motion.

Another extension of the Black-Scholes model based on Lévy processes, is the
double exponential jump-diffusion model, proposed by Kou [10]. Merton and
Kou models generalize Black-Scholes model introducing jumps but maintaining
the independence of log-return. This enables to increase the flexibility of the model
in reproducing tail behaviour at various time scales and generates implied volatility
smiles and skew that resemble the ones observed in market prices. Unfortunately, the
hypothesis of independence of increments cannot be properly deduced from historical
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time series of returns. In fact, the amplitude of returns seems to be positively
autocorrelated in time, due to the volatility clustering property suggested by the
data. From a risk-neutral modelling point of view, independent increments allow
to flexibly calibrate implied volatility patterns across strike and maturity but time
dependent parameters are still required to include observed term structure of implied
volatility. In addition, when the risk-neutral dynamics of the log-price derives from
a Lévy process, the implied volatility surface has a deterministic evolution.

These difficulties can be overcome adding another degree of randomness, i.e.,
introducing a second random process, (σt), driving the instantaneous volatility of
the underlying:

dSt
St

= µdt+ σtdWt.

(σt)t≥0 is a positive, mean-reverting stochastic process and the volatility process σt
specifies the stochastic volatility model.

If σt is driven by a Brownian motion, possibly correlated with Wt, the volatility
model is said to be stochastic-based. Stochastic-based volatility models cannot
generate jumps nor can give realistic implied volatility patterns in the short-term
but do account for volatility clustering, dependence in increments and long term
smiles and skews. In this case, the diffusion must be nonlinear in order to have the
positiveness of σt.

Nevertheless, it is possible to add jumps, both in returns and in volatility, in
stochastic volatility models. Adding an independent jump component to the returns
improves short-maturity behaviour of implied volatility, preserving long-term smiles
(Bates model [11]). On the other hand, using a (positive) Lévy process to drive the
volatility σt allows to build a positive, mean-reverting volatility process with realistic
dynamics maintaining the linearity of the model. These models are analytically
tractable but computationally quite involving as soon as "leverage" effects are
included. Building models with dependence in increments is possible time changing
a Lévy process by a positive increasing process with dependent increments.

The scope of stochastic volatility models is to replicate the erratic behaviour
of market volatility and to introduce the dependence in the increments, making
flexible modelling of term structure of various quantities possible. In this context,
the evolution of the price process is determined both by its value and by the level
of volatility. It is then straightforward to see that the price St cannot be a Markov
process alone. However, increasing in dimension and considering the two-dimensional
process (St, σt), it is possible to regain Markov property. On the one hand, having
a Markov process can help in modelling the process while, on the other hand, the
addition of an extra source of randomness leads to incomplete market models and
non-uniqueness of option prices derived from returns’ behaviour.

1.3.1 Stochastic volatility models without jumps

We start introducing bivariate diffusion stochastic volatility models. In such models,
the dynamic of the asset price (St)t≥0 satisfies the following SDE:

dSt = µStdt+ σtStdWt.
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Here (σt)t≥0 is said to be the instantaneous volatility process. This framework allows
to compute option prices via PDEs and finite difference methods, and the correlation
coefficient of the two Wiener processes helps describing in a simple way the correlation
between movements in volatility and returns.

The instantaneous volatility process needs to be positive and mean-reverting.
The positiveness can be gained defining σt = f(yt) with f positive function and yt
random driving process. Mean-reversion is obtained introducing a mean-reverting
drift in the dynamics of (yt):

dyt = λ(η − yt)dt+ · · ·+ dẐt,

where (Ẑt)t≥0 is a Wiener process correlated with (Wt), λ is the rate of mean-reversion
and η is the long-run average level of yt.

In addition, (Ẑt)t≥0 and W can be correlated, if the correlation is driven by the
instantaneous correlation coefficient ρ ∈ [−1, 1], one can write

Ẑt = ρWt +
√

1− ρ2Zt,

where (Zt) is a standard Brownian motion independent of (Wt).
The driving process (yt) can be chosen to be of the type
• Geometric Brownian motion

dyt = c1ytdt+ c2ytdẐt,

• Cox-Ingersoll-Ross (CIR)

dyt = κ(η − yt)dt+ v
√
ytdẐt.

1.3.2 The square root process

The square root process, or CIR process after Cox, Ingersoll and Ross, is both
mean-reverting and positive, hence it is a perfect choice for the driving process. It is
defined as the solution of the stochastic differential equation:

yt = y0 + λ

∫ t

0

(η − ys)ds+ θ

∫ t

0

√
ysdWs. (1.14)

where λ, η and θ are positive constants.
From this definition, it is straightforward to see that the process is continuous

and positive. The value of the parameters drives the behavior of the process near
zero:

• if θ2 ≤ 2λη, the process cannot reach zero;

• if θ > 2λη, the process can touch zero and, in these cases, it reflects.
Expectation can be computed starting from equation (1.14), we obtain

E[yt] = y0 + λ

∫ t

0

(η − E[ys])ds,
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whose solution is given by

E[yt] = η + (y0 − η)e−λt.

Here, η represents the long-term mean of the process and λ is responsible of the rate
of mean-reversion.

Analogously, variance is given by

var(yt) =
θ2η

2λ
+
θ2(y0 − η)

λ
e−λt +

θ2(η − 2y0)

2λ
e−2λt.

In the limit t→∞, or in the stationary case, the variance reduces to θ2η
2λ

and it is
driven by θ, i.e. the volatility of volatility.

Integrating the volatility process, we obtain

Yt =

∫ t

0

ysds.

Given the positiveness of yt, Yt is an increasing process and its mean is given by

E[Yt] =

∫ t

0

E[ys]ds = ηt+
(y0 − η)(1− e−λt)

λ
.

The Laplace transform of Yt is known in closed form:

E[e−uYt ] =
exp
(
λ2ηt
θ2

)
(

cosh γt
2

+ λ
γ

sinh γt
2

) 2λη

θ2

exp
(
− 2y0u

λ+ γ coth γt
2

)
,

where γ =
√
λ2 + 2θ2u.

1.3.3 Stochastic volatility models with jumps: The Bates
model

The Bates jump-diffusion stochastic volatility model is an improvement of diffusion-
based stochastic volatility models. The Bates models adds proportional log-normal
jumps to the Heston stochastic volatility model generating sufficient variability
and asymmetry in short-terms returns to match implied volatility skew for short
maturities. This model is driven by the following equations:{

dSt
St

= µdt+
√
VtdW

S
t + dZt,

dVt = ξ(η − Vt)dt+ θ
√
VtdW

V
t ,

(1.15)

with (W S
t ) and (W V

t ) correlated Brownian motions, having correlation coefficient
ρ, driving price and volatility, Zt a compound Poisson process with intensity λ
and log-normal distribution of jump sizes such that if k is its jump size then
ln(1 + k) ∼ N (ln(1 + k̄) − 1

2
δ2, δ2). Under the risk-neutral probability, the no-

arbitrage condition gives the drift µ = r − λk̄. The equation for the log-price
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Xt = lnSt derives from (1.15) and Itô’s lemma:

dXt =
(
r − λk̄ − 1

2
Vt

)
dt+

√
VtdW

S
t + dZ̃t,

where (Z̃t) is a compound Poisson process with intensity λ and Gaussian distribution
of jump sizes.

This model can be viewed as a generalization of both Heston stochastic volatility
model, adding jumps, and Merton jump-diffusion model, allowing for stochastic
volatility. As we discussed above, in the Bates model the no arbitrage condition
fixes the drift of the price process while changes in other model’s parameters lead
to different risk-neutral measures. It is worth noticing also that in the Bates model
there is an additional degree of freedom in choosing the log-price dynamics. In
fact, jumps in the log-price are not deemed to be Gaussian, they can follow any
distribution with computable characteristic function, without losses in tractability.

Then, in this stochastic volatility model, we assume that the characteristic
function of the log-price is known in closed form. Therefore, European options can
be priced using Fourier transform methods while for path-dependent options it is
necessary to turn to numerical methods, see [5], [4].

Inspecting the implied volatility patterns in the Bates model, we observe that
there are two ways to generate an implied volatility skew:

• introducing a (negative) correlation between returns and volatility (in analogy
with diffusion-based stochastic volatility models);

• in the case of short-term options, introducing asymmetric jumps (as in exp-Lévy
models).

Correlation and jumps act in the same way on the implied volatility smile. The
smiles due to jumps are more pronounced for short maturities and flatten as time
to maturity increases, while smiles due to correlation cannot reproduce prices of
short-maturity options but make it possible to obtain skews for long maturities.
Then, jumps result in having more impact in increasing the level of implied volatility
than correlation. The huge improvement introduced by Bates model in terms of
calibration is that the implied volatility patterns of long or short term options can
be adjusted separately, leading to sufficiently reasonable results.

1.4 The impact of jumps in volatility and returns
In the previous sections we suggest that the introduction of stochastic volatility leads
to realistic implied volatility patterns across long maturities without introducing
strong time variation of parameters. However, stochastic volatility models cannot
give realistic behavior of implied volatility for short maturities. Adding jumps in
returns to stochastic volatility models allows to calibrate the implied volatility surface
across different strikes and maturities using parameters without an explicit time
dependence. The calibration parameters obtained are sufficiently stable through time
due to the fact that increments of the price process are not completely independent;
then forward smiles can be computed, with a certain degree of freedom, without being



1.4 The impact of jumps in volatility and returns 21

influenced by present smile. Models having both diffusive stochastic volatility and
jumps in return, such as the Bates model, cannot capture all the empirical features
of option prices, as highlighted in [12], [13] and [14]. Empirically, the conditional
volatility of returns increases and decreases rapidly and it is hard to reproduce such
behavior using only a diffusive specification for volatility and jumps in returns. In
this section, we introduce continuous-time stochastic volatility models with jumps in
return and volatility. Jumps in returns have a transient effect on returns while the
effect of diffusive volatility is persistent and, being driven by a Brownian motion,
it increases gradually trough small and normally distributed increments. Jumps in
volatility leads to rapid and persistent shocks in the conditional volatility of returns.
Determining the contributions of jumps in period of market stress can help in the
estimation of premium needed to hedge jump risk.

Below, we consider the model introduced by Duffie, Pan and Singleton [1] with
jumps in volatility and returns. This model could also be declined in two other
models: one with contemporaneous arrivals and correlated jump sizes and another
with independent arrivals and sizes. From an empirical point of view, adding jumps
in returns enables to explain a significant part of the total variance returns, such
jumps are rare events of large size that reproduce large and infrequent drawdowns.
Jumps in volatility allow volatility to increase instantaneously and then mean-revert
back to its long-run level, highlighting the persistent effect of jumps in volatility on
returns’ behavior. Jumps in volatility and returns are more incisive than diffusive
stochastic volatility models in generating crashlike movements and high variation in
volatility, thus the contribution of jump components in period of market stress cannot
be neglected and they must play an important role in defining risk premia. Adding
jumps in returns steepens the slope of the implied volatility curve, the addition of
jumps in volatility further steepens implied volatility curves and increases implied
volatility for in-the-money options.

1.4.1 The "double-jump"-diffusion model

In this section we focus on the model proposed by Duffie, Pan and Singleton [1].
Let (Ω,F , P ) be a probability space and (Ft) an information filtration. Given a

state space D ⊂ Rn, let X be a Markov process solving the stochastic differential
equation

dXt = µ(Xt)dt+ σ(Xt)dWt + dZt,

with W standard Brownian motion in Rn, µ : D → Rn, σ : D → Rn×n, and Z pure
jump process having jump’s fixed probability distribution ν on Rn and intensity of
arrivals {λ(Xt) : t ≥ 0}, for λ : D → [0,∞). We observe that Z has the jump times
of a Poisson process with intensity {λ(Xs) : 0 ≤ s ≤ t} varying over time and that
the jump size has probability distribution ν and, at a give time T , results to be
independent from {(Xs) : 0 ≤ s < T}.

We assume that µ, σσT , and λ, are affine on D and that X is well defined, with
all the needed assumptions and restrictions on (D, µ, σ, λ, ν).

The Fourier transform of Xt is known in closed form up to the solution of an
ordinary differential equation, as specified in [1]. Then, it is possible to recover the
distribution of Xt and the prices of options by inverting the transform.
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In this framework, it is possible to formulate a generalization of stochastic
volatility models with jumps only in returns that can fix the misspecification in the
volatility process exposed in Bakshi, Cao, and Chen (1997) [12], Bates (2000) [13],
and Pan (2002) [14] and that includes rapidly moving factor driving conditional
volatility.

Let us consider a 2-dimensional affine jump-diffusion model, taken a strictly
positive price process S of an asset paying dividends at a constant proportional
rate ζ̄, define Y = ln(S). Including the volatility process V , the state process is
represented by X = (Y, V )>. We choose the short rate r to be constant and assume
that there is an equivalent martingale measure Q, under which

d

(
Yt
Vt

)
=

(
r − ζ̄ − λ̄µ̄− 1

2
Vt

κv(v̄ − Vt)

)
dt+

√
Vt

(
1 0

ρ̄σv
√

1− ρ̄2σv

)
dWQ

t + dZt, (1.16)

where WQ is a standard Brownian motion in R2 under Q, and Z is a pure jump
process in R2 with constant mean jump-arrival rate λ̄, whose bivariate jump-size
distribution ν has the form θ.

Using the ODE approach exposed in [1], we can calculate, at time t, the transform
ψ of the log-price state variable YT as

ψ(u, (y, v), t, T ) = exp(ᾱ(T − t, u) + uy + β̄(T − t, u)v), (1.17)

where, defining b = σvρ̄u− κv, a = u(1− u), and γ =
√
b2 + aσ2

v , we have

β̄(τ, u) = − a(1− e−γτ )
2γ − (γ + b)(1− e−γτ )

, (1.18)

ᾱ(τ, u) = α0(τ, u)− λ̄τ(1 + µ̄u) + λ̄

∫ τ

0

θ(u, β̄(s, u))ds, (1.19)

where

α0(τ, u) = −rτ + (r − ζ̄)uτ − κvv̄
(γ + b

σ2
v

τ +
2

σ2
v

ln
[
1− γ + b

2γ
(1− e−γτ )

])
, (1.20)

and where the term
∫ τ

0
θ(u, β̄(s, u))ds depends on the formulation of bivariate jump

transform θ(·, ·).
Let us now consider the jump transform θ defined by

θ(c1, c2) = λ̄−1(λyθy(c1) + λvθv(c2) + λcθc(c1, c2)), (1.21)

where λ̄ = λy + λv + λc, and

θy(c) = exp
(
µyc+

1

2
σ2
yc

2
)
,

θv(c) =
1

1− µvc
,

θc(c1, c2) =
exp

(
µc,yc1 + 1

2
σ2
c,yc

2
1

)
1− µc,vc2 − ρJµc,vc1

.
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This formulation incorporates three types of jumps:

• jumps in the log-price process Y , with arrival intensity λy and normally
distributed jump size (mean µy and variance σ2

y);

• jumps in volatility V , with arrival intensity λv and exponentially distributed
jump size with mean µv;

• simultaneous correlated jumps in Y and V , with arrival intensity λc. The
marginal distribution of the jump size in V is exponential with mean µc,v.

Conditional on a realization of the jump size in V , say zv, the jump size in Y is
normally distributed with mean µc,y + ρJzv, and variance σ2

c,y. This model seems to
reproduce the level of skewness implied by the volatility smirk observed in market
data.

The authors in [1] also provide explicit option pricing formula in this particular
case, i.e.∫ τ

0

θ(u, β̄(s, u))ds = λ̄−1
(
λyf y(u, τ) + λvf v(u, τ) + λcf c(u, τ)

)
, (1.22)

where

fu(u, τ) = τ exp
(
µyu+

1

2
σ2
yu

2
)
,

f v(u, τ) =
γ − b

γ − b+ µva
τ+

− 2µva

γ2 − (b− µva)2
ln
[
1− (γ + b)− µva

2γ
(1− e−γτ )

]
,

f c(u, τ) = exp
(
µc,yu+ σ2

c,y

u2

2

)
d,

with a = u(1− u), b = σvρ̄u− κv, c = 1− ρJµc,vu, and

d =
γ − b

(γ − b)c+ µc,va
τ

− 2µc,va

(γc)2 − (bc− µc,va)2
ln
[
1− (γ + b)c− µc,va

2γc
(1− e−γτ )

]
.

This specification nests many of the popular models used for option pricing and
portfolio allocation applications and reduces to

• Stochastic volatility model with no jumps (SV model), for λ̄ = 0. The SV model
(introduced by Heston in 1993) is a pure diffusion model where volatility’s
behavior is driven by a square-root process.

• Stochastic volatility model with jumps in price only (SVJ-Y), for λy > 0 and
λv = λc = 0. The SVJ model (introduced by Bates in 1996 as a combination
of Merton’s (1976) jump-diffusion model and the SV model of Heston) has
Poisson jump arrivals in returns and normal distributed sizes.
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• Stochastic volatility with simultaneous and correlated Poisson jumps in price
and volatility (SVJJ), for λc > 0 and λy = λv = 0.

Duffie et al. suggest that the high value of volatility of volatility in the diffusion
component of V for the SVJ-Y model, highlighted also by Bates and Bakshi et al.,
can be cured allowing for jumps in volatility. In addition, for small values of σ2

y,
the jump sizes of Y and V are nearly perfectly anticorrelated, and this explains the
association of jumps down in returns with simultaneous jumps up in volatility found
in estimating SV model. These remarks lead to the conclusion that SVJJ model,
when compared to SV and SVJ-Y model, better fits market data. Furthermore, the
addition of a jump in volatility leads to a more pronounced smirk both at short and
long maturities.

Finally we remark how the introduction of a volatility jump component to the
SV and SVJ-Y models might affect the volatility smile, and how correlation between
jumps in Y and V affects the volatility smirk. Investigating the following three
additional cases, Duffie et al. gain a specific idea of the impact of an additional jump
component in volatility.

1. SVJ-V model, i.e. the SV model, fitted to market data, is extended by
introducing jumps in volatility. The addition of jumps in volatility seems to
attenuate the overpricing in the SVJ model (at least for options that are not
too far out of the money).

2. SVJ-Y-V model, i.e. SVJ-Y model, fitted to market data, is generalized with
possible jumps in volatility. The addition of a jump in V to the SVJ model
also attenuates the over-pricing of OTM calls.

3. Finally, the fitted SVJJ model is modified by varying the correlation between
simultaneous jumps in Y and V . In the presence of simultaneous jumps, the
levels of implied volatilities for OTM calls depend on the sign and magnitudes
of the correlation between the jump amplitudes.



25

2 Markov Chain Monte Carlo Methods
Several studies highlight that Markov chain Monte Carlo methods (MCMC) are
particularly well suited to deal with stochastic volatility models. Among all estimation
models, the MCMC approach is one of the most computationally efficient and flexible,
and it accurately estimates latent volatility, jump sizes and jump times. One of
the advantages of using MCMC is that it provides a general methodology that can
be applied also in nonlinear and non-Gaussian state models and, given the data, it
returns the distribution of both state variables and parameters.

In this section we propose an outline of Markov chain Monte Carlo methods that
will be used in the next chapter to extract information about latent state variables,
structural parameters and market prices from observed data.

The target of our study is then the Bayesian solution to the inference problem:
the posterior distribution p(Θ, X|Y ), i.e., the distribution of parameters and state
variables, respectively Θ and X, conditional on observed prices Y .

One of the main tools needed for the following dissertation is the Clifford-
Hammersley theorem. This theorem states that a joint distribution can be
characterized by its complete conditional distributions and, in our case, it reads:
p(X|Θ, Y ) and p(Θ|X, Y ) completely characterize the joint distribution p(Θ, X|Y ).
Clearly, it is typically easier to characterize the complete conditional distributions,
p(Θ|X, Y ) and p(X|Θ, Y ), then to directly analyze the higher-dimensional joint
distribution, p(Θ, X|Y ).

The MCMC algorithm generates a Markov chain over (Θ, X): given the initial
draws X(0) and Θ(0), the g-th draws are obtained iteratively as

X(g) ∼ p(X|Θ(g−1), Y )

Θ(g) ∼ p(Θ|X(g), Y ).

The sequence of random variables {Θ(g), X(g)}Gg=1 obtained is a Markov chain, whose
distribution converges to p(Θ, X|Y ) under a number of metrics and mild conditions.

The MCMC algorithms, in general, consist on two steps and

• If the complete conditional distributions are known in closed form and can be
directly sampled, MCMC algorithm samples through the so-called Gibbs steps.3

• Otherwise, the MCMC method translates into the application of Metropolis-
Hastings algorithm. Here, a candidate draw is sampled from a proposal density
and accepted or rejected over the application of an acceptance criterion. The
criterion is chosen in order to generate random samples that form a Markov
Chain with the appropriate equilibrium distribution.

Given the sample {Θ(g), X(g)}Gg=1 from the joint posterior, parameter and state
variable estimation can be performed with Monte Carlo method. If f(Θ, X) is a

3The algorithm is addressed to as Gibbs sampler if all the conditionals can be sampled through
Gibbs steps.
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function satisfying technical regularity conditions, the Monte Carlo estimates

E[f(Θ, X)|Y ] =

∫
f(Θ, X)p(Θ, X|Y )dXdΘ ≈ 1

G

G∑
g=1

f(Θ(g), X(g)).

We can, in addition, analyse two types of convergence for G→∞:

1. The convergence of the distribution of the Markov chain to p(Θ, X|Y );

2. The convergence of the partial sums

1

G

G∑
g=1

f(Θ(g), X(g))

to the conditional expectation E[f(Θ, X)|Y ].

Both types of convergence are guaranteed by the Ergodic Theorem for Markov
Chains, since MCMC algorithm verifies the statement’s holding conditions, see [15].

2.1 Bayesian Inference and Asset Pricing Models
In this section we present, from a Bayesian inference point of view, the principal
properties of the elements that play a central role in the analysis of Markov Chain
Monte Carlo methods. Bayesian inference provides a coherent approach for inference,
as it consists merely on the application of probability laws to model parameters and
state variables, and guarantees strong theoretical foundations.

Let X, Y and Θ be respectively: the unobserved state variables X = {Xt}Tt=1, the
observed prices Y = {Yt}Tt=1 and the model parameters Θ. The posterior distribution
can be factorized by Bayes rule into its constituent components as follows:

p(Θ, X|Y ) ∝ p(Y |X,Θ)p(X|Θ)p(Θ), (2.1)

where p(Y |X,Θ) is called likelihood function, p(X|Θ) represents the distribution
of the state variables, and p(Θ) is the prior distribution of the parameters. The
posterior can then be considered as a sum of the information, deducible from prices,
concerning state variables and parameters.

The full-information likelihood, i.e., the distribution p(Y |X,Θ), is linked to the
marginal likelihood function, p(Y |Θ), by

p(Y |Θ) =

∫
p(Y,X|Θ)dX =

∫
p(Y |X,Θ)p(X|Θ)dX.

While in continuous-time asset pricing models p(Y |Θ) is not always available in
closed form (so that it requires simulation methods to perform likelihood-based
inference), the full-information likelihood is usually known in closed form.

The presence of the prior distribution, p(Θ), in the expression of the posterior
allows to incorporate, in a consistent manner, nonsample information, e.g. positivity
of parameters or beliefs over the degree of mispricing in a model. Statistically, the
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prior can impose stationarity, rule out near unit-root behavior, or separate mixture
components.

The posterior distribution plays a central role also in the process of decision
making. When facing with a decision problem in the presence of uncertainty, a
rational decision maker chooses an action, a, to maximize expected utility E[U ],
where

E[U ] =

∫
U(a,Θ, X)p(Θ, X|Y )dΘdX

and U(a,Θ, X) is the utility in state X, with parameter Θ, and for action a. The
uncertainty in the parameters and states must be taken into account by integrating
out the uncertainty in these quantities and then maximizing expected utility by
choosing the appropriate action.

The marginal posterior distribution contains, instead, the information embedded
in the observed data and it is defined by

p(Θi|Y ) =

∫
p(Θi,Θ(−i), X|Y )dXdΘ(−i) (2.2)

where Θi is the ith element of the parameter vector and Θ(−i) denotes the remaining
parameters. The marginal posterior provides estimates (posterior means or medians)
and characterizes estimation risk (posterior standard deviations, quantiles or credible
sets).

Let now Y t be the observed prices up to time t, and consider the following
posterior distributions:

p(Xt|Y T ), t = 1, . . . , T ;

p(Xt|Y t), t = 1, . . . , T ;

p(Xt+1|Y t), t = 1, . . . , T.

The evaluation of p(Xt|Y T ) at time t is a static problem, called the smoothing
problem, that requires all of the data to be solved. The problem of calculating the
second and third distribution, respectively the filtering and forecasting problem, can
be solved in an inherently sequential way. To filter latent states, we can use once
again Bayes rule, obtaining:

p(Xt|Y t) ∝
∫
p(Yt|Xt)p(Xt|Xt−1)p(Xt−1|Y t−1)dXt−1,

where p(Yt|Xt) is the likelihood, p(Xt|Xt−1) is the state evolution and p(Xt−1|Y t−1)
is the prior representing knowledge of the past states, given price information.
Simulation based filtering methods, such as the particle and practical filter, provide
computationally tractable approaches to approximate the filtering density.

The model specification can be evaluated using the posterior distribution, which
provides also a method to compare different models: the posterior can be used to
analyze the in-sample fit, e.g., it can be used to test the normality of residuals or
the independence of random variables, taking into account estimation risk. When
there are a finite set of models under consideration, {Mi}Mi=1, we can compute the
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posterior odds of model i versus j, formally:

p(Mi|Y )

p(Mj|Y )
=
p(Y |Mi)

p(Y |Mj)

p(Mi)

p(Mj)
.

The ratio p(Mi)/p(Mj), represents the Bayes factor. If it is greater than one, the
data favors model i over model j and viceversa. MCMC provides the output needed
to perform formal Bayesian diagnostic via tools such as Odds ratios or Bayes Factors.

The construction of an MCMC algorithm relies on the evaluation of the conditional
distribution underlying the likelihood and state dynamics, i.e., p(Yt+1|Yt, Xt,Θ) and
p(Xt+1|Xt,Θ). The next sections are dedicated to the analysis of these conditional
distributions and aim at providing the necessary background to understand the
general methodology.

2.1.1 Prices and the Likelihood Function

In general, two different types of likelihood are identified and price dynamics can
then be modeled both as the solution to an SDE, as it emerges in models of equity
prices or exchange rates, or via a deterministic function between prices and state
variables and parameters, as in option pricing and term structure modeling.

In the first case, asset prices solve the parameterized stochastic integral equation

Yt+1 = Yt +

∫ t+1

t

µy(Ys, Xs,Θ)ds+

∫ t+1

t

σy(Ys, Xs,Θ)dWs +

Nt+1∑
j=Nt

ξj,

where the dynamics are driven by the state variables, a vector of Brownian motions
{Wt}t≥0, and a vector point process {Nt}t≥0 with stochastic intensity λt, and where
ξj is a jump with Fτj− distribution Πτj−. We suppose that such random variables
are defined on a filtered probability space (Ω,F , {Ft}t≥0, P ) and that characteristics
have sufficient regularity for a well-defined solution to exist. The distribution implied
by the solution of the stochastic differential equation, p(Yt+1|Yt, Xt,Θ), generates
the likelihood function.

In the second case, at least one of the asset prices is a known function of the
state variables and parameters, so we can write Yt = f(Xt,Θ). In general, neither
the parameters nor the state variables are observed. In multi-factor term structure
models, generally the short rate process is a function of a set of state variables,
rs = r(Xs), and bond prices are given by

f(Xt,Θ) = EQ[e−
∫ T
t r(Xs)ds|Xt]

where Q is an equivalent martingale measure on the original probability space and
the function f can be computed either analytically or as the solution to ordinary or
partial differential equation. Thanks to the Fundamental Theorem of Asset pricing,
in option pricing models, there exists a probability measure Q, equivalent to P , such
that prices are discounted expected values of payoffs under Q. In the case of a call
option, it reads

f(Xt,Θ) = EQ[e−
∫ T
t r(Xs)ds(XT −K)+|Xt]
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being (·)+ the positive component.
In option pricing applications, it is common to assume the existence of a pricing

error, εt. This assumption derives from the fact that parameters are typically
unknown and that possible noisy fluctuations can affect prices measurement. In the
case of an additive pricing error, we have

Yt = f(Xt,Θ) + εt

for εt ∼ N (0,Σε).

2.1.2 State Variable Dynamics

The state variables, Xt, are also modeled as solutions to stochastic differential
equations. The state variables are commonly specified as diffusion models, jump-
diffusion models and Markov switching diffusion. In the following we will only
examine the case of diffusion and jump-diffusion models; for further information on
Markov switching diffusion see [16].

State variables are commonly specified as diffusions, following the work of Black
and Scholes [3]. The state variables dynamics are generated by

Xt+1 = Xt +

∫ t+1

t

µ(Xs,Θ)ds+

∫ t+1

t

σ(Xs,Θ)dWs

where Wt is a vector of Brownian motions under the P -measure and we assume
sufficient regularity on µ, σ and X0 for a well-behaved solution to exist. Diffusion is
then characterized by its continuous sample path and by a Markov structure.

After the work of Merton [9], the continuity assumption has been relaxed adding
a marked point process (Nt) to the diffusion component. Such point process counts
the number of jump times {τj}∞j=1 prior to time t. At each time τj , a jump ξj arrives
and induces a discontinuity in the diffusion of state variables, Xτj −Xτj− = ξj. The
process Xt then solves

Xt+1 = Xt +

∫ t+1

t

µ(Xs,Θ)ds+

∫ t+1

t

σ(Xs,Θ)dWs +

Nt+1∑
j=Nt

ξj. (2.3)

Here, the dynamics of the state variables are characterized by µ, σ and by the arrival
intensity of point process, λt = λ(Xt), and the Fτj− conditional distribution of the
jump sizes, Π(Xτj−,Θ).

2.1.3 Parameter Distribution

As already mentioned, the last component of the joint posterior distribution
is represented by p(Θ), the prior distribution of Θ, which contains non-sample
information regarding the parameters. In literature, parameterized distribution are
preferred and this leads to the necessity of choosing both a distribution for the prior
and the parameters that index the distribution. The choice of distribution and prior
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parameters allows the imposition of non-sample information or, alternatively, little
information.4

It is convenient to use standard conjugate prior distributions which provide a
way of finding closed-form, easy to simulate, conditional posteriors. A conjugate
prior is a distribution for which the conditional posterior is the same distribution
with different parameters.5

The use of informative priors is legitimated by statistical and economic
motivations: consider Merton’s jump diffusion model for log-returns Yt =
log(St+∆/St), [9]. In this model, returns are given by

Yt = µ+ σ(Wt+∆ −Wt) +

Nt+∆∑
j=Nt

ξj (2.4)

and the jump sizes are normally distributed, N (µJ , σ
2
J). Here, the maximum

likelihood estimator is not defined as the likelihood takes infinite values from some
parameters. In this case, it is necessary to use at least partially informative priors to
overcome the aforementioned likelihood degeneracies.

Informative priors can be also used to impose stationarity on the state variables.
In the stochastic volatility model discussed in the previous chapter, κv is often chosen
to be very small introducing near-unit root behavior and it is possible to obtain
stationarity imposing mean-reversion: this enters via the prior on the speed of mean
reversion that forces κv to be positive and bounded away from zero. Stationarity is a
useful property in practical applications such as option pricing or portfolio formation.

The impact of specific prior parameters on the parameter posterior is usually
evaluated through performing sensitivity analysis.

2.1.4 Time-Discretization

From the preceding discussion, it emerges that the state variable dynamics and
the likelihood, p(Xt+1|Xt,Θ) and p(Yt+1|Yt, Xt,Θ), are both abstractly given as
conditional distribution arising from the solution of stochastic differential equations.
Unfortunately, the transition densities of the prices or the state variables are known
in closed form only in few simple cases, e.g., a square root process, Gaussian process
or geometric Brownian motion.

Let us consider a diffusive specification for the state variables and let ∆ be the
time interval between two observations. The conditional distribution of Xt+∆, given

4Priors that provide little or no information regarding the location of the parameters are called
uninformative or diffuse priors.

5For example, if we consider a geometric Brownian motion model for returns, then continuously
compounded returns, Yt, are normally distributed, Yt ∼ N (µ, σ2). Assuming a normal prior
on µ, µ ∼ N (a,A), the conditional posterior distribution p(µ|σ2, Y ) is also normally distributed,
N (a∗, A∗), where the starred parameters depend on the data, sample size and on a and A. Here,
the posterior mean is a weighted combination of the prior mean and the sample information,
with the weights determined by the relative variances. Choosing A to be very large generates an
uninformative prior.
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Xt, is generated by

Xt+∆ = Xt +

∫ t+∆

t

µ(Xs,Θ)ds+

∫ t+∆

t

σ(Xs,Θ)dWs.

If the drift and diffusion functions are continuous functions of the state, for short
time increments we can assume that∫ t+∆

t

µ(Xs,Θ)ds ≈ µ(Xt,Θ)∆∫ t+∆

t

σ(Xs,Θ)dWs ≈ σ(Xt,Θ)(Wt+∆ −Wt).

This observation leads to the following approximation for the state variables:

Xt+∆ = Xt + µ(Xt,Θ)∆ + σ(Xt,Θ)(Wt+∆ −Wt).

The "Euler" discretization built in this way implies that the induced distribution of
the state increments is conditionally normal,

p(Xt+∆ −Xt|Xt,Θ) ∼ N (µ(Xt,Θ)∆,Σ(Xt,Θ)∆),

where Σ = σσ′ and the state dynamics p(X|Θ) are given by the products of normal
distributions.

In the case of a jump-diffusion, (2.3), we time-discretize the point process Nt that
generates jump times. Note that Nt verifies

Prob(Nt+∆ −Nt = 1) ≈ λt∆.

Defining an indicator variable Jt+∆ such that Jt+∆ = 1 (with probability λt∆), the
jump size distribution is approximated by ξt+∆ ∼ Π(Xt,Θ) and the time-discretization
of the jump-diffusion model becomes:

Xt+∆ = Xt + µ(Xt,Θ)∆ + σ(Xt,Θ)(Wt+∆ −Wt) + Jt+∆ξt+∆.

Given the jump-diffusion model discretization, the state space can be expanded
to include the jump times and the jump sizes, building a jump-augmented state
vector, [Xt, Jt, ξt]. The increments are normally distributed, conditional on current
state and the jump times and sizes:

Xt+∆|Xt, J
x
t+∆, ξ

x
t+∆ ∼ N (Xt + µt∆ + Jxt+∆ξ

x
t+∆, σtσ

′
t∆) (2.5)

where the dependence of the drift and diffusion on the parameters and state variables
have been removed. A Markov chain can be time-discretized analogously.

Time-discretization allows the use of standard MCMC techniques since it generates
simplified conditional distribution structure. Eraker Joannes and Polson proved in
[17] that this Euler approximation does not introduce any sistematic biases in an
equity price model with stochastic volatility, jumps in returns and jumps in volatility.
In other cases, the Euler approximation may not provide an accurate approximation
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to the true dynamics. MCMC solves this problem by "filling in" asset prices or state
variable values at times in between observation dates.

2.1.5 Asset Pricing Models

We now present models that conveniently fit into the framework developed above
and that are especially well-suited for MCMC estimation.

1. Continuous-time Equity Price Models: Equity prices are typically modeled in
continuous-time since this specification often leads to analytically tractable solutions
in portfolio allocation and option pricing applications. Initially equity prices were
assumed to follow geometric Brownian motion dynamics

dSt = µStdt+ σStdW
s
t

whereW s
t is a scalar Brownian motion. As we discussed in the first chapter, empirical

tests end up with rejecting the geometric Brownian motion model and suggested the
use of models with jumps, stochastic expected returns and volatility:

dSt = µtSt−dt+ St−
√
Vt−dW

s
t + d

( Ns
t∑

j=1

Sτj−(eξ
s
j − 1)

)
where the expected returns are typically assumed to follow a Gaussian diffusion
process and the volatility is a jump-diffusion:

dµt = κµ(θµ − µt)dt+ σµdW
µ
t

dVt = κv(θv − Vt−)dt+ σ
√
Vt−dW

v
t + d

( Nv
t∑

j=1

ξvj
)
.

In this model, the observed data is typically the log-returns, Yt = log(St/St−1), and
the state variables are the time-varying mean and volatility Xt = [µt, Vt]. As an
alternative, the log-volatility model d log(Vt) = κv(θv − log(Vt))dt + σvdW

v
t is also

popular for empirical applications.
2. Equity index option pricing models: In the previous sections, we presented

equity models where the only observed data are the continuously compounded equity
returns. Option prices sharpen inference by providing information about the market
prices of volatility and jump risks that are embedded only in derivative prices.
Including an option adds another level to the state space model:

Ct = EQ[e−r(T−t)(ST −K)+|Vt, St] = f(St, Vt, K, T − t,Θ)

dSt = µtSt−dt+ St−
√
Vt−dW

s
t + d

( Ns
t∑

j=1

Sτj−(eξ
s
j − 1)

)
dVt = κv(θv − Vt−)dt+ σv

√
Vt−dW

v
t + d

( Nv
t∑

j=1

ξvj
)
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where Ct is the price of a call option with strike at K and maturity T . In this
case, the observed data is Yt = [Ct, log(St/St−1)]. The fact that the option price is
only known up to a numerical integration poses no problems for an MCMC based
estimation approach as shown by Eraker, [18].

2.2 MCMC Methods and Theory
The fundamental building block of Markov Chain Monte Carlo methods is the Clifford-
Hammersley theorem. This statement, in its more general version, (Besag (1974),
[19]) provides conditions for when a set of conditional distributions characterizes a
unique joint distribution. In continuous-time asset pricing models, p(Θ, X|Y ) is in
general a complicated, high-dimensional distribution and it is prohibitive to directly
generate samples from this distribution. The key idea of MCMC is to break the joint
distribution into its complete set of conditionals via Clifford-Hammersley theorem.
In this way, the dimensionality of the problem is attacked: conditional distributions
are of lower dimension and hence easier to sample. In particular, in our setting, the
theorem indicates that p(Θ|X, Y ) and p(X|Θ, Y ) uniquely determine p(Θ, X|Y ).

When the direct sampling from p(Θ|X, Y ) and p(X|Θ, Y ) is not possible or the
dimension of the conditional posteriors is still prohibitive, a new application of
the Clifford-Hammersley theorem can help to further simplify the problem. Let us
consider p(Θ|X, Y ) and suppose that the Kdimensional vector Θ can be partitioned
into k ≤ K uni- or multidimensional components Θ = (Θ1, . . . ,Θk).

Given the partition, the iterative application of Clifford-Hammersley theorem
implies that

p(Θ1|Θ2, . . . ,Θk, X, Y )

p(Θ2|Θ1, . . . ,Θk, X, Y )

. . .

p(Θk|Θ1, . . . ,Θk−1, X, Y )

are conditional distributions that uniquely determine p(Θ|X, Y ).
Analogously, the joint distribution of the state vector p(X|Θ, Y ) can be

characterized by its own complete set of conditionals: p(Xt|Θ, X(−t), Y ) for t =
1, . . . , T where X(−t) denotes the elements of X excluding Xt. Then for a T + K
dimensional posterior, iterating the application of Clifford-Hammersley theorem, it is
possible to obtain the same information drawing T +K one dimensional distributions.
A proof of the Clifford-Hammersley theorem, based on the Besag formula in [19],
uses the insight that for any pair (Θ0, X0) of points, the joint density p(Θ, X|Y ) is
determined, as long as positivity is satisfied, by

p(Θ, X|Y )

p(Θ0, X0|Y )
=

p(Θ|X0, Y )p(X|Θ, Y )

p(Θ0|X0, Y )p(X0|Θ, Y )
. (2.6)

Thus, knowledge of p(Θ|X, Y ) and p(X|Θ, Y ), up to a constant of proportionality,
is equivalent to knowledge of the joint distribution. The positivity condition in
our framework can be translated into the request that for each point in the sample
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space, p(Θ, X|Y ) and the marginal distributions have positive mass. This condition
is always satisfied under very mild regularity conditions.

We now provide a simple description of the algorithms used in MCMC methods.

2.2.1 Gibbs Sampling

When iterative direct sampling from all of the complete conditionals is possible via
standard methods, the resulting MCMC algorithm is a Gibbs sampler. In general,
given (Θ(0), X(0)), a Gibbs sampler is defined by

1. Draw Θ(1) ∼ p(Θ|X(0), Y )

2. Draw X(1) ∼ p(X|Θ(1), Y ).

Iterating the two steps, the Gibbs sampler generates a sequence of random variables,
{Θ(g), X(g)}Gg=1, that converges to p(Θ, X|Y ). The algorithm runs until it converges,
and then a sample is drawn from the limiting distribution.

If it is not possible to generate direct draws from p(Θ|X, Y ) and p(X|Θ, Y ), the
Gibbs sampler becomes:

Given (Θ(0), X(0))

1. Draw Θ
(1)
i ∼ p(Θi|Θ(0)

1 , . . . ,Θ
(1)
i−1,Θ

(0)
i+1, . . . ,Θ

(0)
r , X(0), Y ) for i = 1, . . . , r

2. Draw X(1) ∼ p(X|Θ(0), Y ).

If the states cannot be drawn in a block, then iterative applications of Clifford-
Hammersley can be used to obtain a factorization of p(X|Θ, Y ) into a set of lower
dimensional distributions.

The Gibbs sampler requires that one can conveniently draw from the complete
set of conditional distributions.

2.2.2 Metropolis-Hastings

When one or more of the conditional distributions cannot be conveniently sampled
or when it is impossible to find efficient algorithms for sampling from a known
distribution, the Gibbs sampler does not apply. In these cases, we need to use a
different technique: the Metropolis-Hastings algorithms.

Let us inspect the case where one of the parameter posterior conditionals, namely
π(Θi) := p(Θi|Θ(−i), X, Y ), can be evaluated (as a function of Θi), but it is not
possible to generate a sample from the distribution. Consider a single parameter and
suppose we are trying to sample from a one-dimensional distribution, π(Θ), i.e., we
are suppressing the dependence of other parameters and states in the conditional
posterior, p(Θi|Θ(i), X, Y ). To generate samples from π(Θ), a Metropolis-Hastings
algorithm requires the specification of a recognizable proposal or candidate density
q(Θ(g+1)|Θ(g)). This distribution will generally depend on the other parameters,
the state variables and the previous draws for the parameter being drawn. As in
Metropolis, et al., [20], we only require that we can easily evaluate density ratio
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π(Θ(g+1))/π(Θ(g)) and this assumption is satisfied in the majority of continuous-time
models.

The Metropolis-Hastings algorithm samples iteratively as in the Gibbs sampler,
but it first draws a candidate point that will be accepted or rejected based on the
acceptance probability. The Metropolis-Hastings algorithm consists of the following
two stage procedure:

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i |Θ(g)
i ) (2.7)

Step 2 : Accept Θ
(g+1)
i with probability α(Θ

(g+1)
i ,Θ

(g)
i ) (2.8)

where

α(Θ
(g+1)
i ,Θ

(g)
i ) = min

(π(Θ
(g+1)
i )/q(Θ

(g+1)
i |Θ(g)

i )

π(Θ
(g)
i )/q(Θ

(g)
i |Θ

(g+1)
i )

, 1
)
. (2.9)

Specifically, implementing Metropolis-Hastings requires: drawing a candidate Θ̂i from
q(Θi|Θ(g)

i ), drawing u ∼ Uniform[0, 1], accepting the draw, that is, set Θ
(g+1)
i = Θ̂i

if u < α(Θ
(g)
i ,Θ

(g+1)
i ), and otherwise rejecting the draw, that is, set Θ

(g+1)
i = Θ

(g)
i .

This algorithm splits the conditional distribution into two parts: a recognizable
distribution to generate candidate points and an unrecognizable part from which
the acceptance criteria arise. The acceptance criterion insures that the algorithm
has the correct equilibrium distribution. Continuing in this manner, the algorithm
generates samples {Θ(g)}Gg=1 whose limiting distribution is π(Θ).

It is then straightforward to see that:

1. Gibbs sampling is a special case of Metropolis-Hastings, where q(Θ(g+1)|Θ(g)) ∝
π(Θ(g+1)). This implies that the acceptance probability is always one and the
algorithm always moves;

2. The Metropolis-Hastings algorithm allows the functional form of the density
to be non-analytic, as occurs when pricing functions require the solution of
partial or ordinary differential equations. It is sufficient to evaluate the true
density at two given points;

3. When there are constraints in the parameter space, one can just reject these
draws. In addition, sampling can be done conditional on specific regions,
providing a convenient approach for analyzing parameter restrictions imposed
by economic models.

Note that the choice of proposal density can affect the performance of the algorithm:
if the proposal density has thin tails relative to the target, the algorithm may converge
slowly. In some cases, the algorithm may never converge, getting stuck in a region of
the parameter space.

There are two important special cases of the general Metropolis-Hastings algorithm
which deserve special attention.

Metropolis-Hastings algorithm can draw Θ(g+1) directly from proposal density,
q(Θ(g+1)|Θ(g)), which has a dependence from the previous Markov state Θ(g) (and,
in general, other parameters and states) or from a distribution independent of the
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previous state, q(Θ(g+1)|Θ(g)) = q(Θ(g+1)). The second is known as an independence
Metropolis-Hastings algorithm:

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i ) (2.10)

Step 2 : Accept Θ
(g+1)
i with probability α(Θ

(g+1)
i ,Θ

(g)
i ) (2.11)

where

α(Θ
(g+1)
i ,Θ

(g)
i ) = min

(π(Θ
(g+1)
i )/q(Θ

(g+1)
i )

π(Θ
(g)
i )/q(Θ

(g)
i )

, 1
)
.

The candidate draws, Θ(g+1), are then drawn independently from the previous state,
but in general the sequence {Θ(g)}Gg=1 will not be independent while the acceptance
probability depends on previous draws. When using independence Metropolis, it
is common to pick the proposal density to closely match certain properties of the
target distribution.

The original algorithm considered by Metropolis, et al. (1953), [20], is the so-
called Random-walk Metropolis. It draws a candidate from Θ(g+1) = Θ(g) + εt, where
εt is an independent mean zero error term (e.g. a symmetric density function with fat
tails, like a t-distribution). The choice of the proposal density is generic, ignoring the
structural features of the target density and the symmetry in the proposal density,
q(Θ(g+1)|Θ(g)) = q(Θ(g)|Θ(g+1)), leads to a simplification of the algorithm:

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i |Θg
i ) (2.12)

Step 2 : Accept Θ
(g+1)
i with probability α(Θ

(g+1)
i ,Θ

(g)
i ) (2.13)

where

α(Θ
(g+1)
i ,Θ

(g)
i ) = min

(π(Θ
(g+1)
i )

π(Θ
(g)
i )

, 1
)
.

In random walk Metropolis-Hastings algorithms, the variance of the error term is
under control and the algorithm must be tuned, by adjusting the variance of the
error term, to obtain an acceptable level of accepted draws, generally in the range of
20-40%.

2.2.3 Convergence Theory

The sequence of draws for parameters and state variables generated by the MCMC
algorithm, is constructed to be a Markov chain characterized by its starting value
Θ(0) and its conditional distribution or transition kernel P (Θ(g+1),Θ(g)), where we
abstract from the latent variables.

As exposed in [15], the ergodic theory of Markov chains is the framework in which
it is possible to inspect convergence properties of this sequence.

In general, a Markov chain is characterized by its g-step transition probability,

P (g)(x,A) = Prob{Θ(g) ∈ A|Θ(0) = x}

If the chain is irreducible and aperiodic, then it has a unique equilibrium or stationary
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distribution, π.
Given a Markov chain with invariant distribution π, we say that the chain is:

• irreducible if, for any initial state, it has positive probability of eventually
entering any set which has π-positive probability;

• aperiodic if there are no portions of the state space that the chain visits at
regularly spaced time intervals.

If an irreducible and aperiodic chain has a proper invariant distribution, then π is
unique and it is the equilibrium distribution of the chain. That is

lim
g→∞

Prob{Θ(g) ∈ A|Θ(0)} = π(A).

The general theory of Markov chains also provides explicit convergence rates, which
in many cases results to be geometric, see Meyn and Tweedie, [21].

Even though it could be difficult to verify the convergence of Markov chains,
chains generated by Metropolis-Hastings algorithms present properties which allow
convergence conditions to be verified in general, avoiding references to the specifics
of the algorithm.

The target distribution π for a Metropolis-Hastings algorithm is given and
proper, since it is a posterior distribution. The invariance of the distribution π is
verified through the analysis of the detailed balance (time-reversibility) condition. A
transition function P is said to satisfy the detailed balance condition if there exists
a function π such that

P (x, y)π(x) = P (y, x)π(y)

for any points x and y in the state space, meaning that, if the chain is stationary,
the probability that the chain reaches a point x from a point y, starting at y, equals
the probability of reaching y from x starting at x. It follows that π is the invariant
distribution, since π(y) =

∫
P (x, y)π(dx).

For the Gibbs sampler, time-reversibility derives directly from Clifford-
Hammersley theorem. The Gibbs sampler cycles through the one-dimensional
conditional distributions generating the following transition density:

P (x, y) =
k∏
i=1

p(xi|x1, . . . , xi−1, yi+1, . . . , yk).

By Cliffor-Hammersley theorem,

π(x)

π(y)
=

k∏
i=1

p(xi|x1, . . . , xi−1, yi+1, . . . , yk)

p(yi|y1, . . . , yi−1, xi+1, . . . , xk)

and
π(x)

π(y)
=
P (x, y)

P (y, x)
,

which is precisely the time-reversibility condition.
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For Metropolis-Hastings algorithms, the transition function is given by

P (x, y) = α(x, y)Q(x, y) + (1− r(x))δx(y) (2.14)

where r(x) =
∫
α(x, y)Q(x, y)dy and Q(x, y) = q(y|x). The detailed balance

condition holds straightforwardly for both terms in the right hand side of (2.14) as
shown above. Thus Gibbs samplers and Metropolis-Hastings algorithms generate
Markov chains that are time-reversible and have the target distribution as an invariant
distribution.

Also π-irreducibility can be verified: one sufficient condition is that π(y) > 0
implies that Q(x, y) > 0. For the Gibbs sampler, these conditions can be relaxed
to the assumption that x and y communicate, which effectively means that starting
from x one can eventually reach state y. Since all π-irreducible Metropolis algorithms
are Harris recurrent (Tierney (1994), [22]), it is possible to verify aperiodicity, see
also Robert and Casella [15]. Hence, there exists a unique stationary distribution to
which the Markov chain generated by Metropolis-Hastings algorithms converges and
hence the chain is ergodic.

The interest in convergence of the Markov chains is in general strictly theoretical.
In practice, we are interested in sample averages of functionals along the chain:
in order to estimate the posterior mean for a given parameter, we inspect the
convergence of 1

G

∑G
g=1 f(Θ(g)). The two forms of convergence operating are the

distributional convergence of the chain, and the convergence of the sample average.
Both convergences are provided by the following

Proposition 2.1. (Ergodic Averaging) Let Θ(g) be an ergodic chain with stationary
distribution π and f a real-valued function with

∫
|f |dπ <∞. Then for all Θ(g) for

any initial starting value Θ(0)

lim
G→∞

1

G

G∑
g=1

f(Θ(g)) =

∫
f(Θ)π(Θ)dΘ

almost surely.

Proof. See Robert and Casella, [15].

Going further, we have the ergodic central limit theorem:

Proposition 2.2. (Central Limit Theorem) Let Θ(g) be an ergodic chain with
stationary distribution π and f be real-valued such that

∫
|f |dπ < ∞. Then there

exists a real number σ(f) such that

√
G
( 1

G

G∑
g=1

f(Θ(g) −
∫
f(Θ)dπ

)
converges in distribution to a mean zero normal distribution with variance σ2(f) for
any starting value.

Proof. See Robert and Casella, [15].
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The geometric convergence of all Gibbs samplers under a minorization condition
was proven in Roberts and Polson (1994), [23]. There are various results on the
geometric convergence of the Metropolis-Hastings algorithm, which rely on the
tail behavior of the target and proposal density. Mengersen and Tweedie (1996),
[24], show that a sufficient condition for the geometric ergodicity of independence
Metropolis-Hastings algorithms is that the tails of the proposal density dominate
the tails of the target, which requires that the proposal density q is such that q/π is
bounded over the entire support.

In addition, several studies provide polynomial convergence in a number of
different cases. Polynomial convergence is obviously faster than geometric one and
guarantees convergence in finite or computing time. It has been proven that MCMC
algorithms that draw from specific distributions, such as log-concave, generate
polynomial convergent algorithms. Data augmentation can then be used to convert a
non-log-concave sampling problem into a log-concave problem. Thus the convergence
of MCMC algorithm can be significantly improved via careful data augmentation.

Having presented a brief highlight of the formal convergence theory, it is now
worth inspecting more deeply the information content of the sequence {Θ(g)}Gg=1.
Although the convergence is guaranteed from the theory, MCMC algorithms generate
chains whose convergence of realized output is impossible to formally diagnose. In
this framework, it is important to exploit the informational content of the output of
the chain.

Popular observed-chain based diagnostics include:

• calculating parameter trace plots, i.e., plots of Θ
(g)
i versus g, which show the

history of the chain simplifying the diagnose for chains that get stuck in a
region of the state space;

• the analysis of the correlation structure of draws by computing the
autocorrelation function (ACF);

• calculating Monte Carlo estimates for the standard errors of 1
G

∑G
g=1 f(Θ(g)).

2.3 Asset Pricing Applications
Markov chain Monte Carlo methods are particularly well suited for calibrating
stochastic volatility models parameters. In these models, in fact, the state space
is generally non-Gaussian and nonlinear and, in some cases, cannot be expressed
in an analytic form. In the following, we present the MCMC approach to different
stochastic volatility models, such as the log-stochastic volatility model, Heston’s
(1993) square-root stochastic volatility model, [4], and the double-jump model of
Duffie, Pan, and Singleton (2000), [1].
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2.3.1 Log-Stochastic Volatility Model

The log-stochastic volatility model is defined by:

d log(St) = µtdt+
√
VtdW

s
t

d log(Vt+1) = κv(θv − log(Vt))dt+ σvdW
v
t .

were Brownian motions are assumed to be independent. To abstract from conditional
mean dynamics we set µt = 0. An Euler time discretization is given by

Yt =
√
Vt−1ε

s
t

log(Vt) = αv + βv log(Vt−1) + σvε
v
t ,

where Yt are the continuously compounded returns, and the reparametrization
αv = κvθv and βv = 1− κv allows us to use standard conjugate updating theory for
the parameters.

Define the parameter and state vector respectively as Θ := {αv, βv, σ2
v} and

X := V = {Vt}Tt=1. By Clifford-Hammersley theorem, p(Θ, V |Y ) is completely
characterized by p(αv, βv|σv, V, Y ), p(σ2

v |αv, βv, V, Y ) and p(V |αv, βv, σ2
v , Y ).

Jacquier, Polson and Rossi, [2], assume conjugate priors for the parameters,
αv, βv ∼ N and σ2

v ∼ IG, which implies that

p(αv, βv|σv, V, Y ) ∝
T∏
t=1

p(Vt|Vt−1, αv, βv, σv)p(αv, βv) ∝ N

and, for σv,

p(σ2
v |αv, βv, V, Y ) ∝

T∏
t=1

p(Vt|Vt−1, αv, βv, σv)p(σ
2
v) ∝ IG.

The full joint posterior for volatility is then

p(V |Θ, Y ) ∝ p(Y |Θ, V )p(V |Θ) ∝
T∏
t=1

p(Vt|Vt−1, Vt+1,Θ, Y )

for
p(Vt|Vt−1, Vt+1,Θ, Y ) = p(Yt|Vt,Θ)p(Vt|Vt−1,Θ)p(Vt+1|Vt,Θ).

The conditional variance posterior is a function of Vt, whose distribution is not
recognizable and then requires Metropolis-Hastings to sample from it.

Since joint volatility posterior, p(V |Θ, Y ), cannot directly draw from without
approximations, we consider a "single state" Metropolis updating scheme. The
MCMC algorithm becomes:

p(αv, βv|σv, V, Y ) ∼ N
p(σ2

v |αv, βv, V, Y ) ∼ IG
p(Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis.
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In [2], the states are updated through an independence Metropolis-Hastings.
The first term in the posterior is an inverse Gamma and the second log-normal

term can be approximated by a suitable chosen inverse Gamma. This suggests to
chose the proposal density, q(Vt), to be a Gamma density. Addressing the true
conditional density as π(Vt) := p(Vt|Vt−1, Vt+1,Θ, Y ), the Metropolis-Hastings step is
given by:

Step 1. Draw V
(g+1)
t from q(Vt)

Step 2. Accept V (g+1)
t with probability α(V

(g+1)
t , V

(g)
t )

where

α(V
(g+1)
t , V

(g)
t ) = min

(π(V
(g+1)
t )q(V

(g)
t )

π(V
(g)
t )q(V

(g+1)
t )

, 1
)
.

As the gamma distribution bounds the tails of the true conditional density, the
algorithm is geometrically convergent.

It is also possible to reproduce the leverage effect adding a correlation,
corr(W v

t ,W
s
t ) = ρ, between the shocks in volatility and price. The leverage effect

results in the addition of a correlation between equity returns and changes in volatility
and of an additional parameter. To incorporate the leverage effects, in discrete time
the model can be written as:

Yt =
√
Vt−1ε

s
t

log(Vt) = αv + βv log(Vt−1) + σv[ρε
s
t +
√

1− ρ2εvt ]

where εst and εvt are uncorrelated. Considering the reparametrization: φv = σvρ and
ωv = σ2

v(1−ρ2). Assuming αv, βv ∼ N , φv ∼ N and ωv ∼ IG, the MCMC algorithm
becomes:

p(αv, βv|σv, V, Y ) ∼ N
p(φv, ωv|αv, βv, V, Y ) ∼ N − IG
p(Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis.

2.3.2 Heston’s Square-Root Volatility Model

The Heston square-root stochastic volatility model is defined by:

dSt = St(rt + ηvVt +
1

2
Vt)dt+ St

√
VtdW

s
t (P )

dVt = κv(θv − Vt)dt+ σv
√
VtdW

v
t (P ).

Let ρ be the constant correlation of Brownian motions. The Euler discretization of
the model is given by

Yt = ηvVt−1 +
√
Vt−1ε

s
t

Vt = αv + βvVt−1 + σv
√
Vt−1ε

v
t
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where Yt are excess returns, and we have re-defined the parameters in the drift
process of the volatility process.

Unfortunately, this time-discretization do not share volatility positivity property
with the original model: the shocks to Vt are normally distributed and then simulated
volatility Vt could be also negative. This shortcoming can be overcome in three
different ways:

• The original SDE could be transformed by Ito’s lemma into logarithms, and
the solution simulated in logs, obtaining:

log(Vt) = ht

dht = eht [kv(θv − eht)−
1

2
σ2
v ]dt+ eht/2dW v

t .

Simulating this process in discrete-time in logarithms guarantees that Vt =
exp(ht) > 0 but makes parameters’ updating more complicated as volatility
appears both in the drift and in the diffusion part.

• Following Eraker, Johannes and Polson [17], for certain time series, the problem
can be ignored hoping that it does not affect the results.

• The impact of discretization could be reduced filling in missing data points.

Assume normal independent priors for ηv and (αv, βv), an inverted Gamma
prior for σ2

v , and a uniform prior for ρ. The complete conditionals, given
by Clifford-Hammersley theorem, are: p(αv, βv|σv, ρ, V, Y ), p(σ2

v |αv, βv, ρ, V, Y ),
p(ρ|αv, βv, σ2

v , V, Y ) and p(V |αv, βv, σ2
v , Y ).

The arising MCMC algorithm is:

p(ηv|αv, βv, σv, ρ, V, Y ) ∼ N
p(αv, βv|σv, ρ, V, Y ) ∼ N
p(σ2

v |αv, βv, ρ, V, Y ) ∼ IG
p(ρ|αv, βv, σ2

v , V, Y ) : Metropolis

p(Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis

The parameter posteriors are analogous to those inspected in the previous
paragraph. Eraker, Johannes, and Polson use a random walk Metropolis-Hastings
algorithm for both the correlation parameter and the volatility states.
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2.3.3 Stochastic volatility with jumps in returns and
volatility

Consider the double-jump model of Duffie, Pan, and Singleton, [1], the equity price,
St, and its stochastic variance, Vt, jointly solve

dSt = St(rt + ηvVt)dt+ St
√
VtdW

s
t (P ) + d

(Nt(P )∑
j=1

Sτj−(eZ
s
j (P ) − 1)

)
dVt = κv(θv − Vt)dt+ σv

√
VtdW

v
t (P ) + d

(Nt(P )∑
j=1

Zv
j (P )

)
whereW s

t (P ) andW v
t (P ) are correlated Brownian motions, corr(W s

t (P ),W v
t (P )) = ρ,

Nt(P ) ∼ Poisson(λ), τj are the jump times, Zs
j (P )|Zv

j ∼ N (µs + ρsZ
v
j , σ

2
s) are the

return jumps, Zv
j (P ) ∼ exp(µv) are the variance jumps, and rt is the spot interest

rate.
Eraker, Johannes and Polson estimate stochastic volatility models with jumps in

returns and volatility using MCMC methods. Eraker (2004), [18], extends Eraker,
Johannes, and Polson to incorporate option prices.

The Euler time-discretization of this model is given by

Yt = µ+ ηvVt−1 +
√
Vt−1ε

s
t + JtZ

s
t

Vt = αv + βvVt−1 + σv
√
Vt−1ε

v
t + JtZ

v
t .

Applying Clifford-Hammersley theorem, parameters and states factorize into the
following groups [(µ, ηv), (αv, βv), σ

2
v , ρ, λ, µv, (µs, ρs), σ

2
s , J, Z

s, Zv, V ]. We assume
normal independent priors for (µ, ηv), (αv, βv), and (µs, ρs), inverted Gamma priors
for σ2

v and σ2
s , a Beta prior for λ, a Gamma prior for µv, and a uniform prior for ρ.

Due to the modular nature of MCMC algorithms and given the results
already presented, the derivation of the conditional posteriors for many of the
model’s parameters is straightforward: the conditional posteriors for the "diffusive"
parameters can be obtained adjusting return and volatility series of Heston model.
Conditional on jump times and sizes, we can define the jump-adjusted returns and
volatilities to get

r̃t = Yt − JtZs
t = µ+ ηvVt−1 +

√
Vt−1ε

s
t

Ṽt = Vt − JtZv
t = αv + βvVt−1 + σv

√
Vt−1ε

v
t

which implies that the functional forms conditional posteriors for (µ, ηv), (αv, βv), σ
2
v ,

and ρ are the same as in the previous paragraph and drawing λ is analogous.
Conditional on the jump sizes, the parameters of the jump distributions are conjugate.
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The MCMC algorithm draws from the conditional parameter posteriors

p(µ, ηv| . . . , J, Z, V, Y ) ∼ N
p(αv, βv| . . . , J, Z, V, Y ) ∼ N

p(σ2
v | . . . , J, Z, V, Y ) ∼ IG

p(λ|J) ∼ B
p(µs, ρs| . . . , J, Zs, Zv) ∼ N

p(σ2
s | . . . , J, Zs, Zv) ∼ IG

p(µv| . . . , J, Z, V, Y ) ∼ G
p(ρ|αv, βv, σ2

v , V, Y ) : Metropolis

and the conditional state variable posteriors

p(Zv
t | . . . , Zs

t , Jt, Vt, Vt−1) ∼ T N
p(Zs

t | . . . , Zs
t , Jt, Yt, Vt, Vt−1) ∼ N

p(Jt = 1| . . . , Zs
t , Z

v
t , Yt, Vt, Vt−1) ∼ Bernoulli

p(Vt|Vt−1, Vt+1,Θ, Y ) : Metropolis

For both ρ and the volatilities, Eraker, Johannes, and Polson use a random walk
Metropolis algorithm, properly tuned, to deliver acceptance rates in the 30-60%
range. For additional information see [17] and [18].
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3 Cryptocurrency Dynamics
Cryptocurrencies appeared in literature in 2008 when the pseudonymous Satoshi
Nakamoto published a white paper, [25], describing the implementation of a digital
currency called Bitcoin (BTC) that used blockchain technology. Bitcoin was officially
released in 2009 and is the first open source distributed cryptocurrency. Since then
it has captured worldwide attention and interest and today, more than twelve years
later, hundreds of cryptocurrencies and countless other applications of blockchain
technology are readily available. To quantify the importance of this new kind
of currencies in today’s economy, we recall that, on February 28th, 2021, there
were more than 8.600 cryptocurrencies with a total market capitalization of 1,44T
USD (according to coinmarketcap.com). Bitcoin dominates today’s cryptocurrencies
market, representing almost the 60% of the total capitalization.

The revolutionary characteristics of cryptocurrencies are the use of immutable
databases, the sophisticated cryptography techniques, that permit safer and traceable
trades, and distributed ledger technologies. These aspects are embodied and
summarized in the underlying structure, i.e. the blockchain, and there is plenty of
papers explaining the mechanics of blockchains and cryptocurrencies, see for example
Härdle et al. (2018), [26].

The rise of cryptocurrencies threaten several traditional functions in finance:
cryptocurrencies embrace a peer-to-peer mechanism that effectively eliminates
intermediaries such as financial institutions and credit cards. This technology leads
to the possibility of cheaper, more secure and near real-time transactions without
the necessity of entering the traditional banking infrastructure.

In 2018, Lansky, [27], proposed the following definition of cryptocurrency:

Definition 3.1. Cryptocurrency is a system that meets all of the following conditions:

1. The system does not require a central authority, its state is maintained through
distributed consensus;

2. The system keeps an overview of cryptocurrency units and their ownership;

3. The system defines whether new cryptocurrency units can be created. In the
affirmative case, the system defines the circumstances of their origin and how
to determine the ownership of the new units;

4. Ownership of cryptocurrency units can be proved exclusively cryptographically;

5. The system allows transactions to be performed in which ownership of the
cryptographic units is changed. A transaction statement can only be issued by
an entity proving the current ownership of these units;

6. If two different instructions for changing the ownership of the same
cryptographic units are simultaneously entered, the system performs at most
one of them.

A cryptocurrency can be viewed as a decentralized autonomous organization
(DAO), an open-source peer-to-peer digital autonomous network. In this framework,
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the money supply is set by an algorithmic rule, and the integrity of the network
replaces the dependence on integrity of human participants. The growth of
cryptocurrency technology therefore poses a challenge to traditional monetary
authorities and central banks.

In addition, cryptocurrencies are the only type of currencies with the following
three features:

• Pseudo-anonymity: A user executing cryptocurrency transactions cannot be
easily identified. Nonetheless, users may reveal their identity spontaneously or
can be identified through the use of external data, and then the cryptocurrency
conversely ensures that their transactions are transparent.

• Independence from central authority: Cryptocurrencies are decentralised and
independent of central authorities empowered to change the consensus rules
of the cryptocurrency system. Any change to the consensus rules can only
be achieved by approval of the majority of the cryptocurrency operators.
A cryptocurrency cannot be abolished or regulated by force since it is not
controlled by a central authority; it can only cease to exist by itself, when users
of the cryptocurrency lose confidence in it, e.g., after technical attacks or hacks.
Nevertheless, individual users of a cryptocurrency can voluntarily decide for a
form of regulation of the transactions executed by them.

• Double spending attack protection: Payments are marked so that
cryptocurrency units cannot be used to validate two different transactions.

The rapidly growing interest in cryptocurrencies stimulates the study of its impact,
as a new digital asset class, in contemporary financial markets. Since Bitcoin has
a dominant role in the market, several studies have started suggesting econometric
methods to model the dynamics of BTC prices. Scaillet et al. (2019), [28], show
that jumps are much more frequent in the BTC market than, for example, in the US
equity market (see e.g., Eraker (2004) [18]), therefore jumps should be considered
when modeling BTC prices.

Even if research on the BTC derivatives is still limited, the actual availability of
BTC futures and options traded on independent exchange platform (e.g., Deribit and
Binance, among others), encourages the creation and formalization of a derivatives
market for cryptocurrencies. One of the first step in this direction was the Commodity
Futures Trading Commission (CFTC) approval of LedgerX for clearing derivatives,
on July 2017.6 It is not a direct market for options on cryptocurrencies, but provides
an initial approximation to relate cryptocurrencies with derivatives. A fundamental
turning point was reached in December 2017, when the CME (Chicago Mercantile
Exchange) launched Bitcoin futures.7 After that, also the CBOE (Chicago Board
Options Exchange), the largest U.S. options exchange, announced the advent of
Cboe Bitcoin Futures.

The limited research on pricing and hedging Bitcoin derivatives is attributed,
almost partially, to the fact that pricing BTC derivatives encounters econometric

6LedgerX is an institutional trading and clearing platform focused on trading and clearing
swaps and options on digital currencies.

7The CME is the worlds leading and most diverse derivatives marketplace.
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challenges from the extraordinary occurrence of jumps as this market is unregulated,
lacks of central settlement and is highly speculation-driven. In addition, Cheah and
Fry (2015), [29], and Kristoufek (2015), [30], found that Bitcoin shares both standard
financial asset and speculative one properties, and the considerable speculative
component makes BTC particularly susceptible to bubbles. It is then vital to
understand the asset price formation, given the absence of fundamentals that support
the price (such as sales, assets and revenue) compared to some other assets. This
highlights the necessity of a flexible model to capture the sudden jumps appearing
in both the returns and variance processes.

Following Chen et al. (2020), [31], we inspect and reproduce BTC dynamics
using the stochastic volatility with the correlated jump (SVCJ) model of Duffie Pan
and Singleton (2000), [1], presented in the first chapter. Several empirical studies
have applied the SVCJ model in different markets. For example, Eraker et al. (2003),
[17], and Eraker (2004),[18], use the SVCJ model to estimate equity market returns
and perform equity option pricing finding empirical evidence of jumps in returns and
volatility in the US equity market.

Chen et al. are indeed among the first who extensively inspect the stochastic
and econometric properties of Bitcoin and incorporate these properties in the BTC
option pricing. The results are relevant in terms of model selection for characterizing
the Bitcoin dynamics. The need for incorporating jumps in the returns and volatility
processes of BTC is investigated, and they find that jumps play a crucial role in the
option prices. This approach seems to be readily applicable to pricing BTC options
in reality.

3.1 SVCJ Model Calibration and Results
In order to estimate the Bitcoin dynamics with the SVCJ model, we recall the
continuous time model of Duffie Pan and Singleton, [1], presented in Chapter 1.

Let {St} be the price process, {d logSt} the log returns and {Vt} be the volatility
process. The SVCJ dynamics is described by:

d logSt = µdt+
√
VtdW

(S)
t + Zy

t dNt (3.1)

dVt = κ(θ − Vt)dt+ σV
√
VtdW

(V )
t + Zv

t dNt (3.2)

Cov(dW
(S)
t , dW

(V )
t ) = ρdt (3.3)

P (dNt = 1) = λdt (3.4)

where κ is the mean reversion rate and θ is the mean reversion level (like in the Cox-
Ingersoll-Ross model),W (S) andW (V ) are correlated standard Brownian motions with
correlation coefficient ρ, Nt is a pure jump process with constant mean jump-arrival
rate λ and Zy

t and Zv
t are the random jump sizes.

The correlation ρ between the diffusion terms is introduced with the aim to
capture the possible leverage effects between returns and volatility. Since the jump-
driving Poisson process is the same in both equations (3.1) and (3.2), i.e. log-returns
and volatility dynamics, the jump sizes can be correlated. In our framework, the
random jump size Zy

t conditional on Zv
t is assumed to have a Gaussian distribution
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with a mean of µy+ρjZ
v
t and standard deviation set to σy while the jump in volatility

Zv
t is assumed to follow an exponential distribution with mean µv. In formulae:

Zy
t |Zv

t ∼ N (µy + ρjZ
v
t , σ

2
y); Zv

t ∼ Exp(µv). (3.5)

Also the jumps may be correlated, in this case the correlation term is ρj. The
stochastic volatility process

√
Vt is modeled as a square root process. The parameter

θ is the long-run mean of Vt if no jumps in volatility occur, and the process reverts to
this level at a speed controlled by the parameter κ. The parameter σV is referred to
as the volatility of volatility, and it measures the variance responsiveness to diffusive
volatility shocks. The expected log-return, in the absence of jumps, is measured by
the parameter µ.

For the reasons discussed in Chapter 2, we estimate the SVCJ model using the
MCMC method. This allows for a wide class of numerical fitting procedures that can
be guided by a variation of the priors. Since there are no official BTC options yet,
the Markov chain Monte Carlo method is more flexible in estimating the stochastic
variance jumps and better reflects the market price of risk. The estimation is based
on the following Euler discretization:

Yt = µ+
√
Vt−1ε

y
t + Zy

t Jt

Vt = α + βVt−1 + σV
√
Vt−1ε

v
t + Zv

t Jt,

where

• Yt+1 = log(St+1/St) is the log return;

• α = κθ, β = 1− κ;

• εyt , ε
v
t are N (0, 1)-distributed variables with correlation ρ;

• Jt is a Bernoulli random variable with P (Jt = 1) = λ;

• the jump sizes Zy
t and Zv

t are distributed as specified in (3.5).

We define the parameter vector and the latent variance, jump sizes and jump
respectively as

Θ = {µ, µy, σy, λ, α, β, σV , ρ, ρj, µv}
Xt = {Vt, Zy

t , Z
v
t , Jt}.

Following Chen et al. (2020), [31], we choose the prior distributions specified in
Asgharian and Nossman (2011), [32], who estimate a large group of international
equity market returns with jump-diffusion models using the MCMC method,
specifically,

µ ∼ N (0, 25) µy ∼ N (0, 100) σ2
y ∼ IG(10, 40)

λ ∼ Be(2, 40) (α, β) ∼ N (02×1, I2×2) σ2
V ∼ IG(2.5, 0.1)

ρ ∼ U(1, 1) ρj ∼ N (0, 0.5) µv ∼ IG(10, 20)
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where IG and Be stand for Inverse Gaussian and Beta Distribution respectively.
The full posterior distributions of the parameters and the latent-state variables can
be found in Asgharian and Nossman (2011), [32].

The reported mean of the posterior that is taken as an estimate of Θ is quite
robust relative to changes in variance of the prior distributions, see [31]. The posterior
for all parameters except σV and ρ are conjugate (i.e. the posterior distribution
is analogous to that of the prior but with different parameters). We observe that
the posterior for Jt is a Bernoulli distribution, the jump sizes Zy

t and Zv
t follow a

posterior normal distribution and a truncated normal distribution respectively, and
the posteriors for ρ, σ2

V and Vt are nonstandard distributions.
It follows that draws for the joint distribution of Jt, Zy

t and Zv
t can be easily

obtained, while the posteriors for ρ, σ2
V and Vt must be sampled using the Metropolis-

Hastings algorithm (in our case, random-walk method for ρ and Vt, and independence
sampling for σ2

V ). For the estimation of posterior moments, we perform 5000 iterations
with a burn-in for the first 1000 simulations, in order to reduce the impact of the
starting values.

The SVCJ model discerns returns related to sudden unexpected jumps from large
diffusive returns caused by periods of high volatility. For the BTC case the aim is
to link the latent historical jump times to news and known interventions. Given
the total number of iteration N , the estimates Ĵt

def
= 1

N

∑N
i=1 J

i
t indicate the posterior

probability that there is a jump at time t. In Johannes et al. (1999), [33], a jump is
considered to be occurred at t if the estimated jump probability is sufficiently large,
i.e., it is greater than an appropriately chosen threshold value ζ:

J̃t = 1{Ĵt > ζ}, t = 1, 2, . . . , T.

We can choose ζ empirically so that the number of inferred jump times divided by
the number of observations is approximately equal to the estimate of λ.

3.1.1 Data

We estimate the BTC returns by taking the log first differences of prices, then use
returns to estimate the SVCJ model. The analyses are carried out based on daily
closing prices. The data cover the period from October 2017 to 28 February 2021
and are collected from coingecko.com. The dynamics of BTC daily prices and BTC
returns are depicted in Figure 3.1. It shows that the BTC return is clearly more
volatile than the traded stock return, along with more frequent jumps or the scattered
volatility spikes. This makes the standard set of stationary models, such as ARIMA
and GARCH, unable to fit the BTC returns well due to the presence of jumps, as
specified by Chen et al. (2020), [31].

Several large jumps triggered by a series of big events in the BTC market can be
detected from the returns series, see also Kim et al. (2019), [34]. The first peak of
Bitcoin price was registered at the end of 2017, due to the widespread interest in
cryptocurrencies. After that, the price moved downward until July 2019 when a new
peak was reached after Facebook announcement on the Libra project. However, the
unequivocal proof that the BTC (and cryptocurrency in general) market is strictly
linked to the news and has a speculative nature came on March 11th 2020, when
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the BTC price crashed down by 65% after the World Health Organisation (WHO)
officially characterized the Covid-19 as a pandemic.

Figure 3.1: Historical BTC/USD prices and associated log-returns

The large upward and downward movements in BTC prices make the returns of
BTC display high volatility and scattered spikes/jumps.

We can compare BTC with other widespread cryptocurrencies such as Ethereum
(ETH) and Cardano (ADA), having the second and third highest market capitalization
(with dominance rate equal to 11% for ETH and 2,5% for ADA). Figure 3.2 and
Figure 3.3 show the historical price and return of ETH and ADA, respectively. We
observe that the price patterns of ETH and ADA reflect the dynamics depicted
in Figure 3.1: an almost zero price variation from the cryptocurrency release (not
included in the plot) until a first notable increase at the end of 2017, a drop on
March 11th 2020 and then a new incredible growth. The maximum price for Bitcoin
was reached on 22.02.2021 (57.669,30 USD), for Ethereum on 20.02.2021 (2.042,93
USD), for Cardano on 27.02.2020 (1,48 USD).

As in the case of BTC, returns oscillate around zero with frequent changes,
positive and negative. Those changes give the idea of a jump. Analyzing the three
return plot together, it emerges that the dynamics of returns is not related with
market capitalization. Bitcoin, Ethereum and Cardano substantially share the same
returns pattern.



3.1 SVCJ Model Calibration and Results 51

Figure 3.2: Historical ETH/USD prices and associated log-returns

Figure 3.3: Historical ETH/USD prices and associated log-returns

It appears then clear that there exists at least an empirical correlation between
log-returns of the aforementioned cryptocurrencies. To give a deeper insight of this
property we include the pairplot of cryptocurrencies log-returns, Figure 3.4.
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Figure 3.4: Pairplot of criptocurrencies log-returns

Focusing on BTC, the returns distribution is highlighted in Figure 3.5.

Figure 3.5: Histogram of BTC log-returns

3.1.2 Parameter Estimation

We use the returns to calculate the SVCJ model. The main code for the calculation
of the SVCJ reproduces the one used by Chen et al., [31], in their estimations. We
perform the SVCJ estimation considering BTC historical data from February 2017
to February 2021, a total of 5000 iterations were done in each case with a burn-in of
1000 to minimize initial value influence.

In the following we present the trace plot for the estimated parameters and their
moving average.
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Figure 3.6: Trace plot SVCJ parameters: α, β, ρ, µ

Figure 3.7: Trace plot SVCJ parameters: λ
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Figure 3.8: Trace plot SVCJ parameters: µy, σy

Figure 3.9: Trace plot SVCJ parameters: µv, σv
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Figure 3.10: Trace plot SVCJ parameters: ρj

We now inspect the dynamics followed by the mean of each parameter estimated
considering different amounts of data. In particular, we have adopted the two
following approaches:

1. For each day ti between t0 = 28.02.2018 and tN = 28.02.2021, let Ii be
the discrete time interval from t0 = 28.02.2018 to ti, included. For each
i ∈ {0, 1, . . . , N}, we calibrate the SVCJ model giving as an input the historical
daily price and returns registered for each day in Ii and performing, again,
5000 iterations. The first group of plots (i.e., Figures 3.11, 3.12, 3.13, 3.14,
3.15) shows, for each parameter, for each day ti, the mean value calculated
from the iterations generated including as an input the historical data from
28.02.2018 to ti.

2. For each day ti between t0 = 28.02.2018 and tN = 28.02.2021 we define Ji as
the discrete time interval obtained considering the 365 days preceding ti, i.e., a
horizon of one year ending with ti. For each i ∈ {0, 1, . . . , N}, we calibrate the
SVCJ giving as an input the historical daily price and returns registered for
each day in Ji and performing 5000 iterations. The second group of plots (i.e.,
Figures 3.16, 3.17, 3.18, 3.19, 3.20) shows, for each parameter, for each day
ti, the mean value calculated from all the iterations generated considering the
historical data for each day in Ji.

Analysing the results and the plots obtained adopting the first approach, we
notice that some parameters display a sort of empirical convergence or are pretty
stable and close to zero (e.g. µy, ρj), while λ, σy and µv oscillate in a small interval.
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Figure 3.11: Approach 1: calibration of α, β, ρ, µ

Figure 3.12: Approach 1: calibration of λ
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Figure 3.13: Approach 1: calibration of µy, σy

Figure 3.14: Approach 1: calibration of µv, σv
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Figure 3.15: Approach 1: calibration of ρj

We can conclude that the first approach leads to an overall empirically acceptable
parameter calibration when the time interval is sufficiently wide. The analyses carried
adopting the second approach suggest that a good fitting for the SVCJ model can
be reached considering a horizon of one year for BTC historical data used in the
calibration method.

Figure 3.16: Approach 2: calibration of α, β, ρ, µ
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Figure 3.17: Approach 2: calibration of λ

Figure 3.18: Approach 2: calibration of µy, σy
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Figure 3.19: Approach 2: calibration of µv, σv

Figure 3.20: Approach 2: calibration of ρj

The SVCJ model estimates also jumps in returns and volatility, presented in
Figure 3.21.
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Figure 3.21: SVCJ estimated jumps in price and volatility

The estimated volatility under the SVCJ model is shown in Figure 3.22. It is
worth noticing the huge increase in volatility in March 2020 that reflects the plunge
of BTC prices and jumps in returns caused by the decision and affirmations of the
WHO in relation to Covid-19 pandemic.

Figure 3.22: SVCJ estimated volatility

Considering the SVCJ residuals, we can refer to the QQ-plot depicted in Figure
3.23. The SVCJ model residuals seems to follow a normal distribution which speaks
about a good model fitting.
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Figure 3.23: SVCJ residuals QQ-plot

Once the SVCJ model is calibrated, it is possible to simulate BTC prices path.
In Figure 3.24 we show five different possible price dynamics, obtained fixing the
initial price at 49.000,00 USD.

Figure 3.24: BTC/USD price simulated path
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Conclusion
Cryptocurrencies cannot be considered neither a reliable store of value nor a

measure of value. The exchange rate’s high volatility and the price of cryptocurrencies
are influenced by the supply and demand ratio, market trustworthiness and news.

The sensitivity of investors and currency holders to market news pairs with
the classical market factors (e.g., political instability, investment climate and
regulatory framework, internal factors associated with changes in technologies and
various processes in the system) and translates into an extremely risky asset both
in the payment systems framework and in speculation-driven investments. The
cryptocurrency market is relatively young, therefore standard market metrics cannot
be applied in general and, due to the strong volatility of most cryptocurrencies,
they are often used for speculative purposes. This speculation-driven approach to
the market does not contribute to digital currencies development and formation as
participants in the payment system. Such capital is considered to be fictional capital,
which does not contribute to the development of the economy, but only participates
in the redistribution of capital.

Bitcoin is the first officially traded cryptocurrency and, despite its riskiness, it
benefits of the highest level of confidence among other digital currencies, in fact,
when prices fall against the news about Covid-19 pandemic, the society of traders
and investors begins to buy the asset at a more attractive price. Actually, Bitcoin
and Ethereum occupy market’s leading position in terms of capitalization and volume
of transactions, sharing a "long" history and investors’ trust.

This market is subject to a constant evolution: new cryptocurrency systems appear
everyday and the rising competition contributes to the active market development.
Potential investors are attracted by the incredible volatility of these assets and
cryptocurrencies are becoming a tool for speculative transactions and capital
redistribution. We should then expect further developments in the cryptocurrency
market in terms of participation of additional agents, such as central and commercial
banks, and institution of a derivatives market.

In this context, the understanding of cryptocurrencies price behavior plays a
fundamental role. Here we have described the stochastic volatility correlated jump
(SVCJ) model of Duffie Pan and Singleton (2000), [1], and verified that it fits
sufficiently well the BTC data. The several analyses performed demonstrate that
SVCJ model can be reasonably used for cryptocurrencies price path simulations.

Further developments of this work can include the study of cryptocurrency
option pricing framework and the realisation of pricing tools for vanilla options on
cryptocurrencies.
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