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Abstract

This work is an analysis of critical random Boolean networks used as control software

for robots. The main goal is to find if there are relations between information theory

measures on robot’s sensors and actuators and the capability of the robot to achieve a

particular task. Secondary goals are to verify if just the number of nodes of the networks

is significant to obtain better populations of controllers for a given task and if a Boolean

network can perform well in more than one single task. Results show that for certain tasks

there is a strongly positively correlation between some information theory measures and

the objective function of the task. Moreover Boolean networks with an higher number

of nodes tend to perform better. These results can be useful in the automatic design

process of control software for robots. Finally some Boolean networks from a random

generated population exhibit phenotypic plasticity, which is the ability to manifest

more phenotypes from the same genotype in different environments. In this scenario

it is the capability of the same Boolean network (same functions and connections) to

successfully achieve different tasks.
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Introduction

This work belongs to the field of Robotics, in particular Intelligent Robotic Systems.

A robot is a complete physical autonomous agent able to perform a task in a real world

environment without the human intervention. The work concerns also Complex Systems

Science by using particular types of Boolean networks as control software for robot.

Ultimately this work regards information theory by using metrics to measure information

properties over the robot controller.

The reason for this work is not only to expand the scientific knowledge on information

theory and Boolean networks but also to give more expertise in the automatic design

of control software for robots. Automatic design of controllers holds a crucial role in

robotics and Boolean networks can be successfully used in the process as control software

[23]. The main objective of this work is to investigate if some measures of information

theory could be used as a not handcrafted merit factor for automatic design in specific

tasks.

This thesis analyzes the results of robots controlled by critical random Boolean net-

works in predefined tasks. Three common tasks in robotics are chosen: obstacle avoid-

ance, path following and phototaxis. Several experiments are executed with different

network configurations through a simulation software. Results are collected in textual

files for analysis. The goal is to find if there are relations between information theory

metrics over robot’s sensors and actuators and handwritten task objective function. An-

other objective is to verify if there are differences in networks populations with respect

to robot’s ability in achieving a task. Finally controllers are switched in the other two

tasks they did not see. The goal is to test if the same critical random Boolean network

is capable of performing well more than one task.

xi



xii Introduction

The thesis is structured as follow. Chapter 1 introduces information theory measures

used in the analysis. Chapter 2 describes Boolean networks with focus on their possible

topologies and on critical Boolean network. Chapter 3 illustrates the simulation software

use for the experiments along with the robot and its characteristics. Chapter 4 defines

the tasks, in particular the arena, duration and objective function. Finally in chapter 5

the results of the experiments are reported along with their analysis.



Chapter 1

Information Theory

This chapter is an overview of the main concepts of information theory. In particular

in section 1.1 some information theory measures are formally described. These measures

are used in the experiments (see chapter 4) to evaluate Boolean networks, results are

reported in chapter 5. An estimation of the computational cost needed to compute the

metrics introduced is provided in section 1.2.

1.1 Measures

Information theory is a pervasive science whose subject is information related phe-

nomena and information itself. The field of information theory spread in 1948, when

C. Shannon published a paper [25] where he defined a mathematical notion by which

information could be quantified. Information theory has found applications in several

fields like cryptography [1], data compression [13], neuroscience [6], bioinformatics [26],

robotics [3] [10], etc. In the literature many information measures have been proposed.

Here we introduce the measures that we use in the experiments analysis 5.

1.1.1 Entropy

Entropy (H) is the measure that quantifies the amount of information carried by a

source. A source can be considered as an aleatory variable related to some sort of event.

1



2 1. Information Theory

An event that is certain has entropy zero. An event whose outcomes are all equally

probable, the maximum of uncertainty, has the highest entropy.

The discrete entropy’s formula introduced by C. Shannon [25] is:

H(X) = −
∑
x

p(x) log2 p(x) (1.1)

where X is an aleatory variable, x is one of its finite possible value, p(x) is the probability

of X to be equal to x, an abbreviation for p(X = x). The curve equation for a Boolean

variable is plotted in figure 1.1.

Figure 1.1: entropy 1.1 curve shape in the case of an aleatory Boolean variable, for

example a coin toss where head has probability p, with p ∈ [0, 1], and tail 1− p.

The choice of the base of the logarithm is arbitrary. For now on we always consider

the base two. The unit of measure using the base two logarithm is called bit(s). The

lower bound of H is zero, while the upper bound is:

Max(H(X)) = log2 |X| (1.2)
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1.1.2 Mutual Information

Mutual Information (MI) quantifies the amount of information shared by two aleatory

variables. When the variables are independent MI is zero, while when they are fully

dependent MI is maximized.

The discrete mutual information’s formula [25] is:

MI(X, Y ) =
∑
x,y

p(x, y) ∗ log2

p(x, y)

p(x) ∗ p(y)
(1.3)

where X and Y are two aleatory variables, x and y are possible values of the variables and

p(x, y) is the joint probability of the two variables, an abbreviation for p(X = x, Y = y).

The lower bound of MI is zero, while the upper bound is the minimum entropy of the

two variables:

Max(MI(X, Y )) = Min(H(X), H(Y )) (1.4)

Proof:

Mutual Information can be rewritten as

MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (1.5)

so, by contradiction

MI(X, Y ) > H(X)

H(X) +H(Y )−H(X, Y ) > H(X)

H(Y ) > H(X, Y )

but H(Y ) <= H(X, Y ) ∀X, Y

so MI(X, Y ) <= H(X)

(1.6)

and for symmetry MI(X, Y ) <= H(Y ).

In figure 1.2 are summarized the main properties for functions H and MI (I in the

figure) with different relations between the aleatory variables.

1.1.3 Predictive Information

“Observations on the past provide some hints about what will happen in the future,

and this can be quantified using information theory’ ’[4]. W. Bialek and N. Tishby



4 1. Information Theory

Figure 1.2: diagram showing the properties for functions entropy (H) and mutual infor-

mation (I). Red circle represents H(x), blue circle is H(y), green circle is H(z). Overlap-

ping circles means partial dependency between the involved aleatory variables. Figure

taken from [27].

introduced in 1999 a measure to quantify information sharing across time between two

variables. We call predictive information (PI) the quantity of shared information between

variable X and Y (time series) considering the latter at time t + c, c is a positive

constant that we consider always 1 in the experiments. With c = 1 we fall into Markov

processes which hypothesize that the past information contained in the previous step

holds the entire information needed. The discrete predictive information’s formula is MI

considering the second variable one step ahead in the future:

PI(X, Y ) = MI(Xt, Yt+1) =
∑

yt+1,xt

p(xt, yt+1) ∗ log2

p(xt, yt+1)

p(xt) ∗ p(yt+1)
(1.7)

This function can be easily applied in many ways for measuring the complexity of a

system. In [3] PI is computed on a robot’s sensor values at time t and on sensor values at
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time t+1. Researchers have found that for the particular task and environment that they

were analysing PI is high when the robot has a explorative behaviour and predictable

future sensor values. PI is proposed as a candidate objective function for similar scenario.

Instead, in [10], PI is computed on sensor values at time t and on actuator values at time

t+ 1. PI is used, along with other measures of complexity, to evaluate robots during an

evolution process in the achievement of a given task.

1.1.4 Transfer Entropy

Intuitively, transfer entropy (TE) is the amount of directed, time asymmetric, in-

formation exchanged over time from an aleatory variable X towards another one Y .

Introduced by T. Schreiber[24], the most general discrete formula is:

TEX−→Y = TE(X, Y ) =
∑

yt+1,ykt ,x
l
t

p(yt+1, y
k
t , x

l
t) ∗ log2

p(yt+1|ykt , xlt)
p(yt+1|ykt )

(1.8)

where p(yt+1|ykt , xlt) is the conditional probability of yt+1 given ykt , x
l
t, similarly for the

other conditional probability. The apexes k and l indicates the amount of delay to

consider: ykt is an abbreviation for (yt, ..., yt−k+1). For ease of computational power we

always consider k = l = 1. Like for the choice of c = 1 in PI, choosing k = l = 1 is

equivalent to consider the entire past and the entire future for Markov processes.

Transfer entropy can be rewritten in function of simpler measures:

TE(X, Y ) = H(Yt+1|Yt)−H(Yt+1|Yt, Xt) (1.9)

It is straightforward to see that the lower bound is zero, while the upper bound is the

minimum of the entropies of X and Y.

Max(TE(X, Y )) = H(X) (1.10)

Proof:

H(Yt+1|Yt) = H(Yt+1, Yt)−H(Yt)

H(Yt+1|Yt, Xt) = H(Yt+1, Yt, Xt)−H(Yt, Xt)

TE(X, Y ) = H(Yt+1, Yt) +H(Yt, Xt)−H(Yt)−H(Yt+1, Yt, Xt)

MI(Yy+1, Xt|Yt) = H(Yt+1, Yt) +H(Yt, Xt)−H(Yt)−H(Yt+1, Yt, Xt)

0 <= MI(Yy+1, Xt|Yt) <= Min(H(Xt), H(Yt+1))

(1.11)



6 1. Information Theory

so Max(TE(X, Y )) = Min(H(X), H(Y )).

1.2 Computational cost

To calculate the previous measures one must known the required probabilities. It is

worth to spend some words about the computational cost of this operation. Indeed, if

we want to compute the exact value of a measure previously introduced this could result

in a time expensive calculus.

Lets suppose to have a file with the values of two time series, named X and Y . A

row contains the value of a time step for X and Y , L is the file length.

• H(X). We have to compute all the probabilities for each value of X then the

summation in X. So the cost is L|X|+ |X| = O(L|X|);

• MI(X, Y ) or PI(X, Y ). We have to compute all the probabilities for each value

of X, Y and the joint probability. Then we have to compute the two summations

in X and Y . Cost is L(|X|+ |Y |+ |X||Y |) + |X||Y | = O(L|X||Y |);

• TE(X, Y ). It can be rewritten as

TE(X, Y ) =
∑

yt+1,yt,xt

p(yt+1, yt, xt) ∗ log2

p(yt+1, yt, xt) ∗ p(yt)
p(yt, xt) ∗ p(yt+1, yt)

(1.12)

We have to compute all the probabilities for each value of Xt, Yt+1 and Yt, however

the latter two have the same ones. Then the joint probabilities for < Yt, Xt >,

< Yt+1, Yt >, and < Yt+1, Yt, Xt >. In the end the three summations in Xt, Yt and

Yt+1. Cost is L(|X|+ |Y |+ |X||Y |+ |Y |2 + |X||Y |2) + |X||Y |2 = O(L|X||Y |2).

Cost for TE is linear in the file length and in the number of results of variable X. It is

polynomial in the number of results of variable Y . This turns out to be the most expen-

sive measure to compute. If the time cost is too expensive or in the case of continuous

aleatory variables, one can use approximation techniques to estimate the probability

distributions like KDE [19].



Chapter 2

Boolean Networks

In this chapter we introduce the concept of Boolean networks and the more common

models, section 2.1, with a focus on critical Boolean networks. In section 2.2 a description

is presented of how Boolean networks are used in experiments (4) as control software for

robots.

2.1 Definition

A Boolean network is a discrete time and discrete state dynamical system. It can be

instantiated as a directed graph where nodes hold both a Boolean value, 0 or 1, and a

Boolean function, an example is represented in figure 2.1. The state of the network is

the ordered set of its nodes’ values. So, if the number of nodes is N , the number of all

possible states of the Boolean network is 2N . Vertices between nodes are oriented. A

vertex carries the Boolean value of the starting node towards the ending node. A node

computes its Boolean function based on the values of the incoming vertices and updates

its Boolean value. The update scheme used in this work is always synchronous and

deterministic. A Boolean function can be represented as a truth table and the number

of possible functions is based on the number of incoming vertices. If ki is the number of

incoming vertices for node ni, then ni has a Boolean function in a set of 22ki functions.

A random Boolean network (RBN) is a Boolean network where vertices and Boolean

functions are chosen randomly.

7
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Figure 2.1: on the left a graph representing a Boolean network, on the rights the nodes’

Boolean functions as truth tables. Image taken from [22].

A Boolean network could have attractors. An attractor is a subset of the state

space towards which a dynamical system evolves over time. The attractor can be a fixed

point, one state, or a cycle, more states. Once a Boolean network reaches an attractor,

if its update scheme is deterministic, it cannot reach states that are not in the set of

the attractor. Dynamical systems can be analyzed using attractors’ characteristics like

length, basin of attractor, etc. The basin of attractor is the set of states from which the

system reach the attractor for t −→ +∞. The state space is divided into basins based on

the amount of attractors.

Different strategies of connecting nodes rise to different network topologies, so differ-

ent features:

• random graphs, this is the first topology and it is used as a benchmark for the

other ones. Random graphs are generated through a random process, for example

adding vertices to the graphs by randomly selecting two different nodes with an

uniform distribution. The node degree distribution is Poissonian or Gaussian. The

topology used for the experiments is a critical random Boolean network, also known

as N-K model, described in section 2.1.1;
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• grid-like networks, this is a very high ordered topology. Each node is connected

with a predefined number of neighbour, generally few units. Real examples are

computers grids and low-voltage networks;

• scale-free networks, qualitative this topology has few nodes with many connections

and the majority of nodes with few connections. More formally the node degree

distribution follows a negative power low. These networks are robust to accidental

damage, but vulnerable to specific attacks. They are also related to small world

phenomena. This topology can represent several real systems such as social network

relations, web pages, Internet, etc;

• small world networks, these networks have low mean path length between nodes and

high clustering. They are in balance between random networks and grid networks.

Scale-free topology Boolean networks have been proved to model well real systems such

as genetic networks. Random Boolean networks, like the N-K model, can still reach

discrete results but definitely they need to be fine-tuned[2]. Also Boolean networks

with small-world topology have reached interesting results, they “have a propensity to

combine comparably large information storage and transfer capacity”[16].

Besides the topology, Boolean networks can be distinguished by their updating scheme.

Generally there are two main different updating scheme: synchronous and asyn-

chronous. In the synchronous update scheme all nodes are updated at the same time.

It is always deterministic, a Boolean network in state st updates towards the same state

st+1. Instead, in the asynchronous update scheme nodes are updated one at a time.

The single node update is still deterministic, however the whole network update can be

random.

Updating schemes based on C. Gershenson’s taxonomy[11]:

• CRBNs, classic random Boolean networks were proposed by S. Kauffman[14] in

1969. The updating is synchronous and deterministic. CRBNs have attractors.

Due to the determinism, once a CRBN reaches an attractor it can only have states

belonging to the attractor (except for external perturbations);

• ARBNs, asynchronous random Boolean networks have similar characteristics of
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CRBNs but the updating is asynchronous and random. At each time step a node

is randomly selected and then updated, so they are not deterministic;

• DARBNs, deterministic asynchronous random Boolean network are like ARBNs

but the choice of the node to update is not random. A node is selected following

a rule based on a parameter that specify its update period. If more than one node

have to update, then they are updated asynchronously following their order;

• GARBNs, generalized asynchronous random Boolean networks are like ARBNs but

can update any number of node at each time step;

• DGARBNs, generalized asynchronous random Boolean networks are like DARBNs

but if more than one node have to update, then they are updated synchronously.

2.1.1 Critical Boolean Networks

The number of incoming vertices for the node ni is expressed by parameter ki. If

all nodes have the same value for ki, the network is homogeneous and it has a global

parameter K equal to that value. The Boolean function for a node ni is a truth table

with 2K rows where for each row the output is chosen randomly with probability pi to

be set to 1. If all nodes have the same value for pi, the network has a global parameter

p equal to that value.

Networks follow the N-K model introduced by S. Kauffman[15] when they have global

parameter K, connections are randomly chosen with uniform probability and nodes have

global probability p to be active (value 1). A system in a critical regime is said to be

in between “order” and “chaos”[18]. If a Boolean network has a stable behaviour its

dynamics are frozen, perturbations die out in short time. If it has chaotic behaviour

attractors’ length is long, almost 2N , and it is heavily affected by small perturbations. A

Boolean network is critical when the attractors’ length is short, low degree polynomial

of N . This kind of network is robust to small perturbations. Parameters K and p in

critical Boolean networks follow the relation[9]:

Kc =
1

2 ∗ pc(1− pc)
(2.1)
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Figure 2.2: shape of function 2.1. Networks with parameters that are under the curve

have frozen dynamics. Networks with parameters that are above the curve have long

attractors. Networks whose parameters are on the curve are critical.

2.2 Boolean Networks as control software for robot

In the experiments we use critical RBNs without self loops as control software for

robot. A moderate number of self loops makes RBNs more suitable to show differentia-

tion phenomena[7]. Increasing the number of self loops raises the attractors but reduces

robustness and stability[17]. The robot, detailed described in section 3.2, has a set of

sensor Boolean values constantly updated over simulation time. The sensors are coupled

with nodes of the network in a one-to-one relation. For each time step the nodes’ value

of the coupled ones are forced to be equal to the corresponding sensor values, then the

network is updated. A subset of nodes, with different nodes from the ones already used,

are coupled with the robot’s actuators. The Boolean value of an actuator is forced to

be a new value that is function of the corresponding node’s value. Figure 2.3 represents
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the architectural scheme previously described.

Figure 2.3: high level architectural scheme of the robot’s controller. The robot acquires

sensor information and forces sensor values into the network, blue nodes. Network up-

dates its state and the Boolean values of the red nodes are used to set the actuator

values. In the example of the image the Boolean network has N = 8 and K = 3.

We choose to use the following parameters for the networks:

• N = 20, K = 3, p = 0.79;

• N = 50, K = 3, p = 0.79;

• N = 100, K = 3, p = 0.79.
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Self loops are not allowed and a node cannot output to the same node twice, furthermore

nodes’ function and vertices do not change over experiment time, there is no network

evolution.

The space of all the possible networks is more than exponential in K. We have to

consider all the possible Boolean functions, the number of nodes and the possible ways

of connecting nodes. The functions are 22K so, with K = 3, they are 256. The number of

ways of connecting nodes, because we do not allow self loops and allow only one directed

connection from a node ni towards a node nj, is N − 1 for the first vertex, N − 2 for the

second one and N − 3 for the third. The number of all possible networks is:

Networks = 22K ∗ (N)K+1 (2.2)

With K = 3 the numbers of unique networks in function of the number of nodes are:

• N = 20, networks = 29, 767, 680;

• N = 50, networks = 1, 414, 963, 200;

• N = 100, networks = 24, 092, 006, 400.

Some of them are equivalent. By properly applying some operations on the network,

like changing Boolean functions or connections, it is possible to obtain an equivalent one

(same state transitions).
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Chapter 3

ARGoS simulation software

This chapter describes the simulation software used for running the experiments. The

simulation model and environments are presented in section 3.1. In section 3.2 the robot

foot-bot is shown in detail along with its sensors and actuators. In the last section 3.3 is

briefly described the GUI to inspect a single experiment.

3.1 Environment

The simulation software used for the experiments is ARGoS [20] (Autonomous

Robots Go Swarming). ARGoS is a fast multi-robot simulator developed at IRIDIA,

Artificial Intelligence research laboratory of the Université Libre de Bruxelles. It is easy

to use and versatile, it can handle different scenarios for several applications. ARGoS

grants high accuracy, high flexibility and high efficiency. For accuracy it is intended the

close gap between reality and simulation. Flexibility refers to let the users add new fea-

tures such as new robot types or new sensors. Efficiency concerns the ability to provide

satisfactory run-time performance.

An experiment configuration file must be written for each type of experiment. The

file is in xml and the main things that can be specified are:

• framework, set up of internal parameters of the system (ex. threads) and of the

experiment (ex. length);

• controllers, list of user defined controllers and configurations;

15
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• arena, list of entities to add to the arena at the beginning of the experiment and

their initial positions;

• visualization, optional configuration for visual inspection, see section 3.3.

For the experiments controllers are written as external files in Lua (version 5.4) [21].

Control software is written thanks to the previous work of A. Gnucci, who has developed

a Lua module to create RBNs and to modify them online [12]. Further details on code

are in section 4.1. In the same chapter 4.2 are also described the arenas used for each

task.

3.2 Foot-bot

The robot chosen for the experiment is called foot-bot (FB), which is already available

in ARGoS. The real FB[5] is a ground-based robot that moves through a combination

of wheels and tracks called treels. During the simulations we treat the treels as a simple

pair of wheels. In figure 3.1 the real FB is shown along with its main characteristics.

What we use in experiments:

• proximity, there are 24 sensors equally deployed in a ring around the robot capable

of perceiving near objects. A single sensor can detect object up to 10 cm, it returns

a reading composed of an angle in radians and a value in the range [0, 1]. The angle

corresponds to where the sensor is located, while the a value equal to 0 corresponds

to no object being detected by a sensor, values greater than 0 mean that an object

has been detected. The value increases as the robot gets closer to the object;

• base ground, there are 8 sensors equally deployed in a ring around the robot capable

of distinguish the ground color. Each sensor returns a Boolean value, 0 if ground is

black or dark grey, 1 if ground is white or light grey, and a offset that corresponds

to the position read on the ground by the sensor;

• light, there are 24 sensors equally deployed in a ring around the robot capable of

perceiving light sources. Like in the case of proximity, each sensor returns an angle

in radians, corresponding where the sensor is located, and a value in range of [0, 1].
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Figure 3.1: on the left the exploded view of the robot with focus on sensors and actuators.

On the right an image of the real foot-bot. Figure taken from [5].

A value of 0 corresponds to no light being detected by a sensor, while values grater

than 0 mean that light has been detected. The value increases as the robot gets

closer to a light source;

• wheels, the real robot moves through treels, two sets of wheels and tracks. For

simplicity we consider treels as normal wheels. Wheels are deployed along the y
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axis (see figure 3.2 (c)). One can specify the linear velocity in cm/s for each wheel.

(a) (b) (c)

Figure 3.2: (a) placement of proximity and light sensors. (b) Placement of base ground

sensors. (c) Placement of the wheels.

Because the number of sensors for proximity and light is too high for BNs of small

dimension and computational prohibitive in the calculus of information theory measures

with standard resources, these sensors are logically grouped to reduce their number.

Sensors are grouped in 8 new sensors, each of them containing 3 adjacent original sensors.

A new sensor value is equivalent to the maximum of its 3 original sensor values. Moreover,

with the exception of base ground sensors, sensors values are in continuous domain.

Due to the Boolean nature of the controller, these continous values are binarized with

threshold t = 0.1.

3.3 Visual inspection

The simulation software can be executed in two mode: with a graphics interface and

without it. By default, when experiment are executed for the first time, visualization is

disable. Instead, when an experiment needs to be inspected to find out some particular

behaviour of the robot visualization is enable. A visual inspection of the experiments

gives qualitative information about the ones that have measures value of difficult inter-

pretation.

The window offered by ARGoS is visible in figure 3.3. The main panel in the center

shows the simulation and the user can move the camera or zoom in and out. The light
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Figure 3.3: ARGoS GUI. In the center the simulation with the foot-bot in the arena. On

the right two panels for standard output and errors. On the top control buttons of the

simulation.

blue rays around the robot are a representation of what a particular type of sensors

perceives. In the example rays refer to proximity sensors and a ray becomes red when

the corresponding sensor value is greater than 0. On the top there is a control panel

where the user can start, stop, restart or fast forward the simulation. Here there is

also a logic time counter. On the right there are two panels for standard output and

errors. They are quite handy during the debugging phase. On the left there are some

cameras that the user can configure in the ARGoS file of the experiment with preassigned

positions and zoom.
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Chapter 4

Experiments

In this chapter is briefly presented the coding environment used for the experiments

execution (4.1). Then in section 4.2 tasks are detailed described with particular focus

on the chosen objective functions.

The main objective of the experiments is to investigate possible correlations between

robots that are suitable for a given task and high information theory measures. Secondly

we check if the controller’s parameter N is statistically influential in the achievement of

the goal task. Finally we test if the same controller can be used with satisfactory results

in a different task.

4.1 Coding environment

For each different task there is an ARGoS configuration file. The user must specify

in controllers tag which robot control software to use (reference to external file). ARGoS

supports both C++ and Lua. We have chosen Lua 5.3 [21] mainly for two reasons. First

of all is higher level than C++ and it has a garbage collector. Secondly, thanks to the

work of A. Gnucci [12], we can use a module that allows to create RBNs and to perform

on top of them almost all operations we need.

User defines three functions in Lua files:

• init, executed only once at the beginning of the experiment;

• step, it is executed sequentially for each logic time step of the experiment;

21
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• destroy, executed only once at the end of the experiment.

The common structure and main functions of controllers are presented in listing 1. At

1 function init()

2 math.randomseed(os.clock())

3 network = BooleanNetwork(network_options)

4 end

5

6 function step()

7 n_step = n_step + 1

8 if n_step <= NETWORK_TEST_STEPS then

9 collect_current_state()

10 collect_robot_position()

11 local inputs = get_input()

12 collect_current_sensor_values(inputs)

13 local binary = get_binary_input(inputs)

14 execute_network(binary)

15 end

16 end

17

18 function destroy()

19 if n_step > 0 then

20 print("network: " .. one_line_serialize(network))

21 print(get_data_per_step())

22 end

23 end

Listing 1: control software main functions: init randomly initializes the network, step

collects sensor values and robot position, then it executes the network and moves the

robot, destroy prints the network and experiment data.

the end of an experiment it is output the network architecture, connections and Boolean

functions, and a triple for each time step. The triple contains the network’s state, the

sensors values and the robot’s position. The experiment executing process has been

automatized with bash scripts. Output is redirected into text files for later analysis.

The module for RBNs has been expanded with a function that allow to reload stored

networks. It is now possible to rerun an experiment to visually inspect it or to load a



4.2 Tasks 23

network firstly used in one task to test it in another one.

4.2 Tasks

Three well known tasks in robotics as been selected for these experiments: obstacle

avoidance, path following and photo-taxis. For all of them the same kind of robot has

been used, the foot-bot, described in section 3.2. The controller is always a critical RBN

with parameters K = 3 and p = 0.79 (see 2.1.1). The number of nodes N of the network

can be 20, 50 or 100. In all configurations nodes are indexed. The first 8 nodes are

coupled with the specific set of 8 sensors used in the task. The 9th and 10th nodes are

coupled with the two wheels. Robots perceive through their sensors and move in the

arena. The wheels can be:

• both active, in this case the robot goes straight forward with a linear velocity per

wheel of 15 cm/s;

• right active and left inactive, the robot turns left. Right wheel has a linear velocity

of 15 cm/s, the left one has 0;

• left active and right inactive, the robot turns right. Left wheel has a linear velocity

of 15 cm/s, the right one has 0;

• both inactive, the robot does not move.

Each task has a unique objective function to evaluate the performance of the robot.

To have a fair meter of comparison we run experiments with a controller that does

random walk. The random walk is performed as follow:

• goes straight forward for S step, where S is a random uniform integer between 20

and 60;

• turns of R radians, where R is a random uniform value between −π/2 and π/2;

• repeat until the end of the experiment.
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The robot moves at the same speed of the robots controlled by RBNs. When turning,

the robot is in the same spot for all the duration of the rotation.

In all experiments of the same task robots start at the same position and orientation.

For each task has been executed 1000 experiments per network configuration (20, 50 and

100 nodes) and 1000 experiments with the handcrafted random walk controller.

4.2.1 Obstacle Avoidance

A robot is in an arena limited by walls with some fixed obstacles. The goal for the

robot is to freely move exploring the arena as much as possible while avoiding obstacles.

Robot can perceive nearby objects thanks to proximity sensors. On foot-bot there are 24

sensors, too many for small networks and for fast accurate calculus of information theory

measures. So sensors are grouped in 8 compound sensors, 3 adjacent sensors each. The

value of the new ones is equal to the maximum of the old ones. Because the sensors

value is in continuous domain, it is binarized with threshold t = 0.1.

The objective function for obstacle avoidance is:

Foa = max( #       »p0, pt) ∗
1

T
∗
∑
t

ot ∗ #            »pt, pt+1 (4.1)

where arrow means 2 dimensions euclidean distance between two points, pt is the robot

position at time t, ot is equal 0 if at least one sensor is 1 at time t, it is 1 if all sensors

are 0 at time t. Qualitative speaking the function rewards robots that move without

any obstacles nearby and that reach a far position from the starting point. The lower

bound is 0, a robot that does not move for the entire duration of the experiment, while

the upper bound depends on the arena morphology, on the robot starting point and on

its velocity.

Obstacle avoidance experiments last 200 seconds and for each second there are 10

time logic steps. Maximum wheels’ linear velocity is 15 cm/s, so for a single time step a

robot can run 1,5 cm. With this time and the current velocity a robot is able to explore

almost the hole arena.

The arena is a 6 meters square with fixed solid borders. Walls are 5 cm re-entrant,

so the actual surface is 5.9 x 5.9. In the arena there are 9 fixed squared obstacles dis-

played as in figure 4.1. The central obstacle is 1.5 x 1.5 with center in {0, 0}, the other
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Figure 4.1: obstacle avoidance arena.

obstacles are 1 x 1 and they are placed in {0, 2.5} (top), {1.75, 1.75} (top-right), {2.5, 0}
(right), {1.75,−1.75} (bottom-right), {0,−2.5} (bottom), {−1.75,−1.75} (bottom-left),

{−2.5, 0} (left), {−1.75, 1.75} (top-left). A robot that straightforward hits an obstacle

cannot move, however if the robot hits the object with a certain angle it can move with

restriction and its trajectory is altered. The starting position it is always {−0.856, 1.474}
and it has been chosen randomly. Due to the robot radius, which is 8.5 cm, the max-

imum distance from the starting position that can be reached is the distance between

{−0.856, 1.474} and {2.865,−2.865} (bottom right corner). The value of this distance

is almost 5.1594 meters. If we suppose that the robot always moves forward, which is

obviously an overestimate, the mean of the run distance per step is equal to 0.015 me-

ters. Given the described arena and these robot’s characteristics the objective function

is limited by 0 ≤ Foa < 5.716 ∗ 0.015 ≈ 0.0857.
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4.2.2 Path Following

A robot is in an arena limited by walls with a black path on the floor. The goal for

the robot is to move in the arena while staying on the circuit and possibly run all over it

as much as it can. Robot can perceive floor color thanks to base ground sensors. There

are 8 sensors and sensors value is Boolean, 0 if color is black, 1 if it is white.

The objective function for path following is:

Fpf = max∗( #       »p0, pt) ∗
1

T
∗
∑
t

gt ∗ vt (4.2)

where gt is 1 if at least one sensor is 0 (the robot is on the circuit), it is 0 if all sensors

are 1 (robot away from the circuit) at time t. vt is 1 if at least one wheel is active, it

is 0 if the robot does not move at time t. The max∗ function computes the maximum

distance between the robot starting position and the furthest position reached by the

robot during the experiment while it is on the circuit. Robots that keep moving on

the path and completely run over it have the highest reward. The lower bound of the

objective function is 0, robot that does not move at all, while the upper bound depends

on the arena and on the path.

Path following experiments last 500 seconds and for each second there are 10 logic

steps. Maximum wheels linear velocity is 15 cm/s, so for a single time step a robot can

do 1,5 cm. With this time and the current velocity a robot is able to complete once the

hole path.

The arena is a 6 meters square with fixed solid borders. Walls are 5 cm re-entrant, so

the actual surface is 5.9 x 5.9. The black path is like in figure 4.2, it is very heterogeneous

to make this task as difficult as possible and it covers almost the 12.24% of the surface.

The starting position is always {−0.771, 1.327}, it has been chosen randomly and a robot

in this position is on the path. The furthest point on the path from the starting position

is approximately {2.355,−2.1}. Considering the radius of the robot we can overestimate

the furthest point in {2.412,−2.163}. Function max∗ cannot have greater value than

4.724, and this is the same maximum limit for Fpf in the case of a robot always moving

on the path. So the objective function is limited by 0 ≤ Fpf < max∗(p0, pt) ≈ 4.759.
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Figure 4.2: path following arena.

4.2.3 Phototaxis

A robot is in an arena limited by walls with a light source. The goal for the robot

is to move as close as possible to the light source and in the shortest amount of time.

Robot can perceive light intensity through light sensors. Like for proximity sensors in

obstacle avoidance, light sensors are grouped with the same principle.

The objective function for photo-taxis is:

Fpt =
T∑
t

#      »

pt, L
(4.3)

where L is the light source position. Robots that immediately move towards the light

source have the highest values while robots that performs anti-photo-taxis have the lowest

values. Unlike in the previous tasks, the objective function is not limited by 0, a standing

robot will receive the reciprocal of its distance from the light source.
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Phototaxis experiments last 50 seconds and for each second there are 10 logic steps.

Maximum wheels linear velocity is 15 cm/s, so for a single time step a robot can do 1,5

cm. With this time and the current velocity a robot is able reach the light source with

some time margin.

The arena is a 8 meters square with fixed solid borders. Walls are 5 cm re-entrant,

so the actual surface is 7.9 x 7.9. The light source is placed in position {1.5, 0, 0.5} as

in figure 4.3. The starting position is always {−1.857, 1.474} and the distance between

Figure 4.3: phototaxis arena.

the robot and the light source is computed in the 2D euclidean distance. With the

current settings, starting position, light position and velocity, ignoring the starting robot

orientation which is also always the same for all the experiments, the objective function

is limited by 0.167 < Fpt < 1.107. Indeed, because the robot is oriented pointing to the

closest wall, the upper bound is a bit overestimated. A standing robot has an objective

function value of almost 0.2728.



Chapter 5

Results

This chapter summarizes the experiments that have been executed and all main

results. Results are grouped by task and for each of them the following information are

reported:

• distribution and study of the chosen objective function;

• computing and analysis of information theory measures;

• correlation analysis between high objective function and high measures.

Then we switch the best RBNs based on objective function and measures to use them in

the other two tasks. We want to check if a RBN that is good in performing a task can

be used with success in another one.

We have chosen to use four information theory measures:

• sensor entropy (SE), it is the entropy 1.1 computed on the sensors values;

• predictive information (PI), it is the mutual information 1.7 computed on sensors

values at time t and on actuators values at time t+ 1;

• transfer entropy (TE), it is the transfer entropy 1.8 computed from sensors value

towards actuators values;

• reverse transfer entropy (RTE), it is the transfer entropy computed from actuators

values towards sensors values.

29
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Probabilities are directly estimated by frequencies from experiment files for each execu-

tion. Because for all tasks we use 8 sensors and 2 actuators, the theoretical measures’

upper bound is 2 (bits) with the exception of SE which is limited by 8 (bits). These

limits are far from being reached due to the arenas’ configurations, indeed it is physically

impossible for a robot to observe certain sensors values.

For each task have been executed 1000 experiments per RBN configuration (20, 50

and 100 nodes), plus 1000 experiments with the random walk controller. In total there

are 4000 experiments per task.

5.1 Obstacle Avoidance

5.1.1 Objective function

Foa score distributions are summarized in figure 5.1. RBNs score distributions are

all wide spread with general low medians and means. The majority of robots has Foa

score near 0. This is due to robots that do not move at all or that after few steps stop

moving. RBNs update towards an attractor that keep the values of the nodes linked to

wheels equal to 0. Because sensor values are always the same along time if the robot

does not move the RBN cannot escape the attractor. Another common way robots get

stuck is they physically do it. Wheels may continue to move but the robot is facing a

corner and cannot proceed. The robot does not go away from the corner, so its sensor

values are the same and the RBN cannot escape the attractor.

Foa score distribution for N = 20 has a lower mean than the ones with N = 50

and N = 100. All RBNs distributions are generally much worse than the random walk

distribution. In fact for obstacle avoidance task random walk is a strategy often taken

into account, at least as a benchmark for other options. However the fittest RBNs are

capable of getting higher score than random walk. Through visual inspection robots that

have a score equal to or higher than 0.05 do not get stuck and run almost a third of the

arena.

Computing the Wilcoxon’s test on fitness values between RBNs with different nodes

number we obtain the result in table 5.1. Using a confidence level of 0.99 we have to reject

the null hypothesis when we compare networks with N = 20 and N = 50 and networks
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Figure 5.1: Foa score distributions. From left to right distributions for: RBNs with

N = 20, N = 50, N = 100 and random walk controller. Each distribution counts 1000

experiments.

N value p-value reject H0

20 - 50 7.0785e-13 yes

20 - 100 7.0845e-16 yes

50 - 100 0.3806 no

Table 5.1: p-value results of Wilcoxon’s

test applied to Foa score of networks

grouped by nodes number in obstacle

avoidance. Confidence is set equal to

0.99.

with N = 20 and N = 100. This means that the number of nodes is a parameter that has

statistically influence on the probability of getting a better RBN for obstacle avoidance

task. We cannot reject the null hypothesis in the case of N = 50 and N = 100, there is

no statistically difference between the two distributions.

In figure 5.2 is reported a qualitative performance appearance of 20 robots that have

obtained the highest scores per controller category. Top RBNs behave similar to each
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other, while top random walk controllers tend to explore less.

(a) N = 20 (b) N = 50

(c) N = 100 (d) random walk

Figure 5.2: obstacle avoidance paths for top 20 robots with respect to Foa.
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5.1.2 Measures

Measures distributions are illustrated in figures 5.3 and 5.4. Qualitative speaking,

besides SE, all measures have the majority of values near zero. We explain higher medians

and means for SE because this measure concerns only sensors and has an higher full scale

(8 bits instead of 2). Robots that perform the task sufficiently well see in the course of

the experiment more distinct sensor values than the others. Seeing more sensor values

means that the probabilities tend to be more evenly distributed across all possible values

and this increases the entropy. The other measures instead consider also the actuators, in

particular the information relation between sensors and actuators. However the nature

of obstacle avoidance affects the bound between the two: robot’s movement is altered by

obstacles and perimeter walls and this leads to low metrics.

Figure 5.3: SE score distributions for obsta-

cle avoidance. Distributions are grouped by

node number: N = 20, N = 50, N = 100.

Each distribution counts 1000 experiments.
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Figure 5.4: Measures score distributions without SE for obstacle avoidance. From left

to right distributions for PI, TE and RTE. Distributions are grouped by node number:

N = 20, N = 50, N = 100. Each distribution counts 1000 experiments.

5.1.3 Correlation

Pearson’s correlations values are reported in table 5.2.

Nodes Foa - SE Foa - PI Foa - TE Foa - RTE

correlation p-value correlation p-value correlation p-value correlation p-value

20 0.7675 5.1963e-195 0.5129 3.4324e-68 0.4616 6.1912e-54 0.3054 4.8483e-23

50 0.7913 1.608e-215 0.5193 3.7366e-70 0.4291 4.4539e-46 0.1745 2.7753e-08

100 0.8027 2.4937e-226 0.5725 3.6817e-88 0.3762 5.524e-35 0.1581 5.0006e-07

Table 5.2: Pearson’s correlations between information theory measures and Foa. Results

are grouped by nodes number and each of them refers to 1000 experiments.
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SE

First thing to notice is that SE shows a strikingly high positive correlation with the

objective function. For all N values correlation is higher than 0.76. This is a confirmation

of what anticipated in the previous section: robots suitable for obstacle avoidance see

more different sensor values and therefore have higher SE.

SE - Foa plots are shown in figures 5.5, 5.6 and 5.7. We observe similar plots for all

Figure 5.5: SE - Foa plot for networks with N = 20.

network’s configurations. When SE is between 0 and 1 Foa rises in all RBNs. Also when

SE grows until almost 2.5 bits Foa still continues to increase. However there are several

robots that have a medium or high SE value but a medium or low objective function.

Thought visual inspection we have checked the behaviour of these robots and found that

they do not move too far away from the starting position. Furthermore some of them

loop around an obstacle or stop moving towards the end of the experiment. Robots

that have the highest values of SE, greater than 2.5, do not have the highest objective

function. A theoretical explanation is that to achieve obstacle avoidance a robot should

be more often in a place where it does not perceive objects nearby. So the probability

for the sensors value corresponding to this scenario to appear is much higher than the
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Figure 5.6: SE - Foa plot for networks with N = 50.

Figure 5.7: SE - Foa plot for networks with N = 100.
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values for obstacles near the robot. This unbalance in the probabilities prevents robots

to get very high SE score. Instead robots that loop around obstacle have more equally

balance probabilities and so higher SE despite being less capable of performing obstacle

avoidance given the objective function we have chosen. The column in proximity of

SE = 0 refers to robots that for the whole experiment perceive no obstacles, which

corresponds to the starting state. Some of them have Foa greater than 0 because they

move in circle remaining close to the starting position.

Paths of the top 20 robots with respect to SE are reported in figure 5.8. Some robots

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.8: obstacle avoidance paths for top 20 robots with respect to SE.

explore almost the whole arena but also some of them loop around one or two obstacles.

This last behaviour is visible at darker sections of the arena. Overall these figures are

not too distant from the ones in 5.2.

PI

PI - Foa plots are shown in figures 5.9, 5.10 and 5.11. Predictive information is

mildly positively correlated with Foa, correlation is between 0.51 and 0.57. All plots

are pretty similar to each other. In particular we can observe that in correspondence

of PI ≈ 0.4 robots reach highest values for the objective function. Instead robots that

have the highest PI have medium values of Foa. These robots tend to run a circle with

different radius or to bounce between two obstacles as reported in figure 5.12. Paths
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Figure 5.9: PI - Foa plot for networks with N = 20.

Figure 5.10: PI - Foa plot for networks with N = 50.
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Figure 5.11: PI - Foa plot for networks with N = 100.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.12: obstacle avoidance paths for top 20 robots with respect to PI.

are much different with respect to the ones in figure 5.2. We can assert that PI is only

partially positively correlated with the chosen objective function for obstacle avoidance.

In particular this is true for moderate values of predictive information.
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TE

TE is weakly positively correlated with Foa. Correlation values are between 0.37 and

0.46. TE - Foa plots are shown in figures 5.13, 5.15 and 5.16. These plots resemble

Figure 5.13: TE - Foa plot for networks with N = 20.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.14: obstacle avoidance paths for top 20 robots with respect to TE.

the previous ones for PI. There is a concentration of robots near TE ≈ 0.12 that have
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Figure 5.15: TE - Foa plot for networks with N = 50.

Figure 5.16: TE - Foa plot for networks with N = 100.
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high objective function. Above the threshold of 0.12 bits robots tend to perform worse.

Robots that have highest values for TE have medium or low objective function. Paths

of the top 20 robots that have highest transfer entropy are reported in figure 5.14. We

observe more cycles and general less propensity to move far away from the starting point.

We can assert that there is no evidence of notable correlation between transfer entropy

and the chosen objective function for the task of obstacle avoidance.

RTE

RTE is not positively nor negatively correlated with Foa. Correlation values are

between 0.15 and 0.30. RTE - Foa plots are shown in figures 5.17, 5.18 and 5.19. Both

robots that are suited for obstacle avoidance and that are not with respect to the chosen

objective function have very low value of RTE. Paths of the top 20 robots that have

highest reverse transfer entropy are reported in figure 5.20. Like in TE, robots make

cycles and they move less far away from the starting point. We can assert that there

is no evidence of notable correlation between reverse transfer entropy and the chosen

objective function for the task of obstacle avoidance.

Figure 5.17: RTE - Foa plot for networks with N = 20.



5.1 Obstacle Avoidance 43

Figure 5.18: RTE - Foa plot for networks with N = 50.

Figure 5.19: RTE
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(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.20: obstacle avoidance paths for top 20 robots with respect to RTE.

5.2 Path Following

5.2.1 Objective function

Fpf score distributions are summarized in figure 5.1. Like in the previous task RBNs

generally perform worse than the random walk controller. This is due for the same reason

as before: the majority of robots does not move or stop moving after few simulation steps.

However we observe that the fittest robots according to the chosen objective function

that use RBNs outperform the ones with the random walk controller. Top RBNs have

Fpf higher than 4, while top random wolk robots have Fpf near 2. Through visual

inspection robots that have a score equal or higher than 2.5 start to run across the path

but with some inconsistency like loops. Robots with Fpf higher than 3 perform the task

considerably well.

Computing the Wilcoxon’s test on fitness values between RBNs with different nodes

number we obtain the result in table 5.3. Accordingly to p-values using a confidence

Table 5.3: p-value results of Wilcoxon’s

test applied to Fpf score of networks

grouped by nodes number in obstacle

avoidance. Confidence is set equal to

0.99.

N value p-value reject H0

20 - 50 1.4344e-17 yes

20 - 100 6.3114e-31 yes

50 - 100 0.0086 yes



5.2 Path Following 45

Figure 5.21: Fpf score distributions. From left to right distributions for: RBNs with

N = 20, N = 50, N = 100 and random walk controller. Each distribution counts 1000

experiments.

level of 0.99 we have to reject the null hypothesis when we compare 20 and 50 nodes

networks, 20 and 100 nodes networks and 50 and 100 nodes networks. This means that

the number of nodes is a parameter that has statistically influence on the probability of

getting a better RBNs for Path Following task, in this case with N = 50.

In figure 5.22 is reported a qualitative performance appearance of 20 robots that have

obtained the highest scores per controller category. Top RBNs behave quite similar to

each other (top RBNs with N = 100 are a bit worse), while top random walk robots

do not achieve the objective. We observe that in RBNs paths there are some circles in

correspondence of angles or wavy lines. After one or two circles robots settle and proceed

over the path. Sometimes few robots cut through the circuit but ultimately when they

reach it again continue to perform path following.
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(a) N = 20 (b) N = 50

(c) N = 100 (d) random walk

Figure 5.22: path following paths for top 20 robots with respect to Fpf .

5.2.2 Measures

Measures distribution are shown in figures 5.24 and 5.23. SE distributions have low

medians but values reach almost 5 bits on a scale of 8. It is worth remember that it is
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Figure 5.23: Measures score distributions without SE for path following. From left to

right distributions for PI, TE and RTE. Distributions are grouped by node number:

N = 20, N = 50, N = 100. Each distribution counts 1000 experiments.

impossible to reach too high values due to the arena configuration. The low median is

explained by robots that do not move or move only for few steps. Despite the task of

obstacle avoidance the other measures distributions have higher means. This is due to the

fact that robots are subjected to more different stimuli rather than in obstacle avoidance

where a robot perceives only if it is close to an object and only in the object’s direction.

In path following a robot starts on the circuit and because the lines are generally not

too wide and cover the nearby robot space there is an high variety of sensor values.

Therefore robot’s movement is not affected except from the external walls.

5.2.3 Correlation

Pearson’s correlations values are reported in table 5.2.
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Figure 5.24: SE score distributions for path

following. Distributions are grouped by

node number: N = 20, N = 50, N = 100.

Each distribution counts 1000 experiments.

Fpf - SE Fpf - PI Fpf - TE Fpf - RTE

correlation p-value correlation p-value correlation p-value correlation p-value

20 0.5594 2.0326e-83 0.7148 3.3282e-157 0.8513 6.7828e-282 0.7717 2.078e-198

50 0.5089 5.4219e-67 0.735 1.2622e-170 0.7897 4.9862e-214 0.7749 4.5517e-201

100 0.4184 1.1752e-43 0.6807 4.2987e-137 0.7669 1.6546e-194 0.74 4.2484e-174

Table 5.4: Pearson’s correlations between information theory measures and Fpf . Results

are grouped by nodes number and each of them refers to 1000 experiments.

SE

SE unlike in the obstacle avoidance task is not the most correlated measure with Fpf .

Indeed it is the less correlated, but correlation values are not too low, range is between

0.41 and 0.55. SE - Fpf plots are shown in figures 5.25, 5.26 and 5.27. From 0 to

2 bits Fpf increases, however there are several robots that have high SE and objective
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Figure 5.25: SE - Fpf plot for networks with N = 20.

Figure 5.26: SE - Fpf plot for networks with N = 50.
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Figure 5.27: SE - Fpf plot for networks with N = 100.

function still near to 0. From a theoretical prospective to maximize SE a robot has to

perceive different sensor values with equal probabilities. This behaviour is achieved by

robots that move in circle around the path. Paths of the top 20 robots with respect to

SE are reported in figure 5.28. We observe robots performing roto-translation over the

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.28: path following paths for top 20 robots with respect to SE.

path corresponding to darker areas or rings in the plots.
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After this deeper investigation we assert that despite SE has a moderate positive

value of correlation with the chosen objective function robots with the highest SE do not

perform well in path following task.

PI

PI has correlation values between 0.68 and 0.73 with Fpf . This indicates that the

metric is positively correlated with the chosen objective function. PI - Fpf plots are

shown in figures 5.29, 5.30 and 5.31. We notice that generally robots with higher PI

Figure 5.29: PI - Fpf plot for networks with N = 20.

have higher score, however a notable number of robots with medium or high metric have

medium or low score. Through visual inspection we have found that for these robots

Fpf is not high because they run the same section path more time back and forth. So

they do not reach far positions from the starting one and consequentially do not get high

score. High value of correlation for predictive information is explainable by the fact that

a robot, to stay on the path while moving, must have its actuators well coupled with its

sensors. The RBN that controls the robot “recognizes” when to turn right or left based

on the sensor values. Otherwise a robot cannot follow the path and gets a low score.
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Figure 5.30: PI - Fpf plot for networks with N = 50.

Figure 5.31: PI - Fpf plot for networks with N = 100.
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Robots that instead have low PI and medium or high Fpf have less smooth movements

with swings while running a straight line. Paths of the top 20 robots with respect to SE

are reported in figure 5.32.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.32: path following paths for top 20 robots with respect to PI.

TE

TE is strongly positively correlated with Fpf . Correlation goes from 0.76 to 0.85 and

it is the highest of the four. TE - Fpf plots are shown in figures 5.34, 5.35 and 5.36.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.33: path following paths for top 20 robots with respect to TE.

Score tends to grow linearly with the metric. Compared to PI there are less robots
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Figure 5.34: TE - Fpf plot for networks with N = 20.

Figure 5.35: TE - Fpf plot for networks with N = 50.
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Figure 5.36: TE - Fpf plot for networks with N = 100.

with medium or high TE and medium or low score. The ones that still persist can be

explained with the same reason: robots do not reach far positions. Also robots that have

medium TE and high Fpf behave like the ones in PI. Paths of the top 20 robots with

respect to TE are reported in figure 5.33. We notice a clear similarity with figure 5.22.

In this case there are a bit more circles, especially in proximity of tight curves of the

circuit.

After this deeper analysis we assert that transfer entropy from sensors to actuators

is strongly positively correlated with the chosen objective function for the task of path

following. TE can definitely be used as an alternative objective function that is not

handcrafted by humans.

RTE

RTE is strongly positively correlated with Fpf and has similar values of TE, it goes

from 0.74 to 0.77. RTE - Fpf plots are shown in figures 5.37, 5.38 and 5.39. We observe

a solid logarithmic grow of the objective function. There are no robots with high RTE

and low score, robots with more than 0.2 bits are all suitable for path following. Paths of
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Figure 5.37: RTE - Fpf plot for networks with N = 20.

Figure 5.38: RTE - Fpf plot for networks with N = 50.
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Figure 5.39: RTE - Fpf plot for networks with N = 100.

the top 20 robots with respect to RTE are reported in figure 5.40. Paths are extremely

close to the ones in figure 5.22.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.40: path following paths for top 20 robots with respect to RTE.

Ultimately the transfer entropy from actuators to sensors is a metric strongly posi-

tively correlated with the chosen objective function. It can be used as an alternative not

handcrafted objective function for the path following task.
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5.3 Phototaxis

5.3.1 Objective function

Fpt score distributions are summarized in figure 5.41. Differently from the previous

Figure 5.41: Fpt score distributions. From left to right distributions for: RBNs with

N = 20, N = 50, N = 100 and random walk controller. Each distribution counts 1000

experiments.

tasks, the chosen objective function for phototaxis is not limited by 0. A standing robot

get almost a score of 0.2727. A robot that moves away from the light source gets a lower

value. We notice that both RBNs and random walk controller have similar means and

medians. However the most suitable RBNs outperform the best random walk robots.

With Fpt greater than 0.4 robots move towards the light source but not in the fastest way.

Not all robots with score close to 0.4 ends nearby the light source, but they definitely

reduce the distance. Robots that get a score higher than 0.45 end in close proximity of
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the light source. With more than 0.5 robots go straight forward towards the light source.

(a) N = 20 (b) N = 50

(c) N = 100 (d) random walk

Figure 5.42: phototaxis paths for top 20 robots with respect to Fpt.

Computing the Wilcoxon’s test on fitness values between RBNs with different nodes
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number we obtain the result in table 5.5. Distributions are quite similar to each other

Table 5.5: p-value results of Wilcoxon’s

test applied to Fpt score of networks

grouped by nodes number in obstacle

avoidance. Confidence is set equal to

0.99.

N value p-value reject H0

20 - 50 0.0546 no

20 - 100 6.5049e-5 yes

50 - 100 0.0328 no

however RBNs with N = 100 are statistically different to RBNs with N = 20. It is

more probable to get a RBN with higher score with N = 100 compared to robot a RBN

N = 20 with a confidence of 0.99.

In figure 5.42 is reported a qualitative performance appearance of 20 robots that

have obtained the highest scores per controller category. The red dot corresponds to the

light source, position 1.5,0,0. We observe that the fittest robots according to the chosen

objective function reach the light source or loop around it in its proximity. Clearly we

do not expect such good behaviour from the best random walk controller. These top

RBN behaviours are divided into at least three different types. The first one is turning

immediately towards the light source and reach it (see plots a, b and c). The second is

to approach the light source more slowly in a spiral (see plots a and c). The third one is

similar to the first but in proximity of the light source the robot start moving in circles

(see plots b and c).

5.3.2 Measures

Measures distribution are shown in figures 5.43 and 5.44. SE distributions have

means and medians between 1 and 2 bits. Te highest values reach almost 4 bits on a

scale of 8. It is worth reminding that even for this task it is impossible to reach too high

values due to the arena configuration. The other measures distributions have higher

means compared with the previous two tasks. This happens because of the high sensor

values variety. When a robot moves tangentially to the light cone, turns around or moves

in circle its sensors perceive lots of different values. Therefore robot’s movement is not

affected except from the external walls.
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Figure 5.43: SE score distributions for pho-

totaxis. Distributions are grouped by node

number: N = 20, N = 50, N = 100. Each

distribution counts 1000 experiments.

5.3.3 Correlation

Phototaxis is a much different task compared to obstacle avoidance and path fol-

lowing. In the previous two there is a clear subspace of the arena where robot receives

stimuli (near obstacles and on the path). In this subspace the robot has to behave in

a proper manner to perform well the assigned task. In phototaxis instead the arena

is almost entirely lighted by a light source and a robot does not recognize its intensity

but only if there is light or not. Nobody has told the robot to prefer moving towards

the source of these stimuli or moving away or around it. We expect much lower values

of correlations between information theory measures and the chosen objective function.

Pearson’s correlations values are reported in table 5.6.
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Figure 5.44: Measures score distributions without SE for phototaxis. From left to right

distributions for PI, TE and RTE. Distributions are grouped by node number: N = 20,

N = 50, N = 100. Each distribution counts 1000 experiments.

Fpt - SE Fpt - PI Fpt - TE Fpt - RTE

correlation p-value correlation p-value correlation p-value correlation p-value

20 0.0394 0.2122 0.2223 1.15e-12 0.2023 1.0552e-10 0.0434 0.1701

50 0.1949 5.0346e-10 0.3532 9.3298e-31 0.2722 1.8886e-18 0.0674 0.0329

100 0.1914 1.044e-09 0.4321 9.1552e-47 0.2781 3.1472e-19 0.1287 4.4642e-05

Table 5.6: Pearson’s correlations between information theory measures and Fpt. Results

are grouped by nodes number and each of them refers to 1000 experiments.

SE

SE is not positively nor negatively correlated with Fpt. Correlation values are between

0.03 and 0.19. SE - Fpt plots are shown in figures 5.45, 5.46 and 5.47. From 0 to 2 bits

of SE, Fpt is quite inconsistent, while from 2 to 3 bits the objective tends to increase.

Robots with SE greater than 3 bits have Fpt of almost 0.27. Robots that stay on the
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Figure 5.45: SE - Fpt plot for networks with N = 20.

Figure 5.46: SE - Fpt plot for networks with N = 50.
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Figure 5.47: SE - Fpt plot for networks with N = 100.

line of Fpt ≈ 0.27 do not move too away from the starting position. Dots under that

thresholds correspond to robots that perform anti phototaxis. These results are expected

because to maximize SE a robot should constantly move in circle and to do so it cannot

run far away from the starting position and approach the light source.

Paths of the top 20 robots with respect to SE are reported in figure 5.48. From

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.48: phototaxis paths for top 20 robots with respect to SE.
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the figure we have confirmation of the previous reasoning. Robots move in circle or

roto-translate a bit away from the starting position.

PI

PI has correlation values with Fpt between 0.22 and 0.43. So only in the case of

N = 100 there is a moderate positive correlation. PI - Fpt plots are shown in figures

5.49, 5.50 and 5.51. From plots we observe that there is no clear relation between

Figure 5.49: PI - Fpt plot for networks with N = 20.

predictive information and the chosen objective function. Only with N = 100 when

robots get very high PI then they also get high score but could likely be a chance given

the low number of these robots. Predictive information is high when the information

shared between sensors and actuators is high, qualitative speaking when in the presence

of the same sensor stimuli the robot behave always in the same way. The issue is that

this happens both when the robot approaches the light source and when it run away.

Paths of the top 20 robots with respect to PI are reported in figure 5.52. We no-

tice that robots are divided in two types: robots that actually perform phototaxis and
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Figure 5.50: PI - Fpt plot for networks with N = 50.

Figure 5.51: PI - Fpt plot for networks with N = 100.
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(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.52: phototaxis paths for top 20 robots with respect to PI.

robots that perform anti phototaxis. So, despite having higher correlation than SE, PI

is definitely not correlated with Fpt.

TE

TE correlation with Fpt has similar values to correlation between PI and Fpt. Values

are between 0.20 and 0.27, which suggest a weak moderate correlation with the chosen

objective function. TE - Fpt plots are shown in figures 5.54, 5.55 and 5.56.

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.53: phototaxis paths for top 20 robots with respect to TE.



68 5. Results

Figure 5.54: TE - Fpt plot for networks with N = 20.

Figure 5.55: TE - Fpt plot for networks with N = 50.
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Figure 5.56: TE - Fpt plot for networks with N = 100.

We observe that there is no clear relation between the two function. The explanation

for this phenomenon is the same in the PI analysis. The chosen objective function

rewards robots that move towards the light source but this is completely arbitrary. Both

robots that move towards the light source and robots that perform anti phototaxis could

have medium or high PI value. In all three plots we notice that robots with highest score

have a TE value of almost 0.25 bits.

Paths of the top 20 robots with respect to TE are reported in figure 5.53. Like for

the top 20 robots with respect to PI, there are two distinct types: the ones performing

phototaxis (even in a sub optimal way) and the ones performing the opposite task.

We conclude asserting that there is no positive or negative correlation between transfer

entropy from sensors to actuators and the chosen objective function.

RTE

RTE correlation with Fpt goes from 0.04 to 0.12, meaning that the two functions are

fully independent to each other. RTE - Fpt plots are shown in figures 5.57, 5.58 and

5.59. We observe that in proximity of RTE equals to 0.05 bits there are robots with
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Figure 5.57: RTE - Fpt plot for networks with N = 20.

Figure 5.58: RTE - Fpt plot for networks with N = 50.
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Figure 5.59: RTE - Fpt plot for networks with N = 100.

the highest score. Despite that, transfer entropy from actuators to sensors has no clear

relation with Fpt.

Paths of the top 20 robots with respect to PI are reported in figure 5.60. We observe

(a) N = 20 (b) N = 50 (c) N = 100

Figure 5.60: phototaxis paths for top 20 robots with respect to RTE.

that in this case the robots with highest RTE prefer to run around the light source rather

than directly approach. RTE is clearly the less correlated metric above the four.
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5.4 Switched controllers

We select the 20 best RBNs with respect to objective functions and metrics from all

tasks grouped by number of nodes (2% of all RBNs for group). So in total we consider

20 ∗ 5 ∗ 3 ∗ 3 = 900 RBNs, possibly there are duplicates in case a RBN has more metrics

in the top 20 of its group. We run these RBNs in the other two tasks that they have

not seen. Our analysis focuses on verifying if among “good” RBNs based on objective

function or that have high metrics there are RBNs capable of performing well in other

tasks. Input sensors are changed accordingly to the type of sensor used in the task.

Because we used 8 sensors in every experiment this operation is straightforward.

We define that a RBN is sufficiently good in one specific task if for that task it

performs better than the best random walk robot. Thresholds are:

• 0.0461 for obstacle avoidance;

• 1.9633 for path following;

• 0.3447 for phototaxis.

In the following sections we report the results of the switching with focus on those RBNs

that have at least two objective functions above the thresholds. For ease of readability

we call RBNs with that characteristic “super” RBNs (SRBNs). For each sections the

number of analyzed RBNs is 180 (top 20 per tasks per nodes number).

5.4.1 Objective functions

By using the top 20 RBNs with respect to the objective function of the original task

we obtain the SRBNs reported in table 5.7. SRBNs are 33 (33/180 = 18.3%) and none

of them has all three objective functions greater than the thresholds. SRBNs are divided

as follow:

• from obstacle avoidance we have 7 RBNs (7/90 = 7.8%), all performing well in

obstacle avoidance, 6 also in path following and 1 in phototaxis;

• from path following we have 24 RBNs (24/90 = 26.7%), all performing well in path

following, 6 in obstacle avoidance and 18 in phototaxis;
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Obstacle avoidance Path following Phototaxis RBN ID

Foa SE PI TE RTE Fpf SE PI TE RTE Fpt SE PI TE RTE

0.061 2.6601 0.533 0.0953 0.0227 2.1878 5.0423 1.0262 0.4121 0.0702 0.1699 1.0971 0.0037 0 0 OAN20E645

0.058 2.7439 1.048 0.7022 0.2938 3.8465 3.8156 1.4447 1.0304 0.3292 0.1701 1.0996 0.0074 0 1e-04 OAN20E58

0.0011 0 0 0 0 4.6434 2.4429 1.0766 1.0075 0.066 0.3525 1.2963 0.9968 0.5917 0.007 PFN20E986

0.0011 0 0 0 0 4.0952 2.2436 1.0232 0.8598 0.2753 0.3549 1.6261 1.0511 0.5292 0.6432 PFN20E101

0.0011 0 0 0 0 3.9885 3.4876 1.2595 0.6911 0.0894 0.4833 2.1156 1.0361 0.3969 0.297 PFN20E945

0.0104 2.2242 0.8655 0.477 0.2962 3.9033 1.9001 0.3908 0.2707 0.4164 0.3524 1.4214 0.3582 0.2469 0.6291 PFN20E128

0.0348 2.1087 1.2789 0.5674 0.504 3.8188 2.4677 1.0425 1.0059 0.0602 0.3466 1.0656 0.6292 0.3086 0.3086 PFN20E829

0.0011 0 0 0 0 3.5392 1.8833 1.0228 0.7101 0.3985 0.3562 1.222 1.017 0.37 0.6675 PFN20E746

0.0011 0 0 0 0 3.5392 1.8852 1.0225 0.7114 0.3984 0.3557 1.2335 1.0119 0.3807 0.6648 PFN20E195

0.0736 3.0258 0.4206 0.363 0.0546 3.3627 2.5489 0.769 0.5838 0.0525 0.2584 0.7924 0.6021 0.333 0.0601 PFN20E747

0.0011 0 0 0 0 3.5994 2.7118 1.0272 0.8525 0.1365 0.6155 2.6002 1.4578 1.014 0.1983 PTN20E430

0.0011 0 0 0 0 3.3719 4.1844 0.748 0.2806 0.0557 0.5491 1.4051 0.2304 0.221 0.0643 PTN20E194

0.0677 2.864 0.5358 0.1495 0.0428 2.134 4.3754 0.7864 0.4005 0.0789 0.2132 1.5168 0.5407 0.3834 0.1204 OAN50E442

0.0624 2.7772 0.4666 0.0901 0.0113 2.4214 4.7853 0.9102 0.2792 0.0418 0.1692 1.3429 0.0045 0.0046 0 OAN50E659

0.0576 2.4281 0.7144 0.1019 0.034 0.1226 2.783 0.0071 0.0029 2e-04 0.3801 1.4916 0.1741 0.107 0.0335 OAN50E948

0.0011 0 0 0 0 4.6907 2.3482 1.0044 1.0016 0.0749 0.3501 1.3187 1.0195 0.5908 0.0084 PFN50E17

0.0058 0 0 0 0 3.8558 1.9525 1.0029 0.6983 0.1514 0.3541 1.4581 0.93 0.2725 0.1926 PFN50E672

0.0011 0 0 0 0 3.7432 2.8538 0.3417 0.2574 0.1951 0.3595 1.512 0.2405 0.1807 0.3132 PFN50E277

9e-04 0.267 0.2671 0.0101 0 3.7184 2.6283 1.0364 0.8893 0.2233 0.3783 1.5539 0.6137 0.3637 0.0914 PFN50E67

0.0011 0 0 0 0 3.708 1.8349 1.016 0.7075 0.4364 0.3581 1.2098 1.0216 0.3494 0.6841 PFN50E28

0.0011 0 0 0 0 3.6132 2.3843 1.0546 0.7829 0.3473 0.4807 2.1623 1.0117 0.4059 0.6956 PFN50E577

0.0011 0 0 0 0 3.5352 1.857 1.0218 0.7138 0.4014 0.3561 1.222 1.0167 0.3984 0.6471 PFN50E194

0.0011 0 0 0 0 3.5189 2.8962 0.5523 0.3325 0.1859 0.3823 1.6394 0.2019 0.4159 0.4154 PFN50E666

0.068 2.4317 0.4387 0.1152 0.0119 3.603 5.0208 0.9586 0.2661 0.0391 0.1692 1.2083 0 0 0 PFN50E296

0.0641 2.3208 0.4091 0.0866 0.0164 3.3758 4.4463 0.8539 0.3127 0.0529 0.1692 1.3429 0.0045 0 1e-04 PFN50E979

0.0623 2.7772 0.4674 0.0923 0.0113 2.42 4.7856 0.9125 0.2799 0.0425 0.1695 1.3491 0.0135 0 1e-04 OAN100E101

0.0586 2.5361 0.4589 0.1572 0.0153 3.4359 4.7231 0.2896 0.0833 0.0315 0.2889 3.367 0.5975 0.1126 0.0347 OAN100E257

0.0011 0 0 0 0 4.3874 1.9034 1.0082 0.9299 0.0688 0.361 1.2339 1.0252 0.5771 0.0167 PFN100E745

0.0011 0 0 0 0 4.2714 2.4181 0.438 0.2712 0.2742 0.4795 2.0616 0.3692 0.2529 0.6435 PFN100E965

0.0011 0 0 0 0 3.5369 2.7382 0.2482 0.2514 0.0826 0.4341 1.5244 0.2004 0.2978 0.1798 PFN100E778

0.0521 2.4431 0.613 0.363 0.0452 3.1586 3.7271 0.9601 0.6568 0.0615 0.1891 2.2278 0.0073 0.0012 0.0192 PFN100E526

0.067 2.4073 0.4377 0.0752 0.0171 2.8385 4.3834 0.783 0.2069 0.0579 0.1692 1.3429 0.0045 0 1e-04 PFN100E117

0.0534 2.729 0.2597 0.1651 0.0187 2.3044 3.6296 0.7677 0.3981 0.0703 0.1883 1.3697 0.1438 0.0972 0.0021 PFN100E777

Table 5.7: SRBNs obtained by the top 20 RBNs with respect to the objective functions.

Objective function score that exceeds the corresponding thresholds is written in red.

• from phototaxis we have 2 RBNs (2/90 = 2.2%), both performing well in phototaxis

and path following.

By selecting the RBNs using directly the objective function we have a number of SRBNs

that we expect to be greater than the SRBNs from other metrics. We observe that

the majority of SRBNs came from the path following task. Among the three task path

following is the most difficult, especially given the path we have chosen. So more than
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one RBN over four that is capable of accomplish path following is also able to perform

well other tasks.

5.4.2 Sensor entropy

SRBNs obtained by top 20 RBNs with respect to SE are reported in table 5.8. There

Obstacle avoidance Path following Phototaxis RBN ID

Foa SE PI TE RTE Fpf SE PI TE RTE Fpt SE PI TE RTE

0.058 2.7439 1.048 0.7022 0.2938 3.8465 3.8156 1.4447 1.0304 0.3292 0.1701 1.0996 0.0074 0 1e-04 OAN20E58

0.061 2.6601 0.533 0.0953 0.0227 2.1878 5.0423 1.0262 0.4121 0.0702 0.1699 1.0971 0.0037 0 0 OAN20E645

0.0011 0 0 0 0 3.2021 4.6964 0.5603 0.3454 0.0947 0.3679 1.5989 1.0446 0.4542 0.6711 PFN20E143

0.0542 2.3108 0.5094 0.1362 0.0123 2.6069 5.0548 0.8786 0.2877 0.0406 0.1699 1.0971 0.0037 0.0037 0 PFN20E662

0.0594 2.0853 0.2261 0.0382 0.0026 2.764 5.0351 0.8259 0.2844 0.0389 0.1692 1.2083 0 0 0 PFN20E253

0.0612 1.9702 0.3953 0.1478 0.0121 2.4214 4.7853 0.9102 0.2799 0.042 0.1692 1.3429 0.0045 0 1e-04 PFN20E284

0.0546 2.9785 0.4986 0.4225 0.0515 2.7611 4.3234 0.9535 0.6949 0.0789 0.1813 0.9493 0.0725 0.0398 0.0046 PFN20E188

0.0615 2.5163 0.3903 0.1852 0.0282 2.8486 4.2579 0.9594 0.3342 0.0486 0.2577 1.1753 0.5357 0.6126 0.5216 PFN20E84

0.0594 2.0853 0.2261 0.0382 0.0026 2.7632 5.0351 0.8259 0.2844 0.0389 0.1692 1.2083 0 0 0 PFN50E700

0.068 2.4317 0.4387 0.1152 0.0119 3.603 5.0208 0.9586 0.2661 0.0391 0.1692 1.2083 0 0 0 PFN50E296

0.047 2.1672 0.1101 0.1856 0.0348 1.9946 4.947 0.5524 0.2808 0.077 0.1734 1.4361 0.0168 0.0039 0.0512 PFN50E284

0.0483 3.0196 0.3696 0.0955 0.0275 3.0355 4.0262 0.3473 0.1769 0.0288 0.2153 2.4865 0.5844 0.1063 0.0108 OAN100E100

Table 5.8: SRBNs obtained by the top 20 RBNs with respect to sensor entropy. Objective

function score that exceeds the corresponding thresholds is written in red.

are 12 SRBNs (12/180 = 6.6%), divided as follow:

• from obstacle avoidance we have 3 RBNs (3/90 = 3.3%), all performing well in

obstacle avoidance and also in path following;

• from path following we have 9 networks (9/90 = 10%), all performing well in path

following, 8 also in obstacle avoidance and 1 in phototaxis;

• from phototaxis we have none.

As expected with SE we obtain less SRBNs than by using the objective functions. In

particular we observe that there are no SRBNs from phototaxis task. This is most likely

due to the fact that SE is not positive correlated with Fpt. As in the previous case from

path following comes the majority of SRBNs. Moreover there is not a SRBN able to

perform well all the three tasks.
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5.4.3 Predictive information

By selecting the best RBNs by PI we obtain the SRBNs reported in table 5.9. There

Obstacle avoidance Path following Phototaxis RBN ID

Foa SE PI TE RTE Fpf SE PI TE RTE Fpt SE PI TE RTE

0.058 2.7439 1.048 0.7022 0.2938 3.8465 3.8156 1.4447 1.0304 0.3292 0.1701 1.0996 0.0074 0 1e-04 OAN20E58

0.0011 0 0 0 0 3.9885 3.4876 1.2595 0.6911 0.0894 0.4833 2.1156 1.0361 0.3969 0.297 PFN20E945

0.0011 0 0 0 0 2.9121 2.8942 1.2025 0.3671 0.161 0.3585 1.177 0.2436 0.4019 0.3427 PFN20E641

0.0011 0 0 0 0 4.6434 2.4429 1.0766 1.0075 0.066 0.3525 1.2963 0.9968 0.5917 0.007 PFN20E986

0.0348 2.1087 1.2789 0.5674 0.504 3.8188 2.4677 1.0425 1.0059 0.0602 0.3466 1.0656 0.6292 0.3086 0.3086 PFN20E829

0.0261 2.9118 1.1739 0.789 0.5578 3.3618 2.8884 1.027 0.8349 0.1322 0.4006 2.6536 0.9069 0.6241 0.4139 PFN20E914

0.0011 0 0 0 0 4.0952 2.2436 1.0232 0.8598 0.2753 0.3549 1.6261 1.0511 0.5292 0.6432 PFN20E101

0.0011 0 0 0 0 3.5392 1.8833 1.0228 0.7101 0.3985 0.3562 1.222 1.017 0.37 0.6675 PFN20E746

0.0011 0 0 0 0 3.5994 2.7118 1.0272 0.8525 0.1365 0.6155 2.6002 1.4578 1.014 0.1983 PTN20E430

0.0011 0 0 0 0 3.6132 2.3843 1.0546 0.7829 0.3473 0.4807 2.1623 1.0117 0.4059 0.6956 PFN50E577

9e-04 0.267 0.2671 0.0101 0 3.7184 2.6283 1.0364 0.8893 0.2233 0.3783 1.5539 0.6137 0.3637 0.0914 PFN50E67

0.0011 0 0 0 0 3.5352 1.857 1.0218 0.7138 0.4014 0.3561 1.222 1.0167 0.3984 0.6471 PFN50E194

0.0011 0 0 0 0 3.708 1.8349 1.016 0.7075 0.4364 0.3581 1.2098 1.0216 0.3494 0.6841 PFN50E28

0.0011 0 0 0 0 4.6907 2.3482 1.0044 1.0016 0.0749 0.3501 1.3187 1.0195 0.5908 0.0084 PFN50E17

0.0058 0 0 0 0 3.8558 1.9525 1.0029 0.6983 0.1514 0.3541 1.4581 0.93 0.2725 0.1926 PFN50E672

0.0011 0 0 0 0 4.3874 1.9034 1.0082 0.9299 0.0688 0.361 1.2339 1.0252 0.5771 0.0167 PFN100E745

0.0521 2.4431 0.613 0.363 0.0452 3.1586 3.7271 0.9601 0.6568 0.0615 0.1891 2.2278 0.0073 0.0012 0.0192 PFN100E526

7e-04 0 0 0 0 2.614 3.3409 0.896 0.6134 0.0787 0.3796 1.5229 0.9953 0.6162 0.4698 PTN100E238

Table 5.9: SRBNs obtained by the top 20 RBNs with respect to predictive information.

Objective function score that exceeds the corresponding thresholds is written in red.

are 18 SRBNs (18/180 = 10%) divided as follow:

• from obstacle avoidance we only have 1 RBN (1/90 = 1.1%), performing well in

obstacle avoidance and in path following;

• from path following we have 15 RBNs (15/90 = 16.7%), all performing well in path

following, 1 also in obstacle avoidance and 16 in phototaxis;

• from phototaxis we have 2 RBNs (2/90 = 2.2%), both performing well in phototaxis

and path following.

As before none SRBN is able to perform sufficiently well all three tasks. We observe that

also this time the majority of SRBNs comes from path following. Obstacle avoidance is

the less frequent task because PI is not correlated with Foa.
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5.4.4 Transfer entropy

By using TE we obtain the SRBNs in table 5.10. We have some network repetitions

Obstacle avoidance Path following Phototaxis RBN ID

Foa SE PI TE RTE Fpf SE PI TE RTE Fpt SE PI TE RTE

0.058 2.7439 1.048 0.7022 0.2938 3.8465 3.8156 1.4447 1.0304 0.3292 0.1701 1.0996 0.0074 0 1e-04 OAN20E58

0.0011 0 0 0 0 4.6434 2.4429 1.0766 1.0075 0.066 0.3525 1.2963 0.9968 0.5917 0.007 PFN20E986

0.0348 2.1087 1.2789 0.5674 0.504 3.8188 2.4677 1.0425 1.0059 0.0602 0.3466 1.0656 0.6292 0.3086 0.3086 PFN20E829

0.0011 0 0 0 0 4.0952 2.2436 1.0232 0.8598 0.2753 0.3549 1.6261 1.0511 0.5292 0.6432 PFN20E101

0.0261 2.9118 1.1739 0.789 0.5578 3.3618 2.8884 1.027 0.8349 0.1322 0.4006 2.6536 0.9069 0.6241 0.4139 PFN20E914

0.0011 0 0 0 0 3.2807 1.9329 0.9989 0.7557 0.3173 0.3538 1.2099 1.0143 0.4447 0.7104 PFN20E113

0.0011 0 0 0 0 3.5392 1.8852 1.0225 0.7114 0.3984 0.3557 1.2335 1.0119 0.3807 0.6648 PFN20E195

0.0011 0 0 0 0 3.5392 1.8833 1.0228 0.7101 0.3985 0.3562 1.222 1.017 0.37 0.6675 PFN20E746

0.0011 0 0 0 0 3.5994 2.7118 1.0272 0.8525 0.1365 0.6155 2.6002 1.4578 1.014 0.1983 PTN20E430

0.0011 0 0 0 0 4.3383 2.3203 1.0242 1.0126 0.0801 0.4661 2.1614 1.0576 0.7886 0.0513 PTN20E427

0.0011 0 0 0 0 4.6907 2.3482 1.0044 1.0016 0.0749 0.3501 1.3187 1.0195 0.5908 0.0084 PFN50E17

9e-04 0.267 0.2671 0.0101 0 3.7184 2.6283 1.0364 0.8893 0.2233 0.3783 1.5539 0.6137 0.3637 0.0914 PFN50E67

0.0011 0 0 0 0 3.6132 2.3843 1.0546 0.7829 0.3473 0.4807 2.1623 1.0117 0.4059 0.6956 PFN50E577

0.0011 0 0 0 0 3.5352 1.857 1.0218 0.7138 0.4014 0.3561 1.222 1.0167 0.3984 0.6471 PFN50E194

0.0011 0 0 0 0 3.708 1.8349 1.016 0.7075 0.4364 0.3581 1.2098 1.0216 0.3494 0.6841 PFN50E28

0.0058 0 0 0 0 3.8558 1.9525 1.0029 0.6983 0.1514 0.3541 1.4581 0.93 0.2725 0.1926 PFN50E672

7e-04 0 0 0 0 2.8039 3.2992 0.9535 0.6749 0.0738 0.3775 1.5383 1.0318 0.6032 0.4599 PFN50E249

0.0011 0 0 0 0 2.3642 3.766 0.6578 0.6058 0.0876 0.3647 1.1765 0.192 0.159 0.0322 PFN50E359

6e-04 0 0 0 0 2.544 3.4303 1.0102 0.6783 0.0896 0.5366 2.3614 1.0165 0.578 0.277 PTN50E17

0.0011 0 0 0 0 4.3874 1.9034 1.0082 0.9299 0.0688 0.361 1.2339 1.0252 0.5771 0.0167 PFN100E745

0.0521 2.4431 0.613 0.363 0.0452 3.1586 3.7271 0.9601 0.6568 0.0615 0.1891 2.2278 0.0073 0.0012 0.0192 PFN100E526

7e-04 0 0 0 0 2.614 3.3409 0.896 0.6134 0.0787 0.3796 1.5229 0.9953 0.6162 0.4698 PTN100E238

Table 5.10: SRBNs obtained by the top 20 RBNs with respect to transfer entropy.

Objective function score that exceeds the corresponding thresholds is written in red.

from the ones obtained by PI. In total there are 22 SRBNs (22/180 = 12.2%) and they

are divided as follow:

• from obstacle avoidance we only have 1 SRBN (1/90 = 1.1%) performing well in

obstacle avoidance and in path following;

• from path following we have 17 SRBNs (17/90 = 18.8%), all performing well in

path following, 1 also in obstacle avoidance and 14 in phototaxis;

• from phototaxis we have 4 networks (4/90 = 4.4%), both performing well in pho-

totaxis and path following.
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We observe similar results to the ones obtained by PI. The lack of good controllers for

obstacle avoidance is still explained by the absence of correlation between TE and Foa.

5.4.5 Reverse transfer entropy

SRBNs obtained by RTE are reported in table 5.11. We have 18 SRBNs (18/180 =

Obstacle avoidance Path following Phototaxis RBN ID

Foa SE PI TE RTE Fpf SE PI TE RTE Fpt SE PI TE RTE

0.058 2.7439 1.048 0.7022 0.2938 3.8465 3.8156 1.4447 1.0304 0.3292 0.1701 1.0996 0.0074 0 1e-04 OAN20E58

0.0104 2.2242 0.8655 0.477 0.2962 3.9033 1.9001 0.3908 0.2707 0.4164 0.3524 1.4214 0.3582 0.2469 0.6291 PFN20E128

0.0011 0 0 0 0 3.5392 1.8833 1.0228 0.7101 0.3985 0.3562 1.222 1.017 0.37 0.6675 PFN20E746

0.0011 0 0 0 0 3.5392 1.8852 1.0225 0.7114 0.3984 0.3557 1.2335 1.0119 0.3807 0.6648 PFN20E195

0.0011 0 0 0 0 3.2807 1.9329 0.9989 0.7557 0.3173 0.3538 1.2099 1.0143 0.4447 0.7104 PFN20E113

0.0011 0 0 0 0 4.0952 2.2436 1.0232 0.8598 0.2753 0.3549 1.6261 1.0511 0.5292 0.6432 PFN20E101

0.0011 0 0 0 0 2.9121 2.8942 1.2025 0.3671 0.161 0.3585 1.177 0.2436 0.4019 0.3427 PFN20E641

0.0011 0 0 0 0 3.708 1.8349 1.016 0.7075 0.4364 0.3581 1.2098 1.0216 0.3494 0.6841 PFN50E28

0.0011 0 0 0 0 3.5352 1.857 1.0218 0.7138 0.4014 0.3561 1.222 1.0167 0.3984 0.6471 PFN50E194

0.0011 0 0 0 0 3.6132 2.3843 1.0546 0.7829 0.3473 0.4807 2.1623 1.0117 0.4059 0.6956 PFN50E577

9e-04 0.267 0.2671 0.0101 0 3.7184 2.6283 1.0364 0.8893 0.2233 0.3783 1.5539 0.6137 0.3637 0.0914 PFN50E67

0.0011 0 0 0 0 3.7432 2.8538 0.3417 0.2574 0.1951 0.3595 1.512 0.2405 0.1807 0.3132 PFN50E277

0.0011 0 0 0 0 3.5189 2.8962 0.5523 0.3325 0.1859 0.3823 1.6394 0.2019 0.4159 0.4154 PFN50E666

0.0108 1.6504 1.0947 0.649 0.2541 2.3047 1.8445 0.9232 0.508 0.1599 0.3496 1.3348 0.9912 0.5074 0.1639 PFN50E649

0.0058 0 0 0 0 3.8558 1.9525 1.0029 0.6983 0.1514 0.3541 1.4581 0.93 0.2725 0.1926 PFN50E672

2e-04 0 0 0 0 2.1285 3.6949 0.6533 0.2777 0.0772 0.355 1.6006 0.4434 0.4284 0.5969 PTN50E201

0.0011 0 0 0 0 4.2714 2.4181 0.438 0.2712 0.2742 0.4795 2.0616 0.3692 0.2529 0.6435 PFN100E965

0.0047 0 0 0 0 3.7368 2.377 1.0181 0.8543 0.1438 0.4466 2.2824 0.9794 0.4811 0.7118 PTN100E571

Table 5.11: SRBNs obtained by the top 20 RBNs with respect to reverse transfer entropy.

Objective function score that exceeds the corresponding thresholds is written in red.

10%) divede as follow:

• from obstacle avoidance we only 1 SRBN (1/90 = 1.1%) performing well in obstacle

avoidance and in path following;

• from path following we have 15 SRBNs (15/90 = 16.7%), all performing well in

path following, 1 also in obstacle avoidance and 16 in phototaxis;

• from phototaxis we have 2 SRBNs (2/90 = 2.2%), all performing well in phototaxis

and path following.
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Like in the other SRBNs the majority of them came from path following. Because also

RTE is not correlated with Foa we do not have many SRBNs good in obstacle avoidance.

Overall there are 103 SRBNs with repetitions, the unique ones are 53. The percentage

of SRBNs over the unique RBNs taken into account is 53/637 = 8.3%. They are divided

as follow:

• from obstacle avoidance 8 unique SRBNs (15.1%);

• from path following 38 unique SRBNs (71.7%);

• from phototaxis 7 unique SRBNs (13.2%).

SRBNs repartition is summarized in table 5.12. The majority of them comes from path

Table 5.12: summary of SRBNs reparti-

tion: cells hold the number of SRBNs

that perform well in the task in the row

(starting task) and in the task in the col-

umn (switched task). X indicates that all

SRBNs perform well.

Obstacle

avoidance

Path

following
Phototaxis

Obstacle

avoidance
X 7 1

Path

following
13 X 25

Phototaxis 0 7 X

following and we explain this thanks to the high positive correlation between the metrics

and Fpf . However these networks are suitable also for obstacle avoidance or phototaxis.

We known that especially for phototaxis metrics are not positive correlated with the

chosen objective function of that task. Indeed, SRBNs that have high metrics in path

following and also perform well in phototaxis have for the latter task medium or low

metrics values. We observe a similar behaviour for SRBNs from path following also

good in obstacle avoidance: all metrics are low except for SE that is correlated with Foa.

SRBNs from obstacle avoidance and phototaxis that perform well in path following have

instead general high metrics values for the latter task due to high correlation with Fpf .



Conclusion

In this work we conducted an analysis over critical random Boolean networks used

as control software for robot in different tasks. The analysis is focused over the network

configurations and the correlation between information theory metrics and task objective

function. We chose three different critical random Boolean network configurations: {K =

3, p = 0.79, N = 20}, {K = 3, p = 0.79, N = 50} and {K = 3, p = 0.79, N = 100}. These

RBNs are used in experiments as control software for robot. We defined three well known

tasks in robotics: obstacle avoidance, path following and phototaxis. For each of them

we ran 1000 experiments per network configuration. We also defined a random walk

controller as a benchmark for the RBNs. We ran additional 1000 experiments per task

with the random walk controller. Experiments are all reproducible through the ARGoS

simulator software [20], the robot used is the foot-bot [5]. For each RBN experiment we

computed four metrics built from information theory measures: the sensor entropy, the

predictive information between sensors and actuators, the transfer entropy from sensors

to actuators and the transfer entropy from actuators to sensors. For all experiment we

computed also an handwritten objective function that is unique for each task.

We acknowledged that by simply creating a significant statistical number of critical

RBNs some of them are able of performing extremely well the given task, outperforming

the random walk controller. We also tested that the number of nodes of a critical RBN

is statistically relevant to obtain a fitter population of controllers for a given task. In

particular RBNs with N = 50 or N = 100, given the robot and task configurations we

have chosen, are better than RBNs with N = 20 in all tasks. We found that in obstacle

avoidance there is a mildly positive correlation between sensor entropy and the objective

function. In path following both the two transfer entropies are strongly positively cor-
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related with the objective function, also predictive information is positively correlated,

sensor entropy only partially. In phototaxis no metric is positively nor negatively cor-

related with the chosen objective function. These results suggest that transfer entropy

can be used as-is as a not handwritten metric factor in automatic design of control

software for robots for path following. Also predictive information in path following and

sensor entropy in obstacle avoidance could be used with preliminary changes.

Finally we switched the best 20 RBNs with respect to network configuration, metric

and task to test them in the other two tasks. We found that a critical RBN is capable

of performing well more than one task. In particular we observed that RBNs from

path following that perform it well are more inclined to perform well also in the other

two tasks rather than RBNs from obstacle avoidance and phototaxis. This last result

suggests that a critical RBN fitted for a task could be be able to accomplish other tasks

without the need to be modified. This phenomenon in biology is called phenotypic

plasticity: when the same genotype produces more than one phenotype in different

environments. In [8] is shown that phenotypic plasticity can be reached in robots with

online adaptation. With this work we found that is possible to have some critical RBNs

from a population that exhibit phenotypic plasticity by simply random generate them

without the need to use online adaptation.

More research is needed on critical RBNs that have phenotypic plasticity to exploit

their potential in applications. Also more study on different tasks could be helpful

to explore other relations between information theory measures and robot’s ability in

achieving the goal. Definitely new tests on the same tasks, but with different config-

urations from the ones we analyzed, are needed to verify that the discovered relations

between objective functions and metrics are generalizable.



Appendix A

Additional material

Videos of some of the more interesting experiments can be found at this link.
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