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Scuola di Scienze

Corso di Laurea Magistrale in Matematica

CALIBRATION OF

LOCAL-STOCHASTIC

VOLATILITY MODELS

WITH NEURAL NETWORKS

Relatore:

Chiar.mo Prof.

ANDREA PASCUCCI

Presentata da:

TIZIANO TODESCHI

Sessione Unica

Anno Accademico 2019/2020





Introduzione

Durante gli ultimi vent’anni vari modelli sono stati proposti per migliorare

il classico paradigma di Black-Scholes per la valutazione di contratti derivati

su azioni. In particolare il modello originale assumeva che la volatilità del

sottostante fosse una costante σ. Al contrario, empiricamente si può osservare

come la volatilità implicita σI , cioè quel valore che inserito nella formula

di Black-Scholes permette di replicare il prezzo di mercato, non sia affatto

costante, ma dipenda altres̀ı dal prezzo di esercizio K e dalla scadenza T del

contratto. Si osserva dunque sul mercato una superficie di volatilità implicita

σI(K,T ).

Tra le varie classi di modelli proposti, due filoni di ricerca, in partico-

lare, sono stati ampiamente sviluppati ed utilizzati: i modelli a volatilità

locale [12][11] e i modelli a volatilità stocastica [27][25][41] nei quali l’ipotesi

originale di BlackScholes di un coefficiente di volatilità costante viene effetti-

vamente rilassata. I modelli a volatilià locale considerano la volatilità come

una funzione deterministica del titolo sottostante e del tempo mentre i mo-

delli a volatilità stocastica considerano la volatilità stessa come un processo

stocastico. Il primo tipo di modelli permette una buona calibrazione rispetto

ai prezzi quotati sul mercato delle opzioni europee. Al contrario il secondo

tipo di modelli riesce a riprodurre una dinamica più realistica della volatilità

implicita.

Recentemente un nuovo modello è stato proposto, generalizzando i due

precedenti: il cosiddetto modello ”Local-Stochastic Volatility” [38]. In questo

caso la volatilità è data dal prodotto tra una componente deterministica ed
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una componente stocastica. In questo modo, utilizzando una volatilità ibrida

locale-stocastica, è possibile sfruttare i vantaggi di entrambi i modelli base, i

quali possono effettivamente essere interpretati come casi particolari di questo

nuovo modello generalizzato.

In questa tesi ci focalizziamo sulla calibrazione di un modello a volatilità

locale-stocastica (LSV). La calibrazione rappresenta la scelta di un model-

lo tra un insieme di modelli, in base ai dati storici e correnti del mercato.

I modelli LSV hanno attirato molta attenzione grazie alla caratteristica di

poter realizzare una calibrazione potenzialmente perfetta allo smile di vola-

tilità del mercato. Gli studi di maggior successo si riferiscono all’utilizzo di

metodi Monte Carlo [19][20][9], metodi basati sulle equazioni Fokker-Planck

non lineari [38][42] e tecniche di risoluzione di problemi inversi. [40].

Finora la scelta del modello non era stata influenzata solo dalla capacità

di replicare le caratteristiche del mercato osservate empiricamente, ma anche

dalla trattabilità dal punto di vista computazionale del processo di calibra-

zione. In questo contesto sta avvenendo un grande cambiamento poiché le

tecnologie di apprendimento automatico, o machine learning, offrono nuove

prospettive sulle prestazioni computazionali per la calibrazione del modello.

Possiamo distinguere tre tipi di approcci che utilizzano tecniche di machi-

ne learning per la calibrazione ai dati del mercato. Un primo approccio deriva

dal fatto che, avendo risolto il problema inverso molte volte, si può ”impa-

rare” direttamente da questo processo la mappa di calibrazione dai dati del

mercato ai parametri del modello [24]. Come secondo approccio, è possibile

ricavare la funzione che mappa i parametri del modello nei prezzi generati

dal modello e dopodichè invertire questa funzione con tecniche di machine

learning [31]. Infine, la calibrazione può essere interpretata come la ricerca

di un modello che genera i prezzi del mercato in cui possono essere utilizzate

tecnologie inerenti le reti generative avversarie, per la prima volta introdotte

da Goodfellow nel 2014 [17]. Questo significa sostanzialmente parametriz-

zare l’insieme dei possibili modelli in modo da rendere possibile l’utilizzo di

tecniche di machine learning e l’interpretazione del problema inverso come
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un addestramento di una rete generativa, la cui qualità verrà valutata da

una rete ”avversaria”. Proponiamo quindi un algoritmo, basandoci sui lavori

di C. Cuchiero, W. Khosrawi e J. Teichmann [10] e di S. Ben Hamida e R.

Cont [3], che si ispira a questa metodologia e usa come modelli generativi

delle cosiddete equazioni differenziali stocastiche neurali (neural SDE), il che

significa sostanzialmente che il termine di drift e di volatilità di un processo

di Ito governato da una SDE vengono parametrizzate attraverso reti neurali.

Questa tesi è articolata secondo la seguente struttura.

Chapter 1: iniziamo esaminando i principali e più diffusi modelli di

option pricing: Black-Scholes, volatilità locale e volatilità stocastica.

Analizziamo caratteristiche, pregi e difetti di questi modelli per poi

arrivare a presentare la teoria generale sui modelli a volatilità locale-

stocastica;

Chapter 2: introduciamo le basi e i principali risultati della teoria del

deep learning, definiamo la struttura delle reti neurali artificiali e pre-

sentiamo il metodo di backpropagation insieme ai principali algoritmi

di ottimizzazione per l’addestramento delle reti neurali;

Chapter 3: descriviamo il celebre metodo Monte Carlo, approfonden-

done l’utilizzo nell’ambito dell’option pricing, includendo le principali

tecniche di riduzione della varianza. Presentiamo anche due possibili

strategie di hedging che saranno cruciali nell’algoritmo di calibrazione

che proponiamo;

Chapter 4: definiamo la parametrizzazione tramite rete neurale del

nostro modello LSV ed evidenziamo il funzionale di calibrazione da mi-

nimizzare. Descriviamo l’algoritmo di calibrazione con diverse possibi-

lità di ottimizzazione, quindi mostriamo lo pseudo-codice dell’algoritmo

per chiarire l’implementazione del metodo.

Nell’appendice sono presentati alcuni importanti risultati riguardanti i pro-

cessi stocastici e le equazioni differenziali stocastiche.





Introduction

During the last twenty years several models have been proposed to im-

prove the classic Black-Scholes framework for equity derivatives pricing. In

particular, the original model assumed that the volatility of the underlying

was a costant σ. On the contrary, it can be empirically observed as the im-

plied volatility σI , that is the value that inserted in the Black-Scholes formula

allows to replicate the market price, is not at all constant, but also depends

on the strike price K and on the expiry T of the contract. A surface of

implicit volatility σI(K,T ) is therefore observed on the market.

Among the various classes of models proposed, two main strands of re-

search, in particular, have been widely developed and used: local volatility

[12][11] and Stochastic volatility [27][25][41]. Both these approaches relaxed

the Black-Scholes hypothesis of a constant volatility. In fact, local volatil-

ity models assume volatility to be a deterministic function of the underlying

asset and time, whereas Stochastic volatility models consider volatility as a

random process itself. While the former models are able to be well calibrated

to traded vanilla options, the latter can reproduce a more realistic dynamics

of implied volatility.

Recently a new model, generalization of the two previous ones, has been

proposed: the ”Local-Stochastic Volatility Model” [38]. This model considers

volatility as the product between a deterministic and a stochastic term. In

this way, using an hybrid local-stochastic volatility, it is possible to take the

advantages of both the two basic models, which, in fact, can be considered

as special cases of this generalized model.

v
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In this thesis we focus on the calibration of a LSV model. Calibration

is the choice of one model from a pool of models, given current market and

historical data. LSV models have attracted, due to their appealing feature

of a potentially perfect smile calibration and their econometric properties, a

lot of attention from the calibration and implementation point of view. The

most successful approaches involve Monte Carlo methods [19][20][9], PDE

methods based on nonlinear Fokker-Planck equations [38][42] and inverse

problem techniques [40].

So far the model choice was not only driven by the capacity of captur-

ing empirically observed market features well, but also by the computational

tractability of the calibration process. This is now undergoing a big change

since machine learning technologies offer new perspectives on model calibra-

tion.

We can distinguish three kinds of machine learning-inspired approaches

for calibration to current market prices. First, having solved the inverse prob-

lem already several times, one can learn from this experience (i.e., training

data) the calibration map from market data to model parameters directly

[24]. Second, one can learn the map from model parameters to model prices

and then invert this map possibly with machine learning technology [31].

Third, the calibration problem is considered to be the search for a model

which generates given market prices and where additionally technology from

generative adversarial networks, first introduced by Goodfellow in 2014 [17],

can be used. This means parameterizing the model pool in a way which is

accessible for machine learning techniques and interpreting the inverse prob-

lem as a training task of a generative network, whose quality is assessed by

an adversary. We propose a calibration algorithm, based on works of C.

Cuchiero, W. Khosrawi and J. Teichmann [10] and of S. Ben Hamida and R.

Cont [3], that pursue this approach and use as generative models so-called

neural stochastic differential equations (SDE), which just means to parame-

terize the drift and volatility of an Ito-SDE by neural networks.
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This thesis is articulated according to the following structure.

Chapter 1: we start by reviewing the fundamental option pricing

models, Black-Scholes, local volatility and Stochastic volatility models.

We analyze the pros and cons of these models and then come to present

the general theory about local Stochastic volatility models;

Chapter 2: we introduce foundations and main results of deep learning

theory, define the structure of artificial neural networks and present

the backpropagation method with the main optimization algorithms

for training networks;

Chapter 3: we describe the famous Monte Carlo method, deepening

its use in the context of option pricing, including the main variance

reduction techniques. We also present possible hedging strategies that

will be crucial in the calibration algorithm we propose.

Chapter 4: we specify the parametrization by neural network of our

LSV model and then point out the calibration functional to minimize.

We describe the calibration algorithm with different optimization pos-

sibilities, and then show the pseudo-code algorithm with technical de-

tails.

In the appendix there are presented some interesting theoretical results con-

cerning stochastic process and stochastic differential equations which we men-

tion in the thesis.
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Chapter 1

Option pricing models

One of the central problems in modern mathematical finance is derivative

pricing. A derivative is a financial contract which value depends on an un-

derlying asset which can be an equity stock, an interest rate or any different

financial asset.

An option is the simplest example of a derivative instrument. An option is a

contract that gives the right (but not the obligation) to its holder to buy or

sell some amount of the underlying asset at a future date, for a prespecified

price. Therefore in an option contract we need to specify:

• an underlying asset;

• an exercise price K, the so-called strike price;

• a date T , the so-called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to

sell. An option is called European if the right to buy or sell can be exercised

only at maturity, and it is called American if it can be exercised at any time

before maturity. European Put and Call depends only on the value of the

underlying at maturity T and are the simplest examples of options, called

Plain Vanilla options. Other typologies of options are the so called Exotic

options, which value depends on the trend of the underlying towards the

maturity.

1
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Given a call option with strike price K and value of the underlying asset St,

we say that the option is currently:

• In-the-money (ITM) when St > K ;

• At-the-money (ATM) when St ' K ;

• Out-the-money (OTM) when St < K.

In the first case the option is worth exercising and it is expensive, while in

the third case the option is worthless and it is cheap. Of course if we are

dealing with a put option the terminology is reversed.

1.1 Black-Scholes model

The well known Black-Scholes model was first introduced in 1973 by Fis-

cher Black, Myron Scholes [5] and Robert Merton [33]. Nowadays it repre-

sents an universal accepted framework for derivative pricing in the financial

industry.

1.1.1 Hypothesis and results

The original Black-Scholes model assumes the existence of a risk free asset

Bt and of an underlying asset St, following respectively a deterministic and

a geometric Brownian motion dynamics:

dBt = rBtdt, (1.1)

dSt = µStdt+ σStdWt, (1.2)

where the deterministic constant µ, σ and r represent respectively the local

mean rate of return of the asset, the volatility of the asset and the short rate

interest. Wt is a standard Wiener process [A.3].

Let’s consider a simple contingent claim of the form

χ = φ (ST ) , (1.3)
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namely a derivative paying at maturity an amount χ depending only on the

value ST of the underlying itself at maturity. The function φ is the so called

pay-off at maturity of the derivative contract. Let’s further assume that

this contingent claim can be traded on a liquid market and that its price

π(t) = π(t;φ) has the form

π(t) = F (St, t) , (1.4)

for some smooth function F . This means that the price of the derivative at

subscription time t depends only on the time itself and on the value of the

underlying asset St at time t.

Theorem 1.1.1 (Black-Scholes equation).

Assuming that the market is specified by (1.1) and (1.2), we want to price

a contingent claim of the form (1.3). Then the only pricing function of the

form (1.4) which is consistent with the absence of arbitrage is when F is the

solution of the following boundary value problem in the domain [0, T ]× R+.

∂F

∂t
(s, t) + rs

∂F

∂s
(s, t) +

1

2
s2σ2∂

2F

∂s2
(s, t)− rF (s, t) = 0, (1.5)

F (s, T ) = φ(s). (1.6)

This equation is precisely of the form which can be solved using the

Feynman-Kac stochastic representation formula [A.3.5], that establishes a

link between parabolic partial differential equations (PDEs) and stochastic

processes.

The solution is given by

F (s, t) = e−r(T−t)Es,t [φ (XT )] , (1.7)

where the process Xu is defined by the dynamics:

dXu = rXudu+ σXudWu. (1.8)

The process Xt above has precisely the same form of the price process ST .

The only, but important, change is that whereas St has the local rate of
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return µ, the Xt-process has the short rate of interest r as its local rate of

return. This is the so called change of martingale measure which implies

the pricing valuation in a risk-neutral world. It is now possible to state the

following central result for derivative pricing, well explained by Bjork in [4].

Theorem 1.1.2 (Risk Neutral Valuation).

The arbitrage free price of the claim φ (ST ) is given by π(t;φ) = F (t, St) ,

where F is given by the formula

F (s, t) = e−r(T−t)EQs,t [φ (SI)] , (1.9)

where the Q-dynamics of S are

dSt = rStdt+ σStdWt. (1.10)

Let’s now consider the problem of pricing an european Call option.

Given the strike price K and the maturity T , the payoff function is given by

φ (ST ) = max (ST −K, 0) .

After some calculations it is possible to get the following famous result, which

is known as Black-Scholes formula for European options.

Proposition 1.1.3 (Black-Scholes formula).

The price of a European call option with strike price K and time of maturity

T is given by the formula π(t) = F (St, t) where

F (s, t) = sN [d1(s, t)]− e−r(T−t)KN [d2(s, t)] . (1.11)

Here N denotes the cumulative density function for the normal standard

distribution and

d1(s, t) =
1

σ
√
T − t

[
ln
( s
K

)
+

(
r +

1

2
σ2

)
(T − t)

]
,

d2(s, t) = d1(s, t)− σ
√
T − t.

In what follows we will indicate the Black-Scholes formula (1.11) for an

European Call option with the notation CBS(S, t,K, T, r, σ).
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1.1.2 Volatility and model limits

Since it allows a closed form formula for several kind of derivatives, the

Black-Scholes is a very appealing framework. However, the original model

is not consistent with market prices. In particular, it is unable to correctly

reproduce all the vanilla option prices mainly because contracts with different

strikes and maturities exhibit different volatilities.

In fact, given all the model parameters and the observed price of an European

option it is possible to invert the Black-Scholes formula finding the so-called

implied-volatility σI .

Definition 1.1 (Implied volatility). Let Cmkt(K,T ) the market price of a

european Call option Cmkt(K,T ) with strike K and maturity T .

The implied volatility σimp(K,T ) is the value that satisfy the equation

Cmkt(S, t,K, T, r) = CBS(S, t,K, T, r, σimp(K,T )). (1.12)

For European options under the Black-Scholes model, calculation of the

implied volatility seems to be a straightforward exercise since a closed-form

presentation exists for the price. However, this closed-form doesn’t allow an

analytical computation of the implied volatility and it’s necessary to solve

the nonlinear equation (1.12). However it can be solved easily numerically.

Let f(σ) = CBS(S, t,K, T, r, σ) and ν = Cmkt(S, t,K, T, r), then the equation

becomes

f(σ) = ν. (1.13)

Since f is monotone increasing and differentiable, the equation has a unique

solution and we can apply each variant of the Newton method, which Quar-

teroni, Sacco and Valeri review in [36].

In particular the classical Newton-method can be used.

Given an initial guess for σ0, ∀k > 0 until k > kmax:

σk+1 = σk −
f (σk)− ν
f ′ (σk)

. (1.14)

The final value of σkmax is a good approximation of the implied volatility

σI(K,T ).
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The original Black-Scholes model assumes that the volatility is a con-

stant σ across strikes and maturity dates. However it is empirically evident

how σI depends on the value of the strike and the time to maturity of the

option, namely σI = σI(K;T ). These two effects are, respectively, known

as volatility smile or volatility strike structure and volatility term structure

of option prices. At any fixed maturity, implied volatility changes with the

strike price. In particular almost always in-the-money call options exhibit

higher implied volatilities than out-the-money option, while the minimum of

implied volatility is usually in the at-the-money region. That’s way we talk

about the “volatility smile” since the strike structure of implied volatility is

usually concave resembling precisely a smile. Concerning the term structure

of implied volatility, for any fixed strike, it varies with the maturity. Often

options with longer maturity have higher implied volatilities.

Figure 1.1: Implied volatility surface of the SPX500 index at 1 st August

2012

In order to take into account the empirical evidence of a non constant

volatility several models have been proposed during the last twenty years,

developing and generalizing the Black-Scholes framework.
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• Local volatility Models (LVM)

These models assume that the diffusion coefficient of the underlying

asset is no longer a constant value but instead a deterministic function

of time and of the underlying asset itself:

dSt = rStdt+ σLV (St, t)StdWt (1.15)

• Stochastic volatility Models (SVM)

In this class of models the volatility itself is considered to be a stochastic

process with its own dynamics. Thus, this is a two-factor model, driven

by two correlated Wiener processes Wt and Zt.

dSt = rStdt+ b (Vt)StdWt, (1.16)

dVt = a (Vt, t) dt+ c (Vt, t) dZt, (1.17)

dWtdZt = ρdt. (1.18)

In the last ten years they have been widely studied in academic literature as

well as used at the equity trading desks of investment banks. We now discuss

advantages and disadvantages of them and then introduce the generalization

given by the local-Stochastic volatility.

1.2 Local volatility

In 1994 Dupire [12] and Derman and Kani [11] introduced a new model

generalizing the Black-Scholes’one. They consider a non constant determin-

istic volatility σLV (S, t), called local volatility surface, and they assume the

following stochastic differential equation for the evolution of the underlying

asset.

Definition 1.2 (Local volatility Model - LVM).

dSt = rStdt+ σLV (St, t)StdWt (1.19)



8 CHAPTER 1. OPTION PRICING MODELS

The corresponding pricing equation is a straightforward generalization of

the Black-Scholes equation. Thus the price of an European Call option can

be computed simply solving the problem below.

Proposition 1.2.1 (Generalized Black-Scholes equation).

Under a local volatility model the price of an European Call option is given

by the following generalized Black-Scholes equation:



∂C

∂t
+

1

2
σ2
LV (S, t)S2∂

2C

∂2S
+ rS

∂C

∂S
− rC = 0 on Q = [0, T )× (0,∞)

C(0, t) = 0 ∀t ∈ (0, T )

lim
S→∞

C(S, t)− S +Ke−r(T−t) = 0 ∀t ∈ (0, T )

C(T, S) = (S −K)+ ∀S ∈ (0,∞)

This model seems to be a simple and straightforward generalization of the

original Black-Scholes framework since we are simply considering a non con-

stant, deterministic, diffusion coefficient. However it is not straightforward

as well to understand how to extract the surface σLV from the market.

1.2.1 The Dupire equation

The Black-Scholes backward parabolic equation in the variables (S, t)

is the Feynman-Kac representation of the discounted expected value of the

final option value. It is possible to find the same option price solving a dual

problem, namely a forward parabolic equation in the variables (K,T ) known

as dual Black-Scholes equation or Dupire’s equation

Proposition 1.2.2 (Dupire’s equation).

The value of a call option as a function of the strike price K and the time

to maturity T given the present value of the stock S is given by the following
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forward parabolic equation known as Dupire’s equation.

∂C

∂T
− 1

2
σ2
LV (K,T )K2 ∂

2C

∂2K
+ rK

∂C

∂K
= 0 on Q = [0,∞)× (0,∞)

C(0, t) = 0 ∀t ∈ (0, T )

lim
S→∞

C(S, t)− S +Ke−r(T−t) = 0 ∀t ∈ (0, T )

C(T, S) = (S −K)+ ∀S ∈ (0,∞)

Thanks to the Dupire equation we have accomplished a double result. In

fact, on the one hand we have now a very useful, dual equation for derivative

pricing in the two variable (K; T).

On the other hand, we have now a formula to evaluate the local volatility

σLV (s, t) from option prices, known as Dupire formula:

σ2
LV (K,T ) = 2

CT + rKCK
K2CKK

(1.20)

Assuming a continuum of option prices quoted on the market for every strikes

K and time to maturity T thanks to the above formula it is possible to easily

evaluate the local volatility surface. Moreover this formula ensures existence

and uniqueness of a local volatility surface which reproduces exactly the

market prices. Unfortunately it is not possible to observe on the market a

continuum of plain vanilla prices. In fact only some options with certain

strikes and maturities are actually traded. Therefore it is not possible to

use directly (1.20) to evaluate σLV for every K and T . In particular it is

needed to interpolate and extrapolate the Call prices from the market and

then to numerically approximate the derivatives. This procedure is rather

sensitive to numerical instabilities and errors. Particularly critical is the

second derivative ∂2C
∂K

at the denominator which stands alone by itself. This

derivative can be very small for options deeply in-the-money or out-the-

money and then very sensitive to numerical errors. Furthermore this value is

multiplied by K2 resulting in big errors, sometimes even producing negative

values and then resulting in negative variance. Because of these drawbacks

the Dupire formula, practically speaking, is not very useful.
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1.2.2 Properties and CEV model

Local volatility models are the most popular ones with endogenous volatil-

ity, due to some main features. First of all, since there is only one source of

randomness, all these models are complete. This means that is possible to

determine the unique neutral risk price of an option and a hedging strategy

can always be found, at least theoretically. Actually the dependence of σ on

St does not seem to be easily justified from an intuitive point of view. Never-

theless, another important advantage of these models is their high flexibility

that make them able to give the theoretical price of an option in accordance

(at least approximately) with the implied volatility surface of the market.

We now introduce the most popular example of LV model.

Example 1.1 (CEV Model). The constant elasticity of variance (CEV)

model is a particular parametric local volatility model that was introduced

in 1975 by Cox [7] . The risk-neutral dynamics are assumed to follow

dSt = rStdt+ σ(t)Sβt dWt, (1.21)

where as usual r is the risk-free rate , β ∈]0, 1[ and σ(t) is a deterministic

function of time. Note that the CEV model generalizes BS which is obtained

when we set β = 1 and σ(t) ≡ σ.

The popularity of the CEV model is due to its tractability.

By writing (1.21) as
dSt
St

= rdt+ σ(t)Sβ−1
t dWt, (1.22)

we see that there is a negative relationship between price level and instan-

taneous volatility when β < 1. The CEV model is therefore able to capture

some of the skew that is observed empirically in practice. It is also worth

noting that when β < 1
2
, there is a strictly positive probability that the CEV

process will hit zero.

An important result for the CEV model is given by the following theorem.

Theorem 1.2.3.

The implied volatility generated by the CEV model (1.21) with β ∈]0, 1[, is
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approximated by the following formula

σCEV (St, T,K) =

√
Vt,T

F 1−β
t

(
1 +

(1− β)(2 + β)

6

(
Ft −K
Ft

)2

+
(1− β)2(T − t)Vt,T

24F
2(1−β)
t

) (1.23)

where

Vt,T =
1

T − t

∫ T

t

e2r(T−τ)(1−β)σ2(τ)dτ

and

Ft =
er(T−s)St +K

2
.

As we previously highlighted, the LV models are consistent with the mar-

ket, since they are able to reproduce the observed market prices. Unfortu-

nately these models have a wrong implied volatility smile dynamics. Re-

bonato outlines in [37] that the implied volatility smile generated by the LV

models tends to become almost flat whereas in the reality the smile persist

over time.

1.3 Stochastic volatility

A simple observation of equity markets would make natural to model the

volatility itself as a stochastic process. This is precisely the main feature of a

stochastic volatility model (SVM). While the standard Black-Scholes model

assumes a constant volatility term σ, a SVM considers volatility as a function

b(·) of a stochastic process Vt. A first stochastic volatility approach in option

pricing was presented in 1991 by E. M. Stein and J. C. Stein [41], but we

can trace the root of all modern stochastic volatility models to Heston’s

1993 paper [25], which offered a new, closed-form, approach for pricing bond

options and foreign-exchange options under stochastic volatility dynamic.

Generally speaking a stochastic volatility model assumes the following

dynamics.
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Definition 1.3 (Stochastic volatility model).

dSt = µStdt+ b (Vt)StdWt,

dVt = a (Vt, t) dt+ c (Vt, t) dZt,

dWtdZt = ρdt.

(1.24)

As usual St denotes the underlying asset, t the time, µ the (deterministic)

instantaneous drift and Wt,Zt are two Wiener processes with correlation ρ.

Gatheral show in [14], using non-arbitrage arguments, that the price of an

European call option under a SVM satisfies the following equation:

∂C

∂t
+

1

2
s2b2(v)

∂2C

∂s2
+

1

2
c2(v, t)

∂2C

∂v2
+ ρb(v)c(v, t)s

∂2C

∂v∂s

+rs
∂C

∂s
+ (a(v, t)− λc(v, t))∂C

∂v
− rC = 0.

(1.25)

In this equation two new parameters have been introduced, namely r, the

usual risk free interest rate, and λ the so called market price of volatility

risk. While the use of r instead of µ has been already explained previously,

describing the Black-Scholes model, some words are needed about λ. The

standard BS model assumes only one source of randomness Wt related to

one traded asset St. In this way it is possible to hedge the risk generated

by Wt through St. Hence the model is said to be complete, see [4]. On

the contrary a SV model assumes two sources of randomness Wt , Zt and

only one traded asset St depending on both these sources. In this case we

cannot hedge the risk and the model is said to be incomplete. The concept of

completeness of the model is strictly related to the existence of an equivalent

martingale measure [A.7] and to the Girsanov theorem [A.1.1], that shows

it is possible to substitute “arbitrarily” the drift of an Ito process [A.2] by

modifying appropriately the considered probability measure and Brownian

motion, while keeping unchanged the diffusion coefficient. In fact the second

fundamental theorem of option pricing [A.2.2] states that if the model is

complete then it exists only one equivalent measure and the price of every

derivative is uniquely determined. On the other hand if the model used is

incomplete there exist several different martingale measures and then the
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same derivative has several possible prices depending on λ. Once the value

of λ is chosen it is possible to define a risk neutral drift ã = a − λc for the

process Vt. In this way it is possible to redefine the dynamics for the SV

model in the risk-neutral world as follows:

dSt = rStdt+ b (Vt)StdWt,

dVt = ã (Vt, t) dt+ c (Vt, t) dZt,

dWtdZt = ρdt.

(1.26)

1.3.1 Heston model

The Heston model was introduced in 1993 by Steven L. Heston [25] and

nowadays it is probably the most popular stochastic volatility model. The

underlying asset St follows the usual log-normal dynamics while the square

of the volatility, the variance Vt is a CIR process, first proposed in 1985 by

J. C. Cox, J. E. Ingersoll and S. A. Ross [8]:

dSt = rStdt+ St
√
VtdWt

dVt = κ (θ − Vt) dt+ η
√
VtdZt

dWtdZt = ρdt

(1.27)

The Heston model is characterized by five constant parameters, namely κ ,

θ , η , ρ and the initial value of the variance V0. The parameter θ can be

thought as the long term variance, κ as the rate of mean reversion and η

as the volatility of volatility. As usual ρ represents the instantaneous corre-

lation between the Brownian motions Wt and Zt. Since we cannot directly

observe V0 as we do for S0 we need to calibrate also the initial condition of

the variance. Thus we consider V0 as the fifth parameter. In order to use the

model we need to calibrate from the market all these five parameters:κ , θ ,

η , ρ are strictly positive while ρ ∈ (−1, 1), being a correlation.

The Heston model has several properties which makes it very suitable

for equity option pricing. Stochastic variance is mean-reverting, continuous

and positive. The model allows a good fit of market implied volatilities and
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a realistic smile dynamics. However the reason that makes this model so

popular and used is probably the fact that it has a semi-closed form solution

for plain vanilla options. This enables a fast and computational efficient

valuation of European options which becomes critical when calibrating the

model to known option prices.

Let’s consider the Heston pricing equation:

∂C

∂t
+

1

2
s2v

∂2C

∂s2
+

1

2
η2v

∂2C

∂v2
+ ρηsv

∂2C

∂v∂s

+ rs
∂C

∂s
+ κ[θ − v]

∂C

∂v
− rC = 0,

(1.28)

with the proper initial and boundary conditions.

In its original work, Heston looked for a solution similar to the Black-

Scholes’one, namely:

C (St, Vt, t, T ) = StP1 −Ke−r(T−t)P2. (1.29)

He managed to show that this is indeed a solution of the equation defined as

follows:

Pj (St, Vt, t, T ) =
1

2
+

1

π

∫ ∞
0

Re

(
e−iω ln(K)

iω
fj (St, Vt, t, T, ω)

)
dω

fj (St, Vt, t, T, ω) = eC(T−t,ω)+D(T−t,ω)Vt+iω ln(St)

C(τ, ω) = iωr +
κθ

η2

[
(bj − ρηωi+ d) τ − 2 ln

(
1− gedr

1− g

)]
D(τ, ω) =

bj − ρηωi+ d

η2

(
1− edr

1− gedr

)
g =

bj − ρηωi+ d

bj − ρηωi− d

d =

√
(ρηωi− bj)2 − η2 (2ujωi− ω2)

for j = 1, 2, where:

u1 =
1

2
, u2 = −1

2
, b1 = κ− ρη, b2 = κ.

Despite this formula looks quite demanding, it is actually rather explicit,

easy and fast to evaluate. The only part that requires some computational

effort is the evaluation of the integral along a not bounded interval. However

such integration can be performed using standard numerical methods.
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1.3.2 SABR model

Another popular model, also used in the modelling of fixed income mar-

kets, is the so called SABR (Stochastic Alpha Beta Rho) model proposed and

analyzed in 2002 by Hagan, Kumar, Lesniewski and Woodward [21]. The

SABR model is the natural extension of the classical CEV model to stochas-

tic volatility: the risk-neutral dynamics of the forward price Ft = er(T−t)St is

given by

dFt = VtF
β
t dWt

dVt = νVtdZt
(1.30)

where (W,Z) is a Brownian motion with constant correlation ρ. Note that

the SABR model generalizes CEV with costant σ(t) ≡ σ, which is obtained

when we set ν ≡ 0.

A similar result to which we presented for the CEV model is given by the fol-

lowing approximating formula for the implied volatility in the SABR model:

σ (K,T, F0, r) =
V0

(F0K)
1−β
2

(
1 + (1−β)2

24
log2

(
F0

K

)
+ (1−β)4

1920
log4

(
F0

K

)) z

x(z)
·

·

(
1 +

(
(1− β)2V 2

0

24 (F0K)1−β +
ρβνV0

4 (F0K)(1−β)/2
+

(2− 3ρ2) ν2

24

)
T

)

where

z =
ν

V0

(F0K)(1−β)/2 log
F0

K

and

x(z) = log

√
1− 2%z + z2 + z − %

1− %

1.4 LSV Models

Summing up, local volatility models [11] [12] are consistent with the mar-

ket and can fit almost perfectly the volatility surface but they have a wrong

implied volatility smile dynamics as the smile generated tends to become

almost flat whereas in the reality the smile persist over time.
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Instead, stochastic volatility models [25] [41] account for long term smiles

and skew but they cannot give rise to realistic short-term implied volatility

patterns.

The two class of models presented seem to have specular proprieties and for

this reasons an interesting solution can be given by the mix between them,

namely a generalized Local-Stochastic Volatility Model which combines

the realistic smile dynamics of the SVM with the good fit of market price of

the LVM. A general LSV model is given by:

dSt = µ1 (St, t) dt+ L (St, t)σ1 (St, Vt, t) dWt

dVt = µ2 (Vt, t) dt+ σ2 (Vt, t) dZt

dWtdZt = ρdt

(1.31)

where the coefficient σ1 (St, Vt, t) incorporate both local and stochastic volatil-

ity. The diffusion coefficient of St is controlled by a function L(St; t), called

leverage function, determined on market information and that has the role

to weight local and stochastic volatilities.

The academic research about this new kind of model is rather recent.

The first contribution was given by Jex, Henderson and Wang in 1999 [28]

who first suggested a local-stochastic volatility dynamics and proposed a two-

dimensional trinomial tree for the calibration. Developing the idea of mixing

the three standard models (LVM, SVM and JDM) Lipton suggested in 2002

a universal volatility model [30] which actually contains as a particular case

the LSVM. Some years later other theoretical contributions were given by

Alexander and Nogueira [2] and moreover by Ren, Madan and Qian in 2007

[38] who suggested a procedure to calibrate a LSVM. Their work has been

further developed in two different strands of research. The first is based

on the work of Labordère in 2009 [23] and Guyon and Labordère in 2012

[19], who exploited the so-called Markovian projections method. The other

strand of research has been developed by Abergel and Tachet in 2010 [1] and

by Engelmann, Koster and Oeltz in 2012 [13].
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Example 1.2 (Dupire-Heston model). The Dupire-Heston model is a gen-

eralization of stochastic volatility Heston model in which it also adds the

leverage function. The spot price dynamics St and stochastic variance Vt

under risk neutral measure in the Dupire-Heston model is:

dSt = rStdt+ L (St, t)
√
VtStdWt,

dVt = k (θ − Vt) dt+ η
√
VtdZt,

dWtdZt = ρdt

(1.32)

Example 1.3 (LSV SABR model). Similarly, the extension to Stochastic-

local volatility of SABR model is given by the following forward price and

volatility dynamics:

dFt = VtL (Ft, t)F
β
t dWt

dVt = νVtdZt

dWtdZt = ρdt

(1.33)

The construction of a model which is able to fit the vanilla prices and

the observed volatility smile and, at the same time, that it is able to show a

realistic dynamics is of primary importance for the pricing of path-dependent

exotic options.

We want to focus on calibration of LSV models, which is still an intricate

task, both from a theoretical as well as practical point of view. For the rest

of this thesis, we will assume a zero risk interest rate r = 0 and will consider

only the one-dimensional case, but the setup easily translate to more general

case with a straight forward extension.

1.4.1 Calibration of LSV models

LS and LV models can be calibrated in a independent and simultaneous

way to market data to get the value of model parameters. Then, it is possible

to obtain LSV volatility surface. Whatever process Vt and local volatility is,

the standard steps to calibrate the model are:

• Calibration of local volatility σloc;
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• Calibration of stochastic volatility Vt;

• Calibration of Leverage function.

It is common to use the Dupire volatility, seen in 1.2.1, as local volatility,

with all the difficulties we highlighted in previous section.

In the models we treat, the discounted price process (St)t≥0 of an asset sat-

isfies

dSt = StL (St, t)VtdWt (1.34)

where the volatility process (Vt)t≥0 can be of Heston type or SABR type.

However, Vt can also be very general and could for instance be chosen as

rough volatility model. We point out that this model correspond to the

choice of σ1 (St, Vt, t) = StVt in (1.31).

The leverage function L is the crucial part in this model. It allows in prin-

ciple to perfectly calibrate the implied volatility surface seen on the market.

To achieve this goal L must satisfy

L2(t, s) =
σ2

Dup(t, s)

E [V 2
t | St = s]

(1.35)

where σDup denotes Dupire’s local volatility function.

This is a important result that follow directly from Gyöngy theorem [A.3.6],

an important result that establishes a link between local volatility and stochas-

tic volatility models.

Please note that (1.35) is an implicit equation for L as it is needed for the

computation of E [V 2
t | St = s]. This in turn means that the SDE for the price

process (St)t≥0 is actually a McKean Vlasov SDE, since the law of (St, Vt)

enters in the equation.

Different approaches have been presented to solve in efficient ways this prob-

lem, such as Monte Carlo methods, PDE methods based on non-linear Fokker-

Planck equations and inverse problem techniques. Between these, the Monte

Carlo approach with particle approximation method [18] for the McKean-

Vlasov SDE works impressively well, as very few paths have to be simulated
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in order to achieve very accurate calibration results.

In this thesis we propose an alternative, fully data-driven approach cir-

cumventing in particular the interpolation of the volatility surface, being

necessary in several other approaches in order to compute Dupire’s local

volatility. This means that we only take the available discrete data into ac-

count and do not generate a continuous surface interpolating between the

given market option prices. Indeed, we just learn or train the leverage func-

tion L to generate the available market option prices accurately and to do this

we use a deep learning approach, namely we will parametrize the leverage

function with a feed-forward neural network, able to be trained to market

data in order to calibrate the model.

Therefore we need to introduce in the next chapter deep learning and artifi-

cial neural networks.





Chapter 2

Introduction to Deep Learning

In this chapter we want to introduce deep learning theory and most

important results concerning artificial neural networks and their training.

For a more in-depth study of deep learning theory, we refer to the exhaustive

book Deep Learning by I. Goodfellow, Y. Bengio and A. Courvill [16].

Modern deep learning provides a very powerful framework for supervised

learning. By adding more layers and more units within a layer, a deep net-

work can represent functions of increasing complexity. Most tasks that con-

sist of mapping an input vector to an output vector, and that are easy for a

person to do rapidly, can be accomplished via deep learning, given sufficiently

large models and sufficiently large datasets of labeled training examples.

We will now introduce two core concepts in deep learning, namely artificial

neural networks and stochastic gradient descent, where the latter is a widely

used optimization method for optimization problems involving the first. In

standard machine learning terminology, the optimization problem is usually

referred to as “training” and in the sequel we will use both terminologies

interchangeably.

21
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2.1 Artificial Neural Networks

Feedforward neural networks, also often called deep feedforward

networks, or multilayer perceptrons (MLPs), are the quintessential deep

learning models. The goal of a feedforward network is to approximate some

function f ∗. For example, for a classifier, y = f ∗(x) maps an input x to a

category y. A feedforward network defines a mapping y = f(x; θ) and learns

the value of the parameters θ that result in the best function approximation.

These models are called feedforward because information flows through

the function being evaluated from x, through the intermediate computations

used to define f , and finally to the output y.

Feedforward networks are of extreme importance to machine learning and

deep learning practitioners. They form the basis of many important commer-

cial applications. For example, the convolutional networks used for object

recognition from photos are a specialized kind of feedforward network.

Feedforward networks are a conceptual stepping stone on the path to recur-

rent networks, which power many natural language applications.

2.1.1 Network architecture

Feedforward neural networks are called networks because they are typi-

cally represented by composing together many different functions. The model

is associated with a directed acyclic graph describing how the functions are

composed together. For example, we might have three functions f (1), f (2),

and f (3) connected in a chain, to form f(x) = f (3)(f (2)(f (1)(x))). These chain

structures are the most commonly used structures of neural networks. In this

case, f (1) is called the first layer of the network, f (2) is called the second

layer, and so on. The overall length of the chain gives the depth of the

model. It is from this terminology that the name “deep learning” arises.

The final layer of a feedforward network is called the output layer.

During neural network training, we drive f(x) to match f ∗(x). The training

data provides us with noisy, approximate examples of f ∗(x) evaluated at
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different training points. Each example x is accompanied by a label y ≈
f ∗(x). The training examples specify directly what the output layer must do

at each point x; it must produce a value that is close to y. The behavior of

the other layers is not directly specified by the training data. The learning

algorithm must decide how to use those layers to produce the desired output,

but the training data does not say what each individual layer should do.

Instead, the learning algorithm must decide how to use these layers to best

implement an approximation of f ∗. Because the training data does not show

the desired output for each of these layers, these layers are called hidden

layers.

Figure 2.1: Example of the structure of a simple neural network

Finally, these networks are called neural because they are loosely inspired

by neuroscience. Each hidden layer of the network is typically vector-valued.

The dimensionality of these hidden layers determines the width of the model.

Each element of the vector may be interpreted as playing a role analogous to

a neuron. Rather than thinking of the layer as representing a single vector-

to-vector function, we can also think of the layer as consisting of many units

that act in parallel, each representing a vector-to-scalar function. Each unit

resembles a neuron in the sense that it receives input from many other units

and computes its own activation value. The idea of using many layers of

vector-valued representation is drawn from neuroscience. The choice of the

functions f (i)(x) used to compute these representations is also loosely guided
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by neuroscientific observations about the functions that biological neurons

compute.

Let’s now define in a rigorous mathematical way a feedforward neural

network:

Definition 2.1 (Feedforward Neural Network). Let L,N0, N1, . . . NL ∈ N,

σ : R→ R and for any ` ∈ {1, . . . , L}, let w` : RN`−1 → RN` , x 7→W (`)x+b(`)

be an affine function with W (`) ∈ RN`×N`−1 and b(`) ∈ RN` and additionally

bL = 0. A function RN0 → RNL defined as

F = wL ◦ FL−1 ◦ · · · ◦ F1, with F` = σ ◦ w` for ` ∈ {1, . . . , L− 1}

is called a feed forward neural network. L denotes the number of layers

and N1, . . . , NL−1 denote the dimensions of the hidden layers and N0 and

NL the dimension of the input and output layers. The function σ is called

activation function and it is applied componentwise. The importance of

this function will be highlighted in next section.

2.1.2 Activation function

An activation function is a function that is added into an artificial

neural network in order to help the network learn complex patterns in the

data. When comparing with a neuron-based model that is in our brains,

the activation function is at the end deciding what is to be fired to the next

neuron. That is exactly what an activation function does in an ANN as well.

It takes in the output signal from the previous cell and converts it into some

form that can be taken as input to the next cell. The comparison can be

summarized in the figure below.

The presence of a non-linear activation function is important due to

his capability to add non-linearity into the neural network and, more over,

because it help in keeping the value of the output from the neuron restricted

to a certain limit. This is important because input into the activation func-

tion is W (`)x + b(`) and its value is not bounded. Without the activation
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Figure 2.2: Comparison between human neuron and artificial neuron

function it could go very high in magnitude, especially in case of very deep

neural networks that have millions of parameters, and therefore cause com-

putational issues. As we will see in the next sections, usually neural networks

are trained through gradient based algorithms. In order to be able to utilize

these algorithms, there are some desirable features for the choice of activation

function:

• Differentiable: In order to calculate gradient, layers in the model

need to be differentiable or at least differentiable in parts.

• Zero-Centered: Output of the activation function should be symmet-

rical at zero so that the gradients do not shift to a particular direction.

• Computational Inexpensive: Activation functions are applied after

every layer and need to be calculated millions of times in deep networks.

We present some of most popular activation function:

• Sigmoid: defined as σ(x) = 1
1+e−x

, is important only for historical

reasons and never used in real models due to his computational expense

and its not being zero-centered.

• Tanh: compared to sigmoid, it solves the zero-center problem.

• ReLu (Rectified Linear Unit): is defined as f(x) = max(0, x) and

is widely used, especially with Convolutional Neural networks. It is
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easy to compute and has other desirable features, with just one issue

of not being zero centred.

We conclude this section presenting an important result know as universal

approximation theorem, achieved in 1991 by Hornik [26]. For its formu-

lation we denote the set of all feed forward neural networks with activation

function σ, input dimension N0 and output dimension NL by NN σ
∞,N0,NL

.

Theorem 2.1.1 (Universal approximation theorem).

Suppose σ is bounded and non-constant. Then the following statements hold:

1. For any finite measure µ on
(
RN0 ,B

(
RN0

))
and 1 ≤ p < ∞, the set

NN σ
∞,N0,1

is dense in Lp
(
RN0 ,B

(
RN0

)
, µ
)
;

2. If in addition σ ∈ C(R,R), then NN σ
∞,N0,1

is dense in C
(
RN0 ,R

)
for

the topology of uniform convergence on compact sets.

Since each component of an RNL valued neural network is an R-valued

neural network, this result easily generalizes to NN σ
∞,N0,NL

with NL > 1.

For the rest of this thesis we will denote by NNN0,NL the set of all neural net-

works in NN σ
∞,N0,NL

with a fixed architecture, i.e. a fixed number of layers L,

fixed input and output dimensions N` for each hidden layer ` ∈ {1, . . . , L−1}
and a fixed activation function σ. This set can be described by

NNN0,NL = {F (· | θ) | F feed forward neural network and θ ∈ Θ}

with parameter space Θ ⊂ Rq for some q ∈ N and θ ∈ Θ corresponding to

the entries of the matrices W (`) and the vector b(`) for ` ∈ {1, . . . , L}

2.2 ANN training

Once we have chosen the network architecture (number of hidden layers

and number of neurons for each layer), we must adapt the optimal weights

W (`) and b(`) for ` ∈ {1, . . . , L} by training the learning system.
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2.2.1 Backpropagation

In this section we introduce the most widely used method for neural

network training, the backpropagation algorithm. For a thorough study

of the subject we refer to the 1992 paper of R. Hecht-Nielsen [22].

Applying an optimization algorithm like Gradient, Conjugate Gradient

or a Quasi-Newton method to Neural Networks it can be quite difficult, es-

pecially when the network is very deep (it owns many hidden layers). This

algorithm was built ad hoc for Neural Networks and allow to calculate, using

the chain rule, derivatives of cost function with respect to weights of the

network, in order to use a gradient based algorithm to minimize the cost

function and find a local minimum.

We consider a Deep Neural Network with n input and m output. Let{
(x1,y1) , . . . ,

(
xp,yp

)}
be the training set. This consists of p ordered pairs of vectors in Rn × Rm.

We denote by ŷh with h = 1, . . . , p the set of network outcomes with respect

to the training set elements. The aim is to minimize the cost function

C =

p∑
h=1

‖yh − ŷh‖
2 .

Other choices can be made for the cost function, depending on the situation.

For the sake of simplicity, we explain the algorithm fixing as activation func-

tion the sigmoid function σ(x) = 1
1+e−x

presented in the previous section and

a Neural Network with only one hidden layer of dipension q, but the method

can be naturally extended to more general cases.

At first, synaptic weights of the network are randomly chosen.

Then, the algorithm consist of 4 steps:

1. Feedforward computation:

The input vector x = (xi)1≤i≤n is presented to the network. The vectors

ŷ(1) = (ŷ
(1)
j )1≤j≤q and ŷ(2) = (ŷ

(2)
k )1≤k≤m are, respectively, the output
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vector produced by the first layer and the output vector produced by

the second layer. Namely, we have

ŷ(2) = W (2)ŷ(1)

ŷ(1) = σ(ẑ(1))

ẑ(1) = W (1)x+ b(1)

(2.1)

so that the complete structure is given by

ŷ(2) = W (2)
(
σ
(
W (1)x+ b(1)

))
(2.2)

We write it also component wise:

ŷ
(2)
k =

q∑
j=1

W
(2)
kj

(
σ

(
n∑
i=1

W
(1)
ji xi + b

(1)
i

))
(2.3)

In this step ŷ(1) and ŷ(2) are computed and stored and also the eval-

uated derivatives of the activation functions are also stored in each

neuron.

2. Backpropagation to the output layer:

We are looking for the value of partial derivatives ∂C/∂W
(2)
kj . The

weight W
(2)
kj is the synaptic connection between the j-th neuron of the

hidden layer and the k-th neuron of the output layer. We apply now

the chain rule for the computation of the derivative and we get

∂C

∂W
(2)
kj

=
m∑
k=1

∂C

∂ŷ
(2)
k

∂ŷ
(2)
k

∂W
(2)
kj

=
m∑
k=1

(
ŷ

(2)
k − yk

)
ŷ

(1)
j

3. Backpropagation to the hidden layer: Now we are looking for the

value of partial derivatives ∂C/∂W
(1)
ij and ∂C/∂b

(1)
i . By the definition

of derivative of sigmoid function, we have σ′(x) = σ(x) (1− σ(x)).

Analogously to the previous step, by the chain rule we get

∂C

∂W
(1)
ji

=
m∑
k=1

∂C

∂ŷ
(2)
k

∂ŷ
(2)
k

∂ŷ
(1)
j

∂ŷ
(1)
j

∂ẑ
(1)
j

∂ẑ
(1)
j

∂W
(1)
ji

=
m∑
k=1

(
ŷ

(2)
k − yk

)
W

(2)
kj ŷ

(1)
j

(
1− ŷ(1)

j

)
xi
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and

∂C

∂b
(1)
i

=
m∑
k=1

∂C

∂ŷ
(2)
k

q∑
j=1

∂ŷ
(2)
k

∂ŷ
(1)
j

∂ŷ
(1)
j

∂ẑ
(1)
j

∂ẑ
(1)
j

∂b
(1)
i

=
m∑
k=1

(
ŷ

(2)
k − yk

) q∑
j=1

W
(2)
kj ŷ

(1)
j

(
1− ŷ(1)

j

)
4. Weights update: After computing all partial derivatives, the network

weights must b updated, making use of some gradient based optimiza-

tion algorithm. There are a lot of variants of the classical gradient

descent, so in the next section we present some of the most popular al-

gorithm used in neural networks training. by using a Gradient Descent

method.

2.2.2 Optimization algorithms

The backpropagation algorithm works in collaboration with an optimiza-

tion method for minimizing the cost function. At first, synaptic weights of

the network are randomly chosen. Then the backpropagation allow us to

calculate the partial derivatives with respect to the weights, that we call

δ
(2)
kj =

∂C

∂W
(2)
ji

;

δ
(1)
ji =

∂C

∂W
(1)
ji

;

δ
(1)
i =

∂C

∂b
(1)
i

.

The central idea of gradient descent method is that the weights correction

takes place along the negative direction of the gradient of the cost function.

The weights update is given by:

∆W
(2)
kj = −γδ(2)

kj , for k = 1, . . . ,m; j = 1, . . . , q

∆W
(1)
ji = −γδ(1)

ji , for j = 1, . . . , q; i = 1, . . . , n

∆b
(1)
i = −γδ(1)

i , for i = 1, . . . , n
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The step length γ is also called the learning rate. A correct choice of this

parameter is fundamental for the convergence of the algorithm. The learning

rate can be fixed or can be adaptive, in order to improve the algorithm’s

performances. An important features of gradient descent is the convergence

to a local minimum, making necessary a good first guess to ensure a good

performance of the algorithm. As in optimization theory, the early stopping

methods are concerned with the problem of choosing a time to stop the

process. Here are some examples:

• The sequence is interrupted when the last value is in the neighborhood

of a local minimum. In other words, when the Euclidean norm of the

function gradient is less than a fixed threshold value.

• When the error variation percentage between two consecutive epochs

is sufficiently small.

• The learning algorithm is stopped when it reaches the maximum num-

ber of iterations.

We now present some popular variants of gradient descent method, overviewed

in 2017 by Sebastian Ruder [39].

• Stochastic Gradient Descent (SGD): it is one of the most used

methods in practical applications. It is very simple to implement and

the computational cost is quite low. The idea is to not use the whole

dataset to calculate the gradient in each point, but instead to consider

only a subset (mini-batch) of size r. It follows that

g =
1

r

r∑
i=1

∇wC
(
f
(
x(i); θ

)
, y(i)

)
∆θ = −γg

where θ represent the network weights and f the network function.

The objective function is the loss function C which is the difference

between estimated and true values for a sample of data. The learning
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rate is heuristically fixed at 0.01. We observe that, if the step length is

too big (γ >> 0.01), then the method may not be converge. Instead, a

learning rate that is too small (γ << 0.01) leads to slow convergence.

• Momentum: SGD has trouble descending ravines, i.e. areas where

the surface curves much more steeply in one dimension than in an-

other, that are common around local minima. In this scenario, SGD

oscillates across the slopes of the ravine while only making hesitant

progress along the bottom towards the local minimum. The momen-

tum method accelerates SGD in the relevant direction and dampens

oscillations. The method uses the momentum α, which depends on

previous iterations. Let gt be the gradient of the objective function at

iteration t.

vt+1 = αvt − γgt
θt+1 = θt + vt+1

Usually, α is equal to 0.5 or 0.9 .

• RMSProp: The Root Mean Square Propagation method is an

adaptive algorithm. Hence, the learning rate γ is adapted for each of

the parameters. It provides good performance in practice. The running

average is calculated in terms of mean squared,

E
[
g2
]
t

= ηE
[
g2
]
t−1

+ (1− η)〈g, g〉

where η ∈ [0, 1] is the exponential decaying factor ( forgetting factor).

Usually, η = 0.9. Intuitively, the choice of η defines how the previous

iteration memory is important in the running average computation.

The weights update is given by

∆wt = − γgt√
E [g2]t + ε

We observe that the root square to the denominator indicates the mean

square (RMS, root mean square). In this case the learning rate γ is
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dynamically controlled by the root mean square of the gradient norm.

It has been added to the denominator the factor ε, in order to prevent

it from tending to 0.

• Adam: The Adaptive Moment Estimation method, proposed in

2017 by D. P. Kingma and J. Ba [29], is the most popular today

and it can be seen as a combination of RMSProp and Momentum

method. Adam uses the running average of the objective function gra-

dient and its second momentum. The parameters update follows the

below scheme:

Mt+1 = β1Mt + (1− β1) gt

vt+1 = β2vt + (1− β2) 〈gt, gt〉

and the bias correction

M̂ =
Mt+1

1− (β1)t+1

v̂ =
vt+1

1− (β2)t+1

The weight correction is

wt+1 = wt − γ
M̂√
v̂ + ε

The term ε is used to ensure numerical stability. The parameters β1

and β2 are used to control the exponential decay of the gradient and its

second momentum. Usually we set ε = 10−8, β1 = 0.9 and β2 = 0.999



Chapter 3

Pricing and Hedging techniques

In this chapter we focus on pricing and hedging techniques that will be

necessary to explain to detail the algorithm of calibration of a LSV model.

We choose to follow Pascucci [34] for Monte Carlo method introduction and

Glasserman [15] for variance reduction techniques.

3.1 Monte Carlo method

The Monte Carlo method is a simple technique of numerical approxima-

tion of the mean of a random variable X. It is used in many circumstances in

mathematical finance and in particular in the pricing problem. More gener-

ally, the Monte Carlo method allows approximating the value of an integral

numerically: indeed we recall that, if Y ∼ Unif [0,1] is uniformly distributed

on [0,1] and X = f(Y ), then we have

E[X] =

∫ 1

0

f(x)dx

The Monte Carlo method is based on the strong law of large num-

bers[A.1.4], which states that the average of the results obtained from a

large number of trials should be close to the expected value and will tend to

become closer to the expected value as more trials are performed: if (Xn) is a

sequence of integrable i.i.d. random variables and such that E [X1] = E[X],

33
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then

lim
n→∞

1

n

n∑
k=1

Xk = E[X]

Consequently, if we are able to draw samples X̄1, . . . , X̄n from X in an inde-

pendent way, then the mean
1

n

n∑
k=1

X̄k

gives an a.s. approximation of E[X]. In order to analyze some of the main

features of this technique, we consider the problem of numerical approxima-

tion of the following integral over the unitary cube in Rd :∫
[0,1]d

f(x)dx

The most natural way to approximate the value of the integral consists in

considering a discretization by Riemann sums: for fixed n ∈ N, on [0, 1]d we

build a grid of points with coordinates of the form k
n
, k = 0, . . . , n. Then we

rewrite the integral in the form∫
[0,1]d

f(x)dx =
n−1∑
k1=0

· · ·
n−1∑
kd=0

∫ k1+1
n

k1
n

· · ·
∫ kd+1

n

kd
n

f (x1, . . . , xd) dx1 · · · dxd

and we approximate the right-hand side by

n−1∑
k1=0

· · ·
n−1∑
kd=0

∫ k1+1
n

k1
n

· · ·
∫ kd+1

n

kd
n

f

(
k1

n
, . . . ,

kd
n

)
dx1 · · · dxd

=
1

nd

n−1∑
k1=0

· · ·
n−1∑
kd=0

f

(
k1

n
, . . . ,

kd
n

)
=: Sn(f)

(3.1)

If f is Lipschitz continuous, with Lipschitz constant L, then∣∣∣∣∫
[0,1]d

f(x)dx− Sn(f)

∣∣∣∣ ≤ L

n

Further, if f ∈ Cq
(
[0, 1]d

)
, we can easily obtain an n−q-order scheme, by

substituting f
(
k1
n
, . . . , kd

n

)
in (3.1) with the q -th order Taylor expansion of

f with initial point
(
k1
n
, . . . , kd

n

)
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In principle, this kind of approximation gives better results than the

Monte Carlo method. However, the convergence of the scheme depends

heavily on the regularity of f . For example, the measurable function f(x) =

1[0,1]d\Qd has integral equal to 1, but Sn(f) = 0 for every n ∈ N.

Moreover, the computation of the approximation term Sn(f) necessary to

get an error of the order of 1
n

involves the valuation of f in nd points; so

the number of points increases exponentially with the dimension of the prob-

lem. It follows that, in practice, only if d is small enough it is possible to

implement the method in an effective way.

Now we consider the approximation with the Monte Carlo method. If

(Yn) is a sequence of i.i.d random variables with uniform distribution on

[0, 1]d, we have ∫
[0,1]d

f(x)dx = E [f (Y1)] = lim
n→∞

1

n

n∑
k=1

f (Yk) (3.2)

We observe that, in order for the integral to converge, it suffices that f is

integrable on [0, 1]d and no further regularity assumption is required.

Concerning the computational complexity, we can give a first estimate

of the error of the Monte Carlo method directly by the Markov inequality

[A.1.3], that gives an upper bound for the probability that a non-negative

function of a random variable is greater than or equal to some positive con-

stant. We consider a sequence of real i.i.d. random variables (Xn) with

µ = E [X1] and σ2 = var (X1) finite. Furthermore, we set

Mn =
1

n

n∑
k=1

Xk

By Markov’s inequality, for every ε > 0, we have

P (|Mn − µ| ≥ ε) ≤ var (Mn)

ε2
=

(by the independence)

=
n var

(
X1

n

)
ε2

=
σ2

nε2
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that can be rewritten in a more appealing way as follows:

P (|Mn − µ| ≤ ε) ≥ p, where p := 1− σ2

nε2
(3.3)

First of all we note that, being the technique based on the generation of

random numbers, the result and the error of the Monte Carlo method are

random variables. Formula (3.3) gives an estimate of the error in terms of

the number of samples n, the maximum approximation error ε and p, that

is the minimum probability that the approximated value Mn belongs to the

confidence interval [µ − ε, µ + ε]. According to (3.3), for fixed n ∈ N and

p ∈]0, 1[, the maximum approximation error of the Monte Carlo method is

ε =
σ√

n(1− p)
(3.4)

Therefore, the error is of the order of 1√
n

regardless of the dimension of the

problem. Summing up, if the dimension is low and some suitable regularity

assumptions are verified, then it is not difficult to implement deterministic al-

gorithms performing better than Monte Carlo. However, when the dimension

of the problem increases, these deterministic algorithms become burdensome

and the Monte Carlo method is, for now, the only viable alternative.

We also observe that, by (3.4), the standard deviation σ is directly propor-

tional to the approximation error: as a matter of fact, from a computational

point of view σ is a crucial parameter which influences significantly the ef-

ficiency of the approximation. Typically σ is not known; nevertheless it is

possible to use the random numbers that we have generated to construct an

estimator of σ :

σ2
n :=

1

n− 1

n∑
k=1

(Xk − µn)2 , µn :=
1

n

n∑
k=1

Xk

Usually, in order to improve the effectiveness of the Monte Carlo method,

variance-reduction methods are used. These techniques, elementary in

some cases, employ the specific features of the problem to reduce the value

of σn and consequently increase the speed of convergence. We will present

two of most pupular techniques in section
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3.1.1 Simulation

The first step to approximate E[X] by the Monte Carlo method consists

in generating n independent realizations of the random variable X : this

poses some practical problems.

First of all n must be large enough and so the generation of the simu-

lations cannot be made by hand (for example, by tossing a coin): therefore

we must use the power of a computer to perform the computation. This

rather obvious remark introduces the first serious problem: a computer can

generate “random” values only by using deterministic algorithms. So, in or-

der to implement the Monte Carlo method, actually we have at our disposal

only “pseudo-random” numbers, i.e. numbers that have the same statisti-

cal properties as the actual random values but, when the number of times

we simulate increases, are not generated in a really independent way. This

translates into an additional error that cannot be easily estimated in the

approximated result. Therefore it should always be borne in mind the fact

that the quality of the random-number generator influences the numerical

result significantly. After shedding some light on this first matter, for the

vast majority of the well-known distributions, and in particular for the Nor-

mal standard distribution, it is not difficult to find a pseudo-random number

generator. Having this at our disposal, pricing of a European option with

payoff F is indeed an easy task. For example, in the Black-Scholes model,

where the final price of the underlying asset is

ST = S0 exp

(
σWT +

(
r − σ2

2

)
T

)
the procedure is as follows:

(A.1) We draw n independent samples Z1, . . . , Zn, from the standard Normal

distribution;

(A.2) We consider the corresponding realizations of the final value of the
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underlying asset

S̄
(k)
T = S0 exp

(
σ
√
TZ̄k +

(
r − σ2

2

)
T

)
(A.3) We compute the approximation of the price of the derivative

e−rT

n

n∑
k=1

F
(
S̄

(k)
T

)
≈ e−rTE [F (ST )]

Since the vast majority of models used in financial engineering for option

pricing doesn’t allow analytical form for the distribution of the payoff random

variables, we need to simulate the whole trajectories of the underlying.

More over, in this way it’s easy to price exotic options, whose value depends

on the trajectory, with Monte Carlo methods. To do this, we now present

the Euler scheme and the higher-order Milstein scheme.

• Euler Scheme: Let consider a local-volatility model in which the

dynamics of the underlying asset under the EMM is given by

dSt = rStdt+ σ (t, St) dWt (3.5)

In this case the distribution of the final price ST is not known explicitly.

We discretize the equation (3.5) obtaining

S̄ti = S̄ti−1
(1 + r (ti − ti−1)) + σ

(
ti−1, S̄ti−1

) (
Wti −Wti−1

)
(3.6)

We remark that random variable Wti −Wti−1
has normal distribution

with 0 mean and ti− ti−1 variance. Therefore, the procedure to obtain

some realizations of ST is as follows:

(B.1) We produce nm independent realizations Zk,i, for k = 1, . . . , n

and i = 1, . . . ,m, of the Normal standard distribution N0,1

(B.2) Using the iterative formula

S̄
(k)
ti = S̄

(k)
ti−1

(1 + r (ti − ti−1)) + σ
(
ti−1, S̄

(k)
ti−1

)√
ti − ti−1Z̄k,i

we determine the corresponding realizations of the final value of

the underlying asset S̄
(1)
T , . . . , S̄

(n)
T
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(B.3) we compute the approximation of the price of the derivative as in

(A.3).

• Milstein Scheme: Analogously to the deterministic case, it is possible

to introduce higher-order schemes for the discretization of stochastic

equations. One of the simplest is the Milstein scheme, which is similar

to Euler scheme with a first-order approximation of the diffusion term

with respect to the variable x :∫ ti

ti−1

σ (t, St) dWt ∼
∫ ti

ti−1

(
σ
(
ti−1, Sti−1

)
+ ∂xσ

(
ti−1, Xti−1

) (
Wt −Wti−1

))
dWt

By simple computation we get∫ ti

ti−1

(
Wt −Wti−1

)
dWt =

(
Wti −Wti−1

)2 − (ti − ti−1)

2

Then, putting δ = ti − ti−1 and denoting a standard Normal random

variable by Z, we get the natural extension of the iterative scheme in

(B.2)

S̄ti = S̄ti−1
+µ
(
ti−1, S̄ti−1

)
δ+σ

(
ti−1, S̄ti−1

)√
δZ+∂xσ

(
ti−1, S̄ti−1

) δ (Z2 − 1)

2

By way of example, for the discretization of a geometric Brownian

motion

dSt = µStdt+ σStdWt

we have

Sti = Sti−1

(
1 + δ

(
µ+

σ2

2

(
Z2 − 1

))
+ σ
√
δZ

)

3.2 Variance reduction

We present the two simplest and popular methods for increasing the ef-

ficiency of Monte Carlo simulation by reducing the variance of simulation

estimates. These methods draw on two broad strategies for reducing vari-

ance: taking advantage of tractable features of a model to adjust or correct

simulation outputs, and reducing the variability in simulation inputs. We

discuss antithetic variates and control variates.
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3.2.1 Antithetic variates

The method of antithetic variates attempts to reduce variance by intro-

ducing negative dependence between pairs of replications. The method can

take various forms; the most broadly applicable is based on the observation

that if U is uniformly distributed over [0, 1], then 1− U is too. Hence, if we

generate a path using as inputs U1, . . . , Un, we can generate a second path

using 1− U1, . . . , 1− Un without changing the law of the simulated process.

The variables Ui and 1− Ui form an antithetic pair in the sense that a large

value of one is accompanied by a small value of the other. This suggests

that an unusually large or small output computed from the first path may

be balanced by the value computed from the antithetic path, resulting in a

reduction in variance.

These observations extend to other distributions through the inverse trans-

form method: F−1(U) and F−1(1 − U) both have distribution F but are

antithetic to each other because F−1 is monotone. For a distribution sym-

metric about the origin, F−1(1 − u) and F−1(u) have the same magnitudes

but opposite signs. In particular, in a simulation driven by independent

standard normal random variables, antithetic variates can be implemented

by pairing a sequence Z1, Z2, . . . of i.i.d. N(0, 1) variables with the sequence

−Z1,−Z2, . . . of i.i.d. N(0, 1) variables, whether or not they are sampled

through the inverse transform method.

To analyze this approach more precisely, suppose our objective is to esti-

mate an expectation E[Y ] and that using some implementation of antithetic

sampling produces a sequence of pairs of observations
(
Y1, Ỹ1

)
,
(
Y2, Ỹ2

)
, . . .

(Yn, Yn) . The key features of the antithetic variates method are the following:

• the pairs
(
Y1, Ỹ1

)
,
(
Y2, Ỹ2

)
, . . . ,

(
Yn, Ỹn

)
are i.i.d.;

• for each i, Yi and Ỹi have the same distribution, though ordinarily they

are not independent.

We use Y generically to indicate a random variable with the common distri-

bution of the Yi and Ỹi
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The antithetic variates estimator is simply the average of all 2n observa-

tions,

ŶAV =
1

2n

(
n∑
i=1

Yi +
n∑
i=1

Ỹi

)
=

1

n

n∑
i=1

(
Yi + Ỹi

2

)
(3.7)

The rightmost representation in (3.7) makes it evident that ŶAV is the sample

mean of the n independent observations(
Y1 + Ỹ1

2

)
,

(
Y2 + Ỹ2

2

)
, . . . ,

(
Yn + Ỹn

2

)
The central limit theorem therefore applies and gives

ŶAV − E[Y ]

σAV/
√
n
⇒ N(0, 1)

with

σ2
AV = Var

[
Yi + Ỹi

2

]
Under what conditions is an antithetic variates estimator to be preferred

to an ordinary Monte Carlo estimator based on independent replications?

To make this comparison, we assume that the computational effort required

to generate a pair
(
Yi, Ỹi

)
is approximately twice the effort required to gen-

erate Yi. Under this assumption, the effort required to compute ŶAV is ap-

proximately that required to compute the sample mean of 2n independent

replications, and it is therefore meaningful to compare the variances of these

two estimators. Using antithetics reduces variance if

Var
[
ŶAV

]
< Var

[
1

2n

2n∑
i=1

Yi

]
i.e., if

Var
[
Yi + Ỹi

]
< 2 Var [Yi]

The variance on the left can be written as

Var
[
Yi + Ỹi

]
= Var [Yi] + Var

[
Ỹi

]
+ 2 Cov

[
Yi, Ỹi

]
= 2 Var [Yi] + 2 Cov

[
Yi, Ỹi

]
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using the fact that Yi and Ȳi have the same variance if they have the same

distribution. Thus, the condition for antithetic sampling to reduce variance

becomes

Cov
[
Yi, Ỹi

]
< 0

Put succinctly, this condition requires that negative dependence in the inputs

(whether U and 1− U or Z and −Z ) produce negative correlation between

the outputs of paired replications. A simple sufficient condition ensuring

this is monotonicity of the mapping from inputs to outputs defined by a

simulation algorithm.

3.2.2 Control variates

The method of control variates is among the most effective and broadly

applicable techniques for improving the efficiency of Monte Carlo simulation.

It exploits information about the errors in estimates of known quantities to

reduce the error in an estimate of an unknown quantity. To describe the

method, we let Y1, . . . , Yn be outputs from n replications of a simulation. For

example, Yi could be the discounted payoff of a derivative security on the

i-th simulated path. Suppose that the Yi are independent and identically

distributed and that our objective is to estimate E [Yi] . The usual estimator

is the sample mean Ȳ = (Y1 + · · ·+ Yn) /n. This estimator is unbiased and

converges almost surely as n→∞.

Suppose, now, that on each replication we calculate another output Xi

along with Yi. Suppose that the pairs (Xi, Yi) , i = 1, . . . , n, are i.i.d. and

that the expectation E[X] of the Xi is known. (We use (X, Y ) to denote a

generic pair of random variables with the same distribution as each (Xi, Yi))

Then for any fixed b we can calculate

Yi(b) = Yi − b (Xi − E[X])

from the i-th replication and then compute the sample mean

Ȳ (b) = Ȳ − b(X̄ − E[X]) =
1

n

n∑
i=1

(Yi − b (Xi − E[X])) (3.8)
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This is a control variate estimator; the observed error X̄ − E[X] serves as a

control in estimating E[Y ].

As an estimator of E[Y ], the control variate estimator (3.8) is unbiased

because

E[Ȳ (b)] = E[Ȳ − b(X̄ − E[X])] = E[Y ] = E[Y ]

and it is consistent because, almost surely,

lim
n→∞

1

n

n∑
i=1

Yi(b) = lim
n→∞

1

n

n∑
i=1

(Yi − b (Xi − E[X]))

= E[Y − b(X − E[X])]

= E[Y ]

Each Yi(b) has variance

Var [Yi(b)] = Var [Yi − b (Xi − E[X])]

= σ2
Y − 2bσXσY ρXY + b2σ2

X =: σ2(b)
(3.9)

where σ2
X = Var[X], σ2

Y = Var[Y ], and ρXY is the correlation between X and

Y . The control variate estimator Ȳ (b) has variance σ2(b)/n and the ordinary

sample mean Ȳ (which corresponds to b = 0 ) has variance σ2
Y /n. Hence, the

control variate estimator has smaller variance than the standard estimator

if b2σX < 2bσY ρXY The optimal coefficient b∗ minimizes the variance (3.9)

and is given by

b∗ =
σY
σX

ρXY =
Cov[X, Y ]

Var[X]

Substituting this value in (3.9) and simplifying, we find that the ratio of the

variance of the optimally controlled estimator to that of the uncontrolled

estimator is
Var [Y − b∗(X − E[X])]

Var[Ȳ ]
= 1− ρ2

XY (3.10)

A few observations follow from this expression:

• With the optimal coefficient b∗, the effectiveness of a control variate,

as measured by the variance reduction ratio (3.10) is determined by

the strength of the correlation between the quantity of interest Y and
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the control X. The sign of the correlation is irrelevant because it is

absorbed in b∗;

• If the computational effort per replication is roughly the same with

and without a control variate, then (3.10) measures the computational

speed-up resulting from the use of a control. More precisely, the number

of replications of the Yi required to achieve the same variance as n

replications of the control variate estimator is n/ (1− ρ2
XY );

• The variance reduction factor 1/ (1− ρ2
XY ) increases very sharply as

|ρXY | approaches 1 and, accordingly, it drops off quickly as |ρXY | de-

creases away from 1. For example, whereas a correlation of 0.95 pro-

duces a ten-fold speedup, a correlation of 0.90 yields only a five-fold

speed-up; at |ρXY | = 0.70 the speed-up drops to about a factor of two.

This suggests that a rather high degree of correlation is needed for a

control variate to yield substantial benefits.

These remarks and equation (3.10) apply if the optimal coefficient b∗ is

known. In practice, if E[Y ] is unknown it is unlikely that σY or ρXY would

be known. However, we may still get most of the benefit of a control variate

using an estimate of b∗. For example, replacing the population parameters

in (3.9) with their sample counterparts yields the estimate

b̂n =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)∑n
i=1

(
Xi − X̄

)2

Dividing numerator and denominator by n and applying the of large numbers

shows that b̂n → b∗ almost surely. This suggests using the estimator Ȳ
(
b̂n

)
,

the sample mean of Yi

(
b̂n

)
= Yi − b̂n (Xi − E[X]) , i = 1, . . . , n.
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3.3 Hedging

Hedging is a technique that consist in finding a strategy that replicate the

value of a derivative financial instrument. Usually, the objective is to mitigate

the market risk deriving from the payoff randomness of the derivative. For

our purposes instead, a hedging strategy is necessary in combination with

the control variate method presented in the previous section.

We now present the most popular method, called Delta Hedge, that comes

from the Black Scholes framework, and also a recent proposal that concern

the parametrization of the hedging strategy via neural networks.

3.3.1 Black Scholes Delta Hedging

We present an alternative ways to obtain the Black-Scholes equation (1.5).

The following approaches is heuristic; its good point is that it is intuitive,

while its flaw is that it is not completely rigorous. Furthermore it assume

the no-arbitrage principle as a starting point, rather than a result.

Let us consider the point of view of a bank that sells an option and wants

to determine a hedging strategy by investing in the underlying asset. Let us

consider a portfolio consisting of a certain amount of the risky asset St and

of a short position on a derivative with payoff F (ST ) whose price, at the

time t, is denoted by f (t, St). The value of the portfolio is then given by

V (t, St) = αtSt − f (t, St)

In order to determine αt, we want to render V neutral with respect to the

variation of St, or, in other terms, V immune to the variation of the price of

the underlying asset by imposing the condition

∂sV (t, s) = 0

By the equality V (t, s) = αts− f(t, s), we get

αt = ∂sf(t, s) (3.11)
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and this is commonly known as the Delta hedging strategy. By the self-

financing condition and applying Ito Lemma (A.3.4), we have

dV (t, St) = αtdSt − df (t, St)

=

(
(αt − ∂sf)µSt − ∂tf −

σ2S2
t

2
∂ssf

)
dt+ (αt − ∂sf)σStdWt

Therefore the choice (3.11) wipes out the riskiness of V , represented by the

term in dWt, and cancels out also the term containing the return µ of the

underlying asset. Summing up we get

dV (t, St) = −
(
∂tf +

σ2S2
t

2
∂ssf

)
dt (3.12)

Now since the dynamics of V is deterministic, by the no-arbitrage principle

V must have the same return of the non-risky asset:

dV (t, St) = rV (t, St) dt = r (St∂sf − f) dt (3.13)

so, equating formulas (3.12) and (3.13) we obtain again the Black-Scholes

equation.

We now present the rigorous theorem that provide us the exact self-

financing hedging strategy in the Black Scholes framework.

Theorem 3.3.1.

The Black-Scholes market model is complete and arbitrage free, this meaning

that every European derivative F (ST ) , with F verifying opportune hypoth-

esis, is replicable in a unique way. Indeed there exists a unique strategy

h = (αt, βt) ∈ A replicating F (ST ) , that is given by

αt = ∂sf (t, St) , βt = e−rt (f (t, St)− St∂sf (t, St)) (3.14)

where f is the lower bounded solution of the Cauchy problem

σ2s2

2
∂ssf + rs∂sf + ∂tf = rf, in

[
0, T

[
×R+ (3.15)

f(T, s) = F (s), s ∈ R+ (3.16)

By definition, f (t, St) = V
(α,β)
t is the arbitrage price of F (ST )
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From a theoretical point of view the Delta-hedging strategy (3.11) guar-

antees a perfect replication of the payoff. So there would be no need to further

study the hedging problem. However, in practice the Black-Scholes model

poses some problems: first of all, the strategy (3.14) requires a continuous

rebalancing of the portfolio, and this is not always possible or convenient,

for example because of transition costs. Secondly, the Black-Scholes model

is commonly considered too simple to describe the market realistically: the

main issue lies in the hypothesis of constant volatility that appears to be

definitely too strong if compared with actual data (see section 1.1.2).

The good point of the Black-Scholes model is that it yields explicit formu-

las for plain vanilla options. Furthermore, even though it has been severely

criticized, it is still the reference model. At a first glance this might seem

paradoxical but, as we are going to explain, it is not totally groundless.

Robustness of the model

Following Pascucci [34], we now show how the assumption of Black Scholes

framework and related delta hedging technique can work well, even if the

actual dynamic of the underlying differ from BS.

We assume the Black-Scholes dynamics for the underlying asset

dSt = µStdt+ σStdWt (3.17)

where µ, σ are constant parameters and we denote by r the short-term rate.

Then the price f (t, St) of an option with payoff F (ST ) is given by the solution

of the Cauchy problem

σ2s2

2
∂ssf + rs∂sf + ∂tf = rf, in

[
0, T

[
×R+ (3.18)

f(T, s) = F (s), s ∈ R+ (3.19)

Moreover

f (t, St) = αtSt + βtBt

is the value of the Delta-hedging strategy given by αt = ∂sf (t, St) and βt =

f (t, St)− St∂sf (t, St). Let us suppose now that the actual dynamics of the
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underlying asset is different from (3.17) and are described by an Itô process

of the form

dS̄t = µtS̄tdt+ σtS̄tdWt (3.20)

with µt ∈ L1
loc and σt ∈ L2

loc. On the basis of the final condition (3.19),

the Delta-hedging strategy replicates the payoff F
(
S̄T
)

on any trajectory

of the underlying asset. However the fact that the actual dynamics (3.20)

is different from the Black-Scholes ones causes the loss of the self-financing

property: in practice, this means that hedging has a different cost (possibly

greater) with respect to the Black-Scholes price f
(
0, S̄0

)
. Indeed we have

df
(
t, S̄t

)
= ∂sfdS̄t +

(
∂tf +

σ2
t S̄

2
t

2
∂ssf

)
dt =

(by (3.18))

= ∂sfdS̄t +

(
rf − rS̄t∂sf −

(σ2 − σ2
t ) S̄

2
t

2
∂ssf

)
dt

= ∂sfdS̄t +
(
f − S̄t∂sf

)
dBt −

(σ2 − σ2
t ) S̄

2
t

2
∂ssfdt. (3.21)

More explicitly we have the following integral expression of the payoff

F
(
S̄T
)

= f
(
T, S̄T

)
= I1 + I2 + I3

where

I1 = f
(
0, S̄0

)
is the Black-Scholes price,

I2 =

∫ T

0

∂sf
(
t, S̄t

)
dS̄t +

∫ T

0

(
f
(
t, S̄t

)
− S̄t∂sf

(
t, S̄t

))
dBt

is the gain of the Delta-hedging strategy,

I3 = −1

2

∫ T

0

(
σ2 − σ2

t

)
S̄2
t ∂ssf

(
t, S̄t

)
dt

is a correction term due to the erroneous specification of the model for the

underlying asset. Clearly I3 = 0 if σ = σt and only in that case the strategy

is self-financing.
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We remark that I3 depends only on the misspecification of the volatility

term and not on the drift. More precisely I3, which also represents the

replication error of the Delta-hedging strategy, depends on the Vega which

measures the convexity of the Black-Scholes price as a function of the price

of the underlying asset. In particular the error is small if ∂asf is small.

Furthermore, if the price is convex, ∂ssf ≥ 0, as in the case of Call and Put

options, then the Black-Scholes strategy (whose final value is I1 + I2 ) super-

replicates the derivative for any dynamics of the underlying asset as long as

we choose the volatility sufficiently large, σ ≥ σt, since in this case I3 ≤ 0

In this sense the Black-Scholes model is robust and, if used with all due

precautions, can be effectively employed to hedge derivatives.

3.3.2 Deep Hedging

We want now to present a use of neural networks in hedging. In particular,

when the number of hedging instruments becomes higher, one can learn the

hedging strategy by parametrizing it via neural networks. The idea of using

a neural network as a hedging strategy is the basis of the work of H. Bühler,

L. Gonon, J. Teichmann and B. Wood [6], from which we take inspiration to

provide an introduction to the method.

Let the payoff be a function of the terminal values of the hedging instru-

ments, i.e. C = g (ZT ). Then in Markov models it makes sense to specify the

hedging strategy via a function

h : R+ × Rr → Rr, ht = h(t, z)

which in turn will correspond to an artificial neural network

(t, z)→ h(t, z, δ) ∈ NNr+1,r

with weights denoted by δ in some parameter space ∆. Following the ap-

proach in [6], an optimal hedge for the claim C with given market price πmkt

can be computed via

inf
δ∈∆

E
[
u
(
−C + πmkt + (h (·, Z·|δ) • Z·)T

)]
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for some convex loss function u : R→ R+. Recall that (h • Z)T denotes the

stochastic integral with respect to Z at time T . If u(x) = x2, which is often

used in practice, this then corresponds to a quadratic hedging criterion.

To tackle this optimization problem, we can apply stochastic gradient

descent. Indeed, the stochastic objective function Q(δ)(ω) is given by

Q(δ)(ω) = u
(
−C(ω) + πmkt + (h (·, Z·|δ) (ω) • Z·(ω))T

)



Chapter 4

LSV model calibration

We have presented in the previous sections the option pricing framework

and the importance of a general class of model like local stochastic volatil-

ity models. Furthermore we have discussed about the technical necessary

instrument to our scope, that is showing a calibration method for the LSV

SABR model. We will now make a precise formalization of the considered

calibration problem and the method we apply.

The calibration algorithm we proposed is based on works of C. Cuchiero, W.

Khosrawi and J. Teichmann [10] and of S. Ben Hamida and R. Cont [3].

4.1 Leverage function as neural network

Consider the LSV model

dSt = VtL (St, t)StdWt

dVt = νVtdZt

dWtdZt = ρdt

(4.1)

defined on
(
Ω, (Ft)t≥0 ,F ,Q

)
, some filtered probability space, where Q is a

risk neutral measure. We assume the stochastic process V to be fixed. This

can for instance be achieved by first calibrating the pure stochastic volatility

model with L ≡ 1 (e.g. SABR) and by fixing the corresponding parameters.

51
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Our main goal is to determine the leverage function L in perfect ac-

cordance with market data. Due to the universal approximation properties

outlined in Section 2.1.2 (Theorem 2.1.1), we choose to parametrize L via

neural networks. More precisely, let 0 = T0 < T1 · · · < Tn = T denote the

maturities of the available European call options to which we aim to calibrate

the LSV model. We then specify the leverage function L(t, s) via a family of

neural networks, i.e.

L(t, s) = 1 + Fi(s) t ∈ [Ti−1, Ti) , i ∈ {1, . . . , n} (4.2)

where Fi ∈ NN1,1. We denote the parameters of Fi by θi and the corre-

sponding parameter space by Θi. For each maturity Ti, we assume to have

Ji options with strikes Kij, j ∈ {1, . . . , Ji}.
The calibration functional for the i -th maturity is then of the form

argminθi∈Θi

Ji∑
j=1

wiju
(
π mod
ij (θi)− πmkt

ij

)
, i ∈ {1, . . . , n} (4.3)

where π mod
ij (θi)

(
πmkt
ij respectively) denotes the model (market resp.) price

of an option with maturity Ti and Strike Kij, u : R→ R+ is some (positive,

nonlinear, convex) function (e.g. square or absolute value) measuring the

distance between market and model prices.

The adversarial part of the algorithm is represented by variable weights

wij, that can be for example of vega type, which allows to match implied

volatility data rather then pure prices, our actual goal very well.

In fact, choosing weight of vega type proposed by S. Ben Hamida and R.

Cont in [3]

wij = max

(
1

Vega (Ti, Kij)
, 100

)
(4.4)

it is possible to “converts” errors in price into errors in implied volatility.

This occurs because Vega is the derivative of the option value with respect to

the volatility of the underlying asset, thus it measures sensitivity to volatility.

What happens is that the calibration functional gives a greater weight and

hence a greater ”importance” in the calibration task to those strikes and
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maturities that are more sensitive to variations in volatility. Thresholding

by 100 in (4.4) avoids overweighting of options very far from the money.

We solve the minimization problems (4.3) iteratively: we start with ma-

turity T1 and fix θ1. This then enters in the computation of π mod
2j (θ2) and

thus in (4.3) for maturity T2, etc. To simplify the notation in the sequel, we

shall therefore leave the index i away so that for a generic maturity T > 0,

(4.3) becomes

argminθ∈Θ

J∑
j=1

wju
(
π mod
j (θ)− πmkt

j

)
(4.5)

Since the model prices are given by

π mod
j (θ) = E

[
(ST (θ)−Kj)

+] (4.6)

we have π mod
j (θ)− πmkt

j = E [Qj(θ)] where

Qj(θ)(ω) := (ST (θ)(ω)−Kj)
+ − πmkt

j (4.7)

Note that ST depends via (4.2) on θ. The calibration task then amounts to

finding a minimum of

f(θ) :=
J∑
j=1

wju (E [Qj(θ)]) (4.8)

4.1.1 Gradient based algorithm

In light of Theorem 2.1.1, it is clear that neural networks can serve as

function approximators and the goal is to find the ”correct” parameters.

Usually, the situation is such that the unknown function is expressed as an

expectation. Probably the most prolific training method for such a setup is

stochastic gradient descent, and we will shortly recall the most basis facts

about this optimization/training method.

The structural properties of neural networks allow to solve minimization

problems of the type

min
θ∈Θ

f(θ) with f(θ) = E[Q(θ)] (4.9)
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for some stochastic objective function Q : Ω×Θ→ R, (ω, θ) 7→ Q(θ)(ω) that

depends on parameters θ in some space Θ very efficiently via stochastic

gradient descent and backpropagation.

The classical method how to solve generic optimization problems for some

differentiable objective function f (not necessarily of the expected value form

as in (4.9) ) is to apply a gradient descent algorithm: starting with an initial

guess θ(0), one iteratively defines

θ(k+1) = θ(k) − ηk∇f (k)
(
θ(k)
)

(4.10)

for some learning rate ηk and f (k) = f. Under suitable assumptions, θ(k)

converges for k →∞ to a local minimum of the function f .

One of the key insights of deep learning is that stochastic gradient descent

methods are much more efficient. To apply this, it is crucial that the objective

function f is linear in the sampling probabilities. In other words, f needs to

be of the expected value form as in (4.9). In the simplest form of stochastic

gradient descent, under the assumption that

∇f(θ) = E[∇Q(θ)]

the true gradient of f is approximated by a gradient at a single sample

Q(θ)(ω) which reduces the computational cost considerably. In the updating

step for the parameters θ as in (4.10), ∇f is then replaced by ∇Q(θ)(ω),

hence

θ(k+1) = θ(k) − ηk∇Q(k)
(
θ(k)
)

(ω) (4.11)

with Q(k) = Q. The algorithm passes through all samples ω of the so-called

training data set and performs the update for each element, several times

until an approximate minimum is reached.

A compromise between computing the true gradient of f and the gradient

at a single Q(θ)(ω) is to compute the gradient of a subsample of size Nbatch ,

called (mini)-batch, so that Q(k) used in the update (4.11) is now given by

Q(k)(θ) =
1

Nbatch

Nbatch∑
n=1

Q(θ) (ωn+kNbatch
) , k ∈ {0, 1, . . . , bN/Nbatch , c − 1}

(4.12)
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where N is the size of the whole training data set. Any other unbiased

estimators of ∇f(θ) can of course also be applied in (4.11).

In typical applications of machine learning, the data set available is lim-

ited, i.e. N < ∞. In our situation, we apply machine learning in a sim-

ulated environment, allowing us to generate data at will. This corresponds

to N =∞, meaning that we can generate completely new data in each step k.

Since u in equation (4.8) is a general non-linear function, this is clearly

not of the expected value form of problem (4.9). In the following section we

illustrate two possibilities how to deal with this non-linearity and the fact

that stochastic gradient descent is not directly applicable.

4.2 Minimize the functional calibration

The goal of this section is to specify two methods for minimizing (4.8). It

is possible to consider linearized versions of (4.8) such that classical stochas-

tic gradient descent with potentially small batch-size is possible. In this

thesis however, we consider two approaches that both amount to use clas-

sical gradient descent and a technical stratagem to use stochastic gradient

descent when the function u in (4.8) has a particular form.

4.2.1 Standard gradient descent

The most obvious choice (which however does not work in practice) is to

use a standard Monte Carlo estimator for E [Qj(θ)] so that (4.8) is estimated

by

f̂(θ) =
J∑
j=1

wju

(
1

m

m∑
l=1

Qj(θ) (ωl)

)
(4.13)

for i.i.d samples {ω1, . . . , ωm} ∈ Ω.

Since the Monte Carlo error decreases as 1√
m
, the number of simulation m

has to be chosen large (≈ 108) in order to approximate well the true model

prices in (4.6). Note that implied volatility to which we actually aim to
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calibrate is even more sensitive. As it is not obvious how to apply stochastic

gradient descent due to the non-linearity of u, it seems necessary at first

sight to compute the gradient of the whole function f̂(θ). As m ≈ 108,

this is however computationally very expensive and does not allow to find a

minimum in the usually high dimensional parameter space Θ in a reasonable

amount of time.

4.2.2 Standard gradient descent with control variates

One possible remedy is to apply hedging control variates as introduced

in Section 3.2.2 as variance reduction technique. This allows to reduce the

number of samples m in the Monte Carlo estimator drastically so that usual

(non-stochastic) gradient descent is enough to achieve accurate calibration

results.

Assume that we have r hedging instruments (including the price process

S ) denoted by (Zt)t>0 which are σ -martingale under Q and take values in

Rr. Consider strategies hj : [0, T ]× Rr → Rr and some constant c. Define

Xj(θ)(ω) := (St(θ)(ω)−Kj)
+− c (hj(·, Z.(θ)(ω)) • Z.(θ)(ω))t−π

mkt
j (4.14)

where (hj • Z)t denotes (a discretized version of) the stochastic integral with

respect to Z. The calibration functionals (4.8) and (4.13) can then simply be

defined by replacing Qj(θ)(ω) by Xj(θ)(ω)

Analogously as in Section 3.3.2 we can parametrize the hedging strategies

via neural networks and find the optimal weight δ by computing

argminδ∈∆

1

N

N∑
n=1

` (−Xj(θ, δ) (ωn))

for i.i.d samples {ω1, . . . , ωN} ∈ Ω and some loss function ` when θ is

fixed. Here:

Xj(θ, δ)(ω) = (ST (θ)(ω)−Kj)
+ − (hj(·, Z.(θ)(ω) | δ) • Z·(θ)(ω))T − π

mkt
j
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This means to iterate the two optimization procedures, one for θ and the

other one for δ. Clearly the Black-Scholes hedge approach of Section 3.3.1

works as well, in this case without additional optimization with respect to

the hedging strategies.

Estimator compatible with stochastic gradient descent

We show at least in a special case of the nonlinear function ` an applica-

tion of stochastic gradient descent to the calibration functional (4.8). This

means that we must cast (4.8) into expected value form. We focus on the

case when u(x) is given by u(x) = x2 and write f(θ) as

f(θ) =
J∑
j=1

wjE
[
Qj(θ)Q̃j(θ)

]
for some independent copy Q̃j(θ) of Qj(θ), which is clearly of the expected

value form required in (4.9). A Monte Carlo estimator of f(θ) is then con-

structed by

f̂(θ) =
1

N

N∑
n=1

J∑
j=1

wjQj(θ) (ωn) Q̃j(θ) (ωn)

for independent draws ω1, . . . , ωN (the same N samples can be used for each

strike Kj ). Equivalently we have

f̂(θ) =
1

N

N∑
n=1

J∑
j=1

wjQj(θ) (ωn)Qj(θ) (ωn+m)

for independent draws ω1, . . . , ω2N . The analog of (4.12) is then given by

Q(k)(θ) =
1

Nbatch

Nbatch∑
l=1

J∑
j=1

wjQj(θ) (ωl+2kNbatch
)Qj(θ)

(
ωl+(2k+1)Nhateh

)
for k ∈ {0, 1, . . . , bN/Nbatch c − 1}.
Clearly we can now modify and improve the estimator by using again hedge

control variates and replace Qj(θ) by Xj(θ) as defined in (4.14).
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4.3 Numerical implementation

We consider a SABR type model with one dimensional price-process and

one dimensional variance process V for which the dynamics are given by

dSt = StL
d (t, St)VtdWt

dVt = νVtdBt

dWtdBt = ρdt

(4.15)

for two Brownian motions W,B with correlation ρ ∈ [−1, 1].

Since to compute model prices shoud be used a Monte Carlo method via

an Euler-discretization of the model, it will be preferable to work in log-

price coordinates for S. In particular, it’s possible to parametrize Ld with

X := logS rather then S.

By denoting this parametrization again with Ld where d stands for ”data”,

we therefore have Ld(t,X) instead of Ld(t, S) and the model dynamics read

dXt = VtL
d (t,Xt) dWt −

1

2
V 2
t L

d (t,Xt)
2 dt

dVt = νVtdBt

dWtdBt = ρdt

Note that V is a geometric Brownian motion, in particular, the closed form

solution for V is available and given by

Vt = V0 exp

(
−ν

2

2
t+ νBt

)
Recall that we specify the leverage function L(t, x) via a family of neural

networks, i.e.,

L(t, x) = 1 + Fi(x) t ∈ [Ti−1, Ti) , i ∈ {1, . . . , n = 4}

where Fi ∈ NN 1,1. Each Fi can be specified, for example, as a 3-hidden

layer feed forward net work where the dimension of each of the hidden layers

is 50 . As activation function can be chosen σ = tanh. As before we denote
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the parameters of Fi by θi and the corresponding parameter wpace by Θi.

Since closed form pricing formulas are not available for such an LSV

model, let us briefly specify our pricing method. For the variance reduced

Monte Carlo estimator as of (4.13) can be always used a standard Euler-SDE

discretization with step size ∆t = 1/100. As variance reduction method, can

be implemented the running Black - Scholes Delta hedge with instantaneous

running volatility of the price process, i.e., L (t,Xt)Vt is plugged in the for-

mula for the Black - Scholes Delta. The only parameter that remains to be

specified, is the number of trajectories used for the Monte Carlo estimator

which is done in Algorithm 4.3.1 and Algoritm 4.3.2 below.

As a first calibration step, it’s necessary to calibrate the SABR model

(i.e., (4.15) with L ≡ 1 ) to the market prices and fix the calibrated SABR

parameters ν, % and V0. For the remaining parameters θi, i = 1, . . . , 4, are

applied the following algorithm until all parameters are calibrated.

Algorithm 4.3.1.

In the subsequent pseudo code, the index i stands for the maturities, N for

the number of samples used in the variance reduced Monte Carlo estimator

as of (4.13) and k for the updating step in the gradient descent:

# Initialize the network parameters

initialize θ1, . . . , θ4

# Define initial number of trajectories and initial step

N , k = 400, 1

# The time discretization for the MC simulations and the

# abort criterion

∆t, tol = 0.01, 0.0045

for i = 1,. . .,4:

nextslice = False
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# Compute the initial normalized vega weights

# for this slice:

wj = w̄j/
∑20

l=1 w̃l with w̄j = 1/vij, where vij is

the Black -Scholes vega for strike Kij, the corresponding

market implied volatility and the maturity Ti.

while nextslice == False

do:

Simulate N trajectories of the SABR -LSV

process up to time Ti, compute the payoffs.

do:

Compute the stochastic integral of the

Black -Scholes Delta hedge against

these trajectories for maturity Ti

do:

Compute the calibration functional as of

(4.13) with `(x) = x2 and weights

wj.

do:

Make an optimization step from θ
(k−1)
i to θ

(k)
i ,

similarly as in (4.10) but with the more

sophisticated ADAM -optimizer with learning rate 10−3.

do :

Update the parameter N , the condition

nextslice and compute model prices

according to Algorithm 4.3.2.

do :

k = k + 1

Algorithm 4.3.2.

We update the parameters in Algorithm 4.3.1 according to the following rules:



4.3. NUMERICAL IMPLEMENTATION 61

if k == 500:

N = 2000

if k == 1500:

N = 10000

else if k == 4000:

N = 50000

if k >= 5000 and k mod 1000 == 0:

do:

Compute model prices πmodel for slice i

via MC simulation using 107 trajectories.

Apply the Black -Scholes Delta

hedge for variance reduction.

do :

Compute implied volatilities ivmodel

from the model prices πmodel.

do :

Compute the maximum error of model implied

volatilities against market implied volatilities:

err_cali = ‖ iv_model - iv_market ‖max
if err_cali ≤ tol or k == 12000:

nextslice = True

else:

Adjust the weights w_{j } according to:

for j = 1,. . .,20:

wj = wj + 0.1 * |iv_mode lj - iv_marketj|

This puts higher weights on the options

where the fit can still be improved

Normalize the weights:

for j = 1,. . .,20:

wj = uj /
∑20

`=1wl
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4.4 Conclusion

We have proposed an algorithm that show how the parametrization by

means of neural networks can be used to calibrate local stochastic volatility

models to implied volatility data. We make the following remarks:

1. The method we presented does not require any form of interpolation

for the implied volatility surface since we do not calibrate via Dupire’s

formula. As the interpolation is usually done ad hoc, this might be a

desirable feature of our method.

2. It is possible to ”plug in” any stochastic variance process such as rough

volatility processes as long as an efficient simulation of trajectories is

possible.

3. The multivariate extension is straight forward.

4. As showed by C. Cuchiero, W. Khosrawi and J. Teichmann in [10], the

level of accuracy of this algorithm is of a very high degree, making the

presented method already of interest by this feature alone.

5. The method can be significantly accelerated by applying distributed

computation methods in the context of multi-GPU computational con-

cepts.

6. The presented algorithm is further able to deal with path-dependent

options since all computations are done by means of Monte Carlo sim-

ulations.



Appendix A

Stochastic process

Definition A.1. A stochastic process is a family (Xt)t≥0 of random vari-

ables with values in R such that the map

X : I × Ω 7→ R X(t, ω) = Xt(ω)

is a function of both time t and randomness ω. For each ω, the trajectory

X(ω) 7→ Xt(ω)

defines a function of time, called the sample path of process.

Definition A.2. A filtration on a probability space (Ω,F ,P) is an increasing

family of σ− algebras (Ft)t≥0 such that ∀t ≥ s ≥ 0 we have Fs ⊆ Ft

A.1 Brownian motion

Definition A.3. Let
(
Ω,F , (Ft)t≥0 P

)
be a filtered probability space. A

standard (one-dimensional) Wiener process or Brownian motion, is a

stochastic process W = (Wt)t≥0 in R such that:

• W0 = 0 a.s.

• W is F -adapted and continuos
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• for t > s ≥ 0 the random variable Wt−Ws has normal distribution i.e.

Wt −Ws ∼ N0,t−s and is independent of F

Definition A.4. Let
(
Ω,F , (Ft)t≥0 P

)
be a filtered probability space. A

stochastic process M is a martingale if:

• Mt ∈ L1(Ω)∀t ≥ 0

• E [Mt | Fs] = Ms for s ≤ t

Definition A.5. Let
(
Ω,F , (Ft)t≥0 P

)
be a filtered probability space. A

stochastic process M = (Mt)t∈[0,T ] is a Ft− local martingale if there exists

an increasing sequence (τn) of Ft - stopping times, called localizing sequence

for M, such that

lim
n→∞

τn = T, a.s.

and the stochastic process Mt∧τn is a Ft - martingale for all n ∈ N.

Definition A.6. Let
(
Ω,F , (Ft)t≥0 P

)
be a filtered probability space and

(Wt)t∈[0,T ] a d-dimensional Brownian motion. Given a d-dimensional process

θ ∈ L2
loc , we define the exponential martingale associated to θ as:

Zθ
t = exp

(
−
∫ t

0

θsdWs −
1

2

∫ t

0

|θs|2 ds
)
, t ∈ [0, T ]

For Itô’s formula we have:

dZθ
t = −Zθ

t θtdWt

and so Zθ is a local martingale.

Theorem A.1.1 (Girsanov theorem).

Let Zθ the exponential martingale associated to the process θ ∈ L2
loc. We

assume that Zθ is a P− martingale and we consider the measure Q defined

by
dQ
dP

= Zθ
T

Then the process

W θ
t := Wt +

∫ t

0

θsds, t ∈ [0, T ]

is a Brownian motion on (Ω,F ,Q,Ft)
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Theorem A.1.2.

Let X an Itô process in Rn defined as

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs, t ∈ [0, T ]

with b ∈ L1
loc and σ ∈ L2

loc . Given r =
(
r1, · · · , rN

)
∈ L1

loc , we assume that

there exists a process θ =
(
θ1, · · · , θd

)
∈ L2

loc such that:

• it holds

σtθt = bt − rt, t ∈ [0, T ]

• the process Zθ is a P− martingale.

Then we have that

Xt = X0 +

∫ t

0

rsds+

∫ t

0

σsdW
θ
s , t ∈ [0, T ]

where W θ is the Q - martingale defined by Girsanov theorem.

Proposition A.1.3 (Markov inequality).

Let X be a random variable and let λ ∈ R+, 1 ≤ p < +∞. Then

P (|X| ≥ λ) ≤ E [|X|p]
λp

(A.1)

In particular, if X is a integrable real r.v., we have

P (|X − E[X]| ≥ λ) ≤ var(X)

λ2

Theorem A.1.4 (Strong law of large numbers).

Let (Xn) be a sequence of i.i.d. integrable random variables. Let µ = E [X1]

and

Mn =
X1 + · · ·+Xn

n

then we have

lim
n→∞

Mn = µ

almost surely and in L1 -norm.
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A.2 Equivalent martingale measure

Definition A.7. An equivalent martingale measure Q is a probability mea-

sure on the space (Ω,F ,P) such that

• P and Q are equivalent measures i.e.

P(A) = 0⇐⇒ Q(A) = 0 for every A ∈ F

• the Radon-Nikodym derivative dQ
dP

belongs to L2(Ω,F ,P)

• the discounted asset price process is a F −mg.

Let suppose market model consists of a risk-free asset Bt and N risky

assets At1, · · · , AtN . The risk-free asset Bt is a numeraire process governed by

dBt = r(t)Btdt

where r(t) is locally deterministic interest rate. From this, we know that

Bt = exp
[∫ t

0
r(s)ds

]
Theorem A.2.1 (First fundamental theorem).

The market model is free of arbitrage if and only if there exists a martingale

measure Q such that the processes

Bt

Bt

,
A1
t

Bt

, · · · , A
n
t

Bt

are martingales under Q.

The martingale measure Q is usually called the risk neutral measure,

under which the price of an option is unique such that there is no arbitrage

opportunity.

Theorem A.2.2 (Second fundamental theorem).

Assuming free of arbitrage, the market model is complete if and only if the

martingale measure Q is unique.
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Proposition A.2.3 (Martingale pricing formula).

To avoid arbitrage, a contingent claim must be priced by

Π(t;X) = Bt · E
[
X

BT

| Ft
]

= E
[
e−

∫ T
t r(s)dsX | Ft

]
under the risk neutral measure Q, given Π(T ) = X.

A.3 Stochastic differential equations

We assume that an Rn valued stochastic process Xt = (X t
1, · · · , X t

n)
T

for

t > 0 follows a stochastic differential equation (SDE)

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt (A.2)

where W = (W 1
t , · · · ,Wm

t ) ∈ Rm is a m− dimensional Brownian motion,

µ (Xt, t) = (µ1, · · · , µn)T ∈ Rn is an n− dimensional vector, and σ (Xt, t) ∈
Rn×m is an n×m matrix as

σ (Xt, t) =


σ11 · · · σ1m

· · · · · · · · ·
σn1 · · · σnm


Definition A.8. A process Xt is called a strong solution of the SDE (A.2)

if for all t > 0 the integrals
∫ t

0
µ (Xs, s) ds and

∫ t
0
σ (Xs, s) dWs exist, and

Xt = X0 +

∫ t

0

µ (Xs, s) ds+

∫ t

0

σ (Xs, s) dWs

Definition A.9. If there exists a probability space with a filtration, a Brow-

nian motion Ŵt and a process X̂t adapted to that filtration such that X̂0 has

the given distribution, and for all t > 0, X̂t satisfies

X̂t = X̂0 +

∫ t

0

µ
(
X̂s, s

)
ds+

∫ t

0

σ
(
X̂s, s

)
dŴs

then X̂t is called a weak solution of the SDE (A.2).



68 APPENDIX A. STOCHASTIC PROCESS

The first fundamental result for SDEs is the existence and uniqueness of

the solution.

Theorem A.3.1 (Existence and uniqueness of strong solution for SDE with

Lipschitz coefficients).

Suppose that Xt follows (A.2). If the following conditions are satisfied:

1. the coefficients µ and σ are Lipschitz continuous;

2. the coefficients µ and σ satisfy the linear growth condition;

3. X0 is independent of Wt and E
[
|X0|2

]
<∞

then there exists a unique strong solution Xt of the (A.2).

Theorem A.3.2 (Existence and uniqueness of strong solution for SDE with

non-Lipschitz coefficients).

Suppose that Xt follows (A.2). If the following conditions are satisfied:

1. µ is Lipschitz continuous;

2. there is an increasing function %(u), u ∈ (0,∞) such that
∫ ε

0
%−2(u)du =

∞ for some ε > 0, and

|σ(x, t)− σ(y, t)| ≤ %(|x− y|)

then there exists a unique strong solution Xt of the SDE (A.2).

Theorem A.3.3.

If µ is Lipschitz continuous and σ is Hölder continuous of order α ≥ 1
2
, then

there exists a unique strong solution.

Theorem A.3.4 (Itô’s lemma).

Suppose that Xt follows (A.2). Let f (Xt, t) be a twice differentiable function.

Then the process f(x, t) follows

df =
∂f

∂t
dt+

n∑
i=1

∂f

∂X i
dX i

t +
1

2

n∑
i,j=1

∂2f

∂X i∂Xj
dX i

t · dX
j
t
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Theorem A.3.5 (Feynman-Kač theorem).

Suppose that Xt follows (A.2). Consider the PDE for F (Xt, t)

∂F

∂t
+

n∑
i=1

µi
∂F

∂X i
+

1

2

n∑
i,j=1

(
σσT

)
ij

∂2F

∂X i∂Xj
− r (Xt, t)F = 0

with terminal condition F (XT , T ) = g (XT ) . If the following conditions are

satisfied:

1. the coefficients µ, σσT and r are bounded and satisfy Hölder condition;

2. σσT is uniformly positive definite;

3. the function g (XT ) satisfies the polynomial growth condition,

then there exists a unique solution F (Xt, t) of the previous PDE. Given

an initial condition Xt = x = (x1, . . . , xn) , the solution F (Xt, t) can be

expressed as

F (x, t) = E
[
e−

∫ T
t r(Xu,u)dug (XT ) | Xt = x

]
= e−

∫ T
t r(Xu,u)du

∫
Rn
g(y)p(y, T | x)dy

where p(y, T | x) is the transition density given Xt = x.

The Feynman-Kač formula shows a connection between stochastic pro-

cesses and deterministic partial differential equations (PDEs).

Lemma A.3.6 (Gyöngy).

Let (Xt)t be an n-dimensional Itô’s process, satisfying the following SDE :

dXt = βtdt+ νtdWt, t ∈ [0, T ]

X0 = x0

where (Wt)t is a d-dimensional Brownian motion on the filtered probabil-

ity space (Ω,F ,P,Ft) , βt and νt are stochastic processes, n-dimensional and

n × d-dimensional respectively, Ft-adapted and bounded, such that νtν
T
t is

uniformly positive definite. Hence defining:

b(t, x) = E [βt | Xt = x]
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σ2(t, x) = E
[
νtν

T
t | Xt = x

]
the SDE with non-random coefficients given by b and σ :

dYt = b (t, Yt) dt+ σ (t, Yt) dWt, t ∈ [0, T ]

Y0 = X0

admits a weak solution (Yt)t having the same one-dimensional probability y

distribution as (Xt)t for all t ∈ [0, T ] (i.e. for all t ∈ [0, T ], the random

variables Yt, Xt have the same distribution).
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