
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Dipartimento di Fisica e Astronomia

Corso di Laurea in Fisica

Analysis of the log �les of the StoRM storage
system used by the ATLAS experiment,

performed with Anomaly Detection through
Deep Learning

Relatore:

Prof. Lorenzo Rinaldi

Presentata da:

Edoardo Corallo

Anno Accademico 2020/2021

Contents

1 Introduction 4

2 The ATLAS Experiment at CERN's Large Hadron Collider 6

2.1 Description of the ATLAS Detector . 7
2.2 Trigger System . 9
2.3 Data types . 9

3 Data Flow and WLCG 12

3.1 The Tier-1 at INFN-CNAF data centre 13
3.2 The StoRM Storage System . 13

3.2.1 StoRM and GPFS . 14

4 Neural Networks 16

4.1 Recurrent Neural Networks and Long Short Term Memory 17
4.2 DeepLog . 21
4.3 Log Key Model . 22

5 Log Analysis 24

5.1 Dataset preparation . 24
5.1.1 Parsing . 25
5.1.2 Masking . 26
5.1.3 Drain . 26
5.1.4 Post Processing . 29

5.2 Log Analysis Results . 30
5.2.1 Clustering Results . 30
5.2.2 Model Loss and Prediction . 34

6 Conclusions 46

7 Aknowledgments 48

2

Abstract

Ogni anno, l'esperimento ATLAS, come gli altri esperimenti operanti al Large
Hadron Collider, produce Petabytes di dati grezzi ed elaborati da distribuitre at-
traverso la Worldwide LHC Computing Grid, che combina le risorse per il calcolo
distribuito da più di 170 siti in 42 paesi, creando un'enorme infrastruttura per
la computazione distribuita che garantisce ad oltre 12000 scienziati nel mondo un
rapido acesso ai dati di LHC.
In gran parte dei siti della Worlwide LHC Computing Grid (WLCG) sono state
sviluppate tecnologie basate sul Grid Computing, dedicate tra le altre cose al mo-
nitoraggio e all'organizzazione dello storage; quest'ultime, come la gran parte delle
applicazioni informatiche, registrano la propria attività sotto forma di log di sis-
tema.
Siccome ci si aspetta un notevole incremento dei dati da distribuire e processare
sulle risorse della WLCG, queste strutture devono essere a�dabili e l'Anomaly
Detection sui log di sistema rappresenta una soluzione per migliorare l'e�cienza
di utilizzo dei sistemi, dal momento che le varie tipologie di log di sitema sono
un'eccellente fonte di informazioni per il monitoraggio delle anomalie.

1 Introduction

In this thesis work is presented an analysis of the log �les produced by StoRM, the
storage system in use at CNAF INFN-T1. The log �les produced by the StoRM ser-
vices will be analysed using DeepLog, a software designed for the detection of system
anomalies. The analysis has been performed on the log �les collected during a working
week, concerning the data transfer activities of the ATLAS experiment. In chapter 2 is
presented the ATLAS experiment held at CERN's Large Hadron Collider. The �ow of
data coming from the experiments at LHC ranges in the Petabytes per year and needs
a distributed infrastructure to be stored and analyzed: the Worldwide LHC's Comput-
ing Grid (WLCG), introduced in chapter 3, which is composed of multiple sites with
di�erent importance within the network. In these sites new grid technology has been de-
veloped for a multitude of tasks, including StoRM. These systems need to be as reliable
as possible, since the number of accesses the WLCG resources is expected to grow in
the future as the amount of data to be distributed and analyzed grows, and one way to
obtain a more e�cient system is through log analysis and anomaly detection on system
logs, which was performed on StoRM's system logs collected in one week.
Chapter 4 contains a brief introduction on Neural Networks, focusing on Deep Learning,
Recurrent Neural Networks and Long Short Term Memory �nishing with the presenta-
tion of DeepLog. The 5th chapter is the Log Analysis section where the methods used
for the creation of the dataset are shown, along side the results of the work on the log
data for StoRM's front-end and a discussion on the obtained results.

4

2 The ATLAS Experiment at CERN's Large Hadron

Collider

The Large Hadron Collider (LHC) is the world's largest and most powerful particle
accelerator. It �rst started up on September 10th 2008, and remains the latest addition
to CERN's accelerator complex.

Figure 1: CERN's accelerator complex [1]

The LHC consists of a 27 kilometer ring of superconducting magnets with a number
of accelerating structures to boost the energy of the particles along the way. Protons
exiting Linac2, with an energy of 50 MeV, are then further accelerated up to 450 GeV
in a series of Proton Synchrotron and divided in two beams and made to collide after
one last boost at a center of mass energy of 13 TeV (design energy is 14 Tev). These
proton beams are kept on track by strong magnetic �elds generated by thousands of
superconducting magnets along LHC.
There are seven experiments held at CERN's LHC and are all positioned around the
four p− p collision spots, where the following detectors are placed:
ALICE, A Large Ion Collider Experiment, is an experiment dedicated to the study of
heavy ions collisions and is designed to study the physics of strongly interacting matter
at extreme energy densities, where a phase of matter called quark-gluon plasma forms [2].
ATLAS, A Toroidal LHC ApparatuS, is one of two general-purpose detectors at LHC

6

and is the largest volume particle detector ever constructed. It investigates a wide range
of physics, from the measurement of Higgs boson properties to extra dimensions and
particles that could make up dark matter [3].
CMS, Compact Muon Solenoid, is the other multi-purpose experiment held at CERN,
although it has the same research goals as ATLAS it employs di�erent design and de-
tectors [4].
LHCb, Large Hadron Collider beauty, is designed to investigating the di�erences between
matter and antimatter by studying the properties of b quarks [5].
The smallest experiments on the LHC are TOTEM and LHCf, which focus on protons
or heavy ions that scatter at very small angles when the beams collide and thus not de-
tectable by the main experiments. TOTEM (TOTal cross section, Elastic scattering and
di�raction dissociation Measurement at the LHC) [6] uses detectors positioned on either
side of the CMS interaction point, while LHCf (Large Hadron Collider Forward) [7] is
made up of two detectors which sit along the LHC beamline, at 140 meters either side
of the ATLAS collision point. MoEDAL uses detectors deployed near LHCb to search
for a hypothetical particle called the magnetic monopole [8].

2.1 Description of the ATLAS Detector

The ATLAS experiment [9] is designed to take advantage of the high energies achieved
at LHC and to explore the physics beyond the Standard Model of Particles (BSM). The
high luminosity of LHC, which makes possible to study processes with low cross section,
dictates the use of fast detectors with high granularity, able to endure enormous �ows of
particles [10]. Within 2027 the luminosity of LHC will be upgraded with HL-LHC (High
Luminosity-Large Hadron Collider) and will produce at least 15 million Higgs bosons
per year, compared to around three million from the LHC in 2017 [11].
It's required to have good acceptance coverage to e�ectively study processes with an
imbalance of the impulse of the �nal states due to particles that don't interact with the
detector as those expected by Supersimmetry or for the study of the Dark Matter. For
the latter reason a series of Calorimeters is needed to achieve precise measures of Jets
and missing Energies in the plane perpendicular to the beam axis.

7

Figure 2: An exploded image of the ATLAS detector [12]

The ATLAS detector is nominally forward-backward symmetric with respect to the
interaction point. The magnet con�guration comprises a thin superconducting solenoid
surrounding the inner-detector cavity, and three large superconducting toroids (one bar-
rel and two end-caps) arranged with an eight-fold azimuthal symmetry around the
calorimeters. This fundamental choice has driven the design of the rest of the detec-
tor.
The inner detector is immersed in a 2 T solenoidal magnetic �eld. Pattern recognition,
momentum and vertex measurements, and electron identi�cation are achieved with a
combination of discrete, high-resolution semiconductor pixel and strip detectors in the
inner part of the tracking volume, and straw-tube tracking detectors with the capability
to generate and detect transition radiation in its outer part.
High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excel-
lent performance in terms of energy and position resolution, cover a wide rapidity range.
The hadronic calorimetry is provided by a scintillator-tile calorimeter, which is separated
into a large barrel and two smaller extended barrel cylinders, one on either side of the
central barrel. In the end-caps, LAr technology is also used for the hadronic calorimeters,
matching the outer limits of end-cap electromagnetic calorimeters.
The LAr forward calorimeters provide both electromagnetic and hadronic energy mea-
surements, and extend the pseudorapidity coverage. The calorimeter is surrounded by
the muon spectrometer. The air-core toroid system, with a long barrel and two inserted

8

end-cap magnets, generates strong bending power in a large volume within a light and
open structure. Multiple-scattering e�ects are thereby minimised, and excellent muon
momentum resolution is achieved with three layers of high precision tracking cham-
bers. [13]

2.2 Trigger System

The ATLAS detectors are designed to observe few billions p−p collision per second [14],
with a data volume of more than 60 TB/s. However only a small fraction of these events
is interesting for the researchers and to reduce the �ow of data to be saved on disk,
ATLAS employs a two level Trigger system.
The �rst trigger level (L1) is composed of dedicated hardware operating a rapid and
accurate selection of the events by analyzing the data from the calorimeters and the
spectrometer's trigger chambers. The time to elaborate and distribute the trigger's de-
cision is set to 2.5µs and the accepted event's rate can be at most 100kHz. During
elaboration data are kept in pipelines made of highly integrated circuits (ASIC) posi-
tioned near the detector. Event data selected by the L1 are then collected trough a
readout system and temporarily stored for the next level of trigger to access.
The High Level Triggers (or HLT) are instead composed of ordinary CPU farms access-
ing the data previously stored. HLTs have the job to reduce the event rate from 100kHz
exiting the L1 to 0.5-1kHz,roughly corresponding to 1Gb/s: a manageable amount of
data for successive analysis and are divided in two virtual levels themselves. L2 oper-
ating a �rst selection accessing only the data from the regions of interest (RoI) and the
Event Filter (EF), which instead uses all data from the current event. Since the RoI
correspond to a little fraction of the complete data (∼ 5%), L2 allows a drastic reduction
of the acquisition �ow [15].
Events accepted by the L1 are distributed among the farm's porcessors, each of which
executes L2 and then EF; if the event is again accepted by the HLT it's then transmitted
to the archiving nodes (Data Logger) that make a temporary local copy and successively
are transferred to the storage system at CERN's Tier 0 to be reconstructed.

2.3 Data types

The data arriving at Tier-0 from the ATLAS experiment is RAW data, a persistent rep-
resentation of the event data produced at the ATLAS online cluster (involving HLT) in
byte-stream format.
Reconstruction generates various data types the more relevant being Analysis Object
Data (AOD), a C++ object containing a summary of the reconstructed event and suf-
�cient information for common analyses, along side with Event Summary Data (ESD):

9

another C++ object that contains the detailed output of the detector reconstruction;
it stores su�cient information to allow particle identi�cation, track re-�tting and jet
calibrations.
The majority of the Grid disk space is used by the AOD and DAOD formats in the
orders of 60 and 80 PB, respectively [16].

Monte Carlo (MC) simulations are run in order to test the detector performance and
reconstruction e�ciencies for validating data-driven methods as well as to model pro-
cesses of interest and their backgrounds.
All Monte Carlo production is done on the Grid and is divided in steps: the Event Gen-
eration is the simulation of the interaction of quarks and gluons from the p−p collisions,
their hadronization and decays in stable particles. The C++ objects resulting after this
�rst passage are Event Data (EVNT).
Then a Detector Simulation is run to calculate how the emerging particles from the gen-
erator interact with the detector material, how they shower in secondary particles and
how much energy they deposit on each of the detector's elements; the resulting C++
objects being called HITS.
The �nal stage is Digitization that creates Raw Object Data (ROD) representing the
byte-stream format analogous to that of the RAW data.

ANALYSIS

Derivation (DAOD)Derivation (DAOD)

Reconstruction (AOD)

Digitization (RDO)

Simulation (HITS)

Generation (EVNT)

Reconstruction (AOD)

Trigger (RAW)

Figure 3: Work�ow for the ATLAS Analysis model, with Data types

10

3 Data Flow and WLCG

The Worldwide LHC Computing Grid is a computer network that provides comput-
ing resources to store, distribute and analyse the data generated by the Large Hadron
Collider (LHC) to research groups around the globe, all the machines connected to the
WLCG are organized in a hierarchical Tier system, based on their function within the
network.

Figure 4: A visual representation of the WLCG tier system

The Tier-0 is situated at CERN and is responsible, among other things, for the �rst
reconstruction of RAW data coming from all the Experiments held at CERN, operation
which occupies a great part of the computing resources, as well as distributing a portion
of the RAW data to the Tier-1s via the LCH Optical Private Network (LHCOPN) with

12

a stable 10 Gbit/s connection [17] up to 100 Gbit/s. It also manages the storage on
tape of the RAW data and the storage of reconstructed Events to be shared among the
Tier-1s in a second moment.
Tier-1s consist of 13 data centers with high computing performances and great storage
capacity, both tape and disks, used to save a portion of the RAW data sent from CERN.
Like the Tier-0, these sites are also responsible for reconstruction of RAW data and
the distribution of elaborated data to subsequent Tiers to be further analyzed by local
research groups. Tier-2s are smaller data centres that can store su�cient data and
provide adequate computing power for speci�c analysis tasks. They handle a proportional
share of the production and reconstruction of simulated events.
Tier-3s are access points to the grid, ranging from universities clusters to even normal
PCs.

3.1 The Tier-1 at INFN-CNAF data centre

Since 2003 CNAF hosts the INFN Tier-1 data centre in Bologna, as well as a Tier-2
dedicated to the LHCb experiment, a cluster HPC (High Performance Computing) and
a Tier-3 managed together with Bologna Division of INFN. More the three quarters of
the total resources are dedicated to LHC's experiments which make a massive use of
Grid technologies on which more re�ned and speci�c services have been developed for
data management, monitoring and jobs [18].

3.2 The StoRM Storage System

StoRM [19] is a Storage Resource Manager (SRM) for disk based storage systems de-
signed to support guaranteed space reservation and direct access (POSIX I/O calls) as
well as high performance parallel �le systems such as IBM's General Parallel File System
(GPFS) [20].
StoRM has a multilayered architecture. The front-end component exposes a web service
interface where the user requests land, manages users authentication and sends requests
to the back-end. The Request Data Base (DB) that stores both SRM requests and sta-
tus together with �le and space information, to remark that losing the database content
only a�ects the ongoing operations. The back-end is the main component: provides
space tokens management, user redirection to the proper URL, and executes all SRM
synchronous requests like the creation of directories.

13

Figure 5: The front-end and back-end architecture of StoRM [19]

3.2.1 StoRM and GPFS

A cluster �le system allows large numbers of disks attached to multiple storage servers
to be con�gured as a single �le system, providing transparent parallel access to storage
devices while maintaining standard UNIX �le system semantics, high speed �le access
to applications executing on multiple nodes of a cluster and high availability. StoRM
takes advantage from aggregation functionalities provided by dedicated systems, such as
parallel and cluster �le systems. Such a �le system allows to achieve complete redun-
dancy without single point of failure increasing reliability and dynamic management of
volumes (dynamic resize of �le system, data migration between disks), all online, with a
signi�cant improvement of management �exibility.
Data access is performed through Network Shared Disks (NSD) for Local Area Network

14

(LAN) and GridFTP servers for Wide Area Network (WAN); it is possibile to have as
many GridFTP servers as needed to provide the required transfer throughput. Moreover
the GridFTP servers can be partitioned per space token (i.e. per logical subset of the
storage), so that the real tra�c load can always be turned on di�erent machines.
The GPFS �le system allows direct access from the clients using the �le protocol avoiding
the need of any external protocol, such as RFIO or Xrootd [20].
A fundamental feature o�ered by GPSF is the redundancy of the system: the unavailabil-
ity of one (or even several) server only decreases the performance of the overall system.
A disadvantage of GPFS is the cache amount limited by the operating system. For
frequent access to a large amount of �les this can slow very much the I/O operations.
Directories su�ering for this issue (e.g. shared software areas) can be exported using the
Cluster Network File System (CNFS), an highly scalable and clustered version of NFS
leverages on GPFS. [19]

15

4 Neural Networks

Neural Networks, also known as Arti�cial Neural Networks (ANNs) are a subset of
machine learning and are at the heart of deep learning algorithms. Their name and
structure are loosely inspired by the human brain, mimicking the connections between
neurons and their activation.
Arti�cial Neural Networks (ANNs) are composed of nodes (also called neurons or arti�cial
neurons) usually arranged in layers: an input layer, one or more hidden layers, and an
output layer. The network consists of connections, each connection providing the output
of one neuron as an input to the next node. Each connection is assigned a weight that
represents its importance within the network. If the output of any individual node is
above the speci�ed threshold value, that node is activated, sending data to the next layer
of the network. Otherwise, no data is passed along to the next layer of the network.

Figure 6: An example of feed forward neural network

To �nd the output of the neuron, �rst the sum of all the inputs, weighted by the
weights of the connections from the inputs to the neuron, is taken then a bias term is
added to this sum. That is Σjwj · xj + b. This weighted sum is then passed through an
activation function fW to produce the output.
The simplest case of activation function is the one used in the perceptron, the step
function:

fW (x) =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0

16

A more re�ned version of which can be the sigmoid function:

fW (x) = σ(x,w, b) =
1

1 + e−(Σjwj ·xj+b)

Among other frequently used activation functions such as hyperbolic tangent tanh and
ReLu, which is also called Recti�er: max(0,w · x+ b).
Learning is the adaptation of the network to better handle a task by adjusting the
weights of the network to improve the result's accuracy. This is done by minimizing the
observed errors and is complete when examining additional observations does not usefully
reduce the error rate. Practically this is done by de�ning a cost (or Loss) function that is
evaluated periodically during learning; as long as its output continues to decline, learning
continues.
Back propagation is a method used to adjust the connection weights to compensate for
each error found during learning, it calculates the gradient of the cost function associated
with a given state with respect to the weights. The weight updates can be done via
stochastic gradient descent or other methods.
The three major learning paradigms are supervised learning, unsupervised learning and
reinforcement learning. They each correspond to a particular learning task:
Supervised learning uses a set of paired inputs and desired outputs and the learning task
is to produce the desired output for each input. In this case the cost function is related
to eliminating incorrect deductions, a commonly used cost is the mean-squared error
(MSE), which tries to minimize the average squared error between the network's output
and the desired output. Tasks suited for supervised learning are pattern recognition (also
known as classi�cation) and regression (also known as function approximation), but is
also applicable to sequential data.
For the Unsupervised Learning, no labels are given to the algorithm, leaving it on its
own to �nd structure in its input. These algorithms discover hidden patterns or data
groupings without the need for human intervention. Its ability to discover similarities
and di�erences in information make it the ideal solution for exploratory data analysis,
cross-selling strategies, customer segmentation, and image recognition.
Reinforcement learning is an area of machine learning concerned with how intelligent
agents ought to take actions in an environment in order to maximize the notion of
cumulative reward. A system interacts with a dynamic environment in which it must
perform a certain goal (such as driving a vehicle or playing a game against an opponent).
The system is provided feedback in terms of rewards and punishments as it navigates its
problem space.

4.1 Recurrent Neural Networks and Long Short Term Memory

A Recurrent Neural Network (RNN) is a type of arti�cial neural network which uses se-
quential data or time series data. These deep learning algorithms are commonly used for

17

ordinal or temporal problems, such as language translation, natural language processing
(NLP), speech recognition and image captioning.
The main di�erence from deep neural networks is that they take information from prior
inputs to in�uence the current input and output. While traditional deep neural networks
assume that inputs and outputs are independent of each other, the output of recurrent
neural networks depend on the prior elements within the sequence.

xt−1

ot−1

...

xt

ot

xt+1

ot+1

...
=

xT

oT

ht−2 ht−1 ht ht+1
ht

Figure 7: Unrolled RNN Layer

At each time step, the hidden state and output can be written as:

h(t) = f(Wi · x(t) +Wr · h(t−1) + bh);

o(t) = g(Wo · h(t) + by).

where Wi,Wr and Wy are weight matrices and bh, by are biases. f and g are activation
functions, exactly those discussed in the previous section.
The input and the hidden state can be concatenated to be multiplied by one weight
variable Wh in the hidden layer, so that ht = f(xt, ht−1,Wh) and ot = g(ht,Wo).
The discrepancy between output ot and the desired label yt is then evaluated by an
objective function (loss) across all the T time steps as:

L(x1, .., xT , y1, .., yT , oT ,Wh,Wo) =
1

T

T∑
t=1

l(ot, yt)

Also the Backpropagation gets calculated for each time step by computing the gradients

18

of the loss function with respect to Wh. That is:

∂L

∂Wh

=
1

T

T∑
t=1

∂l(yt, ot)

∂Wh

=
1

T

T∑
t=1

∂l(yt, ot)

∂ot

∂g(ht,Wh)

∂ht

∂ht
∂Wh

Since an unrolled RNN can be viewed as a very deep feed farward network, it su�ers
from the same problems for the training stage, that is the tendency of gradients to vanish
or diverge as they pass though so many time steps.
Since the new weights for the subsequent epoch is updated with a sort of gradient descent,
like W ← W −α ∂L

∂W
as the gradient ∂L

∂W
→ 0, the new weights are almost identical to the

previous ones, making it di�cult to learn patterns over long distance in the sequence.
Long Short Term Memory (LSTM) was introduced by Sepp Hochreiter and Juergen
Schmidhuber as a solution to vanishing gradient problem. In their paper [21], they work
to address the problem of long-term dependencies. That is, if the previous state that is
in�uencing the current prediction is not in the recent past, the RNN model may not be
able to accurately predict the current state.
To remedy this, LSTMs have �cells� in the hidden layers of the neural network, which
have three gates: an input gate, an output gate, and a forget gate. These gates control
the �ow of information which is needed to predict the output in the network.

19

Figure 8: Long Short Term Memory architecture

The key to LSTMs is the cell state, the horizontal line running through the top of
the diagram straight down the entire chain, conveying the information about sequence
history. LSTMs have the ability to remove or add information to the cell state, carefully
regulated by structures called gates.
The �rst step in the LSTM is to decide what information is going to be deleted from the
cell state. This decision is made by a sigmoid layer called the �forget gate layer.� It looks
at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell state
Ct−1. A 1 represents �completely keep this� while a 0 represents �completely get rid of
this.�

ft = σ(Wf · [ht−1, xt] + bf)

The next step is to decide what new information is going to be stored in the cell state.
This has two parts: �rst, a sigmoid layer called the �input gate layer� decides which
values will be updated. Next, a tanh layer creates a vector of new candidate values, C̃t,
that could be added to the state. In the next step, we'll combine these two to create an
update to the state.

20

it = σ(Wi · [ht−1, xt] + bi).

C̃t = tanh(WC · [ht−1, xt].bC)

It's now time to update the old cell state, Ct−1, into the new cell state Ct by multi-
plying the old state by the forget state ft. Then we add it ∗ C̃t.

Ct = ft ∗ ct−1 + it ∗ C̃t

This is the new candidate values, scaled by how much we decided to update each
state value.
Finally the output and hidden state are calculated based on the current cell state using
a sigmoid and a tanh layer:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct).

4.2 DeepLog

DeepLog [22], developed by Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar at the
University of Utah, is a data-driven approach for anomaly detection that leverages the
large volumes of system logs.
The key idea of DeepLog comes from Natural Language Processing (NLP) by interpreting
each log line as belonging to a sequence that follows certain patterns and rules; indeed
a system log is produced by a program with de�ned logic and control �ow, much like a
natural language although more structured and restricted in dictionary.
DeepLog is a deep neural network that model this sequence of log entries using a Long
Short-Term Memory (LSTM), allowing it to automatically learn a model of patterns
from normal system execution and to �ag deviations from these patterns as anomalies.
Furthermore, since is a learning-driven approach, it's possible to incrementally update
DeepLog's model in order to adapt to new normal patterns.
The complete architecture of DeepLog is composed of three parts: LogKey anomaly de-
tection model, Parameter value anomaly detection Model and Work�ow Construction
the latter being useless for this particular case as the sequences can be directly extracted
from the log �les by means of grouping log entries with the same token (which is assigned
by the back end and identi�es the process). Also the Parameter value anomaly detection
wasn't used in this work, leaving only the log Key anomaly detection to study.

21

Figure 9: The complete architecture of DeepLog as presented in [22]

The training data are a small portion of the complete log entries from normal system
execution paths usually generated in a controlled environment such as a virtual machine.
Each log message (only the content) is parsed to a log key represented by an integer num-
ber and a sequence is constructed from the token identi�er. The input of the model is
a part of these sequences extracted by means of a window of �xed size sliding on it and
outputs a probability distribution for the next log key in the sequence as explained below.

4.3 Log Key Model

Since the total number of distinct print statements (that print log entries) in a source
code is constant, so is the total number of distinct log keys. Let K = {k1, k2, ..., kn} be
the set of distinct log keys from a log-producing system source code. Once log entries
are parsed into log keys, the log key sequence re�ects an execution path that leads to
that particular execution order of the log print statements. Let mi denote the value of
the key at position i in a log key sequence. Clearly, mi may take one of the n possible
keys from K, and is strongly dependent on the most recent keys that appeared prior to
mi.
Anomaly detection in a log key sequence can be modeled as a multi-class classi�cation
problem, where each distinct log key de�nes a class. The input is a history of recent log
keys, and the output is a probability distribution over the n log keys from K, represent-
ing the probability that the next log key in the sequence is a key ki ∈ K. Suppose t is
the sequence id of the next log key to appear. The input for classi�cation is a window w
of the h most recent log keys. That is, w = {mt−h, ...,mt−2,mt−1}, where each mi is in
K and is the log key from the log entry ei. Note that the same log key value may appear
several times in w. The output of the training phase is a model of the conditional proba-
bility distribution Pr[mt = ki|w] for each ki ∈ K(i = 1, ..., n). The detection phase uses
this model to make a prediction and compare the predicted output against the observed

22

log key value that actually appears.

The training stage relies on a small fraction of log entries produced by normal exe-
cution of the underlying system. For each log sequence of length h in the training data,
DeepLog updates its model for the probability distribution of having ki ∈ K as the next
log key value. For example, suppose a small log �le resulted from normal execution
is parsed into a sequence of log keys: {1, 9, 3, 10, 3, 4}. Given a window size h = 3,
the input sequence and the output label pairs to train DeepLog will be: {1, 9, 3→ 10},
{9, 3, 10→ 3}, {3, 10, 3→ 4}.
To test if an incoming log key mt is to be considered normal or abnormal, we send
w = mt−h, ...,mt−1 to DeepLog as its input. The output is a probability distribution
Pr[mt|w] = {k1 : p1, k2 : p2, ..., kn : pn} describing the probability for each log key from
K to appear as the next log key value given the history.
Since the model is a multi-class classi�er Cross Entropy loss function is used:

Loss = − ln

(
ex[class]∑N
j=0 e

x[j]

)
= −x[class] + ln

(
N∑
j=0

ex[j]

)
The function expects a "class" index, class ∈ [0, C − 1], with C number of classes, as
the target for each value of a 1D tensor of size N (the batch size). x[class] is the output
of the model for the label class. Cross Entropy increases as the predicted value diverges
from the label and decreases as the prediction approaches the ground truth.
In practice, multiple log key values may appear as mt. For instance, if the system is
attempting to connect to a host, then mt could either be `Waiting for * to respond' or
`Connected to *'; both are normal system behavior. DeepLog must be able to learn
such patterns during training. Our strategy is to sort the possible log keys K based on
their probabilities Pr[mt|w], and treat a key value as normal if it's among the top g
candidates. A log key is �agged as being from an abnormal execution otherwise.

23

5 Log Analysis

A wide range of programmable technologies, from network devices to applications and
operating systems, produce records about the users' and their own activity called logs.
These messages are generated in a time ordered sequence from possibly concurrent pro-
cesses and provide a great amount of information on the user's behavior and system
performance encapsulated in a text string. Logs are implemented by developers to make
debugging and maintenance easier by announcing security-relevant or operations-relevant
events like a user login or systems errors and can be either saved on disk or directed as
a network stream to a log collector.
The analysis of such records is a useful tool to make diagnosis about the system perfor-
mance and failures, as well as monitoring users activity or recognizing security threats
in a timely manner.

5.1 Dataset preparation

The Complete dataset consists of the log �les generated by one week of activity of StoRM
and is composed by 5 types of messages: front-end, back-end, back-end-metrics, moni-
toring, heartbeat. For the following work were used the system logs from two di�erent
instances of StoRM front-end server we used.

Date Instance 1 Instance 2
07/03/2020 3410401 3382210
08/03/2020 1559369 1525579
09/03/2020 1777349 1793120
10/03/2020 1732644 1808492
11/03/2020 594199 612507
12/03/2020 1147129 1156481
13/03/2020 1261513 1323814

Table 1: Numerosity of log lines for each instance of StoRM front-end

24

The training dataset was created from the �rst instance of StoRM front-end and kept
separated from the test data, coming from the other front-end instance, in order to avoid
over�tting. The test dataset was divided in normal and abnormal depending on the
appearance of the words "ERROR" and "FAILURE" at any point in the sequences.
Even thought this division keeps track of the day in which the log itself got generated,
this information is discarded as the actual train and test �les are obtained by randomly
extracting sequences coming from their respective dataset, since the objective is to value
di�erent models upon their e�ciency on �nding anomalies.

5.1.1 Parsing

Parsing unstructured log entries is known to be e�ective to get faster and more precise
results on several algorithms [23] and is almost always employed in data mining and in
particular in log mining; therefore only a part of each line is meaningful for the Anomaly
Detection stage and clustering purposes, namely "Component" and "Content". Each
line has been parsed, �lling a comma separated values (csv) �le created accordingly to
the format of the log �le. A log format in this work is a string containing the �elds for
the log entry to be divided in isolated with angular parenthesis and any character that
appear as delimiter in the lines. For the front-end server the log format utilized is:

log_format = '<Date> <Time> <Pid> - <Level> <Component>: <Content>'

From this string regular expressions are generated to split the log lines and extract
the headers for the csv �le. For example, from the following raw log entries:

03/07 03:12:03.268 Thread 7 - INFO [17ea2e4e-e5c2-42d5-8fdc-6c76ce64dbd3]:

Result for request 'Put done' is 'SRM_SUCCESS'

03/07 03:12:03.318 Thread 42 - INFO [ac57e4dd-46a6-4219-99ec-38c9c7c0d809]:

process_request : Connection from 2001:6b0:17:180::2:2

03/07 03:12:03.382 Thread 55 - INFO [9a632c05-9787-4cb8-9ab4-4e836aec64f1]:

process_request : Connection from 2001:1458:d00:a::100:304

03/07 03:12:03.419 Thread 7 - INFO [17ea2e4e-e5c2-42d5-8fdc-6c76ce64dbd3]:

ns1__srmLs : Request: Ls. IP: 2001:1458:201:e4::100:574. Client DN: ...

03/07 03:12:03.428 Thread 47 - INFO [f2bf8eb2-b0cf-4896-8676-7358fbff7a64]:

Result for request 'Rm' is 'SRM_FAILURE'

a structured �le is derived, with the log template �elds as headers and the corresponding
contents for each log line:

Date Time PID Level Component (TKN) Content

03/07 03:12:03.268 Thread 7 INFO [17ea2e4e-e5c2-42d5-8fdc-6c76ce64dbd3] Result for request ...
03/07 03:12:03.318 Thread 42 INFO [ac57e4dd-46a6-4219-99ec-38c9c7c0d809] process_request : ...
03/07 03:12:03.382 Thread 55 INFO [9a632c05-9787-4cb8-9ab4-4e836aec64f1] process_request : ...
03/07 03:12:03.419 Thread 7 INFO [17ea2e4e-e5c2-42d5-8fdc-6c76ce64dbd3] ns1__srmLs : Request: ...
03/07 03:12:03.428 Thread 47 INFO [f2bf8eb2-b0cf-4896-8676-7358fb�7a64] Result for request ...

The column labeled "Content" is then used for subsequent processing.

25

5.1.2 Masking

In order to improve on clustering e�ciency, parameters such as IP, Token or ClientDN are
masked using regular expressions which are compiled at masking. Masking instructions,
composed by the regular expression and its corresponding mask, are are collected in an
array in the con�guration �le of Drain, which will be exposed in the following chapter.
For example, the masking instruction for ′ < TKN >′is:

(\\w{8}-\\w{4}-\\w{4}-\\w{4}-\\w{12})

Since the parameters that are to be masked are usually wrapped by special characters, the
employed regular expressions also use positive lookaheads (?<=[^A-Za-z0-9])|^) and
lookbehinds ((?=[^A-Za-z0-9])|$) for non-alphanumerical characters to be excluded
from the match when at the beginning or at the end of the string. Lookahead and
lookbehind do not consume characters in the string, but only assert whether a match is
possible or not. Lookaround allows to create regular expressions that are impossible to
create without them, or that would get very longwinded without them.
After masking is done the log lines look like this:

Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>'

on <NUM> SURL(s): '<URL>'

5.1.3 Drain

Drain, the rather imaginative acronym for "a �xed depth tree based online log parsing
method", is a parsing algorithm for unstructured log messages developed by the Hong
Kong and Sun Yat-sen Universities [24]. When a new raw message arrives, Drain prepro-
cesses it by domain knowledge as explained in the Parsing and Masking sections, then a
log group (i.e. leaf node of the tree) by following the rules of the internal nodes of the
tree. If a suitable group is found the log message will be matched with the corresponding
event template stored in that node, otherwise a new group is created.

26

Root Node

Lenght: 7Lenght: 6 ... Lenght: 10

*Resultns1__srmLs

List of log Groups Log Event, log IDs

Figure 10: Structure of Parse Tree in Drain (depth=3)

Drain starts from the root node of the parse tree with the preprocessed log message.
The 1-st layer nodes in the parse tree represent log groups whose log messages are of
di�erent log message lengths. In this step, Drain selects a path to a 1-st layer node based
on the log message length of the preprocessed log message. For example, for log message

Result for request 'Ls' is 'SRM_SUCCESS'

Drain traverse to the internal node �Length: 6� in Figure 10. This is based on the
assumption that log messages with the same log event will probably have the same log
message length. Although it is possible that log messages with the same log event have
di�erent log message lengths, it can be handled by simple postprocessing.
Then Drain traverses from a 1-st layer node, which is searched in the previous step,
to a leaf node. Speci�cally, Drain selects the next internal node by the tokens in the
beginning positions of the log message based on the assumption that the �rst token of
a log message is more likely to be constants. For example, for log message: "Result for
request 'Ls' is 'SRM_SUCCESS'".
Drain traverses from 1-st layer node �Length: 6� to 2-nd layer node �Result� because the
token in the �rst position of the log message is �Result�. Then Drain will traverse to the
leaf node linked with internal node �Result�, and go to step 4.
The number of internal nodes that Drain traverses in this step is (depth − 2), where
depth is the parse tree parameter restricting the depth of all leaf nodes. Thus, there are
(depth− 2) layers that encode the �rst (depth− 2) tokens in the log messages as search
rules. In the example above, we use the parse tree in Figure 2 for simplicity, whose depth
is 3, so we search by only the token in the �rst position. In practice, Drain can consider
more preceding tokens with larger depth settings. Note that if depth is 2, Drain only

27

considers the �rst layer used by step 2.
In some cases, a log message may start with a parameter, these kinds of log messages can
lead to branch explosion in the parse tree because each parameter will be encoded in an
internal node. To avoid branch explosion, only the tokens with no digits are considered
for this step. If a token contains digits, it will match a special internal node �*�. For
example, for the log message:

__process_file_request<> : Received - 4 - protocols,...

Drain will traverse to the internal node �*� instead of �4�. Besides, a parameter maxChild
is also de�ned, which restricts the maximum number of children of a node. If a node
already has maxChild children, any non-matched tokens will match the special internal
node �*� among all its children.
Before this step, Drain has traversed to a leaf node, which contains a list of log groups.
The log messages in these log groups comply with the rules encoded in the internal nodes
along the path. For example, the log group in Figure 6 has log event "Result for request
'Ls' is 'SRM_SUCCESS'" where the log messages contain 6 tokens and start with token
�Result�. In this step, Drain selects the most suitable log group from the log group list.
We calculate the similarity simSeq between the log message and the log event of each
log group. simSeq is de�ned as following:

simSeq =
Σn

i=1δ(seq1(i), seq2(i))

n

where seq1 and seq2 represent the log message and the log event respectively; seq(i)
is the i-th token of the sequence; n is the log message length of the sequences; function
δ is de�ned as following:

δ(t1, t2) =

{
1 if t1 = t2,

0 otherwise.

where t1 and t2 are two tokens. After �nding the log group with the largest simSeq, we
compare it with a prede�ned similarity threshold st. If simSeq ≥ st, Drain returns the
group as the most suitable log group. Otherwise, Drain returns a �ag (None in Python)
to indicate no suitable log group.
If a suitable log group is returned in step 4, Drain will add the log ID of the current log
message to the log IDs in the returned log group. Besides, the log event in the returned
log group will be updated. Speci�cally, Drain scans the tokens in the same position of
the log message and the log event. If the two tokens are the same, we do not modify the
token in that token position. Otherwise, we update the token in that token position by
wildcard (i.e., *) in the log event.
If Drain cannot �nd a suitable log group, it creates a new log group based on the current
log message, where log IDs contains only the ID of the log message and log event is
exactly the log message. Then, Drain will update the parse tree with the new log group.

28

Intuitively, Drain traverses from the root node to a leaf node that should contain the
new log group, and adds the missing internal nodes and leaf node accordingly along the
path.
For the extraction of log templates was employed Drain3, an implementation of Drain by
IBM written in Python3 and compatible with later versions [25]. It features a persistence
handler that makes possible to manage the save sates of the parsing tree by means of
an Apache Kafka topic, Redis or a �le as well as the opportunity to run in a streaming
fashion by feeding log lines one by one, or as they are produced.
Drain's parameters and masking instructions are con�gured using con�gparser which
implements a basic con�guration language for end users to customize the program by
editing a con�guration �le, in this case drain3.ini in the working directory.
Drain3 can be installed with pip and was used to implement a parser able to structure
the unstructured log entry using pandas, a fast and easy to use open source data analy-
sis and manipulation tool [26], and regular expressions to separate di�erent parts of the
complete log entry. Once the entries are structured the "Content" part of each log line
is passed as argument to template_miner.add_log_message() to be parsed.

5.1.4 Post Processing

Since it is possible that log messages belonging to the same log event have di�erent
lengths and would not be included in the same cluster by drain, a post processing work
may be done to obtain more readable log templates, e�ectively reducing the number of
cluster for further analysis.
The post process work mostly consisted of manually merging clusters whose log lines
were truncated at di�erent lengths. For example:

Request <TSK> from Client IP='<IP>' Client DN=<ID>#

Requested <NUM> SURL(s): '<URL> srm TRUNCATED

Request <TSK> from Client IP='<IP>' Client DN=<ID>#

Requested <NUM> SURL(s): '<URL> s TRUNCATED

Request <TSK> from Client IP='<IP>' Client DN=<ID>#

Requested <NUM> SURL(s): '<URL> srm:/ TRUNCATED

Obviously belong to the same cluster, nominally:

Request <TSK> from Client IP='<IP>' Client DN=<ID>#

Requested <NUM> SURL(s): '<URL>'

These ill truncated messages have little occurrences in the present dataset and should
not impact the Log Analysis in a great way.

29

5.2 Log Analysis Results

Here follows the results of the analysis on the log dataset; for the clustering part the
parameter sim_th (similarity threshold) was changed from the default value of 0.4 to 1
in order to avoid the use of the wildcard "*" by Drain, obtaining more distinct log mes-
sages after pre-processing with regular expressions. The post-processing was conducted
on the classes obtained with sim_th = 1. The clustering process was also reproduced
with sim_th = 0.875 to obtain a third di�erent number of classes to confront with sub-
sequent analysis.
After the clustering is done, the raw log �le has been converted in sequences of integers,
with each number (log key) corresponding to a log message type. The three datasets
obtained so far have then been separated in two distinct sets each for the training and
prediction stage respectively and the prediction ones got further divided in normal and
abnormal obtaining the test sets.

5.2.1 Clustering Results

The following are the cluster extracted using sim_th = 1 (from left: the cluster's iden-
ti�er, cluster size and log template associated) followed by the 44 post processed from
the 81 templates �rst extracted.
Using these templates mined, three data sets were created encoding the same system
behaviors but with di�erent representation as some cluster changes his log key when
changing enumeration.

30

A0001 (size 1383831): process_request : Connection from <IP>
A0002 (size 196048): ns1__srmPutDone : Request: Put done. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0003 (size 2997244): Result for request <TSK> is 'SRM_SUCCESS'
A0004 (size 1593720): ns1__srmLs : Request: Ls. IP: <IP>. Client DN: <ID>
A0005 (size 45165): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> TRUNCATED
A0006 (size 468714): Result for request <TSK> is 'SRM_REQUEST_INPROGRESS'
A0007 (size 449697): ns1__srmPing : Request: Ping. IP: <IP>. Client DN: <ID>
A0008 (size 451590): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL>
A0009 (size 452003): Result for request <TSK> is 'SRM_REQUEST_QUEUED'. # Produced request token: '<TKN>'
A0010 (size 1406293): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>'
A0011 (size 107104): ns1__srmRm : Request: Rm. IP: <IP>. Client DN: <ID>(s): <URL>
A0012 (size 200056): ns1__srmGetSpaceTokens : Request: Get space tokens. IP: <IP>. Client DN: <ID>
A0013 (size 8809): process_request : Connection from ::1
A0014 (size 557459): Result for request <TSK> is 'SRM_REQUEST_QUEUED'
A0015 (size 253023): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0016 (size 2327): __process_file_request<> : Protocol check failed, received some unsupported protocols
A0017 (size 1646): __process_file_request<> : Received - 4 - protocols, 2 are supported, 2 are not supported
A0018 (size 2327): __process_file_request<> : Some of the provided protocols are supported, proceeding
A0019 (size 26309): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL>
A0020 (size 327364): Result for request <TSK> is 'SRM_FAILURE'
A0021 (size 60564): ns1__srmMv : Request: Mv. IP: <IP>. Client DN: <ID>_surl: <URL> to_surl: <URL>
A0022 (size 11676): ns1__srmMkdir : Request: Mkdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0023 (size 1362): ns1__srmAbortRequest : Request: Abort request. IP: <IP>. Client DN: <ID>
A0024 (size 903): Result for request <TSK> is 'SRM_INTERNAL_ERROR'
A0025 (size 680): __process_file_request<> : Received - 5 - protocols, 3 are supported, 2 are not supported
A0026 (size 395): Result for request <TSK> is 'SRM_INVALID_PATH'
A0027 (size 1007): ns1__srmGetSpaceMetaData : Request: Get space metadata. IP: <IP>. Client DN: <ID>
A0028 (size 575): Result for request <TSK> is 'SRM_INVALID_REQUEST'
A0029 (size 406): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>
A0030 (size 16): Result for request <TSK> is 'SRM_DUPLICATION_ERROR'
A0031 (size 194): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0032 (size 232): rpcResponseHandler_AbortFiles : arrayOfFileStatuses not specified by BE.
A0033 (size 375): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> TRUNCATED
A0034 (size 21): ns1__srmCheckPermission : Request: Check permission. IP: <IP>. Client DN: <ID>(s): <URL>
A0035 (size 21): Result for request <TSK> is 'SRM_NOT_SUPPORTED'
A0036 (size 1): ns1__srmPing : Request: Ping. IP: <IP>. Client DN: <ID>'Keefe
A0037 (size 1): ns1__srmLs : Request: Ls. IP: <IP>. Client DN: <ID>'Keefe
A0038 (size 1): Request <TSK> from Client IP='<IP>' Client DN='<ID><TSK># Requested <NUM> SURL(s): '<URL>
A0039 (size 3): Request <TSK> from Client IP='<IP>' Client DN='<ID><TSK># Requested token '<TKN>'
A0040 (size 1): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>'Keefe. surl(s): <URL> token: <TKN>
A0041 (size 1): rpcResponseHandler_ReleaseFiles : xml_arrayOfFileStatuses is empty
A0042 (size 1): __process_file_request<> : Received - 5 - protocols, 2 are supported, 3 are not supported
A0043 (size 1): ns1__srmRmdir : Request: Rmdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0044 (size 1): Result for request <TSK> is 'SRM_NON_EMPTY_DIRECTORY'
A0045 (size 4): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> srm TRUNCATED
A0046 (size 24): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> s TRUNCATED
A0047 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> srm:/ TRUNCATED
A0048 (size 8): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> t TRUNCATED
A0049 (size 2): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> srm:// TRUNCATED
A0050 (size 3): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> to TRUNCATED
A0051 (size 11): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> TRUNCATED
A0052 (size 3): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> s TRUNCATED
A0053 (size 2): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> srm TRUNCATED
A0054 (size 9): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> sr TRUNCATED
A0055 (size 252): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls in class ... Invalid argument (code: 0)
A0056 (size 204): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls in class ... Invalid argument (code: 0)
A0057 (size 2): rpcResponseHandler_Rm : ERROR: XML-RPC Fault: libcurl failed to execute the HTTP POST transaction, explaining:

Failed connect to storm-atlas.cr.cnaf.infn.it:8080; Operation now in progress (code: -504)
A0058 (size 1): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> token: TRUNCATED
A0059 (size 8): storm::BolStatusRequest::loadFromDB() : No tokens found for token <TKN> and the requested SURLs
A0060 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> srm:/ TRUNCATED
A0061 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> s TRUNCATED
A0062 (size 2): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> srm TRUNCATED
A0063 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> srm: TRUNCATED
A0064 (size 7): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> sr TRUNCATED
A0065 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested <NUM> SURL(s): '<URL> srm: TRUNCATED
A0066 (size 1): rpcResponseHandler_PutDone : xml_arrayOfFileStatuses is empty
A0067 (size 1): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> token TRUNCATED
A0068 (size 1): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> srm:/ TRUNCATED
A0069 (size 2): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls in class ... Communications link failure
A0070 (size 2): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: libcurl failed to execute the HTTP POST transaction, explaining:

couldn't connect to host (code: -504)
A0071 (size 1): logConfiguration : Starting StoRM frontend as user: storm
A0072 (size 1): logConfiguration : ---------------------- Configuration ------------------
A0073 (size 18): logConfiguration : <ID>
A0074 (size 1): logConfiguration : fe.gsoap.send_<ID>
A0075 (size 1): logConfiguration : fe.gsoap.recv_<ID>
A0076 (size 1): logConfiguration : argus-pepd-endpoint=
A0077 (size 1): logConfiguration : xmlrpc <ID>
A0078 (size 1): logConfiguration : ---
A0079 (size 1): initSoap : Mapping disabled
A0080 (size 1): main : StoRM frontend successfully started...
A0081 (size 1): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL> sr TRUNCATED

31

Then the results for sim_th = 0.875:

A0001 (size 1207895): process_request : Connection from <IP>
A0002 (size 162647): ns1__srmPutDone : Request: Put done. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0003 (size 2572483): Result for request <TSK> is 'SRM_SUCCESS'
A0004 (size 1365436): ns1__srmLs : Request: Ls. IP: <IP>. Client DN: <ID>
A0005 (size 41196): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>' on <NUM> SURL(s): '<URL> <URL> <URL> <*> TRUNCATED
A0006 (size 452114): Result for request <TSK> is 'SRM_REQUEST_INPROGRESS'
A0007 (size 387908): ns1__srmPing : Request: Ping. IP: <IP>. Client DN: <ID>
A0008 (size 388659): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL>
A0009 (size 389256): Result for request <TSK> is 'SRM_REQUEST_QUEUED'. # Produced request token: '<TKN>'
A0010 (size 1255140): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>'
A0011 (size 90330): ns1__srmRm : Request: Rm. IP: <IP>. Client DN: <ID>(s): <URL>
A0012 (size 166301): ns1__srmGetSpaceTokens : Request: Get space tokens. IP: <IP>. Client DN: <ID>
A0013 (size 7832): process_request : Connection from ::1
A0014 (size 481784): Result for request <TSK> is 'SRM_REQUEST_QUEUED'
A0015 (size 224258): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0016 (size 203): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL> <URL>
A0017 (size 1927): __process_file_request<> : Protocol check failed, received some unsupported protocols
A0018 (size 1233): __process_file_request<> : Received - 4 - protocols, 2 are supported, 2 are not supported
A0019 (size 1927): __process_file_request<> : Some of the provided protocols are supported, proceeding
A0020 (size 6001): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>' on <NUM> SURL(s): '<URL> <URL>
A0021 (size 274952): Result for request <TSK> is 'SRM_FAILURE'
A0022 (size 51228): ns1__srmMv : Request: Mv. IP: <IP>. Client DN: <ID>_surl: <URL> to_surl: <URL>
A0023 (size 16334): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>' on <NUM> SURL(s): '<URL>
A0024 (size 9955): ns1__srmMkdir : Request: Mkdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0025 (size 1091): ns1__srmAbortRequest : Request: Abort request. IP: <IP>. Client DN: <ID>
A0026 (size 2106): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>' on <NUM> SURL(s): '<URL> <URL> <URL>
A0027 (size 903): Result for request <TSK> is 'SRM_INTERNAL_ERROR'
A0028 (size 693): __process_file_request<> : Received - 5 - protocols, 3 are supported, 2 are not supported
A0029 (size 281): Result for request <TSK> is 'SRM_INVALID_PATH'
A0030 (size 831): ns1__srmGetSpaceMetaData : Request: Get space metadata. IP: <IP>. Client DN: <ID>
A0031 (size 823): Result for request <TSK> is 'SRM_INVALID_REQUEST'
A0032 (size 459): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>
A0033 (size 87): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL> <URL> <URL>
A0034 (size 9): Result for request <TSK> is 'SRM_DUPLICATION_ERROR'
A0035 (size 123): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0036 (size 198): rpcResponseHandler_AbortFiles : arrayOfFileStatuses not specified by BE.
A0037 (size 202): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL> <URL> <URL> <URL> <*> TRUNCATED
A0038 (size 15): ns1__srmCheckPermission : Request: Check permission. IP: <IP>. Client DN: <ID>(s): <URL>
A0039 (size 15): Result for request <TSK> is 'SRM_NOT_SUPPORTED'
A0040 (size 44): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL> <URL> <URL> <*>
A0041 (size 1933): Request <TSK> from Client <ID>=<ID> # Requested token '<TKN>' on <NUM> SURL(s): '<URL> <URL> <URL> TRUNCATED
A0042 (size 37): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> <URL> token: <TKN>
A0043 (size 1): Request <TSK> from Client <ID># Requested <NUM> SURL(s): '<URL>
A0044 (size 1): Request <TSK> from Client <ID># Requested token '<TKN>'
A0045 (size 3): rpcResponseHandler_ReleaseFiles : xml_arrayOfFileStatuses is empty
A0046 (size 61): Request <TSK> from Client <ID>=<ID> # Requested <NUM> SURL(s): '<URL> <URL> <URL> <*> TRUNCATED
A0047 (size 1): __process_file_request<> : Received - 5 - protocols, 2 are supported, 3 are not supported
A0048 (size 1): ns1__srmRmdir : Request: Rmdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0049 (size 1): Result for request <TSK> is 'SRM_NON_EMPTY_DIRECTORY'
A0050 (size 27): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> <URL> <URL> <*> TRUNCATED
A0051 (size 11): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> <URL> <URL> TRUNCATED
A0052 (size 456): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls in ...

Invalid filesystem entry <*> Invalid argument (code: 0)
A0053 (size 2): rpcResponseHandler_Rm : ERROR: XML-RPC Fault: libcurl failed to execute the HTTP POST transaction, explaining:

Failed connect to storm-atlas.cr.cnaf.infn.it:8080; Operation now in progress (code: -504)
A0054 (size 2): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> <URL> <URL> <URL> <*> TRUNCATED
A0055 (size 1): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> <URL> <URL> token: <TKN>
A0056 (size 2): storm::BolStatusRequest::loadFromDB() : No tokens found for token <TKN> and the requested SURLs
A0057 (size 1): rpcResponseHandler_PutDone : xml_arrayOfFileStatuses is empty
A0058 (size 2): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls ... Communications link failure
A0059 (size 2): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: libcurl failed to execute the HTTP POST transaction, explaining:

couldn't connect to host (code: -504)
A0060 (size 5): logConfiguration : Starting StoRM frontend as user: storm
A0061 (size 5): logConfiguration : ---------------------- Configuration ------------------
A0062 (size 90): logConfiguration : <ID>
A0063 (size 5): logConfiguration : fe.gsoap.send_<ID>
A0064 (size 5): logConfiguration : fe.gsoap.recv_<ID>
A0065 (size 5): logConfiguration : argus-pepd-endpoint=
A0066 (size 5): logConfiguration : xmlrpc <ID>
A0067 (size 5): logConfiguration : ---
A0068 (size 5): initSoap : Mapping disabled
A0069 (size 5): main : StoRM frontend successfully started...

32

And the 44 classes obtained from the post processing of the �rst 81 templates ex-
tracted:

A0001 (size 1392640): process_request : Connection from <IP>
A0002 (size 196048): ns1__srmPutDone : Request: Put done. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0003 (size 2997244): Result for request <TSK> is 'SRM_SUCCESS'
A0004 (size 1593721): ns1__srmLs : Request: Ls. IP: <IP>. Client DN: <ID>
A0005 (size 1929781): Request <TSK> from Client IP='<IP>' Client DN=<ID># Requested token '<TKN>' on <NUM> SURL(s): '<URL>
A0006 (size 468714): Result for request <TSK> is 'SRM_REQUEST_INPROGRESS'
A0007 (size 449698): ns1__srmPing : Request: Ping. IP: <IP>. Client DN: <ID>
A0008 (size 1009462): Result for request <TSK> is 'SRM_REQUEST_QUEUED'. # Produced request token: '<TKN>'
A0009 (size 107104): ns1__srmRm : Request: Rm. IP: <IP>. Client DN: <ID>(s): <URL>
A0010 (size 200056): ns1__srmGetSpaceTokens : Request: Get space tokens. IP: <IP>. Client DN: <ID>
A0011 (size 253430): ns1__srmReleaseFiles : Request: Release files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0012 (size 2327): __process_file_request<> : Protocol check failed, received some unsupported protocols
A0013 (size 2327): __process_file_request<> : Received - 4 - protocols, 2 are supported, 2 are not supported
A0014 (size 2327): __process_file_request<> : Some of the provided protocols are supported, proceeding
A0015 (size 327364): Result for request <TSK> is 'SRM_FAILURE'
A0016 (size 60564): ns1__srmMv : Request: Mv. IP: <IP>. Client DN: <ID>_surl: <URL> to_surl: <URL>
A0017 (size 11676): ns1__srmMkdir : Request: Mkdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0028 (size 1362): ns1__srmAbortRequest : Request: Abort request. IP: <IP>. Client DN: <ID>
A0019 (size 903): Result for request <TSK> is 'SRM_INTERNAL_ERROR'
A0020(size 395): Result for request <TSK> is 'SRM_INVALID_PATH'
A0021 (size 1007): ns1__srmGetSpaceMetaData : Request: Get space metadata. IP: <IP>. Client DN: <ID>
A0022 (size 575): Result for request <TSK> is 'SRM_INVALID_REQUEST'
A0023 (size 16): Result for request <TSK> is 'SRM_DUPLICATION_ERROR'
A0024 (size 233): ns1__srmAbortFiles : Request: Abort files. IP: <IP>. Client DN: <ID>(s): <URL> token: <TKN>
A0025 (size 232): rpcResponseHandler_AbortFiles : arrayOfFileStatuses not specified by BE.
A0026 (size 21): ns1__srmCheckPermission : Request: Check permission. IP: <IP>. Client DN: <ID>(s): <URL>
A0027 (size 21): Result for request <TSK> is 'SRM_NOT_SUPPORTED'
A0028 (size 1): rpcResponseHandler_ReleaseFiles : xml_arrayOfFileStatuses is empty
A0029 (size 1): ns1__srmRmdir : Request: Rmdir. IP: <IP>. Client DN: <ID>(s): <URL>
A0030 (size 1): Result for request <TSK> is 'SRM_NON_EMPTY_DIRECTORY'
A0031 (size 252): rpcResponseHandler_Ls : ERROR: XML-RPC Fault: RPC failed at server. Failed to invoke method ls in class ... Invalid argument (code: 0)
A0032 (size 2): rpcResponseHandler_Rm : ERROR: XML-RPC Fault: libcurl failed to execute the HTTP POST transaction, explaining:

Failed connect to storm-atlas.cr.cnaf.infn.it:8080; Operation now in progress (code: -504)
A0033 (size 8): storm::BolStatusRequest::loadFromDB() : No tokens found for token <TKN> and the requested SURLs
A0034 (size 1): rpcResponseHandler_PutDone : xml_arrayOfFileStatuses is empty
A0035 (size 1): logConfiguration : Starting StoRM frontend as user: storm
A0036 (size 1): logConfiguration : ---------------------- Configuration ------------------
A0037 (size 18): logConfiguration : <ID>
A0038 (size 1): logConfiguration : fe.gsoap.send_<ID>
A0039 (size 1): logConfiguration : fe.gsoap.recv_<ID>
A0040 (size 1): logConfiguration : argus-pepd-endpoint=
A0041 (size 1): logConfiguration : xmlrpc <ID>
A0042 (size 1): logConfiguration : ---
A0043 (size 1): initSoap : Mapping disabled
A0044 (size 1): main : StoRM frontend successfully started...

33

5.2.2 Model Loss and Prediction

In order to check wether the LogKey model is capable of e�ectively �nd anomalies in
a log sequence, the test run consist of two �les: one containing normal sequences, the
other containing abnormal sequences as de�ned in the "Dataset Preparation" section.
The model is tested on both �les, asking it to �nd anomalies in a perfectly normal
sequence gives a measure of the precision of the network: if few anomalies get signaled
in a normal execution sequence we have a measure of how many true anomaly are found
when used on a unlabeled dataset (not divided in normal and abnormal). The other test
is more straight forward: we request the model to confront the pattern it learned, which
is supposed to be normal execution patterns, with a collection of anomalous patterns; if
the count of anomalies found in this abnormal test is high it means that the model is
able to �nd anomalies in an unlabeled dataset.
Using this [27] implementation of DeepLog's LogKey model which make use of torch, an
open source machine learning framework, three models have been studied, all consisting
a two-layer LSTM with hidden sizes 32, 64, 96; for each model were used the data sets
obtained using the three di�erent results of the clustering (44, 69 and 81 classes). Each
of the resulting nine model has then been trained using di�erent window sizes.
To evaluate the e�ectiveness of the LogKey models three statistics are used:

Precision =
TruePositives

TruePositives+ FalsePositives

measures the percentage of true anomalies among all anomalies detected;

Recall =
TruePositives

TruePositives+ FalseNegatives

that measures the percentage of anomalies in the data set being detected, assuming that
the ground truth in known.

F −Measure =
2 ∗ Precision ∗Recall
Precision+Recall

The harmonic mean of Precision and Recall gives an overall accuracy score.
The sequence from the normal test set is paired with it's successive log key as label
and fed through the model that outputs a list of candidates for the next log key in the
sequence, if the label is not among the top candidates it's then counted as False Positive:
inside a sequence that is known to be completely normal, an anomaly has been detected.
Reversely for the abnormal test set if a label is not among the top candidates is counted
as True Positive being an anomaly detected in a sequence that is abnormal.
False Negatives are then calculated as the length of the abnormal test set, seen as tuples
of sequences of �xed window size and corresponding labels, minus the True Positives.
Here follows the train loss graphs for di�erent models obtained by varying hidden size
and window size followed the Precision, Recall and F-Measure that each model obtained
on the same test set.

34

Figure 11: Train Loss for LogKey model using 44 classes with hidden size 32 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 97.77% 96.17% 69.54%
Window size 8 96.91% 96.82% 69.91%
Window size 10 96.79% 96.18% 70.43%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 76.89% 99.12% 100.0%
Window size 8 99.56% 99.89 % 100.0%
Window size 10 99.01% 99.34% 99.67%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 86.08% 97.63% 82.03%
Window size 8 98.22% 98.33% 82,289%
Window size 10 97.89% 97.74% 82.54%

Table 2: Precision, Recall and F-measure for LogKey model using 44 classes with hidden
size 32 at di�erent window sizes and number of candidates

35

Figure 12: Train Loss for LogKey model using 44 classes with hidden size 64 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.26% 99.46% 69.59%
Window size 8 99.24% 98.70% 70.02%
Window size 10 98.81% 98.12% 70.57%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 73.82% 99.89% 100.0%
Window size 8 99.78% 100.0% 100.0%
Window size 10 90.58% 97.37% 99.78%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 84.67% 99.67% 81.07%
Window size 8 99.51% 99.35% 82.36%
Window size 10 94.51% 97.76% 82.67%

Table 3: Precision, Recall and F-measure for LogKey model using 44 classes with hidden
size 64 at di�erent window sizes and number of candidates

36

Figure 13: Train Loss for LogKey model using 44 classes with hidden size 96 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.25% 98.17% 69.59%
Window size 8 98.31% 96.31% 69.91%
Window size 10 97.61% 97.32% 70.56%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 86.86% 99.89% 100.0%
Window size 8 95.40% 100.0% 100.0%
Window size 10 98.58% 99.23% 100.0%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 92.64% 99.02% 82.07%
Window size 8 96.83% 98.12 % 82.29%
Window size 10 98.09% 98.27% 82.74%

Table 4: Precision, Recall and F-measure for LogKey model using 44 classes with hidden
size 96 at di�erent window sizes and number of candidates

37

Figure 14: Train Loss for LogKey model using 69 classes with hidden size 32 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.77% 99.08% 66.33%
Window size 8 98.89% 97.72 % 66.95%
Window size 10 97.88% 96.68% 68.07%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.88% 99.88% 100.0%
Window size 8 82.31% 84.05% 100.0%
Window size 10 74.80 % 77.46 % 99.31%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.83% 99.48% 79.76%
Window size 8 89.84% 90.37% 80.20%
Window size 10 84.80% 86.01% 80.77%

Table 5: Precision, Recall and F-measure for LogKey model using 69 classes with hidden
size 32 at di�erent window sizes and number of candidates

38

Figure 15: Train Loss for LogKey model using 69 classes with hidden size 64 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.87% 99.19% 66.49%
Window size 8 99.74% 99.14% 67.53%
Window size 10 98.01% 97.81% 68.25%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 86.24% 98.84% 100.0%
Window size 8 89.71% 93.64% 100.0%
Window size 10 73.87% 82.78% 99.65%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 92.56% 99.02% 79.87%
Window size 8 94.46% 96.31% 80.62%
Window size 10 84.25% 89.67% 81.02%

Table 6: Precision, Recall and F-measure for LogKey model using 69 classes with hidden
size 64 at di�erent window sizes and number of candidates

39

Figure 16: Train Loss for LogKey model using 69 classes with hidden size 96 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.88% 99.08% 66.49%
Window size 8 99.87% 99.24% 67.58%
Window size 10 97.80% 97.45% 68.15%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.88% 100.0% 100.0%
Window size 8 90.41% 90.41% 100.0%
Window size 10 66.82% 70.64% 99.42%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.88% 99.54% 79.87%
Window size 8 94.90% 94.62% 80.65%
Window size 10 79.40% 81.90% 80.87%

Table 7: Precision, Recall and F-measure for LogKey model using 69 classes with hidden
size 96 at di�erent window sizes and number of candidates

40

Figure 17: Train Loss for LogKey model using 81 classes with hidden size 32 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.43% 97.12% 69.01%
Window size 8 97.58% 96.48% 69.73%
Window size 10 96.73% 96.43% 70.34%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 93.99% 100.0% 100.0%
Window size 8 82.10% 100.0% 100.0%
Window size 10 76.10% 92.61% 99.89%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 96.64% 98.57% 81.66%
Window size 8 89.17% 98.21% 82.17%
Window size 10 85.18% 94.48% 82.55%

Table 8: Precision, Recall and F-measure for LogKey model using 81 classes with hidden
size 32 at di�erent window sizes and number of candidates

41

Figure 18: Train Loss for LogKey model using 81 classes with hidden size 64 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 98.77% 98.42% 69.16%
Window size 8 99.43% 98.91% 69.63%
Window size 10 71.33% 69.58% 69.55%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 94.64% 100.0% 100.0%
Window size 8 74.81% 87.87% 100.0%
Window size 10 97.86% 99.04% 100.0%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 96.66% 99.20% 81.77%
Window size 8 85.38% 93.02% 82.09%
Window size 10 82.51% 91.73% 81.34%

Table 9: Precision, Recall and F-measure for LogKey model using 81 classes with hidden
size 64 at di�erent window sizes and number of candidates

42

Figure 19: Train Loss for LogKey model using 81 classes with hidden size 96 at window
size 6, 8 and 10

Precision 5 Candidates 3 Candidates 1 Candidate

Window size 6 99.43% 98.63% 69.21%
Window size 8 99.79% 99.25% 69.78%
Window size 10 98.04% 97.83% 70.36%

Recall 5 Candidates 3 Candidates 1 Candidate

Window size 6 93.99% 100.0% 100.0%
Window size 8 99.89% 100.0% 100.0%
Window size 10 69.56% 72.35% 99.47%

F-measure 5 Candidates 3 Candidates 1 Candidate

Window size 6 96.64% 99.31% 81.81%
Window size 8 99.84% 99.63% 82.20%
Window size 10 81.38% 83.18% 82.42%

Table 10: Precision, Recall and F-measure for LogKey model using 81 classes with hidden
size 96 at di�erent window sizes and number of candidates

43

The graphs, representing the train loss as the epochs go from 0 to 300, tend to
converge to a value of ∼ 0.2 somewhere between epoch 50 and 100, and to keep that
value until the end of the training. The spikes seen along the curves are an unavoidable
consequence of Mini-Batch Gradient Descent in Adam, the optimizer used in this model
with batch_size = 2048.
For some of the models the train loss presents a plateau around the value of trainloss = 2
which becomes more evident as the window size increases (see Figure 17). This zone of
not learning is however surpassed in all the cases and the train loss converges close to
his value in around epoch 200.
The results in all tables highlight the fact that asking the model to choose the next log
key in a log sequence by drawing from a shorter candidate list boosts the Recall value,
which approaches 100% for a single candidate to the expenses of Precision, which tends
to reach the highest value with 5 Candidates for every model.
To �nd which model obtained the best overall results we pick those with the highest F-
Measure, for example from the results in Table 2, representing the model with 44 classes
and hidden size 32, we deduce that the best con�guration among those considered in the
table is the one with window size 8 and 3 candidates as it has the highest F-Measure
(98.33%). By taking the F-Measure as reference for the overall accuracy of the model,
we can sort out the best performing ones as those with the highest F:

F-Measure Number of classes Hidden size Window size Candidates

99.88% 69 96 8 5

99.84% 81 96 8 5

99.83% 69 32 6 5

99.68% 44 64 6 3

99.63% 81 96 8 3

99.54% 69 96 6 3

99.50% 44 64 8 5

Table 11: Recap of the best performing models with F −Measure ≥ 99.50%

44

6 Conclusions

We have seen the highly re�ned and complicated ATLAS' data acquisition system, the
journey that the detector's signals undertake to the Tier-0 and trough the WLCG to the
Tier-1 Tier-2 and Tier-3. This Grid approach to computation renders necessary for the
main nodes of the network, the Tier 0 and 1s, to be as stable as possible since so many
scientists and research groups rely on these infrastructures.
We introduced StoRM, the Storage Resource Manager at INFN-CNAF Tier-1 in Bologna;
StoRM's front end server's log were used for the analysis. We investigated some Log
Analysis tools such as Drain3 for mining log templates out of raw log entries and the
LogKey model of DeepLog for the anomaly detection on log sequences. Drain3 has re-
vealed to be highly customizable and relatively lightweight, compared to other parsing
methods; its availability on PyPi makes it easy to install using pip and the con�guration
via con�gparser allows the users to adapt the research tree and regular expressions to
their framework. Drain3 can also work in a streaming fashion, by feeding log lines one
by one or as they are generated.
Since the expected number of log templates wasn't known �rst, di�erent similarity thresh-
olds were used to mine them, obtaining 3 data sets representing the same system execu-
tion, but di�erently enumerated in log keys.
As expected this di�erence in enumeration doesn't keep DeepLog's LogKey model from
learning the underlying patterns in the sequences since the results were consistent in all
three cases (44, 69, 81 classes). The promising results of this part of DeepLog make it a
candidate tool for anomaly detection, once the parameter model gets implemented.

46

7 Aknowledgments

The Data for this work was kindly provided by INFN - CNAF who also granted access
to the Tier-3 infrastructure, and was fundamental for this thesis.
All the software used is open source, I thank those who keep these programs freely hosted
on github and under MIT License.

48

References

[1] CERN, Accelerator Complex at CERN http://public-archive.web.cern.ch/public-
archive/en/research/AccelComplex-en.html.

[2] CERN. Alice. https://home.cern/science/experiments/alice.

[3] CERN. Atlas. https://home.cern/science/experiments/atlas.

[4] CERN. Cms. https://home.cern/science/experiments/cms.

[5] CERN. Lhcb. https://home.cern/science/experiments/lhcb.

[6] CERN. Totem. https://totem-experiment.web.cern.ch/.

[7] CERN. Lhcf. https://home.cern/science/experiments/lhcf.

[8] CERN. Experiments. https://home.cern/science/experiments.

[9] The ATLAS Collaboration. Atlas detector overview.
https://jinst.sissa.it/LHC/ATLAS/ch01.pdf.

[10] Masetti Lucia. A high-granularity timing detector for the phase-ii upgrade of the
atlas calorimeter system. Jan 2017.

[11] CERN. High luminosity lhc.
https://home.cern/science/accelerators/high-luminosity-lhc.

[12] CERN, ATLAS Detector image
http://opendata.atlas.cern/books/current/get-started/_book/GLOSSARY.html

[13] The ATLAS Collaboration. The atlas experiment at the cern large hadron collider.
Journal of Instrumentation, 3(08):S08003�S08003, aug 2008.

[14] The ATLAS Collaboration. Trigger - daq.
https://atlas.cern/discover/detector/trigger-daq.

[15] A Ruiz Martinez. The run-2 atlas trigger system. Journal of Physics: Conference
Series, 762:012003, oct 2016.

[16] Johannes Elmsheuser et al. Evolution of the ATLAS analysis model for Run-3 and
prospects for HL-LHC. EPJ Web Conf., 245:06014, 2020.

49

[17] D Adams, D Barberis, C P Bee, R Hawkings, S Jarp, R Jones, D Malon,
L Poggioli, G Poulard, D Quarrie, and T Wenaus. The ATLAS Computing Model.
Technical Report ATL-SOFT-2004-007.
ATL-COM-SOFT-2004-009.CERN-ATL-COM-SOFT-2004-009.
CERN-LHCC-2004-037-G-085, CERN, Geneva, Dec 2004.

[18] INFN-CNAF. Tier-1 data center.
https://www.cnaf.infn.it/wlcg-tier-1-data-center/.

[19] A. Brunengo et al. Commissioning of a StoRM based data management system for
ATLAS at INFN sites. J. Phys. Conf. Ser., 219:062042, 2010.

[20] IBM. Gpfs.
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=
/com.ibm.cluster.gpfs.doc/gpfsbooks.html

[21] S. Hochreiter and J. Schmidhuber. Long Short Term Memory. Neural
Computation 9(8):17351780, 1997

[22] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. pages 1285�1298,
10 2017.

[23] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. An evaluation study on log parsing
and its use in log mining. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 654�661, 2016.

[24] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online log parsing approach
with �xed depth tree. pages 33�40, 2017.

[25] IBM. Drain3. https://github.com/IBM/Drain3.

[26] Pandas. Pandas. https://pandas.pydata.org/.

[27] Wu Yifan. DeepLog. https://github.com/wuyifan18/DeepLog

50

