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Chapter 1

Introduction

Over the last 20-years period, research has focused more and more on renew-
able energy systems, to decrease the global warming hazard. Among such
technologies, wind energy takes place strongly with two options: onshore and
offshore wind turbines. Both of them have been quickly developed during
last two decades because, in spite the high installation, operation and main-
tenance costs they do not have a big impact on the environment and are
easily decommissioning.

At the very beginning of the wind energy life, in the early 90’s, European
countries such as Denmark, Germany and United Kingdom, focused on windi-
est land-areas for the installation of 300-500 kW wind turbines, for domestic
energy supply purposes. The height of the first wind energy converter in-
stalled was around 40 m, and the power production was 550 kW (U.S. En.
Dep., 2007). Over the past two decades wind energy has been subjected to a
quite significant development and currently the largest wind energy converter
in the world takes place in Belgium and has an outstanding height of 135m
with a turbine working at 7 MW of energy output.

One of the problems of land based wind plants is that often sites with strong
wind available are very distant from the main urban centres. Indeed it is
commonly known that wind increases when no obstacles are on its way. In
addition the exploitation of land based wind resource can be forbidden, be-
cause of planning procedures and other institutional obstacles. This means
that, the ideal places for wind farms are likely to be located in the more
remote areas where grid connection may be difficult. Other problems of
land based wind farms are the noise of the rotor, the aesthetic impact, and
furthermore, the difficulty of large pieces transport.

On the other hand, at the sea wind blows steadier and faster. Generally
the farer a site is from the coast the stronger the wind blows. Although,
being this wind rise quick, wind farms can be installed within a reasonable
distance from the coast. In addition no limitation is given to the size of
transported pieces. For these reasons sea seems to be the ideal place for
wind turbine converters. Thus, offshore wind energy has the potential to be
a great renewable energy resource for the future even thinking that, all over
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the world, coastlines are locations whereon large urban centres take place
(Musial et al., 2006).

In 1991 Denmark was the first country ever dealing with offshore wind energy.
After this first attempt other European countries have undertaken many
other projects. The current world-wide status of energy production, by means
of offshore wind systems, is shown in Figure 1.1. As one can notice most of
the countries involved are European, however the current status will not last
for long since a massive grown of the wind turbine market is expected in next
years.

Figure 1.1: MW of energy generated by offshore wind farms (U.S. En. Dep., 2007).

Germany, United Kingdom and Denmark will be among the European coun-
tries taking a lead in the development of the offshore wind power. By 2050
50 % of the total European energy consumption is likely to be provided by
wind. The market is raising more and more with about 1000 MW to be
installed within 2010 and 50.000 MW for 2011 and further years only among
European countries. It is outstanding thinking how such a rise of offshore
wind turbines installation is going to happen in few years with a growing
rate never seen before (NREL, 2010).

Looking at extra-European countries, Canada China and United States seem
to be the most interested nations in planning offshore wind farms on their
sea areas. United States (that have always led the onshore wind resources)
have the ambitious goal of reaching 54 GW of electricity power, provided by
offshore wind turbines by 2030. United States will be mostly focused on Gulf
of Mexico, Great Lakes and the Pacific Cost as installation areas. India has an
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ambitious aim too which is, reaching 3 % of the total electricity consumption
by using land-based wind turbines within the next decade (Banks, 2010).

The major current challenge of offshore wind engineering is to lower costs.
Logistic and support structure costs can be up to the 25 % of the overall cost.
Therefore both installation and foundation technologies must be investigated
in order to find new cost-effective ways. Below is showed a typical cost
breakdown for a baseline offshore wind turbine.

Figure 1.2: Cost breakdown for a baseline offshore wind turbine (NREL, 2010).

1.1 Support Structure Concepts

This section will not provide a complete chart of offshore foundation types. In
the following only a brief explanation of the most common technologies will
be considered. Besides, it is worth saying that, every construction company
may have its own particular technology for both installation procedure and
foundation design systems. Thus, the following section has to be taken as
general and not specific indication.

Offshore support structures can be categorized in monopod and multipod
supports as it is depicted in Figure 1.3.
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Figure 1.3: Monopod and multipod technology with relative foundations reactions, after
(LeBlanc, 2009).

The main difference between the two concepts is how the moment is trans-
ferred to the soil. While monopods transfer the loading moment only by
one interface with the surrounding soil, multipods transfer the moment ap-
plied by a simultaneous compression-tension action. Both monopods and
multipods can have either gravity, monopile or suction caisson as foundation
structures. Multipod foundations are cost-effective in water depth larger
than 25-30 m. At such depths a monopod foundation would require a large
amount of material to reach the needed stiffness.

By far, gravity and pile foundations have been the most used support struc-
tures for offshore wind turbines. The main reason of their usage relies on the
fact that both pile and gravity foundations are considered reliable since they
have been experienced for decades with a lot of different purposes. The most
significant shortcoming, related to these support technologies, is the high cost
of construction and installation. Gravity foundations require large amount of
concrete, heavy vessels for installation, near sources of ballast material and
a long time for seabed preparation. Monopiles need high quantity of steel as
well as heavy installation vessels and very expensive hydraulic hammer for
penetrating the seabed. Hence, it is clear that cost-effective solutions must
be addressed. A valid and cost-effective alternative for next generations of
offshore wind turbines support may be the suction caisson foundation.
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1.2 Suction Caisson Foundation

This thesis will focus on the investigation of suction caisson as foundation
for offshore wind turbines. In the following the concept and installation of
such foundation are described.

1.2.1 General Features and Installation

Suction caisson or suction bucket foundations are basically composed of three
parts (illustrate in Figure 1.4): skirt, lid and upper piece.

Figure 1.4: Components of suction caisson foundation.

The skirt is the only interface with the soil, therefore a fully understanding
of its behaviour is essential for a correct foundation design. The lid is the
connection part between skirt and upper pile. This connection is provided
by means of a large reinforced steel structure. Such structure is meant for
transferring loads from the column to the skirt edges. The upper pile is
placed on the lid and the turbine tower is mounted on it.

Most of the times the installation procedure of a caisson foundation is less
technically challenging than that of the monopile or gravity foundation. In
fact, heavy vessels are avoidable since floating self-installing bucket have
been proved, cf. Figure 1.5. Besides, the entire installation is likely to
be carried out in a few hours and be less weather-dependent (Houlsby and
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Byrne, 2002). Moreover suction caissons may be a good alternative for large
diameter monopiles that sometimes are hardly drivable into the seabed. Also
the structure itself may cost less. Indeed, in spite a costly lid, the total
amount of steel needed can be less than that of the monopile. For such
reasons, when appropriate soil conditions and reliable penetration methods
are offered, the suction caisson technology becomes convenient in terms of
cost and time. The scour protection is a relevant issue related to this kind of
foundation, thus high priority is placed on investigating mitigation methods.

Figure 1.5: Floating bucket foundation (LeBlanc, 2009).

The method used for penetrating the bucket into seabed is nearly the same
for any soil. What differs during penetration is the behaviour of different
soils (clay, sand, silt) due to suction. In other words the skirt penetrates in
different soils through different effects.

The penetration of the bucket into the seabed can be simplified in two steps as
shown in Figure 1.6. Initially penetration begins by means of the self weight
of the structure. Subsequent penetration is provided by a pump which creates
suction pressure. The pressure leads to the suction penetration of the skirt
bottom. The skirt penetrates into the soil because the effective stress below
the skirt tip decreases, due to the waterflow, which allows for a reduction of
the penetration resistance.
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Figure 1.6: Installation phases for suction caisson.

The installation requires considerable care, because stones or rocks can be
met by the skirt on its way down. This can induce an inclination which is
dealt with by applying pressure inside the bucket. Thereby the bucket is
brought to horizontal position and further installation can be carried out. If
the stone or rock is considerably large the entire installation is compromised.

Another vital aspect of the installation is the possible creation of piping chan-
nels, which occurs when the critical gradient (which depends on the effective
unit weight of soil) is overcome. This means that the suction pressure should
be kept at the minimum. If piping channels occur the suction must stop
and further soil should be added to the piping area. When pore pressure
has dissipated, the penetration session can restart. The horizontal alignment
during installation is subjected to a strict requirement because the deflection
of the turbine tower can seriously compromise the turbine efficiency. Thus,
the horizontal level of the caisson during installation must be monitored.
When the target depth is reached the pump stops, and the pumping system
is dismantled. The decommissioning procedure is similar to the installation,
the overall process is simply reverse.

As any other monopod support structure, suction caissons are mainly sub-
jected to a moment loading at the seabed and relatively low vertical forces.
The bearing moment capacity of this foundation is basically dependent on
the skirt length and on the caisson diameter. One of the basic ideas is that
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bucket foundations can be considered similar to embedded circular founda-
tions because of the inner soil trapped which acts as a rigid cluster. Of
course, in such case the roughness of the base must be considered.

1.2.2 Recent Studies on Bucket Foundations

Lately, understanding the behaviour of suction caissons has received many
improvements, by both theoretical and practical research. Larsen (2008)
achieved interesting results about vertical bearing capacity and yield sur-
face of combined loading. He performed more than 100 tests in large and
small-scale creating a consistent database to develop and/or confirm theories.
Thereafter he compared test results with a FE-method and with methods
found in literature. In contrary to most of the previous studies conducted on
bucket foundations tests were performed with constant vertical load. More-
over every tests was carried out until failure of the soil occurred. Terzaghi’s
bearing capacity formula was found able to assess the vertical bearing capac-
ity of bucket foundations. A new equations describing the bearing capacity
factors was put forward by using FE-codes (calibrated through small-scale
tests). The yield criterion proposed by Villalobos et al. (2004) was modified
to account for the different vertical loads applied. A linear failure criterion
regarding low vertical load was set out. Embedment ratio and load path were
assessed to be affecting the failure parameters. The serviceability behaviour
(not up to failure) was found to be affected by embedment ratio and load
path as well. Observations regarding the hardening law were also presented.

Over the last decade Oxford University has been developing a programme of
research aimed at offshore wind turbine design. High priority has been placed
on lowering the installation price and defining design frameworks (Houlsby
and Byrne, 2002). Small and large-scale tests were conducted and both
monopod and tripod (or quadruped) solutions were addressed. Most relevant
for the multipod foundations is the behaviour under monotonic or cyclic
vertical loading. Such behaviour was investigated in papers such as Kelly
et al. (2006b). However, more important for this thesis is the monopod
foundation concept. The most significant papers regarding that are briefly
outlined in the following.

The loading rig used (illustrated in Figure 1.10) for small-scale experiments
was designed at Oxford University initially to test foundation on clay. Fur-
ther modifications to suit the purpose were actuated by Byrne (2000). The
apparatus finally adopted was able to apply an arbitrary displacement path
by using computer-controlled stepped motors. Vertical, horizontal and mo-
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ment loading could independently be enforced to the system whilst the dis-
placement of the foundation were measured by means of a displacement trans-
ducers system.

Figure 1.7: Experimental rig (Byrne et al., 2003).

In Houlsby (1999) every experiment was interpreted within the plasticity the-
ory framework. Records from monotonic loading tests were to some extend
well fitted within the existing framework developed by Gottardi et al. (1999) .
Conversely, records from cyclic loading tests shown that conventional plastic-
ity models could not utterly represent data. A continuous hyperplastic model
was finally adopted to capture the behaviour of cyclic tests. A remarkable re-
sult obtained can be seen in Figure 1.8 where rotational displacement against
moment load by applying the plasticity theory, Figure 1.8 a), and by plotting
one record from tests, Figure 1.8 b), are shown. In the latter article were
pointed out also similarities between monotonic and cyclic loading at small
displacement. Further information about the continuous hyperplastic model
are available in Byrne et al. (2003) where monotonic vertical loading and mo-
ment loading tests are presented and interpreted in order to give preliminary
indications to estimate the ultimate moment capacity and the installation
procedure.
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Figure 1.8: Comparison of laboratory tests a) and plasticity theory b) (Byrne et al.,
2003).

Field trials were also conducted in a bid to confirm laboratory test interpre-
tation (Houlsby, 2006). The test equipment used is depicted in Figure 1.9.
Two types of caissons were tested: diameter 3 m, skirt length 1.5 m, diameter
1.5 m, skirt length 1 m. Forces were applied by means of hydraulic jacks. In-
stallation features, cyclic vertical loading and cyclic horizontal loading were
mainly addressed. A relevant result achieved was the gradual reduction of
stiffness with load amplitude cyclic moment as well as for cyclic vertical
forces.

Laboratory tests were compared to field tests in Kelly et al. (2006a). In or-
der to compare results from differently scaled tests particular dimensionless
equations were employed. All in all, results at different scale, were fairly
comparable by applying scaling relationship. Although, some quantitative
results regarding the displacement accumulation could not be perfectly repli-
cated. Cyclic loading was studied by means of a novel loading rig. This will
be presented in Chapter 2.

Figure 1.9: Field trials equipment (Houlsby, 2006).

The University of Western Australia investigated suction caisson foundations
focusing on several topics. Doherty and Deeks (2003) obtained stiffness coef-
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ficients for rigid circular footings by using the scaled boundary FEM (repre-
senting an elastic half-space). The effect of the non-homogeneous parameter
α on the stiffness parameters were mainly addressed. In Doherty et al. (2004)
the scaled boundary FEM was used again combined with shell finite element
representing the caisson. The stiffness was found dependent on the skirt flex-
ibility. Recently, Senders (2008) has carried out research on suction caisson
as tripod foundation. A computer programme to predict loading conditions
of a tripod foundation was improved. Small scale tests were performed by
utilizing centrifuge device. Vertical cyclic loading was investigated.

Still, many unsolved problems are related to suction caisson foundations,
such as the influence of both the vertical tension and the relative density,
and nonetheless the presence of layered soils. However, these are not of
major interest for this thesis, which will instead focus on the horizontal load-
displacement behaviour, as a preliminary research for further cyclic loading
studies.

1.3 Aim of the thesis

This thesis aims at finding, through small-scale tests, consistent relationships
load-displacement to be employed in predicting the real-scale behaviour of a
bucket foundation. This is attempted by looking through data from small-
scale tests of bucket foundations, and interpreting them on the base of a
similitude theory. The case of study is a monopod bucket foundation sub-
jected to horizontal monotonic loading.

The main purpose of the study is to give a reliable preliminary base for
further long term cyclic loading researches. Therefore, attention is mostly
given to forces not up to the soil failure, as required by the fatigue limit
states design (DNV, 2004). The overturning moment-rotation relationship
and, thereof, the accumulated rotation of the bucket are top priorities in the
fatigue limit states design.

The main content of the thesis is set out in two chapters. Chapter 4 presents
a similitude theory, between small and large-scale, of the bucket foundation
behaviour. The relationship sought is the horizontal load-displacement of
the bucket. The theory is analytically demonstrated and then corroborated
by analysing static small-scale tests of bucket foundations and triaxial tests
data. The laboratory tests of bucket foundations were conducted by Larsen
(2008) while the triaxial tests by Ibsenet al. (1995). Also the overturning
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moment-rotation relationship is object of investigation.

In a bid to understand the effect of the overburden pressure on the rela-
tionships, Chapter 7 displays six further tests conducted on one bucket at
different soil effective stress. To increase the effective stress a novel method
was adopted.

A summary of the study is given in Figure 1.10.

Figure 1.10: Summary of the study.



Chapter 2

Cyclic Loading on Offshore
Structures

The main loads acting on an offshore wind energy structure are of two kinds:
operational and environmental. Operational loads can be calculated with
sufficient accuracy, while environmental loads are based on statistical mea-
surements. The latter are affected by a certain uncertainty. Among environ-
mental forces wind and wave account for 80-90 % of the total horizontal load
acting on offshore wind turbines. The remaining percentage is attributed to
sea currents and blade movements. Waves and winds are naturally cyclic,
consequently, a wind turbine is exposed to millions of cycles over its lifetime.
For this reason investigating the wind turbine foundations behaviour, under
cyclic loading, shall be evaluated as essential. Certainly, numerous problems
are related with cyclic loading such as changing of stiffness and accumulated
deformations. In the worst case the natural frequency of the structure can
get close to the resonance, or a distorted horizontal alignment can seriously
affect the turbine efficiency. By leading research on cyclic loading, these
circumstances will be avoided and a straightforward framework for fatigue
design may be achieved .

Whilst there are already available guidance regarding the response of offshore
foundations under monotonic loads, less emphasis has been given to the cyclic
loading behaviour. Piles, for instance, are usually designed considering the
p-y curves, adopted by DNV (2004) (which are the current avant-garde of
offshore wind turbine standards) with the primary purpose of calculating the
ultimate lateral capacity of a pile. Also for cyclic loading, DNV standards
provided a p-y curve. However, these design rule is not capable to properly
account for cyclic loading because nor number of cycles, neither load charac-
teristics, are taken into consideration. These latter two cyclic load features
should be considered as key issues of the fatigue design. A special regard
should be given to them in further design methods. In the next section a
state of the art about cyclic loading is presented.
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STRUCTURES

2.1 Researches on Cyclic Loading, a State-of-

the-Art

As yet, researches on offshore wind turbine foundations under cyclic loading
have concerned mostly monopiles. Only few papers have investigated suction
caissons. In the following the most relevant conclusions gained in the last
five-year period are presented. All cited articles give a basic and general
overview on the topic and have been source of inspiration for this thesis.

Degradation of Stiffness Method (DSM)

Drained cyclic triaxial tests on cohesionless soil and finite element analysis
are the essential components of the DSM. This approach was put forward by
Achmus et al. (2008). The purpose of the study was to give a preliminary
design chart for cyclically loaded monopiles, installed in sand.

A previous research on monotonic loading was used for defining the secant
modulus of elasticity Es and assessing the stress conditions of every element.
The assumed equation for Es was:

Es = k · σat ·

(

σm
σat

)λ

(2.1)

wherein σat is the atmospheric pressure, σm the mean principal stress of
elements, and k and λ are material constants.

An intuitive representation of the stiffness degradation of soil after a certain
number of cycles N was given, cf. Figure 2.1.
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Figure 2.1: Degradation of stiffness after N cycles. (Achmus et al., 2008).

According to Figure 2.1, equation (2.2) which relates secant stiffness modulus
ratio to stress ratio was provided.

EsN

Es1

∼=
εcp,1
εcp,N

(2.2)

In equation (2.2) EsN/Es1 is the ratio between secant elastic modulus at N th

and first cycle while εcp,1/εcp,N is the ratio between plastic axial strain at
first and N th cycle.

Since equation (2.2) involves the accumulation of strain, an estimation of that
was provided as well. Many semi-empirical approaches exist in literature, in
this case Huurman’s formula was used (Huurman, 1996).

EsN

Es1

∼=
εcp,1
εcp,N

= N−b1(X)b2 (2.3)

where b1 and b2 are material parameters, and X = σ1,cyc/σ1,sf was defined
as cyclic stress ratio between the mayor principle stress for the cyclic stress
state and the mayor principal stress at static failure state. Seeing that, in
contrary to the real situation in-situ, the confining pressure is constant in
triaxial tests, the cyclic stress ratio X was modified as follows:

Xc =
X1 −X0

1−X0
(2.4)

The new defined ratio was named characteristic cyclic stress ratio and ac-
counted for the anisotropic initial stress of the soil. The components X1 and
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X0 indicate the cyclic stress ratio at loading and unloading phase respec-
tively. Introducing the above conditions in the finite element analysis the
degradation of stiffness method was complete. A significant result obtained
by employing DSM was the deflection-No of cycles curve, cf. Figure 2.2.

Figure 2.2: Deflection-No of cycles curve. (Achmus et al., 2008).

The DSM was adopted for some parametric studies, which pointed out that
the displacement accumulation due to cyclic loading was, to a large extent
dependent on the embedment ratio, and slightly dependent on the pile diame-
ter. By employing DSM specific cases could be studied, the magnitude of the
load, and any other boundary condition of the problem could be controlled.

As mentioned before the design standards are based on p-y curves or on
complicated material laws. Drawback of these approaches, is the quite limited
application since they are not dependent nor on the number of cycles neither
on the load features. The DSM is of course a step forward in comparison to
the rough methods adopted in the standards. However, it is worth noticing
that, nor small scale, neither large scale tests, have been used for calibrating
the method. Indeed, only triaxial tests were conducted. Thus, the reliability
of DSM needs many more studies to be proved.

LeBlanc’s Approach

LeBlanc et al. (2010a) led research on rigid driven piles subjected to cyclic
loading in a radically different way than the DSM. A series of long term
cyclic loading on small-scale driven piles were conducted. Test results were
afterwards scaled by means of a non-dimensional framework.

A long-term cyclic loading rig was used for conducting the experiments. The
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top of the driven pile was loaded by a cyclic horizontal force which in turn
created a moment acting on the ground surface. For uniquely describing the
loading moment two parameters were introduced, ζb and ζc:

ζb =
Mmax

MR

, ζc =
Mmin

Mmax

(2.5)

where MR is the maximum static moment capacity while Mmin and Mmax

are respectively, minimum and maximum moment, of the specific load cycle.
ζb represents the size of the cyclic loading while ζc represents the type of
the cyclic loading. Note that ζc < 0 means two ways cyclic loading. In the
following these two loading parameters will be named load characteristics, as
they represent the essential features of a load series.

One key issue of LeBlanc’s research was to calculate dimensionless equations
for scaling laboratory tests. This need relied on the fact that friction angle
and shear stiffness found in laboratory significantly differ compared to those
actual of full-scale tests. Such a difference is commonly attributed to the
frictional behaviour of the sand that depends on the isotropic stress level
which, of course, largely changes between small-scale and reality.

The most relevant non-dimensional relationship derived was between dimen-
sionless moment M̃ and dimensionless rotation θ̃:

M̃ = k̃(Ṽ , ẽ, η) · θ̃ (2.6)

where Ṽ is the non-dimensional vertical load, ẽ is the non-dimensional ec-
centricity, η is the slenderness ratio, and k̃ is the non-dimensional stiffness.
Equation (2.6) stated that: once the relationship between non-dimensional
moment and non-dimensional rotation (at constant Ṽ , ẽ and η) is gained in
small-scale tests, it can be applied on large-scale.

The results of the tests were evaluated by using non-dimensional parameters,
e.g. the non-dimensional rotation:

∆θ(N)

θs
=
θn − θ0
θs

(2.7)

wherein the involved rotations are shown in Figure 2.3.
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Figure 2.3: Cyclic and static test for rotation and stiffness. (LeBlanc et al., 2010a).

The test programme carried out by LeBlanc et al. mostly investigated the
changes in behaviour with respect to the initial density (ID), applied load,
and number of cycles.

A remarkable result obtained was an equation stating the accumulate dis-
placement with respect to the number of cycles:

∆θ(N)

θs
= Tb(ζb, ID)Tc(ζc) ·N

α (2.8)

where Tb and Tc are dimensionless functions depending on relative density and
loading characteristics (see LeBlanc et al. (2010a) for detailed explanation).
Equation (2.8) expresses the exponential behaviour of the non-dimensional
rotation. In a similar manner also a relationship for stiffness depending,
again, on number of cycles and load characteristics was found. Some other
specific results were pointed out. For instance, the most burdensome load
condition was found at load characteristic ζc = −0.6 as shown in Figure 2.4.

Figure 2.4: ζc against Tc, Rd is the relative density. (LeBlanc et al., 2010a).
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Lately a comparison was made between DSM and the LeBlanc’s approach.
Results regarding the accumulated displacement were found similar both
quantitatively and qualitatively (Achmus et al. , 2010).

Random Cyclic Loading

LeBlanc et al. (2010b) assessed the accumulated rotation of a stiff pile due to
a random cyclic loading. The method was based on the previously presented
article, whereby a prediction of stiff pile behaviour under cyclic loading was
given. Laboratory tests were carried out by means of the same cyclic loading
rig.

Figure 2.5: Test result and prediction compared. LeBlanc et al. (2010b).

Firstly the accumulated rotation was assumed, and demonstrated to be, in-
dependent of the load sequence. Thereafter, a strain superposition rule was
presented, and in turn confirmed by experiments cf. Figure 2.5. The reversal
load effect was addressed by simply subtracting the number of reversal cycles,
where the load reversals was found by applying a rainflow-counting proce-
dure on time-series of varying loads. Finally, a design chart for stiff piles
subjected to two ways random loading was achieved. The overall method
entirely relies on the empirical parameters previously presented such as Tc
and Tb. Therefore, to prove its reliability further research should be focused
on finding the dependence of such parameters with high accuracy.
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Peralta’s Approach

Peralta (2010) conducted 1-g tests on both, rigid and flexible piles, under
horizontal cyclic loading. The piles were driven in dry sand. A first prob-
lem was to find reliable scaling laws whereby quantitative interpretation of
tests could be used for real-scale prototypes. This issue was accomplished
by proposing a valid similitude law through which results of small-scale tests
could be applied on real-scale prototypes. The dimensionless pile displace-
ment was expressed as:

yN
L

= fh · fEI · fd · fH · fn · fN · (2.9)

where every f represents a function for force eccentricity h, flexibility EI,
diameter d, load H, porosity n, and number of load cycles N, respectively.
Corresponding functions for most of the variables involved were found in
literature. For instance, the static force-displacement relationship, was as-
sessed by the power law which states that the displacement is proportional
to a power of the horizontal load. Thus, the dimensionless displacement was
expressed as:

y

L
=

(

H

γ · L3

)α

· C (2.10)

where C is a constant depending on pile geometry and soil property, and α
is an exponent that was found varying between rigid, and flexible piles. Re-
lationships such as equation (2.10) were ascribed to all Π-products presented
in equation (2.9). The final result was an equation capable of describing
the non-dimensional displacement yN

L
of a pile. Thereafter, an example of

calculation for a real pile loaded by a storm loading was given. Further,
a comparison with the current method for accounting cyclic loading of the
standard API (2002) was presented. A drastic deviation between the two
methods was pointed out regarding rigid piles.

Another interesting result regarded the accumulated displacement of the
same piles under different load paths. The accumulated displacements re-
sulted, to a certain extent, dependent on the load path, in contrary to what
LeBlanc et al. (2010b) assumed and demonstrated in the previous reported
article.

Cyclic Tests on Suction Caissons

By the knowledge of the author only a few papers have investigated the
dynamic behaviour of suction caissons. One of them was written by Zhu et
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al. (2010). The whole concept was to a large extend similar to that adopted
by LeBlanc et al. (2010a). The loading characteristics ζc and ζb and also
the dimensionless ratio for accumulated rotation (θn − θ0)/θs were taken
from LeBlanc’s studies. The non-dimensional relationships were achieved
by carrying out a dimensional analysis on caisson foundations cf. Kelly et
al. (2006a). The cyclic loading rig was basically the same, of course it was
properly adapted to the new kind of foundation. The bucket was installed by
pushing. Initially monotonic tests were conducted in order to determine the
ultimate bearing capacity for different eccentricities. By the results of static
tests a yield envelope was determined which was essential for calculating the
cyclic load characteristic ζb cf. Figure 2.6.

Figure 2.6: Monotonic moment capacity. (Zhu et al., 2010).

Experimental data, gained from laboratory tests, gave a first prediction of
accumulated rotation. Other considerations were made regarding the instan-
taneous centre of rotation and the unloading stiffness. The angular rotation
was found to be linear with the number of cycles in logarithmic coordinates.
Instantaneous centres of rotation in case of cyclic loading were located always
at a greater distance that those of the static loading. Finally the normalized
unloading stiffness was plotted against non-dimensional angular rotation.
Depending on the ζb changes in stiffness were found. However, at fixed load
characteristics the normalized unloading stiffness remained constant.
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An overview on the cyclic loading studies review presented above is illustrated
in Figure 2.7.

Figure 2.7: Overview on cyclic loading studies



Chapter 3

Dimensional Analysis,
π-Theorem

The dimensional analysis is a method which allows for finding the dependency
on physic and geometric parameters, of a certain phenomenon, on the base
of dimensional homogeneity. The advantages of the dimensional analysis are:

- simpler relationships, less number of parameters;

- relationships obtained are more general, possibility of establishing simil-
itude criteria ;

- possibility of carrying out experiments in small-scale and apply results
on large-scale;

- rough estimation of the parameters importance, if a parameter is small
it does not influence much the phenomena.

The first step of the analysis is the well known π-Theorem. In the following a
general explanation of the theorem and its specific application for this thesis
are given.

3.1 Statement and Hypotheses

In developing a dimensional analysis fundamental dimensions, variables and
π-groups of a given problem must be introduced. The fundamental dimen-
sions (or primary dimensions) are simply the physic fundamental dimensions
involved in the problem (for instance length, force, time). By definition their
combinations form any variable of the problem. π-groups are dimensionless
monomials composed by a product of the variables involved in the original
problem.

The π-Theorem states that: if a problem is described by a dimensionally
homogeneous equation, such equation can be reduced to a relationship among
a complete set of dimensionless products (Langhaar, 1951).
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A relationship is said to be dimensional homogeneous if it is independent of
fundamental units of measurement.

In practical terms, assuming that an unknown dimensionally homogeneous
equation has k variables involved, the original equation can be rewritten by
a relationship between k-r dimensionless groups. These groups are named
π-groups, r, in most cases, is the number of fundamental dimensions in the
problem.

In succinct mathematical form if the original equation is:

u1 = f(u2, u3, ....., uk) (3.1)

after applying the π theorem Equation 3.1 can be rewritten as:

π1 = g(π2, π3, ....., πk−r) (3.2)

In equation 3.1 every ui is a variable involved in the problem whereas in equa-
tion 3.2 every πi is a π-group formed. To create proper π-groups, a recurring
set formed by a chosen series of variables ui must be decided. In other words
a recurring set is a group of variables forming all the dimensionless groups.
The conditions to be taken into account during the execution of the method
are listed below:

- every π-group must be uncoupled to any other group (independent
of each other), so that no one group should be obtained combining
together powers of other groups;

- each of the r primary dimensions must appear in at least one of the k
parameters;

- a variable within the recurring set can not be chosen as a dimensionless
group itself.

3.2 Specific Application

The practical problem developed in this thesis is the accumulated horizontal
displacement of a bucket foundation under horizontal loading. To describe
the force-displacement relationship, the variables considered as significant
are: the vertical force V, the horizontal force H, the diameter of the bucket
D, the length of the skirt d, the arm of the horizontal force calculated from
the soil surface h, the friction angle ϕ, and the unit weight of the soil γ. All
these variables are shown in the simplified system depicted in Figure 3.1.
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Figure 3.1: Variables involved in the dimensional analysis.

The original problem can be written as

u = f(H, h, V, d,D, ϕ, γ) (3.3)

It is worth noticing that in writing Equation 3.3 the skirt has been assumed
as entirely rigid. Among the significant variables there are two fundamental
dimensions, namely force [F ] and length [L]. The variables, unit weight γ,
and skirt length d, are chosen to form the recurring set. For γ dimensions are
[FL−3] whilst for d [L] is the dimension. The fundamental dimensions can be
rewritten as products of recurring set variables:

[L] = d (3.4)

[F ] = γ · d3 (3.5)

The π-groups are thus formed by taking each of the remaining variables
and making them non-dimensional. For instance the displacement y has
dimension [L], thereof the first π-group is straightforward

π1 =
y

d
(3.6)

The second π-group has the horizontal force H as object. H has dimension
[F ]. This means that H · F−1 is non-dimensional. In terms of variables:

π2 =
H

γ · d3
(3.7)

Stepwise, all the remaining variable must be taken into consideration and
transformed into dimensionless groups. With these products in hand, Equa-
tion 3.3 becomes:

u

d
= f

(

H

γ · d3
,
V

γ · d3
,
h

d
,
D

d
, ϕ

)

(3.8)

Note that ϕ was already dimensionless, and such it remains after applying
the theorem.



Chapter 4

Similitude Theory

This chapter is aimed at finding, through theory and small-scale tests, con-
sistent relationships to be employed in the design of bucket foundations. The
study is relevant to the design of offshore wind turbine foundations. A simil-
itude theory, regarding the horizontal displacement of bucket foundations
under horizontal load, is put forward. A constitutive law of the soil medium
and a load-displacement relationship for the bucket foundation are derived
theoretically. Triaxial tests of sand, and small-scale tests of bucket founda-
tion, are respectively employed to corroborate the theory. Attention is given
to the different behaviour shown during compressive and dilative phase of
the soil. Some analogy between triaxial tests and tests of bucket foundations
are pointed out. A power law is capable to represent the dimensionless hor-
izontal load-displacement relationship. In accordance with the theory, the
exponent of the power law slightly varies between tests with considerably
different features. The non-dimensional moment-rotation relationship is rep-
resented by a power law as well. In spite some limitations, the approach is
considered valid for forces not up to failure, and therefore, for fatigue design.
The research may be considered as a preliminary study, for predicting the
behaviour of bucket foundations under long term cyclic loading.

4.1 Introduction

Monopod bucket foundations have been diffusely studied in recent years as
a possible option for offshore wind turbine foundations. Such foundation
consists of an upturned bucket with diameter D and length of the skirt d, cf.
Figure 4.1. The main loads acting on the structure are the horizontal forces
from wind and waves. The unique characteristic of the bucket foundation is
the relatively simple and not expensive installation procedure, which can be
carried out avoiding the utilize of heavy vessels (LeBlanc, 2009). This study
employs a theoretical approach and data from small-scale tests to predict the
horizontal load-displacement curve of monopod bucket foundations.
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Figure 4.1: Wind turbine over mounted on a monopod bucket foundation. After
LeBlanc (2009).

Dimensional analyses are essential when small-scale tests are accomplished
within the field of geotechnical engineering. In fact, when an interface soil-
structure is object of study, it is difficult to provide laws which are able to
perfectly reproduce, in small-scale, the real-scale behaviour. In order to apply
the results obtained with small-scale test to large-scale prototypes a simili-
tude theory must be addressed. In this paper a similitude theory for bucket
foundations is put forward stepwise. The behaviour under investigation is
the horizontal displacement of a bucket foundation loaded by a horizontal
force. The case of study is relevant for the design of offshore wind turbine
foundations.

In the hope of obtaining a fully proven similitude theory three essential state-
ments have been employed.

• A constitutive law for soil medium and a load displacement relationship
for bucket foundations must be derived and expressed by means of
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dimensionless variables only.

• The constitutive law and load displacement relationship must be anal-
ogous (Gudehus and Hettler, 1983).

• The constitutive law and load displacement relationship must be cor-
roborated through small-scale tests.

For clarity’s sake, it is worth saying that triaxial tests on dense sand, are
used for proving (or disproving) the constitutive law, while small-scale tests of
bucket foundations in dense sand, are adopted for proving the load-displacement
relationship.

The first statement enables model and prototype to be comparable if, and
only if, they are completely similar, i.e. non dimensional variables assume
same values in the model and in the prototype (Langhaar, 1951). Complete
similarity is normally possible only when geometric similarity exists between
model and prototype. Besides, when soil is involved, its properties shall be
equal in laboratory and in reality.

Furthermore, the skirt of the bucket will be assumed entirely rigid. Therefore,
a constitutive law for the material of the bucket foundation does not concern
our purpose. Further limitations and assumptions of the approach are stated
in the following.

4.2 Constitutive Law

A constitutive law for cohesionless soil under cylindrical compression and
extension was presented by Gudehus and Hettler (1983), on the base of a
more general formulation given by Hettler (1981). In the first article the two
authors expressed the constitutive law regardless of excess pore pressure and
viscous effect. The constitutive law is theoretically derived in this section in
the same manner as in the mentioned article.

Initially a monotonic stress path leads to the initial principal stresses: σ0,1
and σ0,2 = K0 ·σ0,1 where K0 is the coefficient of earth pressure at rest. Sub-
sequently, an additional load (i.e. not up to the failure state), causes another
stress path defined by ∆σ1 and ∆σ2 = K · ∆σ1 where K is another earth
pressure coefficient. The relative deformation results in the two principal
directions which are ∆ε1 and ∆ε2. Now, in order to obtain a mathematical
relationship between stress and strain states, a set of hypotheses (HP) will
be stated. Since horizontal stresses and strains are relevant for this research,



4.3 Load-Displacement Equation 29

in the following hypothesis only ∆σ2 and ∆ε2 will be considered. Of course,
corresponding expression for ∆σ1 and ∆ε1 can be derived as well.

HP1 : The stress-strain relationship can be expressed by means of solely
dimensionless variables:

∆ε2 = f2

(

∆σ2
σ0,2

, K,K0

)

(4.1)

As a result of that, f2 can be seen as a function of non-dimensional products.
As such, the first product ∆σ2/σ0,2, should remain the same in small and
large-scale, and more generally, under any confining pressure.

HP2 : Applying the same stress path to a soil medium with different void
ratio e, the strain path differs only by a factor Ce which depends on e.

HP3 : By plotting on a log-log scale ∆ε2 vs ∆σ2/σ0,2 a straight line must
result. The slope of this line, µ, depends nor on e neither on K and K0.

Naming Aε2, the factors which depends on K and K0, and considering the
three hypotheses, it turns out that the corresponding function related to
equation (4.1) can be written as a constitutive law

∆ε2 = Aε2Ce

(

∆σ2
σ0,2

)µ

(4.2)

Note that the slope µ in equation (4.2) is a constant of the soil.

4.3 Load-Displacement Equation

4.3.1 Original Form

The variables which play a significant role in the behaviour of a bucket foun-
dation under horizontal static load are depicted in Figure 4.2.
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Figure 4.2: Significant variables taken into account in developing the dimensional anal-
ysis.

H and V are the horizontal and the vertical force, respectively, h is the arm
of the horizontal force, d is the length of the skirt, D is the diameter of the
bucket, ϕ the friction angle of the soil, γ the unit weight of the soil, and u
the horizontal displacement of the foundation measured in the centre of the
bucket at seabed level. Note that ϕ is a function of void ratio, e, and mean
effective stress, p’.

When a bucket foundation is loaded by a horizontal force, its horizontal
displacement can be expressed as

u = fs (H, V, h,D, d, γ, ϕ) (4.3)

where fs is, as yet, an unknown function.

4.3.2 Dimensionless Form

For applying the dimensional analysis to a practical problem, a first neces-
sary hypothesis to be employed is the dimensional homogeneity of the solving
problem equation. Such a property characterizes an equation if that equa-
tion is independent of fundamental units of measurement (Langhaar, 1951).
Hence, supposing equation (4.3) dimensionally homogeneous the Bucking-
ham’s Theorem (Buckingham, 1914) can be applied and, thereof, the original
set of variables (equation (4.3)) is reduced to a dimensionless set

u

d
= gs

(

H

γd3
,
V

γd3
,
h

d
,
D

d
, ϕ

)

(4.4)
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wherein gs is the generic corresponding function that shall be found, in the
first place theoretically and thereafter numerically by means of small-scale
tests. More precisely a corresponding equation should be assessed for every
dimensionless variable presented in equation (4.4), so that

u

d
= gH · gV · gh · gD · gϕ (4.5)

Evidently, equation (4.4) remains valid in small-scale as well as in large-scale
only if the dimensionless variables of the model are equivalent to those of
the prototype. In other words, dimensional similarity between model and
prototype must exist.

It is important to point out that on the scalability of small-scale test results,
relies the peculiar benefit of the dimensional analysis. On the other hand,
thereby, the method becomes less general being based on a case by case
analysis.

In addition, the application of Buckingham’s Theorem should be proven by
demonstrating that the set of dimensionless variables of equation (4.4) is a
complete set. By definition a set of dimensionless variables (or dimensionless
products) is complete if each of them is independent of the other (Langhaar,
1951). Thus, strictly speaking, every corresponding function should be ad-
dressed in order to have clear how it effects the behaviour. However, it will
be shown that only one main function will be employed. All the other corre-
sponding functions will be included in one parameter of the main function.

4.3.3 Power Law

The fundamental corresponding function for the static force-displacement
relationship has been chosen as a power law. Such a law, which states that
the lateral displacement of a rigid structure is proportional to a power of
the horizontal load, was detailed demonstrated by Hettler (1981). Besides,
in Gudehus and Hettler (1983) load-displacement relationships were derived
for other kinds of rigid structures. However, the fundamental steps remained
the same. Recently, the power law, has successfully been used by Peralta
(2010) in a research regarding piles under cyclic loading. Below, a simplified
demonstration of the power law is presented for a bucket foundation. Figure
4.3 depicts the system soil-structure on which the following demonstration
relies.
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Figure 4.3: bucket foundation embedded in sand, subjected to horizontal load.

Before applying any load, cf. Figure 4.3 a), the soil is considered to be at
the state of natural sedimentation, so that at a generic depth z the initial
horizontal stress can be expressed as

σ0,2 = γzK0 (4.6)

If a horizontal force H is applied, cf. Figure 4.3 b), to the bucket foundation,
displacements on the x-z plane will occur. Taking the horizontal displace-
ment, u, as main object of interest, its corresponding horizontal strain can
be expressed by

∆ε2 = kε ·
u

d
(4.7)

where kε is a dimensionless factor dependent on the spatial coordinates. Sub-
stituting equation (4.6) and equation (4.7) into equation (4.2) gives

∆σ2 = γzK0

(

kεu

Aε2Ced

)

(4.8)

Now, assuming shear stresses along the skirt negligible for simplicity, the
force H can be expressed by:

H =

∫ d

0

∫ D/2

−D/2

∆σ2dydz (4.9)
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In reality, considering a bucket foundation, the latter integral is not entirely
correct. Indeed the effect of the curved skirt should be accounted into the
integral. Although, according to the purpose of the demonstration, this
thoroughness is negligible.

Hereafter, by substituting equation (4.8) in equation (4.9) the dimensionless
horizontal displacement is obtained as

u

d
=

(

H

γ

)µ

·

(
∫∫

zK0·

·

(

kε
Aε2Ce

)1/µ

dxdy

)

−µ

(4.10)

Finally, naming the second product C and rearranging the whole equation in
dimensionless quantities the expression becomes

u

d
=

(

H

γ · d3

)µ

· C (4.11)

At least two observations about the above demonstration should be pointed
out. Firstly, as one can notice constitutive law and load-displacement equa-
tion demonstrations, have the limitation that initially soils must be in the
condition of soil at ”rest”. This means that the initial principal horizontal
stress, σ0,2, depends only on K0. Such an assumption can be considered true
in laboratory as well as in real scale.

Secondly, not every dimensionless variable considered in (4.4) appear in
(4.11). The friction angle ϕ(e, p′), the ratio D/d, and the load H/(γ · d3)
are definitely well represented, whereas the arm, h/d, and the vertical force,
V/(γ ·d3), do not take part in the demonstration. Nevertheless it is reasonable
thinking that the coefficient C can be expressed by:

C = gV · gh · gD · gϕ (4.12)

Such assumption will be proven by interpreting small-scale test result.

The load-displacement relationship obtained in this section seems to be anal-
ogous to the constitutive law derived in equation (4.2). Besides, both equa-
tions have been expressed in non-dimensional variables. Hence, two essential
conditions of the similitude theory have been respected. Therefore equa-
tion (4.11) will be employed as the corresponding function for the load dis-
placement behaviour of a bucket foundation. Consequently, equation (4.4)
becomes

u

d
= gs =

(

H

γ · d3

)µ

· C (4.13)
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4.4 Experimental Corroboration

Consolidated Drained-Triaxial Tests

In order to check the constitutive hypothesis, Hettler (1981) carried out par-
ticular triaxial tests to avoid non-uniform sample deformation and possible
errors in the measurement. The Consolidated Drained (CD)-triaxial tests
examined in this paper, are considered as sufficient reliable for the purpose
aimed. All tests have been conducted by Ibsenet al. (1995) on Aalborg Uni-
versity sand No. 0. Note that Baskarp Sand No. 15 is equal to Aalborg
University sand No 0. Test equipment and testing procedures, are presented
in Ibsen (1999). The index properties of the sand are shown in Table 4.1.

Table 4.1: Index properties of Aalborg University sand No. 0. (Ibsen, 1999).

Property Value Unit
d50 = 50% - quantile 0.14 [mm]

Cu = d60/d10 1.78 [-]
Specific grain density ds 2.64 [g/cm3]
Maximum void ratio emax 0.86 [-]
Minimum void ratio emin 0.55 [-]

The interpretation of CD-triaxial tests is focused on samples with density
index ID = 1.00, as this is close to usual soil conditions at offshore sites at
shallow depth (0-30 m). Figure 4.4 shows, in dimensionless form, the result
of six drained triaxial compression tests performed with the same density
index at different confining pressures σc. In contrary to what stated in HP1,
these curves badly coincide.
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Figure 4.4: Dimensionless stress-strain behaviour in drained triaxial compression tests
on sand with ID = 1.00.

0 5 10 15
0

1

2

3

4

5

6

7

Axial strain, ε
a

D
im

en
si

on
le

ss
 S

tr
es

s,
 

σ 1/σ
c

I
D
=0.51

 

 

σ
c
=20 kPa

σ
c
=40 kPa

σ
c
=80 kPa

σ
c
=160 kPa

σ
c
=320 kPa

σ
c
=640 kPa

Figure 4.5: Dimensionless stress-strain behaviour in drained triaxial compression tests
on sand with ID = 0.51.
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Figure 4.6: Typical Cambridge diagram for sand. After Ibsen (1999).

Thus, the stress-strain behaviour depends upon the confining stress. Nev-
ertheless, this fact was expected and it can be attributed to the significant
dilative behaviour presented by such a dense sand. Experiments on sand have
shown that dilation occurs in dense sand and/or at low confining pressure
(Ibsen, 1999). In Figure 4.6 is schematically illustrated the typical Cam-
bridge diagram where the characteristic line and the shear strength envelope
are depicted. The effect of the confining pressure at equal density index is
emphasised by Figure 4.6a). Figure 4.6b) highlights how the shear strength
depends on the sand density. It can be noted that the dilative behaviour
is suppressed at high confining pressures, due to grain crushing. At those
confining pressures the shear strength envelope comes to coincide with the
characteristic line. For loose or medium loose sand the shear strength enve-
lope remains close to the characteristic line, also at low confining pressures.
As a confirmation of that, results on CD-triaxial tests on the same sand with
ID = 0.51 are shown in Figure 4.5. Note that the dependence of the stress
strain behaviour on the confining stress is not as dominant as that in Figure
4.4. Particularly, the records σc = 80 kPa, σc = 160 kPa, and σc = 320
kPa of Figure 4.5, are rather similar. More remarkable results were obtained
by Peralta (2010), who examined CD-triaxial tests on looser sand samples
(ID = 0.40). Peralta could fully corroborate the constitutive law by the re-
sults of those tests. More considerable results for the purpose of this paper,
can be seen in Figure 4.7 where the same records of Figure 4.4 are plotted
in a (∆σ1/σc)-εa plane on a double logarithmic scale.
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Figure 4.7: Dimensionless stress-strain behaviour in drained triaxial compression tests
on dense sand.
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Figure 4.8: Comparison between CD-triaxial tests conducted on samples with different
density index at the same confining pressure.

Figure 4.7 shows that every record collected follows a certain straight line
until it begins to bend toward failure. For each confining pressure the point
where the line shape changes was found to be correspondent to the charac-
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teristic state. According to the definition given by Ibsen (1999) the charac-
teristic state of the soil is the stress state at which δεv/δε1 = 0. In other
words, before the Characteristic State the soil compresses, whereas after the
Characteristic State the soil dilates. In Figure 4.7 the slope of the straight
lines seems to be very similar among all the records. As a confirmation of
that, fitting with a power law these straight lines, the exponent µ of equation
(4.2) resulted to be only slightly variable with values ranging from 1.31 to
1.71. Note also that with decreasing confining stress each line is translated
toward higher values of ∆σ1/σc. This fact can be attributed to the effect
of the constitutive law coefficient Aε2(K,K0). By the above considerations
the constitutive law is partially corroborated. More support to the theory
is provided by Figure 4.8 where, a typical comparison between records of
test conducted at the same σc with different void ratios, is given. Also these
data present the same slopes before the bending point. These records vali-
date HP2. The conclusion which can be drawn is that the constitutive law
(equation (4.2)) is consistent with triaxial tests data as long as soil dilation
does not occur. As a direct consequence of that, the similitude theory is now
limited only to the compressive states of the soil.

Tests on Bucket Foundations

Small-scale tests on bucket foundations were carried out by Larsen (2008) at
the Geotechnical Laboratory at Aalborg University. According to the offshore
soil conditions all tests were performed with a high density index (ID > 0.8).
For conducting the experiments 0.4 m, 0.3 m and 0.2 m bucket diameters were
chosen. For each diameter four embedment ratios were adopted, d/D =0.25,
0.5, 0.75 and 1. In most of the tests the 0.3 m diameter bucket was adopted.
In the following, results obtained by Larsen (2008) are presented, and eval-
uated, to fulfil the purpose of this paper. Some typical static test results
are shown in Figure 4.9, where dimensionless displacement is plotted against
dimensionless horizontal force on a double logarithmic scale. Note in the fig-
ure legend that foundation sizes, embedment ratios (d/D), vertical loads and
heights of impact widely vary, from test to test. The density index nearly
remains the same. Figure 4.9 shows that two distinct trends can be discerned
from any of the records.
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Figure 4.9: Dimensionless displacement as a function of dimensionless horizontal load
for tests with different loading features.
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Figure 4.10: Exponent of the power law µ collected with four different embedment
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The first part can be approximated with a straight line characterized by a
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specific slope. Such line is emphasised by fitting with a power law the data
recorded within 0.5 Hmax (maximum horizontal force reached by tests), cf.
Figure 4.9. At a certain point, after 0.5 Hmax, the line ceases to be straight
and tends to bend until failure occurs. The described tendency seems to be
in analogy to what CD-triaxial tests previously showed. Hence, the curva-
ture of the lines might refer to dilative states of the sand. Now, considering
only the straight lines, a similar slope among all records can be observed.
In Figure 4.10 the value of µ (exponent of the power law), calculated for 46
tests, is shown collected with the four different embedment ratios used. In
spite a certain scatter, most of the exponents were assessed in the range of
1.6 and 2. Between the maximum and the minimum value a 34% difference
was found. This was considered as acceptable, even thinking that the men-
tioned scatter was by no means related to the test typology. The variability
of µ is, therefore, utterly attributed to the test sensitivity. Conversely, in
tests carried out with buckets having d/D = 0.25, µ significantly changes.
This can be ascribed to the different failure mechanism that concerns bucket
foundation with d/D < 0.50. This limitation can be seen in Figure 4.11
where records of tests conducted with same load conditions, same diameter,
and different embedment ratios are shown.
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Figure 4.12: Comparison between two tests carried at the same conditions with only
different vertical load.

Hence, regardless of buckets with d/D = 0.25 the first part of the records
follows what was predicted by equation (4.11). The tendency is characterized
by a nearly constant exponent µ and a coefficient C that depends on ϕ(e, p′),
D/d, h/d and V/(γ · d3). The influence of these dimensionless variables,
except for ϕ(e, p′), was proven by comparing C of tests in which only one
of the variable changed. As an example in Figure 4.12 are depicted two
records obtained by tests in which only the vertical load differs. Note that
the two records show the same slope, and that the record with V = 1000 N
is shifted to the right. Therefore, fitting the data with equation (4.13) only
the coefficient C changes. The friction angle ϕ(e, p′) could not be properly
isolated because e and p’ did not significantly change from test to test.

What stated above provides a satisfactory partial verification of the load-
displacement relationship (equation (4.11)), and thereby corroborates the
three previously employed hypotheses and the constitutive law itself. Briefly,
for buckets having d/D ≥ 0.50, loaded by a horizontal force within 0.5 Hmax,
the load-displacement equation well fits the small-scale tests data. Conse-
quently, taking into consideration all the stated limitations, once the load-
displacement relationship of a bucket foundation with specific features has
been assessed through a series of small-scale tests, such equation may be used
for predicting the displacement of a large-scale prototype.

Turning to the relationship between overturning moment and rotation, sim-
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ilarly to equation (4.3) the rotation of the bucket, θ, can be obtained as

θ = fs (M,V,D, d, γ, ϕ) (4.14)

Hence, employing the Buckingham’s Theorem (Buckingham, 1914) the bucket
rotation can be expressed by

θ = gs

(

M

γd4
,
V

γd3
,
D

d
, ϕ

)

(4.15)

Now, figure 4.13 shows typical trends of the horizontal displacement, u,
against the rotation, θ. These records reveal a key feature of every test, which
is the linear relationship between u and θ. This suggests that, the moment-
rotation curves should have similar distribution to those of the horizontal
load-displacement. Figure 4.14 depicts the dimensionless moment-rotation
curve for four tests with different characteristics, on a double logarithmic
scale.
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Figure 4.13: Horizontal displacement, u, as collected with the rotation θ.
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Figure 4.14: Rotation as a function of dimensionless overturning moment for tests with
different loading features.

In fact, it is clear that the trend is similar to that found for the load-
displacement curves. The power law capable to represent the straight part
of the dimensionless moment-rotation records has the form

θ =

(

M

γ · d4

)µ

· C (4.16)

As it was set out for the load-displacement case, the power law is no longer
valid when M > 0.5Mmax. The validity of equation 4.16, for forces not up to
failure, might have significant consequences on the fatigue design. However,
to enhance the reliability of the results, further research is necessary.

4.5 Conclusions

This paper introduces a similitude theory for bucket foundations in dense
sand under static horizontal load. The main aim of the study was to as-
sess a load-displacement relationship capable of properly representing the
behaviour of such foundation in real-scale. The theory is based on previous
similar researches conducted on piles. In order to have a fully proven theory
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three conditions were initially employed. All of them were, to some extend,
fulfilled.

A dimensionless constitutive law for sand was derived assuming three fun-
damental hypotheses. Consolidated drained-triaxial tests were examined in
order to corroborate the assumptions. The experiments could not entirely
confirm the three hypothesis. This was attributed to the dilative behaviour
of dense sand. The constitutive law itself, was partially corroborated. Limit
of its validity was deduced to be the compressive states of the soil.

By virtue of the constitutive law a non-dimensional load-displacement rela-
tionship was derived in form of a power law. Static test results of bucket
foundations under horizontal load were examined to prove the theory. In
analogy to what found for the constitutive law, also the load-displacement
relationship could not be utterly corroborated. Record from tests on bucket
with d/D = 0.25 did not confirm the theory. This was attributed to a dif-
ferent failure mechanism. Moreover, the power law matched with tests data
only until a specific value of the horizontal load. The reason for this might
be the turnabout from compressive to dilative state of the soil. Also the non
dimensional moment-rotation curves were found to be well represented by a
power law (thought with the same limitation of the load-displacement case).
In spite these limitations, the theory was considered acceptable for forces not
up to failure, and therefore, useful for fatigue design.

An additional limitation on the approach is the complete similarity between
model and prototype. Such similarity is complete only when all the dimen-
sionless products of the load-displacement relationship have the same value
in the model as in the prototype.

A similar research regarding large-scale monopod bucket foundations should
be conducted to confirm the findings of this paper. Besides, further studies
should be focused on better investigation of the corresponding functions that
have not been decoupled in this paper. Especially, a study concerning ϕ(e, p′)
should be carried out by recreating the real-scale overburden pressure con-
dition in laboratory, and thus, assess how C, and µ are affected by ϕ. Also
the changing point, between compressive and dilative behaviour, shown by
the record of small-scale tests, should be more profoundly investigated.

This study may be considered as an initial source for further research on long
term cyclic loading of bucket foundations. The approach is not meant for
forces up to the failure state.



Chapter 5

Laboratory Tests

In this appendix all devices, operations and methods that have been nec-
essary to perform small-scale experiments on caisson foundations at the
geotechnical laboratory at Aalborg University are described. Most of the
data analysed in this thesis were obtained by Larsen (2008). On particular
purpose for this thesis six additional experiments were conducted. The be-
haviour of the bucket foundation at different effective stress of the soil was
investigated. The test program is listed in Table 5.1.

Table 5.1: Test program.

.

Test No. Applied Overburden Pressure
[kPa]

1 0
2 0
3 15
4 30
5 20
6 10

Throughout this Appendix all the procedures involved in conducting the
test series of Table 5.1 are presented. The overall testing procedure slightly
differs from that employed by Larsen (2008). The sand used for all tests was
Aalborg University Sand No. 0. All details regarding such sand are set out
in Appendix 6.2.

5.1 Preparation of the Test Box

A steel box, inner width 1600 mm x 1600 mm and inner depth 1150 mm was
used as soil container, cf. Figure 5.1. The box was equipped with a drainage
system on its bottom. The drainage system consisted of perforated pipes, 100
mm of draining material (gravel), and a sheet of geotextile. The perforated
pipes were distributed in order to provide an equal drainage condition to
the entire area. The geotextile sheet was needed for keeping the drainage
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material clear of sand grains which could potentially occlude the drainage
system.

The homogeneity of the soil from one test to another was required. This
enabled the results obtained in different tests to be fairly comparable. In
order to provide equal soil conditions, appropriate procedures were conducted
in the preliminary phase of every test. In the following the soil preparation
procedure is described.

Figure 5.1: Suction caisson test rig.

5.1.1 Preparation Procedure

Through the drainage system the water level was raised on purpose of loosen-
ing up the sand. The water pressure gradient applied was kept under control
through a transparent tube, and regulated by a valve situated on the inlet
pipe. The water was provided by a water tank placed higher than the soil
surface, cf. Figure 5.1. A wooden frame was placed on the sand layer to
retain water and soil due to the loosening. Once the soil reached the com-
plete saturation, the compaction could commence. In order to carry out a
uniform compaction, a wooden plate with 64 holes was placed on the wooden
frame. The entire area was, thereby, equally divided. The compaction was
performed with a rod vibrator, by penetrating every hole in a systematic
manner. In pulling back the rod vibrator the same velocity of the downward
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way was to be kept. The sand compaction equipment is illustrated in Figure
5.2. The above procedure was repeated two times before the first test, and
only one time before every subsequent test.

Figure 5.2: Wooden plate and rod vibrator.

Figure 5.3: Soil alignment operation.

During all the described operations no air had to enter the box through
the drainage system. Therefore, the water level in the box was at any time
kept above the drainage layer. At soil vibration concluded the alignment
operation could be carried out and the water table was adjusted to the sand
surface, cf. Figure 5.3. To reach the complete saturation, some water was
slowly poured from above to avoid eventual sand loosening. Applying the
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above described method ensured sand features, such as density, to have an
acceptable deviation from test to test.

To ensure homogeneity of soil parameters a cone penetration test was uti-
lized. A detailed explanation of the cone penetration test procedure is given
in Section 6.2. A saturated soil was necessary in order to perform cone pen-
etration tests and to vibrate the soil. However, not all tests were conducted
with saturated sand. When suction was applied the sand was brought to the
dry condition, cf. Section 5.2.2.

5.2 Testing Procedure

The six tests were carried out with a 300 mm diameterbucket foundation
with embedment ratio equal to 1. The foundation is illustrated in Figure
5.4. No vertical load, exceeding the structure self weight, was added.

Figure 5.4: 300 mm diameter bucket.

A loading frame mounted on the sand box and fixed at the edges of it, cf.
Figure 5.1, was necessary to perform all the operations. A PC-based data
acquisition, HBM SPIDER 8, was used to transfer data from the measure-
ment devices to the computer. Three phases were necessary to run a test:
installation, suction application (when wanted), and loading action.



5.2 Testing Procedure 49

5.2.1 Installation of the Bucket Foundation

An electric motor mounted on the loading frame, forced the foundation into
the soil. On the bucket lid three air outlet were located and kept in open
position during the penetration. To avoid overpressure inside the bucket the
penetration velocity was very low, approximately 80 mm/h. Once the lid
had reached the soil surface, the air outlets were closed and the installation
rig was delicately dismantled.

Figure 5.5: Installation rig.

The installation was monitored by using a force transducer placed between
the bucket and the installation rig. The tilt of the bucket during installation
was controlled by using a spirit level. A typical curve, depth-penetration
force, is depicted in Figure 5.6. The installation rig is depicted in Figure 5.5.
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Figure 5.6: Penetration force against depth during bucket installation.

5.2.2 Effective Stress Increase

The most relevant innovation regarding the six novel tests was the utilize
of a suction system to apply an exceeding overburden pressure to the soil
surface, cf. Figure 5.7 and Figure 5.8.

Figure 5.7: Membrane and suction spots. Figure 5.8: Suction system.
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The suction system consisted of a membrane with four suction spots, each of
them connected to a vacuum pump through a suction hose. The membrane
was placed beneath the soil surface and fixed to the sand box edges by means
of a steel frame and clamps. Between membrane and steel frame a washer
was inserted in order to avoid leaks of air. Furthermore, between sand and
membrane a filter was put to prevent eventual sucking of sand grains. An
additional spot was placed on the membrane and connected to the data
acquisition device by means of a pressure transducer of the type HPM P6A.
The pressure was regulated with a control valve and kept steady during each
test. The four vacuum pumps applied the suction through a sealed glassed
cylinder to collect the water that unavoidably came out from the box together
with air, cf. Figure 5.8. As a result of that, for all tests with suction applied,
i.e. with increased effective stress, the soil was not in saturated condition.

5.2.3 Loading Phase

Once the bucket was installed and the measurement system set, the appli-
cation of the horizontal quasi-static load could commence. A vertical bar,
bolted on the lid of the bucket, was subjected to a horizontal force induced
by an electric motor. The horizontal loading rig was mounted on the load-
ing frame. The loading velocity was approximately 0.01 mm/s. The bucket
foundation under horizontal load is shown in Figure 5.9.

Figure 5.9: Bucket foundation during loading phase without overburden pressure.
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For all tests the arm of the horizontal load was 600 mm. The moment-
rotation curve for test no. 1 and test no. 6 are shown in Figure 5.10. Every
test was conducted until failure of the soil occurred. When the effective
stress was increased the failure was reached at much higher value of both
applied moment and rotation. From Figure 5.10, it can be observed that the
moment-rotation gradient ceases to increase significantly after 2◦ of rotation
for Test no. 6 and after 1◦ of rotation for Test no. 1. The tests with suction
applied were also subjected to an unloading-reloading phase.
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Figure 5.10: Moment against rotation for test no. 1 and test no. 6.

5.3 Deformations Measurement

The displacement of the bucket was measured by means of two perpendicular
plates, on which three linear variable differential transducers (LVDTs) were
placed. Two transducers, type HBM W20TK were located vertically and
another, type HBM WA/50 was located horizontally. The measurements
themselves, assessed during tests, did not provide the actual displacement of
the foundation straightforward. In fact, some calculations were employed to
figure the bucket displacement. The calculation process was based on that
proposed by Larsen and Ibsen (2006). The system is depicted in Figure 5.11
and a picture is given in Figure 5.12.
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Figure 5.11: Initial and displaced configuration of the bucket with LVDTs. After Larsen
and Ibsen (2006).

Figure 5.12: LVDTs and load cells. (Larsen, 2008).

The calculation for the displacement of the bucket begins with stating the
coordinates of the LVDTs at both initial and deformed configuration. Below
the coordinates are specified with respect to the origin of the system which
is located on the bottom of the bucket lid as shown in Fig. 5.11. The
coordinates, at the beginning of the experiment, can be expressed as:

u1,i = (−185mm, 120mm);

w1,i = (−100mm, 95mm);

w2,i = (100mm, 95mm);

where u1 refers to the horizontal displacement transducer, w1 refers to the
first vertical displacement transducer, and w2 refers to the second vertical
displacement transducer. When the displacement occurred the coordinates
become:
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u1,d = (−185mm+∆x, 120mm);

w1,d = (−100mm, 95mm+∆y1);

w2,d = (100mm, 95mm+∆y2);

where ∆x is the horizontal transducer measurement, ∆y1 is the first vertical
transducer measurement and ∆y2 is the second vertical transducer measure-
ment. The subscripts i and d refer respectively to the initial and displaced
position.

The sign convention employed to measure vertical displacement w, horizontal
displacement u, rotation θ and loads was chosen according to the one pro-
posed by Butterfield et al. (1997). Note that any transducer measurement
can be either positive or negative, depending on the displacement induced.
For instance, according to the system illustrated on Figure 5.11, the second
vertical measurement ∆y2 is negative, while the horizontal measurement ∆x
is positive as well as the first vertical one ∆y1.

Figure 5.13: Sign convention for loads and displacements.After Butterfield et al. (1997).

The displacements of the bucket, u and w were measured by representing
the perpendicular plates with two lines, cf. Figure 5.14. These two lines, l1
and l2, can be expressed with two linear equations:

l1 : y = a1 · x+ b1 (5.1)

l2 : y = a2 · x+ b2 (5.2)

where angular coefficients a1 and a2 and constants b1 and b2 were deduced
for every test by elaborating the transducer coordinates and transducer mea-
surements following equations (5.3)-(5.6). Figure 5.14 shows the two perpen-
dicular plates in the displaced configuration. In the same figure the junction
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of the two plates s, the midpoint m of line l1 and the points of the transducer
measurements ud, w1,d and w2,d are illustrated as well.

Figure 5.14: l1 and l2 outline during horizontal loading. After (Larsen and Ibsen, 2006).

As it is intuitive the rotation of the line l1 is equal to the angular coefficient
a1, which can be calculated with equation 5.3. Thereof the rotation is simply
θ = arctan(a1). Once a1 is known also a2 can be calculated in virtue of the
perpendicular lines property (equation 5.4).

a1 =
∆y2 −∆y1

200
(5.3)

a2 =
−1

a1
(5.4)

Now, knowing the coordinates of the displaced points of measure, constants
b1 and b2 can be calculated as:

b1 = 95 + ∆y1 + a1 · 100 (5.5)

b2 = 120− (∆x− 185) · a2 (5.6)

Hereafter, the coordinates of the junction point s are calculated by using the
equation y1 = y2 = ys which gives:

xs =
b2 − b1
a1 − a2

(5.7)

ys = a1 · xs + b1 (5.8)

Line l1 midpoint is named m and by its determination the real displacement
of the bucket foundation can be calculated.

xm = xs + 185 · cos(θ) (5.9)
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ym = ys − 185 · cos(θ) (5.10)

Finally the horizontal displacement u and the vertical displacement w are
obtained with the following relationships:

u = xm − 95 · sin(θ) (5.11)

w = −(ym − 95 · cos(θ)) (5.12)

In Figure 5.15 one displacement transducer on the right and one force trans-
ducer (or load cell) on the left are depicted. Before conducting the first of the
six new tests the three LVDTs were calibrated by means of the calibration
rig depicted in Figure 5.16.

Figure 5.15: Force and displacement transducer.

Figure 5.16: LVDTs calibration rig.
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5.4 Forces Measurement

The moment at the soil surface was induced by a horizontal force H applied
to a certain arm OH3. Depending on the sort of load wanted, the horizontal
load arm could be set. For the six new experiments the arm was set at 600
mm. Figure 5.17 represents the forces measurement system.

Figure 5.17: Forces and displacement on the bucket after Larsen and Ibsen (2006).

Two load cells, type HBM U2A 10 kN, were located 71 mm above the bucket
lid, and measured the applied moment which is termed Mm. In actuality
the cells measured the two vertical forces, and thereof, the moment was
calculated as follow:

Mm = (V1 − V2) · δV/2 (5.13)

where V1 and V2 are the two vertical loads recorded by the load cells, whereas
δV is the distance between the load cells. Thus, the corrected horizontal force
is given

Hcorr =
Mm

OH3 − 71mm
(5.14)

Hereafter the corrected moment M0 can be calculated

M0 = Hcorr · OH3 (5.15)

In case of suction applied, the two vertical load cells were not utilized be-
cause the playing forces exceeded the transducers capacity. In such cases
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the moment was simply calculated as the measured horizontal force multi-
plied by the arm. To measure the horizontal load, one force transducer, type
HBM U2A 100 kg, was mounted on the vertical bar, connected directly to
the horizontal loading device. When the effective pressure was increased a
load cell of the type HBM U2A 10 kN was utilized. Before commencing the
first experiment all the transducers adopted have been calibrated by means
of the force calibration rig shown in Figure 5.18.

Figure 5.18: Test Box, dimensions in mm.
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All the presented devices are sketched in Figure 5.19.

Figure 5.19: Test Box, dimensions in mm.



Chapter 6

Parameters of the Soil

In this chapter the sand used for conducting small-scale experiments on
bucket foundations at the Geotechnical Laboratory at Aalborg University
is introduced. Cone penetration test and relative calculation to estimate the
soil parameters are presented in detail.

6.1 Aalborg University Sand No. 0

Aalborg University Sand No. 0 is a graded sand from Sweden. Small grains
have sharp edges while large grain are rounded. Such sand is mostly com-
posed by quartz. Also biotite and feldspar are contained. Its properties are
shown in Table 6.1 (Ibsen, 1999).

Table 6.1: Index properties of Aalborg University sand No. 0. (Ibsen, 1999).

Property Value Unit
d50 = 50% - quantile 0.14 [mm]

Cu = d60/d10 1.78 [-]
Specific grain density ds 2.64 [g/cm3]
Maximum void ratio emax 0.86 [-]
Minimum void ratio emin 0.55 [-]

Ibsen and Bødker (1994) found by conducting sieve analysis the distribution
of grains for Aalborg University sand No. 0 shown in Figure 6.1. Note that
Aalborg University sand No. 0 is equal to Baskarp Sand No. 15.
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Figure 6.1: Distribution of grains for Aalborg University sand No. 0 from sieve analysis.
(Ibsen and Bødker, 1994)
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6.2 Cone Penetration Test

The homogeneity of the sand after the compaction procedure was tested by
conducting a cone penetration test (CPT). In contrary to the traditional
CPT used in situ, that utilized at Aalborg University laboratory measures
only the tip resistance regardless of sleeves friction and pore pressure.

Figure 6.2: Cone Penetration Test device.

Figure 6.3: CPTs locations.

The tip resistance was measured by means of a full bridge strain gauge placed
within the CPT body. To record the depth of the observations a displacement
transducer was linked to the CPT device. A picture of the equipment used is
illustrated in Figure 6.2. The CPT device was mounted on the loading frame
and the test was conducted three times prior to each test. One CPT was
conducted in the center of the tank and two CPTs were conducted 40 cm
from the center on both sides, cf. Figure 6.3. The CPT penetration velocity
was 5 mm/s and was kept steady at any depth. A typical result of the CPT
series is illustrated in Figure 6.4. From Figure 6.4 it is seen that at three
different locations the CPT gives very similar results, meaning an overall soil
homogeneity. Figure 6.5 depicts the mean value of the CPTs conducted prior
to each test. It can be noted that, fairly similar values are reached prior to
each test.
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Figure 6.4: CPT result for test no. 2.
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Figure 6.5: Comparison of CPTs result.
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6.3 Soil Parameters Calculation

In order to obtain the density index, ID, and thereof the other parameters of
the soil from solely CPT data some calculations were made following Ibsen
et al. (2009). The whole method was based on the relationship between
density index and secant friction angle proposed by Schmertmann (1978).
Such relationship was characterized for Aalborg University sand No. 0 by
means of a series of triaxial tests.

Firstly an iteration process to find ID was created following equations (6.1)-
(6.4).

γ′ =
ds − 1

1 + e
· γw (6.1)

σ′

1 = γ′ · x (6.2)

ID = c2 ·

(

σ′

1

qc1c

)c3

(6.3)

ID =
emax − e

emax − emin
· 100 (6.4)

Where σ′

1 is the effective vertical stress in MPa, e the effective void ratio,
x the depth in m, γw the unit weight of the water in kN/m3, qc the cone
resistance in MPa and, c1, c2, c3 fitting constants corresponding to 0.75, 5.14,
and -0.42 respectively. By employing equations (6.1)-(6.4) the void ratio e
and the corresponding density index ID were achieved at any depth after 4 to
5 loops. The requirement to fulfil the iteration was a difference between two
successive e less than 10−4. The process was initiated by setting e = emin.

Thereafter also friction angle ϕtr, dilation angle ψtr, secant modulus of elas-
ticity E50 and tangential modulus of elasticity E0 were calculated by adopting
equations (6.5)-(6.8). Note that the subscripts of the friction and dilation
angle are ”tr”, as triaxial test results were mainly employed in determining
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the below equations.

ϕtr = 0.152 · ID + 27.39 · σ′−0.2807
3 + 23.21 (6.5)

ψtr = 0.195 · ID + 14.86 · σ′−0.09764
3 − 9.946 (6.6)

E50 = (0.6322 · I2.507D + 10920) ·

(

c · cosϕtr + σ′

3 · sinϕtr

c · cosϕtr + σ′ref
3 · sinϕtr

)

(6.7)

E0 =
2 · E50

2−Rf
(6.8)

(6.9)

where σ′ref
3 is a reference pressure (100 kPa) while Rf is the failure ratio

normally set to 0.9.

Note that equation (6.5) involves only ϕtr as unknown. Indeed σ′

3 is plainly
dependent on the coefficient of horizontal earth pressure at restK0 = (1−sinϕtr).
Since the stress range inside the sand box in normal condition varies from 0
to 2.5 kPa, equation (6.5) converges only for enormously high ϕtr values. As
a result of this, when the effective horizontal stress did not reach at least 5
kPa, the horizontal stress σ′

3 of equation was set to 5 kPa. This assumption
gives a friction angle slightly lower, but nevertheless acceptable. When the
value of the effective stress exceeded 5 kPa, equation (6.5) could converge to
reasonable value of ϕtr. Such case was that with 30 kPa of suction applied,
at which horizontal stress was calculated as

σ′

3 = σ′

1 ·K0 + P0 ·K0 (6.10)

where P0 is the increase of effective stress due to the suction. Material
properties obtained from the CPTs conducted prior to the six tests are shown
in Table ??. The uncertainties related to the E0 calculation were too high for
most of the tests because of the very low stress state. Hence, the E0 value was
assessed only for test no. 4 which gave 19.8 Mpa. Tests in normal overburden
pressure condition (tests no. 1 and 2) were conducted in saturated sand.
The unit weight, γ, calculated was therefore the effective unit weight. When
applying the increase in effective stress (tests no. 3, 4, 5 and 6)the soil was
brought to dry condition. Hence, for those tests the dry unit weight of the
soil was considered.
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Table 6.2: Sand parameters for the six tests.

.

ϕtr ψtr ID γ
[◦] [◦] [-] [kN/m3]

Test 1 52.31 17.72 0.77 10.61
Test 2 52.28 17.67 0.76 10.59
Test 3 51.92 17.21 0.74 15.88
Test 4 51.87 16.13 0.72 15.82
Test 5 51.63 16.85 0.72 15.82
Test 6 51.25 16.37 0.70 15.76

The above approach was used only for the six novel tests. The reader should
refer to Larsen (2008) for information about soil parameters calculation em-
ployed in previous bucket foundations experiments.



Chapter 7

Small-Scale Testing of Laterally
Loaded Bucket Foundations in

Dense Sand

Monopod bucket foundations promise to become a reliable and cost-effective
option for offshore wind turbine foundations. In this chapter, six small-scale
tests of a steel bucket foundation subjected to quasi-static lateral load, are
presented. When conducting small-scale experiments on soil, scale effects
can considerably affect the tests outcome. To overcome this issue, a novel
testing system based on the application of a suction between the soil surface
and a membrane, is employed. By means of the suction the effective stress
of the soil is increased. The tests are conducted at stress levels of 0 kPa, 10
kPa, 15 kPa, 20 kPa, and 30 kPa ,respectively. The test results successfully
prove reliability and consistency of the method. The comparison between
the tests conducted at stress level of 0 kPa, and the tests with stress level
increased, shows remarkable differences. The rotation reached at soil failure
is higher for tests performed with increased effective stress. The relationship
between scaled overturning moment, M/(γ · d4), and rotation, is well repre-
sented by a power law. The exponent of the power law is consistent among
all tests carried out with stress level increased. Besides, attention is given
to the instantaneous centre of rotation paths during loading, unloading and
reloading phases. Further cyclic loading studies may adopt this testing sys-
tem to better investigate the accumulated rotation of bucket and monopile
foundations.

7.1 Testing Programme

The test program consisted of 6 monotonic horizontal loading tests of the
bucket foundation at five different effective stress level. All experiments took
place at the Geotechnical Engineering Laboratory at Aalborg University.
According to the scaling relationship proposed in Chapter 4, the tests features
were chosen in order to model the behaviour of a real bucket foundation with
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d = 16 m, D = 16 m, h = 32 m. The arm of the horizontal load , h, refers to
the waves action. The foundation adopted to carry out all tests was a steel
bucket of diameter, D = 300, with a skirt of d = 300, cf. Figure 7.1. The
arm of the horizontal force h was for every test 600 mm from the soil surface.

Figure 7.1: 300 mm diameter, 300 mm skirt bucket foundation.

Tests were performed at different soil effective pressure. The test program is
listed in Table 7.1.

Table 7.1: Test program.

.

Test No. Overburden Pressure
[kPa]

1 0
2 0
3 15
4 30
5 20
6 10
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7.2 Results

Part of the following results will be presented employing the dimensionless
moment M/(γ · d4) and the dimensionless horizontal force H/(γ · d3). The
choice of these normalized values relies on the results found in Chapter 4
regarding the dimensionless relationships moment-rotation, and horizontal
load-displacement. Hereby, attention is mainly given to the relationship be-
tween dimensionless moment and rotation, which is more relevant for bucket
foundation fatigue design.

Test no. 1 and test no. 2 were performed to have a double check of the case
without overburden pressure increased. Indeed, they give basically the same
response in terms of loading as well as in terms of deformation. Although
test no. 3 was too early interrupted, its result is considered significant and
it is not dismissed from the data analysis.

7.2.1 Force-Displacement Curves

The raw moment data for all tests, as collected with rotation, are presented
in Figure 7.2. In the figure legend, the suction at which each test was carried
out, is stated. In every test the soil was brought to failure. As it was
expected, when the effective stress is increased the failure occurs at higher
value of both applied moment and rotation. From Figure 7.2, it can be
observed that the moment-rotation gradient diminishes significantly after 2◦

of rotation for test no. 3, 4, 5, and 6, and after 1◦ of rotation for Test no.
1. Starting from 1.5 ◦, in tests no. 3, 4, and 5, a series of sudden load-
loss immediately followed by a load-recover, can be noted. This attribute
may be due to the dilation of the sand which involves more and more soil
during the development of the failure mode. Indeed when this phase ceases
the load increases at a lower rate than before. Such phenomena does not
occur when the overburden pressure is not increased and when the suction
is 10 kPa. Figure 7.2 illustrates also how, the applied moment, strongly
depends on the overburden pressure. For instance, the bucket foundation
rotation equal to 1◦ is obtained with a moment of approximately 130 Nm
for test no. 1 and 2. With respect to the latter value, the moment increases
with a factor of approximately 6.4, 8.2, 9.7, and 12.7 for test no. 6, 3, 5,
and 4 respectively. Similar observation can be made for the horizontal load-
horizontal displacement curves shown in Figure 7.3. The residual plastic
deformation seems to be independent of the overburden pressure state. After
the unloading phase the plastic deformation falls within the range 80-90 %
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of the deformation reached after the loading phase. Experiments conducted
by ? with normal overburden pressure conditions, revealed the same residual
plastic deformation.
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Figure 7.2: Raw rotation-moment data for all tests.
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Figure 7.3: Raw data of horizontal displacement-horizontal force, for all tests.
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Figure 7.4: Raw dimensionless moment-rotation data for all the tests on a logarithmic
plane.
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Figure 7.5: Raw dimensionless moment-rotation data for all the tests on a logarithmic
plane.

In Figure 7.4 raw data of the bucket foundation rotation against the dimen-
sionless overturning moment, M/(γ · d4), are plotted on double logarithmic
scale. The same plot concerning normalized horizontal force-horizontal dis-
placement is given in Figure 7.5. In both figures, the records of tests with
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increased effective stress show a distinct similar slope which contrasts with
that of test no. 1 and 2. Focusing now on the first 0.5◦ of rotation, i.e.
significant for fatigue limit states, a power law by the analytical form

θ =

(

M

γ · d4

)µ

· C (7.1)

can be adopted to represent the records (see Chapter 4). In Figure 7.6 the
rotation as a function of the dimensionless moment is given only for the first
0.5 ◦ of rotation. In order to avoid data superposition test no. 2 is not
displayed in Figure 7.6. Although the power law shows slightly lower values
ofM/(γ ·d4) for rotation θ < 0.05◦, it is considered well representative of the
normalized moment-rotation trends.
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Figure 7.6: Dimensionless moment-rotation curves, each of them fitted with a power
law.

In Table 7.2 a Comparison of the power law analytical expressions is given.
The exponent of the tests with suction applied is consistent and differs from
the exponent of tests no. 1 and no. 2. This suggests that when the soil
effective stress is increased the value of exponent µ is constant.
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Table 7.2: Power law coefficients for every test.

.

Suction C µ
[kPa] [-] [-]

Test 1 0 0.127 4.64
Test 2 0 0.11737 3.98
Test 6 10 0.01425 2.23
Test 3 15 0.00965 2.20
Test 4 20 0.00791 2.11
Test 5 30 0.00402 2.17

The ultimate moment capacity of the bucket foundation, under different
overburden pressure induced, is taken as the moment measured at 3◦ of
rotation. For test no. 3 a spline interpolating function is adopted to obtain
the moment at 3◦ of bucket rotation, cf. Figure 7.7. Although test no. 1 and
test no. 2 do not reach 3◦ of rotation, the moment ceases to increase after
1◦ of rotation. Therefore, the ultimate moment capacity of these tests was
taken as the maximum moment reached during the tests. Table 7.3 lists the
ultimate moment for all tests.
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Figure 7.7: Evaluation of the ultimate moment for test no. 3.
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Table 7.3: Ultimate moment capacity.

.

Ultimate Moment
Test no. Capacity

[Nm]
1 213
2 234
6 1008
3 1444
4 1674
5 2401
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7.2.2 Displacements Analysis

In Figure 7.8 the horizontal displacement, u, is plotted as a function of the
rotation, θ, for each test. Every record exhibits a linear trend. A gap between
tests conducted in normal stress conditions, and those at increased effective
stress, is evident. This indicates that, the failure mode of the two cases is,
to some extend, different. This is plausible, and can be attributed to the
different stress states distribution in case of overburden pressure increased.
By computing the LVDTs measurements the instantaneous centre of rotation
could be evaluated. In Figure 7.9 the istantaneous centre of rotation for test
no. 1 are illustrated. A typical instantaneous centres of rotation distribution
for tests with effective stress increased is illustrated in Figure 7.10, where
only the loading phase path of test no. 5 is considered. In both figures, the
arrow above the graph, indicates the loading direction. The majority of the
instantaneous centres of rotation was found below the middle of the skirt,
toward the direction of the loading. In spite this general similarity, a little
difference between the two plots can be noted. The centres of rotation for
test no. 1 are concentrated lower, and more toward the loading direction.
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Figure 7.8: Horizontal displacement against rotation.
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Figure 7.9: Instantaneous centres of rotation for test no. 1.
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Figure 7.10: Instantaneous centres of rotation for test no. 5.
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7.3 Conclusions

Bucket foundations may become a cost-effective option for offshore wind
turbine support. Over the last decade small-scale experiments and field trials
have proven the reliability of these foundations. The loads acting on an
offshore structure are mainly cyclic and the current aim of researchers is
addressing the cyclic loading response of such structures.

In a bid to minimize the scale effect of further cycling loading small-scale tests
a new testing method is set out in this paper. The novel method consists
of applying a suction between a membrane and the soil surface in order to
increase the soil effective stress.

The results clearly shown how the moment applied on the bucket depends
on the stress state of the soil. The consistency of the method was achieved
by proving that, stiffer responses of the soil correspond to higher overbur-
den applied by means of the suction. The plastic response of the soil was
not affected by the different overburden pressure applied. The normalized
moment-rotation curves of tests with increased overburden pressure followed
a peculiar tendency. The overturning moment capacity was calculated for
every test. This will be useful to calibrate the load magnitude of cyclic
loading tests. Due to the distinct boundary conditions, tests in normal con-
ditions showed a slightly different failure mode than tests with overburden
pressure increased. This conclusion was reached by plotting rotation against
horizontal displacement curves and by analysing the instantaneous centres of
rotation locations of different tests. Further numerical simulations have to
take heed of the different failure mode presented by the tests with effective
stress increased.

The overall method was found to be consistent and gave the expected results.
Interesting information for future cyclic loading researches were obtained.



Appendix A

Tests Data

Throughout this appendix the data obtained by conducting six quasi-static
tests of a bucket foundation are presented. For each test, also the graphs
regarding CPTs performed to verify the homogeneity of the sand are shown.
In the figure caption of some figures, eventual notes on the test are pointed
out.

Figure A.1: Overview of the experiments rig.
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A.1 Test no. 1, no suction applied
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Figure A.2: Horizontal force-horizontal displacement, Test 1.
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Figure A.3: Moment-Rotation, Test 1.
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Figure A.4: Displacement against rotation.
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Figure A.5: Displacement of the bucket during Test 1.
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Figure A.6: LVDTs measurements during Test 1.
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Figure A.7: Test1, CPT 1, the calibra-
tion was likely wrong when conducting this
CPT.
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Figure A.8: Test1, CPT 2.

0 100 200 300 400 500 600 700 800 900

0

50

100

150

200

250

300

350

400

450

Tip Resistance, N

D
ep

th
, m

m

Figure A.9: Test1, CPT 3.
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Figure A.10: Comparison of CPTs.
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A.2 Test no. 2, no suction applied
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Figure A.11: Horizontal force-horizontal displacement, Test 2.
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Figure A.12: Moment-Rotation, Test 2.
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Figure A.13: Displacement against rotation.
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Figure A.14: Displacement of the bucket during Test 2.



84 APPENDIX A. TESTS DATA

0 1 2 3 4 5 6 7 8
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Vertical LVDT measurement  δ
1
, mm

V
er

tic
al

 L
V

D
T

 m
ea

su
re

m
en

t  δ 2, m
m

Figure A.15: LVDTs measurements during Test 2.
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Figure A.16: Test2, CPT 1.
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Figure A.17: Test2, CPT 2.
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Figure A.18: Test2, CPT 3.
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Figure A.19: Comparison of CPTs.
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A.3 Test no. 3, 15 kPa suction applied
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Figure A.21: Moment-Rotation, Test 3.
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Figure A.22: Displacement against rotation.
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Figure A.23: Displacement of the bucket during Test 3.
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Figure A.24: LVDTs measurements during Test 3.

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

400

450

Tip Resistance, N

D
ep

th
, m

m

Figure A.25: Test3, CPT 1.
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Figure A.26: Test3, CPT 2.
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Figure A.27: Test3, CPT 3.
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Figure A.28: Comparison of CPTs.
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A.4 Test no. 4, 30 kPa suction applied
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Figure A.29: Horizontal force-horizontal displacement, Test 4.
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Figure A.30: Moment-Rotation, Test 4.
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Figure A.31: Displacement against rotation.
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Figure A.32: Displacement of the bucket during Test 4.
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Figure A.33: LVDTs measurements during Test 4.
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Figure A.34: Test4, CPT 1.
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Figure A.35: Test4, CPT 2.
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Figure A.36: Test4, CPT 3.
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Figure A.37: Comparison of CPTs.
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A.5 Test no. 5, 20 kPa suction applied
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Figure A.38: Horizontal force-horizontal displacement, Test 5.
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Figure A.39: Moment-Rotation, Test 5.
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Figure A.40: Displacement against rotation.
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Figure A.41: Displacement of the bucket during Test 5.
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Figure A.42: LVDTs measurements during Test 5.
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Figure A.43: Test5, CPT 1.
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Figure A.44: Test5, CPT 2.
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Figure A.45: Test5, CPT 3.

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

400

450

Tip Resistance, N

D
ep

th
, m

m

 

 

CPT 1
CPT 2
CPT 3

Figure A.46: Comparison of CPTs.
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A.6 Test no. 6, 10 kPa suction applied
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Figure A.47: Horizontal force-horizontal displacement, Test 6.
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Figure A.48: Moment-Rotation, Test 6.
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Figure A.49: Displacement against rotation.
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Figure A.50: Displacement of the bucket during Test 6.
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Figure A.51: LVDTs measurements during Test 6.
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Figure A.52: Test6, CPT 1.
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Figure A.53: Test6, CPT 2.
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Figure A.54: Test6, CPT 3.
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Figure A.55: Comparison of CPTs.
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Doherty J. P., Deeks A. J. and Houlsby, G. T. (2004). Evaluation of Foun-
dation Stiffness Using the Scaled Boundary Finite Element Method, Com-
putational Mechanics WCCM VI in conjunction with APCOM’04, Sept.
5-10, 2004, Beijing, China. Tsinghua University Press & Springer-Verlag.

DNV (2004). Offshore standard: Design of Offshore Wind Turbine Structures
(DNV-os-j101). Det Norske Veritas, Hellerup, Denmark.

Gottardi, G., Houlsby, G.T. and Butterfield, R. (1999). The Plastic Response
of Circular Footings on Sand under General Planar Loading, Géotechnique
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