
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Session Types for Asynchronous
Communication:
a New Subtyping

and Its Implementation

Relatore:
Chiar.mo Prof.
Gianluigi Zavattaro

Correlatore:
Prof. Julien Lange

Presentata da:
Teresa Signati

III Sessione
Anno Accademico 2019/2020

Abstract

Session types are a promising way to describe communication protocols di-

rectly through the type system, allowing to check the correctness of a system

at compile time. This thesis represents a study of session subtyping, i.e., the

substitutability of components, starting from the work by Bravetti, Lange,

and Zavattaro, who presented a definition of fair asynchronous subtyping [3].

Their subtyping allows the anticipation of messages emissions without the

restrictions imposed by previous results on this field. Since covariance of

outputs is not allowed by the original version of subtyping, we try to address

this problem and to introduce covariance into the original proposal of fair

asynchronous subtyping [3]. Finally, we describe the integration process of

the new definition of subtyping within the tool [4] for the check of subtyping

relation.

Contents

Abstract i

1 An Overview of Session Types 1

1.1 The Idea of Session Types . 1

1.2 Syntax and Semantics . 4

2 On Previous Definitions of Subtyping 7

2.1 Session Subtyping . 7

2.2 Asynchronous Session Typing 9

2.3 CFSM Representation . 11

2.4 On Fair Asynchronous Subtyping 12

2.4.1 Controllability . 13

2.4.2 Fair Asynchronous Subtyping 14

3 Covariance Introduction 17

3.1 Attempt 1 . 17

3.2 Attempt 2 . 20

3.3 Attempt 3 . 22

3.4 Attempt 4 . 23

3.5 Final Attempt . 24

3.5.1 The Soundness of the New Definition 27

4 Implementation 31

4.1 On the Subtyping Algorithm 31

iii

iv CONTENTS

4.2 On the Implementation of the Tool 36

4.2.1 On oneStep Function 36

4.2.2 The Controllability Check 38

4.2.3 Covariance Introduction 40

4.2.4 Example of Tool Outputs 41

Conclusions and Future Works 51

Bibliography 53

Chapter 1

An Overview of Session Types

The always growing importance of network computing and of program-

ming based on communication among processes led to the introduction of

communication primitives and the birth of new programming languages and

formalism to deal with the need of a readable and performant way to rep-

resent interactions between several processes. Concurrent and distributed

communications have to face several issues, such as disagreements between

senders and receivers, deadlocks and orphan messages. The increasing im-

portance of distributed systems led to the search for a solution, that can be

found in session types.

1.1 The Idea of Session Types

The importance of type systems comes from the possibility of verifying

that a program is well-behaved by checking that it is well-typed. Tradition-

ally, type systems have been focused on checking the possible outcome of

computations, on what the result of the computation should be. During the

’90s, new notions of typing allowed the description of properties associated

with the behaviour of programs through the type systems, focusing on how

the computation proceeded. The latter are usually referred to as behavioural

types [11].

1

2 1. An Overview of Session Types

Session types fall within the more general concept of behavioural types,

that allow to represent the evolution of the computation directly within the

type system. A successful typechecking ensures the correct interaction be-

tween the components of the system.

The first proposals of session types date back to the 1990s by Takeuchi,

Honda, and Kubo [16] and Honda, Vasconcelos, and Kubo [10], who intro-

duced session types as a formalized solution in π-calculus to communication

problems at compile time, without having to face them at execution time.

A session represents a logic unit of information exchange between several

parts [7] specifying messages’ sequence and direction.

From the point of view of each part of the communication, a session type

can be seen as a protocol in its own perspective.

The basic constructs are the message exchange operations: !bool denotes

the send, the output of a boolean value, instead ?bool denotes its receive, the

input operation. Sequencing is represented by . and the termination of the

protocol, after which no further interaction is possible, is denoted by end.

An example of session type can be

!bool.?nat.end

where the message exchange starts with the output of a boolean value, fol-

lowed by the input of a natural number, followed by the completion of the

protocol.

Intuitively the evolution of the communication can be graphically repre-

sented through UML sequence diagrams, as in Figure 1.1, representing the

communication between a client and a server. In this example, the server

computes the multiplication or the division between two given numbers, de-

pending on the required operation.

Arrows represent the direction of each message and they can be solid lines,

if they represent a possible option, like multiplication, division, quotient and

error, or dashed lines if they identify related data.

From the UML sequence diagram, it is possible to retrieve a global de-

scription of the system, as follows

1.1 The Idea of Session Types 3

Client Server

multiplication

term1

term2

result

Client Server

division

term1

term2

quotient

result

Client Server

division

term1

term2

error

Figure 1.1: UML sequence diagram of possible interactions between a client

and a server

Client → Server:

{ multiplication: Client → Server: term1.

Client → Server: term2.

Server → Client: result.

end.

8 division: Client → Server: term1.

Client → Server: term2.

Server → Client:

{ quotient: Server → Client: result.

end

8 error: end

}

}

Options that can be chosen at a given instant are surrounded by curly

brackets and are internally separated by 8. For each label, messages and

their direction are specified.

Replacing data by their actual types (term1 by Integer, term2 by Integer,

and so on) gives the global type.

A local view of each part of the communication is obtained by replacing

arrows with send and receive operation, represented by ! (⊕ in case of a

multiple choice) and ? (& in case of a multiple choice) respectively.

The local description from the Client’s point of view is as follows:

⊕ { multiplication: !term1.!term2 .? result.end

8 division: !term1.!term2.& { quotient :? result.end

8 error: end

}

}

instead the one from the Server’s point is:

4 1. An Overview of Session Types

& { multiplication: ?term1.? term2.! result.end

8 division: ?term1.?term2.⊕ { quotient :! result.end

8 error: end

}

}

that is the dual form of the Client’s one.

In this example, the duality of session types ensures the correctness (dead-

lock absence, no orphan messages, etc.) of the communication. Because of

the strictness of duality prerequisite, the idea of subtyping for session types

came up. If a type T ′ is subtype of a type T , written T ′≤T , it can safely

replace T preserving the correctness of the communication.

1.2 Syntax and Semantics

Before reasoning on subtyping and refinement, it is necessary to recall

the syntax of binary 1 session types 2.

Definition 1.2.1 (Session type syntax). Given a set of labels L, ranged over

by I, the syntax of two-party session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

⊕{li : Ti}i∈I represents an internal choice, an output selection. One of

the labels li is selected and sent over the channel and then the continuation

Ti is executed. &{li : Ti}i∈I is the corresponding semantic for the input

branching, representing an external choice, so, one of the labels li is received

over the channel and then the continuation Ti is executed. In both internal

and external choice, labels are assumed to be pairwise distinct.

1Binary or two-party sessions are a particular case of multiparty session types in which

the number of participants is not fixed to two. In the following, only binary session types

are taken into account.
2The notation used further omits the simplified constructors for sending an output

!l and for receiving an input ?l for sake of simplicity. They can be represented by the

multiple internal (respectively external) constructor, where the size of the set of labels is

fixed to one.

1.2 Syntax and Semantics 5

The type constructors µt.T and t are used to express recursion. Recursive

variables are bound by the µt preceding the type T , within the recursive

variable t occurs. end corresponds to the termination of the execution.

In order to unfold the recursive definition in a session type T , it is neces-

sary to recall the unfold function below.

Definition 1.2.2 (Unfold). Given a session type T

unfold(T) =

unfold(T ′{T/t}) if T = µt.T ′,

T otherwise

where T ′{T/t} represents the replacement in T ′ of every free occurrence

of t by T .

Definition 1.2.3 (Dual of session type). The dual of session type T , written

T , is defined as follows:

⊕{li : Ti}i∈I = &{li : T i}i∈I
&{li : Ti}i∈I = ⊕{li : T i}i∈I

end = end

t = t

µt.T = µt.T

These definitions will be exploited in the following chapter, in the pre-

sentation of the subtyping idea.

Chapter 2

On Previous Definitions of

Subtyping

In some cases it can be useful to replace a session type with another one

for efficiency and performance improvements. This replacement operation

can be done if the new type is a subtype of the previous one. The aim

of subtyping is replacing a session type with another one, preserving the

correctness of the system.

Before discussing the new proposal of subtyping, the state of the art will

be discussed in this chapter, highlighting the differences between the syn-

chronous case and the asynchronous one, which is the more interesting form

for its closeness to the actual implementation of concurrent and distributed

systems. In this chapter the main focus will be on the definition of fair asyn-

chronous subtyping [3] introduced by Bravetti, Lange, and Zavattaro, which

is the starting point for the new definition proposed in the following chapter.

2.1 Session Subtyping

As discussed in the previous chapter, the protocol defined by a session

type and its dual is correct but in practice this constraint is too strict. The

idea of session subtyping tries to solve this problem.

7

8 2. On Previous Definitions of Subtyping

0

1 2

!hq?ok

?ko

!lq 0

1

!hq!lq?ko ?ok

0

1

?hq?lq!ko !ok

TR TC = TS TS

TR = µt.⊕ {hq : &{ok : t, ko : ⊕{lq : t}}}
TC = µt.⊕ {lq : &{ok : t, ko : t}, hq : &{ok : t, ko : t}}
TS = µt.&{lq : ⊕{ok : t, ko : t}, hq : ⊕{ok : t, ko : t}}

Figure 2.1: Video streaming protocol. TR is the refined session type of the

client TC , and TS is the partner, the session type of the server.

In the case of synchronous session subtyping, the subtype can perform

fewer internal choices (sends) and more external choices (receives) than its

supertype, as shown by the rules below.

end≤ end

∀i ∈ I : Ti≤T ′i
&i∈I∪J{li : Ti}≤&i∈I{li : T ′i}

∀i ∈ I : Ti≤T ′i
⊕i∈I{li : Ti}≤⊕i∈I∪J{li : T ′i}

The asynchronous case is more interesting, because of the non-blocking

send actions and the possibility of anticipating send actions in the subtype

if they don’t affect the partner.

To present the asynchronous session subtyping, it is useful to discuss an

example, like the one of a video streaming service [5], shown in Figure 2.1.

TS represents a server, that can receive high(?hq) or low(?lq) quality

requests, and replies with !ok if the request can be fulfilled, with !ko otherwise

and then it returns to the initial state.

2.2 Asynchronous Session Typing 9

TC represents a client, that is the dual of the server TS, as expected by

binary session types without subtyping.

A possible improvement of the client protocol can be represented by TR,

that requires the high quality streaming first (!hq) and, only if the request

cannot be fulfilled (?ko), it requires the low quality version (!lq).

TR is an asynchronous subtype of TC , because the subtype is able to

receive the same messages of TC and messages sent by TR can also be sent by

TC , so the parallel composition of TS and TR, written as TS | TR, is correct.

2.2 Asynchronous Session Typing

Asynchronous session calculus can be considered as an extension of the

synchronous one with FIFO queues [6]. A queue is used to enqueue received

messages and to dequeue messages that must be read.

Henceforth, a sequence of incoming messages is represented by a queue

ω, i.e. an unbounded buffer that ranges over words in L∗. ε stands for the

empty word. The word ω1 · ω2 represents the concatenation of words ω1 and

ω2. In the asynchronous case, configurations of the states in the transition

systems have to provide the sequence of incoming messages, ωi, along with

the session types, written [T1, ω1]|[T2, ω2].

Definition 2.2.1 (Transition Relation). The transition relation→ over con-

figurations is the minimal relation satisfying the rules below (plus symmetric

ones):

1. if j ∈ I then [⊕{li : Ti}i∈I , ω1]|[T2, ω2]→ [Tj, ω1]|[T2, ω2 · lj]

2. if j ∈ I then [&{li : Ti}i∈I , lj · ω1]|[T2, ω2]→ [Tj, ω1]|[T2, ω2]

3. if [unfold(T1), ω1]|[T2, ω2]→ s then [T1, ω1]|[T2, ω2]→ s

The transition relation →∗ is the reflexive and transitive closure of the →
relation.

10 2. On Previous Definitions of Subtyping

A configuration s reduces to s′ when (1) one type sends a message to the

other, adding it to its queue; (2) one type consumes a message from the head

of its queue; (3) the unfolding of a type can perform one of the transitions

above. Successful configurations are the ones where both types reached an

end and both queues are empty.

Definition 2.2.2 (Successful configuration). A successful configuration, writ-

ten s
√

, is defined as follows:

[T, ωT]|[S, ωS]
√

iff unfold(T) = unfold(S) = end and ωT = ωS = ε

Definition 2.2.3 (Correct composition). Given a configuration s, it is a

correct composition if, whenever s→∗ s′, there exists a configuration s′′ such

that s′ →∗ s′′ and s′′
√

.

Definition 2.2.4 (Compliance). Two session types are compliant if [T, ε]|[S, ε]
is a correct composition.

Definition 2.2.4 is a strong definition of compliance [3], because all the

sent messages are received and both the types reach the termination, i.e. an

end state. According to this definition, compliance does not hold for all the

pairs type T and dual one T .

For example, let T = ⊕{a : end, b : µt.&{c : t}} and its dual T = &{a :

end, b : µt.⊕ {c : t}}. T and T are not compliant because, when T sends b,

the configuration [end, ε]|[end, ε] is not reachable anymore.

Definition 2.2.5 (Refinement). A session type T refines S, T v S, if for

every S ′ s.t. S and S ′ are compliant then T and S ′ are also compliant.

Differently from traditional subtyping relation, this refinement notion is

not covariant [3].

If T = µt. ⊕ {a : t} and S = ⊕{a : t, b : end}, T is a subtype of S,

due to output covariance, but it is not a refinement, because it exists a type

S = µt.&{a : t, b : end} , that is compliant with S but not with T , since T

cannot reach an end.

2.3 CFSM Representation 11

2.3 CFSM Representation

Before discussing the notion of fair asynchronous refinement, it is neces-

sary to recall the correspondence between session types and communicating

finite-state machines (CFSMs) [12], that are fundamental in the explanation

of the algorithm [3] for verifying the subtyping relation by Bravetti, Lange,

and Zavattaro. Thanks to this characterisation of session types as CFSMs,

it is possible to exploit directly CFSMs in order to solve the subtyping veri-

fication problem.

Let A be a finite alphabet, let words be in A∗ and let · be the concatena-

tion operator. Let the set of actions be Act = {!, ?} ×A, in order to express

send and receive operations, respectively. The direction of an operation,

dir(`), is defined as dir(!a)
def
= ! and dir(?b)

def
= ?.

Definition 2.3.1 (Communication machine). A communicating machine M

is a tuple (Q, q0, δ) where Q is the (finite) set of states, q0 ∈ Q is the initial

state, and δ ∈ Q × Act × Q is the transition relation such that ∀q, q′, q′′ ∈
Q,∀`, `′ ∈ Act :

1. (q, `, q′), (q, `′, q′′) ∈ δ =⇒ dir(`) = dir(`′)

2. (q, `, q′), (q, `, q′′) ∈ δ =⇒ q′ = q′′

The relation →∗ represents the reflexive transitive closure of →.

A state q ∈ Q is final, written q 9, iff ∀q′ ∈ Q, ∀` ∈ Act, (q, `, q′) /∈
δ. A state q ∈ Q is sending (respectively receiving) iff q is not final and

∀q′ ∈ Q,∀` ∈ Act, (q, `, q′) ∈ δ, dir(`) = ! (respectively dir(`) = ?). The dual

of a communicating machine M , written M , is like M , with the difference

that each sending transition, (q, !a, q′) ∈ δ, is replaced by the corresponding

receiving one, (q, ?a, q′), and vice-versa for receive transitions.

To transform a session type in automaton, it is sufficient to take its la-

belled transition system according to an operational semantics, that can be

12 2. On Previous Definitions of Subtyping

0 1 2

!tc

!done

?tm

?over
0 1 2

?tm

?over

!tc

!done
0 1 2

!tm

!over

?tc

?done

T ′G TG = TS TS

T ′G = µt.⊕ {tc : t, done : µt′. &{tm : t′, over : end}}
TG = µt. &{tm : t, over : µt′.⊕ {tc : t′, done : end}}
TS = µt.⊕ {tm : t, over : µt′. &{tc : t′, done : end}}

Figure 2.2: Satellite protocols. T ′G is the refined session type of the ground

station, TG is the session type of ground station, and TS is the session type

of the spacecraft.

defined essentially by two rules:

if unfold(T) = ⊕{li : Ti}i∈I then T
!li−→ Ti ∀i ∈ I

if unfold(T) = &{li : Ti}i∈I then T
?li−→ Ti ∀i ∈ I

This conversion allows to reason on session types through their equivalent

CFSM representation [12].

2.4 On Fair Asynchronous Subtyping

Taking into account the syntax of types, session subtyping aims to charac-

terise the refinement property, that is defined on the basis of their operational

semantics.

The main problem of the definitions antecedent to the one by Bravetti,

Lange, and Zavattaro is the inefficiency of the protocols, in which no more

than one party does a send action at any time. In this case, the communi-

cation is defined as half-duplex. The example provided by Bravetti, Lange,

and Zavattaro is about a satellite protocol (see Figure 2.2).

TS represents a spacecraft that sends some telemetries (tm), and then

an over message and, after that, it receives some telecommands (tc) until a

message done is received.

2.4 On Fair Asynchronous Subtyping 13

Consider as partner its dual, TS = TG, that receives some telemetries

until an over message is received and, after that, sends some telecommands,

followed by a done message.

Allowing send actions by more than one party, i.e. allowing a full-duplex

communication, is the key for systems like the one in the example, where

there is an intermittent communication, e.g. the two parts are not always

visible.

The idea of Bravetti, Lange, and Zavattaro was to introduce a new defini-

tion that formally guarantees that T ′G is a safe replacement for TG, in which

there is an output anticipation, even if the outputs were preceeded by an

unbounded number of input loops.

2.4.1 Controllability

To introduce the notion of fair asynchronous subtyping [3], Bravetti,

Lange, and Zavattaro introduced an algorithmic definition of controllabil-

ity in an asynchronous context to check the existence of a session type that

is compliant with the given one, according to Definition 2.2.4.

Definition 2.4.1 (Characterisation of controllability, T ctrl). Given a session

type T , the judgement T ok is defined inductively as follows:

end ok

end ∈ T T{end/t} ok
µt.T ok

T ok

&{l : T} ok
∀i ∈ I. Ti ok
⊕{li : Ti}i∈I ok

where end ∈ T holds if end occurs in T .

It is possible to write T ctrl if there exists T ′ such that (i) T ′ is obtained

from T by syntactically replacing every input prefix &{li : Ti}i∈I occurring

in T with a term &{lj : Tj} (with j ∈ I) and (ii) T ′ ok holds.

Theorem 2.4.1. T ctrl holds if and only if there exists a session type S such

that T and S are compliant.

If a session type is not controllable, there exists no session type with

which it is compliant.

14 2. On Previous Definitions of Subtyping

0

1

2 3

?a

!b

!c

!d

T = &{a : ⊕{b : end, c : µt.⊕ {d : t}}}

Figure 2.3: Example of uncontrollable type.

An example of uncontrollable type is the one in Figure 2.3. Thanks to

the controllability algorithm it can be derived that type T of the example is

uncontrollable, so there is no session type S that is compliant with T .

2.4.2 Fair Asynchronous Subtyping

The main reference for this master project is the notion of fair asyn-

chronous subtyping [3] by Bravetti, Lange, and Zavattaro. To introduce this

definition they had to define a new notion of unfolding 1.

Definition 2.4.2 (Selective Unfolding). Given a term T , selUnfold(T) =



⊕{li : Ti}i∈I if T = ⊕{li : Ti}i∈I
&{li : selUnfold(Ti)}i∈I if T = &{li : Ti}i∈I
T ′{µt.T ′/t} if T = µt.T ′, ⊕g(t, T ′)

µt.selUnfold(selRepl(t, t̂, T ′){µt.T ′/̂t}) with t̂ fresh if T = µt.T ′, ¬ ⊕ g(t, T ′)

t if T = t

end if T = end

where, selRepl(t, t̂, T ′) is obtained from T ′ by replacing the free occurrences

of t that are inside a subterm ⊕{li : Si}i∈I of T ′ by t̂.

1The predicate ⊕g(t, T) holds if all instances of variable t are output selection guarded.

2.4 On Fair Asynchronous Subtyping 15

The asynchronous case allows the possibility of output anticipations. The

inputs that can be delayed in the candidate supertype are usually referred to

as asynchronous context or input context. For fair asynchronous refinement,

because of the reasons explained through the example in Figure 2.2, the def-

inition of input context includes recursive constructs, in contrast to previous

results in this field.

Definition 2.4.3 (Input Context). An input context A is a session type

with holes defined by the syntax:

A ::= []k | &{li : Ai}i∈I | µt.A | t

where the holes []k, with k ∈ K, of an input context A are assumed to

be pairwise distinct. Recursion is assumed to be guarded, i.e., in an input

context µt.A, the recursion variable t must occur within a subterm &{li :

Ai}i∈I .
The set of hole indices in A is denoted by holes(A). Given a type Tk for

each k ∈ K, A[Tk]
k∈K is the type obtained by filling each hole k in A with

the corresponding Tk.

At this point it is possible to introduce the definition of fair asynchronous

subtyping, that corresponds to playing a simulation game between a candi-

date subtype T and its candidate supertype S.

Definition 2.4.4 (Fair Asynchronous Subtyping, ≤). A relation R on ses-

sion types is a controllable subtyping relation whenever (T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then selUnfold(S) = A[⊕{li : Ski}i∈I]k∈K and ∀i ∈
I. (Ti,A[Ski]

k∈K) ∈ R.

16 2. On Previous Definitions of Subtyping

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

The idea behind Definition 2.4.4 is to play a so-called subtyping simula-

tion game, in order to check if T is a valid replacement for S, as follows.

Case (1) says that if T is the end type, S must be end too.

Case (2) says that if T is a recursive definition, T performs an unfolding

and S does not need to reply, so the game proceeds.

Case (3) says that if T is an input branching, the controllable sub-terms in

S can reply by inputting some of the labels li in the branching, in accordance

with the contravariance of inputs, so the game proceeds.

Case (4) says that if T is an output selection, S can reply by outputting

all the labels li in the selection, so the game proceeds.

As it is possible to notice from the requirements of case (4), covariance of

outputs is not allowed, because the set of labels of the candidate subtype and

the candidate supertype must be the same (see Chapter 3 for the attempts

of covariance introduction).

The fair asynchronous subtyping is sound but not complete with respect

to fair refinement. For example, let T = ⊕{a : &{c : end}} and S = &{c :

⊕{a : end, b : end}}. T is a refinement but not a fair asynchrnous subtype

of S, since {a} 6= {a, b}, i.e. output covariance is not allowed.

Because of the undecidability of the problem, the search for algorithms

that were at least sound but could give an unknown result, began (see Chap-

ter 4 for the algorithm proposed by Bravetti, Lange, and Zavattaro).

Chapter 3

Covariance Introduction

The main goal of this thesis is, starting from Definition 2.4.4, to define a

new variant of fair asynchronous subtyping that admits some kind of covari-

ance.

In this chapter, all the attempts of modifications of Definition 2.4.4, that

were done during the development of this thesis, will be shown. After dis-

cussing the failed attempts, we arrive to the last one, which we demonstrated

to be successful. Changes to the original version of fair asynchronous subtyp-

ing by Bravetti, Lange, and Zavattaro are hightlighted to clearly show the

adjustments that each attempt would bring. A counter-example is shown for

each failed attempt, instead, the proof of its correctness is provided for the

successful one.

3.1 Attempt 1

The attempt on which we worked most of the time is enclosed in Definition

3.1.2, that allows a reduction of the set of output labels through the possible

removal of output self loops in the subtype. For this attempt, we implemented

the correspondent solution and we discovered only in the end that it was

unsound. If this definition was sound, types like the ones in Figure 3.1 would

be in subtyping relation. Since the controllability check was deeply used

17

18 3. Covariance Introduction

0

1

!e

0

1

!m

!e

T S

T = ⊕{e : end}
S = µt.⊕ {m : t, e : end}

Figure 3.1: Example of subtyping (T ≤S) that would be allowed by the first

attempt.

by this attempt, the adaptation of the tool to Definition 3.1.2 allowed us

to discover a bug in the implementation, that will be discussed further in

Subsection 4.2.2. In order to present this subtyping, it was necessary to

introduce a new definition of a selective unfolding, slightly different from

Definition 2.4.2 in case of internal choice.

Definition 3.1.1 (µ-Selective Unfolding). We define a variant of selective

unfolding, denoted with selUnfold′(T), which is defined inductively as selUnfold(T)

with the difference that in case unfold(T) = ⊕{li : Ti}i∈I , it always returns

T , also in case T starts with recursive definitions.

Definition 3.1.2 (Attempt 1 - Variant of Fair Asynchronous Subtyping, ≤).

A relation R on session types is a controllable subtyping relation whenever

(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then

• selUnfold(S) = A[⊕{lj : Skj}j∈Jk]k∈K ,

• selUnfold′(S) = A[µt̃k.⊕{lj : S ′kj}j∈Jk]k∈K ,

3.1 Attempt 1 19

0

1

!m

!e
0

1

F
!m

!e

?l

T T ′

T = µt.⊕ {m : t, e : end}
T ′ = ⊕{m : fail , e : end}

Figure 3.2: Example of introduction of a failure state in place of a self loop

output branch, given by !m.

• ∀k ∈ K. I ⊆ Jk and ∀j ∈ Jk \ I. S ′kj{fail/̃tk} is uncontrollable,

• ∀i ∈ I. (Ti,A[Ski]
k∈K) ∈ R.

where given the sequence of variables t̃ = t1 . . . tn, we use µt̃.T to de-

note µt1. . . . µtn.T , fail is any uncontrollable session type (e.g. µt.&{l : t}),
and {fail/̃t} is the substitution of all free occurrences of variables in t̃

with fail .

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

The implementation of this subtyping definition was possible thanks to

the fail notion graphically explained in Figure 3.2. In an actual implemen-

tation, the addition of a failure concept is realised by adding another state,

that can perform only receive loops, and by redirecting the excluded edges

to this state.

Unfortunately, Definition 3.1.2 turned out to be unsound, as shown by

the counter-example to its soundess in Figure 3.3.

20 3. Covariance Introduction

0

1

2

3

!b?b

?a

!c

0

1

2

3

!a

!b?b

?a

!c

0

1 2

3

4

?b

!b
?a

!a

?c

?a ?b

T S P

T = µt.⊕ {b : &{a : ⊕{c : end}, b : t}}
S = µt.⊕ {a : t, b : &{a : ⊕{c : end}, b : t}}
P = µt.&{b : ⊕{b : t}, a : ⊕{a : µt′.&{a : t′, b : t′, c : end}}}

Figure 3.3: Counter-example to soundness of the first attempt of covariance

introduction. S is compliant with P , T should be a subtype of S according

to 3.1.2 but T is not compliant with P .

3.2 Attempt 2

Another unsafe option, on which we briefly reasoned about while working

on the first attempt, is the following one, that is shown only for sake of

completeness.

The idea was to take into consideration the subtype and to check

• the respect of output covariance between the subtype and the super-

type,

• the controllability of the subtype.

Definition 3.2.1 (Attempt 2 - Variant of Fair Asynchronous Subtyping, ≤).

A relation R on session types is a controllable subtyping relation whenever

(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3.2 Attempt 2 21

0

1

2

!a

?a

?c

0

1

2

!a

?a

!b

0

1

2

?a

!a

?b

T S P

T = µt.⊕ {a : &{a : t, c : end}}
S = µt.⊕ {a : &{a : t}, b : end}
P = µt.&{a : ⊕{a : t}, b : end}

Figure 3.4: Counter-example to soundness of the second attempt of covari-

ance introduction. S is compliant with P , T should be a subtype of S

according to 3.2.1 but T is not compliant with P .

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then

• selUnfold(S) = A[⊕{lj : Skj}j∈Jk]k∈K ,

• T is controllable,

• ∀k ∈ K. I ⊆ Jk,

• ∀i ∈ I. (Ti,A[Ski]
k∈K) ∈ R.

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

In this case it was easier to find a counter-example, that is shown in Figure

3.4. Here the problem came from combining the removal of output-labels

with the addition of input ones. The addition of an input label, from which

an end is reachable, ensures the respect of the controllability constraint of

22 3. Covariance Introduction

the subtype, but this branch will never be executed, so an end is actually

unreachable.

3.3 Attempt 3

While reasoning on the first attempt, a sort of union of the first and

the second attempt led to the third one, that turned out to be unsafe too.

The problem of the second attempt was checking the controllability only on

the subtype. To solve this problem, the idea was to move the focus from the

subtype to a revised version of the supertype in which branches corresponding

to the output labels, that are absent in the subtype, are excluded.

The controllability of the supertype without these edges would have de-

termined whether the subtyping relation applied or not.

Definition 3.3.1 (Attempt 3 - Variant of Fair Asynchronous Subtyping, ≤).

A relation R on session types is a controllable subtyping relation whenever

(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then

• selUnfold(S) = A[⊕{lj : Skj}j∈Jk]k∈K ,

• ∀k ∈ K. I ⊆ Jk and A[⊕{li : Ski}i∈I]k∈K is controllable,

• ∀i ∈ I. (Ti,A[Ski]
k∈K) ∈ R.

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

3.4 Attempt 4 23

Unfortunately, also this case turned out to be unsafe, as it is possible to

observe by considering the same counter-example to the first attempt, shown

in Figure 3.3.

3.4 Attempt 4

After finding out that even the third attempt was unsafe, we briefly con-

sidered another definition that seemed to be equivalent to the first one (Def-

inition 3.1.2) and that we discarded quite immediately.

Definition 3.4.1 (Attempt 4 - Variant of Fair Asynchronous Subtyping, ≤).

A relation R on session types is a controllable subtyping relation whenever

(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then

• selUnfold(S) = A[⊕{lj : Skj}j∈Jk]k∈K ,

• selUnfold′(S) = A[µt̃k.⊕{lj : S ′kj}j∈Jk]k∈K ,

• ∀k ∈ K. I ⊆ Jk and A[⊕{lj : S ′kj{fail/̃tk}j}j∈Jk\I]
k∈K is uncontrol-

lable,

• ∀i ∈ I. (Ti,A[Ski]
k∈K) ∈ R.

where given the sequence of variables t̃ = t1 . . . tn, we use µt̃.T to de-

note µt1. . . . µtn.T , fail is any uncontrollable session type (e.g. µt.&{l : t}),
and {fail/̃t} is the substitution of all free occurrences of variables in t̃

with fail .

24 3. Covariance Introduction

0

!a

0 1

!a

!b
!c

T S

T = µt.⊕ {a : t}
S = µt.⊕ {a : t, b : t, c : end}

Figure 3.5: Counter-example to soundness of the fourth attempt of covariance

introduction. We would have T ≤S, because (b : fail , c : end) is uncontrol-

lable, but T doesn’t admit any partner and S is controllable.

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

This definition turned out soon to be unsafe and not equivalent to Defini-

tion 3.1.2, because the controllability (Definition 2.4.1) for the internal choice

requires all the branches to be controllable. Thus, if one of these branches is

uncontrollable, the whole type is considered uncontrollable, allowing there-

fore the removal of controllable branches. Also in this case, taking into

account the previous observation, we have found a counter-example, shown

in Figure 3.5. Hence, we continued working on the first attempt until we

found out a counter-example to its soundness too.

3.5 Final Attempt

In order to include some form of covariance, taking inspiration from the

results in the synchronous case by Padovani [15], the last and more recent

attempt requires the finiteness of at least one between the candidate subtype

and the candidate supertype, if some of the labels of the supertype are ex-

cluded in the subtype. In this way, it is possible to consider in subtyping

3.5 Final Attempt 25

relation also cases like those in Figure 3.6, that were excluded by the original

proposal of Definition 2.4.4, and are now allowed thanks to the finiteness of

the candidate subtype or supertype.

Before displaying the last definition of a variant of fair asynchronous

subtyping, we formally define the finiteness of a type, as follows.

Definition 3.5.1 (Finiteness of a type). A type T is finite if no recursion

variable t occurrs in T .

Definition 3.5.2 (Variant of Fair Asynchronous Subtyping, ≤). A relation

R on session types is a controllable subtyping relation whenever (T, S) ∈ R
implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and

∀k ∈ K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then

• selUnfold(S) = A[⊕{lj : Skj}j∈Jk]k∈K ,

• ∀k ∈ K. (I = Jk) or (I ⊂ Jk and (T is finite or S is finite))

• ∀i ∈ I. (Ti,A[Ski]
k∈K) ∈ R.

T is a controllable subtype of S if there is a controllable subtyping relation

R s.t. (T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S control-

lable implies that T is a controllable subtype of S.

26 3. Covariance Introduction

0

1

!b

0

1

!a

!b

T S

T = ⊕{b : end}
S = µt.⊕ {a : t, b : end}

0

1

2

?a

?b

!c

0

1

2 3

?b

!c !d

T ′ S ′

T ′ = µt.&{a : t, b : ⊕{c : end}}
S ′ = µt.&{b : ⊕{c : end, d : end}}

0

1

2

!c

?a

?b

0

1 3

2

!c !d

?b

T ′′ S ′′

T ′′ = ⊕{c : µt.&{a : t, b : end}}
S ′′ = ⊕{c : &{b : end}, d : end}

Figure 3.6: Examples accepted by the new definition of subtyping (T ≤S,

T ′≤S ′, T ′′≤S ′′)

3.5 Final Attempt 27

3.5.1 The Soundness of the New Definition

Before explaining how the new definition has been introduced in the tool,

it is necessary to discuss about its soundness. To prove the soundness of Def-

inition 3.5.2, we tried to follow the proofs that can be found in the Appendix

of the original paper [3].

In order to discuss the main lemma for our definition, Lemma 3.5.4, that

is strictly connected to Proposition 3.5.5, we have to reformulate some of the

previous results1 as follows.

Lemma 3.5.1. Consider the session type T = A[⊕{lj : Tkj}j∈Jk]k∈K . Let

P2 = [T, ωT]|[S, ωS] and P i
1 = [A[Tki]

k∈K , ωT]|[S, ωS ·li], for every i ∈ ⋂
k∈K

Jk.

If P2 is a correct composition then one of the following holds:

• A does not contain any input branching and P2 → P i
1, for every i ∈⋂

k∈K
Jk;

• A contains an input branching and P i
1 (for every i ∈ ⋂

k∈K
Jk) and P2

have at least one outgoing transition.

For every possible transition P i
1 → P ′1 we have that one of the following

holds:

1. P i
1 does not consume the label li and there exist A′, W ⊆ K,

T ′wj (for every w ∈ W , j ∈ Jw), S ′, ω′T and ω′S s.t. P ′1 =

[A′[T ′wi]w∈W , ω′T]|[S ′, ω′S ·li] and

P2 → [A′[⊕{lj : T ′wj}j∈Jw]w∈W , ω′T]|[S ′, ω′S];

2. P i
1 consumes the label li, hence P ′1 = [A[Tki]

k∈K , ωT]|[S ′, ωS], and

∃j ∈ {1, . . . ,m} s.t. P2 →∗ [Tji, ω
′
T]|[S ′, ωS] and ωT = a1·. . .·aw·ω′T ,

where a1, . . . , aw are the labels in one of the paths to []j in A.

For every possible transition P2 → P ′2 we have that there exist A′,
W ⊆ K, T ′wj (for every w ∈ W , j ∈ Jw), S ′, ω′T and ω′S s.t.

1The proofs of the preliminary results are omitted, because they are analogous to the

ones of the original paper [3].

28 3. Covariance Introduction

P ′2 = [A′[⊕{lj : T ′wj}j∈Jw]w∈W , ω′T]|[S ′, ω′S] and

P i
1 → [A′[T ′wi]w∈W , ω′T]|[S ′, ω′S ·li].

Lemma 3.5.2. Consider the session type T = A[⊕{lj : Tkj}j∈Jk]k∈K . Let

P2 = [T, ωT]|[S, ωS] and P i
1 = [A[Tki]

k∈K , ωT]|[S, ωS·li], for every i ∈ ⋂
k∈K

Jk. If

P2 is a correct composition then, for every i ∈ ⋂
k∈K

Jk, there exists [T ′, ω′T]|[S ′, ω′S]

such that P i
1 →∗ [T ′, ω′T]|[S ′, ω′S] and [T ′, ω′T]|[S ′, ω′S]

√
.

Proposition 3.5.3. Consider the session type T = A[⊕{lj : Tkj}j∈Jk]k∈K .

We have that if [T, ωT]|[S, ωS] is a correct composition then, for every i ∈⋂
k∈K

Jk, we have that also [A[Tki]
k∈K , ωT]|[S, ωS ·li] is a correct composition.

The demonstration of the soundness of the new attempt, requires to rea-

son about the finiteness of a type, so the concept of depth of a type has been

introduced.

Definition 3.5.3 (Depth of a type). Given a type T

depth(T) =


1 if T = t or T = end

1 + depth(T) if T = µt.t

1 + maxi∈I{depth(Ti)} if T = ⊕{li : Ti}i∈I or T = &{li : Ti}i∈I

At this point, in order to demonstrate Proposition 3.5.5, we introduced

Lemma 3.5.4 to deal with the soundness if one of the considered types is

finite.

Lemma 3.5.4. Given two session types T and S, if T ≤S and one between

T and S is finite then, for every ω, R, and ωR such that [S, ω]|[R,ωR] is a

correct composition, there exist T ′, ω′, R′, and ω′R such that [T, ω]|[R,ωR]→∗

[T ′, ω′]|[R′, ω′R] and [T ′, ω′]|[R′, ω′R]
√

.

Proof. We proceed by induction on the depth of the finite type.

Base case. If one of the two types is finite, it has depth 1, then it is end.

Given that T ≤S, also the other type is end (possibly by applying unfold).

3.5 Final Attempt 29

[S, ω]|[R,ωR] correct and unfold(S) = end imply that ω is empty and

[S, ω]|[R,ωR]→∗ [S, ω]|[R′, ω′R]
√

. Hence, also [T, ω]|[R,ωR]→∗ [T, ω]|[R′, ω′R]
√

,

because also unfold(T) = end.

Inductive case. We consider three cases:

1. [S, ω]|[R,ωR]
√

. We proceed as in the above case.

2. unfold(S) = ⊕{li : Si}i∈I . As T ≤S, we have unfold(T) = ⊕{lj : Sj}j∈J
and J ⊆ I.

We take i ∈ J . [Si, ω]|[R,ωR ·li] is correct. We consider [T, ω]|[R,ωR]→
[Ti, ω]|[R,ωR·li]. We can apply the inductive hypothesis because Ti≤Si
and the depth of finite type strictly decreases, i.e. if T is finite, then

depth(Ti) < depth(T), if S is finite, then depth(Si) < depth(S).

3. unfold(S) = &{li : Si}i∈I . We have two sub-cases:

• unfold(T) = &{lj : Tj}j∈J . We consider [S, li · ω]|[R,ωR] →
[Si, ω]|[R,ωR]. Also [T, li · ω]|[R,ωR]→ [Ti, ω]|[R,ωR].

We can apply the inductive hypothesis, because [Si, ω]|[R,ωR] is

correct, Ti≤Si and the depth of the finite type strictly decreases.

• unfold(T) = ⊕{lj : Tj}j∈J . Given that T ≤S, selUnfold(S) =

A[⊕{li : Sik}i∈Ik]k∈K with J ⊆ Ik for every k ∈ K. Consider now

i ∈ J . We have that i ∈ ⋂
k∈K

Ik.

By Proposition 3.5.3, we have that [A[Sik]
k∈K , ω]|[R,ωR · li] is

correct.

Consider now [T, ω]|[R,ωR]→ [Ti, ω]|[R,ωR ·li]. Given that T ≤S,

we also have Ti≤A[Sik]
k∈K . We can apply the inductive hypoth-

esis because the depth of the finite type strictly decreases.

Proposition 3.5.5. Given two session types T and S, if T ≤S then, for ev-

ery ω, R, and ωR such that [S, ω]|[R,ωR] is a correct composition, there

30 3. Covariance Introduction

exist T ′, ω′, R′, and ω′R such that [T, ω]|[R,ωR] →∗ [T ′, ω′]|[R′, ω′R] and

[T ′, ω′]|[R′, ω′R]
√

.

Proof. We have to consider whether one between S and T is finite.

• If one between S and T is finite, the thesis follows from Lemma 3.5.4.

• If both of them are not finite, Definition 3.5.2 does not allow any sort

of covariance, so the proof proceeds like in the original paper [3].

Note that the new variant of fair asynchronous subtyping is sound with

respect to fair refinement but it is not complete, as it is shown by the example

below.

Let T = µt.⊕ {l1 : end, l2 : t} and S = µt.⊕ {l1 : end, l2 : t, l3 : t}. T is

a refinement of S but T is not a subtype of S since neither of them is finite.

Chapter 4

Implementation

To get a checker of the subtyping relation on the basis of Definition 3.5.2,

the original implementation by Bravetti, Lange, and Zavattaro has been mod-

ified in order to allow some covariance. Since fair subtyping is undecidable,

it is impossible to have a sound and complete algorithm, therefore a sound

algorithm, that can return also unknown as result, has been realised.

In this chapter the main features of the original algorithm and its im-

plementation are shown along with the changes in the code which allow the

introduction of a slight form of covariance.

4.1 On the Subtyping Algorithm

The algorithm is based on the construction of a simulation tree according

to the simulation game corresponding to the subtyping Definition 2.4.4, then

adapted to Definition 3.5.2.

The simulation tree is the labelled tree representing the simulation game,

represented by simtree(T, S), i.e. a tuple (N, n0,�, λ), where N corresponds

to the set of nodes, n0 ∈ N is the root, � is the transition function, cor-

responding to the definition of fair asynchronous subtyping, and λ is the

labelling function. The label of the root is λ(n0) = (S, T).

If S is not controllable, there is no need to run the simulation game since

31

32 4. Implementation

the subtyping relation holds, otherwise, the definition of the simulation tree

is required to check whether T ≤S.

If a branch of the simulation tree is infinite or it finishes in an (end, end)

leaf, it is successful, otherwise it is recognized as unsuccessful.

Assuming that S is controllable, T ≤S iff all branches of simtree(T, S)

are successful. The problem of checking the success of all the branches is

usually undecidable, because of the possible generation of infinitely many

pairs.

To solve the problem in presence of unbounded accumulation, Bravetti,

Lange, and Zavattaro introduced the notion of witness subtrees, which are

finite subtrees of a simulation tree that are successful, because they satisfy a

certain accumulation pattern.

They are based on the idea of ancestor of a node n, that is a node n′ such

that n 6= n′ and n′ is on the path from n0 to n.

The input contexts tracked down by witness trees are the ones with

1. growing holes leading to an infinite growth, or

2. constant holes stable during the simulation game.

An input context is defined extended when it contains holes with the same

index.

To have an idea about extended input contexts with the same index and

their reductions, consider the following example. Let

A1 = µt.&{a : []1, b : &{c : t}}
unfold(A1) = &{a : []1, b : &{c : µt.&{a : []1, b : &{c : t}}}}

A2 = &{c : µt.&{a : []1, b : &{c : t}}}

Both unfold(A1) and A2 are reductions of A. unfold(A1) falls within the

previous mentioned cases in which two distinct holes have the same index (1

in this example). A2 is reachable from the unfolding of A1 by inputting b.

The set of reduction S of an input context A is the minimal set S such

that:

4.1 On the Subtyping Algorithm 33

1. A ∈ S

2. if &{li : Ai}i∈I ∈ S then ∀i ∈ I.Ai ∈ S

3. if µt.A′ ∈ S then A′{µt.A′/t} ∈ S

In aftermath of the unfolding, reductions of an input context may contain

extended input contexts. If A′ is a reduction of A, holes(A′) ⊆ holes(A).

Let A be an extended context and K ⊆ holes(A) a set of hole indices.

In the formal definition of witness tree provided by Bravetti, Lange, and

Zavattaro, the following abbreviations are used:

• AbTkck∈K corresponds to the extended context obtained by replacing

each hole k ∈ K in A by the type Tk for each k ∈ K,

• A〈A′〉K corresponds to the extended context obtained by replacing each

hole k ∈ K in A by the extended context A′.

If K = {k}, the notation will be AbTkck and A〈A′〉k respectively.

Definition 4.1.1 (Witness Tree). A tree (N, n0,�, λ) is a witness tree for

A, such that holes(A) = I, with ∅ ⊆ K ⊂ I and J = I\K, if all the following

conditions are satisfied:

1. for all n ∈ N either λ(n) = (T,A′〈AbSjcj∈J〉JbSkck∈K) or

λ(n) = (T,A′〈A〈AbSjcj∈J〉J〉JbSkck∈K), where A′ is a reduction of A,

and it holds that

• holes(A′) ⊆ K implies that n is a leaf and

• if λ(n) = (T,A[Si]
i∈I) and n is not a leaf then unfold(T) starts

with an output selection;

2. each leaf n of the tree satisfies one of the following conditions:

(a) λ(n) = (T, S) and n has an ancestor n′ s.t. λ(n′) = (T, S)

34 4. Implementation

(b) λ(n) = (T,A〈AbSjcj∈J〉JbSkck∈K) and n has an ancestor n′ s.t.

λ(n′) = (T,A[Si]
i∈I)

(c) λ(n) = (T,A[Si]
i∈I) and

n has an ancestor n′ s.t. λ(n′) = (T,A〈AbSjcj∈J〉JbSkck∈K)

(d) λ(n) = (T,A′[Sk]k∈K′
) where K ′ ⊆ K

and for all leaves (T, S) of type (2c) or (2d) T ≤S holds.

Condition (1) refers to witness subtree nodes, that are labelled by pairs

(T, S) where S contains a fixed context A whose holes are partitioned into

growing (J-indexed) and constant holes (K-indexed). When all growing holes

are removed by context reduction, the pair is labelling a leaf of the subtree. If

the initial input is limited to only one instance of A, T begins with an output

choice and this input cannot be consumed in the subtyping simulation game.

Condition (2) refers to constraints that all leaves need to respect in order

to ensure the correctness of the branches.

Condition (2a) applies on leaves that have ancestors having the same

label, so the success of these branches and the corresponding simulation

game is trivially ensured.

Condition (2b) is satisfied by leaves with a regular “increase” of the grow-

ing (J-indexed) holes in compliance with the same accumulation pattern from

their ancestors.

Condition (2c) is satisfied by leaves with a regular “decrease” of the types

in the growing holes in compliance with the same reduction pattern from their

ancestors.

Condition (2d) is satisfied by leaves using only constant (K-indexed)

holes, because context reduction leads to the removal of growing holes con-

taining the accumulation A.

Algorithm. The first step of the algorithm is the controllability check on

S. If S is uncontrollable, it is possible to declare that T ≤S, otherwise the

following steps need to be performed.

4.1 On the Subtyping Algorithm 35

S1 Compute a finite fragment of simtree(T, S) stopping if

• a leaf (successful or not) is encountered,

• a node respecting the Condition about the ancestor (2a, 2b, 2c) of Def-

inition 4.1.1 is encountered,

• the length of the path between the root and the current node is bigger

than a bound corresponding to twice the depth of the abstract syntax

tree of S.

S2 Remove successful branches with finitely many labels from the tree com-

puted in S1, i.e. the subtrees whose each leaf is successful or has an ancestor

in the same subtree with the same label.

S3 Forest of subtrees rooted in the ancestor nodes which do not have ances-

tors themselves are extracted from the tree computed in S2 in order to be

checked.

S4 Check whether each candidate from S3 is a witness tree or not.

The result of the algorithm can be

• False, if considered session types are not related, i.e. an unsuccessful

leaf is found in S1,

• True, if considered session types are related, i.e. all checks in S4 suc-

ceed,

• Unknown in all the other cases in which the algorithm is unable to

return an answer, i.e. either when in S1 the generation of the subtree

reached the bound before reaching a successful state (leaf or node with

an ancestor) or the candidate subtree in S4 is not a witness.

Theorem 4.1.1. Let T and S be two session types with simtree(T, S) =

(N, n0,�, λ). If simtree(T, S) contains a witness subtree with root n then

for every node n′ ∈ N s.t. n �∗ n′, either n′ is a successful leaf, or there

exists n′′ s.t. n′ � n′′.

36 4. Implementation

Therefore, if the candidate subtrees of simtree(T, S) are also witness trees,

it is possible to assert T ≤S 1 [3].

4.2 On the Implementation of the Tool

The implementation of the tool [8] for verifying the new variant of fair

subtyping relation of Definition 3.5.2 derives from changes to the original

Haskell implementation [4] by Bravetti, Lange, and Zavattaro.

It takes two types T and S as input, and it tries to determine whether

T ≤S. In addition to candidate subtype and supertype, the user can provide

an additional value corresponding to the bound.

The tool works with the automata representation of the types. Each local

state in supertype automaton has two counters:

• the c-counter, for the number of occurrences of a state in an input

context

• the h-counter, for the number of occurrences of a state within a hole

of an input context

Hence, state labels include the original value of the state and both the addi-

tional counters, and are used to identify the context A to use in the check of

witness trees.

4.2.1 On oneStep Function

The part of the tool that required a special attention, in order to adapt

the original version of the tool to the new one supporting the new definition

1The proof of this result, that has been completely demonstrated for the original defini-

tion of fair asynchronous subtyping (see Definition 2.4.4), can be adapted to the simulation

tree given by the new definition (Definition 3.5.2) through trivial changes. These adjust-

ments have to be applied only to the case in which T starts with an output selection of

Lemma 7 (see Appendix of the original paper [3]). It can be easily proven that, if there

is covariance and T or the r.h.s. are finite, the context with an extra level compared with

context A can have the same simulation step in which covariance is used.

4.2 On the Implementation of the Tool 37

of subtyping, is oneStep function.

1 oneStep :: Bool -> Machine -> Value -> Maybe [(Label , Value)]

2 oneStep debug m1 v@(p,m)

3 | isFinalConf m1 v = (if debug then (trace (" Final: "++(show (p,(

tinit m)))++"\n"++(printMachine m))) else (\x -> x)) $

4 Just []

5 --

6 | not $ isControllable m = Just []

7 --

8 | (isInput m1 p) && (isInput m (tinit m)) && ((inControllableBarb m

(tinit m)) ‘isSubsetOf ‘ (inBarb m1 p)) =

9 (if debug then (trace ("In: "++(show (p,(tinit m))))) else (\x

-> x)) $

10 let psmoves = L.map snd $ L.filter (\(x,(y,z)) -> x==p) $

transitions m1

11 qsmoves = L.map snd $ L.filter (\(x,(y,z)) -> x==(tinit m))

$ transitions m

12 next = L.nub

13 $ [(a,(x, cleanUp $ updateInit y m)) |

14 (a,x) <- psmoves ,

15 (b,y) <- qsmoves ,

16 c <- S.toList (inControllableBarb m (tinit m)),

17 b==(Receive , c),

18 a==b]

19 in Just next

20 --

21 - | (isOutput m1 p) && (isOutput m (tinit m)) && ((outBarb m1 p) == (

outBarb m (tinit m))) =

22 + | (isOutput m1 p) && (isOutput m (tinit m)) && (outputCovariance m1

p m) =

23 (if debug then (trace (" OutSync: "++(show (p,(tinit m)))++"\n

"++(printMachine m))) else (\x -> x)) $

24 let psmoves = L.map snd $ L.filter (\(x,(y,z)) -> x==p) $

transitions m1

25 qsmoves = L.map snd $ L.filter (\(x,(y,z)) -> x==(tinit m)

) $ transitions m

26 next = L.nub $ [(b,(x,cleanUp $ updateInit y m)) | (a,x)

<- psmoves , (b,y) <- qsmoves , a==b]

27 in Just next

28 | (isOutput m1 p) && not (isOutput m (tinit m)) =

29 (if debug then (trace ("Out: "++(show (p,(tinit m)))++"\n

"++(printMachine m))) else (\x -> x)) $

30 let psmoves = L.map snd $ L.filter (\(x,(y,z)) -> x==p) $

transitions m1

31 qstates = reachableSendStates (tinit m) m

32 newmachines = L.map (\a -> ((Send , a), replaceInMachine

m (Send , a) qstates)) $ S.toList (outBarb m1 p)

38 4. Implementation

0

1 2

!l!a

!e 0

1 2

!l!b

!e

T S

T = µt.⊕ {l : ⊕{a : t}, e : end}
S = µt.⊕ {l : ⊕{b : t}, e : end}

Figure 4.1: Example that was considered erroneously True by the previous

version of the tool.

33 next = L.nub $ [(a, (x, updateInit (ssucc (tinit m)) m’)

)| (a,x) <- psmoves , (b,m’) <- newmachines , a==b]

34 in if (not $ L.null qstates)

35 &&

36

37 - (L.and $ L.map (\x -> (outBarb m1 p) == (outBarb m x))

qstates)

38 + (outputCovariance m1 p m)

39 then Just next

40 else (if debug then (trace (" BadOut: "++(show (p,(tinit m

)))++"\n"++(printMachine m))) else (\x -> x)) $

41 Nothing

42 | otherwise = (if debug then (trace ("Bad: "++(show (p,(tinit m)))

++"\n"++(printMachine m))) else (\x -> x)) $

43 Nothing

As it is possible to see from the added lines, oneStep has been modified

to include the support of covariance, as explained in Subsection 4.2.3.

4.2.2 The Controllability Check

The first check performed by the algorithm is the controllability one.

While investigating on the way the tool works, we discovered a slight problem

that needed to be fixed, in order to ensure the correctness of the algorithm.

The problem was found while reasoning on the example shown in Figure 4.1.

The previous version of the checker stated T ≤S erroneously. Following the

code execution, we found out that this problem was given by the check

6 |isControllable m = Just[]

4.2 On the Implementation of the Tool 39

inside the oneStep function. The problem is that the type is considered

uncontrollable, so the check in the oneStep function succeeds, but the type is

controllable actually. The issue of the previous version was the termination

condition of the isControllable function, that was previously included in the

isOutput case, as follows.

When starting from state 0, the automata in Figure 4.1 are correctly

considered as controllable, but, when the starting point is moved from state

0 to 1, it is considered uncontrollable, because the set of unseen states is

empty but state 2 is still reachable so the arrival to a termination state is

still possible.

Trying to fix this problem and get closer to the definition of controllability,

i.e. Definition 2.4.1, isControllable has been modified. The new version of

isControllable creates a list of automata, one for each external choice, and

then checks whether T ok, as follows.

1 isControllable :: Machine -> Bool

2 isControllable ma = any (\x -> helper x [] (tinit x)) (

singleExtChoices ma)

3 where helper m seen q

4 | q ‘L.elem ‘ seen = endReachable m q

5 | isFinal m q = True

6 | isInput m q = case successors m q of

7 [(l,t)] -> helper m (q:seen) t

8 ys -> error (show (q, ys))

9 | isOutput m q = all (\x -> helper m (q:seen) (snd x)) (

successors m q)

10

11

12 endReachable :: Machine -> State -> Bool

13 endReachable m q = helper [] q

14 where helper seen q

15 | q ‘L.elem ‘ seen = False

16 | isFinal m q = True

17 | otherwise = any (\x -> helper (q:seen) (snd x)) (

successors m q)

18

19 singleExtChoices :: Machine -> [Machine]

20 singleExtChoices m = mlist

21 where mlist = L.map (\x -> Machine { states = states m

22 , tinit = tinit m

23 , transitions = x++ sndtrans

40 4. Implementation

24 , accepts = accepts m

25 }

26) combo

27 sndtrans = ftrans Send

28 ftrans dir = L.filter (\(s,((d,l),t)) -> d == dir) (

transitions m)

29 combo = sequence $ L.groupBy (\x y -> (fst x) == (fst y)) (

sortBy (comparing fst) (ftrans Receive))

Thanks to this fix, cases like the one in Figure 4.1 are now considered

correctly controllable and the subtyping relation between T and S does not

hold anymore, because the right case of the oneStep function is considered.

4.2.3 Covariance Introduction

To introduce a slight form of covariance, according to Definition 3.5.2,

some changes have been done inside oneStep function, in particular in two

cases:

• the one where both the candidate subtype and supertype are in an

output state,

• the one where the candidate subtype is in an output state and the

candidate subtype is in an input state, so there is an output anticipation

in the subtype and an input context in the supertype.

As shown in Subsection 4.2.1, in both cases a call to a new function,

outputCovariance, is required.

To realize the covariance check, an additional function for the finiteness

of the type has been implemented, as follows.

1 isFinite :: Machine -> State -> Bool

2 isFinite m t = helper m t []

3 where helper m s seen

4 | L.null (successors m s) = True

5 | not $ L.null $ L.filter (\x -> (snd x) ‘L.elem ‘ seen) $

successors m s = False

6 | otherwise = L.and $ L.map (\x -> helper m x $ seen ++(L.map

(snd) $ successors m s)) $ L.map(snd) $ successors m s

The outputCovariance check is correct when either

4.2 On the Implementation of the Tool 41

• the set of output labels is the same for both the candidate subtype and

the candidate supertype, or

• the set of output labels of the candidate subtype is included in the one

of the candidate supertype and at least one of the two types is finite.

1 outputCovariance :: Machine -> State -> Machine -> Bool

2 outputCovariance m1 p m = (L.and $ L.map (\x -> (outBarb m1 p) == (

outBarb m x)) sendStates)

3 ||

4 ((L.and $ L.map (\x -> (outBarb m1 p) ‘

isSubsetOf ‘ (outBarb m x)) sendStates)

5 &&

6 (isFinite m1 p || isFinite m (tinit m)))

7 where sendStates = reachableSendStates (tinit m) m

4.2.4 Example of Tool Outputs

In the following, we present some automata produced by the tool in debug

mode, by inputting the examples previously presented in Figure 3.6 and

accepted by the new version of the tool. After these examples, another one

supported by both versions of the tool is shown, to illustrate a case where the

simulation tree cannot be completely pruned and there is a witness subtree

to check.

42 4. Implementation

0

1

!b

(a) Subtype

0 !a

1

!b

(b) Supertype

Figure 4.2: Input session types as CFSMs

4.2 On the Implementation of the Tool 43

0

L0: 0(R)

L00: 1(R)

!b

00 !a

01

!b

001

Figure 4.3: Simulation tree for Figure 4.2

44 4. Implementation

0 ?a

1

?b

2

!c

(a) Subtype

0

1

?b

2

!c

3

!d

(b) Supertype

Figure 4.4: Input session types as CFSMs

4.2 On the Implementation of the Tool 45

0

L0: 0(R)

L00: 1(R)

L000: 2(R)

?b

00

01

?b

02

!c

03

!d

!c

001

002

!c

003

!d

0002

Figure 4.5: Simulation tree for Figure 4.4

46 4. Implementation

0

1

!c

?a

2

?b

(a) Subtype

0

1

!c

3

!d

2

?b

(b) Supertype

Figure 4.6: Input session types as CFSMs

4.2 On the Implementation of the Tool 47

0

L0: 0(R)

L00: 1(R)

L000: 2(R)

!c

00

01

!c

03

!d

02

?b

?b

001

002

?b

0002

Figure 4.7: Simulation tree for Figure 4.6

48 4. Implementation

0 !a

1

!b

3

!c

?c

2

?d

?c

4

?d

!a !c

5

!b

(a) Subtype

0

1

?c

4

?d!a !c

2

!b

?c

3

?d

!a !c

5

!b

(b) Supertype

Figure 4.8: Input session types as CFSMs

4.2 On the Implementation of the Tool 49

0

L0: 0(K)

L00: 0(K)

L000: 0(U) L001: 1(R)

L0010: 1(R)L0011: 2(R)

L002: 3(R)

L0020: 0(R)L0021: 4(R)

L00210: 4(R)

L00211: 5(R)

L00212: 4(R)

L01: 1(R)

L010: 1(R) L011: 2(R)

L02: 3(R)

L020: 0(R)L021: 4(R)

L0210: 4(R)

L0211: 5(R) L0212: 4(R)

!a !b !c

00

01

?c

04

?d !a!c

02

!b

?c

03

?d

!a !c

05

!b

!a !b !c

00c0

00s0

?c

00s4

?d

?d

00s1

?c

!a !c

00s5

!b

!a!c

00s2

!b

?c

00s3

?d

000cc0

000cs0

?c

000ss4

?d

?d000ss0

?c

!a !c

000ss5

!b

?d

000ss1

?c !a !c

000ss2

!b

?c

000ss3

?d

?c?d

001cc0

001cs0

?c

001ss5

?d

?d

001ss2

?c

?c

001ss3

?d

0010cs0

0010ss2

?c

0010ss5

?d

?c

0010ss3

?d

0011ss5

?c?d

002cc0

002cs0

?c

002ss4

?d

?d002ss0

?c

!a !c

002ss5

!b

?d

002ss1

?c !a !c

002ss2

!b

?c

002ss3

?d

0020cs0

0020ss0

?c

0020ss4

?d

?d

0020ss1

?c

!a !c

0020ss5

!b

!a!c

0020ss2

!b

?c

0020ss3

?d

!a

!b

!c

0021ss4 !a !c

0021ss5

!b

00210ss4 !a !c

00210ss5

!b

00211ss5

00212ss4 !a !c

00212ss5

!b

?c ?d

01c0

01s2

?c

01s5

?d

?c

01s3

?d

010s2 ?c

010s3

?d

011s5

?c?d

02c0

02s0

?c

02s4

?d

?d

02s1

?c

!a !c

02s5

!b

!a !c

02s2

!b

?c

02s3

?d

020s0

020s1

?c

020s4

?d !a!c

020s2

!b

!a !c

020s5

!b

?c

020s3

?d

!a

!b !c

021s4 !a !c

021s5

!b

0210s4 !a !c

0210s5

!b

0211s5 0212s4 !a !c

0212s5

!b

Figure 4.9: Simulation tree for Figure 4.8

50 4. Implementation

0

L00: 0(K)

L000: 0(U)L001: 1(R)

L0010: 1(R) L0011: 2(R)

L002: 3(R)

L0020: 0(R)L0021: 4(R)

L00210: 4(R)L00211: 5(R) L00212: 4(R)

!a!b !c

00c0

00s0

?c

00s4

?d

?d

00s1

?c

!a !c

00s5

!b

!a !c

00s2

!b

?c

00s3

?d

000cc0

000cs0

?c

000ss4

?d

?d000ss0

?c

!a !c

000ss5

!b

?d

000ss1

?c !a !c

000ss2

!b

?c

000ss3

?d

?c ?d

001cc0

001cs0

?c

001ss5

?d

?d

001ss2

?c

?c

001ss3

?d

0010cs0

0010ss2

?c

0010ss5

?d

?c

0010ss3

?d

0011ss5

?c?d

002cc0

002cs0

?c

002ss4

?d

?d002ss0

?c

!a !c

002ss5

!b

?d

002ss1

?c !a !c

002ss2

!b

?c

002ss3

?d

0020cs0

0020ss0

?c

0020ss4

?d

?d

0020ss1

?c

!a !c

0020ss5

!b

!a !c

0020ss2

!b

?c

0020ss3

?d

!a!b !c

0021ss4 !a !c

0021ss5

!b

00210ss4 !a !c

00210ss5

!b

00211ss5 00212ss4 !a !c

00212ss5

!b

Figure 4.10: Witness tree for Figure 4.8, subtree of Figure 4.9

Conclusions and Future Works

In concurrent and distributed systems, reasoning on ways to prevent com-

munication problems, especially at compile time, is fundamental. Session

types are one of the most promising mechanisms to avoid issues like dead-

locks and orphan messages.

This master thesis represents an attempt of introduction of covariance in

the fair asynchronous refinement by Bravetti, Lange, and Zavattaro [3].

After all the attempts shown in Chapter 3, we have proposed a new defi-

nition of subtyping, in Definition 3.5.2, in the awareness that the constraints

that we require are quite strict, differently from the ones of the first alter-

native definition that we considered, Definition 3.1.2, that turned out to be

unsound.

We have integrated the new definition in the pre-existing tool [4], that

before this thesis did not support any form of output covariance. Keeping

the tool updated with the new definitions allows us to have a concrete way

to verify the subtyping relation and to discuss about the simulation game on

concrete cases, also thanks to its graphical outputs.

The new definition (Definition 3.5.2) requires one between the candidate

subtype and the candidate supertype to be finite. This constraint allowed

us to introduce covariance and to demonstrate the soundness of the new

definition, but it reduced the set of possible cases on which the definition can

be applied to. In the future, the aim is to look for new sound definitions, in

order to allow a more relaxed form of covariance and to get closer to concrete

needs of real systems.

51

Bibliography

[1] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the Bound-

ary between Decidability and Undecidability of Asynchronous Session

Subtyping. 2017. arXiv: 1703.00659 [cs.PL].

[2] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. Undecid-

ability of Asynchronous Session Subtyping. 2016. arXiv: 1611.05026

[cs.PL].

[3] Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. Fair Refinement

for Asynchronous Session Types. 2021. arXiv: 2101.08181 [cs.PL].

[4] Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. Fair Refine-

ment for Asynchronous Session Types. https://github.com/julien-

lange/fair-asynchronous-subtyping.

[5] Mario Bravetti et al. A Sound Algorithm for Asynchronous Session

Subtyping and its Implementation. 2019. arXiv: 1907.00421 [cs.PL].

[6] Tzu-Chun Chen et al. “On the Preciseness of Subtyping in Session

Types”. In: CoRR abs/1610.00328 (2016). arXiv: 1610.00328. url:

http://arxiv.org/abs/1610.00328.

[7] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. “Sessions and Ses-

sion Types: An Overview”. In: Web Services and Formal Methods. Ed.

by Cosimo Laneve and Jianwen Su. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 1–28. isbn: 978-3-642-14458-5.

[8] Fair Refinement for Asynchronous Session Types. New subtyping. https:

//github.com/signax/fair-asynchronous-subtyping.

53

https://arxiv.org/abs/1703.00659
https://arxiv.org/abs/1611.05026
https://arxiv.org/abs/1611.05026
https://arxiv.org/abs/2101.08181
https://github.com/julien-lange/fair-asynchronous-subtyping
https://github.com/julien-lange/fair-asynchronous-subtyping
https://arxiv.org/abs/1907.00421
https://arxiv.org/abs/1610.00328
http://arxiv.org/abs/1610.00328
https://github.com/signax/fair-asynchronous-subtyping
https://github.com/signax/fair-asynchronous-subtyping

54 BIBLIOGRAPHY

[9] Simon J. Gay and Malcolm Hole. “Subtyping for session types in the

pi calculus”. In: Acta Informatica 42 (2005), pp. 191–225.

[10] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. “Language

primitives and type discipline for structured communication-based pro-

gramming”. In: Programming Languages and Systems. Ed. by Chris

Hankin. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 122–

138. isbn: 978-3-540-69722-0.

[11] Hans Hüttel et al. “Foundations of Session Types and Behavioural

Contracts”. In: ACM Comput. Surv. 49.1 (Apr. 2016). issn: 0360-0300.

doi: 10.1145/2873052. url: https://doi.org/10.1145/2873052.

[12] Julien Lange and Nobuko Yoshida. “On the Undecidability of Asyn-

chronous Session Subtyping”. In: Foundations of Software Science and

Computation Structures. Ed. by Javier Esparza and Andrzej S. Mu-

rawski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 441–

457. isbn: 978-3-662-54458-7.

[13] Dimitris Mostrous and Nobuko Yoshida. “Session typing and asyn-

chronous subtyping for the higher-order π-calculus”. In: Information

and Computation 241 (2015), pp. 227–263. issn: 0890-5401. doi: https:

/ / doi . org / 10 . 1016 / j . ic . 2015 . 02 . 002. url: http : / / www .

sciencedirect.com/science/article/pii/S0890540115000139.

[14] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. “Global Princi-

pal Typing in Partially Commutative Asynchronous Sessions”. In: Pro-

gramming Languages and Systems. Ed. by Giuseppe Castagna. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 316–332. isbn: 978-

3-642-00590-9.

[15] Luca Padovani. “Fair Subtyping for Multi-party Session Types”. In:

Coordination Models and Languages. Ed. by Wolfgang De Meuter and

Gruia-Catalin Roman. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 127–141. isbn: 978-3-642-21464-6.

https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/https://doi.org/10.1016/j.ic.2015.02.002
http://www.sciencedirect.com/science/article/pii/S0890540115000139
http://www.sciencedirect.com/science/article/pii/S0890540115000139

BIBLIOGRAPHY 55

[16] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. “An Interaction-

based Language and its Typing System”. In: In PARLE’94, volume

817 of LNCS. Springer-Verlag, 1994, pp. 398–413.

	Abstract
	An Overview of Session Types
	The Idea of Session Types
	Syntax and Semantics

	On Previous Definitions of Subtyping
	Session Subtyping
	Asynchronous Session Typing
	CFSM Representation
	On Fair Asynchronous Subtyping
	Controllability
	Fair Asynchronous Subtyping

	Covariance Introduction
	Attempt 1
	Attempt 2
	Attempt 3
	Attempt 4
	Final Attempt
	The Soundness of the New Definition

	Implementation
	On the Subtyping Algorithm
	On the Implementation of the Tool
	On oneStep Function
	The Controllability Check
	Covariance Introduction
	Example of Tool Outputs

	Conclusions and Future Works
	Bibliography

