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Abstract

The research and development of embodied agents with advanced relational
capabilities is constantly evolving. In recent years, the development of be-
havioural signal generation models to be integrated in social robots and vir-
tual characters, is moving from rule-based to data-driven approaches, re-
quiring appropriate and reliable evaluation techniques. This work proposes
a novel machine learning approach for the evaluation of speech-to-gestures
models that is independent from the audio source. This approach enables
the measurement of the quality of gestures produced by these models and
provides a benchmark for their evaluation. Results show that the proposed
approach is consistent with evaluations made through user studies and, fur-
thermore, that its use allows for a reliable comparison of speech-to-gestures
state-of-the-art models.
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Chapter 1

Introduction

Non-verbal communication and, in particular, gesticulation, is a funda-
mental aspect of language through which to convey information in addition
to what is being said. Through gestures it is possible to enhance the seman-
tics of a pronounced term, e.g. by describing the shape or position in space
of an object, but also to emphasise a word or phrase on which it is intended
to give importance, e.g. by increasing the velocity of hands movements.
In person-to-person interactions, gesturing is a natural, almost instinctive,
form of non-verbal communication. In recent years, efforts have focused on
providing embodied agents, whether virtual or physical, with the same com-
munication capabilities as humans. In fact, the research and development
of characters with the ability to gesture while speaking (conversational ges-
tures) is a constantly evolving area of research.
Early research in this field provided rule-based approaches capable of map-
ping a word or phrase to a specific gesture performed by the agent. This type
of approach, although functional, has strong practical limitations mainly due
to poor scalability. Thanks to the progress made in recent years in the field of
artificial intelligence, many researchers are working to provide the scientific
community with data-driven approaches that allow the generation of ges-
tures in a continuous domain, overcoming the main limitation of rule-based
approaches. There are many works in literature that provide machine learn-
ing models that produce gestures from speech (speech-to-gesture), each with
its own characteristics. Some of those produce gestures from speech text or
audio, others combining both modalities (multimodal).
As well as any artificial intelligence based model, these models are subject to
two types of evaluation: objective evaluation and subjective evaluation. As
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for the objective evaluation, state-of-the-art works provide, although there
is no consensus, statistical measures to assess the quality of the generated
gestures. These measures allow for the evaluation of produced gestures by
comparing them to real (ground-truth) gestures, e.g. by verifying for corre-
spondence in position, speed or acceleration. A major limitation of this eval-
uation methodology is the dependence on the audio source. Indeed, ground-
truth gestures to be compared with generated ones are exclusively gestures
produced by humans with a human voice. In case of integrating a speech-to-
gesture model within an embodied agent that speaks with a synthetic voice,
it is no longer possible to provide a measurement of the quality of the ges-
tures produced by the model. At this point, an evaluation approach that is
independent from the audio source becomes necessary. Since the objective of
speech-to-gesture models, in general, is to outputs gestures that are plausible
and in accordance with the inputted speech, It would therefore be interesting
to directly measure this input-output correspondence, rather than comparing
the output with ground-truth gestures. This kind of approach allows for an
evaluation that is independently of the input audio source, overcoming the
limitations of statistical analyses.

Referring to subjective evaluations, in state-of-the-art works are per-
formed large user studies in which raters are asked to give scores to gen-
erated gestures. This type of evaluation allows researcher to get a human
evaluation on their personal study, but also allows for comparison between
different state-of-the-art speech-to-gestures models.

This work proposes "Evaluator", a novel data-driven approach for the eval-
uation of speech-to-gesture models that is based on the correlation between
audio and gestures. Evaluator is a machine learning model trained in a super-
vised fashion that makes use of recurrent neural networks, achieving an accu-
racy of 91% when discriminating between "good" and "bad" audio-gestures
pairs. In addition, subjective evaluations from recent state-of-the-art works
are taken into account and replicated as an additional assessment of the reli-
ability of the proposed model. Indeed, it was interesting to compare results
from user studies with results from a data-driven approach, to verify whether
the proposed evaluation metrics fits a human evaluation.

Chapters 2 and 3 provide the theoretical and technical background relevant
to the comprehension of this work. In particular, non-verbal communica-

3



tion is described in Chapter 2, focusing on the importance of gesticulation
in communication, and basic notions of artificial intelligence and data-driven
machine learning models are provided in Chapter 3.
The most relevant and interesting works at the current state of the art are
presented in Chapter 4, providing a preliminary overview of how this work
differs, and what contribution it wants to provide to the scientific community.
In the following chapters the requirements and specifications for the devel-
opment of the Evaluator model are presented, describing the technologies
used and the development environment (Chapter 5). The project design and
model architecture are defined in Chapter 6, while implementation details
are described in Chapter 7. The model is tested in Chapter 8 and is then
used, showing application use cases, in section 8.3. Finally, conclusions are
drawn in Chapter 9 and suggestions for future work are made.
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Chapter 2

Non-Verbal Communication

The definition of the word "communication" given by the Oxford En-
glish Dictionary states that "communication is the imparting or exchanging
of information by speaking, writing, or using some other medium" [4]. While
speaking and writing are part of verbal communication, what the dictionary
refers to "some other medium" is classifiable under non-verbal behaviours
and, in particular, under non-verbal communication behaviours.

In this Chapter is investigated the role of gestures as a non-verbal form
of communication, exploring how they effect everyday social interactions,
teaching and healthcare.

2.1 Gestures as Non-Verbal Communication

When people communicate, they gestures. People from all known cultures
and linguistic backgrounds gesture [5] and gestures is a fundamental part
of languages, conveying additional information to what is being said. In
particular, gestures that go along with a speech are called co-speech gestures
or conversational gestures and naturally accompany all spoken language.
Conversational gestures not only contribute additive information to a speech,
but also have important cognitive functions for organising spoken language
and facilitating problem-solving, learning, and memory [6].

Scientific research on non-verbal communication began with the 1872 pub-
lication of Charles Darwin’s The Expression of the Emotions in Man and
Animals [2]. Since then, experts have conducted abundant research regard-
ing types, effects, and expressions of this means of communication.
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Types of nonverbal communication include facial expressions, eye gaze, pos-
ture and gestures, paralinguistics (e.g. loudness, tone of voice), haptics
(touch), and appearance.

2.1.1 Types of Gestures

As well as verbal communication (spoken language) is characterised by
its parts (e.g., phonemes, morphemes), Mc. Neill [7] has also identified
two different main types of co-speech gestures: representative and non-
representative gestures. According to McNeills classification system, rep-
resentative gestures include:

• Iconic gestures: are closely related to speech, illustrating what is being
said, painting with the hands. That’s why iconic gestures are also
called "illustrators". They depict the shape, size, action, or position of
an object. The difference with other types of gestures is that illustrators
are used to show physical, concrete items.

• Metaphoric gestures: give concrete form to abstract ideas. Metaphoric
gestures are used to shape the idea being explained, either with spe-
cific shapes such as finger pinches and physical shaping, or more general
waving of hands that symbolises the complexity of what is being ex-
plained.

• Deictic gestures: are a specific form of symbolic gestures. Deictic ges-
tures are used to refer to the location of an object in space, that’s why
they are also called "pointing gestures".

Non-representative gestures, instead, refer to gestures that are used
along with the speech but that are not related to any kind of semantic. This
type of gestures are also called "beat gestures" and they are brief, repetitive
movements that occur in rhythm with speech, serving mainly to stress or
emphasise specifics words or phrases.

The main distinction between representative and non-representative ges-
tures is that the former are linked, directly or indirectly, to the semantic
meaning of the speech, while the latter serve as accompaniment to the sound
or the acoustics of what is being said. This distinction also leads to another
aspect to consider: while representational gestures related to semantics might
be specific to a culture or language, beat gestures can be considered universal,
as they play a semantic-free role and accompany the acoustics of speech.
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2.1.2 Effects of Gestures

Every form of non-verbal communication plays an important role in how
we relate and transfer information to others, as well as how the non-verbal be-
haviours are interpreted by those around us. Referring to gestures, their im-
pact in social interactions is visible in adults but also in children behaviours.
Iverson and G. Meadow [8] suggest that "the gestures children produce when
they are not yet able to speak, predict which words will enter that child’s
vocabulary first".

Teaching

During adolescence, school is where social interaction takes place most of
time. Children learn from lessons held by teachers who speak to the class and
usually use a blackboard where they write down some key words of what they
are explaining verbally. Teachers also gesticulate as they speak, and their
gestures have been found to affect children’s learning. In particular, studies
conducted by Valenzano et Al. [9] of classroom learning have revealed that
children learn better and show better retention and transfer of new learning
when their teacher gestures, while Singer [10] suggests that gestures offers
learners a second message, since gestures do not always convey the same
message as the speech. S. Cook [11] explains how gestures influence learning
using a virtual math teacher. The author conducted experiments creating
two different "virtual" teachers: they both used the same facial expression,
posture and words, but one used gestures and the other didn’t. Experiments
show that children who learned from the gesturing teacher, learned more and
more quickly. In addition, he suggests that those children generalise better
their knowledge.

Healthcare

In recent years, the role of gestures in healthcare and, in particular, for
cognitive communicative disorders has been explored. Cognitive-communicative
disorders are deficits in cognition such as attention, memory, problem solving
and information processing that also lead to communication impairments.

A recent work by S. Clough [6] investigates how the use of gestures might
facilitate the uttering or understanding of communication by people with
brain injury and neuro-degenerative diseases such as Aphasia, Right Hemi-
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sphere Damage (RHD), Traumatic Brain Injury (TBI), and Alzheimer’s Dis-
ease (AD). S. Clough, in this work, suggests that for people with RHD, who
have difficulties in speaking, producing often flat or monotone speech, the
use of gestures facilitates their speech utterance by lightening the cognitive
workload. She also suggests that gesture plays a crucial role in promoting
memory and learning. Indeed, for people affected by AD, a neuro-generative
disease characterised by gradually declining abilities in learning and memory,
and also in observable impairments in connected speech and language as the
disease progresses, the use of gestures by those communicating with them
affects memory retrieval by providing a link to experiences and knowledge,
and by stimulating the processes that support the encoding, consolidation
and retrieval of information by people with AD.
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Chapter 3

Artificial Intelligence and
Embodied Agents

The term Artificial Intelligence (AI) refers to the branch of computer
science that deals with the design and development of artificial artefacts
that exhibit some form of intelligence. AI, in general, focuses on building
programs that try to imitate the way a living being learns new things and
is a large area of research that includes multiple sub-fields (see Figure 3.1.).
One of the most interesting fields is machine learning (ML), a research area
that provides programs (i.e., models) with the capability to automatically
gather data and learn directly from them.

Nowadays, AI models are integrated into everyday products, starting from
web and mobile applications where AI is used, for instance, for personalised
advertising campaigns and automated customer services, to everyday mo-
bility, improving road safety with real-time obstacle detection systems and
autonomous driving, and ending with home automation systems such as voice
assistants. In a futuristic perspective, that is contemporary referring to scien-
tific research and prototypes, AI systems also include embodied agents that
through the use of AI display human behaviours, act like humans, but also
interact with them and within the environment.

In section 3.1 a brief theoretical and technical background for ML is
given. Then, in section 3.2, embodied agents are presented, focusing on the
importance of the design for these systems and how it is carefully studied to
improve their interaction with humans.
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Figure 3.1: Artificial intelligence and its sub-fields.

3.1 Machine Learning

Machine learning refers to any technique that focuses on teaching the
machine to learn statistical parameters from a large amount of training data.
One particular type of machine learning is artificial neural networks (ANN),
which learn a network of nonlinear transformations that can approximate
very complicated functions of wide arrays of input variables.

From the technical perspective, an ANN can be seen as a complex, black-
box, function that learn to transforms input into a meaningful output. When
the learning is based on example input-output pairs, it is called supervised
learning (ML Supervised). In this case, ML depends on the supervisor (i.e.,
the programmer) who chooses the database of examples (dataset). The train-
ing dataset is a collection of n examples. Each example is described with
a vector xi of j features and a label yi indicating the class it belongs. In
supervised ML, there are two main different models:

• Discriminative models give in output the probability that the input
data belongs to a specific class. The output produced by discriminative
models is in a discrete space, discriminating between different kinds of
data instances. A common use cases, for example, is object recognition.
Given an image, the models state whether in that image there is the
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object or not. In this case, there are two classes, and the model is
called binary classification model.

• Generative models instead, produce values in a continuous space and
are used to generate new data instances.

Formally, given a set of data instances X and a set of labels Y:

• Discriminative models capture the conditional probability p(Y | X).

• Generative models capture the joint probability p(X, Y), or just p(X)
if there are no labels (unsupervised learning).

The simplest structure of an ANN consists of an input and an output
layer with a layer in the middle (hidden layer) in which each artificial neuron
is connected to the others in the successive layers (see Figure 3.2). This
simple type of ANN is called feed-forward neural network.
Starting from this simple architecture, researcher designed a huge amount of
different architectures that can be used in specific situation and for specific
use cases. More complex and widespread ANN architectures are:

• Convolutional Neural Network (CNN): provides a scalable approach
to image classification and object recognition tasks, leveraging princi-
ples from linear algebra, specifically matrix multiplication, to identify
patterns within an image.

• Generative Adversarial Network (GAN): is a generative architecture
that makes use of two model. A Generator to generate new plausible
examples from the problem domain, and a Discriminator, that is used
to classify examples as real (from the domain) or fake (generated).

• Recurrent Neural Network (RNN): which is a commonly used architec-
ture for problems that require learning not only from the current state,
but also from past events. Two main fields of use are natural language
processing (NLP) and speech recognition.

Dealing with sequences of gestures, the position of the hands at a given
instant is influenced, among others, by the position they had at the previous
instants. Thus, when having to deal with such data, it is common to find in
literature the use of a RNN architecture.
In the next section (Section 3.1.1) characteristics and potentialities of RNNs
are discussed in detail.
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3.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) differ from feed-forward networks,
in which artificial neurones can be only connected to next layers (unidirec-
tional), in that the connections between layers can be bidirectional, allowing
each neuron of the network to be connected not only to the next layer but
also to the previous one. From a technical perspective, this distinctive prop-
erty of RNNs introduces the concept of network memory. Thanks to the
bidirectional connection, the output of a neuron can influence itself, in a
subsequent time step, or it can influence neurones of the previous chain that
in turn will affect the behaviour of the neuron on which the loop is closed.
Figure 3.2 shows a visual representation for a RNN and a comparison with
feed-forward neural networks.

The bidirectional architecture allows to dealing with short-term depen-
dencies. For example, predicting the final word in the phrase "The colour of
the sky is ...", RNNs do not need to remember what was said before this,
or what was its meaning, all they need to know is that in most cases the
sky is blue, having to remember, in this case, 5 previous words (short-term
memory). However, simple RNNs fail to understand the context behind an
input (long-term memory). Something that was said long before, cannot be
recalled when making predictions in the present. To address this, there are
more complex architectures of RNNs which have been proposed. Among the
best known are those based on Long Short Term Memory (LSTM) and Gated
Recurrent Units (GRU).

Figure 3.2: RNN vs. FFNN. Image by [1]
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Long Short Term Memory

Long short-term memory (LSTM), presented by S. Hochreiter and J.
Schmidhuber in 1997 [12], is a technique that has contributed significantly
to improving the development of artificial intelligence.
The LSTM method solves the long-term memory problem by using three
gate types for an LSTM cell for better recall: An Input Gate, a Forget Gate
and an Output Gate. In this way, LSTM, unlike conventional RNN, enables
a kind of memory of previous experiences: a short-term memory that lasts
for a long time.

Gated Recurrent Unit

Gated recurrent unit (GRU) is a gating mechanism in RNNs published by
Kyunghyun Cho et al. in 2014 [13]. GRU is similar to LSTM with forgetting
gates, but has fewer parameters than LSTM, resulting in a faster trainable
model. Moreover, the performance of GRU in certain tasks of polyphonic
music modelling and speech signal modelling has been shown to be similar
to that of LSTM; GRU has been shown to perform even better on certain
smaller data sets.

3.2 Embodied Conversational Agents

Embodied Agent (EA) is a term that refers to either a physical or a
computed-generated virtual character that exhibit human-like appearance
(i.e., humanoid), and also displays human-like behaviour while interacting
with people and its environment. In particular, when referring to embodied
agents that interact with humans by speaking, they are called Embodied Con-
versational Agents (ECA). In the last decade, the design and development
of ECAs has become increasingly popular, trying to make them conveying
more and more human-like behaviours.
M. Thiebaux in 2008 presented SmartBody [14], a framework based on keyframe
interpolation, motion capture and procedural animation for real-time anima-
tion of virtual ECAs. A more recent work by H. Tanaka [15] proposed a
multi-modal framework to improve the empathic capabilities of ECAs, al-
lowing for a socio-emotional behaviour and smoother interactions.

In general, thanks to the ability of ECAs to look human both aesthetically
and behaviourally, their use can range from companion agents, to agents
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who make services available by relating "humanly" to human customers,
greatly enhancing their interaction capabilities. It is this latter feature that
distinguishes ECAs from other interactive softwares.

3.2.1 Human-Robot Interaction

A central point in developing objects and programs that human use to
interact with, is to design them in order to provide usable products, i.e. easy
to learn, effective to use, and enjoyable to experience with.
There are many objects with which people interact every day. From electronic
ones like smartphones, coffee machines and remote control, to mechanicals,
like a door handle, steering wheel and screwdriver. For each of them, the
design has been studied taking into account the purpose for which they are
built and trying to put the end-user in the best use conditions. Referring
to these objects, their design is examined in depth to satisfy every charac-
teristic and to increase ergonomics, i.e., to make the objects as comfortable
and efficient as possible for the consumer. This is also true for software, for
which the study of user interface and user experience (UI/UX) is increasingly
becoming popular in recent years, trying to provide consumers with applica-
tions, websites and, generally, programs that are easy to use and intuitive to
interact with.
In the last decades, research is also being carried out into how robotics1 sys-
tems should be designed and built to interact with humans.
Human Robot Interaction (HRI) [16], is the field of study dedicated to un-
derstanding, designing, and evaluating robotic systems for use by or with
humans. As early as in 1970, Masahiro Mori defined the Uncanny Valley
theory [17]. It describes the effects of the appearance and the movement
of the robot on the HRI. According to Masahiro Mori, there is a threshold
where robots resemble both humans and robots and it’s easy to get con-
fused in categorizing them. Instead, if the appearance of the robot exceeds
that threshold, the quality of the interaction improves considerably. About
HRI, W. Chung [18] suggests that, since robots are becoming more and more
prominent in our society, the need for these systems to adapt to humans
becomes more and more important; while B. Baumgaertner [19] states that:
"As humans anthropomorphize robots, an empathetically interacting robot is

1In the following, reference will be made to robots in particular, but the same concepts
can be extended to any other embodied agent designed to interact with humans.
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expected to increase the level of acceptance of social robots". In addition, a
work by Bailenson et Al. [20] suggests that, when creating AI humanoid
systems designed to interact with humans, it is important to generate natu-
ralistic looking gestures that are meaningful with the speech.
In general, it seems that humans prefer human-like robots rather than "robot-
like" robots not only in terms of physical characteristics but also in terms
of their behavioural actions. Thus, the development of an ECAs with the
ability to convey information through speech with the addition of the use of
co-speech gestures, greatly improves the HRI.
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Chapter 4

State Of The Art

During the last few decades, research in the filed of multimodal behaviour
generation and, in particular, of gesture generation, has intensified consid-
erably. Initially, most of the methods were rule-based, but recent state-
of-the-art methods are data-driven, and researcher from all over the world
released a variety of so-called speech-to-gesture (S2G) models for the gener-
ation of hands gesticulation. S2G models are machine learning (ML) gen-
erative models that produce a sequence of gestures in accordance with the
inputted speech, whether audio or text. Such models are developed with the
aim of generating human-like gesticulations based on the semantics and/or
acoustics of speech.

In this chapter most recent and relevant state-of-the-art research on S2G
models are presented, discussing measures with which these models are cur-
rently evaluated, and then introducing what’s the original contribution of
this work.

4.1 Speech-to-Gestures Models

Early models of data-driven gesture generation are mostly characterised
by the use of audio as a speech representation. Such models capture the
acoustics of speech, which facilitates the production of co-speech gestures
that are in accordance with the speech acoustics. Other models, on the
other hand, use text as a representation of speech. The use of text facilitate
the learning of gestures related to the semantics of the speech and, thus, the
production of iconic, metaphoric and deictic gestures. Although text allow
to retrieve important information from textual representation, they may lack
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in reflecting the natural and strong link between acoustics (e.g. intonation,
intensity) and gestures [21]. Most recent works, to address the limitations of
both methods, propose multimodal gesture generation models, which make
use of both audio and text as a representation of speech.

Text-driven Gesture Generation

Yoon et Al. [22] developed a co-speech gesture generation model from
a text representation of the speech. Their model learned to produce iconic,
deictic and beat gestures from TED Talks [23] speeches, demonstrating their
results with the use of a social robot. C. Ishi [24] generated hand gestures
from text creating word concepts using WordNet [25] and gestures classes
(e.g. iconic, beat) through a clustering analysis, and then mapping the speech
text to the corresponding hand gestures.

Audio-driven Gesture Generation

Most prior work on data-driven gesture generation has used the audio-
signal as the only speech-input modality in the model. Hasegawa et Al. [26]
proposed a gesture generation model based on a bi-directional LSTM Net-
work. They make the use of a RNN architecture to learn "speech-gesture
relationships with both backward and forward consistencies over a long pe-
riod of time". In 2019, after proving the importance of representations for
speech-driven gesture generation [27], T. Kucherenko [28] presented a novel
framework for automatic gesture generation from row audio which makes use
of representation learning through autoencoders. That same year, Ginosar et
al. [29] developed a speaker-specific gesture generation model which makes
use of convolutional neural network to generate 2D poses from spectrogram
audio features.

Multimodal Gesture Generation

Referring to multimodal gesture generation, there are few relevant recent
works. The one by C. Chiu [30] presented a deep learning approach for
the prediction of 12 co-speech gestures classes. In 2020, T. Kucherenko [31]
developed "Gesticulator" a multimodal S2G model that takes both audio
and text representation of the speech as input. In distinction to the work of
C. Chiu, this latter work aims to produce arbitrary gestures as a sequence of
3D poses instead of a discrete gestures class.
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4.2 Evaluation of Speech-to-Gesture Models

At the current state-of-the-art, S2G models are evaluated conducting both
an objective and a subjective evaluation study. As for the objective evalua-
tion, gestures produced by the model are compared with ground truth (GT)
gestures using statistic measures. In order to compute these statistics, ges-
tures must be in 3D joints positions representation. In general, there is no
consensus in which statistic to use. However, commonly used statistic mea-
sures in above cited works are:

• Average Position Error (APE): is the average difference over all frame
for all joints positions between GT and predicted gestures.

• Average Velocity (AV): is the averaged velocity over all frames for all
joints.

• Average Acceleration (AA): is the averaged acceleration over all frames
for all joints.

• Average Jerk (AJ): is the averaged jerk over all frames for all joints.

• Histogram of Moving Distance (HMD): shows the velocity/acceleration
distribution of gesture motion.

In general, these statistics measures provide a baseline to evaluate whether
predicted gestures have a similar statistic distribution of GT gestures.

Subjective evaluations for S2G models, instead, are user studies in which
humans raters evaluate predicted gestures in a visual representation (i.e.
video). Usually, human raters are asked to answer different questions, each
reflecting different aspects of gestures. For example, they might be asked to
give a score on the human-likeness, on the semantic coherence with the speech
(e.g. when a character says "high", a "hand-raising" gesture is expected), on
the utility of gestures and also on the synchrony between character’s voice
and hands movements.

4.2.1 GENEA2020: An Evaluation Benchmark For S2G
Models

T. Kucherenko, a PhD student from KTH university in Stockholm, is one
of the most involved researcher in the field of generating non-verbal behaviour
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for embodied conversational agents. As he developed several gesture genera-
tion models, many other researcher are constantly working to produce more
and more innovative ones. However, each research group works individually,
on its own datasets and using different visualisations tools and evaluation
methodologies. To address this, T. Kucherenko recently organised the GE-
NEA2020 workshop [3], a challenge on the generation and evaluation of non-
verbal behaviour for ECA. The challenge requires participants to produce
models using a common dataset, which are then evaluated by conducting a
large user study. This allows to compare recent approaches with each other
and to investigate the state-of-the-art in the field of multimodal behaviour
generation.

4.3 Original Contribution

As described above, the field of generating non-verbal behaviour for em-
bodied conversational agents has recently been very active and constantly
evolving. S2G models are designed and developed to be integrated in embod-
ied conversational agents in order to make them performing natural co-speech
gestures according with the uttered speech. Such integration, will allows to
improve ECAs interaction capabilities and their acceptance by humans.
It might be reasonable to think that embodied conversational agents may
use synthetic voice, for example a robotics voice, while speaking. In this
case, when evaluating predicted gestures, it will be not possible to use statis-
tic measures (presented in Section 4.2) that compare GT gestures and pre-
dicted ones. This is because dataset used for training are provided only with
gestures performed by humans using human voice and not with gestures
produced by a robotic voice. To address this, the need of a GT gestures
independent measure becomes necessary. In particular, it will be useful to
have a measure that do not make use of GT human gestures but that is
based on the correlation between inputted speech and predicted gestures,
describing how good this correlation is. Such a measure allows to evaluate
S2G models whatever is the audio-source and also give a direct measure of
what the model wants to learn, which is the appropriateness of gestures in
relation to the speech.

This work aims to provide an easy and ready-to-use solution for the pre-
sented problem by proposing a novel approach for the evaluation of S2G
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models that is based on the correlation between speech and gestures. In par-
ticular, provides a ML model that takes an audio and a sequence of gestures
as input and gives in output a score based on their correlation.
Such a measure also allows to have a common evaluation metrics in order
to compare state-of-the-art speech-to-gesture model. An example of this use
case is shown in Section 8.3.
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Chapter 5

A Novel Approach For The
Evaluation Of S2G Models

5.1 Overview

Research studies are moving forward to produce more and more reliable
ECAs-Human interactive systems in recent year. In Chapter 2, it was ar-
gued that one of the main characteristics that allows for good interaction is
the production of non-verbal communication by ECAs and, in particular, of
co-speech gestures. Thus, a multitude of S2G models were developed and
released from and for the scientific community in order to make progress in
this research field.
However, each research team design and develop their S2G model in their
own environment, using own dataset, own visualisation tools and own eval-
uation metrics. Referring to evaluation metrics, currently used evaluation
metrics do not allow for a direct evaluation on the correspondence between
predicted gestures and uttered speech.

This work presents a novel approach for the evaluation of speech-to-
gesture models, proposing a binary RNN-based classifier model (Evaluator)
trained in a supervised fashion that associates to an <audio, gestures> pair a
score between 0 and 1 indicating the quality of their correlation. The higher
the score, the more consistent the generation of gestures from a S2G model
is with the inputted audio. By obtaining scores for a relevant amount of
<audio, gestures> pairs produced by a S2G model, it is possible to draw an
overall assessment on the quality of gestures produced by that model.
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Audio Gestures Label
Audio_1 Gestures_1 0/1
Audio_2 Gestures_2 0/1

... ... 0/1
Audio_n Gestures_n 0/1

Table 5.1: Demonstration of the new labelled dataset.

5.2 Requirements and Specifications

The Evaluator model is a model trained in a supervised fashion, setting in
which the dataset used must contains labels to be used as the optimal target
for the output. It is therefore needed a dataset containing three values for
each entry:

• Audio: audio file for the nth speech.

• Gestures: motion file for the nth speech.

• Label: a label that states whether the pair <audionth, gesturesnth> is
correlated or not.

A demonstration of the required dataset is shown in Table 5.1.
Having a dataset with these specifications, it is then possible to select au-

dio and gestures features that better represent the correspondence between
audio and gestures. In order to do so, a study on audio-gestures peaks cor-
respondence is presented in Chapter 6.
The technical implementation for building the dataset and for the feature
extraction phase should be scalable in order to allow future works to simply
select different features and to train the same model architecture with differ-
ent objectives.
The final model architecture was built starting from current state-of-the-art
S2G models. Since these models try to learn the audio-gestures correlation
predicting gestures in accordance with the audio, it is worthy to start from
these architectures and then work on them in order to find the optimal one.
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5.3 Technologies and Environment

5.3.1 File Formats

BVH - BioVision Hierarchical data

BVH is a common used file format for motion data. It is structured in
two parts:

• Header: describes the skeleton, its hierarchy (e.g., left hand is the
"child" of left elbow) and its initial pose.

• Data: contains the actual motion data, i.e., the rotation value of each
joint for each frame.

Listing 5.1: BVH file example.
HIERARCHY
ROOT Hips
{

OFFSET 0.00 0.00 0.00
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation

Yrotation
JOINT Chest
{

OFFSET 0.00 5.21 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Neck
{

OFFSET 0.00 18.65 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Head
{

OFFSET 0.00 5.45 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{

OFFSET 0.00 3.87 0.00
}

}
}

}
}
MOTION
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Frames: 2
Frame Time: 0.033333
8.03 35.01 88.36 -3.41
7.81 35.10 86.47 -3.78

WAV

WAV files contain digital audio data. These files have a huge size due
to its uncompressed digital audio content, but contain high quality audio.
The audio data contained in WAV files are also called waveforms, and these
waveforms can be implemented with various bit rates and sampling rates.

CSV

Comma-Separated Values (CSV) is a text-based file format used for im-
porting and exporting (e.g. from spreadsheets or databases) a table of data.
In this format, each row of the table (or database record) is normally repre-
sented by a line of text, which in turn is divided into fields (the individual
columns) separated by a separator character, each of which represents a value.

5.3.2 Development Technologies

Python

Python is a high-level programming language, first publicly released in
1991 by its creator Guido van Rossum. It is a practical, easy to use and
portable language, and has an extremely rich built-in and third-part library.
This latter characteristics makes Python a multi-purpose programming lan-
guage to be used, among others, for web development, desktop applications,
game and 3D graphics, scientific and numerical computing, data manage-
ment.
In recent years, the Python programming language has seen increasing use
in the development of projects related to artificial intelligence and machine
learning.

Anaconda Package Manager

Python libraries and their packages give programmers the ability to reuse
and, if needed, extend the work done by others. Anaconda [32] is a Python
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distribution with the objective of simplify the management of python pack-
ages. It is equipped with two package managers: pip and conda. They allows,
with very simple code, to create working environments (e.g., deployment and
release), install third-part libraries in it and import any function from those.
Demonstration code is shown in Listing 5.1.

Listing 5.2: Python example
# Install numpy package
conda install numpy OR
pip install numpy

# Uninstall package
conda uninstall numpy OR
pip uninstall numpy

# import numpy package
import numpy as np

# use numpy to create an array
new_array = np.array([0, 1, 2])

5.3.3 Python Packages

Here are briefly introduced most relevant python libraries used in this
work, grouped by purpose of use.

Data Management

• NumPy is a Python package for scientific computing. It is a useful
package when having to handle arrays and having to apply fast and
complex mathematics operations on the data they contains.

• Pandas is a library that provides high-performance data analysis tools
for Python. It allows to explore, clean and process tabular data like
tables and, then, dataset.

Feature Extraction

• bvhtoolbox package provides functions for manipulating and convert-
ing BVH motion capture files. In this work it is used to deal with
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gestures files converting BVH file into CSV table, and transforming
joints’ rotation angles into joints’ 3D position coordinates.

• librosa is a Python package for music and audio analysis. In particular,
it is useful for dealing with audios in wav format and allows to extract
features such as spectrogram and pitch from them.

• PyReaper is a python wrapper for REAPER (Robust Epoch And
Pitch EstimatoR). REAPER is a speech processing system that al-
lows to estimate voicing state (voiced or unvoiced) and fundamental
frequency (F0).

Training

• Keras is a machine learning tool for Python that runs on TensorFlow
[33]. It enables for fast machine learning models training and develop-
ment by providing a multitude of ready-to-use tools.

5.3.4 UniBielefeld TechFak Cluster

The development of machine learning models requires great computa-
tional power, both in data pre-processing and data processing phases as well
as in the training of the model. For long-running, computationally intensive
processes, the Technical Faculty (TechFak) of the Bielefeld University has
a cluster of machines with significantly more computing power than normal
workstation computers.
Thanks to the access permission given by the Bielefeld University, it was
possible to develop the project within a reasonable timeframe and without
the need to use paid cloud services.
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Chapter 6

Design and Architecture

In this Chapter is described in detail the design of the Evaluator model. In
Section 6.1 a new dataset is built in order to fits the data structure described
in Chapter 5. Then, in section 6.2 a study on audio and gestures peak
correspondence will leads to the choice of best features to be selected and
extracted. The research for the binary classification model architecture is
described in Section 6.3. Finally, in Section 6.4, is presented the overall
pipeline of the project.

6.1 Dataset

As for requirements described in Chapter 5 the ideal dataset contains
audio and gestures for a relevant number of speeches and also contains labels
that state whether each pair has a good correlation or not. In order to build
such a dataset, it is advantageous to start from an available speech-gestures
dataset, in which each audio has its related sequence of gestures. All the
entries of this dataset will be labelled as "Correlated" (1). Then, data are
shuffled in order to create wrongly associated audio-gestures pairs. These
new pairs will be labelled as "Not Correlated" (0).

The dataset from which the new labelled dataset is built, is the one
provided by GENEA2020 [3] (see section 4.2.1). It contains:

• 30 correctly associated pairs <audio, gestures> .

• About 10 minutes each.

• Resulting in about 5 hours recording.
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Audio Gestures
Recording_1.wav Recording_1.bvh
Recording_2.wav Recording_2.bvh

Table 6.1: Demonstration of the original dataset by GENEA2020 [3].

Audio Gestures Label
Recording_1.wav Recording_1.bvh 1
Recording_2.wav Recording_2.bvh 1
Recording_1.wav Recording_2.bvh 0
Recording_2.wav Recording_1.bvh 0

Table 6.2: Demonstration of the new labelled dataset.

As for data formats, audios for each speech utterance are in WAV format,
while gestures files are in BVH format.

Starting from the GENEA2020 dataset the new dataset is built as follows:

• Each of the 30 entries in GENEA2020 dataset is labelled as 1, i.e., as
correctly associated, or "Correlated".

• Then, all the entries are shuffled in order to create the same amount
(30) of wrongly associated <audio, gestures> pairs.

• Label them as 0, i.e., as "Not Correlated".

Therefore, the new labelled dataset contains 30 correctly associated pairs
labelled as "1" and 30 wrongly associated pairs labelled as "0", resulting in
a balanced dataset containing about 10 hours of speech-gestures pairs.

Table 6.1 is a demonstration of the original GENEA2020 dataset, and
Table 6.2 is a demonstration of the new built labelled dataset.

6.2 Feature Selection and Extraction

The feature selection and extraction step is a crucial phase that allows
for dimensionality reduction, that is discard non-relevant features, select the
ones that contains most relevant information (feature selection) and, finally,
manipulate selected features in order to extract those information.
Thanks to the large amount of state-of-the-art work on the use of audio fea-
tures to produce gestures, it was possible to make a pre-selection of features
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and, therefore, to conduct this study by considering the most commonly used
features in these works for audio and gestures.

Audio Features

• Pitch: is the fundamental frequency of a musical note or sound that
is perceived, and is one of the main characteristics of a sound. Pitch
is the feature that makes it possible to distinguish whether a sound
is high or low and depends on the frequency of the sound wave that
generated it.

• Fundamental frequency (F0): refers to the "approximate frequency of
the (quasi-)periodic structure of voiced speech signals" [34]. The os-
cillation originates from the vocal folds, which oscillate in the airflow
when appropriately tensed.

• Mel Frequency Cepstral Coefficient (MFCC): is a coefficient represent-
ing the short-term power spectrum for speech representation based on
human audio perception. MFCC features are a widely used feature in
automatic speech or speaker recognition.

Gestures Features

• Velocity: represents the time rate and direction of an object’s move-
ment. Note that velocity differs from speed, since velocity is a vector
while speed is a scalar value representing the time rate at which an
object is moving along a path.

• Acceleration: is a vector quantity that represents the variation of veloc-
ity in the unit of time. In differential terms, it is equal to the derivative
with respect to time of the velocity vector.

Considering this subset of features, it was performed a manual study on
the correspondence between audio-gestures features with the objective to find
out which of them better represent the audio-gesture correlation. Then, it
was conducted a study on the correspondence between peaks in audio fre-
quency and hands movements. Indeed, when people gesticulate, it is fair to
assume that there is a relationship between an audio frequency peak in the
stress or emphasis of a word or phrase and a peak in the hands movements,
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such as velocity and acceleration. This assumption will be proved later.

First, a cross-correlation study showing the relationship between features
over time gives an overview of which audio and gestures features are most
related to each other. The correlation between features is represented by the
heatmap in figure 6.1. It shows that the best-related features are "F0" for
audio and "Velocity" for gestures. However, it also shows that there is not a
good relationship between those features over time or, better, that there is
not a super synchrony in values oscillations.

Figure 6.1: Heatmap representing features cross-correlation. 0 means bad
correlation; 1 means high correlation.

This may be due to the fact that, when a speaker stress a word or phrase,
there is a time delay between the time of the increase or decrease of the audio
frequency and the reflection of that audio oscillation on hands velocity.

To prove the assumptions made, it is needed to check whether the corre-
lation between audio frequency F0 and hands velocity exists, and, to check
if their relationship is influenced by a certain time delay.

Start from a visual representation of the audio and gestures features over
time can be useful to check whether there is a certain pattern in audio fre-
quency and hands velocity values variation. In figure 6.2 are shown audio
and gesture features of a 20 seconds speech:

• Audio: represented in green, is the F0 frequency for each frame.

• Gesture (velocity): represented in yellow, is the mean between left and
right hands velocity for each frame.
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• Gesture (acceleration): represented in red, is the mean between left
and right hands acceleration for each frame.

• Gesture over MFCC: represent the mean hands velocity (yellow) over-
laid on the audio MFCC.

• Note that, for each feature, it is also represented with a cross ("x")
when a peak occurs.

Figure 6.2: Demonstration of the study on peaks correspondence.

Looking at the plots in figure 6.2, there seems to be a pattern on how
the fluctuations in audio frequency and hands velocity vary, although the
results from the cross-correlation study (heatmap) were not satisfactory in
this sense. Before compute the peaks delay, i.e., the time delay between
a peak that occur in the audio frequency and a peak that occur in hands
velocity, a formal definition of what is a "peak" should be given.

Definition 6.2.1. Peaks are indexes in which there is a (positive) variation
of the function (audio/gesture feature over time) under consideration.
In particular, a peak or local maximum is defined as any sample whose two
direct neighbours have a smaller amplitude. The minimal horizontal distance
in samples between neighbouring peaks is 200ms.
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The definition 6.2.1 is the one used in this study. However, it is possible
to make deeper studies on this definition, e.g. by tuning the neighbouring
parameter and/or adding other parameters like:

• Threshold: required threshold of peaks. The vertical distance to its
neighbouring samples.

• Min/Max height: required height of peaks. For example, considering
only peaks over 0,5 cm/s for the hand speed.

To prove the assumption that peak-to-peak correspondence may be sub-
ject to a delay and to compute that delay, a peaks delay study was performed
considering:

• 5 correctly associated audio-gestures pairs.

• 5 wrongly associated audio-gestures pairs.

What is expected, is that the delay has a low value for correctly associated
pairs and an high value for wrongly associated pairs.

In Figure 6.3 and Figure 6.4 is shown a demonstration of the result for
one correctly associated pair and one wrongly associated pair respectively.
Results show that the relationship between audio and gestures peaks has a
mean delay about 0.5 seconds for correct associations and about 4 seconds
for incorrect ones.
In conclusion, this analysis shows that the F0 frequency and the mean ve-
locity of the hands have a good time synchrony, even if it is subjected to
small delays. Therefore, these features are extracted in order to be used as
input for the evaluator model.
Another important aspect to be considered when extracting features, is that
each gesture (at each frame) is influenced by the context. In other words,
it not only depends from the audio frequency, but also from the character-
istic of previous and following gestures. In the next paragraph is explained
in detail the use of context, while further details on the feature extraction
implementation are given in Chapter 7.

The Use of Context

A single gesture, at instant t, is influenced by the gesture immediately
preceding (t − 1) and influences the gesture immediately following (t + 1).
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Figure 6.3: Peaks delay for correctly associated pairs.

Figure 6.4: Peaks delay for wrongly associated pairs.

For example, the velocity at time t − 1 cannot be significantly different at
time t, just as the position of the hand cannot be near the chin at time
t − 1 and near the hip at time t. Ignoring this sequential frame-by-frame
influence leads to the generation of non-smooth gestures for S2G models,
and to incorrect results when performing the evaluation.
In a previous work on gesture generation [28], they found that enriching each
frame with information about the previous 30 frames and the following 30
frames improve the quality of generated gestures. In this work, then, is made
use of context.
A visual demonstration is shown in Figure 6.5.

6.3 Model Architecture

In Chapter 4 were presented state-of-the-art S2G models with the ob-
jective of predicting gestures in accordance to the inputted speech. From
another perspective, what these models learn is to produce gestures corre-
lated with the speech and, then, the audio-gesture correlation. Therefore,
in order to find the most performing model architecture, it was decided to
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Figure 6.5: A demonstration of the use of context.

build it starting from state-of-the-art S2G models, and then work on them
by adding, removing or editing some structural parameters to best fit model
requirements presented in Section 5.2.

The model architecture to start with is taken from the work "Analyzing
Input and Output Representations for Speech-Driven Gesture Generation"
by T. Kucherenko [28] described in Chapter 4. The architecture used in this
work is a time-distributed GRU, that is reusable for the purpose of learning
the correlation between inputted audio and predicted gestures. However, the
exactly same architecture didn’t fit this objective. Indeed, the model had
difficulties in generalise its knowledge and tended to perform very well on
training data but dramatically on test data, i.e., the model overfitted. The
overfitting can be due to different causes, the first thing to do in this case is
to try with a simpler architecture with fewer parameters.
There were many trials in which the main structure (GRU) remained un-
touched but the number of layers and artificial neurones in it decreased. Af-
ter many trials, the result is a very simply architecture with a GRU wrapped
into two fully connected layers.
A visual representation of the final model architecture is shown in Figure 6.6,
while Table 6.3 presents the performance of most relevant tested models.
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Figure 6.6: Model architecture. GRU image taken by [2]

Model BS LR LF Loss AccuracyTR AccuracyTE
LSTM 2056 0.01 BCE 0.413 62% 58%
LSTM 1028 0.01 BCE 0.223 71% 71%
GRU 2056 0.001 BCE 0.179 92% 90%
GRU 2056 0.01 BCE 0.232 83% 65%

Table 6.3: Performance of tested models. In bold the final model.
BS = Batch Size; LR = Learning Rate; LF = LossFunction; TR = Train-
ingSet; TE = TestSet; BCE = Binary Cross Entropy.

6.4 Pipeline

A visual representation of the overall pipeline is shown in Figure 6.7. It
can be summarised in these steps:

1. Build a new dataset: starting from a speech-to-gestures dataset, is built
a new labelled dataset to be used in a supervised fashion.

2. Feature extraction: most relevant features are selected and extracted
to retrieve relevant information from data.

3. Prepare input data: create ready-to-use vectors for the evaluator model.
Each frame contains information of 30 previous frames and next 30
frames.

4. Train: the model is trained in a supervised fashion.
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5. Input: takes a pair <Audio, Gestures> as input. Features used are F0
for audio and velocity for gestures.

6. Output: the probability distribution expressing how likely audio and
gestures features are correlated.

Figure 6.7: Overview of the project pipeline.
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Chapter 7

Development and Training

In this Chapter it is described the technical implementation of the main
steps presented in the design phase (Chapter 6). In particular, are presented
technical details and code snippets about the building of the new dataset
in Section 7.1.1, the extraction of features with the use of context and the
creation of ready-to-use data vectors in Section 7.1.2, and the model training
in Section 7.2.

7.1 Implementation

7.1.1 Dataset

In order to create the new labelled dataset to be used for the training
and testing of the binary classification model, it is needed to manipulate the
original speech-gestures dataset by GENEA2020 [3].

From a technical perspective, the algorithm is:

1. From the original dataset, label each entry as 1, i.e. "Correlated".

2. From the original dataset, take all the audio-gestures pairs and shuffle
their order..

3. Combine them to create new pairs.

4. Label new pairs as 0, i.e. "Not Correlated".

The complete code for this algorithm is shown in Listing 7.1.
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Listing 7.1: Build A New Dataset
"""
This script create a labelled dataset.
It creates len(OriginalDataset)*2 entries <audio, gesture, label>.
The new labelled dataset is saved as a CSV file.

author: @Famosi
"""

import os
import random
import pandas as pd
import numpy as np

def correct_pairing(speech_dir, motion_dir):
cp = []
audios = os.listdir(speech_dir)
motions = os.listdir(motion_dir)

assert len(audios) == len(motions)

n_pair = len(audios)

# for each motion file, find the related audio file and label it
as "1"

for idx in range(n_pair):
motion = motions[idx]
picked = motion.split(’.’)[0]
audio = [audio for audio in audios if audio.split(’.’)[0] ==

picked]
data = [f’{speech_dir}/{audio[0]}’,

f’{motion_dir}/{motion}’, 1]
cp.append(data)

return cp

def wrong_pairing(speech_dir, motion_dir):
wp = []

audios = os.listdir(speech_dir)
motions = os.listdir(motion_dir)
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assert len(audios) == len(motions)

n_pair = len(audios)

for _ in range(n_pair):
# Search for a wrongly associated pair
while True:

sampling = random.sample([i for i in range(0, n_pair)], 2)
if audios[sampling[0]].split(’.’)[0] !=

motions[sampling[1]].split(’.’)[0]:
break

# Save pair and label as "0"
data = [f’{speech_dir}/{audios[sampling[0]]}’,

f’{motion_dir}/{motions[sampling[1]]}’, 0]
wp.append(data)

return wp

def pair_n_label(speech_dir, motion_dir, csv_file):
# Pairing
cp = correct_pairing(speech_dir, motion_dir)
wp = wrong_pairing(speech_dir, motion_dir)
print(f’ |- Done!’)

pairs = np.array(cp + wp).T
d = {’audio’: pairs[0], ’gesture’: pairs[1], ’label’: pairs[2]}

# Save DataFrame as CSV
from pathlib import Path
Path(csv_file.split(’/’)[0]).mkdir(parents=True, exist_ok=True)
pairs_df = pd.DataFrame(data=d)
pairs_df.to_csv(csv_file, index=False)

print(f’ |- You can find the CSV file at \’{csv_file}\’’)

The output is a new, labelled, dataset with a number of entries labelled
"Correlated" equal to the number of entries labelled "Not Correlated".
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7.1.2 Feature Extraction

The feature extraction phase consists in manipulate available data in
order to retrieve interesting information (features) and prepare data as input
for the final model. As described in Chapter 6, features to be extracted are:

• Fundamental frequency (F0) for audios.

• Mean Hands Velocity for gestures.

Audio - F0 Extraction

The F0 extraction from an audio in wav format is possible using PyReaper,
the python library described in section 5.3. This library allows to extract F0
directly from a wav file using the codes shown in Listing 7.2.

Listing 7.2: The use of PyReaper.
import pyreaper

’’’
x = input audio signal
fs = sampling frequency
’’’
f0 = pyreaper.reaper(x, fs)

Gestures - Hands Velocity

As for gestures, the need of computing hands velocity require a more
complex work. Motion files available in the dataset are in BVH format,
containing, for each frame, the rotation angle of each joint. In order to
extract velocity from this data, first it is needed a conversion from joints
rotation angles into joints 3D positions. Then, after selecting LeftHand and
RightHand joints positions, the velocity for each joint can be computed by
calculating the first derivative of the joints position for each frame. Finally,
the mean of the left and right velocity, for each frame, is computed and used
as input feature. In summary, the steps are:

1. BVH to 3D Coordinates: by using bvhtoolbox library (see Chapter 5)
it is possible to convert a BVH motion file in a CSV file describing for
each joint, and for each frame, the position in a 3D space.

40



2. Select only LeftHand and RightHand joints 3D positions.

3. From 3D hands coordinates to Velocity: by computing the first deriva-
tive of positions.

4. Compute, for each frame, the mean between LeftHand and RightHand
velocity using the numpy python library.

These steps are performed for all <audio, gestures> pairs available in the
dataset.

Prepare Data for Training

Having extracted F0 frequency and Velocity features, it is possible to
prepare data for training. In particular, what is needed is that each audio
and gesture frame contains not only F0 and Velocity information for that
frame, but also from previous and following context. In accordance with
requirements describe in Chapter 7, each frame must contains features for 30
previous frames and 30 following frames.

7.2 Training

Set Audio-Gestures (input X) Label (target Y)
Train (260181, 61, 2) (260181,)

Validation (123896, 61, 2 (123896,)
Test (28909, 61, 2) (28909,)

Table 7.1: Shape of Train, Validation and Test set.

The dataset contains <audio, gestures, label> entries for a total of 10
hours speech sequences. It was divided into training set, validation set and
test set for 70%, 20% and 10% respectively. Final vectors shapes are pre-
sented in Table 7.1. A visual demonstration of the training set is shown in
Figure 7.1.

The model architecture was trained for 50 epochs with a learning rate
(LR) of 0.001 and a batch size (BS) of 2560 samples. As loss function (LF),
the binary cross-entropy loss (BCE) was used.
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Figure 7.1: A demonstration of the training set shape.
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Chapter 8

Evaluation and Applications

The evaluator model is a binary classification model trained in a su-
pervised fashion. For such a model, common used evaluation metrics are
accuracy, loss, confusion matrix and F1 score.

8.1 Evaluation Metrics

Accuracy measure the performance of the model. It’s defined as:

Accuracy =
No of correct predictions
Total no of predictions

(8.1)

Loss is defined as the difference between the predicted value by the model
and the true value. The common used loss function for binary classification
model is the binary cross-entropy, defined as:

Binary cross-entropy = −
n∑

i=1

2∑
j=1

yi,jlog(pi,j) (8.2)

where, yi,j denotes the true value i.e. 1 if sample i belongs to class j and 0
otherwise, and pi,j denotes the probability predicted by the model of sample
i belonging to class j.

Confusion Matrix is a matrix that shows the number of true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN).
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Confusion matrix provides also other two interesting values to be calculated
from:

• Recall: is defined as TP
P
.

• Precision: is defined as TP
P ∗ .

where P = TP + FP and P ∗ = TP + FN.

F1-score is defined as the harmonic mean between precision and recall.
It is used as a statistical measure to rate performance. F1-score is a value
between 0 and 1; 0 being lowest and 1 indicating perfect precision and recall,
and is defined as:

F1-score =
2 ∗ precision ∗ recall
precision + recall

(8.3)

8.2 Results

Accuracy and loss results are shown in the training history plot in Figure
8.2. The history plot shows that after 50 epochs, the model reached an
accuracy of 91% and a low loss around 0.175.
As for the confusion matrix (see Figure 8.1), the number of TN and FN are
similar, meaning that the model is balanced and has no preference in saying
a pair is "Correlated" or "Not Correlated". F1-score value is 0.941, meaning
that the model has both an high precision and a high recall.

8.3 Applications

In this section are presented two application use cases for the evaluator
model. Both of them are based on the replication of a subjective evaluation
study from state-of-the-art works in S2G models. The idea is to replicate
those user studies in order to:

• Show an application use case: evaluate state-of-the-art S2G models.

• Evaluate the proposed model itself: after the replication of a user study,
it might be interesting to check whether the evaluation performed by
the model fits a human evaluation.
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Figure 8.1: Confusion matrix on test set.

Figure 8.2: Training history for Accuracy and Loss over 50 epochs.

The first replication aims to evaluate Gesticulator, the S2G model proposed
by T. Kucherenko [31] replicating an ablation study, while the second one has
the objective to evaluate and compare state-of-the-art S2G models replicating
the subjective evaluation from GENEA2020 workshop [3].

8.3.1 Evaluation of a S2G Model

In Gesticulator by T. Kucherenko, the S2G model is evaluated using
statistics measures for the objective evaluation, and performing an ablation
study for the subjective evaluation. In the ablation study, human raters
were asked to give a score on the preference of the proposed model - called
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FullModel - over the following sub-models derived from it:

• NoAutoregression: the FullModel without performing autoregression.

• NoPCA: the FullModel without performing principal component anal-
ysis (PCA) for feature extraction.

• NoFilm: removing their proposed Film layer.

• NoText: without the use of text as input feature for the model.

Setting

Participants, recruited on Amazon Mechanical Turk (AMT), were as-
signed to one specific comparison of two systems. Each participant was
asked to evaluate 20 speech video pairs on four subjective measures: "In
which video..."

• (Q1) "...are the character’s movements most human-like?"

• (Q2) "...do the character’s movements most reflect what the character
says?"

• (Q3) "...do the character’s movements most help to understand what
the character says?"

• (Q4) "...are the character’s voice and movement more in sync?"

For the replication experiment, results from the Q4 are taken into account,
as it is a question that is similar to what the evaluator model should have
learned and should predicts.
The replication of this experiment consisted in using the evaluator model in
place of human raters.

Implementation

In order to replicate the original setting, the evaluator model was used
to rate the FullModel and all the sub-models on each of the 20 videos. The
overall score for each model is calculated as the average of all the individual
scores for each video. Finally, the preference over the FullModel is calculated
by subtracting each sub-model score to the FullModel one.
The code is shown in Listing 9.1.
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Note that in this study the Evaluator model gives a score between 0 and 1 for
each video. Human raters, instead, were asked to decide, between two videos,
which one performed better in a side-by-side comparison. Therefore, in this
study it is not interesting that the numerical values of the two evaluations
correspond, but rather whether the overall result (e.g., model X is better
than model Y) matches.

Listing 8.1: Preference over FullModel.
import numpy as np

"""
Input:
models = ["FullModel", "NoPCA", ...]
videos = [video_1, video_2, ..., video_20]
"""
def getPreferenceOverFullModel(model_types, videos):

model_rate = dict()
for model in model_types:

rates = []
# evaluate() returns the mean rate over all videos for a

specified model
mean_rate = evaluate(model_types, videos)
model_rate[model_types] = mean_rate

preference_over_fullmodel = [model_rate[’FullModel’] -
model_rate[model] for model in model_types if model !=
"FullModel"]

return preference_over_fullmodel

Results

Results show that the evaluator model predictions are consistent with the
original user study. Indeed, both the Evaluator and human raters state that:

• "NoPCA" and "NoFilm" are preferred over the "FullModel".

• "FullModel" is preferred over "NoText" and "NoAutoregression" mod-
els.

A visual representation of these results is shown in Figure 8.3.

47



Figure 8.3: Comparison between replication and original evaluation.

8.3.2 Comparison between SoTA S2G Models

One of the most interesting aspects of the GENEA2020 workshop (pre-
sented in Chapter 4) is that it provides researchers with a common dataset to
work with. This not only provides a reference point for the implementation
and training of S2G models, but also a benchmark for the evaluation and
comparison of the works presented by the teams involved.
Indeed, at the end of the "call for papers" phase, each model was evaluated
performing a "large-scale, crowd sourced, joint, and parallel evaluation of the
motion submitted by the participating teams" [3].

Setting

Participants for the subjective evaluation were recruited from English-
speaking countries through the Prolific Academic crowd sourcing platform.
Each participant was asked to rate 40 videos, with an average duration of
10 seconds, with a score from 0 to 100, without the evaluating user knowing
which of the submitted models had generated those gestures. In two different
studies, two different aspects were asked to be investigated:

• Human-likeness: "How human-like does the gesture motion appear?".
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This study aimed in measuring the quality of generated gestures in
general.

• Appropriateness: "How appropriate are the gestures for the speech?".
This question aimed to investigate the perceived link between gestures
and audio in terms of rhythm and timing.

Again, the appropriateness study has the aim to measure what the Evaluator
model, proposed in this work, should have learned. Thus, it was taken into
account for the replication. In Figure 8.4 are listed gestures and teams that
participated in the original evaluation. In this work a subset of them was
taken into account.
Natural (N) gestures are GT gestures. In the original study the evaluation of
real, natural, gestures allowed to have a metric reference for human evaluation
scores, while in the experiment replication, it was useful as an evaluation for
the model itself.

Figure 8.4: Table from the GENEA2020 paper [3]. "Conditions partici-
pating in the evaluation. Teams are sorted alphabetically by name. The
anonymised IDs of submitted entries begin with the letter ’S’ followed by a
second, randomly-assigned letter in the range A through E, but which letter
is associated which each team is not revealed in order to preserve anonymity."

Implementation

# Returns a dictionary with scores for each model.
def replicateGENEA(model_types):

"""
models_rate = {
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"N": score_N
"SE": score_SE
...

}
"""
models_rate = dict()

for model in model_types:
# Load Audio and Gestures predicted by the current model
data = loadData(model)
models_rate[model] = evaluate(data)

return model_rate

Results

The histogram in figure 8.5 shows results from the replication experiment.

Figure 8.5: Results from the replication of the GENEA subjective evaluation.

Natural (N) gestures received an high score both from the Evaluator and
human raters. As for the submitted models, predictions do not completely
fit the evaluation by human raters. The trend lines (see Figure 8.5), though,
are similar, meaning that there is a certain correspondence between the two
evaluations.
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Chapter 9

Conclusion and Future Works

Conclusion

In this study it was proposed a novel approach for the evaluation of ges-
tures generative models by providing Evaluator, a ML model that is able to
give an overall assessment on the quality of generated gestures. In particular,
the presented model provides an evaluation metrics that state how good is
the correlation between the audio F0 frequency and the velocity of the hands
in a certain speech.
Such a measure is useful to overcome two main problems in speech-driven
gesture generation:

1. Statistic measures for the evaluation of S2G state-of-the-art works are
dependent to GT gestures, not enabling an objective evaluation of ges-
tures produced by a synthetic voice (e.g., robotics voice). The use of
a measure that do not makes use of GT gestures, allows for an audio-
source independent evaluation.

2. Each research team works in its own environment and using its own
dataset, leading to a limitations in the objective comparison of state-
of-the-art models. The presented model can be used as a benchmark
for the evaluation of gesture-generating systems.

Results from this study are interesting: the model achieved an high accu-
racy and the replication of subjective evaluations from recent state-of-the-art
works provided an additional measure to asses that the model is reliable.
Referring to the result from the replication of the GENEA2020 subjective
evaluations (see Figure 8.5), the discrepancy in the rating of submitted mod-
els may lead to the following consideration:
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state-of-the-art S2G models and, in general, behaviours generation models,
are developed to be integrated into ECAs, whether physical or virtual, with
the intention to be used by humans and interact with humans. Thus, it is fair
to think that human raters have the "first word" when evaluating whether
gestures performed by an ECA are, e.g., in accordance with the speech. On
the other hand, results from the GENEA2020 user studies highlighted an
odd aspect in this sense. In GENEA2020 subjective evaluation study, users
were not only asked to rate GT gestures (N) and ones produced by submit-
ted S2G models, but were also asked to evaluate "mismatched" (M) gestures
in which audio and natural (N) gestures were not correctly aligned, result-
ing in wrongly associated pairs. Human raters participating in this study
rated the M gestures as better than any submitted model during the work-
shop (see Figure 9.1). Although the following observation deserves further
study and specific research to be confirmed, it seems that humans tend to
be influenced by the naturalness of the gestures, since users always preferred
natural human-like gestures even in case of out of sync gestures (mismatched
- M). This may lead to unreliable user studies and measurements when raters
are requested to focus only on a specific characteristic of produced gestures,
e.g. on their acoustic-link, and not on their human-likeness. In this case an
"agnostic" AI model can be useful to overecome this limitation in subjective
evaluations.

However, the proposed approach has its own limitations, mostly due to
the fact that this study is unique of its kind. The lack of similar studies
in literature has led difficulties in researching which features best represent
the relationship between audio and gestures, as well as on the best model
architecture to be used for training.
The main limitation of the proposed model is that it focuses only on hand
speed and its variation in relation to the frequency F0, without considering
other specifications, such as hands positions. This is a critical aspect in
the evaluation of generated gestures, leading to a very specific and limited
measurement. It is likely that the Evaluator will give a high score to gestures
that have a good synchronisation with the input audio while being very
different from the expected gestures, for example in their shape and position.
For example, imagining a perfect audio-gesture synchronisation in which the
hands are always positioned behind the back or under the legs, the Evaluator
would give a high score.
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Figure 9.1: Subjective evaluation from GENEA2020 workshop. Mismatched
(M) gestures were evaluated by human raters as better than any other sub-
mitted model. Image by [3].

53



Future Works

In future works, an in-depth features study may avoid focusing exclusively
on the correspondence between F0 frequency and hands speed, allowing for
more complex and exhaustive evaluations to be carried out. Training on
a larger number of features not only provides a plausible solution for the
"feature limitation" described above, but will also enable other researcher
to reuse the proposed model for other purposes. For example, a researcher
handling with a robot that is only capable to move its head, might be in-
terested in the relationship between audio and head movements, and should
use different features for training. This work provides not only a pre-trained
model but also an architecture that can be trained by other researchers using
different features, depending on the goal to be achieved and the purpose of
the training.

Another aspect to be considered is that the dataset on which the Eval-
uator model was trained contains speeches made by a single male speaker.
This may not be a problem itself, but each person may gesture differently.
Using a dataset that contains audio and motion files for several speakers may
improve the generalisation capabilities of the model.

As the Evaluator model learns to discriminate between good and bad
gestures in relation to the speech, it might be interesting to directly use this
model when learning to generate gestures. For example, a speech-to-gesture
model architecture can be augmented by adding the Evaluator model as a
Discriminator in a GAN setting or as a reward function in a reinforcement
learning one.
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