Faggi, Simone
(2021)
An Evaluation Model For Speech-Driven Gesture Synthesis.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (5MB)
|
Abstract
The research and development of embodied agents with advanced relational capabilities is constantly evolving. In recent years, the development of behavioural signal generation models to be integrated in social robots and virtual characters, is moving from rule-based to data-driven approaches, requiring appropriate and reliable evaluation techniques. This work proposes a novel machine learning approach for the evaluation of speech-to-gestures models that is independent from the audio source. This approach enables the measurement of the quality of gestures produced by these models and provides a benchmark for their evaluation. Results show that the proposed approach is consistent with evaluations made through user studies and, furthermore, that its use allows for a reliable comparison of speech-to-gestures state-of-the-art models.
Abstract
The research and development of embodied agents with advanced relational capabilities is constantly evolving. In recent years, the development of behavioural signal generation models to be integrated in social robots and virtual characters, is moving from rule-based to data-driven approaches, requiring appropriate and reliable evaluation techniques. This work proposes a novel machine learning approach for the evaluation of speech-to-gestures models that is independent from the audio source. This approach enables the measurement of the quality of gestures produced by these models and provides a benchmark for their evaluation. Results show that the proposed approach is consistent with evaluations made through user studies and, furthermore, that its use allows for a reliable comparison of speech-to-gestures state-of-the-art models.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Faggi, Simone
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Sistemi e reti
Ordinamento Cds
DM270
Parole chiave
machine learning,artificial intelligence,multimodal behaviour generation,BSP,evaluation,gestures,speech,speech-to-gestures
Data di discussione della Tesi
18 Marzo 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Faggi, Simone
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Sistemi e reti
Ordinamento Cds
DM270
Parole chiave
machine learning,artificial intelligence,multimodal behaviour generation,BSP,evaluation,gestures,speech,speech-to-gestures
Data di discussione della Tesi
18 Marzo 2021
URI
Statistica sui download
Gestione del documento: