
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica

Convolutional Neural Networks in
Tomographic Image Enhancement

Relatrice:
Chiar.ma Prof.ssa
Elena Loli Piccolomini

Presentata da:
Stefano Andriolo

Correlatrice:
Chiar.ma Dott.ssa
Elena Morotti

III sessione
A.A. 2019/2020

Introduzione

Negli ultimi due decenni si è assistito ad un grande aumento di popolarità dei
metodi di Machine Learning per fare in modo che un computer possa risol-
vere problemi su cui tipicamente incontra grande difficoltà come segmentazione
di immagini, analisi del sentimento, riconoscimento di pattern ricorrenti e più
in generale, tutte le classi di problemi che gli esseri umani sono in grado di
risolvere con relativa semplicità. Queste tecniche permettono ad un algoritmo
di imparare da una base di conoscenza al fine di produrre dei risultati sempre
migliori man mano che accumula esperienza, seguendo a grandi linee lo stesso
procedimento che si verifica in un cervello biologico.

In particolare, il Deep Learning, un sottinsieme del Machine Learning,
ha ottenuto risultati estremamente promettenti in diverse delle classi di prob-
lemi menzionate precedentemente. Le Reti Neurali Profonde sfruttano grandi
insiemi di dati per essere addestrate, e grazie al loro alto grado di profondità
in termini di livelli, sono capaci di imparare a riconoscere molti tipi diversi di
caratteristiche dei dati in input e possono quindi produrre risultati ottimi se
addestrate correttamente. La diffusione di Internet nel mondo ha permesso di
rendere questi enormi insiemi di dati richiesti dalle Reti Neurali Profonde facil-
mente disponibili ed i progressi tecnologici degli acceleratori hardware come le
GPU hanno reso queste tecniche di Intelligenza Artificiale molto appetibili a
ricercatori, aziende ed anche singoli individui.

Un campo scientifico che ha beneficiato molto dalle tecniche di Deep Learn-
ing è l’analisi di immagini mediche. La Tomografia Computerizzata (ab-
breviata come CT dall’inglese Computerized Tomography) in particolare può
essere agevolata da questi metodi per migliorare la sua efficacia. La CT è una
tecnica a raggi X nata formalmente nel 1971 per catturare immagini accurate
di parti interne al corpo. Usando i dati ottenuti da alcune proiezioni, generate
da un fascio di raggi X che attraversano il corpo del pazione, è in grado di

i

ii INTRODUZIONE

ricostruire un’approsimazione del volume o dell’immagine originale (a seconda
del tipo di scanner), sfruttando le basi matematiche fornite dalla trasformata
Radon.

Il problema più grande di questa tecnica di imaging è l’uso di radiazioni
ionizzanti, che possono nuocere al paziente nel caso ne assorba troppe. Per
compensare, le tomografie solitamente avvengono effettuando proiezioni sola-
mente in un intervallo limitato di angoli invece che nell’intero range disponibile.
Questo può portare a ricostruzioni sbagliate, nel senso che potrebbero fallire
nel rappresentare alcune caratteristiche morfologiche del soggetto o potrebbero
contenere alcuni artefatti che potrebbero essere fraintesi da uno specialista che
esamini l’immagine.

Quello che faremo in questa tesi, sarà realizzare diverse Reti Neurali
Convoluzionali partendo da una base comune e vedere come si comportano
nel miglioramento di immagini tomografiche ad angoli limitati catturate da
uno scanner con una geometria cone-beam. Useremo delle tradizionali con-
voluzioni 2D, ma faremo dei test anche con quelle tridimensionali. Per ad-
destrare e testare l’accuratezza degli output delle reti sono stati generati due
dataset: entrambi verranno proiettati su un intervallo limitato di angoli per poi
essere ricostruiti usando diverse tecniche al fine di determinare quale fornisca il
risultato migliore. Inoltre, sperimenteremo anche un algoritmo di ricostruzione
iterativo per capire se un numero ridotto di iterazioni possa essere compensato
da un passaggio di post-processing usando una rete neurale con lo scopo di
velocizzare il processo di ricostruzione.

Il primo capitolo sarà dedicato alla Tomografia Computerizzata. Parleremo
della sua storia e di come gli scanner si sono evoluti nel corso degli anni.
Dopodiché parleremo brevemente di alcuni dei problemi che caratterizzano
questa metodologia.

Il secondo capitolo consiste in una panoramica sulle Reti Neurali. Spiegher-
emo brevemente i principi alla loro base e come funzionano. Dopo aver parlato
dei concetti fondamentali ed aver dato un idea di come possano imparare, oltre
a descrivere alcune tecniche per migliorare le loro performance, illustreremo i
component principali delle Reti Neurali Convoluzionali, una versione partico-
lare di rete neurale che si comporta molto bene nel trattare immagini. Una
breve sezione pratica sugli strumenti che possono essere utilizzati per realizzare
e sfruttare le reti neurali chiuderà quindi questo capitolo.

INTRODUZIONE iii

Nel terzo capitolo si parlerà di alcuni algoritmi usati in questa tesi. Alcuni
di questi si occupano di ricostruire l’immagine/il volume originale partendo
dalle proiezioni, di cui illustreremo le caratteristiche principali. Si parlerà poi di
come il dataset sintetico di ellissoidi sia stato costruito e delle sue particolarità.
La sezione finale del capitolo conterrà una breve descrizione della rete che verrà
usata come punto di partenza per i nostri esperimenti oltre che ad alcune
indicazioni pratiche riguardo la loro esecuzione.

Il quarto capitolo verrà utilizzato per mostrare i risultati ottenuti nei test
sui due dataset e per discuterli. Mostreremo diverse versioni di reti al fine
di capire quale abbia avuto i risultati migliori; sperimentermo inoltre un al-
goritmo di ricostruzione iterativo per osservare se possa essere eseguito per
un numero minore di iterazioni per poi andare a migliorare la ricostruzione
effettuando un passaggio di post-processing usando una rete neurale.

Per concludere, condivideremo alcuni pensieri finali per riassumere e dis-
cutere i risultati ottenuti e come possano essere interpretati.

Introduction

The last two decades have seen a great rise in popularity of Machine Learn-
ing methods for making computers solve problems that are known to be diffi-
cult for them like image segmentation, sentiment analysis, pattern recognition
and more in general, all the classes of problems whose humans excel to solve.
These techniques allow an algorithm to learn from a base of knwoledge in order
to provide increasingly better results as it accumulates experience, much like
what happens in a biological brain.

In particular, Deep Learning, a subset of Machine Learning, accom-
plished extremely promising results in various of the aforementioned classes
of problems. Deep Neural Networks take advantage of big datasets that are
used to train them, and thanks to their high degree of deepness in terms of
levels, they are able to learn many different kinds of features from the input
data and can then provide extremely good results if trained correctly. The
spread of the Internet around the world made these huge datasets needed by
Deep Neural Networks easily available and the technological progress of com-
puting accelerators such as GPUs made these Artificial Intelligence techniques
very appealing for researchers, companies and also individuals who want to
experiment.

A scientific field that has greatly benefited from Deep Learning techniques
is the processing of medical images. Computed Tomography (abbreviated
as CT) in particular can take advantage of these methods to improve its ef-
fectiveness. CT is an X-ray technique formally born in 1971 for taking accu-
rate images of internal parts of the body. It works by using projection data,
obtained from a beam of X-rays which flows through the patient’s body, to
reconstruct an approximation of the original volume or image (based on the
type of scanner) and the mathematical foundations of the process are provided
by the Radon transform.

v

vi INTRODUCTION

The major problem of this imaging method is the use of ionizing radia-
tions, which can harm the patient if too many are absorbed by its body. To
compensate for this, tomography is usually performed by taking projections
on a limited interval of angles instead of the full available range, leading to re-
constructions errors due to missing spatial information that cannot be inferred
from the limited data that is available. This translates in error-prone recon-
structions, in the sense that they could fail to represent some morphological
features of the subject body or they could contain some artifacts that could
be misinterpreted by a specialist looking at the image.

What we will do in this thesis, is building different versions of Convo-
lutional Neural Networks starting from a base layout and see how they
perform in enhancing limited-angle cone-beam tomographic images. We will
use traditional, 2D convolutions as well as experiment with 3D convolutions.
Two datasets will be used to train and test the accuracy of out networks: both
will be projected only on a limited set of angles and then reconstructed using
different techniques to determine which yield the best results. In addition, we
will experiment with an iterative reconstruction algorithm to understand if a
reduced number of iterations could be compensated by a post-processing step
using a neural network to speed up the reconstruction process. In the end, we
will discuss on how different networks performed on the two datasets and on
the obtained results.

The first chapter will be dedicated to Computed Tomography. We will talk
about its history and how scanners evolved through the years. After that, we
will briefly expose some of the problems of this approach.

The second chapter consists of an overview of Neural Networks. We will
provide a brief explanation of the principles at their base and how they work.
After explaining the core concepts and giving an idea of how they can learn, as
well as describing some techniques used to improve their performance, we will
illustrate the main components of Convolutional Neural Networks, a particular
version of neural network that performs very well when dealing with images.
A quick practical section on the tools that can be used to build and exploit
neural networks will then close this chapter.

In the third chapter we will talk about some of the algorithms we used in
this thesis. Some of these are the ones that are responsible of reconstructing the
original image/volume starting from projections, for which we will perform a

INTRODUCTION vii

quick overview of the main features. We will then talk about how the synthetic
ellipsoid dataset has been built and its characteristics. The final part of the
chapter will contain a brief description of the network layout that will be used
as the basis for our experiments as well as some practical indications on how
they were performed.

The fourth chapter will be used to accurately show the results we obtained
in the tests on the two different datasets and discuss them. We will show
different versions of networks in order to understand which one performs better,
and we will try to experiment with an iterative reconstrucion algorithm to
check whether it could be run for a lower number of iterations and followed
by a neural network post processing in order to reduce the time it takes for
performing an accurate reconstruction.

To conclude, we will give some final words discussing the results we obtained
and how they can be interpreted.

Contents

Introduzione i

Introduction v

1 Computed Tomography 1
1.1 CT Scanners Generations . 3
1.2 Problems of CT . 8

2 Neural Networks 11
2.1 An introduction to Neural Networks 11
2.2 Convolutional Neural Networks 18

2.2.1 3D Convolutions . 21
2.3 Neural Networks in practice . 21

3 Technical Notes 23
3.1 FDK . 23
3.2 SIRT . 24
3.3 Dataset Generation . 27
3.4 Network Layout . 28
3.5 Training of the Network . 30

4 Numerical Results 31
4.1 Neural Networks on FDK reconstructions 32

4.1.1 2D Convolutional Network 32
4.1.2 3D Convolutional Network 36

4.2 Neural Networks on SIRT reconstructions 39
4.2.1 2D Convolutional Network 39
4.2.2 3D Convolutional Network 42

ix

x CONTENTS

5 Conclusions 45

Bibliography 49

Chapter 1

Computed Tomography

Computed Tomography is a medical imaging technique whose roots date back
to the beginning of the 20th century. Its name is derived from the Greek words
tome (slice) and graphein (to write). These words are a perfect description,
although basic and simplified, of what CT does: building a digital represen-
tation of a volume by examining it slice by slice (more precisely projection by
projection). In practice, these projections are taken by emitting a beam of X-
rays around a patient and measuring their attenuation values using a detector
surface. The recorded values are then processed by the machine’s computer to
generate cross-sectional images of the body.

The first, fundamental contribution for the development of CT was the
formal discovery of X-rays in 1895 by the German physics professor Wilhelm
Röntgen (who, after that, was awarded a Nobel Prize in Physics). Then in
1917, the mathematical theory of the Radon transform was proposed, which
provided a mathematical demonstration of how a function could be recon-
structed from an infinite set of its projections: it is one of the core concepts
that led to the development of CT. By the 1930s, the mathematical founda-
tions of CT were established and in 1972 the first, commercially available CT
scanner, invented by Sir Godfrey Hounsfield at EMI Central Research Labora-
tories, was publicly announced. This first version of CT scanners was limited
by the technology of those years: it acquired image data in about 4 minutes,
computation time was about 7 minutes per picture and the final images had
a resolution of only 80x80 pixels. Also, the use of an hollow water tank that
had to enclose the patient’s head was required in order to reduce the dynamic

1

2 1. Computed Tomography

range of the radiation reaching the detector device (due to the high difference
between the air, bones and body tissues attenuation values).

Figure 1.1: The first clinical scan taken at the Atkinson Morley’s Hos-
pital (Copse Hill, England) in October 1971 using a first generation
scanner

Despite these initial limitations, CT quickly became the de-facto standard
for taking medical images of a patient’s body, replacing old (and sometimes
very invasive) techniques like pneumoencephalography. Given their rise in
popularity and number of applications, CT scanners have vastly improved
throughout the last 50 years. Scanners now produce faster, more accurate and
higher resolution images allowing specialists to diagnose diseases more easily
and dramatically improve their precision: in 2008 Siemens introduced a new
generation of scanners that was able to produce an accurate image in less
than 1 second. Nowadays CT is one of the most important medical imaging
procedures and is widely considered among the most important advances in
medicine.

To conclude, CT continued to increase in popularity and new variations
and enhancements continue to arise. One notable mention is the invention of
CBCT (Cone Beam Computed Tomography), the variant examined in this
thesis. It was first introduced in the European market in 1996 and in the
American one in 2001. In 2013, during Festival della Scienza in Genova, Italy,
the original members of the Italian research group received an award for its
invention.

1. Computed Tomography 3

1.1 CT Scanners Generations

As mentioned earlier, CT works by emitting a beam of X-rays which passes
through the patient’s body. In the process, the rays intensity is attenuated in
different ways depending on what material they intersect with; for example,
a bone has a higher attenuation value with respect to a soft tissue, so it will
absorb more energy from the ray, that will then reach the detector with less
power. This procedure is repeated many times at different angles/positions
(depending on the scan technique) to generate the complete projection. Once
a full pass is performed, the computer processes the incoming data and using
the mathematical tools that allows CT to work, computes the projection image;
the bed moves forward and the process starts again to produce the other image
slices.

Figure 1.2: Simplified representation of a first generation scanner. The
T-shaped object is the emitter that is initially translated, together with
the detector, to acquire a single projection and then both rotate to
complete the process.

As CT scanners improved, the layout of the projector and the detector and
how they moved in relation to each other or the patient changed in order to
accomodate for better types of scan. The first generation of scanners, like
the one from Hounsfield and Cormack, used a type of scanning called "Pencil
Beam" with a Rotate/Translate pattern. The name comes from the single
beam that is emitted from the source, which uses a parallel beam geometry.
This means that the source/detector devices have to move linearly in order to

4 1. Computed Tomography

acquire the data representing a slice of the body, before rotating the position
of the X-ray tube to acquire data at different angles. The major benefit of
such layout are the high performance in terms of scatter reduction since there
is just a single emitter/detector. On the other hand, the biggest disadvantage
of this first generation was the high amount of time it took to capture a
full projection: to acquire a full image of the head, the X-ray tube had to
be placed at a specific angle, then it started translating linearly to acquire
multiple projections. After approximately 160 were taken at that angle, the
X-ray tube and detectors were rotated by one degree and the process would
start again, until all the two-dimensional projection images were acquired at
180 different angles.

With the goal of decreasing the amount of time it took to acquire a full
CT, the first improvement to CT devices was using a narrow fan beam with an
angle of approximately 10 degrees instead of a single ray and consequently an
array-shaped detector to measure rays intensities. A translation to cover the
full width of the body was still required, but even with just a 10 degrees-wide
beam, the acquisition time was dramatically decreased, with a reduction of two
to three minutes per slice. In the end, this second generation was measured to
be about fifteen times faster than the previous one. This new layout introduced
the problem of scatter radiation due to the narrow fan beam, unlike in the first
generation where there was a single ray. A (potentially) unexpected side-effect
of this new layout was the slowdown in the image-acquiring step that would
slightly impact on the benefits it provided due to the added complexity in
the imaging protocol given by the rotation and translation of the X-ray tube
and the detector. Another disadvantage of this second generation is the high
susceptibility to moving objects, that would cause te development of artifacts
in the reconstructed image. For this reason, this generation of CT scanners
too wasn’t still a good fit for scanning body parts other than the head.

The biggest problems of the first two CT scanners generations was the
translational motion which was very time consuming. Given that, the natural
following step was to widen the angle of the fan beam and increase the length
of the detector array with it, allowing the device to capture an entire slice of
the patient at one time. Specifically, the fan beam angle now ranged from 40
to 60 degrees, the new detector array now consisted of 400 to 1000 elements
and the two parts were joined together to ensure the synchronization of the

1. Computed Tomography 5

Figure 1.3: Representations of narrow fan-beam and wide fan-beam
scanner layouts. Here we can see that both emit a fan-shaped beam of
ray, the main difference being the absence of linear translation in the
latter, which could take an entire projection with a single shot.

rotational movement between them. This generation of scanners, that could
still be found operating somewhere, could deliver scan times as low as 5 seconds
per projection angle. The two biggest disadvantages were both due to the high
number of detector elements: firstly they were very expensive (although the
benefits they provided were argued to overcome this); secondly, this generation
produced a characteristic image artifact (ring artifact) that is traceable to the
frequent lack of calibration between the detector elements.

To solve this last problem, the fourth generation of scanners replaced the
rotating detector array with a static detector ring placed all around the patient,
allowing the detector elements to keep the calibration and stay in sync. This
new layout allowed the X-ray emitter to be placed both outside or inside the
detector ring, with the constraint that in the last case it has to be tilted so
that the X-rays only interact with the detector ring after they passed through
the patient, not beforehand.

The fifth generation was specifically designed for use in cardiac tomo-
graphic imaging. This means that extremely short acquisition times (5̃0ms)
were needed to acquire images without motion artifacts due to the heart’s
movement. These types of scanners used a completely different layout that
included, among other things, of an electron beam emitter whose output was
deflected towards a target ring that enclosed the patient, generating the X-rays
that then passed through the patient and were captured by the detector on

6 1. Computed Tomography

Figure 1.4: Layout of the fourth generation of scanners. The bold black
circle represents the still detector ring that captures the attenuated ray
emitted by the source, which in this case is located inside the ring.

the opposite side. However, since this type of scanners was essentially single-
purpose, it was very expensive and not much versatile, so it wasn’t considered
a popular addition in the field of medical imaging.

The sixth generation removed the need to stop the gantry (the emit-
ter/detector group) after every slice to advance to the next position thanks
the development of the slip ring technology for CT devices in 1990. This tech-
nology allowed the rotating components to always have a source of power as
well as a data connection to send image data, task once reserved to cables
which were the primary limitation to freely move the gantry. Specifically, this
new generation introduced for the first time in CT devices history a system
that could rotate continuously around the patient while the bed moved for-
ward, forming a sort of helical shape, and giving the name to this generation
of "helical CT"s. The major problem of this is that no full slices are taken
since the bed is in perpetual motion during the scan and the scanner is not
producing planar section, but this can be solved in the reconstruction process.

The most recent type of scanners consists of a cone-beam emitter and a
detector matrix layout. This layout is obtaining after a similar reasoning that
led the transition from the first to the second generation of CT scanners. In
that case, the pencil beam geometry was extended to create a fan beam geom-
etry, and this time the fan beam geometry has been extended itself, creating a
cone-shaped ray. To capture a ray with this shape, the linear detector had to

1. Computed Tomography 7

be changed too to make a flat panel detector composed by a matrix of detector
elements. With this new layout, multiple slices could be taken in a very short
timespan, leading to an enormous reduction in acquisition times. The main
drawback of this new implementation was a higher level of sophistication in
the reconstruction process.

Figure 1.5: Cone Beam scanner layout: the source emits a cone-shaped
beam that expands as it approaches the detector matrix, whose atten-
uation data can be used to produce the projection images.

Since the detector now composed by a matrix of elements, each projection
is actually an image. Putting together all the projected images with a recon-
struction algorithm, we can obtain a 3D object that represents the original
body. The volume is reconstructed as a grid of voxels and it can be processed
slice-by-slice as a sequence of single images, for example for helping to visualize
its shape at a specific index on the sliced axis, or as a whole volume. In this
thesis both representations will be used in order to understand which of the
two leads to the best results.

8 1. Computed Tomography

1.2 Problems of CT

One of the common goals that every generation of scanner tried to achieve
was minimizing the time it took to acquire image data. This is not only for
reducing artifacts due to the patient’s (voluntary or involuntary) movement
but also to minimize the time she is exposed to X-rays. The radiation they
emit can damage body cells, including DNA molecules, which can lead to
radiation-induced cancer. One study estimated that 0.4% of cancers in the US
resulted from CT scans, and that this value could have increased to to as much
as 1.5% to 2% based on the rates of use of CT in 2007, although this estimate
is largely disputed, considering the (relatively) low dose used in CT scans is
not demonstrated to cause considerable damage. To minimize the exposition
to X-rays, CT devices tend to adopt one of two techniques so the patient’s
body is exposed to less radiation, which we will talk about later.

Reconstructing the original image starting from the projections is per-
formed using algorithms that have the Radon transform (in particular, its
inverse) at their base. Essentially, given an input function f defined over a
plane, it outputs a function defined in the two-dimensional space of lines in
the plane, whose value at a particular line is equal to the line integral of the
subject function over that line. The inverse Radon transform allows to "back-
project" this set of lines to calculate the initial function. This mathematical
concept is used for the reconstruction step in all the generations of CT scan-
ners, with increasing refinements and adaptations as the geometry evolved.

The mathematical model works well for an infinite set of projections and
continuous projection functions, giving an exact representation of the subject.
In practice, things are different. First of all, only a finite number of projec-
tions can be taken with any type of CT. This finite set of projections can be
graphically represented into an object called sinogram. Having just a finite
set of data means that the information between one projection and the follow-
ing one is missing and in order to reconstruct the original object where this
data is missing, the reconstruction algorithm has to interpolate the existing
data. This often leads to unstable solutions and interpolation errors, which
cause the reconstructed image to contain artifacts and, in general, loose qual-
ity and details. In addition to this, to reduce the amount of used radiation
that are potentially harmful to the patient, two techniques have been consoli-

1. Computed Tomography 9

Figure 1.6: Conceptual representation of the radon transform: the
thick line can be seen as the line integral of the function (that in this
case is represented by the three circles) over the r straight line.

dated during the evolution of CT: limited-angle and sparse-view computed
tomography. In the former case projections are taken in a subinterval [-ϕ, ϕ]
of the full [-π/2, π/2) range. This approach is mostly used in tomographical
applications where the shape of the examined body region doesn’t allow for a
full revolution around it, or it wouldn’t be useful due to the human anatomy
like dental tomography or breast tomosynthesis. Since this thesis mainly fo-
cuses on enhancing breast CT reconstruction images, this is the type of scan
that will be examined. Sparse-view CT on the other hand reduces the number
of projections by still taking them in the full [-π/2, π/2) range, but increasing
the interval between projections. In both cases however the smaller set of data
impacts on the reconstruction quality and increases the chances of generating
artifacts. This is further worsened by non-deterministic measurement errors
or random noise in the projection.

Many algorithms have been developed to solve the ill-posed problem of
building an approximation of a function starting from limited CT data. One
of the first (and still most used) is Filtered Back Projection, a stabilized and
discretized version of the Radon transform which filters the projections before
calculating their inverse. This algorithm produces non-optimal results and is
very sensitive to projection quality, but its simplicity and and computational
speed are the main reasons for its popularity. It is also relevant because it
provides the foundation for many other reconstruction algorithms for many of

10 1. Computed Tomography

the scanners layouts previously described. For the purposes of this thesis, rel-
evant algorithms are iterative reconstruction ones, which are computationally
intensive but produce overall better results [5], and FDK, an algorithm for
reconstructing cone beam CT scans based on a modified version of the Radon
transform for two dimensions that results in a fan-beam-like reconstruction
formula [2].

The last years have seen the rise of neural networks applied to traditional
reconstruction techniques to improve the overall reconstruction quality. In
particular, Deep Neural Networks achieved impressive results in the field
of medical imaging enhancement and continue to improve as time passes, as
demonstrated by the introduction of U-Nets [12], which are especially good in
these kind of tasks. In this thesis the traditional reconstruction methods will
be used to provide a starting point and see how they behave in limited-data
scenarios. After that, we will train a Deep Neural Network to improve these
reconstructions.

Chapter 2

Neural Networks

2.1 An introduction to Neural Networks

Neural networks (properly Artificial Neural Networks) are a biologically-
inspired programming paradigm which enable a computer to learn from ob-
servational data. They imitate biological neural networks in order to perform
tasks that are known to be very easy to solve for humans but at the same time
very difficult for computers: image analysis, speech recognition, adaptive con-
trol and so on. The structure at the base of Neural Networks is a Neuron, a
processing unit that is linked to other neurons through directed weighted con-
nections; there are different kinds of neurons, some of which will be illustrated
in the following paragraphs.

By combining many neurons together we can create a neural network that
can be trained to perform some task. In the context of NNs, a layer is a set of
neurons which can detect the same type of feature of its input data: it could be
the input layer, for example, the set of neurons where initial data is fed into,
or an intermediate layer dedicated to edge detection in images. Different types
of networks can be created by connecting neurons in different ways. The first
and most simple network types are feedforward neural networks [10], which are
directed acyclic graphs, where data is always fed from one layer to the following
one, never backwards. Recurrent neural networks instead contain some links
between neurons called loopback connections. Through these connection,
a neuron can process not only information that comes at time t, but also the
output of some neuron at time t−1. These networks are particularly powerful

11

12 2. Neural Networks

in tasks where having the notion of time or in general of a sequence of data is
extremely important to perform a prediction. They have indeed shown very
good results in problems of speech recognition, hand-writing recognition and
sequence prediction.

One of the first significant result for the development of ANNs is the cre-
ation of the perceptron in 1958 by the American psychologist Frank Rosen-
blatt [1]. It is a binary classifier that could tell if a vector of inputs belongs to
some specific class. It takes a series of binary inputs x1, x2, ..., xn, applies an
activation function and then produces a single binary output. The perceptron
includes the concept of weights w1, w2, ..., wn, a set of real values paired with
the input connections which express the "importance" of the associated input
in relation to the output. It then emits 0 or 1 as the output based on whether
the weighted sum of the input is greater than a threshold value, called bias, or
not; this parameter is used to make it easier for the neuron to output a cer-
tain value than the other (from this the name bias, since the neuron is biased
towards a value). Formally, a perceptron’s output is defined as follows:

output =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0
(2.1)

where w · x is the dot product of the vectors of inputs and weights, and
b is the bias. This is called the activation function, since it tells whether the
neuron should activate or not; in the case of perceptrons it is the Heaviside
step function [7]. Here, it is easy to see that for big bias values, the neuron
is very likely to fire (output 1), while it is very unlikely to do so when bias is
very negative.

This structure is quite powerful since it can compute many functions by
choosing the right weight values, but it is not able perform operations as
simple as detecting when two inputs are different, i.e. the XOR function [14].
More precisely, the perceptron only works with textitlinearly separable input
datasets.

For the learning to be possible, it is necessary that a small change in the
input data only cause a small change in the output. This allows the training
algorithm to continuously change the weights values by confronting the up-
dated values with the old ones, since they are relatively easy to keep track of.
For example, a network could refine some weights to more precisely identify

2. Neural Networks 13

Figure 2.1: Geometrical representation of two linearly separable prob-
lems on the left (the OR function and the AND function) and a non-
linearly separable one (the XOR function).

a feature of the input data, changing them in a way that could progressively
reduce the difference between the expected result and the actual one, making
learning happen.

It is quite clear that perceptrons networks do not expose such behavior: a
small change in the input of a single neuron could completely flip its output, if
the previous value was close to the threshold boundary. This could then start
a chain reaction that will propagate through the entire network, even coming
to completely alter the network output.

For this reason a new type of neuron has been proposed with the name of
sigmoid neuron, which is called like that after the activation function it uses
to compute the output value. The sigmoid function looks like a smoothed ver-
sion of the Heaviside step function and has the previously illustrated property
of not amplifying the input error unlike the perceptron’s activation function.
It is defined as follows:

σ(z) =
1

1 + e−Z
(2.2)

where z = w · x+ b as before. In the case of sigmoid neurons however, the
inputs are real numbers and not just bits, i.e. x ∈ Rn.

The biggest advantage of sigmoid neurons over perceptrons is their low

14 2. Neural Networks

Figure 2.2: Graph of the sigmoid function

susceptibility to small changes ∆wj in the weights and ∆b in the bias, which
only lead to a small change ∆output in the output. To put in other terms, it
is desirable that the activation function defines a linear relationship between
∆output and the changes ∆wj and ∆b. Many other functions can substitute
the sigmoid function: ReLU [8], tanh, or the Softmax activation function, just
to name a few. These types of neurons have entirely substituted perceptrons
and are the elementary processing unit of modern neural networks.

The basic idea behind the training of a neural network is to adjust the
weights of every single neuron based on the result of a loss function C , which
could be the Mean Squared Error function, the Cross Entropy function, or
something else. The most famous algorithm for training a network is the
backpropagation algorithm, which updates each weight by using some gradient
method as the gradient descent to compute the gradients of the loss function
and then "backpropagating" the error. In other words, what we call learn-
ing is actually minimizing the loss function by adjusting the weights of the
neurons in the network. The backpropagation algorithm indeed tries to find
the minimum of the loss function using gradient descent, which in turns uses
partial derivatives with respect to the weights to find the steepest path to the
function’s minimum. Note that the resulting value could be just a local mini-
mum and not the global one, but this has been argued not to be a problem in
practical applications [11].

To speed up the learning process, at each step the gradient is multiplied by
a value η defined a-priori called learning rate. The concept is that the gradient

2. Neural Networks 15

contains the information about the direction that should be taken to reach the
minimum and, multiplying it by the learning rate, we can get to such value
faster. Obviously the value of this parameter must be chosen balancing the
potential speedup of the learning and the need to avoid overshooting: this
happens if the learning rate is too high, causing the gradient value to not stop
at the minimum but pass it and reach the opposite slope.

Calculating the gradient of the cost function for every input in all neurons,
however, would be very time consuming for large networks, slowing down the
learning. To get around this problem, a technique called stochastic gradient
descent is often used. It works by selecting a random subset of training inputs
and estimating the gradient ∆C by computing the gradient ∆Cx only for such
subset, which is called mini-batch. The averaging of the results provides a
good estimate of the actual gradient value, overcoming the problem of slow
gradient update. This process is usually repeated until the entire training set
has been examined, which is the event that signals the completion of an epoch
of training. At this point, another epoch is started, and the process is repeated
for a number of epochs that could either be chosen in advance by the network
designer or variable, depending on the accuracy of the network: if it doesn’t
improve after many epochs, the training algorithm halts; this technique is
called early stopping.

This strategy is also useful to contrast overfitting. Overfitting occurs when
a network learns intrinsic features of the training set, losing the ability to
generalize well on new data: an overfitted model is a statistical model that
contains more parameters than can be justified by the data [6]. This could be
due for example to a low number of training samples compared to the high
number of network parameters: the network is actually capable of remembering
the exact characteristics of every single input image so it would memorize
them, thus reducing its capabilities to perform well on previously unseen data.
The image below shows this phenomenon: although the polynomial function
exactly interpolates each point (input), it has a very specific shape that works
extremely well for these points, but it is very likely that it wouldn’t behave as
good with new, not yet examined data; the linear function however, despite
the average error that is obviously higher than the one of the polynomial, is
expected to provide better predictions.

We can have a clue that a network is overfitting if the cost of the network

16 2. Neural Networks

Figure 2.3: In the image we can see a noisy set of (roughly linear) points
fitted into a linear and a polynomial function. Although the polyno-
mial function exactly approximates this dataset, the linear function
is expected to generalize better, which in turns would lead to better
predictions.

keeps decreasing while accuracy on test data stops getting better: the network
learned specific features of the input images which led the cost to become
very low so there will be a certain point where, from there onward, accuracy
will not improve anymore. Another indicator of an overfitting model is the
accuracy when examining inputs from the different datasets: extremely high
on training data (that could be as high as 100% in some cases), while quite
low on test/previously unseen data.

To prevent the network from overfitting, applications can use several meth-
ods. The easiest one is to increase the number of training samples: doing so
eliminates the main cause of the problem, forcing the network to learn general
features of input data instead of exactly remember each sample. Unfortu-
nately, this is not always possible since data could be expensive or difficult to
retrieve; think about medical images or other restricted, domain-specific data.
In such cases however, the training dataset could be artificially expanded using
some pre-processing algorithm, for example applying some kinds of geometrical
transformations if the data is a set of images.

Other ways for reducing overfitting are regularization techniques [11]. One
of the most used methods among these techniques is the weight decay or L2
regularization. The intuition behind it is to add a term to the cost function
that expresses the preference for the weights to have smaller L2 norm; For-

2. Neural Networks 17

mally, the cost function becomes C = C0 +
λ
2n

∑
w w2 where C0 is the original,

unregularized cost function and λ is the regularization parameter. Using this
cost function, the network is forced to prefer lower weights values, with larger
values being considered only if they cause C0 to heavily decrease. This helps re-
ducing overfitting because the network is more inclined to learn small weights,
and as such they can be adjusted more easily than bigger ones.

Other regularization techniques include, among the others, L1 regulariza-
tion, which works like L2 regularization but the added term measure weights
by their L1 norm, and dropout. This last methods consists of randomly "ig-
noring" a subset of neurons in the hidden layers. We then train the network
using a mini-batch, update the weights of the neurons that are still in the
network and finally restore the ignored subset of neurons. After that, a differ-
ent subset is ignored and the process starts again. The intuition behind this
approach is that neurons in the same network have actually been trained like
parts of different networks. When we use the network to get a prediction, the
result can be considered as a sort of averaging over the results of such different
networks. One of the heuristics which explain this method tells that distinct
networks are likely to overfit in different ways, so averaging over their results
will provide a quite reliable result. Another heuristic explains that a neuron
is forced to learn stronger features of the input data, since it cannot rely on
other neurons to help it [9]: “This technique reduces complex co-adaptations
of neurons, since a neuron cannot rely on the presence of particular other neu-
rons. It is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons”.

Apart from the parameters that are learned during the training (weights
and biases), there are number of other ones which are called hyperparame-
ters. These are all the parameters that are fixed and don’t change during the
learning phase. Many of the values described earlier are hyperparameters: the
learning rate, the batch size, the number of epochs, the regularization parame-
ter and the number of epochs before early stopping occurs are all hyperparam-
eters. Of course, these cannot be chosen randomly, but some heuristic exist to
set good initial values. To adjust these values, usually the network is trained
in a way such that the learning phase takes little time: this cause the network
not to be very accurate, but doing so the designer can have fast feedbacks
about network performance and tune hyperparameters without having to wait

18 2. Neural Networks

a large amount of time for the network to be trained.
In this chapter the basics of neural networks have been explained. In the

next one some particular structures of neural networks will be illustrated.
These structures are useful in some specific tasks such as image segmentation,
sequence prediction and others.

2.2 Convolutional Neural Networks

As modern neural networks rose in popularity, many researchers studied them
to perform different tasks in various fields. As a result, new network layouts
and techniques were born and are now widely used in both research and in-
dustrial applications. Even deep neural networks themselves are an evolution
of single-layer neural networks, where the network contains many intermediate
hidden layers.

Convolutional Neural Networks [4] use a special architecture that performs
very well in image classification, and most of the existing image recognition
networks use this kind of architecture, or a variation of it.

At the core of CNNs there is the concept of local receptive fields. They are
regions of the input data each one connected to one neuron in the following
layer allowing it to retrieve spatial information about that single region. In
other words, a local receptive field allows to recognize a feature of the input
data inside the region it describes; this is why they are used for image recogni-
tion networks. Imagine for example to have a network that accepts an image
as its input and should be able to identify some objects inside that image.
The network’s input layer can be seen as a matrix with the same shape as the
input images. Local receptive fields in this case are regions of adjacent pixels
of the same size for all the neurons in the same layer. By limiting the input
a neuron receives to only a small window allows it to learn a feature that is
bound to that small region of input data, contrary to what would happen in
the case of fully connected layers. A feature of the input data could be an
edge, a shape, a line or something like that. The concept of feature anyway
changes as the data flows through the network: layers closer to the start of the
network will learn low-level features like lines and edges, while farther layers
will learn more complex and abstract features due to the fact that the local

2. Neural Networks 19

receptive fields they interact with have all the aggregate information from pre-
vious layers. Supposing that a network should detect a number in an image,
the first convolutional layer will just see raw pixel data and could identify lines
or edges. The results are then processed by another convolutional layer that
could put together this information to recognize shapes like the upper circle of
the number 9 or the crossing lines of the number 4. Finally, one last convolu-
tional layer could aggregate all the input data to reconstruct the final number,
and then output the result.

Figure 2.4: Example of different types of features recognized by convo-
lutional layers at various levels. Each level of the pyramid detects the
same type of feature, whose level of abstraction continuously increases
as data advances into the network.

Local receptive fields are the core concept behind convolutional layers. In
practice, in the context of convolutional layers local receptive fields have small
dimensions compared to the input image, but span across the entire depth of
the input, like the number of channels in an RGB image. These define a set of
learnable filters, or kernels. At each learning step, this filter is used to perform
a convolution between its values and the input data, where the output bi-
dimensional activation map captures the spatial information contained in a
particular receptive field. Since this spatial information is local to a restricted
area of the input, it can only capture information about that area, but this
process is performed for the entire input space, so the same kind of feature
can be detected across all the input. For this, all the receptive fields in the
same filter share the same weights, and the map from the input layer to the
destination layer is called a feature map. Note that a single convolution layer
can contain multiple feature maps, each one with its own set of weights. In

20 2. Neural Networks

each layer, the kernel has to go from one edge to the other of the input image,
and the amount of pixels it moves at each step is called stride, which is another
hyperparameter. To control the size of the output feature maps, an additional
parameter can be specified: the padding. With this, additional data is added
to the input image to keep the output the same size as the input, or to expand
it.

Figure 2.5: Example of convolution in a convolutional layer. Each
value in the current window is multiplied by the respective weight in
the filter and then all the results are summed to obtain the final result
to insert in the output array.

An important type of layer that is usually paired with convolutional ones
is the pooling layer. It works in a similar way to the convolutional one, but
it does not contain any weights. It crosses all the input data in a similar way
as the convolutional layer, but it instead applies an aggregator function to the
values inside the receptive field. The pooling type can either be max-pooling,
where the maximum value in the receptive field is outputted, and average-
pooling, where the output value is the average of the receptive fields neuron
values. While the latter could look like the best choice since it produces a
value that, in some way, contains information about all the neurons in the
receptive field, the former is the most used. The reason is that the neuron
with the highest value is the one with the most impact across its receptive
field, so by choosing it we can simplify the network layout but without losing
much important information.

2. Neural Networks 21

2.2.1 3D Convolutions

In this thesis we will train a convolutional network which containd 3D con-
volutions. This type extends the 2-dimensional since it can move along all
the three axes of the space. It is particularly useful when dealing with 3-
dimensional data like in this case: as we explained before, a single projection
performed using a cone-beam geometry is actually an image and consequently
a full scan describes a volume. Similar as 2D convolutions which encode spa-
tial relationships of objects in a 2D domain, 3D convolutions can describe the
spatial relationships of objects in the 3D space.

Figure 2.6: Graphical representation of a 3D convolution.

2.3 Neural Networks in practice

Over the last decade many frameworks for building and training neural net-
works have been created. Almost all provide GPU-accelerated functionalities
to reduce training time by exploiting the parallelizability of the training al-
gorithm. Three of the most famous are Tensorflow, Keras (interface to the
Tensorflow library) and PyThorch. They provide many structures ready to
be used like convolutional layers and LSTMs, different types of loss functions,

22 2. Neural Networks

various activation functions, optimizers and so on. Keras is the framework
used in this thesis because it provides a clear and nice interface to Tensorflow
structures and there is a vast literature about it. In order to speed up the
training of the network, it is useful to run the training algorithm on a GPU.
Unfortunately, it is a component that may not be available in all computers
and, even if it is, it could not be suitable for this job. All the ML libraries
indeed use a set of APIs that is exclusive to NVIDIA cards called CUDA which
allow algorithms to run on the GPU using their computational power.

Due to this constraint, Google Colaboratory [15], better known as Colab,
has been used as the development platform for our neural network. It provides
an isolated environment where users can run Python code in an interactive
playground. It also offers the possibility of selecting a runtime with a dedicated
high-end GPU: the most powerful one users are offered is an NVIDIA T4 with
16GB of RAM, a model specifically designed for accelerating machine learning
programs. Although it is a very powerful card with a quite high amount of
memory, this has often been a limit on the network size: it was very demanding
in terms of memory due to the high number of feature channels in convolutional
layers, the timestep count in LSTM layers and the resolution of input images.
This caused the need to reduce the network size, both in terms of layers and
feature channels, and we cannot know for sure if having more memory available
could have improved the network performance.

Chapter 3

Technical Notes

In this chapter a brief description of algorithms and structures used in this
thesis will be given. We will talk about back projection and iterative algorithms
for tomographic reconstruction to provide an overview of how they work. After
that, the building of a 3D phantoms dataset will be described and finally we
will show the layout of the neural networks that will be used to enhance the
tomographic images in the following chapter.

3.1 FDK

FDK [2] is an analytical reconstruction technique to reconstruct the origi-
nal object starting from the projections proposed in 1984 by Feldkamp, Davis
ans Kress. It derives from the Filtered Back Projection algorithm for recon-
structing a function based on projection data but suitably changed for the
3D cone-beam geometry. In this case, as the name suggest, a filter is used
to reduce the blur in low frequency areas, where many projections are com-
bined, but at the same time it accentuates high frequencies ones (contrasting
features). Due to this, the reconstructed object often contains some artifacts
which look like trails or shadows. Such artifacts are even more evident when
to measure a large number of projections, or the projections are not uniformly
distributed over 180 or 360 degrees.

FDK provides approximate, direct reconstruction of a three-dimensional
density function from a set of two-dimensional projections, reducing to the
standard fan-beam formula in the plane that is perpendicular to the axis of

23

24 3. Technical Notes

Figure 3.1: Example of a slice of a volume reconstructed using the
FDK algorithm. Some artifacts that resemble trails or shadows can be
seen expanding from actual objects.

rotation and contains the point source.
FDK has the advantage of being quite fast since it perform the backpro-

jection in a single pass. Astra Toolbox provides a CUDA implementation of
the algorithm [16] that can benefit from GPU acceleration, and it will be used
to reconstruct the original volumes in the synthetic dataset that will be shown
later.

3.2 SIRT

Simultaneous Iterative Reconstructive Technique (SIRT), as the name suggests,
is an iterative reconstruction technique. Iterative methods work by repeat-
edly improving their output by performing multiple passes. Specifically, SIRT
calculates the reconstruction by resolving a system of equations which map
the pixels (or voxels) of the reconstructed object to the rays values.

To briefly describe this process, we could initially think of an image with
N pixels as a single point in an N -dimensional space. Each of the equations in
the previously mentioned system then describes an hyperplane in such space.
So, when the solution to the system exists, it is the intersection of all these
hyperplanes, which in turns corresponds to the original image thought as a

3. Technical Notes 25

point in the N -dimensional space. Geometrically, SIRT initially performs a
guess on the position of the intersection point then, at each iteration, the
current guessed point is alternately projected to each line. If a unique solution
exists, the iterations will converge to it, so it is clear that the more iterations
the algorithm is run for, the closer the calculated point will be to the actual
solution of the equation system.

When dealing with real-world data however, the projection data could have
some noise, which could come from a number of different sources. In the geo-
metrical representation just given, this could lead to a change in the position
of some hyperplanes, causing the system not to have anymore a unique solu-
tion. In this case, the guessed intersection point would not converge to a single
point, but it would oscillate near the intersections of the hyperplanes [3].

(a) (b)

Figure 3.2: In the images above a geometrical representation of how
SIRT works can be seen. Image 3.2a provides a geometrical represen-
tation of how SIRT works. The lines are the equations of the system to
solve assuming it has only two degrees of freedom, the intersection of
the two being the solution to such system. The dashed line represents
the "path" SIRT takes for reaching the convergence point. In 3.2b we
can visualize what happens in presence of noisy data: a single solution
to the system does not exist anymore, so the computed solution will
keep oscillating near the triangle defined by the three lines.

At each step, the algorithm computes the change ∆f
(i)
j in the jth pixel

caused by the ith equation in the system. The value of the jth cell is only

26 3. Technical Notes

updated after all the changes relative to each line which intersects the cell’s
center have been calculated, and is assigned the average value of such changes.
This process is performed for an arbitrary number of times, the higher this
number the better the quality of the reconstructed object. An example of
the improvements in the reconstruction as the iterations number increases is
shown in figure 3.3.

(a) 1 iteration (b) 5 iterations

(c) 20 iterations (d) 50 iterations

Figure 3.3: Same slice of a volume reconstructed with the SIRT algo-
rithm run for different numbers of iterations.

Although this algorithm can lead to good results, it is a computation-
ally intensive calculation and performing many iterations can be very time-
consuming. On the other hand, a low number of iterations cause the recon-
struction to contain heavy artifacts. Astra Toolbox provides a CUDA imple-
mentation of the SIRT3D algorithm too [21].

3. Technical Notes 27

source-origin distance 1000
origin-detector distance 10

detector pixel size 1
horizontal detector spacing 1
vertical detector spacing 1

Table 3.1: Parameters of the (virtual) scanner used for the scan

3.3 Dataset Generation

Since actual CT scans are difficult to acquire due to their strictly private
nature, not many collections are available. To compensate for this, a synthetic
dataset has been created. It consists of 200 phantoms of size 64× 512× 512,
where each one contains a 8×8 grid of 64 ellipsoids which vary in size, position
and rotation inside their grid blocks. For the generation of a phantom, we
built one ellipsoid at a time using a Python library called pyellipsoid [20] that
returns a 3-dimensional array with ellipsoid data starting from center, radii and
rotations data. In each phantom there is one ellipsoid of very small size since
an element with such features is inaccurately represented by projections and
thus the reconstruction algorithm could not be able to correctly backproject
it.

Once the original phantoms dataset was built, the Astra Toolbox frame-
work was used to simulate CT scans on it. Since we are mainly focusing on
limited-angle CT, the scan interval was set to [−50◦, 50◦] with a projection for
each degree, resulting in a total of 101 scans per phantom. Scan parameters
are illustrated in table 3.1.

The second dataset contains 20 samples of artificial breasts that closely
resembles real ones, which will be used to generate some projections using a
cone-beam geometry and then reconstructed using two different reconstruction
algorithms, just like with the synthetic dataset.

After that, reconstructions have been calculated using both FDK_CUDA
and SIRT3D_CUDA reconstruction algorithms of Astra Toolbox. The SIRT
algorithm performed 5 iterations for each phantom but one, for which the
algorithm has been run multiple times in order to showcase different levels of
accuracy by changing the number of iterations it took each time.

28 3. Technical Notes

3.4 Network Layout

For the scope of this thesis, various networks have been tested in order to show
how convolutional ones could perform on tomographic image enhancement. All
of these however share a common structure which is known to perform very
well on image segmentation tasks, called Unet [12] after its shape. Image 3.4
show the architecture of the original Unet.

The input image is fed into the network, then the data then is propagated
through the network along all possible paths (arrows) and finally it outputs
the segmentation map. In the image, each dark box represents a multi-channel
feature map, whose number of feature channels is specified on top of it and
its x, y size in the lower left corner. Note that here the network was used to
solve segmentation problems, hence the two feature map classes in the output:
one for the relevant data and the other for the background data. The darker
horizontal arrows denote a 3 × 3 convolution operation followed by a non-
linear activation function, ReLU in this case. Down-facing arrows represent
2 × 2 max pooling operations which halve the x, y dimensions of the data at
each step. After each one, the number of feature channels is doubled. This
sequence of convolutional operations followed by max pooling ones leads to a
spatial contraction with a gradually increase of the What and decrease of the
Where. For that, this part of the network is called the contraction path.

The Unet then contains also an expansion path (on the right side of the
image) to create a high-resolution segmentation map. This expansion path
consists of a sequence of up convolutions and concatenations (here represented
by the lighter horizontal lines) with the corresponding high resolution features
from the contraction path. The final convolution is performed using a 1 × 1

kernel to keep the image size the same but reducing the number of feature
channels.

In our experiments, the GPU VRAM was the biggest constraint to the size
of the network. At the time of writing, the highest-memory GPU available in
Colab is either an NVIDIA Tesla P100 or an NVIDIA Tesla T4, both equipped
with 16GB of VRAM. What this means in practice is that the network had
to be downsized, particularly in the number of feature channels, or the batch
size kept as low as 8 samples per batch. This caused the convolutional LSTM
networks to be left out since they required a very high amount of memory

3. Technical Notes 29

Figure 3.4: Architecture of the original Unet

even for the smaller ones, due to their need to store the weights of previous
updates. The results from a convolutional LSTM network downsized to fit in
GPU memory were not acceptable, so they will not be discussed. Due to this,
we cannot say if such network layout could have been a viable solution given
more resources.

For the synthetic dataset, we managed to build a Unet with 4 initial con-
volutions and 4 levels of max pooling operators (implying as many up convo-
lutions). It was trained for 100 epochs using a batch size of 64 images (all
the slices of a single phantom) on a dataset containing 50 samples. We also
experimented with 3D convolutions to see if they could improve the results of
the 2D versions but the increase in the dimensionality of convolutions layers
implied a reduce in the feature maps number of these.

Beside the synthetic dataset, a real one called VICTRE was also used. It
was taken from the NBIA Cancer Image Archive [18] and contains tomographic
images obtained by performing cone-beam projections on a dummy object built
to resemble a real breast.

30 3. Technical Notes

3.5 Training of the Network

All the networks used in this thesis use the ADAM optimizer which has been
demonstrated to be computationally efficient, have little memory requirements
and be well suited for problems that are large in terms of data and/or param-
eters [13]. Its parameters were set accordingly to the batch size, dataset size
and network layout.

For computing the loss during the training of the network we used the
Mean Squared Error function, which is defined as follows:

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

, (3.1)

where n is the length of the vector of predictions generated from a sample
of n data points, Y is the observed vector of variables being predicted and Ŷ

is the vector of such predictions [17]. In other words, it is the mean of the
squares of the errors.

As often happens in medical imaging contexts, real-world tomographic data
is very hard to obtain due to privacy concerns and legal implications. To make
the VICTRE dataset more effectively represent one of these, this last limitation
was taken into account, and only the data from 20 different "patients" was used,
of which 18 were used as the training set and the other 2 were used to test
the network. The same has been done for the synthetic dataset, resulting in a
training set of 20 samples.

We did not use a validation set mainly for two reasons: first, this is not
a classification problem, so a validation step wouldn’t have been much useful;
secondly, the limited number of available data made this unfeasible.

Chapter 4

Numerical Results

This chapter will be dedicated to the results of our experiments. We will show
how different layouts of networks performed on enchancing FDK and SIRT
reconstructions for both the synthetic and VICTRE datasets.

In order to evaluate the performance of the network and the accuracy of
both reconstructions and predictions, we used the PSNR metric. It is defined
as the ratio between the maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representation [19], so a higher
value is associated with a less noisy signal. Formally, given a monochrome
noise-free image I and its noisy representation K, PSNR is defined as

PSNR = 10 · log10
(
MAX2

I

MSE

)
(4.1)

= 20 · log10
(

MAXI√
MSE

)
(4.2)

= 20 · log10(MAXI)− 10 · log10(MSE), (4.3)

where MAXI is the maximum value the signal can reach and MSE is
calculated between I and K. In the case of images, if pixels are represented
using 8 bits per sample, the value of MAXI is 255. The ideal situation would
be the absence of noise, or in other words I = K. This would mean that MSE

is 0, making the PSNR value be infinite (or undefined, since there would be a
division by 0).

31

32 4. Numerical Results

4.1 Neural Networks on FDK reconstructions

In this section we will show the results we obtained on FDK images exclusively.
They will be divided into two subsections, the first being dedicated to 2D
convolutional networks and the latter to 3D ones.

4.1.1 2D Convolutional Network

The first experiment that has been made involved Neural Networks with 2-
dimensional convolutions layers. These types of network take one image at a
time and process it: the image at step t is completely independent from the
other. We used the classical Unet architecture that can be seen in figure 3.4
but with small modifications. The complete network structure can be seen in
table 4.1.

The numbers between the brackets in the Conv2D layers specify respec-
tively the number of feature channels and the size of the kernel. For all of
these layers, the stride value has been set to its default value of 1 for each
dimension. The padding has been set to same in order to preserve the input
dimensions by padding evenly to the left/right or up/down. Note also that for
each layer except for the last one, where a sigmoid activation function has
been used, the ReLU activation function has been chosen since it performs
very well in CNNs and helps to mitigate the problem of vanishing gradient [8].

The gray lines in the table represent the skip connections from the con-
traction path to the expansion one, and the bold names indicate which layers
are involved in the concatenation operation. A dropout layer has been inserted
between the two central convolutions to prevent the network from overfitting
since both training sets were small (18 entries for the VICTRE dataset and 20
for the synthetic one). The number between the brackets is the ratio of input
units that are set to 0 at each learning step.

The same layout has been used for both the synthetic and VICTRE dataset
with the only difference being the batch size that in the former case was equal
to 16 since we sliced each volume in 4 groups of images, while in the latter
case it was equal to 11, the entire set of slices of VICTRE elements.

In figure 4.1 we can see that the PSNR value of the prediction is much
higher than the one of the reconstruction, while the MSE is lower. The pre-

4. Numerical Results 33

Layer type Output shape
Conv2D(16, 3) (512, 512, 32)

Conv2D(16, 3) [skip1] (512, 512, 32)
MaxPooling2D (256, 256, 32)
Conv2D(32, 3) (256, 256, 64)

Conv2D(32, 3) [skip2] (256, 256, 64)
MaxPooling2D (128, 128, 64)

Conv2D(64) (128, 128, 128)
Conv2D(64) [skip3] (128, 128, 128)

MaxPooling2D (64, 64, 128)
Conv2D(128, 3) (64, 64, 256)

Conv2D(128, 3) [skip4] (64, 64, 256)
MaxPooling2D (32, 32, 256)
Conv2D(256, 3) (32, 32, 512)

Dropout(0.2) (32, 32, 512)
Conv2D(256, 3) (32, 32, 512)
UpSampling2D (64, 64, 512)
Conv2D(128, 2) (64, 64, 256)
concat(skip4) (64, 64, 512)
Conv(128, 3) (64, 64, 256)
Conv(128, 3) (64, 64, 256)

UpSampling2D (128, 128, 256)
Conv2D(64, 2) (128, 128, 128)
concat(skip3) (128, 128, 256)
Conv(64, 3) (128, 128, 128)
Conv(64, 3) (128, 128, 128)

UpSampling2D (256, 256, 128)
Conv2D(32, 2) (256, 256, 64)
concat(skip2) (256, 256, 128)
Conv(32, 3) (256, 256, 64)
Conv(32, 3) (256, 256, 64)

UpSampling2D (512, 512, 64)
Conv2D(16, 2) (512, 512, 32)
concat(skip1) (512, 512, 64)
Conv(16, 3) (512, 512, 32)
Conv(16, 3) (512, 512, 32)

Conv2D(1, 1) (512, 512, 1)

Table 4.1: Structure of the 2D Convolutional Neural Network.

34 4. Numerical Results

dicted image has indeed a better contrast and many imperfections are removed.
However, it is not very close to the original one, since we can see that many
particulars are missing or badly represented; FDK is known to produce in-
accurate output when dealing with limited-angle tomographic data and our
network only cannot entirely reconstructed all the missing information.

(a) Original image (b) FDK reconstruction:
MSE: 0.190,
PSNR: 7.19

(c) NN output:
MSE: 0.013,
PSNR: 18.7

Figure 4.1: Example slice of a volume reconstructed using FDK along
the original and NN-post-processed ones. In image 4.1c we can see that
many details of the original image are missing in the NN reconstruction
and it wrongly treats artifacts of the reconstruction as valid objects.

4. Numerical Results 35

We can observe similar results with the VICTRE dataset. Figure 4.2 sum-
marizes them. We can note that the reconstructed image has a low dynamic
range and many details are blended into the background. Applying the Neural
Network post-processing slightly improves this but the result is still quite off
from the original image.

(a) Original image (b) FDK reconstruction:
MSE: 0.041,
PSNR: 13.8

(c) NN output:
MSE: 0.019,
PSNR: 17.1

Figure 4.2: Example slice of a volume from the VICTRE dataset re-
constructed using FDK along the original and NN-post-processed ones.

36 4. Numerical Results

4.1.2 3D Convolutional Network

Since we are dealing with volumes, it is possible to build a Convolutional
Neural Network which takes advantage of the third dimension to improve its
results when enhancing reconstructed volumes. The network has the same
layout as before, the only difference being the type of the convolutions and
max-pooling/upsampling operations which now work with 3D entities.

(a) Original image (b) FDK reconstruction:
MSE: 0.156,
PSNR: 8.05

(c) NN output:
MSE: 0.008,
PSNR: 20.7

Figure 4.3: Example slice of a FDK volume reconstruction from the
synthetic dataset along the original and 3D CNN-post-processed ones.

4. Numerical Results 37

The first result that will be showed involves the ellipsoids dataset. In this
case, an important difference from the 2D network is the batch size. This time
the entire 64 slices of the volume must be used to preserve the spatial informa-
tion since separating them would impact on the 3D convolutions effectiveness.
Due to this necessity, the GPU memory constraint is even more strict, since
a size increase in the third dimension has to be compensated somewhere else
(assuming the amount of GPU memory is fixed), for example in the number
of feature channels. In this specific instance, the number of feature channels
of the convolutional layers needed to be halved.

We reduced the amount of feature channels accordingly to half their num-
ber in the previously mentioned networks. This translates into less network
parameters, which in turn leads to a weaker learning process and a lower im-
provement of the prediction. For this, the dropout layer has been removed. In
figure 4.3 we can see the results of this approach. As before, the value of MSE
and PSNR have improved, and we can see that some artifacts are correctly
removed and most of the objects are reconstructed correctly. Unfortunately,
many others are not, and there are even some artifacts that resemble actual
object which our network failed to remove. This is highly likely due to the low
number of parameters in our neural network, but we can see that where the
reconstruction is not severely "damaged" it provides quite good results.

With the VICTRE dataset we can see an improvement from the 2D version
of the CNN. Here, since there are only 11 slices per volume, some minor changes
had to be done in the network layout. Due to the layers now working in
the 3-dimensional space, max-pooling and upsampling now change the size of
this dimension as well. Since the low and odd size in this case would not
make possible to halve it for the needed number of times, max-pooling and
upsampling layers were edited to keep the third dimension size the same.

In figure 4.4 we can see that, although it seems slightly out of focus, the
Neural Network output improves the quality of the FDK reconstructions and
more details can be identified there than in the initial FDK image.

38 4. Numerical Results

(a) Original image (b) FDK reconstruction:
MSE: 0.042,
PSNR: 13.7

(c) NN output:
MSE: 0.011,
PSNR: 19.2

Figure 4.4: Example slice of a volume from the VICTRE dataset re-
constructed using FDK along the original and ones post-processed by
the 3D convolutional network.

Overall, in the case of FDK reconstructions the results seem underwhelm-
ing since various details of the original volume are missing from the network
output: this could be linked to two factors. The first is that the images the
Neural Network has to enhance are primarily not very good reconstructions, so
the network can only extract little useful information from them; the other rea-
son is the network size: as we talked earlier, the memory constraint we faced

4. Numerical Results 39

when training the network on Google Colab forced us to limit the network
size, resulting in a potential decrease of its accuracy. Having more performant
hardware could probably have benefited the outcome, but we cannot know for
sure.

4.2 Neural Networks on SIRT reconstructions

In this chapter we will show the improvements we can obtain by keeping the
number of iterations of the SIRT algorithm low and redirect its output to a
neural network in order to improve the accuracy of the reconstruction. For
the tests, we used the same network layout we used for enhancing FDK recon-
struction but using SIRT reconstructions as its input data.

To measure the effectiveness of this approach, we tried to reconstruct many
times an object from the same set of projections but changing each time the
number of iterations of the SIRT algorithm. For each reconstruction, we cal-
culated the MSE between the reconstruction and the original image, as well as
the PSNR metric. Then, we used the neural network to enhance the projected
image obtained from 5 iterations of the algorithm and measured the MSE and
PSNR metrics of the output.

4.2.1 2D Convolutional Network

For the SIRT reconstruction we used the exact same network as the 2D FDK
case study. To get an idea of how it performs in enhancing the reconstruction,
we used the network to get a prediction starting from the reconstructed volume
and then calculated the MSE and PSNR values on it as before.

From figure 4.5 we can see that the predicted value helps enhancing the raw
5-iterations SIRT reconstruction and in some ways it provides better results
than 20 iterations of the SIRT algorithm. It is however quite similar to the
result we obtained starting from the FDK version in figure 4.1c.

40 4. Numerical Results

(a) Original image (b) NN output

(c) SIRT reconstruction (5
iterations)

(d) SIRT reconstruction (20
iterations)

Figure 4.5: Example slice of a volume from the synthetic dataset recon-
structed using SIRT after 5 iterations along the original, 20-iterations
version and post-processed ones.

The same network has then been trained on the VICTRE dataset but
changing the number of the feature channels in the initial convolution to 32
(and subsequent ones accordingly), thanks to the reduced size of the third
dimension. This means that the network is able to recognize a greater number
of feature types in the input images and, at least in theory, it should perform
better.

In figure 4.6 we can see the graphs of both the MSE and PSNR values
during the training of the network. While MSE does not improve much after
iteration 100, PSNR continues to increase until the end of the training epochs,
reaching a value of about 25.

4. Numerical Results 41

(a) MSE (b) PSNR

Figure 4.6: History of MSE and PSNR values during the training of
the network.

To have an idea of the MSE and PSNR values of SIRT reconstructions
based on the iterations number change, we calculated some reconstructions
from the same set of projections using SIRT with different iterations counts.
From figure 4.7 we can see how these values change.

(a) MSE (b) PSNR

Figure 4.7: History of MSE and PSNR values for different numbers of
iterations of the SIRT algorithm.

In this case, the network provides good results which can be observed in
figure 4.8. We can see that in the neural network prediction dark spots are ac-
centuated while in both raw SIRT reconstructions the dynamic range is lower,
but at the same time it preserves the quality of the initial reconstruction im-
age. This is pointed out by the MSE and PSNR values, which are respectively
equal to 0.004 and 23.3. Referring to figure 4.7, we can see that these values
are way better even than the ones of a raw SIRT reconstruciton which runs
for 30 iterations. This technique could then be a valid approach for enhancing
limited-angle SIRT reconstructions.

42 4. Numerical Results

(a) Original image (b) NN output

(c) SIRT reconstruction (5
iterations)

(d) SIRT reconstruction (25
iterations)

Figure 4.8: Example slice of a volume from the synthetic dataset recon-
structed using SIRT after 5 iterations along the original, 20-iterations
version and post-processed ones.

4.2.2 3D Convolutional Network

The same 3D convolutional network used for FDK images have been tested for
SIRT reconstructions too, but this time it has been trained with 5-iterations
SIRT reconstructions. Figure 4.9 shows the comparison between slices of the
same volume in different states. We can see that projection trails are for
the most removed and the overall image quality is quite good. Even some of
the ellipsoids which tend to blend the most with the background seem to be
reconstructed, although their shape is not very clear. Other ones still contain
some artifacts, but it has to be remembered that this is the result of a Unet-

4. Numerical Results 43

based 3D convolutional neural network with only 8 feature channels in the
starting convolution. As a comparison, the original Unet had 64 of them.

(a) Original image (b) NN output

(c) SIRT reconstruction (5
iterations)

(d) SIRT reconstruction (20
iterations)

Figure 4.9: Example slice of a volume from the synthetic dataset recon-
structed using SIRT after 5 iterations along the original, 20-iterations
version and post-processed ones.

Finally, the 3D convolutional neural network has been tweaked and then
trained on the VICTRE dataset. Its reduced number of slices allowed double
the number of feature channels in convolutional layers than when dealing with
the ellipsoids dataset. From figure 4.10 we can see that the neural network
output contains a rather little amount of noise as indicated by the value of the
PSNR metric which is 24.8. The MSE itself is very low, and we can see that
the image from the prediction approximates quite well the original one. One
negative aspect of this approach is the blurriness of the prediction; anyway,

44 4. Numerical Results

this is the result obtained starting from a SIRT reconstruction performed in
only 5 steps, so this result can be considered quite good.

(a) Original image (b) SIRT reconstruction

(c) NN output:
MSE: 0.003,
PSNR: 24.8

Figure 4.10: Example slice of a volume from the victre dataset recon-
structed using SIRT after 5 iterations along the original and neural
network-post-processed ones.

Chapter 5

Conclusions

In this work we showed different approaches for enhancing tomographic images
using Convolutional Neural Networks. We generated a synthetic dataset of
volumes made of ellipsoids, then calculated the projections using a cone-beam
geometry and finally used these to build a reconstruction using both FDK and
SIRT algorithms. The same projection/reconstruction work has been done for
a dataset containing a reduced number of samples of artificial breasts built to
resemble real ones as closely as possible.

After this initial generation procedure, we performed some tweaks to the
Unet structure to adapt it to our use case. We first tried to enhance FDK
reconstructions using both 2D and 3D convolutional networks but the inaccu-
racy of this algorithm when dealing with limited-angle projections combined
with a reduced network size due to memory constraint didn’t lead to useful
results.

Then we used SIRT reconstructions to train the two types of networks.
Using this dataset, we managed to get encouraging results, especially with 3D
convolutional networks. The additional spatial information given by the third
dimension allowed more information to be available to make an estimate, so
the output volume was quite accurate, for both the synthetic and VICTRE
dataset. The 3D convolutional network could also improve a 5-iterations SIRT
reconstruction to a point that neither a 20-iterations one could reach.

Our results have been limited by the low number of samples available to
train the networks and by the hardware we used. The first problem unfortu-
nately is not easily solvable since real-world data gathering is strictly regulated

45

46 5. Conclusions

by privacy laws and for this is is quite difficult to build big datasets to use as
training samples for a neural network. An artifically augmented dataset could
however be built, but there would be the need to closely pay attention not to
alter the intrinsic features of that class of data. Problems about the perfor-
mance of the hardware can be solved by adding more memory or compute units
to the device the network is being trained on, or using a federated environ-
ment to split the work between multiple computing entities, but this procedure
can add some complexity to the process and could become economically very
expensive.

In conclusion, we demonstrated that a neural network can be implemented
and trained to enhance tomographic image data. We exposed the difference
between FDK and SIRT reconstructions, where the latter preserve a higher
level of detail than the former. We then showed that the predictions a neu-
ral network trained on SIRT reconstruction makes turn out to have a better
quality than higher-iterations count ones, particularly using 3D convolutional
networks. This could provide a good starting point for future improvements on
the use of 3D convolutional networks for enhancing tomographic reconstrucions
volumes.

Bibliography

[1] F. Rosenblatt. “The perceptron: A probabilistic model for information
storage and organization in the brain”. In: Psychological Review 65(6)
(1958). url: https://doi.apa.org/doi/10.1037/h0042519.

[2] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone-beam
algorithm”. In: J. Opt. Soc. Am. A 1.6 (June 1984), pp. 612–619. doi:
10.1364/JOSAA.1.000612. url: http://josaa.osa.org/abstract.
cfm?URI=josaa-1-6-612.

[3] A C Kak and M Slaney. “Principles of computerized tomographic imag-
ing”. In: (Jan. 1988). url: https://www.osti.gov/biblio/5813672.

[4] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791.

[5] Gabor T. Herman. Fundamentals of Computerized Tomography: Image
Reconstruction from Projections. Springer Science & Business Media,
2009. isbn: 9781846287237.

[6] B. S. Everitt and A. Skrondal. The Cambridge Dictionary of Statistics.
Cambridge University Press, 2010. isbn: 9780521766999.

[7] Heaviside step function — Wikipedia, The Free Encyclopedia. 2010. url:
https://en.wikipedia.org/wiki/Heaviside_step_function. (ac-
cessed: 21.02.2021).

[8] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-
stricted Boltzmann Machines”. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10.
Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077.

47

https://doi.apa.org/doi/10.1037/h0042519
https://doi.org/10.1364/JOSAA.1.000612
http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612
http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612
https://www.osti.gov/biblio/5813672
https://doi.org/10.1109/5.726791
https://en.wikipedia.org/wiki/Heaviside_step_function

48 BIBLIOGRAPHY

[9] Geoffrey Hinton et al. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv (July 2012).

[10] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”.
In: CoRR abs/1404.7828 (2014). arXiv: 1404 . 7828. url: http : / /
arxiv.org/abs/1404.7828.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (May 2015), pp. 436–444. issn: 1476-4687. doi: 10.
1038/nature14539. url: https://doi.org/10.1038/nature14539.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation”. In: Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015. Ed.
by Nassir Navab et al. Cham: Springer International Publishing, 2015,
pp. 234–241. isbn: 978-3-319-24574-4.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[14] Seymour A. Papert Marvin Minsky. Perceptrons: An Introduction to
Computational Geometry. The MIT Press, 2017. isbn: 9780262343930.

[15] Colab FAQ. url: https://research.google.com/colaboratory/faq.
html. (accessed: 20.02.2021).

[16] FDK_CUDA. url: http://www.astra-toolbox.com/docs/algs/FDK_
CUDA.html. (accessed: 21.02.2021).

[17] Mean Squared Error — Wikipedia, The Free Encyclopedia. url: https:
//en.wikipedia.org/wiki/Mean_squared_error#Definition_and_
basic_properties. (accessed: 27.02.2021).

[18] National Biomedical Imaging Archive Web Site. url: https://imaging.
nci.nih.gov/nbia-search-cover/. (accessed: 27.02.2021).

[19] Peak Signal to Noise Ratio — Wikipedia, The Free Encyclopedia. url:
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio.
(accessed: 27.02.2021).

[20] pyellipsoid. url: https://github.com/ashkarin/pyellipsoid. (ac-
cessed: 23.02.2021).

https://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1412.6980
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
http://www.astra-toolbox.com/docs/algs/FDK_CUDA.html
http://www.astra-toolbox.com/docs/algs/FDK_CUDA.html
https://en.wikipedia.org/wiki/Mean_squared_error#Definition_and_basic_properties
https://en.wikipedia.org/wiki/Mean_squared_error#Definition_and_basic_properties
https://en.wikipedia.org/wiki/Mean_squared_error#Definition_and_basic_properties
https://imaging.nci.nih.gov/nbia-search-cover/
https://imaging.nci.nih.gov/nbia-search-cover/
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://github.com/ashkarin/pyellipsoid

BIBLIOGRAPHY 49

[21] SIRT3D_CUDA. url: http://www.astra-toolbox.com/docs/algs/
SIRT3D_CUDA.html. (accessed: 21.02.2021).

http://www.astra-toolbox.com/docs/algs/SIRT3D_CUDA.html
http://www.astra-toolbox.com/docs/algs/SIRT3D_CUDA.html

	Introduzione
	Introduction
	Computed Tomography
	CT Scanners Generations
	Problems of CT

	Neural Networks
	An introduction to Neural Networks
	Convolutional Neural Networks
	3D Convolutions

	Neural Networks in practice

	Technical Notes
	FDK
	SIRT
	Dataset Generation
	Network Layout
	Training of the Network

	Numerical Results
	Neural Networks on FDK reconstructions
	2D Convolutional Network
	3D Convolutional Network

	Neural Networks on SIRT reconstructions
	2D Convolutional Network
	3D Convolutional Network

	Conclusions
	Bibliography

