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Introduction

As progress is made in the physical realization of new and more powerful quantum
computers, the need for a quantum programming language that goes beyond a mere
instruction set for quantum hardware and instead offers high-level features similar to
those we are already used to in classical programming becomes more and more apparent.
Today, it would be ridiculous if a programmer were to try and code a web application by
defining every part of it in terms of logic gates. Similarly, it is unreasonable to expect that
a quantum programmer in the future will describe all of its quantum algorithms in terms
of elementary unitary transformations. At the time of writing, one of the most promising
candidates for a quantum programming language suitable to real-world applications is
undoubtedly Quipper [6, 7].

Quipper is a functional programming language for the description of quantum circuits.
What sets Quipper apart from the majority of the remaining quantum programming
languages is that it is designed with the explicit objective of being practical, scalable
and ultimately useful. To this effect, Quipper is implemented as an embedded language in
Haskell, so that all of the advanced programming constructs that are available in Haskell
are also available when programming in Quipper. The result is a powerful quantum
programming language that does not limit the programmer to a gate-by-gate description
of quantum computations, but rather treats circuits themselves as data and supports
many higher-order operations to combine them together and manipulate them in their
entirety. This allows for the implementation of many real-world quantum algorithms
that would be practically inexpressible in other programming languages, if anything due
to the sheer size of their circuits.

Unfortunately, while Quipper inherits all of the qualities of Haskell, it also inherits
its shortcomings. Namely, Quipper lacks linear types, which are critical to quantum
programming, and more generally a formal operational semantics. As a consequence,
it is difficult to reason rigorously about the behavior of Quipper programs, a fact that
constitutes an obstacle to the application of otherwise valuable static analysis techniques
to them. For example, the ability to statically infer bounds on the number of qubits
required at run time by a Quipper program would be immensely useful in a time where
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quantum resources – although increasingly available – are still scarce. Fortunately, a
number of research languages exist that formalize significant fragments of Quipper in a
type-safe way. In this thesis, we examine one such language, namely Rios and Selinger’s
Proto-Quipper-M [13], and use its big-step semantics as a starting point to define a new
operational semantics for Quipper which is inspired by abstract machines. We then prove
that this new semantics is equivalent to the original one. Our hope is that our work will
in turn serve as a valuable starting point for future research in the formalization of more
advanced Quipper constructs and in the static analysis of Quipper programs.

Contents of the Thesis

In Chapter 1 we first introduce the quantum circuit model of computing and then we
present Quipper as a programming language for the description of quantum circuits. We
do so informally, by showing a number of increasingly sophisticated Quipper programs
that exemplify the most relevant constructs of the language. Finally, after having illus-
trated Quipper’s qualities, we discuss its main shortcomings and how they impact the
programming experience.

In Chapter 2 we introduce Proto-Quipper-M, a type-safe formalization of a relevant
fragment of Quipper. We start by introducing the categorical model upon which circuit
construction in Proto-Quipper-M is built. Then we proceed to present the language
itself, with a particular focus on its linear type system, which can prevent at compile
time a number of mistakes that would result in a run time exception in Quipper, namely
those related to the violation of the no-cloning property of quantum states. To conclude
the section, we cover Proto-Quipper-M’s big-step semantics and make a first attempt
to define an equivalent small-step semantics. We give safety results for the resulting
semantics and we assess its limitations, specifically as far as the circuit boxing operation
is concerned.

In Chapter 3 we present two incremental upgrades to the small-step semantics defined
in the previous chapter. First, we propose a stacked semantics, which overcomes the
shortcomings of the previous semantics by introducing an explicit stack into the small-
step semantics, to keep track of nested boxing operations. Next, we take the stack
approach even further and formulate a proposal for a machine semantics for Proto-
Quipper-M. This semantics is heavily inspired by abstract machines, and particularly by
the CEK machine [4], as it models every phase of the evaluation of a Proto-Quipper-M
program as a continuation on a stack. Unlike the CEK machine, however, our machine
does not employ environments, and rather relies on an abstract substitution function.
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Finally, in the more technical Chapter 4 we analyze the three semantics in their re-
lationship with one another, eventually proving that the proposed machine semantics is
effectively equivalent to the starting small-step semantics and – as a consequence – to
the original Proto-Quipper-M semantics given by Rios and Selinger.



Chapter 1

Quipper: a Quantum Circuit
Description Language

Quipper is a programming language for the description of quantum circuits. In order to
understand what it means to describe – or construct – a quantum circuit, it is necessary
to know what a quantum circuit is in the first place. We therefore begin this chapter with
a brief explanation of the quantum circuit model and then proceed with an introduction
of Quipper itself.

1.1 What is a Quantum Circuit?

The quantum circuit model is one of the most widespread models for the study of quan-
tum computations. In it, a computation is modelled as a sequence of elementary quantum
logic gates which are applied to one or more wires, hence the name “circuit”. Conceptu-
ally, every wire represents an individual qubit, while the quantum gates that are applied
to a wire represent unitary transformations of the qubit’s quantum state. The circuit
metaphor allows us to represent quantum computations graphically in a very intuitive
manner, as one can see in Figure 1.1

Note that a satisfactory introduction to the remarkable field of quantum mechanics is
outside the scope of this thesis. As such, when we describe quantum circuits in more
detail in the pages to come, we take for granted that the reader is already somewhat
familiar with the fundamental concepts of quantum mechanics (such as superposition,
measurement, entanglement, etc.) and the mathematical notation used to reason about
them (such as the bra-ket notation, state vectors, unitary matrices, and so on). The
reader who is unfamiliar with these essential ideas can find a minimal introduction to the
topic in the author’s bachelor thesis [3]. Alternatively, for a more thorough introduction
to quantum mechanics and their application to computer science, we refer the reader to
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Figure 1.1: A graphical representation of a quantum circuit, where three wires run from
left to right. The H, X, Z and ⊕ symbols represent each a different quantum gate being
applied to the wires, while • denotes a control qubit and “meas” denotes the measurement
of a wire, which results in a bit wire. Of the three wires, the top one is an input to the
circuit, while the other two are introduced as part of it. Similarly, the first two wires are
discarded at the end of the circuit and only the bottom wire is returned as an output.
Because the middle wire is introduced, used and discarded entirely within the circuit,
we call it an ancilla. This circuit implements the quantum teleportation algorithm.

textbooks such as the ones by Yanofsky and Mannucci [15] and Nielsen and Chuang [10].

1.1.1 Qubits

As we already mentioned, a wire represents a qubit, which is the quantum counterpart of
a (classical) bit. Mathematically, a qubit is nothing more than a quantum system which
can exist in a superposition of two basis states, which we usually refer to as |0〉 and |1〉:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
.

Intuitively, two or more qubits can be considered together in what is commonly
called a quantum register. In the specific context of quantum circuits, it is perhaps
more intuitive to interpret a quantum register as a bundle of wires. If two qubits are
respectively in states |φ〉 and |ψ〉, then the state of the register containing both qubits
is given by the tensor product of |φ〉 and |ψ〉, which is written |φ〉 ⊗ |ψ〉, or |φ〉|ψ〉 or
|φψ〉. The Kronecker product is usually chosen for the tensor product, and it is defined
on vectors and matrices alike as follows:

A⊗B =


A1,1B A1,2B . . . A1,mB
A2,1B A2,2B . . . A2,mB

...
...

. . .
...

An,1B An,2B . . . An,mB

 ,
where Ai,jB represents the product of scalar Ai,j with matrix B. Note that if A is a
n×m matrix and B is a p× q matrix, then A⊗B is a np×mq matrix. As an example
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of how the composition of qubits works, a quantum register of two qubits can exist in a
superposition of the following four basis states:

|00〉 =

[
1
0

]
⊗
[
1
0

]
=

1

[
1
0

]
0

[
1
0

]
 =


1
0
0
0

 , |01〉 =

[
1
0

]
⊗
[
0
1

]
=

1

[
0
1

]
0

[
0
1

]
 =


0
1
0
0

 ,

|10〉 =

[
0
1

]
⊗
[
1
0

]
=

0

[
1
0

]
1

[
1
0

]
 =


0
0
1
0

 , |11〉 =

[
0
1

]
⊗
[
0
1

]
=

0

[
0
1

]
1

[
0
1

]
 =


0
0
0
1

 .
Whereas we can always take the states of two qubits and tensor them together to

get the state of the quantum register containing those two qubits, the reverse operation
is not always possible. That is, if |ε〉 is the state of a two-qubit quantum register,
then in general it is not possible to find two single-qubit states |φ〉 and |ψ〉 such that
|ε〉 = |φ〉 ⊗ |ψ〉. If we can do so, then we say that |ε〉 is a separable state, whereas if we
cannot we say that |ε〉 is an entangled state. In the latter case, we often just say that
the two qubits that make up the register are entangled. Informally, this means that the
state of one qubit is only describable in terms of the state of the other (e.g. we can say
that they are either both |0〉 or both |1〉) and not individually. Entanglement is at the
base of almost every quantum algorithm.

1.1.2 Quantum Logic Gates

In the case of classical circuits, the fundamental building blocks of any computation on
bits are logic gates, such as the NOT gate, the AND gate, the XOR gate, and so on.
The operations carried out by these gates are trivial in isolation, but by composing them
together we can design circuits that perform advanced arithmetic or implement control
flow and memory. The name quantum logic gate therefore hints at the existence of similar
basic building blocks with which to build quantum circuits that perform arbitrarily
complex quantum computations. However, a significant difference between the classical
and the quantum case is that in the latter a system can only evolve by means of reversible
transformations (unless a measurement is involved). As a result, the basic building blocks
that we are looking for must be reversible too. This is not generally the case with logic
gates (in fact, out of the aforementioned classical gates only NOT is reversible), which
means that we need a completely different set of gates with which to describe quantum
circuits. In the following paragraphs, we briefly describe some of the quantum gates that
occur most frequently in the literature, describing their effect on qubits both informally
and formally, as unitary transformations.



CHAPTER 1. QUIPPER: A QUANTUM CIRCUIT DESCRIPTION LANGUAGE 9

Pauli-X Gate The Pauli-X gate is the most basic (i.e. least exotic) quantum logic
gate. It is usually denoted by the letter X or, alternatively, the ⊕ symbol. Intuitively,
this gate is the exact quantum counterpart of the classical NOT gate, as it maps the
basis state |0〉 to the basis state |1〉 and vice-versa:

X =

[
0 1
1 0

]
,

X|0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉, X|1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉.

Note that because X maps classical states into classical states, it cannot be used to
introduce superpositions into a computation.

Pauli-Z Gate The Pauli-Z gate is the first truly quantum logic gate that we examine,
in that it does not correspond to any classical operation. Its action on a single qubit can
be described as follows:

Z =

[
1 0
0 −1

]
,

Z|0〉 =

[
1 0
0 −1

] [
1
0

]
=

[
1
0

]
= |0〉, Z|1〉 =

[
1 0
0 −1

] [
0
1

]
=

[
0
−1

]
= −|1〉.

Informally, the Z gate shifts the phase of a qubit. Phase is a property of all quantum
states and plays a relevant role in many quantum algorithms. However, for the sake of
this introduction we will not delve into these aspects of quantum computing.

Hadamard Gate The Hadamard gate is denoted by the letter H and it is one of the
most fundamental quantum logic gates, as it can be used to put a single qubit into a
perfect superposition. More formally, it has the following effect:

H =
1√
2

[
1 1
1 −1

]
,

H|0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1√
2
1√
2

]
, H|1〉 =

1√
2

[
1 1
1 −1

] [
0
1

]
=

[
1√
2

− 1√
2

]
,

where the two resulting states are equally perfect superpositions which only differ in
phase. Here, perfect refers to the fact that after the application of the Hadamard gate a
qubit has an equal probability of being measured |0〉 or |1〉.
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Controlled Gates

In addition to the simple quantum gates that we examined so far, in the literature
we often encounter gates that are controlled by an additional qubit, which we call a
control qubit. Intuitively, if the control qubit is in state |0〉, then the controlled gate does
nothing to its inputs, whereas if the control qubit is in state |1〉 the controlled gate works
as usual. Although any gate can be controlled, the most common controlled gate by far
is the controlled-NOT, or CNOT gate.

CNOT gate The CNOT gate takes as input a control qubit and a target qubit. Graph-
ically, the two qubits are usually connected by a line and denoted respectively by the •
and ⊕ symbols, as seen in Figure 1.1. The CNOT gate applies the X gate to the target
qubit if the control is in state |1〉, otherwise it leaves the two qubits unaltered. More
formally:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
CNOT |00〉 = |00〉, CNOT |01〉 = |01〉,

CNOT |10〉 = |11〉, CNOT |11〉 = |10〉.

In other words, the CNOT gate always maps the two-qubit state |x〉|y〉 to |x〉|x⊕ y〉.

1.1.3 From Gates to Circuits

Now that we know what a quantum logic gate is, we need to define how quantum gates
can be assembled together to form a quantum circuit. In the classical case, we know
that logic gates can be wired together with a great degree of freedom, to the extent
where a Boolean circuit is considered valid as long as it can be represented by an acyclic
directed graph. In particular, any gate within a circuit can merge two or more input
wires into a single output (fan-in) and redirect this output to an arbitrary number of
subsequent gates (fan-out). The same thing cannot be done in quantum circuits. On one
hand, the fan-in of wires is by its own nature non-injective, and therefore irreversible.
On the other hand, the fan-out of wires violates the no-cloning theorem, an ubiquitous
result in quantum physics which asserts that it is impossible to duplicate an arbitrary
unknown quantum state. In quantum computing, this constraint is also referred to as the
no-cloning property of quantum states, and it entails that no quantum gate can create a
copy of a qubit wire.
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U W

U

W

Figure 1.2: Composition of gates U and W in sequence (left) and in parallel (right).

A
B

C

D

Figure 1.3: Example of a circuit made up of both multi-qubit gates and single-qubit
gates, composed both in parallel and in sequence.

Because the wires of a quantum circuit cannot be split or merged, we have that the
only way we can compose quantum gates into quantum circuits is either in sequence, on
the same wires, or in parallel, on different wires, as seen in figure 1.2. Mathematically,
composition in sequence corresponds to a simple matrix multiplication. That is, if the
two gates being composed correspond to unitary transformations U and W , then their
composition in series is represented by the unitary transformation

WU.

On the other hand, composition in parallel corresponds to the tensor product. That is,
the composition in parallel of U and W corresponds to the unitary transformation

U ⊗W.

Naturally, this kind of composability also applies to multi-qubit gates and even to entire
circuits. In this case, when we compose gates in sequence, we can choose which outputs
of which gates become which inputs of which gates. That is, we are not limited to only
chaining gates with the same number of inputs and outputs, as can be seen in Figure
1.3.
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1.2 Quipper

Quipper [6, 7] is a functional programming language for the description of quantum
circuits. Unlike other quantum programming languages, Quipper is designed with the
goal of being practical and scalable, allowing programmers to leverage the power of
higher-order operators to describe quantum algorithms requiring order of trillions of
gates. In order to provide this kind of power, Quipper is currently implemented as an
embedded programming language in Haskell (that is, as a library and preferred idiom
for Haskell), which means that it benefits from all of Haskell’s features, including some
advanced and experimental GHC extensions. The most noticeable consequence of this
embedded approach is that Quipper is actually a purely functional language, in which
circuit construction is a side-effect of the execution of a program. Because the host
language is Haskell, it comes as no surprise that this side-effect is modelled as a monad.

The most effective way to introduce Quipper is probably by example, so in the following
paragraphs we present and comment a number of simple programs that illustrate the
essential aspects of Quipper programming. Note that most of the examples are abridged
from [6].

1.2.1 Building Quantum Circuits in Quipper

Because Quipper is a circuit description language, the execution of a Quipper program
naturally results in a circuit. However, when programming in Quipper it is often easier
to think of a program in terms of a sequence of quantum operations being carried out
imperatively in real time on a number of qubits. In fact, a quantum circuit is described
in Quipper by a monadic function that takes as input qubits (or bits) and returns qubits
(or bits). Consider, as a first example, the following minimal function which applies a
single Hadamard gate to its input wire:

first :: Qubit -> Circ Qubit

first q = do

q' <- hadamard q

return q'

Let us go through this example line by line. The first line is the type of the function.
Here, Qubit is the type of qubits, while Circ is the type constructor that tells us that
this function is monadic and that its side-effect is precisely that of building a circuit
“behind the scenes”. This function therefore describes a quantum computation which
takes a qubit as input and returns a qubit as output. On the third line we have the
application of the Hadamard gate to the input wire q. The output wire of this newly
applied gate is then bound to the variable q’ for later use. Note that although the
no-cloning property prevents us from reusing the same wire twice, it does not prevent us
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from reusing the same wire name twice, so in this case we could also have written q <-

hadamard q. Lastly, in line four q’ is returned as the only output of the entire circuit.

Circuit Parameters

In addition to bits and qubits, a function can also take other types as inputs, which we
call parameters. In this case the function does not describe a single circuit, but rather
a family of circuits. As an example, consider the following function that initializes a bit
based on a Boolean parameter:

plus_minus :: Bool -> Circ Qubit

plus_minus b = do

q <- qinit b

r <- hadamard q

return r

In this case, plus minus is not itself a circuit, but plus minus False and plus minus

True are. At this point it is appropriate to distinguish between the three phases of
the execution of a Quipper program: compile time, during which the program is type-
checked and compiled, circuit generation time, during which the parameters are known
and a program is evaluated to obtain a circuit, and eventually circuit execution time, in
which the actual inputs are given to the circuit, which can then be executed in a quantum
simulator. Continuing with our examples, consider the following function, which, given
a qubit, uses it as control when applying a CNOT gate to a newly introduced wire:

share :: Qubit -> Circ (Qubit, Qubit)

share q = do

a <- qinit False

a <- qnot a `controlled` q

return (q,a)

Here we have a new operation, namely controlled, which makes the application of any
quantum operation (in this case qnot, which corresponds to the Pauli-X gate, to wire a)
dependent on a control qubit, in this case q. Notice also how we can make use of generic
Haskell constructs when describing quantum computations, such as the tuple (q,a) in
the return statement.

Assembling Larger Circuits

So far we have only seen the application of elementary gates to wires. In the following
example we initialize a pair of qubits in the entangled Bell state 1√

2
(|00〉+ |11〉). To do

so, we can take advantage of the functions defined so far to write very concise and easy
to read code. This is a small demonstration the high-level and combinatorial nature of
Quipper as a quantum programming language:
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bell00 :: Circ (Qubit, Qubit)

bell00 = do

q <- plus_minus False

(q,s) <- share q

return (q,s)

Quantum Teleportation Circuit

As a last example, we build the quantum teleportation circuit that we showed in Figure
1.1 at the beginning of this chapter. It is clear from the last example that we do not
need (and do not want) to define the entire circuit in one shot. Rather, we can express
it in terms of its two natural constituents: Alice and Bob.

alice :: Qubit -> Qubit -> Circ (Bit, Bit)

alice q s = do

s <- qnot s `controlled` q

q <- hadamard q

(x,y) <- measure (q,s)

return (x,y)

Note that this circuit performs a measurement. As a results, the two qubit wires q and
s collapse to the classical wires x and y, of type Bit, which are then returned.

bob :: Qubit -> (Bit, Bit) -> Circ Qubit

bob q (x,y) = do

q <- gate_X q `controlled` y

q <- gate_Z q `controlled` x

cdiscard (x,y)

return q

Bob’s part of the circuit controls the application of gates X and Z with the classical bits
y and x, respectively. There is no fundamental difference between quantum and classical
control, as the latter is just a special case of the former. Furthermore, this circuit makes
use of the cdiscard operation, which is used to terminate and discard any amount of
bit wires. The analogous operation on qubit wires is called qdiscard and it is not a
reversible operation. Now that we have both Alice’s and Bob’s parts of the quantum
teleportation algorithm, we can implement the circuit shown in figure 1.1 as follows:

teleport :: Qubit -> Circ Qubit

teleport q = do

(a,b) <- bell00

(x,y) <- alice q a

b <- bob b (x,y)

return b
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Boxed Circuits

We conclude this introduction to Quipper’s features with boxed circuits. Many quantum
algorithms rely on multiple repetitions of gate patterns and entire sub-circuits to carry
out tasks on arrays of qubits. Intuitively, instead of generating a circuit every time we
need it as part of a bigger algorithm, we could generate it once and for all and then reuse
it as many times as needed. This is exactly what boxing a circuit does. If we have a
circuit building function f, we can evaluate it and store the resulting circuit for later use
with the box operator:

let c = box "sub-circuit" f

where "sub-circuit" is the name given to the boxed sub-circuit. Once c has been built,
we can use it an arbitrary number of times as part of a bigger circuit, without having to
execute f ever again.

1.2.2 Quipper’s Shortcomings

So far, the fact that Quipper is an embedded language in Haskell has allowed us to write
expressive and elegant code which makes use of a number of the host’s features. However,
the embedding approach comes with some trade-offs and Haskell has some limitations
that negatively affect Quipper. First and foremost, Haskell’s type system lacks linear
types and as such it is not expressive enough to enforce the no-cloning property of
quantum states at compile time. This means that it is perfectly legal to write a Quipper
program that duplicates qubit wires, such as the following one:

illegal :: Qubit -> Circ (Qubit, Qubit)

illegal q = do

q' <- hadamard q

copy_of_q' <- hadamard q

return (q',copy_of_q')

This ill-formed program raises no error whatsoever at compile time, but fails immediately
at circuit generation time, as soon as Quipper’s runtime realizes that it violates the no-
cloning property of quantum states. Another limitation of Haskell’s type system is its
lack of dependent types, which makes it harder to express and work with circuit families
whose members differ in type, such as the family of Quantum Fourier Transform (QFT)
circuits. In essence, despite being strongly typed, Quipper is not type-safe.

A second shortcoming is more academic in nature, but nonetheless relevant for this
thesis. Because Haskell is a complex programming language with no formal semantics, it
follows that Quipper too lacks a formal semantics and the behavior of Quipper programs
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is purely determined by the language’s implementation. It is therefore hard to reason
rigorously about Quipper’s features and guarantee that new additions to the language
behave well with respect to the existing specification.



Chapter 2

Proto-Quipper-M: a Formalization
of Quipper

At the end of the previous chapter, we mentioned that Quipper does not have a formal
semantics and that it is not type-safe. In order to still be able to study Quipper in a
formal way, the Proto-Quipper family of research languages has been introduced over
the last years. Each language of this family formalizes a relevant fragment of Quipper
in a type-safe way. The most prominent Proto-Quipper instances are Proto-Quipper-S
[14], Proto-Quipper-M [13] and Proto-Quipper-D [5]. In particular, Proto-Quipper-M
is a lambda-calculus built upon a categorical model, which features a full-fledged linear
type system. A linear type system guarantees that certain variables – more technically,
linear resources – are consumed exactly once. In the case of Proto-Quipper-M, the linear
resources are the free wire ends in the circuit being built as a side-effect of the evaluation
of a program. This makes it so that, unlike Quipper, Proto-Quipper-M can enforce the
no-cloning property of quantum states at compile time rather than at run time. In this
chapter we give an overview of Proto-Quipper-M, starting from its categorical model,
which actually generalizes the notion of quantum circuit, and reviewing its syntax, type
system and semantics.

2.1 Generalizing Quantum Circuits

In Proto-Quipper-M, a quantum circuit is modeled as a morphism in a symmetric
monoidal category. To understand what this means, we need to know what a cate-
gory is and what it means for it to be monoidal and symmetric. Note that category
theory is an extensive and notoriously hard to approach area of mathematics and it
would be impossible to give a satisfactory introduction to the topic – however minimal
– as part of this thesis. For this reason, we focus on just the elements that are strictly
necessary in order to understand the quantum circuit model of Proto-Quipper-M. The

17
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interested reader is referred to the excellent works of Riehl [12] and Asperti and Longo
[1] for a thorough introduction to the curious world of categories.

2.1.1 Generalized Circuits

Informally, a category consists of a collection of objects and arrows between those objects.
The objects are generic and are treated by the arrows as atomic entities. Furthermore,
for every object in a category there is an identity arrow which begins and ends at that
object, and arrows are composable in the sense that for every pair of arrows going from
object A to object B and from object B to object C, respectively, there exists a third
arrow in the same category that goes from A to C. Because arrows usually represent
some sort of “transformation” between objects, they are usually referred to as morphisms.
More formally, the concept of category can be defined as follows.

Definition 2.1.1 (Category). A category C consists of

• A class ob(C) of the objects of C,

• A class hom(C) of the morphisms between objects of C,

such that

• Every morphism in hom(C) has a defined domain and codomain. A morphism f with
domain A and codomain B is written as f : A→ B. The set of morphisms from A to
B is called the hom-set of A and B and it is denoted by C(A,B).

• For every pair of morphism f : A → B and g : B → C in hom(C) there exists
a composite morphism f ◦ g : A → C in hom(C). The composition function ◦ is
associative, that is,

(f ◦ g) ◦ h = f ◦ g ◦ h = f ◦ (g ◦ h).

• Every object A in ob(C) has an associated identity morphism idA : A → A. The
identity morphisms are left and right identities with respect to composition, that is, for
all f : A→ B:

idA ◦ f = f = f ◦ idB,

The most striking quality of the definition of category is that it makes very few assump-
tions about the nature of objects and morphisms. Thanks to this generality, category
theory can be used to reason about a truly enormous variety of mathematical entities,
and many well known categories exist that model equally well known areas of mathe-
matics. For example, the category Set, whose objects are sets and whose morphisms
are functions, or the category Top, whose objects are topological spaces and whose mor-
phisms are continuous maps between them, or again the category Ab, whose objects are
Abelian groups and whose morphisms are group homomorphisms, and so on.
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In our specific case, if we recall what we saw in Section 1.1, we can start to see how
quantum circuits can be reasoned about in terms of categories. Suppose the objects
of a given category M represent collections of wires. If A,B ∈ ob(M) are two such
collections, then a circuit C that takes as input the wires in A and outputs the wires in
B can be clearly modelled by a morphism C : A → B in M. Furthermore, if the wires
output by a circuit C coincide with the wires taken as input by a circuit D, the two
circuits can be composed in series, as shown graphically:

C D

This is naturally modelled by the composition function ◦, since circuit composition is
also associative. Lastly, for every collection of wires A, the circuit that does nothing to
the wires in A and returns them unaltered is a perfectly valid circuit. It is modelled by
the identity morphism idA and appending or prepending it to any other circuit has no
effect whatsoever on said circuit:

idA

This is a good starting point for a quantum circuit model. However, there are some
aspects of circuits which are not captured satisfactorily (or at all) by the sole notion of
category. For example, recall from Section 1.1 that two circuits C and D can always be
composed in parallel, as opposed to in series, as shown graphically:

C

D

This idea is not captured by the definition of category alone. As a consequence,
we must turn to a more specific kind of categories, whose definition depends on two
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concepts which we will now introduce briefly: isomorphisms and functors. Intuitively,
an isomorphism is nothing more than an “invertible” morphism. More formally:

Definition 2.1.2 (Isomorphism). A morphism f : A→ B is said to be an isomorphism
if there exists g : B → A such that

f ◦ g = idA, g ◦ f = idB.

We say that two objects A and B are isomorphic, and we write A ∼= B, when there exists
an isomorphism between A and B.

Usually, the existence of an isomorphism between two objects entails that the two can
be considered equivalent from a certain perspective. Oftentimes, both sides of an iso-
morphism are given under the same name, and the notation γ : A ∼= B (where γ can be
any name) is used to denote f : A→ B and g : B → A.

While an isomorphism, and more in general a morphism, establishes a mapping be-
tween different objects within the same category, a functor is a mapping between entire
categories. Because categories are comprised of objects and morphisms, a functor must
act on both in such a way as to preserve the basic structure of the category.

Definition 2.1.3 (Functor). Given categories C and D, a functor F : C→ D consists
of

• A mapping that associates to every object A in C an object FA in D.

• A mapping that associates to every morphism f : A → B in C a morphism Ff :
FA→ FB in D.

such that

• Composition is preserved. That is, for every pair of morphisms f and g in C,

Ff ◦ Fg = F (f ◦ g).

• Identities are preserved. That is, for every object A in C,

F (idA) = idFA

Given two categories C and D, we can obtain their product C×D, which is nothing
more than the category whose objects are pairs (A,B), where A is an object of C and
B is an object of D, and whose morphisms are of the form f × g : (A,B) → (C,D),
where f : A → C is a morphism of C and g : B → D is a morphism of D. In this
case, the composition of morphisms is defined point-wise. A functor whose domain is
a product category is called a bifunctor, if the product involves exactly two categories,
or a multifunctor in general. Intuitively, a multifunctor is nothing more than a functor
with more than one argument. We can now give the definition of monoidal category.
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Definition 2.1.4 (Monoidal Category). A category C is said to be monoidal if it is
equipped with:

• A bifunctor ⊗ : C×C→ C, called tensor product,

• An object I, called identity object,

• Three natural isomorphism which guarantee that

– ⊗ is associative: for all A,B,C in C there exists an isomorphism αA,B,C : A⊗ (B⊗
C) ∼= (A⊗B)⊗ C, called associator, which is natural in A,B and C,

– I is a left identity for ⊗: for all A in C there exists a natural isomorphism λA :
I ⊗ A ∼= A, called left unitor,

– I is a right identity for ⊗: for all A in C there exists a natural isomorphism ρA :
A⊗ I ∼= A, called right unitor,

and such that the following diagrams commute:

– For all A,B,C,D in C:

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

idA⊗αB,C,D

αA,B,C⊗D

αA,B⊗C,D

αA⊗B,C,D

αA,B,C⊗idD

– For all A,B in C:

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

idA⊗λB
ρA⊗idB

If the category M that we are using to model quantum circuits is monoidal, then we
can model circuit composition in parallel by the tensor product ⊗. Note that, being a
functor, ⊗ can be applied to both morphisms (circuits) and objects (collections of wires),
which means that whenever we have two collections of wires A and B, we can put them
together into a single collection A ⊗ B. To this effect, the identity object I represents
the empty collection of wires. There is one last property that we would like to reflect in
our categorical model, and it is that the wires of a quantum circuit can be rearranged
freely (together with all the gates that act on them, naturally), without altering the
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fundamental nature of the circuit itself. A monoidal category is not enough to model
this property, so we turn to symmetric monoidal categories.

Definition 2.1.5 (Symmetric Monoidal Category). A monoidal category C is said to be
symmetric when it is equipped, for all A,B in C, with an isomorphism

γA,B : A⊗B ∼= B ⊗ A,

which is natural in both A and B and such that the following diagrams commute

• For all A in C:

A⊗ I I ⊗ A

A

γA,I

ρA

λA

• For all A,B,C in C:

(A⊗B)⊗ C (B ⊗ A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗ A B ⊗ (C ⊗ A)

γA,B⊗idC

αA,B,C αB,A,C

γA,B⊗C idB⊗γA,C

αB,C,A

• For all A,B in C:

A⊗B

B ⊗ A

γA,BγB,A

This definition reflects the irrelevance of the order of the wires in a circuit precisely in the
existence of the isomorphism γ. In conclusion, we can see that a symmetric monoidal
category M is a good mathematical model for quantum circuits. As we mentioned
earlier, Proto-Quipper-M is a language designed specifically for describing morphisms in
a symmetric monoidal category, which we call generalized circuits from now on.

Definition 2.1.6 (Generalized Circuit). Let M be a symmetric monoidal category. We
call the morphisms of M generalized circuits.
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Note that because this definition of circuit is so general, Proto-Quipper-M can be used to
describe any instance of a symmetric monoidal category. This includes different quantum
circuit representations (such as DAGs or unitary matrices), as well as other entities which
are not necessarily quantum circuits, or circuits at all. In this respect, Proto-Quipper-M
is more general than Quipper.

2.1.2 Generalized Labelled Circuits

Although the definition that we just gave is by itself sufficient to characterize a quantum
circuit categorically, it would be practical – almost necessary, from a programming point
of view – to have a way to identify and pick individual wires out of a collection, rather
than treating the latter as an atomic object. We therefore introduce labels, which behave
as a pointers to individual free wire ends, and we associate a wire type to each one of
them. In the case of quantum circuits, the types of wires are likely to be either bit or
qubit, but for the sake of generality we assume that wire types come from an arbitrary
set W , which is a parameter of the model of the language.

Definition 2.1.7 (Wire Types). Let M be a given symmetric monoidal category, and
let W be a set equipped with an interpretation function

J·K :W → ob(M),

that is, a mapping from the elements of W to the objects of M. We call the elements of
W wire types.

Wires can be considered individually or in bundles. In the second case, we assume
that wire labels can be ordered and we refer to the resulting collection of mappings from
labels to wire types as a label context.

Definition 2.1.8 (Label Context). Let L be a fixed countably infinite set of label names,
which we assume to be totally ordered. A label context Q is a function of the form

Q : L → W .

Such a function that maps label names `1, `2, . . . , `n respectively to wire types α1, α2, . . . , αn
can be written as follows:

`1 : α1, `2 : α2, . . . , `n : αn.

The interpretation of a label context Q = `1 : α1, `2 : α2, . . . , `n : αn is the following
object of M:

JQK = Jα1K⊗ Jα2K⊗ · · · ⊗ JαnK,

where `1 < `2 < · · · < `n. In the case where Q = ∅, we have J∅K = I.
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At this point, by instantiating the generic objects of M with label contexts, we get
the category ML, which is a truly suitable model for a quantum circuit description
language. Note that M and ML are essentially the same category, the only difference
between the two being that ML is imbued with a labelling structure that allows us to
identify individual wires and their type. To reflect this quality, we call the morphisms
of ML generalized labelled circuits.

Definition 2.1.9 (Generalized Labelled Circuit). Let M be a given symmetric monoidal
category. Let ML be a category in which

• The objects are label contexts,

• A morphism f : Q→ R is a morphism g : JQK→ JRK in M.

We call the morphisms of ML generalized labelled circuits, or just labelled circuits.

2.2 Proto-Quipper-M’s Syntax

We are now ready to start examining Proto-Quipper-M, starting from its syntax. Al-
though the original Proto-Quipper-M specification given by Rios and Selinger [13] is
quite rich, in this thesis we only consider a minimal fragment of the language, for the
sake of simplicity. Our fragment can be described by the following grammar:

M,N ::= x | ` | λx.M |MN | 〈M,N〉 | let 〈x, y〉 = M inN

| liftM | forceM | boxT M | apply(M,N) | (~̀, C, ~̀′),

where x ranges over variables names, ` ranges over the label names in L and C is a
labelled circuit, that is, a morphism in ML. The ultimate goal of the evaluation of a
Proto-Quipper-M program is – unsurprisingly – the construction of a quantum circuit
as a side-effect. Here, “side-effect” means that a circuit does not actually appear in the
term that builds it, but rather lives “behind the scenes” and any changes made to it are,
in a way, imperative in nature. For this reason, we often refer to the circuit being built
by a program as the underlying circuit. That being said, it comes as no surprise that
the most essential programming constructs of Proto-Quipper-M are those that allow to
work with circuits. In particular, a term of the form (~̀, C, ~̀′) is called a boxed circuit and
allows to treat quantum circuits as data: it corresponds to a labelled quantum circuit
C : Q → Q′ which exposes input labels ~̀ and output labels ~̀′ as an interface (where
~̀ and ~̀′ are all and only the labels occurring in Q and Q′, respectively). New boxed
circuits can be introduced via the boxT construct, which corresponds to Quipper’s box

operator, while existing boxed circuits can be used by the apply operator, which models
circuit application. Informally, with apply we can attach a boxed circuit to one or more
exposed wires of the underlying circuit, whereas with boxT we can take a circuit-building
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function, execute it in a sandboxed environment (with new labels created on-the-fly), box

the resulting circuit and obtain it as a result. Note that we often employ ~̀ as syntactic
sugar to denote an arbitrary tuple of labels. More formally:

~̀, ~k ::= ` | 〈~̀, ~k〉.
Values are a subset of terms and they can be defined by the following grammar:

V,W ::= ` | λx.M | 〈V,W 〉 | liftM | (~̀, C, ~̀′).

Note that the original work by Rios and Selinger includes constants in the language. In
particular, it assumes that for every quantum gate there exists a function constant that
applies the corresponding gate to the underlying circuit, like in Quipper. For simplicity,
we decided to omit constants from the language. Instead, we assume that these constants
exist as specific morphisms in the ML category. For example, we assume that a morphism
H : (` : Qubit)→ (`′ : Qubit) exists and represents the circuit where the Hadamard gate
is applied to a single qubit wire ` to obtain an output qubit wire `′. We can therefore
refer to the Hadamard gate within our language with a term of the form (`,H, `′). We
now proceed to give some standard preliminary definitions which will be used in the
coming sections.

Definition 2.2.1 (Free Labels). The set of free labels of a term M , denoted as FL(M),
is defined as follows:

FL(x) = FL((~̀, C, ~̀′)) = ∅
FL(`) = {`}

FL(λx.N) = FL(liftN) = FL(forceN) = FL(boxT N) = FL(N)

FL(NP ) = FL(〈N,P 〉) = FL(let 〈x, y〉 = N inP ) = FL(apply(N,P )) = FL(N) ∪ FL(P ).

Notice how all of the labels occurring in a term are free. This is because labels are not
bound by the constructs of the language, but rather by the underlying circuit. We will
consider this aspect in more detail in the coming sections, and especially in Section 2.5.4.

Definition 2.2.2 (Free Variables). The set of free variables of a term M , denoted as
FV (M), is defined as follows:

FV (`) = FV ((~̀, C, ~̀′)) = ∅
FV (x) = {x}

FV (λx.N) = FV (N) \ {x}
FV (liftN) = FV (forceN) = FV (boxT N) = FV (N)

FV (let 〈x, y〉 = N inP ) = FV (N) ∪ (FV (P ) \ {x, y})
FV (NP ) = FV (〈N,P 〉) = FV (apply(N,P )) = FV (N) ∪ FV (P ).
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Definition 2.2.3 (Capture-avoiding Substitution). Let M and N be terms such that
none of the variables occurring free in N occur in M , free or bound. We define the
substitution of N for x in M , or M [N/x], as follows:

x[N/x] = N

y[N/x] = y

`[N/x] = `

(λx.L)[N/x] = λx.L

(λy.L)[N/x] = λx.L[N/x]

(LP )[N/x] = L[N/x]P [N/x]

〈L, P 〉[N/x] = 〈L[N/x], P [N/x]〉
(let 〈x, y〉 = L inP )[N/x] = let 〈x, y〉 = L[N/x] inP

(let 〈y, x〉 = L inP )[N/x] = let 〈y, x〉 = L[N/x] inP

(let 〈y, z〉 = L inP )[N/x] = let 〈y, z〉 = L[N/x] inP [N/x]

(liftL)[N/x] = liftL[N/x]

(forceL)[N/x] = forceL[N/x]

(boxT L)[N/x] = boxT L[N/x]

(apply(L, P ))[N/x] = apply(L[N/x], P [N/x])

(~̀, C, ~̀′)[N/x] = (~̀, C, ~̀′).

2.3 Type System

As we mentioned in the previous section, Proto-Quipper-M is endowed with a linear type
system that ensures that quantum states are never used more than once. In fact, there
are two kinds of types in Proto-Quipper-M: parameter types and linear types. As the
name suggests, parameter types refer to parameters, which are not subjected to linearity
constraints and can be used any number of times. Any type that is not a parameter type
is a linear type. A variable of linear type is also referred to as a linear resource and,
once introduced, can (and must) be consumed exactly once. Among linear types, we
distinguish the simple M-types, that is, the types of tuples of labels. For simplicity, we
often refer to these as just M-types. Ultimately, types can be described by the following
grammar:
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Types A,B ::= α | A⊗B | A( B | !A | Circ(T, U),

Parameter types P,R ::= P ⊗R | !A | Circ(T, U),

Simple M-types T, U ::= α | T ⊗ U,

where α comes from the set W of wire types. We note that A ( B is the type of
linear abstractions from A to B, while Circ(T, U) is the type of circuits from M-type T
to M-type U .

We now define the notion of typing context. In Proto-Quipper-M, a typing context
can contain both parameter variables and linear variables. However, it is often useful to
distinguish the case in which a typing context only contains parameter variables from
the case in which it contains both kinds of variables. We therefore call a typing context a
parameter context, and denote it by Φ, if it contains exclusively parameter types, whereas
we call it a generic context, and denote it by Γ, if it contains parameter and linear types
alike. Not that this distinction is in no way formal. In fact, a parameter variable may
appear on one occasion in Φ and on another in Γ in two rule applications within the
same type derivation. Whereas variables are assigned a type by a typing context, labels
are assigned a type by the very label contexts that we saw in Section 2.1.2. If a generic
context Γ and a label context Q turn M into a term of type A, then we write the following
typing judgement:

Γ;Q `M : A.

Typing judgements can be obtained by the following typing rules:

Φ, x : A; ∅ ` x : A
var

Φ; ` : α ` ` : α
labels

Γ, x : A;Q `M : B

Γ;Q ` λx.M : A( B
abs

Φ,Γ1;Q1 `M : A( B Φ,Γ2;Q2 ` N : A

Φ,Γ1,Γ2;Q1, Q2 `MN : B
app

Φ,Γ1;Q1 `M : A Φ,Γ2;Q2 ` N : B

Φ,Γ1,Γ2;Q1, Q2 ` 〈M,N〉 : A⊗B
tuple

Φ,Γ1;Q1 `M : A⊗B Φ,Γ2, x : A, y : B;Q2 ` N : C

Φ,Γ1,Γ2;Q1, Q2 ` let 〈x, y〉 = M inN : C
let

Φ; ∅ `M : A

Φ; ∅ ` liftM : !A
lift

Γ;Q `M : !A

Γ;Q ` forceM : A
force

Γ;Q `M : !(T ( U)

Γ;Q ` boxT M : Circ(T, U)
box
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Φ,Γ1;Q1 `M : Circ(T, U) Φ,Γ2;Q2 ` N : T

Φ,Γ1,Γ2;Q1, Q2 ` apply(M,N) : U
apply

∅;Q1 ` ~̀ : T ∅;Q2 ` ~̀′ : U C ∈ML(Q1, Q2)

Φ; ∅ ` (~̀, C, ~̀′) : Circ(T, U)
circ

where we assume that Γ1 and Γ2 (as well as Q1 and Q2) are always disjoint and Γ1,Γ2

denotes the union of contexts Γ1 and Γ2. Note how the requirement that Γ1 and Γ2 be
disjoint guarantees that a linear variable cannot be used more than once in a term, while
the fact that the var rule successfully derives Φ,Γ; ∅ ` x : A exclusively if x is the only
linear variable in Γ guarantees that no linear variable goes unused. Together, these two
principles guarantee that every linear variable is used exactly once, which is precisely the
definition of linearity. It is easy to see that this kind of constraint holds for labels too,
and in this case the linearity property coincides with the no-cloning property of quantum
states. We now prove some preliminary results on type derivations and the relationship
between types and terms.

Lemma 2.3.1 (Generation of Typing Judgements). The following hold:

1. If Φ,Γ;Q ` ` : A then Γ = ∅ and there exists α ∈ W such that A ≡ α and Q = ` : α.

2. If Γ;Q ` λx.M : C then there exist A and B such that Γ, x : A;Q ` M : B and
C ≡ A( B.

3. If Φ,Γ;Q ` MN : B then there exists A, as well as Γ1,Γ2 and Q1, Q2, such that
Φ,Γ1;Q1 `M : A( B and Φ,Γ2;Q2 ` N : A, where Γ1,Γ2 = Γ and Q1, Q2 = Q.

4. If Φ,Γ;Q ` 〈M,N〉 : C then there exist A and B, as well as Γ1,Γ2 and Q1, Q2, such
that Φ,Γ1;Q1 ` M : A, Φ,Γ2;Q2 ` N : B and C ≡ A ⊗ B, where Γ1,Γ2 = Γ and
Q1, Q2 = Q.

5. If Φ,Γ;Q ` let 〈x, y〉 = M inN : C then there exist A and B, as well as Γ1,Γ2 and
Q1, Q2, such that Φ,Γ1;Q1 ` M : A ⊗ B and Φ,Γ2, x : A, y : B;Q2 ` N : C, where
Γ1,Γ2 = Γ and Q1, Q2 = Q.

6. If Γ;Q ` forceM : A, then Γ;Q `M : !A.

7. If Γ;Q ` boxT M : W then there exist T and U such that Γ;Q ` M : !(T ( U) and
W ≡ Circ(T, U).

8. If Φ,Γ;Q ` liftM : C then Γ = Q = ∅ and there exists A such that Φ; ∅ `M : A and
C ≡ !A
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9. If Φ,Γ;Q ` apply(M,N) : C then there exist T and U , as well as Γ1,Γ2 and Q1, Q2,
such that Φ,Γ1;Q1 `M : Circ(T, U), Φ,Γ2;Q2 ` N : T and C ≡ U , where Γ1,Γ2 = Γ
and Q1, Q2 = Q.

10. If Φ,Γ;Q ` (~̀, C, ~̀′) : C then Γ = Q = ∅ and there exist T and U , as well as Q1, Q2,

such that ∅;Q1 ` ~̀ : T , ∅;Q2 ` ~̀′ : U , C ∈ML(Q1, Q2) and C ≡ Circ(T, U).

Proof. The claims all follow directly from the principle of inversion, since the rule system
for types is syntax-directed.

Lemma 2.3.2 (Generation of Values). Suppose V is a value. Then the following hold:

1. If Φ,Γ;Q ` V : T for some simple M-type T , then Γ = ∅ and V ≡ ~̀ for some ~̀.

2. If Φ,Γ;Q ` V : A( B for some A,B, then V ≡ λx.N for some x and N .

3. If Φ,Γ;Q ` V : A⊗B for some A,B, then V ≡ 〈V1, V2〉 for some values V1, V2.

4. If Φ,Γ;Q ` V : !A for some A, then Γ = Q = ∅ and V ≡ liftN for some N .

5. If Φ,Γ;Q ` V : Circ(T, U) for some simple M-types T and U , then Γ = Q = ∅ and

V ≡ (~̀, D, ~̀′) for some ~̀, ~̀′ and D.

Proof. The claim follows immediately from the grammar for values and the rule system
for types.

Lemma 2.3.3 (Type of Values). Given a typing judgement Φ,Γ, Q ` V : A, where V is
a value, then either one of the following holds:

• Γ = Q = ∅.

• A is a linear type.

Proof. By induction on the form of V:

• Case V ≡ `. In this case, by Lemma 2.3.1 we get Φ; ` : α ` ` : α and conclude that A
is a linear type.

• Case V ≡ λx.N . In this case, by Lemma 2.3.1 we get Φ,Γ;Q ` λx.N : B ( C and
conclude that A is a linear type.

• Case V ≡ 〈V1, V2〉. In this case, by Lemma 2.3.1 we get Φ,Γ;Q ` 〈V1, V2〉 : B ⊗ C,
Φ,Γ1;Q1 ` V1 : B and Φ,Γ2;Q2 ` V2 : C, for some Γ1,Γ2 and Q1, Q2 such that
Γ1,Γ2 = Γ and Q1, Q2 = Q. By inductive hypothesis we know that either B is a linear
type or Γ1 = Q1 = ∅. In the former case, we conclude that B⊗C is also a linear type.
In the latter case, we know by inductive hypothesis that either C is a linear type or
Γ2 = Q2 = ∅. In the former case, we conclude that B ⊗ C is also a linear type, while
in the latter case we conclude that Γ1,Γ2 = Γ = ∅ and Q1, Q2 = Q = ∅.
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• Case V ≡ liftN . In this case, by Lemma 2.3.1 we get Φ; ∅ ` liftN : !B and conclude
that Γ = Q = ∅.

• Case V ≡ (~̀, C, ~̀′). In this case, by Lemma 2.3.1 we get Φ; ∅ ` (~̀, C, ~̀′) : Circ(T, U)
and conclude that Γ = Q = ∅.

Naturally, we have that substitution behaves well with respect to types. Specifically,
by substituting a value of type A for a variable of type A in a term M , we do not alter
the type of M . We prove this separately for parameter types and linear types at first
and then join the two results.

Lemma 2.3.4 (Parameter Substitution). Let Φ = Φ′, x : R. If Φ,Γ;Q ` M : B and
Φ′; ∅ ` V : R, where V is a value, then Φ′,Γ;Q `M [V/x] : B.

Proof. By induction on the derivation of Φ,Γ;Q `M : B.

• Case of var. Suppose M ≡ y. If x 6≡ y, we have y[V/x] = y and the claim is trivially
true. Otherwise, if x ≡ y, then y[V/x] = x[V/x] = V and Φ′; ∅ ` V : R by hypothesis.

• Case of labels. Suppose M ≡ ~̀. In this case ~̀[V/x] = `′ and the claim is trivially true.

• Case of abs. Suppose M ≡ λy.N . By Lemma 2.3.1 we know that Φ,Γ, y : C;Q ` N : D
for some C and D such that B ≡ C ( D. If x ≡ y then by the definition of
capture-free substitution we have (λx.N)[V/x] = λx.N and the claim is trivially true.
Otherwise, if x 6≡ y, we have (λy.N)[V/x] = λy.(N [V/x]). In this case, by inductive
hypothesis we get Φ′,Γ, y : C;Q ` N [V/x] : D and conclude Φ′,Γ;Q ` λy.(N [V/x]) :
C ( D by the abs rule.

• Case of app. Suppose M ≡ NP . In this case, (NP )[V/x] = (N [V/x])(P [V/x]). By
Lemma 2.3.1 we know that Φ,Γ1;Q1 ` N : C ( B and Φ,Γ2;Q2 ` P : C, for some C
and for Γ1,Γ2, Q1, Q2 such that Γ = Γ1,Γ2 and Q = Q1, Q2. By inductive hypothesis
we get Φ′,Γ1;Q1 ` N [V/x] : C ( B and Φ′,Γ2;Q2 ` P [V/x] : C and conclude
Φ′,Γ;Q ` (N [V/x])(P [V/x]) : B by the app rule.

• Case of tuple. Suppose M ≡ 〈N,P 〉. In this case, 〈NP 〉[V/x] = 〈N [V/x], P [V/x]〉. By
Lemma 2.3.1 we know that Φ,Γ1;Q1 ` N : C and Φ,Γ2;Q2 ` P : D, for some C and
D such that B ≡ C ⊗D and for Γ1,Γ2, Q1, Q2 such that Γ = Γ1,Γ2 and Q = Q1, Q2.
By inductive hypothesis we get Φ′,Γ1;Q1 ` N [V/x] : C and Φ′,Γ2;Q2 ` P [V/x] : D
and conclude Φ′,Γ;Q ` 〈N [V/x], P [V/x]〉 : C ⊗D by the tuple rule.

• Case of let. Suppose M ≡ let 〈y, z〉 = N inP . By Lemma 2.3.1 we know that
Φ,Γ1;Q1 ` N : C ⊗D and Φ,Γ2, y : C, z : D;Q2 ` P : B, for some C and D and for
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Γ1,Γ2, Q1, Q2 such that Γ = Γ1,Γ2 and Q = Q1, Q2. If x ≡ y or x ≡ z then by the
definition of capture-free substitution we have (let 〈y, z〉 = N inP )[V/x] = let 〈y, z〉 =
N [V/x] inP . In this case, by inductive hypothesis we get Φ′,Γ1;Q1 ` N [V/x] : C ⊗D
and conclude Φ′,Γ;Q ` let 〈y, z〉 = N [V/x] inP : B by the tuple rule. Otherwise, if
x 6≡ y and x 6≡ z, we have (let 〈y, z〉 = N inP )[V/x] = let 〈y, z〉 = N [V/x] inP [V/x].
In this case, by inductive hypothesis we get both Φ′,Γ1;Q1 ` N [V/x] : C ⊗ D
and Φ′,Γ2, y : C, z : D;Q2 ` P [V/x] : B and conclude Φ′,Γ;Q ` let 〈y, z〉 =
N [V/x] inP [V/x] : B by the let rule.

• Case of lift. Suppose M ≡ liftN . In this case, (liftN)[V/x] = lift(N [V/x]) and
Γ = Q = ∅ by Lemma 2.3.1. By the same lemma we know that Φ; ∅ ` N : C for some
C such that B ≡ !C. By inductive hypothesis we get Φ′; ∅ ` N [V/x] : C and conclude
Φ′, ∅;Q′ ` lift(N [V/x]) : !C by the lift rule.

• Case of force. Suppose M ≡ forceN . In this case, (forceN)[V/x] = force(N [V/x]).
By Lemma 2.3.1 we know that Φ,Γ;Q ` N : !B. By inductive hypothesis we get
Φ′,Γ;Q ` N [V/x] : !B and conclude Φ′,Γ;Q ` force(N [V/x]) : B by the force rule.

• Case of box. Suppose M ≡ boxT N . In this case, (boxT N)[V/x] = boxT (N [V/x]).
By Lemma 2.3.1 we know that Φ,Γ;Q ` N : !(T ( U) for some T, U such that
B ≡ Circ(T, U). By inductive hypothesis we get Φ′,Γ;Q ` N [V/x] : !(T ( U) and
conclude Φ′,Γ;Q ` boxT (N [V/x]) : Circ(T, U) by the box rule.

• Case of apply. Suppose M ≡ apply(N,P ). In this case, apply(N,P )[V/x] =
apply(N [V/x], P [V/x]). By Lemma 2.3.1 we know that Φ,Γ1;Q1 ` N : Circ(T, U)
and Φ,Γ2;Q2 ` P : T , for some T, U such that B ≡ U and for Q1, Q2,Γ1,Γ2

such that B ≡ U and Γ = Γ1,Γ2 and Q = Q1, Q2. By inductive hypothesis we
get Φ′,Γ1;Q1 ` N [V/x] : Circ(T, U) and Φ′,Γ2;Q2 ` P [V/x] : T and conclude
Φ′,Γ;Q ` apply(N [V/x], P [V/x]) : U by the apply rule.

• Case of circ. Suppose M ≡ (~̀, D, ~̀′). In this case (~̀, D, ~̀′)[N/x] = (~̀, D, ~̀′) and the
claim is trivially true.

Lemma 2.3.5 (Linear Substitution). If Φ,Γ, x : A;Q ` M : B and Φ,Γ′;Q′ ` V : A,
where A is a linear type and V is a value, then Φ,Γ,Γ′;Q,Q′ `M [V/x] : B.

Proof. By induction on the derivation of Φ,Γ, x : A;Q `M : B.

• Case of var. Suppose M ≡ y. Here necessarily y ≡ x (i.e. x occurs free exactly once
in M), since Γ contains exclusively x and therefore cannot possibly assign a type to
any y 6≡ x. In this case x[V/x] = V and Φ,Γ′;Q′ ` V : A by hypothesis.
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• Case of labels. This case is impossible since it would entail Γ = ∅ by Lemma 2.3.1.

• Case of abs. Suppose M ≡ λy.N . In this case, (λy.N)[V/x] = λy.(L[V/x]). By Lemma
2.3.1 we know that Φ,Γ, y : C;Q ` N : D, for some C,D such that B ≡ C ( D.
By inductive hypothesis we get Φ,Γ, y : C,Γ′;Q,Q′ ` N [V/x] : D and conclude
Φ,Γ,Γ′;Q,Q′ ` λy.(N [V/x]) : C ( D by the abs rule.

• Case of app. Suppose M ≡ NP . By Lemma 2.3.1 we know that Φ,Γ1;Q1 ` N : C (
B and Φ,Γ2;Q2 ` P : C, for some C and for Γ1,Γ2, Q1, Q2 such that Γ, x : A = Γ1,Γ2

and Q = Q1, Q2. Because Γ1 and Γ2 are disjoint, we have either x ∈ Γ1 or x ∈ Γ2.
Let us assume, without loss of generality, that x ∈ Γ1 and thus Γ1 = Γ′1, x : A for
some Γ′1. In this case, (NP )[V/x] = (N [V/x])P . By the results of Lemma 2.3.1 and
the inductive hypothesis we get Φ,Γ′1,Γ

′;Q1, Q
′ ` N [V/x] : C ( B and conclude

Φ,Γ,Γ′;Q,Q′ ` (N [V/x])P : B by the app rule.

• Case of tuple. Suppose M ≡ 〈N,P 〉. By Lemma 2.3.1 we know that Φ,Γ1;Q1 ` N : C
and Φ,Γ2;Q2 ` P : D, for some C and D such that B ≡ C ⊗D and for Γ1,Γ2, Q1, Q2

such that Γ = Γ1,Γ2 and Q = Q1, Q2. Because Γ1 and Γ2 are disjoint, we have either
x ∈ Γ1 or x ∈ Γ2. Let us assume, without loss of generality, that x ∈ Γ1 and thus Γ1 =
Γ′1, x : A for some Γ′1. In this case, 〈NP 〉[V/x] = 〈N [V/x], P 〉. By inductive hypothesis
we get Φ,Γ′1,Γ

′;Q1, Q
′ ` N [V/x] : C and conclude Φ,Γ,Γ′;Q,Q′ ` 〈N [V/x], P 〉 : C⊗D

by the tuple rule.

• Case of let. Suppose M ≡ let 〈y, z〉 = N inP . By Lemma 2.3.1 we know that
Φ,Γ1;Q1 ` N : C ⊗D and Φ,Γ2, y : C, z : D;Q2 ` P : B, for some C and D and for
Γ1,Γ2, Q1, Q2 such that Γ = Γ1,Γ2 and Q = Q1, Q2. Because Γ1 and Γ2 are disjoint, we
have either x ∈ Γ1 or x ∈ Γ2. Let us assume, without loss of generality, that x ∈ Γ1 and
thus Γ1 = Γ′1, x : A for some Γ′1. In this case, (let 〈y, z〉 = N inP )[V/x] = let 〈y, z〉 =
N [V/x] inP . By inductive hypothesis we get Φ,Γ′1,Γ

′;Q1, Q
′ ` N [V/x] : C ⊗ D and

conclude Φ,Γ,Γ′;Q,Q′ ` let 〈y, z〉 = N [V/x] inP : B by the let rule.

• Case of lift. This case is impossible since it would entail Γ = ∅ by Lemma 2.3.1.

• Case of force. Suppose M ≡ forceN . In this case, (forceN)[V/x] = force(N [V/x]). By
Lemma 2.3.1 we know that Φ,Γ, x : A;Q ` N : !B. By inductive hypothesis we get
Φ,Γ,Γ′;Q,Q′ ` N [V/x] : !B and conclude Φ,Γ,Γ′;Q,Q′ ` force(N [V/x]) : B

• Case of box. Suppose M ≡ boxT N . In this case, (boxT N)[V/x] = boxT (N [V/x]). By
Lemma 2.3.1 we know that Φ,Γ, x : A;Q ` N : !(T ( U) for some T, U such that
B ≡ Circ(T, U). By inductive hypothesis we get Φ,Γ,Γ′;Q,Q′ ` N [V/x] : !(T ( U)
and conclude Φ,Γ,Γ′;Q,Q′ ` boxT (N [V/x]) : Circ(T, U) by the box rule.

• Case of apply. Suppose M ≡ apply(N,P ). By Lemma 2.3.1 we know that Φ,Γ1, x :
A;Q1 ` N : Circ(T, U) and Φ,Γ2;Q2 ` P : T , for some T, U such that B ≡ U
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and for Γ1,Γ2, Q1, Q2 such that Γ, x : A = Γ1,Γ2 and Q = Q1, Q2. Because Γ1

and Γ2 are disjoint, we have either x ∈ Γ1 or x ∈ Γ2. Let us assume, without
loss of generality, that x ∈ Γ1 and thus Γ1 = Γ′1, x : A for some Γ′1. In this case,
apply(N,P )[V/x] = apply(N [V/x], P ). By the results of Lemma 2.3.1 and the inductive
hypothesis we get Φ,Γ′1,Γ

′;Q1, Q
′ ` N [V/x] : Circ(T, U) and conclude Φ,Γ,Γ′;Q,Q′ `

apply(N [V/x], P ) : U by the apply rule.

• Case of circ. This case is impossible since it would entail Γ = ∅ by Lemma 2.3.1.

Theorem 2.3.6 (Substitution). If Φ,Γ, x : A;Q ` M : B and Φ,Γ′;Q′ ` V : B,where
V is a value, then

Φ,Γ,Γ′;Q,Q′ `M [V/x] : B.

Proof. The claim follows immediately from Lemma 2.3.3 and lemmata 2.3.4 and 2.3.5.

2.4 Big-step Operational Semantics

In this section we review the operational semantics given by Rios and Selinger for Proto-
Quipper-M, which, as the title suggests, are big-step. As we mentioned earlier, the
evaluation of a Proto-Quipper-M program is intimately related to the circuit that the
program is designed to build. Because of this, the operational semantics of the language
is not defined on terms alone, but rather jointly on terms and circuits. To this effect, we
give the definition of configuration.

Definition 2.4.1 (Configuration). A configuration is a pair (C,M), where C is a circuit
and M is a term.

Intuitively, C is the circuit being built as a side-effect of the evaluation of M . We now
proceed to give the following definitions and functions, which will be essential throughout
the rest of this thesis.

Definition 2.4.2 (Equivalent Circuit). Let C : Q1 → Q′1 and D : Q2 → Q′2 be two

labelled circuits and let (~̀, C, ~̀′) and (~k,D, ~k′) be the corresponding boxed circuits. We

say that (~̀, C, ~̀′) and (~k,D, ~k′) are equivalent and we write (~̀, C, ~̀′) ∼= (~k,D, ~k′) when
they only differ by a renaming of labels, that is when C = D in M.

Definition 2.4.3 (freshlabels). Given a term M and a simple M-type T , we define the
function freshlabels as follows:

freshlabels(M,T ) = (Q, ~̀),

such that the labels in ~̀ do not occur in M and ∅;Q ` ~̀ : T .
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Definition 2.4.4 (append). Let C : Q1 → Q′1 and D : Q2 → Q′2 be two labelled circuits

and let (~̀1, C, ~̀′1) and (~̀2, D, ~̀′2) be the corresponding boxed circuits. Let ~k be a subset of

the labels which occur in ~̀′
1. We define the function append as follows:

append(C,~k, ~̀2, D, ~̀′2) = (C ′, ~k′),

where C ′ is the circuit obtained by attaching the inputs of D′ to the matching outputs of
C, for (~k,D′, ~k′) ∼= (~̀2, D, ~̀′2). More formally, assume, without loss of generality, that

Q′1 is the concatenation of Q′11 and Q′12, where Q′12 contains all and only the labels in ~k.
Then we have

C ′ = C ◦ (idQ′11 ⊗D
′).

C

D0

~̀
1

~k ~k0

~k0

Now we have all the prerequisites for the definition of an operational semantics. We
define ⇓ as a binary relation over configurations. Informally, (C,M) ⇓ (D, V ) means
that the evaluation of M with an underlying circuit C eventually results in value V and
in the construction of circuit D.

(C, x) ⇓ Error (C, ~̀) ⇓ (C, ~̀) (C, λx.M) ⇓ (C, λx.M)

(C,M) ⇓ (C1, λx.P ) (C1, N) ⇓ (C2, V ) (C2, P [V/x]) ⇓ (C3,W )

(C,MN) ⇓ (C3,W )

(C,M) ⇓ Otherwise

(C,MN) ⇓ Error

(C,M) ⇓ (C1, 〈V1, V2〉) (C1, N [V1/x][V2/y]) ⇓ (C3,W )

(C, let 〈x, y〉 = M inN) ⇓ (C3,W )

(C,M) ⇓ Otherwise

(C, let 〈x, y〉 = M inN) ⇓ Error

(C,M) ⇓ (C1, V ) (C1, N) ⇓ (C2,W )

(C, 〈M,N〉) ⇓ (C2, 〈V,W 〉)

(C, liftM) ⇓ (C, liftM)

(C,M) ⇓ (C1, liftN) (C1, N) ⇓ (C2, V )

(C, forceM) ⇓ (C2, V )
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(C,M) ⇓ Otherwise

(C, forceM) ⇓ Error

(C,M) ⇓ (C1, liftN) (Q, ~̀) = freshlabels(N, T ) (idQ, N~̀) ⇓ (D, ~̀′)

(C, boxT M) ⇓ (C1, (~̀, D, ~̀′))

(C,M) ⇓ Otherwise

(C, boxT M) ⇓ Error

(C,M) ⇓ Otherwise

(C, apply(M,N)) ⇓ Error (C, (~̀, D, ~̀′)) ⇓ (C, (~̀, D, ~̀′))

(C,M) ⇓ (C1, (~̀, D, ~̀′)) (C1, N) ⇓ (C2, ~k) (C3, ~k′) = append(C2, ~k, ~̀, D, ~̀′)

(C, apply(M,N)) ⇓ (C3, ~k′)

where the notation “(C,M) ⇓ Otherwise” is shorthand for (C,M) ⇓ (D, V ) where V
does not match the explicit form required by any other rule that evaluates the same
configuration.

2.5 Small-step Operational Semantics

It is now time to take the first step towards a machine semantics for Proto-Quipper-
M. In this section, we extrapolate an equivalent small-step semantics from the big-step
semantics that we just saw, and we examine its properties and its limitations. For the
sake of simplicity, from now on we will assume that the terms in the configurations we
work with do not contain free variables.

Definition 2.5.1 (Small-step Configuration). A small-step configuration is a pair of the
form (C,M), where C is a circuit and M is a term with no free variables.

We then define a binary reduction relation → on configurations. Informally, (C,M) →
(D,N) means that M evaluates to N in one step, in a way that updates the underlying
circuit from C to D. In order to mimic the behavior of the big-step semantics, we design
two sets of rules. The rules in the first set each resemble one of the main rules of the
original big-step semantics and operate directly on redexes.

(C, (λx.M)V )→ (C,M [V/x])
β-reduction

(C, let 〈x, y〉 = 〈V,W 〉 inM)→ (C,M [V/x][W/y])
let

(C, force(liftM))→ (C,M)
force
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(Q, ~̀) = freshlabels(M,T ) (idQ,M~̀)→ . . .→ (D, ~̀′)

(C, boxT (liftM))→ (C, (~̀, D, ~̀′))
box

(C ′, ~k′) = append(C,~k, ~̀, D, ~̀′)

(C, apply((~̀, D, ~̀′), ~k))→ (C ′, ~k′)
apply

where the notation (C,M)→ . . .→ (C ′,M ′) is shorthand for

(C,M) ≡ (C1,M1), (C1,M1)→ (C2,M2), . . . ,

(Cn−1,Mn−1)→ (Cn,Mn), (Cn,Mn) ≡ (C ′,M ′),

for some n > 0. That is, a reduction sequence of finite length from (C,M) to (C ′,M ′).
We employ a finite, but arbitrary number of premises instead of a single premise with
the transitive and reflexive closure →∗ of the reduction relation → in order to make
future proofs by induction easier. We now examine the second set of rules, which we
call contextual rules. Each one of these rules allows for the intermediate evaluation of an
immediate sub-term within a term.

(C,M)→ (C ′,M ′)

(C,MN)→ (C ′,M ′N)
ctx-app-left

(C,M)→ (C ′,M ′)

(C, VM)→ (C ′, V M ′)
ctx-app-right

(C,M)→ (C ′,M ′)

(C, 〈M,N〉)→ (C ′, 〈M ′, N〉)
ctx-tuple-left

(C,M)→ (C ′,M ′)

(C, 〈V,M〉)→ (C ′, 〈V,M ′〉)
ctx-tuple-right

(C,M)→ (C ′,M ′)

(C, let 〈x, y〉 = M inN)→ (C ′, let 〈x, y〉 = M ′ inN)
ctx-let

(C,M)→ (C ′,M ′)

(C, forceM)→ (C ′, forceM ′)
ctx-force

(C,M)→ (C ′,M ′)

(C, boxT M)→ (C ′, boxT M ′)
ctx-box

(C,M)→ (C ′,M ′)

(C, apply(M,N))→ (C ′, apply(M ′, N))
ctx-apply-left

(C,M)→ (C ′,M ′)

(C, apply(V,M))→ (C ′, apply(V,M ′))
ctx-apply-right
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The way we introduced it, the reduction relation → is deterministic, as we prove in
the following results.

Lemma 2.5.1. Every small-step configuration (C,M) can be reduced by at most one
rule of the small-step operational semantics.

Proof. We proceed by cases on M :

• Case M ≡ x. This case is impossible, since by the definition of small-step configuration
M must contain no free variables.

• Case M ≡ ~̀. In this case ~̀ is a value and (C, ~̀) cannot be reduced by any rule.

• Case M ≡ λx.N . In this case λx.N is a value and (C, λx.N) cannot be reduced by
any rule.

• Case M ≡ NP . In this case NP is matched by the β-reduction, ctx-app-left and
ctx-app-right rules. However, β-reduction requires that both N and P be values to
be applied, while ctx-app-left requires that N be reducible (and therefore not a value)
and ctx-app-right requires that N be a value and P be reducible (and therefore not
a value). Because these conditions mutually exclude each other, we conclude that
(C,NP ) can be reduced by at most one rule.

• Case M ≡ 〈N,P 〉. In this case 〈N,P 〉 is matched by the ctx-tuple-left and ctx-
tuple-right rules. However, the latter requires that N be a value to be applied, while
the former requires that it be reducible (and therefore not a value). Because these
conditions mutually exclude each other, we conclude that (C, 〈N,P 〉) can be reduced
by at most one rule.

• Case M ≡ let 〈x, y〉 = N inP . In this case let 〈x, y〉 = N inP is matched by the let
and ctx-let rules. However, the former requires that N be a value to be applied, while
the latter requires that it be reducible (and therefore not a value). Because these
conditions mutually exclude each other, we conclude that (C, let 〈x, y〉 = N inP ) can
be reduced by at most one rule.

• Case M ≡ liftN . In this case liftN is a value and (C, liftN) cannot be reduced by any
rule.

• Case M ≡ forceN . In this case forceN is matched by the force and ctx-force rules.
However, the former requires that N be a value to be applied, while the latter requires
that it be reducible (and therefore not a value). Because these conditions mutually
exclude each other, we conclude that (C, forceN) can be reduced by at most one rule.
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• Case M ≡ boxT N . In this case boxT N is matched by the box and ctx-box rules.
However, the former requires that N be a value to be applied, while the latter requires
that it be reducible (and therefore not a value). Because these conditions mutually
exclude each other, we conclude that (C, boxT N) can be reduced by at most one rule.

• Case M ≡ apply(N,P ). In this case apply(N,P ) is matched by the apply, ctx-apply-left
and ctx-apply-right rules. However, apply requires that both N and P be values to be
applied, while ctx-apply-left requires that N be reducible (and therefore not a value)
and ctx-apply-right requires that N be a value and P be reducible (and therefore not
a value). Because these conditions mutually exclude each other, we conclude that
(C, apply(N,P )) can be reduced by at most one rule.

• Case M ≡ (~̀, D, ~̀′). In this case (~̀, D, ~̀′ is a value and (C, (~̀, D, ~̀′) cannot be reduced
by any rule.

Proposition 2.5.2 (Determinism of Small-step Semantics). The reduction relation →
is deterministic. That is, if (C,M)→ (D,N), then for every configuration (D′, N ′) such
that (C,M)→ (D′, N ′) we have D = D′ and N ≡ N ′.

Proof. We already known by Lemma 2.5.1 that at most one rule can be applied to reduce
any given configuration. What is left to do is prove that each rule is deterministic by
itself. The proof is trivial by induction on the derivation of (C,M)→ (D,N).

2.5.1 Evaluation Contexts

The contextual rules are defined in a recursive fashion, which means that redexes can be
reduced at an arbitrary depth within a term through multiple rule applications. In order
to be able to reason about all the valid positions where a reduction may occur within a
term, we introduce the notion of evaluation context.

Definition 2.5.2 (Evaluation Context). An evaluation context defines where, within a
term, we can reduce a sub-term. Formally, an evaluation context is a function defined
by the following grammar:

E,F ::= [·] | EM | V E | 〈E,M〉 | 〈V,E〉 | let 〈x, y〉 = E inN

| forceE | boxT E | apply(E,M) | apply(V,E),
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and the following semantics:

[·][M ] = M

(EN)[M ] = (E[M ])N

(V E)[M ] = V (E[M ])

〈E,N〉[M ] = 〈E[M ], N〉
〈V,E〉[M ] = 〈V,E[M ]〉

(let 〈x, y〉 = E inN)[M ] = let 〈x, y〉 = E[M ] inN

(forceE)[M ] = forceE[M ]

(boxT E)[M ] = boxT E[M ]

apply(E,N)[M ] = apply(E[M ], N)

apply(V,E)[M ] = apply(V,E[M ]).

An evaluation context is de-facto a function from terms to terms. However, it is perhaps
more intuitively to understand an evaluation context as an incomplete term with a hole in
which we can stick different sub-terms. The way the grammar for evaluation contexts is
designed guarantees that whenever a term is reducible on its own, then it is also reducible
when we stick it in an evaluation context, and vice-versa. We prove this fundamental
property of evaluation contexts in the following theorem.

Theorem 2.5.3 (Fundamental Theorem of Evaluation Contexts). For every evaluation
context E, we have that (C,M)→ (C ′,M ′) if and only if (C,E[M ])→ (C ′, E[M ′]).

Proof. We first prove that if (C,M) → (C ′,M ′), then (C,E[M ]) → (C ′, E[M ′]). We
proceed by induction on the form of E:

• Case E ≡ [·]. In this case E[M ] ≡M and the claim is trivially true.

• Case E ≡ FN . In this case E[M ] ≡ (F [M ])N . By inductive hypothesis we know
that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, (F [M ])N) → (C ′, (F [M ′])N) by
the ctx-app-left rule.

• Case E ≡ V F . In this case E[M ] ≡ V (F [M ]). By inductive hypothesis we know
that (C,F [M ])→ (C ′, F [M ′]), so we conclude (C, V (F [M ]))→ (C ′, V (F [M ′])) by the
ctx-app-right rule.

• Case E ≡ 〈F,N〉. In this case E[M ] ≡ 〈F [M ], N〉. By inductive hypothesis we know
that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, 〈F [M ], N〉) → (C ′, 〈F [M ′], N〉) by
the ctx-tuple-left rule.

• Case E ≡ 〈V, F 〉. In this case E[M ] ≡ 〈V, F [M ]〉. By inductive hypothesis we know
that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, 〈V, F [M ]〉) → (C ′, 〈V, F [M ]〉) by
the ctx-tuple-right rule.
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• Case E ≡ let 〈x, y〉 = F inN . In this case E[M ] = let 〈x, y〉 = F [M ] inN . By inductive
hypothesis we know that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, let 〈x, y〉 =
F [M ] inN)→ (C ′, let 〈x, y〉 = F [M ′] inN) by the ctx-let rule.

• Case E ≡ forceF . In this case E[M ] = forceF [M ]. By inductive hypothesis we know
that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, forceF [M ]) → (C ′, forceF [M ′]) by
the ctx-force rule.

• Case E ≡ boxT F . In this case E[M ] = boxT F [M ]. By inductive hypothesis we know
that (C,F [M ])→ (C ′, F [M ′]), so we conclude (C, boxT F [M ])→ (C ′, boxT F [M ′]) by
the ctx-box rule.

• Case E ≡ apply(F,N). In this case E[M ] ≡ apply(F [M ], N). By inductive hypoth-
esis we know that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, apply(F [M ], N)) →
(C ′, apply(F [M ′], N)) by the ctx-apply-left rule.

• Case E ≡ apply(V, F ). In this case E[M ] ≡ apply(V, F [M ]). By inductive hypoth-
esis we know that (C,F [M ]) → (C ′, F [M ′]), so we conclude (C, apply(V, F [M ])) →
(C ′, apply(V, F [M ′])) by the ctx-apply-right rule

Now we prove that if (C,E[M ]) → (C ′, E[M ′]), then (C,M) → (C ′,M ′). We again
proceed by induction on the form of E:

• Case E ≡ [·]. In this case E[M ] ≡M and the claim is trivially true.

• Case E ≡ FN . In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, (F [M ])N)→ (C ′, (F [M ′])N)
ctx-app-left

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ V F . In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, V (F [M ]))→ (C ′, V (F [M ′]))
ctx-app-right

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ 〈F,N〉. In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, 〈F [M ], N〉)→ (C ′, 〈F [M ′], N〉)
ctx-tuple-left

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).
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• Case E ≡ 〈V, F 〉. In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, 〈V, F [M ]〉)→ (C ′, 〈V, F [M ′]〉)
ctx-tuple-right

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ let 〈x, y〉 = F inN . In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, let 〈x, y〉 = F [M ] inN)→ (C ′, let 〈x, y〉 = F [M ′] inN)
ctx-let

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ forceF . In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, forceF [M ])→ (C ′, forceF [M ′])
ctx-force

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ boxT F . In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, boxT F [M ])→ (C ′, boxT F [M ′])
ctx-box

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ apply(F,N). In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, apply(F [M ], N))→ (C ′, apply(F [M ′], N))
ctx-apply-left

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

• Case E ≡ apply(V, F ). In this case we have

(C,F [M ])→ (C ′, F [M ′])

(C, apply(V, F [M ]))→ (C ′, apply(V, F [M ′]))
ctx-apply-left

and by inductive hypothesis on F we immediately conclude (C,M)→ (C ′,M ′).

Corollary 2.5.3.1. Suppose we have a term M of the form E[N ] for some E. Then
(C,M) is reducible if and only if (C,N) is reducible.



CHAPTER 2. PROTO-QUIPPER-M: A FORMALIZATION OF QUIPPER 42

Corollary 2.5.3.2. Suppose we have a term M of the form E[N ] for some E. Then
(C,M) is irreducible if and only if (C,N) is irreducible.

In the light of the Fundamental Theorem of Evaluation Contexts, we can easily
understand that if we have a term of the form E[M ], where M is a redex, then E[M ] 6≡
F [N ] for any other evaluation context F and redex N , otherwise we could choose to
reduce M or N , leading to different configurations and breaking determinism. In fact,
we prove that this result does not only hold for redexes, but more generally for proto-
redexes. Intuitively, a proto-redex is a redex without the constraints on the form of the
values that make it up. More formally, we give the following definition.

Definition 2.5.3 (Proto-redex). A term is said to be a proto-redex when it can be
generated by the following grammar:

P ::= VW | let 〈x, y〉 = V inN | forceV | boxT V | apply(V,W ).

Lemma 2.5.4. Suppose M and N are proto-redexes. If E[M ] ≡ E ′[N ], then E ≡ E ′.

Proof. By induction on the form of E:

• Case E ≡ [·]. In this case E[M ] ≡ M ≡ E ′[N ]. Suppose E ′ 6≡ [·]. We proceed by
cases on M :

– M ≡ VW . In this case the only possibilities are E ′ ≡ [·]W and E ′ ≡ V [·]. However,
both would imply that N is a value, which is impossible since N is a proto-redex.

– M ≡ let 〈x, y〉 = V inP . In this case the only possibility is E ′ ≡ let 〈x, y〉 = [·] inP .
However, this would imply that N is a value, which is impossible since N is a
proto-redex.

– M ≡ force(V ). In this case the only possibility is E ′ ≡ force [·]. However, this would
imply that N is a value, which is impossible since N is a proto-redex.

– M ≡ boxT (V ). In this case the only possibility is E ′ ≡ boxT [·]. However, this would
imply that N is a value, which is impossible since N is a proto-redex.

– M ≡ apply(V,W ). In this case the only possibilities are E ′ ≡ apply([·],W ) and
E ′ ≡ apply(V, [·]). However, both would imply that N is a value, which is impossible
since N is a proto-redex.

Since all possibilities lead to a contradiction, we conclude that E ′ ≡ [·] ≡ E.

• E ≡ FP . In this case E[M ] ≡ (F [M ])P ≡ E ′[N ] and the two possibilities are
E ′ ≡ E ′′P and E ′ ≡ (F [M ])E ′′. In the former case we have E ′′[N ] ≡ F [M ], so by
inductive hypothesis we get E ′′ ≡ F and conclude E ′ ≡ FP ≡ E. The latter case
would require that F [M ] be a value, which is impossible since M is a proto-redex.
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• E ≡ V F . In this case E[M ] ≡ V (F [M ]) ≡ E ′[N ] and the two possibilities are
E ′ ≡ E ′′(F [M ]) and E ′ ≡ V E ′′. The former would require that E ′′[N ] be a value,
which is impossible since N is a proto-redex. In the latter case we have E ′′[N ] ≡ F [M ],
so by inductive hypothesis we get E ′′ ≡ F and conclude E ′ ≡ V F ≡ E.

• E ≡ 〈F, P 〉. In this case E[M ] ≡ 〈F [M ], P 〉 ≡ E ′[N ] and the two possibilities are
E ′ ≡ 〈E ′′, P 〉 and E ′ ≡ 〈F [M ], E ′′〉. In the former case we have E ′′[N ] ≡ F [M ], so by
inductive hypothesis we get E ′′ ≡ F and conclude E ′ ≡ 〈F, P 〉 ≡ E. The latter case
would require that F [M ] be a value, which is impossible since M is a proto-redex.

• E ≡ 〈V, F 〉. In this case E[M ] ≡ 〈V, F [M ]〉 ≡ E ′[N ] and the two possibilities are
E ′ ≡ 〈E ′′, F [M ]〉 and E ′ ≡ 〈V,E ′′〉. The former would require that E ′′[N ] be a value,
which is impossible since N is a proto-redex. In the latter case we have E ′′[N ] ≡ F [M ],
so by inductive hypothesis we get E ′′ ≡ F and conclude E ′ ≡ 〈V, F 〉 ≡ E.

• E ≡ let 〈x, y〉 = F inP . In this case E[M ] ≡ let 〈x, y〉 = F [M ] inP ≡ E ′[N ] and
the only possibility is E ′ ≡ let 〈x, y〉 = E ′′ inP . This implies E ′′[N ] ≡ F [M ], so by
inductive hypothesis we get E ′′ ≡ F and conclude E ′ ≡ let 〈x, y〉 = F inP ≡ E.

• E ≡ forceF . In this case E[M ] ≡ forceF [M ] ≡ E ′[N ] and the only possibility is
E ′ ≡ forceE ′′. This implies E ′′[N ] ≡ F [M ], so by inductive hypothesis we get E ′′ ≡ F
and conclude E ′ ≡ forceF ≡ E.

• E ≡ boxT F . In this case E[M ] ≡ boxT F [M ] ≡ E ′[N ] and the only possibility is
E ′ ≡ boxT E

′′. This implies E ′′[N ] ≡ F [M ], so by inductive hypothesis we get E ′′ ≡ F
and conclude E ′ ≡ boxT F ≡ E.

• E ≡ apply(F, P ). In this case E[M ] ≡ apply(F [M ], P ) ≡ E ′[N ] and the two pos-
sibilities are E ′ ≡ apply(E ′′, P ) and E ′ ≡ apply(F [M ], E ′′). In the former case
we have E ′′[N ] ≡ F [M ], so by inductive hypothesis we get E ′′ ≡ F and conclude
E ′ ≡ apply(F, P ) ≡ E. The latter case would require that F [M ] be a value, which is
impossible since M is a proto-redex.

• E ≡ apply(V, F ). In this case E[M ] ≡ apply(V, F [M ]) ≡ E ′[N ] and the two possi-
bilities are E ′ ≡ apply(E ′′, F [M ]) and E ′ ≡ apply(V,E ′′). The former would require
that E ′′[N ] be a value, which is impossible since N is a proto-redex. In the latter
case we have E ′′[N ] ≡ F [M ], so by inductive hypothesis we get E ′′ ≡ F and conclude
E ′ ≡ apply(V, F ) ≡ E.

Lemma 2.5.5. If E[M ] ≡ E[N ], then M ≡ N

Proof. The claim follows naturally from the definition of evaluation context. The proof
is trivial by induction on E.
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Proposition 2.5.6 (Context Exclusivity). Suppose M and N are proto-redexes. If M 6≡
N , then E[M ] 6≡ F [N ], for any E,F .

Proof. Suppose M and N are proto-redexes. If E[M ] ≡ F [N ] for some E,F , then by
Lemma 2.5.4 we get E ≡ F . Because E[M ] ≡ F [N ] ≡ E[N ], by Lemma 2.5.5 we also
get M ≡ N , so we know that E[M ] ≡ F [N ] entails M ≡ N . From this we conclude that
if M 6≡ N , then E[M ] 6≡ F [N ] for any E,F .

Corollary 2.5.6.1. Suppose M and N are redexes. If M 6≡ N , then E[M ] 6≡ F [N ], for
any E,F .

Proof. The claim follows naturally from the fact that every redex is also a proto-redex.
This is obvious, as every redex can be obtained from a production of the proto-redex
grammar by instantiating the generic values occurring in the latter with the adequate
explicit forms.

We prove one last result for evaluation contexts: that if we “inject” an evaluation
context into a second evaluation context, the result is still an evaluation context.

Proposition 2.5.7 (Context Propagation). Suppose we have a term M of the form
E[N ] for some E. If N is of the form E ′[L] for some E ′, then M is of the form E ′′[L]
for some E ′′.

Proof. By induction on the form of E:

• Case E ≡ [·]. In this case M ≡ N and the claim is trivially true.

• Case E ≡ FP . In this case M ≡ (F [N ])P . By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ F ′P .

• Case E ≡ V F . In this case M ≡ V (F [N ]). By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ V F ′.

• Case E ≡ 〈F, P 〉. In this case M ≡ 〈F [N ], P 〉. By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ 〈F ′, P 〉.

• Case E ≡ 〈V, F 〉. In this case M ≡ 〈V, F [N ]〉. By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ 〈V, F ′〉.

• Case E ≡ let 〈x, y〉 = F inP . In this case M ≡ let 〈x, y〉 = F [N ] inP . By inductive
hypothesis we know that F [N ] is of the form F ′[L] for some F ′, so M is of the form
E ′′[L] for E ′′ ≡ let 〈x, y〉 = F ′ inP .

• Case E ≡ forceF . In this case M ≡ forceF [N ]. By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ forceF ′.
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• Case E ≡ boxT F . In this case M ≡ boxT F [N ]. By inductive hypothesis we know that
F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for E ′′ ≡ boxT F

′.

• Case E ≡ apply(F, P ). In this case M ≡ apply(F [N ], P ). By inductive hypothesis
we know that F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for
E ′′ ≡ apply(F ′, P ).

• Case E ≡ apply(V, F ). In this case M ≡ apply(V, F [N ]). By inductive hypothesis
we know that F [N ] is of the form F ′[L] for some F ′, so M is of the form E ′′[L] for
E ′′ ≡ apply(V, F ′).

Corollary 2.5.7.1. Suppose we have a term M of the form E[N ] for some E. If M is
not of the form E ′[L] for any E ′, then N is not of the form E ′′[L] for any E ′′.

2.5.2 Convergence, Deadlock and Divergence

Now that we have (deterministic) small-step semantics and evaluation contexts, we can
start distinguishing between converging, deadlocking and diverging configurations. In-
formally, a configuration converges if its evaluation terminates successfully returning a
value, it goes into deadlock if it gets stuck without returning a value, and it diverges if
its evaluation does not terminate at all. The first two definitions are standard inductive
definitions.

Definition 2.5.4 (Converging Small-step Configuration). Let ↓ be the smallest unary
relation over small-step configurations such that:

1. For every circuit C and value V , (C, V ) ↓,

2. If (C,M)→ (D,N) and (D,N) ↓, then (C,M) ↓.

We say that a configuration (C,M) is converging when (C,M) ↓.

Definition 2.5.5 (Deadlocking Small-step Configuration). Let ⊥ be the smallest unary
relation over small-step configurations such that:

1. If (C,M) is irreducible and M is neither of the form E[boxT (liftN)], nor a value,
then (C,M)⊥.

2. If (C,M)→ (D,N) and (D,N)⊥, then (C,M)⊥.

3. If (C,M) is of the form (C,E[boxT (liftN)]) and (idQ, N~̀)⊥, where (Q, ~̀) =
freshlabels(N, T ), then (C,M)⊥.
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4. If (C,M) is of the form (C,E[boxT (liftN)]) and (idQ, N~̀)→∗ (D, V ), where (Q, ~̀) =
freshlabels(N, T ), and V is not a label tuple, then (C,M)⊥.

We say that a configuration (C,M) goes into deadlock when (C,M)⊥.

The last definition, the one for diverging configurations, is co-inductive. The intuitive
difference between the two kinds of definition is that whereas an element belongs in an
inductive set if there is a good reason for it to do so, an element belongs in a co-inductive
set if there is no good reason for it not to. More practically, an inductive definition starts
with the empty set and states the properties that an element must satisfy in order to
get into the set, whereas a co-inductive definition starts with the universal set and states
the properties that an element which is already in the set must satisfy in order not to
get kicked out.

Definition 2.5.6 (Diverging Small-step Configuration). Let ↑ be the largest unary re-
lation over small-step configurations such that whenever (C,M) ↑ either one of the fol-
lowing is true:

1. (C,M)→ (D,N) and (D,N) ↑,

2. (C,M) is a configuration of the form (C,E[boxT (liftN)]) and (idQ, N~̀) ↑, where

(Q, ~̀) = freshlabels(N, T ).

We say that a configuration (C,M) is diverging when (C,M) ↑.

What this definition says is that every configuration is diverging unless it is irreducible
(i.e. a normal form or a deadlocked form) or reduces to a configuration that does not
diverge (directly or as part of a sub-derivation introduced by box). Naturally, we expect
convergence, deadlock and divergence to be mutually exclusive. This expectation is
formalized by the following proposition.

Proposition 2.5.8. The relations ↓,⊥ and ↑ are mutually exclusive over small-step
configurations. That is, for every small-step configuration (C,M), the following are
true:

1. If (C,M) ↓, then (C,M) 6⊥,

2. If (C,M) ↓, then (C,M) 6 ↑,

3. If (C,M)⊥, then (C,M) 6 ↑.

Proof. We prove each claim separately:

1. We proceed by induction on (C,M) ↓:
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• Case of M ≡ V . Since (C, V ) is irreducible, but V is a value and (as a consequence)
cannot be of the form E[boxT (liftN)], there is no way for (C, V ) to go into deadlock,
so we conclude (C, V ) 6⊥.

• Case of (C,M) → (D,N) and (D,N) ↓. Since (C,M) is reducible, it must be
that (C,M)→ (D,N) (→ is deterministic) and (D,N)⊥ in order for (C,M) to go
into deadlock. However, by inductive hypothesis we know that (D,N) 6⊥, so this is
impossible and we conclude (C,M) 6⊥.

2. We proceed by induction on (C,M) ↓:

• Case of M ≡ V . Since (C, V ) is irreducible, V is a value and (as a consequence)
cannot be of the form E[boxT (liftN)], there is no way for (C, V ) to diverge, so we
conclude (C, V ) 6 ↑.

• Case of (C,M)→ (D,N) and (D,N) ↓. Since (C,M) is reducible, it must be that
(C,M)→ (D,N) (→ is deterministic) and (D,N) ↑ in order for (C,M) to diverge.
However, by inductive hypothesis we know that (D,N) 6 ↑, so this is impossible and
we conclude (C,M) 6 ↑.

3. We proceed by induction on (C,M)⊥:

• Case in which (C,M) is irreducible, M 6≡ V and M 6≡ E[boxT (liftN)]. Since (C,M)
is irreducible and M is not of the form E[boxT (liftN)], there is no way for (C,M)
to diverge, so we conclude (C,M) 6 ↑.

• Case of (C,M) → (D,N) and (D,N)⊥. Since (C,M) is reducible, it must be
that (C,M) → (D,N) and (D,N) ↑ in order for (C,M) to diverge. However, by
inductive hypothesis we know that (D,N) 6 ↑, so this is impossible and we conclude
(C,M) 6 ↑.

• Case of M ≡ E[boxT (liftN)] and (idQ, N~̀)⊥. Since (C,M) is irreducible, it must be

that (idQ, N~̀) ↑ in order for (C,M) to diverge. However, by inductive hypothesis

we know that (idQ, N~̀) 6 ↑, so this is impossible and we conclude (C,M) 6 ↑.
• Case of M ≡ E[boxT (liftN)], (idQ, N~̀)→∗ (D, V ) and V is not a label tuple, where

(Q, ~̀) = freshlabels(N, T ). Since (C,M) is irreducible, it must be that (idQ, N~̀) ↑
in order for (C,M) to diverge. However, because (idQ, N~̀) →∗ (D, V ) (that is,

(idQ, N~̀) ↓), we know by claim 2 that (idQ, N~̀) 6 ↑, so this is impossible and we
conclude (C,M) 6 ↑.

Just as naturally, we expect the same relations to saturate the space of small-step
configurations. That is, the three relations are defined in such a way that every config-
uration either converges or goes into deadlock or diverges.
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Proposition 2.5.9. Every small-step configuration (C,M) either converges, goes into
deadlock or diverges, that is:

(C,M) ↓ ∨(C,M)⊥ ∨ (C,M) ↑ .

Proof. Let clen be a function that, given a small-step configuration, returns the number
of reduction steps that can be taken starting from that configuration, either at the top-
level or in any of the sub-reductions introduced by a boxing operation. The clen function
is defined as the least fixed point of the following equation on functions from small-step
configurations to N∞:

clenh(C,M) =

{
0 if (C,M) is irreducible,

clen(D,N) + 1 if (C,M)→ (D,N).

clenv(C,M) =

{
0 if M 6≡ E[boxT (liftN)],

clen(idQ, N~̀) + 1 if M ≡ E[boxT (liftN)].

clen(C,M) = clenh(C,M) + clenv(C,M).

Where (Q, ~̀) = freshlabels(N, T ). If clen(C,M) = ∞, that means that either (C,M) →
(D,N) and clen(D,N) = ∞ or M ≡ E[boxT (liftN)] and clen(idQ, N~̀) = ∞. Because ↑
is defined as the largest relation such that (C,M) ↑ implies either (C,M)→ (D,N) and

(D,N) ↑ or M ≡ E[boxT (liftN)] and (idQ, N~̀) ↑, we conclude that (C,M) ↑. On the
other hand, if clen(C,M) ∈ N, we proceed by induction on clen(C,M):

• Case clen(C,M) = 0. In this case (C,M) is irreducible and M 6≡ E[boxT (liftN)]. If
M is a value, then we trivially conclude (C,M) ↓. Otherwise, if M is not a value, we
trivially conclude (C,M)⊥.

• Case clen(C,M) = n+ 1. We distinguish two cases:

– If clenh(C,M) = 0, then M ≡ E[boxT (liftN)] and clen(idQ, N~̀) = n, where

(Q, ~̀) = freshlabels(N, T ). By inductive hypothesis we know that either (idQ, N~̀) ↓
or (idQ, N~̀)⊥ (we exclude (idQ, N~̀) ↑ as it would entail clen(C,E[boxT (liftN)]) =

∞ 6∈ N). If (idQ, N~̀)⊥ then we immediately conclude (C,E[boxT (liftN)])⊥. Oth-

erwise, if (idQ, N~̀) ↓ we know that (idQ, N~̀) →∗ (D, V ). If V were a label tu-

ple ~̀′ we would have (C, boxT (liftN)) → (C, (~̀, D, ~̀′)) and, by Theorem 2.5.3,

(C,E[boxT (liftN)])→ (C,E[(~̀, D, ~̀′)]), which would contradict the hypothesis that
clenh(C,E[boxT (liftN)]) = 0. As a result, V is not a label tuple and we conclude
(E[boxT (liftN)])⊥.

– If clenh(C,M) > 0, then (C,M) → (D,N) and clen(D,N) ≤ n. By inductive
hypothesis we know that either (D,N) ↓ or (D,N)⊥ (we exclude (D,N) ↑ as it
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would entail clen(C,M) = ∞ 6∈ N). If (D,N) ↓ then we immediately conclude
(C,M) ↓. Otherwise, if (D,N)⊥ we immediately conclude (C,M)⊥.

2.5.3 Equivalence with the Big-Step Semantics

In order for our small-step semantics to be of any use, we must prove that it behaves
like the original big-step semantics.

Convergence

In the following results we prove that our small-step semantics is ultimately equivalent
to the big step semantics as far as converging computations are concerned. That is, that
(C,M) ⇓ (D,N) implies (C,M)→∗ (D,N) and vice-versa.

Lemma 2.5.10. If (C,M) ⇓ (D, V ), then (C,M)→∗ (D, V ).

Proof. We proceed by induction on the derivation of (C,M) ⇓ (D, V ):

• Case M ≡ ~̀ and

(C, ~̀) ⇓ (C, ~̀)

In this case the claim is trivially true by the reflexivity of →∗.

• Case M ≡ λx.N and

(C, λx.N) ⇓ (C, λx.N)

In this case the claim is trivially true by the reflexivity of →∗.

• Case M ≡ NP and

(C,N) ⇓ (C1, λx.L) (C1, P ) ⇓ (C2,W ) (C2, L[W/x]) ⇓ (D, V )

(C,NP ) ⇓ (D, V )

In this case by inductive hypothesis we know (C,N) →∗ (C1, λx.L) and (C1, P ) →∗
(C2,W ), so by a finite number of applications of the ctx-app-left and ctx-app-right rules
we get (C,NP )→∗ (C1, (λx.L)P ) and (C1, (λx.L)P )→∗ (C2, (λx.L)W ), respectively.
Next, by the β-reduction rule we get (C2, (λx.L)W ) → (C2, L[W/x]). By inductive
hypothesis we also know (C2, L[W/x]) →∗ (D, V ), so by the transitivity of →∗ we
conclude (C,NP )→∗ (D, V ).
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• Case M ≡ let 〈x, y〉 = N inP and

(C,N) ⇓ (C1, 〈W1,W2〉) (C1, P [W1/x][W2/y]) ⇓ (D, V )

(C, let 〈x, y〉 = N inP ) ⇓ (D, V )

In this case by inductive hypothesis we know (C,N) →∗ (C1, 〈W1,W2〉), so by a
finite number of applications of the ctx-let rule we get (C, let 〈x, y〉 = N inP ) →∗
(C1, let 〈x, y〉 = 〈W1,W2〉 inP ). Next, by the let rule we get (C1, let 〈x, y〉 =
〈W1,W2〉 inP ) → (C1, P [W1/x][W2/y]). By inductive hypothesis we also know
(C1, P [W1/x][W2/y])→∗ (D, V ), so by the transitivity of→∗ we conclude (C, let 〈x, y〉 =
N inP )→∗ (D, V ).

• Case M ≡ 〈N,P 〉 and

(C,N) ⇓ (C1,W1) (C1, P ) ⇓ (D,W2)

(C, 〈N,P 〉) ⇓ (D, 〈W1,W2〉)

In this case by inductive hypothesis we know (C,N) →∗ (C1,W1) and (C1, P ) →∗
(D,W2), so by a finite number of applications of the ctx-tuple-left and ctx-tuple-right
rules we get (C, 〈N,P 〉) →∗ (C1, 〈W1, P 〉) and (C1, 〈W1, P 〉) →∗ (D, 〈W1,W2〉). By
the transitivity of →∗ we conclude (C, 〈N,P 〉)→∗ (D, 〈W1,W2〉).

• Case M ≡ liftN and

(C, liftN) ⇓ (C, liftN)

In this case the claim is trivially true by the reflexivity of →∗.

• Case M ≡ forceN and

(C,N) ⇓ (C1, liftP ) (C1, P ) ⇓ (D, V )

(C, forceN) ⇓ (D, V )

In this case by inductive hypothesis we know (C,N) →∗ (C1, liftP ), so by a finite
number of applications of the ctx-force rule we get (C, forceN) →∗ (C1, force(liftP )).
Next, by the force rule we get (C1, force(liftP ))→ (C1, P ). By inductive hypothesis we
also know (C1, P )→∗ (D, V ), so by the transitivity of→∗ we conclude (C, forceN)→∗
(D, V ).

• Case M ≡ boxT N and

(C,N) ⇓ (D, liftP ) (Q, ~̀) = freshlabels(P, T ) (idQ, P ~̀) ⇓ (D′, ~̀′)

(C, boxT N) ⇓ (D, (~̀, D′, ~̀′))

In this case by inductive hypothesis we know (C,N) →∗ (D, liftP ), so by a finite
number of applications of the ctx-box rule we get (C, boxT N) →∗ (D, boxT (liftP )).
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By inductive hypothesis we also know (idQ, P ~̀)→∗ (D′, ~̀′), so by the box rule we get

(D, boxT (liftP )) → (D, (~̀, D′, ~̀′)) and conclude (C, boxT N) →∗ (D, (~̀, D′, ~̀′)) by the
transitivity of →∗.

• Case M ≡ apply(N,P ) and

(C,N) ⇓ (C1, (~̀, D
′, ~̀′)) (C1, P ) ⇓ (C2, ~k) (D, ~k′) = append(C2, ~k, ~̀, D

′, ~̀′)

(C, apply(N,P )) ⇓ (D, ~k′)

In this case by inductive hypothesis we know (C,N) →∗ (C1, (~̀, D
′, ~̀′)) and

(C1, P ) →∗ (C2, ~k), so by a finite number of applications of the ctx-apply-left

and ctx-apply-right rules we get (C, apply(N,P )) →∗ (C1, apply((~̀, D
′, ~̀′), P )) and

(C1, apply((~̀, D
′, ~̀′), P )) →∗ (C2, apply((~̀, D

′, ~̀′), ~k)), respectively. Next, by the apply

rule we get (C2, apply((~̀, D
′, ~̀′), ~k)) → (D, ~k′) and conclude (C, apply(N,P )) →∗

(D, ~k′) by the transitivity of →∗.

• Case M ≡ (~̀, D, ~̀′) and

(C, (~̀, D, ~̀′)) ⇓ (C, (~̀, D, ~̀′))

In this case the claim is trivially true by the reflexivity of →∗.

The converse result is slightly more complicated to prove. This is because whereas a
computation (C,M) ⇓ (D, V ) is derived directly from the evaluation of its sub-terms, on
which we can easily apply the inductive hypothesis (for example, (C, forceM) ⇓ (D, V )
is derived directly from (C,M) ⇓ (C1, liftN) and (C1, N) ⇓ (D, V )), the same is not
true for a reduction sequence (C,M) →∗ (D, V ), so it is not immediately clear where
we can apply an inductive hypothesis. The following lemma tells us that any reduction
sequence (C,M)→∗ (D, V ) can be broken down into multiple sub-sequences, each ideally
corresponding to a premise of the corresponding big-step rule.

Lemma 2.5.11. The following are all true:

1. If (C,MN) →+ (D, V ), then (C,MN) →∗ (C1, (λx.P )N) →∗ (C2, (λx.P )W ) →
(C2, P [W/x])→∗ (D, V ).

2. If (C, 〈M,N〉) →+ (D, V ), then V ≡ 〈V1, V2〉 and (C, 〈M,N〉) →∗ (C1, 〈V 1, N〉) →∗
(D, 〈V1, V2〉).

3. If (C, let 〈x, y〉 = M inN)→+ (D, V ), then (C, let 〈x, y〉 = M inN)→∗ (C1, let 〈x, y〉 =
〈V,W 〉 inN)→ (C1, N [V/x][W/y])→∗ (D, V ).
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4. If (C, forceM) →+ (D, V ), then (C, forceM) →∗ (C1, force(liftN)) → (C1, N) →∗
(D, V ).

5. If (C, boxT (M))→+ (D, V ), then (C, boxT (M))→∗ (D, boxT (liftN))→ (D, (~̀, D′, ~̀′))

and (idQ, N~̀)→∗ (D′, ~̀′), for (Q, ~̀) = freshlabels(N, T ).

6. If (C, apply(M,N))→+ (D, V ), then (C, apply(M,N))→∗ (C1, apply((~̀, D, ~̀′), N))→∗
(C2, apply((~̀, D, ~̀′), ~k))→ (D, ~k′) for (D, ~k′) = append(C2, ~k, ~̀, D

′, ~̀′).

Proof. We prove each claim separately:

1. We proceed by induction on the length of the derivation (C,MN)→+ (D, V ):

• Case (C,MN) → (D, V ). In this case we necessarily have M ≡ λx.x and N ≡ V
and C = D. We get (C,MN) = (C, (λx.x)N) = (C, (λx.x)V )→ (C, V ) by the app
rule, which trivially proves the claim by the reflexivity of →∗.

• Case (C,MN)→+ (D, V ) in two or more steps. We distinguish three cases

– M ≡ λx.P and N ≡ W . In this case we have (C, (λx.P )W ) → (C,P [W/x]) by
the β-reduction rule and (C,P [W/x]) →+ (D, V ), so we immediately conclude
(C,MN) = (C, (λx.P )N) = (C, (λx.P )W )→ (C,P [W/x])→∗ (D, V ).

– M ≡ λx.P and N 6≡ W . In this case we have (C, (λx.P )N)→ (C1, (λx.P )N ′) by
the ctx-app-right rule and (C1, (λx.P )N ′) →+ (D, V ). By inductive hypothesis
we get (C1, (λx.P )N ′) →∗ (C2, (λx.P )W ) → (C2, P [W/x]) →∗ (D, V ) and con-
clude (C,MN) = (C, (λx.P )N) →∗ (C2, (λx.P )W ) → (C2, P [W/x]) →∗ (D, V )
by the transitivity of →∗.

– M 6≡ λx.P and N 6≡ W . In this case we have (C,MN) → (C1,M
′N) by

the ctx-app-left rule and (C1,M
′N) →+ (D, V ). By inductive hypothesis we

get (C1,M
′N) →∗ (C2, (λx.P )N) →∗ (C3, (λx.P )W ) → (C3, P [W/x]) →∗

(D, V ) and conclude (C,MN) →∗ (C2, (λx.P )N) →∗ (C3, (λx.P )W ) →
(C3, P [W/x])→∗ (D, V ) by the transitivity of →∗.

2. We proceed by induction on the length of the derivation (C, 〈M,N〉)→+ (D, V ):

• Case (C, 〈M,N〉)→ (D, V ). In this case we necessarily have M ≡ V1 and (C,N)→
(D, V2). We get (C, 〈M,N〉) = (C, 〈V1, N〉) → (D, 〈V1, V2〉) by the ctx-tuple-right
rule, which trivially proves the claim by the reflexivity of →∗.

• Case (C, 〈M,N〉)→+ (D, V ) in two or more steps. We distinguish two cases

– M ≡ V1. In this case we have (C, 〈V1, N〉) → (C1, 〈V1, N ′〉) by the ctx-tuple-
right rule and (C1, 〈V1, N ′〉) →+ (D, V ). By inductive hypothesis we get
(C1, 〈V1, N ′〉) →∗ (D, 〈V1, V2〉) and conclude (C, 〈M,N〉) = (C, 〈V1, N〉) →∗
(D, 〈V1, V2)〉 by the transitivity of →∗.
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– M 6≡ V1. In this case we have (C, 〈M,N〉) → (C1, 〈M ′, N〉) by the ctx-
tuple-left rule and (C1, 〈M ′, N〉) →+ (D, V ). By inductive hypothesis we get
(C1, 〈M ′, N〉) →∗ (C2, 〈V1, N〉) →∗ (D, 〈V1, V2〉) and conclude (C, 〈M,N〉) →∗
(C2, 〈V1, N〉)→∗ (D, 〈V1, V2)〉 by the transitivity of →∗.

3. We proceed by induction on the length of the derivation (C, let 〈x, y〉 = M inN) →+

(D, V ):

• Case (C, let 〈x, y〉 = M inN) → (D, V ). In this case we necessarily have M ≡
〈W1,W2〉 and N ≡ V and C = D. We get (C, let 〈x, y〉 = M inV ) = (C, let 〈x, y〉 =
〈W1,W2〉 inV ) → (C, V [W1/x][W2/y]) = (C, V ) by the let rule, which trivially
proves the claim by the reflexivity of →∗.

• Case (C, let 〈x, y〉 = M inN) →+ (D, V ) in two or more steps. We distinguish two
cases:

– Case M ≡ 〈W1,W2〉. In this case we have (C, let 〈x, y〉 = 〈W1,W2〉 inN) →
(C,N [W1/x][W2/y]) by the let rule and (C,N [W1/x][W2/y]) →+ (D, V ),
so we immediately conclude (C, let 〈x, y〉 = M inN) = (C, let 〈x, y〉 =
〈W1,W2〉M inN)→ (C,N [W1/x][W2/y])→∗ (D, V ).

– Case M 6≡ 〈W1,W2〉. In this case we have (C, let 〈x, y〉 = M inN) →
(C1, let 〈x, y〉 = M ′ inN) by the ctx-let rule and (C1, let 〈x, y〉 = M ′ inN) →+

(D, V ). By inductive hypothesis we get (C1, let 〈x, y〉 = M ′ inN) →∗
(C2, let 〈x, y〉 = 〈W1,W2〉 inN) → (C2, N [W1/x][W2/y]) →∗ (D, V ) and
conclude (C, let 〈x, y〉 = M inN) →∗ (C2, let 〈x, y〉 = 〈W1,W2〉 inN) →
(C2, N [W1/x][W2/y])→∗ (D, V ) by the transitivity of →∗.

4. We proceed by induction on the length of the derivation (C, forceM)→+ (D, V ):

• Case (C, forceM) → (D, V ). In this case we necessarily have M ≡ liftV and
C = D. We get (C, forceM) = (C, force(liftV )) → (C, V ) by the force rule, which
trivially proves the claim by the reflexivity of →∗.

• Case (C, forceM)→+ (D, V ) in two or more steps. We distinguish two cases:

– Case M ≡ liftN . In this case we have (C, force(liftN)) → (C,N) by the
force rule and (C,N) →+ (D, V ), so we immediately conclude (C, forceM) =
(C, force(liftN))→ (C,N)→∗ (D, V ).

– Case M 6≡ liftN . In this case we have (C, forceM) → (C1, forceM
′) by

the ctx-force rule and (C1, forceM
′) →+ (D, V ). By inductive hypothesis we

get (C1, forceM
′) →∗ (C2, force(liftN)) → (C2, N) →∗ (D, V ) and conclude

(C, forceM) →∗ (C2, force(liftN)) → (C2, N) →∗ (D, V ) by the transitivity of
→∗.

5. We proceed by induction on the length of the derivation (C, boxT M)→+ (D, V ):
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• Case (C, boxT M) → (D, V ). In this case we necessarily have M ≡ liftN and

(idQ, N~̀)→∗ (D′, ~̀′) for (Q, ~̀) = freshlabels(N, T ) and C = D. We get (C, boxT M) =

(C, boxT (liftN)) → (C, (~̀, D′, ~̀′)) by the box rule, which trivially proves the claim
by the reflexivity of →∗.

• Case (C, boxT M)→+ (D, V ) in two or more steps. We distinguish two cases:

– Case M ≡ liftN . This case is impossible since it would entail (C, boxT (liftN))→
(C, (~̀, D′, ~̀′)) in one step.

– Case M 6≡ liftN . In this case we have (C, boxT M) → (C1, boxT M
′) by the

ctx-box rule and (C1, boxT M
′) →+ (D, V ). By inductive hypothesis we get

(C1, boxT M
′) →∗ (D, boxT (liftN)) → (D, (~̀, D′, ~̀′)) and (idQ, N~̀) →∗ (D′, ~̀′)

for (Q, ~̀) = freshlabels(N, T ). We conclude (C, boxT M) →∗ (D, boxT (liftN)) →
(D, (~̀, D′, ~̀′)) by the transitivity of →∗.

6. We proceed by induction on the length of the derivation (C, apply(M,N))→+ (D, V ):

• Case (C, apply(M,N)) → (D, V ). In this case we necessarily have M ≡
(~̀, D′, ~̀′) and N ≡ ~k. As a consequence, we know that (C, apply(M,N)) =

(C, apply((~̀, D′, ~̀′), N)) = (C, apply((~̀, D′, ~̀′), ~k)) → (D, ~k′) by the apply rule,

where (D, ~k′) = append(C,~k, ~̀, D′, ~̀′). This trivially proves the claim by the
reflexivity of →∗.

• Case (C, apply(M,N))→+ (D, V ) in two or more steps. We distinguish three cases:

– M ≡ (~̀, D′, ~̀′) and N ≡ ~k. This case is impossible since it would entail
(C, apply(M,N))→ (D, V ) in one step.

– M ≡ (~̀, D′, ~̀′) and N 6≡ ~k. In this case we have (C, apply((~̀, D′, ~̀′), N)) →
(C1, apply((~̀, D

′, ~̀′), N ′)) by the ctx-apply-right rule, and we also have

(C1, apply((~̀, D
′, ~̀′), N ′)) →+ (D, V ). By inductive hypothesis we know

that (C1, apply((~̀, D
′, ~̀′), N ′)) →∗ (C2, apply((~̀, D

′, ~̀′), ~k)) → (D, ~k′),

where (D, ~k′) = append(C2, ~k, ~̀, D
′, ~̀′), and conclude (C, apply(M,N)) =

(C, apply((~̀, D′, ~̀′), N))→∗ (C2, apply((~̀, D
′, ~̀′), ~k))→ (D, ~k′) by the transitivity

of →∗.
– M 6≡ (~̀, D′, ~̀′) and N 6≡ ~k. In this case we have (C, apply(M,N)) →

(C1, apply(M
′, N)) by the ctx-apply-left rule and (C1,M

′N) →+ (D, V ). By

inductive hypothesis we get (C1, apply(M
′, N)) →∗ (C2, apply((~̀, D

′, ~̀′), N)) →∗
(C3, apply((~̀, D

′, ~̀′), ~k)) → (D, ~k′), where (D, ~k′) = append(C3, ~k, ~̀, D
′, ~̀′)

and therefore conclude (C, apply(M,N)) →∗ (C2, apply((~̀, D
′, ~̀′), N)) →∗

(C3, apply((~̀, D
′, ~̀′), ~k))→ (D, ~k′) by the transitivity of →∗.
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Lemma 2.5.12. If (C,M)→∗ (D, V ), then (C,M) ⇓ (D, V ).

Proof. We reason by induction on the size of the proof for (C,M)→∗ (D, V ), proceeding
by cases on M :

• Case M ≡ x. This case is impossible, since by the definition of small-step configuration
M must contain no free variables.

• Case M ≡ ~̀. In this case ~̀ is a value, so we trivially have C = D and

(C, ~̀) ⇓ (C, ~̀)

• Case M ≡ λx.N . In this case λx.N is a value, so we trivially have C = D and

(C, λx.N) ⇓ (C, λx.N)

• Case M ≡ NP . In this case we have (C,NP ) →+ (D, V ) and by Lemma 2.5.11 we
know that (C,NP )→∗ (C1, (λx.L)P )→∗ (C2, (λx.L)W )→ (C2, L[W/x])→∗ (D, V ).
By repeated inversion on the ctx-app-left and ctx-app-right rules we get (C,N) →∗
(C1, λx.L) and (C1, P )→∗ (C2,W ), respectively. By inductive hypothesis we therefore
know (C,N) ⇓ (C1, λx.L) and (C1, P ) ⇓ (C2,W ) and (C2, L[W/x]) ⇓ (D, V ), by which
we conclude

(C,N) ⇓ (C1, λx.L) (C1, P ) ⇓ (C2,W ) (C2, L[W/x]) ⇓ (D, V )

(C,NP ) ⇓ (D, V )

• Case M ≡ 〈N,P 〉. In this case we distinguish two cases. If 〈N,P 〉 ≡ 〈V1, V2〉, then
C = D and we trivially conclude

(C, 〈V1, V2〉) ⇓ (C, 〈V1, V2〉)

Otherwise, if (C, 〈N,P 〉)→+ (D, V ), then by Lemma 2.5.11 we know (C, 〈N,P 〉)→∗
(C1, 〈V1, P 〉) →∗ (D, 〈V1, V2〉). By repeated inversion on the ctx-tuple-left and ctx-
tuple-right rules we get (C,N) →∗ (C1, V1) and (C1, P ) →∗ (D, V2), respectively. By
inductive hypothesis we therefore know (C,N) ⇓ (C1, V1) and (C1, P ) ⇓ (D, V2), by
which we conclude

(C,N) ⇓ (C1, V1) (C1, P ) ⇓ (D, V2)

(C, 〈N,P 〉) ⇓ (D, 〈V1, V2〉)

• Case M ≡ let 〈x, y〉 = N inP . In this case we have (C, let 〈x, y〉 = N inP ) →+

(D, V ) and by Lemma 2.5.11 we know that (C, let 〈x, y〉 = N inP )→∗ (C1, let 〈x, y〉 =
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〈W1,W2〉 inP ) → (C1, P [W1/x][W2/y]) →∗ (D, V ). By repeated inversion on the ctx-
let we get (C,N) →∗ (C1, 〈W1,W2〉). By inductive hypothesis we therefore know
(C,N) ⇓ (C1, 〈W1,W2〉) and (C1, P [W1/x][W2/y]) ⇓ (D, V ), by which we conclude

(C,N) ⇓ (C1, liftP ) (C1, P [W1/x][W2/y]) ⇓ (D, V )

(C, let 〈x, y〉 = N inP ) ⇓ (D, V )

• Case M ≡ liftN . In this case liftN is a value, so we trivially have C = D and

(C, liftN) ⇓ (C, liftN)

• Case M ≡ forceN . In this case we have (C, forceN)→+ (D, V ) and by Lemma 2.5.11
we know that (C, forceN)→∗ (C1, force(liftP ))→ (C1, P )→∗ (D, V ) and by repeated
inversion on the ctx-force rule we get (C,N) →∗ (C1, liftP ). By inductive hypothesis
we therefore know (C,N) ⇓ (C1, liftP ) and (C1, P ) ⇓ (D, V ), by which we conclude

(C,N) ⇓ (C1, liftP ) (C1, P ) ⇓ (D, V )

(C, force(liftP )) ⇓ (D, V )

• Case M ≡ boxT N . In this case we have (C, boxT N)→+ (D, V ) and by Lemma 2.5.11

we know that (C, boxT N) →∗ (D, boxT (liftP )) → (D, (~̀, D′, ~̀′)) and (idQ, P ~̀) →∗
(D′, ~̀′), for (Q, ~̀) = freshlabels(P, T ) and by repeated inversion on the ctx-box rule
we get (C,N) →∗ (D, liftP ). By inductive hypothesis we therefore know (C,N) ⇓
(D, liftP ) and (idQ, P ~̀) ⇓ (D′, ~̀′), by which we conclude

(C,N) ⇓ (D, liftP ) (Q, ~̀) = freshlabels(P, T ) (idQ, P ~̀) ⇓ (D′, ~̀′)

(C, boxT M) ⇓ (D, (~̀, D′, ~̀′))

• Case M ≡ apply(N,P ). In this case we have (C, apply(N,P )) →+ (D, V ) and

by Lemma 2.5.11 we know that (C, apply(N,P )) →∗ (C1, apply((~̀, D
′, ~̀′), P )) →∗

(C2, apply((~̀, D
′, ~̀′), ~k)) → (D, ~k′). By repeated inversion on the ctx-apply-left and

ctx-apply-right rules we get (C,N) →∗ (C1, (~̀, D
′, ~̀′)) and (C1, P ) →∗ (C2, ~k), re-

spectively. By inductive hypothesis we therefore know (C,N) ⇓ (C1, (~̀, D
′, ~̀′)) and

(C1, P ) ⇓ (C2, ~k), by which we conclude

(C,N) ⇓ (C1, (~̀, D
′, ~̀′)) (C1, P ) ⇓ (C2, ~k) (D, ~k′) = append(C2, ~k, ~̀, D

′, ~̀′)

(C, apply(N,P )) ⇓ (D, ~k′)

• Case M ≡ (~̀, D′, ~̀′). In this case (~̀, D′, ~̀′) is a value, so we trivially have C = D and

(C, (~̀, D′, ~̀′)) ⇓ (C, (~̀, D′, ~̀′))
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Finally, now that we know that the small-step semantics can simulate the big-step
semantics and vice-versa, we can summarize the previous results in the following theorem.

Theorem 2.5.13. Suppose (C,M) and (D, V ) are small-step configurations. We have
that (C,M) ⇓ (D, V ) if and only if (D,M)→∗ (D, V ).

Proof. The claim follows immediately from lemmata 2.5.10 and 2.5.12.

Deadlock and Divergence

Although some form of equivalence could be expected between the error relation of the
big-step semantics (⇓ Error) and the deadlocking relation of the small-step semantics
(⊥), this is not the case. This is mainly due to the fact that the big-step semantics
interrupts the evaluation of a term as soon as an error is encountered, whereas by the
definition of deadlocking configuration we reduce a term as much as possible before
declaring that it is indeed stuck. If we had, for example, a configuration (C,MN) where
the evaluation of M leads to something that is not a function and the evaluation of
N diverges, in the big-step semantics the configuration would evaluate to an error as
soon as M is evaluated, whereas in the small-step semantics it would diverge. This
means that the line between deadlocking and diverging configurations is not the same
in the big-step and small-step semantics. This discrepancy, however, is not relevant, as
by Theorem 2.5.13 we know that there are no cases in which the same configuration
evaluates correctly in one semantics and raises an error (or diverges) in the other.

2.5.4 Safety Results

The operational semantics is not the only aspect under which circuits and terms are
related. We mentioned earlier that all the occurrences of labels within a term are free,
and in Section 2.3 we saw that labels are given a type by label contexts. In order for
a configuration (C,M) to be considered well-typed, we must be able to derive a type
judgement for M using exclusively labels coming from the outputs of C.

Definition 2.5.7 (Well-typedness). Given label contexts Q and Q′, a type A and a
configuration (C,M), we say that the latter is well-typed with input labels Q, output
labels Q′ and type A, and we write

Q ` (C,M) : A;Q′,

when there exists Q′′ disjoint from Q′ such that

C : Q→ Q′ ∪Q′′, ∅;Q′′ `M : A.

In the following pages we prove two key safety properties of the small-step semantics:
subject reduction and progress.
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Subject Reduction

The subject reduction result tells us that reducing a configuration in the small-step
semantics does not alter its type.

Lemma 2.5.14 (Bridging). Suppose we have circuits C : Q1 → Q′1 ∪ Q′′1, D : Q2 →
Q′2 ∪Q′′2, terms M,N and types A,B. If Q1 ` (C,M) : A;Q′1 =⇒ Q2 ` (D,N) : B;Q′2,
then

∅;Q′′1 `M : A =⇒ ∅;Q′′2 ` N : B.

Proof. The proof follows immediately from the definition of well-typedness.

Theorem 2.5.15 (Subject Reduction). If Q ` (C,M) : A;Q′ and (C,M) → (C ′,M ′),
then Q ` (C ′,M ′) : A;Q′

Proof. By the definition of well-typedness we know that there exists Q′′ disjoint from Q′

such that C → Q′ ∪Q′′ and ∅;Q′′ ` M : A. We proceed by induction on the derivation
of (C,M)→ (C ′,M ′):

• Case of β-reduction. Suppose M ≡ (λx.N)V . We know Q ` (C, (λx.N)V ) : A;Q′ and
we must prove Q ` (C,N [V/x]) : A;Q′. We know ∅;Q′′ ` (λx.N)V : A, so by Lemma
2.3.1 we get

∅;Q′′1 ` (λx.N) : B ( A, ∅;Q′′2 ` V : B,

for some B and Q′′1, Q
′′
2 such that Q′′ = Q′′1, Q

′′
2. By the same lemma, we get

x : B;Q′′1 ` N : A,

By Theorem 2.3.6 we get ∅;Q′′1, Q′′2 ` N [V/x] : A and we conclude

Q ` (C,N [V/x]) : A;Q′.

• Case of let. Suppose M ≡ let 〈x, y〉 = 〈V,W 〉 inN . We know Q ` (C, let 〈x, y〉 =
〈V,W 〉 inN) : A;Q′ and we must prove Q ` (C,N [V/x][W/y]) : A;Q′. We know
∅;Q′′ ` let 〈x, y〉 = 〈V,W 〉 inN : A, so by applying Lemma 2.3.1 twice consecutively
we get

∅;Q′′1 ` V : B, ∅;Q′′2 ` W : C, x : B, y : C;Q′′3 ` V : B,

for some B,C and Q′′1, Q
′′
2, Q

′′
3 such that Q′′1, Q

′′
2, Q

′′
3 = Q′′. By Theorem 2.3.6 we get

first y : C;Q′′3, Q
′′
1 ` N [V/x] : A and then ∅;Q′′3, Q′′1, Q′′2 ` N [V/x][W/y] : A and we

conclude
Q ` (C,N [V/x][W/y]) : A;Q′.
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• Case of force. Suppose M ≡ force(liftN). We know Q ` (C, force(liftN)) : A;Q′ and
we must prove Q ` (C,N) : A;Q′. We know ∅;Q′′ ` force(liftN) : A, so by applying
Lemma 2.3.1 twice consecutively we get that Q′′ = ∅ and

∅; ∅ ` liftN : !A, ∅; ∅ ` N : A,

from which we conclude
Q ` (C,N) : A;Q′.

• Case of box. Suppose M ≡ boxT (liftN). We know Q ` boxT (liftN) : Circ(T, U);Q′

and we must prove Q ` (C, (~̀, D, ~̀′)) : Circ(T, U);Q′, where (Q0, ~̀) = freshlabels(N, T )

and (idQ0 , N
~̀) → . . . → (D, ~̀′). We know ∅;Q′′ ` boxT (liftN) : Circ(T, U) and, by

the definition of freshlabels, ∅;Q0 ` ~̀ : T . By applying Lemma 2.3.1 twice we get that
Q′′ = ∅ and

∅; ∅ ` liftN : !(T ( U), ∅; ∅ ` N : T ( U,

and we therefore know by the app rule that

∅;Q0 ` N~̀ : U,

which entails that the configuration (idQ0 , N
~̀) is well-typed, with Q0 ` (idQ0 , N

~̀) :
U ; ∅. By applying the inductive hypothesis n times, we know that all the configurations
in (idQ0 , N

~̀) → . . . → (D, ~̀′) are well typed, with Q0 ` (Ci,Mi) : U ; ∅ for i = 1 . . . n.

This includes (Cn,Mn) ≡ (D, ~̀′), so we get

Q0 ` (D, ~̀′) : U ; ∅.

This in turn entails that there exists Q′′0 such that ∅;Q′′0 ` ~̀′ : U and D is a circuit
of the form D : Q0 → Q′′0. Thus D ∈ ML(Q0, Q

′′
0) and by the circ rule we get

∅; ∅ ` (~̀, D, ~̀′) : Circ(T, U), from which we conclude

Q ` (C, (~̀, D, ~̀′)) : Circ(T, U), Q′.

• Case of apply. Suppose M ≡ apply((~̀, D, ~̀′), ~k). We know Q ` (C, apply((~̀, D, ~̀′), ~k)) :

U ;Q′ and we must prove Q ` (C ′, ~k′) : U ;Q′, where (C ′, ~k′) = append(C,~k, ~̀, D, ~̀′).

We know ∅;Q′′ ` apply((~̀, D, ~̀′), ~k) : U , so by Lemma 2.3.1 we get

∅; ∅ ` (~̀, D, ~̀′) : Circ(T, U), ∅;Q′′ ` ~k : T,

for some T . We also know that append finds (~k,D′, ~k′) ∼= (~̀, D, ~̀′) to apply to the

outputs of C. By Lemma 2.3.1 we get ∅;Q′′ ` ~k : T , which we already know, as well
as

∅;Q′′′ ` ~k′ : U, D′ ∈ML(Q′′, Q′′′),
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for some Q′′′. By appending D′ : Q′′ → Q′′′ to C : Q → Q′ ∪ Q′′ we thus obtain
C ′ : Q→ Q′ ∪Q′′′ and because ∅;Q′′′ ` ~k′ : U we conclude

Q ` (C ′, ~k′) : U ;Q′.

• Case of ctx-app-left. Suppose M ≡ NP , where N is not a value. We know Q `
(C,NP ) : A;Q′ and we must prove Q ` (C ′, N ′P ) : A;Q′, where (C,N) → (C ′, N ′).
We know ∅;Q′′ ` NP : A, so by Lemma 2.3.1 we get

∅;Q′′1 ` N : B ( A, ∅;Q′′2 ` P : B,

for some B and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : B (

A;Q′∪Q′′2 and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : B ( A,
with C ′ : Q→ Q′ ∪Q′′2 ∪Q′′′. Finally, by the app rule we get ∅;Q′′′, Q′′2 ` N ′P : A and
conclude

Q ` (C ′, N ′P ) : A;Q′.

• Case of ctx-app-right. Suppose M ≡ V N , where N is not a value. We know Q `
(C, V N) : A;Q′ and we must prove Q ` (C ′, V N ′) : A;Q′, where (C,N) → (C ′, N ′).
We know ∅;Q′′ ` V N : A, so by Lemma 2.3.1 we get

∅;Q′′1 ` V : B ( A, ∅;Q′′2 ` N : B,

for some B and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : B;Q′ ∪ Q′′1

and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : B, with C ′ : Q→
Q′ ∪Q′′1 ∪Q′′′. Finally, by the app rule we get ∅;Q′′1, Q′′′ ` V N ′ : A and conclude

Q ` (C ′, V N ′) : A;Q′.

• Case of ctx-tuple-left. Suppose M ≡ 〈N,P 〉, where N is not a value. We know
Q ` (C, 〈N,P 〉) : B ⊗ C;Q′ and we must prove Q ` (C ′, 〈N ′, P 〉) : B ⊗ C;Q′, where
(C,N)→ (C ′, N ′). We know ∅;Q′′ ` 〈N,P 〉 : B ⊗ C, so by Lemma 2.3.1 we get

∅;Q′′1 ` N : B, ∅;Q′′1 ` P : C,

for some B,C and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : B;Q′∪Q′′2

and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : B with C ′ : Q→
Q′ ∪ Q′′2 ∪ Q′′′. Finally, by the tuple rule we get ∅;Q′′1, Q′′2 ` 〈N ′, P 〉 : B ⊗ C and
conclude

Q ` (C ′, 〈N ′, P 〉) : B ⊗ C;Q′.
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• Case of ctx-tuple-right. Suppose M ≡ 〈V,N〉, where N is not a value. We know
Q ` (C, 〈V,N〉) : B ⊗ C;Q′ and we must prove Q ` (C ′, 〈V,N ′〉) : B ⊗ C;Q′, where
(C,N)→ (C ′, N ′). We know ∅;Q′′ ` 〈V,N〉 : B ⊗ C, so by Lemma 2.3.1 we get

∅;Q′′1 ` V : B, ∅;Q′′1 ` N : C,

for some B,C and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : B;Q′∪Q′′1

and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : B with C ′ : Q→
Q′∪Q′′1∪Q′′′. Finally, by the tuple rule we get ∅;Q′′1, Q′′2 ` 〈V,N ′〉 : B⊗C and conclude

Q ` (C ′, 〈V,N ′〉) : B ⊗ C;Q′.

• Case of ctx-let. Suppose M ≡ let 〈x, y〉 = N inP , where N is not a value. We know
Q ` (C, let 〈x, y〉 = N inP ) : A;Q′ and we must prove Q ` (C ′, let 〈x, y〉 = N ′ inP ) :
A;Q′, where (C,N)→ (C ′, N ′). We know ∅;Q′′ ` let 〈x, y〉 = N inP : A, so by Lemma
2.3.1 we get

∅;Q′′1 ` N : B ⊗ C, x : B, y : C;Q′′2 ` P : A,

for some B,C and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : B⊗C;Q′∪

Q′′2 and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : B ⊗ C with
C ′ : Q→ Q′∪Q′′2∪Q′′′. Finally, by the let rule we get ∅;Q′′1, Q′′2 ` let 〈x, y〉 = N ′ inP : A
and conclude

Q ` (C ′, let 〈x, y〉 = N ′ inP ) : A;Q′.

• Case of ctx-force. Suppose M ≡ forceN , where N is not a value. We know Q `
(C, forceN) : A;Q′ and we must prove Q ` (C ′, forceN ′) : A;Q′, where (C,N) →
(C ′, N ′). We know ∅;Q′′ ` forceN : A, so by Lemma 2.3.1 we get

∅;Q′′ ` N : !A,

which entails Q ` (C,N) : !A;Q′. By inductive hypothesis and Lemma 2.5.14 we
get ∅;Q′′′ : N ′ : !A, with C ′ : Q → Q′ ∪ Q′′′. Finally, by the force rule we get
∅;Q′′′ ` forceN ′ : A and conclude

Q ` (C ′, forceN ′) : A;Q′.

• Case of ctx-box. Suppose M ≡ boxN , where N is not a value. We know Q `
(C, boxT N) : Circ(T, U);Q′ and we must prove Q ` (C ′, boxT N

′) : Circ(T, U);Q′,
where (C,N) → (C ′, N ′). We know ∅;Q′′ ` boxT N : Circ(T, U), so by Lemma 2.3.1
we get

∅;Q′′ ` N : !(T ( U),

which entails Q ` (C,N) : !(T ( U);Q′. By inductive hypothesis and Lemma 2.5.14
we get ∅;Q′′′ ` N ′ : !(T ( U) with C ′ : Q→ Q′ ∪Q′′′. Finally, by the box rule we get
∅;Q′′′ ` boxT N

′ : Circ(T, U) and conclude

Q ` (C ′, boxT N
′) : Circ(T, U) : Q′.
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• Case of ctx-apply-left. Suppose M ≡ apply(N,P ), where N is not a value. We know
Q ` (C, apply(N,P )) : U ;Q′ and we must prove Q ` (C ′, apply(N ′, P )) : U ;Q′, where
(C,N)→ (C ′, N ′). We know ∅;Q′′ ` apply(N,P ) : U , so by Lemma 2.3.1 we get

∅;Q′′1 ` N : Circ(T, U), ∅;Q′′2 ` P : T,

for some T and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) :

Circ(T, U);Q′ ∪ Q′′2 and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ `
N ′ : Circ(T, U), with C ′ : Q → Q′ ∪ Q′′2 ∪ Q′′′. Finally, by the app rule we get
∅;Q′′′, Q′′2 ` apply(N ′, P ) : U and conclude

Q ` (C ′, apply(N ′, P )) : U ;Q′.

• Case of ctx-apply-right. Suppose M ≡ apply(V,N), where N is not a value. We know
Q ` (C, apply(V,N)) : U ;Q′ and we must prove Q ` (C ′, apply(V,N ′)) : U ;Q′, where
(C,N)→ (C ′, N ′). We know ∅;Q′′ ` apply(V,N) : U , so by Lemma 2.3.1 we get

∅;Q′′1 ` V : Circ(T, U), ∅;Q′′2 ` N : T,

for some T and Q′′1, Q
′′
2 such that Q′′1, Q

′′
2 = Q′′. This entails Q ` (C,N) : T ;Q′ ∪ Q′′1

and by inductive hypothesis and Lemma 2.5.14 we get ∅;Q′′′ ` N ′ : T , with C ′ : Q→
Q′∪Q′′1∪Q′′′. Finally, by the app rule we get ∅;Q′′1, Q′′′ ` apply(V,N ′) : U and conclude

Q ` (C ′, apply(V,N ′)) : U ;Q′.

Progress

The progress result tells us that if a configuration is well-typed, then its evaluation can
always be carried on by taking a further step either in the main reduction or in a sub-
reduction introduced by a boxing operation. In simpler words, it tells us that well-typed
configurations are never deadlocked. We already know (from Definition 2.5.5) what it
means for a configuration to go into deadlock, and now we need to know what it means
for a configuration to be in a deadlock already. Intuitively, this definition corresponds to
cases 1, 3 and 4 of Definition 2.5.5, or more formally:

Definition 2.5.8 (Deadlock). Let D be the smallest set of configurations such that:

1. If (C,M) is irreducible and M is neither of the form E[boxT (liftN)], nor a value,
then (C,M) ∈ D.

2. If M is of the form E[boxT (liftN)] and (idQ, N~̀) →∗ (D,N), where (Q, ~̀) =
freshlabels(N, T ), and (D,N) ∈ D, then (C,M) ∈ D.
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3. If M is of the form E[boxT (liftN)] and (idQ0 , N
~̀) →∗ (D, V ), where (Q, ~̀) =

freshlabels(N, T ), and V is not a label tuple, then (C,M) ∈ D.

We say that a configuration (C,M) is deadlocked when (C,M) ∈ D.

Intuitively, a configuration is deadlocked when it cannot be further reduced to a value
or when it contains a boxing operation and the sub-reduction introduced by it ends up
going into deadlock too. Note that this definition does not include the case in which such
a sub-reduction diverges. In a sense, the following progress result asserts that well-typed
configurations are safe from deadlock, but not from livelock.

Lemma 2.5.16. Suppose (C, V ) is a configuration. If V is not a label tuple, then there
exists no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ `M : T , for any simple M-type T .

Proof. The proof is trivial and stems directly from the fact that simple M-types are just
products of wire types and that labels are the only value that can be assigned a wire
type.

Theorem 2.5.17 (Progress). If Q ` (C,M) : A;Q′ then (C,M) 6∈ D. That is, (C,M)
is not deadlocked.

Proof. By the definition of well-typedness we know that there exists Q′′ disjoint from Q′

such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` M : A. We therefore prove the contrapositive:
if (C,M) ∈ D, then there exists no Q′′ such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` M : A.
We proceed by induction on the structure of the proof that (C,M) ∈ D, distinguishing
the case in which M 6≡ E[boxT (liftL)] from the case in which M ≡ E[boxT (liftL)].

• Case M 6≡ E[boxT (liftL)]. In this case, M is necessarily not a value and there exist
no C ′,M ′ such that (C,M)→ (C ′,M ′). We must prove that there exists no Q′′ such
that C : Q→ Q′ ∪Q′′ and ∅;Q′′ `M : A We proceed by induction on the form of M :

– Case M ≡ x. This case is impossible, since by the definition of small-step configu-
ration M must contain no free variables.

– Case M ≡ `. This case is impossible since ` is a value.

– Case M ≡ λx.N . This case is impossible since λx.N is a value.

– Case M ≡ NP . We know that (C,NP ) is irreducible and NP is not of the form
E[boxT (liftL)] and we must prove that there exists no Q′′ such that C : Q→ Q′∪Q′′
and ∅;Q′′ ` NP : A. This would amount to finding Q′′1, Q

′′
2 such that Q′′1, Q

′′
2 = Q′′

and
∅;Q′′1 ` N : B ( A, ∅;Q′′2 ` P : B,

for some B. By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible
and N is not of the form E ′[boxT (liftL)], so we distinguish two cases:
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∗ N is a value. In this case N ≡ λx.O for some x and O, by Lemma 2.3.2, and we
consider P . By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,P ) is irreducible
and P is not of the form E ′[boxT (liftL)]. Also, P is not a value, since if that
were the case then (C, (λx.O)P ) would be reducible by the β-reduction rule.
Therefore, by inductive hypothesis we get that there exists no Q′′2 such that C :
Q→ Q′ ∪Q′′1 ∪Q′′2 and ∅;Q′′2 ` P : B and conclude that there exists no Q′′ such
that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` NP : A.

∗ N is not a value. In this case, by inductive hypothesis we get that there exists no
Q′′1 such that C : Q → Q′ ∪ Q′′1 ∪ Q′′2 and ∅;Q′′1 ` N : B ( A and conclude that
there exists no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` NP : A.

– Case M ≡ 〈N,P 〉. We know that (C, 〈N,P 〉) is irreducible and 〈N,P 〉 is neither
a value, nor of the form E[boxT (liftL)] and we must prove that there exists no Q′′

such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` 〈N,P 〉 : B ⊗ C. This would amount to
finding Q′′1, Q

′′
2 such that Q′′1, Q

′′
2 = Q′′ and

∅;Q′′1 ` N : B, ∅;Q′′2 ` P : C,

for some B,C. By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible
and N is not of the form E ′[boxT (liftL)], so we distinguish two cases:

∗ N is a value. In this case we consider P . By corollaries 2.5.3.2 and 2.5.7.1 we know
that (C,P ) is irreducible and P is not of the form E ′[boxT (liftL)]. Also, P is not
a value, since if that were the case then 〈N,P 〉 would be a value. Therefore, by
inductive hypothesis we get that there exists no Q′′2 such that C : Q→ Q′∪Q′′1∪Q′′2
and ∅;Q′′2 ` P : C and conclude that there exists no Q′′ such that C : Q→ Q′∪Q′′
and ∅;Q′′ ` 〈N,P 〉 : B ⊗ C.

∗ N is not a value. In this case, by inductive hypothesis we get that there exists no
Q′′1 such that C : Q → Q′ ∪ Q′′1 ∪ Q′′2 and ∅;Q′′1 ` N : B and conclude that there
exists no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` 〈N,P 〉 : B ⊗ C.

– Case M ≡ let 〈x, y〉 = N inP . We know that (C, let 〈x, y〉 = N inP ) is irreducible
and let 〈x, y〉 = N inP is not of the form E[boxT (liftL)] and we must prove that
there exists no Q′′ such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` let 〈x, y〉 = N inP : A.
This would amount to finding Q′′1, Q

′′
2 such that Q′′1, Q

′′
2 = Q′′ and

∅;Q′′1 ` N : B ⊗ C, x : B, y : C;Q′′2 ` P : A,

for some B,C. By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible
and N is not of the form E ′[boxT (liftL)]. Also, N is not a value, since if that were the
case then (C, let 〈x, y〉 = N inP ) would be reducible by the let rule. Therefore, by
inductive hypothesis we get that there exists no Q′′1 such that C : Q→ Q′∪Q′′1 ∪Q′′2
and ∅;Q′′1 ` N : B ⊗ C and conclude that there exists no Q′′ such that C : Q →
Q′ ∪Q′′ and ∅;Q′′ ` let 〈x, y〉 = N inP : A.
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– Case M ≡ liftN . This case is impossible since liftN is a value.

– Case M ≡ forceN . We know that (C, forceN) is irreducible and forceN is not
of the form E[boxT (liftL)] and we must prove that there exists no Q′′ such that
C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` forceN : A. This would amount to finding Q′′ such
that

∅;Q′′ ` N : !A.

By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible and N is not of
the form E ′[boxT (liftL)]. Also, N is not a value, since if that were the case then we
would have N ≡ liftL for some L, by Lemma 2.3.2, and (C, force(liftL)) → (C,L)
by the force rule. Therefore, by inductive hypothesis we get that there exists no Q′′

such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` N : !A and conclude that there exists no
Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` forceN : A

– Case M ≡ boxT N . We know that (C, boxT N) is irreducible and boxT N is not
of the form E[boxT (liftL)] and we must prove that there exists no Q′′ such that
C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` boxT N : Circ(T, U). This would amount to finding
Q′′ such that

∅;Q′′ ` N : !(T ( U).

By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible and N is not
of the form E ′[boxT (liftL)]. Also, N is not a value, since if that were the case then
we would have N ≡ liftL for some L, by Lemma 2.3.2, and M ≡ E[boxT (liftL)] for
E ≡ [·], which would contradict the hypothesis. Therefore, by inductive hypothesis
we get that there exists no Q′′ such that C : Q→ Q′∪Q′′ and ∅;Q′′ ` N : !(T ( U)
and we conclude that there exists no Q′′ such that C : Q → Q′ ∪ Q′′ and ∅;Q′′ `
boxT N : Circ(T, U).

– Case M ≡ apply(N,P ). We know that (C, apply(N,P )) is irreducible and also that
apply(N,P ) is not of the form E[boxT (liftL)] and we must prove that there exists
no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` apply(N,P ) : U . This would amount
to finding Q′′1, Q

′′
2 such that Q′′1, Q

′′
2 = Q′′ and

∅;Q′′1 ` N : Circ(T, U), ∅;Q′′2 ` P : T,

for some T . By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,N) is irreducible
and N is not of the form E ′[boxT (liftL)], so we distinguish two cases:

∗ N is a value. In this case N ≡ (~̀, D, ~̀′) for some ~̀, D and ~̀′, by Lemma 2.3.2,
and we consider P . By corollaries 2.5.3.2 and 2.5.7.1 we know that (C,P ) is
irreducible and P is not of the form E ′[boxT (liftL)]. Also, P is not a value, since

if that were the case then we would have P ≡ ~k for some ~k, by Lemma 2.3.2,
and (C, (~̀, D, ~̀′), ~k) → (C ′, ~k′) for (C ′, ~k′) = append(C,~k, ~̀, D, ~̀′), by the apply
rule. Therefore, by inductive hypothesis we get that there exists no Q′′2 such that
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C : Q → Q′ ∪ Q′′1 ∪ Q′′2 and ∅;Q′′2 ` P : T and conclude that there exists no Q′′

such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` apply(N,P ) : U .

∗ N is not a value. In this case, by inductive hypothesis we get that there exists no
Q′′1 such that C : Q→ Q′ ∪Q′′1 ∪Q′′2 and ∅;Q′′1 ` N : Circ(T, U) and we conclude
that there exists no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` apply(N,P ) : U .

– Case M ≡ (~̀, D, ~̀′). This case is impossible since (~̀, D, ~̀′) is a value.

• Case M ≡ E[boxT (liftL)]. In this case, we necessarily have (idQ0 , L
~̀) →∗ (Cn,Mn),

for (Q0, ~̀) = freshlabels(L, T ), and either (Cn,Mn) ∈ D or Mn is a value other than a
label tuple. We proceed by induction on the form of E:

– Case E ≡ [·]. In this case M ≡ boxT (liftL). Suppose there exists Q′′ such that
C : Q → Q′ ∪ Q′′ and ∅;Q′′ ` boxT (liftL) : Circ(T, U). By applying Lemma 2.3.1
twice we get that Q′′ = ∅ and

∅; ∅ ` liftL : !(T ( U), ∅; ∅ ` L : T ( U.

This entails ∅;Q0 ` L~̀ : U , where U is a simple M-type, by the definition of
freshlabels and the app rule. We know that (idQ0 , L

~̀)→∗ (Cn,Mn), that is, (idQ0 , L
~̀)

reduces to (Cn,Mn) in zero or more steps, so we distinguish two possibilities:

∗ (idQ0 , L
~̀) = (Cn,Mn). In this case we necessarily have (idQ0 , L

~̀) ∈ D, since L~̀ is
not a value, so by the outer inductive hypothesis we know that there exists no Q′′0
such that idQ0 : Q0 → Q′0 ∪Q′′0 and ∅;Q′′0 ` L~̀ : B, for any B, which contradicts

∅;Q0 ` L~̀ : U .

∗ (idQ0 , L
~̀) →+ (Cn,Mn). In this case, we know that Q0 ` (idQ0 , L

~̀) : U ; ∅ and
by a finite number of consecutive applications of Theorem 2.5.15 we get Q0 `
(Cn,Mn) : U ; ∅. This entails Cn : Q0 → Q0 and ∅;Q0 ` Mn : U . At the same
time, we know that either (Cn,Mn) ∈ D, and by the outer inductive hypothesis
there exists no Q′′0 such that Cn : Q0 → Q′0 ∪Q′′0 and ∅;Q′′0 ` Mn : B, for any B,
or Mn is a value other than a label tuple, and by Lemma 2.5.16 there exists no
Q′′0 such that C ′ : Q0 → Q′0 ∪ Q′′0 and ∅;Q′′0 ` Mn : U , for any simple M-type U .
Both cases contradict ∅;Q0 `Mn : U .

In either case, we reach a contradiction and conclude that there exists no Q′′ such
that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` boxT (liftL) : Circ(T, U).

– Case E ≡ E ′P . In this case M ≡ NP and N is of the form E ′[boxT (liftL)]. By
inductive hypothesis we get that there exists no Q′′1 such that C : Q→ Q′∪Q′′1 ∪Q′′2
and ∅;Q′′1 ` N : B ( A and conclude that there exists no Q′′ such that C : Q →
Q′ ∪Q′′ and ∅;Q′′ ` NP : A.

– Case E ≡ V E ′. In this case M ≡ V P and P is of the form E ′[boxT (liftL)]. By
inductive hypothesis we get that there exists no Q′′2 such that C : Q→ Q′∪Q′′1 ∪Q′′2
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and ∅;Q′′2 ` P : B and conclude that there exists no Q′′ such that C : Q→ Q′ ∪Q′′
and ∅;Q′′ ` V P : A.

– Case E ≡ 〈E ′, P 〉. In this case M ≡ 〈N,P 〉 and N is of the form E ′[boxT (liftL)]. By
inductive hypothesis we get that there exists no Q′′1 such that C : Q→ Q′∪Q′′1 ∪Q′′2
and ∅;Q′′1 ` N : B and conclude that there exists no Q′′ such that C : Q→ Q′ ∪Q′′
and ∅;Q′′ ` 〈N,P 〉 : B ⊗ C.

– Case E ≡ 〈V,E ′〉. In this case M ≡ 〈V, P 〉 and P is of the form E ′[boxT (liftL)]. By
inductive hypothesis we get that there exists no Q′′2 such that C : Q→ Q′∪Q′′1 ∪Q′′2
and ∅;Q′′2 ` P : C and conclude that there exists no Q′′ such that C : Q→ Q′ ∪Q′′
and ∅;Q′′ ` 〈V, P 〉 : B ⊗ C.

– Case E ≡ let 〈x, y〉 = E ′ inP . In this case M ≡ let 〈x, y〉 = N inP and N is of the
form E ′[boxT (liftL)]. By inductive hypothesis we get that there exists no Q′′1 such
that C : Q → Q′ ∪ Q′′1 ∪ Q′′2 and ∅;Q′′1 ` N : B ⊗ C and conclude that there exists
no Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` let 〈x, y〉 = N inP : A.

– Case E ≡ forceE ′. In this case M ≡ forceN and N is of the form E ′[boxT (liftL)].
By inductive hypothesis we get that there exists no Q′′ such that C : Q→ Q′ ∪Q′′
and ∅;Q′′ ` N : !A and conclude that there exists no Q′′ such that C : Q→ Q′∪Q′′
and ∅;Q′′ ` forceN : A.

– Case E ≡ boxT E
′. In this case M ≡ boxT N and N is of the form E ′[boxT (liftL)].

By inductive hypothesis we get that there exists no Q′′ such that C : Q→ Q′ ∪Q′′
and ∅;Q′′ ` N : !(T ( U) and conclude that there exists no Q′′ such that C : Q→
Q′ ∪Q′′ and ∅;Q′′ ` boxT N : Circ(T, U).

– Case E ≡ apply(E ′, P ). In this case M ≡ apply(N,P ) and N is of the form
E ′[boxT (liftL)]. By inductive hypothesis we get that there exists no Q′′1 such that
C : Q→ Q′ ∪Q′′1 ∪Q′′2 and ∅;Q′′1 ` N : Circ(T, U) and conclude that there exists no
Q′′ such that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` apply(N,P ) : U .

– Case E ≡ apply(V,E ′). In this case M ≡ apply(V, P ) and P is of the form
E ′[boxT (liftL)]. By inductive hypothesis we get that there exists no Q′′2 such that
C : Q→ Q′ ∪Q′′1 ∪Q′′2 and ∅;Q′′2 ` P : T and conclude that there exists no Q′′ such
that C : Q→ Q′ ∪Q′′ and ∅;Q′′ ` apply(V, P ) : U .

2.5.5 Limitations of the Current Semantics

In this chapter we have introduced Proto-Quipper-M and we have given small-step se-
mantics for its evaluation. We have shown that this semantics is equivalent to the original
big-step semantics by Rios and Selinger and we have given the relevant subject reduction
and progress results. The proposed small-step semantics constitutes a first step towards
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our goal, which is devising some form of machine semantics for Proto-Quipper-M, but
they fall short on one crucial detail: they are not truly small-step. This is due to the fact
that the box reduction rule de-facto requires that a full evaluation (idQ, N~̀)→∗ (D, ~̀′),
of arbitrary length, take place in its premises in order to compute the individual step
(C, boxT (liftN)) → (C, (~̀, D, ~̀′)). Furthermore, unlike the other recursive rules of the

semantics (the contextual ones), the box rule recurs on the term N~̀, which is not a
sub-term of boxT (liftN). As a consequence, our small-step semantics have been harder-
than-usual to reason about and on multiple occasions in this chapter we have had to
consider the box case separately when giving definitions or proving results about the
semantics (take, for example, Definition 2.5.5). In the next chapter, our first goal will be
precisely that of altering the current semantics in order to obtain new, truly small-step
semantics, which will serve as a stepping-stone to our final machine semantics.



Chapter 3

Towards a Machine Semantics

In this chapter we first introduce an intermediate semantics that solves the problems with
the boxing operator that we encountered in the previous chapter. Then, we proceed to
give the actual machine semantics for Proto-Quipper-M which is the objective of this
thesis. We also give a number of definitions and results about the individual semantics,
which will be useful in the next chapter, when we explore the relationship between the
different semantics.

In his PhD thesis [14], Ross gives small-step semantics for Proto-Quipper (specifi-
cally, Proto-Quipper-S) and avoids our pitfall with the box rule by introducing a term

of the form (~̀, D,M) and a contextual rule that allows to reduce (C, (~̀, D,M)) →
(C, (~̀, D′,M ′)) whenever (D,M) → (D′,M ′). This approach introduces an implicit

evaluation stack into the language, with every term of the form (~̀, D,M) conceptually
representing an individual stack frame. This effectively avoids the problems we encoun-
tered with box, but it also comes with its own set of complications. For instance, despite
the fact that terms of the form (~̀, D,M) are “intermediate forms” which are never meant
to be written by the users of the language, every result that holds for terms in general
must hold for (~̀, D,M) too.

It is mainly for this reason that we decide to take a different route. Specifically, instead
of implicitly modelling a stack through the structure of the terms inside a configuration,
we explicitly add a stack to the configurations themselves. At first, we only do it for the
sub-reductions introduced by the box rule, in order to get a fully small-step semantics
which we call a stacked semantics. Later, we extend this approach to all the contextual
rules to obtain what we call a machine semantics.

69
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3.1 Stacked Semantics

As the name suggests, the stacked semantics operate on stacks of configurations. Ev-
ery time a term of the form boxT (liftN) is ready to be evaluated, a new configuration

(idQ, N~̀) is pushed on the stack and marked with the labels that are locally available

to its evaluation (in this case, ~̀). When (idQ, N~̀) eventually evaluates to (D, ~̀′), the

configuration is popped from the stack and boxT (liftN) is replaced with (~̀, D, ~̀′) in the
previous stack frame.

Definition 3.1.1 (Stacked Configuration). A stacked configuration is given by the fol-
lowing grammar:

X, Y ::= ε | (C,M)
~̀
.X,

where C is a circuit, M is a term with no free variables and ~̀ is a label tuple, which can
possibly be empty (~̀= ∅).

Definition 3.1.2 (Well-formed Stacked Configuration). A stacked configuration is said

to be well-formed when it is of the form (C,M)
~̀
.X for some C,M, ~̀ and X and either

one of the following conditions is met:

1. ~̀= ∅ and X ≡ ε,

2. ~̀ 6= ∅ and X is a well-formed stacked configuration.

In this case a configuration of the form (C,M)∅.ε represents a situation in which no sub-
reductions are being evaluated, and all the labels occurring in M are global (i.e. they
were not introduced by a boxing operation). From this point onward we will assume
that every stacked configuration we work with is well-formed. We can define a reduction
relation ⇀ on stacked configurations, with the following rules:

(C,M)→ (D,N) M 6≡ E[boxT (liftP )]

(C,M)~̀.X ⇀ (D,N)~̀.X
head

(Q, ~̀) = freshlabels(M,T )

(C,E[boxT (liftM)])~k.X ⇀ (idQ,M~̀)~̀.(C,E[boxT (liftM)])~k.X
step-in

(D, ~̀′)~̀.(C,E[boxT (liftM)])~k.X ⇀ (C,E[(~̀, D, ~̀′)])~k.X
step-out

where can clearly see that if a term does not contain a sub-term of the form boxT (liftM)
which is ready to be evaluated, then by definition the stacked semantics behave exactly
like the small-step semantics, reducing the head configuration (the active stack frame).
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It is when a term of the form boxT (liftM) is ready to be evaluated that we part ways
with the small-step semantics and we start taking advantage of the stack structure of
these new configurations. Naturally, the reduction relation ⇀ is deterministic.

Lemma 3.1.1. Every stacked configuration (C,M)
~̀
.X can be reduced by at most one

rule of the stacked semantics.

Proof. If a configuration (C,M)
~̀
.X can be reduced by the step-out rule, it means that

M is a value. Therefore, (C,M)
~̀
.X cannot be reduced by either head (because (C, V ) is

irreducible) or step-in (because V cannot be of the form E[boxT (liftN)], for any E,N).

At the same time, if (C,M)
~̀
.X can be reduced by the step-in rule, it means that M ≡

E[boxT (liftN)] and (C,E[boxT (liftN)])
~̀
.X cannot be reduced by head. This is sufficient

to conclude that at most one rule can be applied to (C,M)
~̀
.X.

Proposition 3.1.2 (Determinism of Stacked Semantics). The reduction relation ⇀ is

deterministic. That is, if (C,M)
~̀
.X ⇀ (D,N)

~k.Y , then for every stacked configuration

(D′, N ′)
~k′ .Y ′ such that (C,M)

~̀
.X ⇀ (D′, N ′)

~k′ .Y ′ we have D = D′, N ≡ N ′, k = k′ and
Y = Y ′.

Proof. We already know by Lemma 3.1.1 that at most one rule can be applied to reduce
any given stacked configuration. What is left to do is prove that each rule is deterministic
by itself, which is straightforward: the head rule is deterministic thanks to Proposition
2.5.2, while the step-out rule is deterministic because freshlabels is a function and step-out
is trivially deterministic. We therefore conclude that ⇀ is deterministic.

3.1.1 Initiality and Reachability

When reasoning about stacked configurations we must operate a necessary distinction
between “starting” and “intermediate” configurations that we did not have to make
with small-step configurations. Whereas in the small-step semantics we could expect a
computation to start from any configuration (C,M), in the stacked semantics we are only
interested in starting a computation from a configuration of the form (C,M)∅.ε, where
the stack is empty and all of the labels in M are global. Intuitively, a configuration of
this form corresponds to the small-step configuration (C,M).

Definition 3.1.3 (Initial Stacked Configuration). A stacked configuration is said to be
initial when it is of the form (C,M)∅.ε. The set of initial stacked configurations is denoted
by Ist.

We also distinguish between those stacked configurations which can be reached by a
computation starting from an initial configuration and those which cannot. For exam-

ple, a configuration of the form (C, λx.x)
~̀
.(D,λx.x)∅.ε, although well-formed, is clearly
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impossible to obtain during the evaluation of an initial configuration, since new stack
frames are only introduced when a term containing a boxing operator is encountered. As
a result, configurations such as this one are ill-natured in their own way. We therefore
give the definition of reachable stacked configuration.

Definition 3.1.4 (Reachable Stacked Configuration). A stacked configuration of the

form (C,M)
~̀
.X is said to be reachable when either of the following is true:

1. (C,M)
~̀
.X ∈ Ist,

2. There exists a stacked configuration (D,N)
~k.Y such that (D,N)

~k.Y is reachable and

(D,N)
~k.Y ⇀ (C,M)

~̀
.X.

This distinction between reachable and unreachable configurations will be essential when
we investigate the relationship between the stacked semantics and the other semantics.

3.1.2 Convergence, Deadlock and Divergence

Like we did with small-step configurations, we define what it means for a stacked con-
figuration to converge, go into deadlock or diverge.

Definition 3.1.5 (Converging Stacked Configuration). Let ↓ be the smallest unary re-
lation over stacked configurations such that:

1. For every circuit C and value V , (C, V )∅.ε ↓,

2. If (C,M)
~̀
.X ⇀ (D,N)

~k.Y and (D,N)
~k.Y ↓, then (C,M)

~̀
.X ↓.

We say that a configuration (C,M)
~̀
.X is converging when (C,M)

~̀
.X ↓.

Definition 3.1.6 (Deadlocking Stacked Configuration). Let ⊥ be the smallest unary
relation over stacked configurations such that:

1. If there exists no (D,N)
~k.Y such that (C,M)

~̀
.X ⇀ (D,N)

~k.Y and either M is not

a value or ~̀ 6= ∅, X 6= ε, then (C,M)
~̀
.X⊥,

2. If (C,M)
~̀
.X ⇀ (D,N)

~k.Y and (D,N)
~k.Y⊥, then (C,M)

~̀
.X⊥.

We say that a configuration (C,M)
~̀
.X goes into deadlock when (C,M)

~̀
.X⊥.

Definition 3.1.7 (Diverging Stacked Configuration). Let ↑ be the largest unary relation

over stacked configurations such that whenever (C,M)
~̀
.X ↑ there exists (D,N)

~k.Y such

that (C,M)
~̀
.X ⇀ (D,N)

~k.Y and (D,N)
~k.Y ↑. We say that a configuration (C,M)

~̀
.X

is diverging when (C,M)
~̀
.X ↑.
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Note that although the intuition behind the concepts of convergence, deadlock and diver-
gence is (obviously) still the same, the respective definitions for stacked configurations
are much simpler than their small-step counterparts. This is an effect of the “inlining”
of the box sub-reductions that we operated when defining the stacked semantics, which
allows us to treat the boxing rules (step-in and step-out) homogeneously with the rest
of the rules. Naturally, the three relations are still mutually exclusive.

Proposition 3.1.3. The relations ↓,⊥ and ↑ are mutually exclusive over stacked con-

figurations. That is, for every stacked configuration (C,M)
~̀
.X, the following are true:

1. If (C,M)
~̀
.X ↓, then (C,M)

~̀
.X 6⊥,

2. If (C,M)
~̀
.X ↓, then (C,M)

~̀
.X 6 ↑,

3. If (C,M)
~̀
.X⊥, then (C,M)

~̀
.X 6 ↑.

Proof. We prove each claim separately:

1. We proceed by induction on (C,M)
~̀
.X ↓:

• Case of M ≡ V, ~̀ = ∅ and X = ε. Since (C, V )∅.ε is irreducible, but V is a value,
there is no way for (C, V )∅.ε to go into deadlock, so we conclude (C, V )∅.ε 6⊥.

• Case of (C,M)
~̀
.X ⇀ (D,N)

~k.X ′ and (D,N)
~k.X ′ ↓. Since (C,M)

~̀
.X is reducible,

it must be that (C,M)
~̀
.X ⇀ (D,N)

~k.X ′ (⇀ is deterministic) and (D,N)
~k.X ′⊥

in order for (C,M)
~̀
.X to go into deadlock. However, by inductive hypothesis we

know that (D,N)
~k.X ′ 6⊥, so this is impossible and we conclude (C,M)

~̀
.X 6⊥.

2. We proceed by induction on (C,M)
~̀
.X ↓:

• Case of M ≡ V, ~̀= ∅ and X = ε. Since (C, V )∅.ε is irreducible, there is no way for
it to diverge, so we conclude (C, V )∅.ε 6 ↑.

• Case of (C,M)
~̀
.X ⇀ (D,N)

~k.X ′ and (D,N)
~k.X ′ ↓. Since (D,N)

~k.X ′ 6 ↑ by induc-

tive hypothesis and (C,M)
~̀
.X cannot reduce to any other configuration (⇀ is de-

terministic), there is no way for (C,M)
~̀
.X to diverge, so we conclude (C,M)

~̀
.X 6 ↑.

3. We proceed by induction on (C,M)
~̀
.X⊥:

• Case in which (C,M)
~̀
.X is irreducible and either M 6≡ V or ~̀ 6= ∅ or X 6= ε.

Since (C,M)
~̀
.X is irreducible, there is no way for it to diverge, so we conclude

(C,M)
~̀
.X 6 ↑.
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• Case of (C,M)
~̀
.X ⇀ (D,N)

~k.X ′ and (D,N)
~k.X ′⊥. Since (D,N)

~k.X ′ 6 ↑ by induc-

tive hypothesis and (C,M)
~̀
.X cannot reduce to any other configuration (⇀ is de-

terministic), there is no way for (C,M)
~̀
.X to diverge, so we conclude (C,M)

~̀
.X 6 ↑.

We now give two specific result about the convergence (or lack thereof) of stacked

configurations. First, we prove that whenever a stacked configuration (C,M)
~̀
.X is reach-

able and converges, then the rest of the stack X (which is itself a stacked configuration)
also converges. Note that, in the following proof, the length of a stacked configuration
is, naturally, the size of its stack.

Lemma 3.1.4. If (C,M)
~̀
.X is reachable, (C,M)

~̀
.X ↓ and X 6= ε, then X ↓.

Proof. (C,M)
~̀
.X is a stacked configuration of length n ≥ 2. The base case for reachable

stacked configurations has length one. This implies that in order for (C,M)
~̀
.X to be

reachable there must be at least one lengthening reduction somewhere between some

(D,N)∅.ε ∈ Ist and (C,M)
~̀
.X. Because lengthening reductions are only introduced by

step-in, we must have X = (D′, E[boxT (liftP )])
~k.X ′, where (Q, ~̀) = freshlabels(T, P ),

and

(D,N)∅.ε ⇀∗ (D′, E[boxT (liftP )])
~k.X ′

⇀ (idQ, P ~̀)
~̀
.(D′, E[boxT (liftP )])

~k.X ′

⇀∗ (C,M)
~̀
.(D′, E[boxT (liftP )])

~k.X ′.

This entails (D′, E[boxT (liftP )])
~k.X ′ ⇀+ (C,M)

~̀
.(D′, E[boxT (liftP )])

~k.X ′ and be-

cause we already know (C,M)
~̀
.(D′, E[boxT (liftP )])

~k.X ′ ↓ by hypothesis, we conclude

(D′, E[boxT (liftP )])
~k.X ′ ↓.

Next, conversely, we show that if a stacked configuration goes into deadlock on its own,
then augmenting it with an additional underlying stack cannot solve the deadlock.

Lemma 3.1.5. Let +~k be a binary function which represents the concatenation of stacked
configurations, defined as follows:

(C,M)∅.ε+~k Y = (C,M)
~k.Y,

(C,M)
~̀
.X +~k Y = (C,M)

~̀
.(X +~k Y ).

If (C,M)
~̀
.X⊥, then (C,M)

~̀
.X +~k Y⊥ for every ~k and Y 6= ε.

Proof. We proceed by induction on (C,M)
~̀
.X⊥:
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• Case in which (C,M)
~̀
.X is irreducible and either M 6≡ V or ~̀ 6= ∅, X 6= ε. If

(C,M)
~̀
.X +~k Y were reducible by either the head or step-in rule, then so would

(C,M)
~̀
.X, since both head and step-in can be applied regardless of the local labels or

the rest of the stack. This contradicts the hypothesis, so we know that (C,M)
~̀
.X+~kY

cannot be reduced by these rules. Furthermore, if (C,M)
~̀
.X +~k Y were reducible via

the step-out rule, we would have M ≡ ~̀′ for some ~̀′ and as a consequence ~̀ 6= ∅
and X 6= ε (otherwise we would contradict the hypothesis that either M 6≡ V or ~̀ 6=
∅, X 6= ε). We would therefore have X = (D,E[boxT (liftN)])

~k.X ′ for some D,E,N,~k

and X ′. This would entail the reducibility of (C, ~̀′)
~̀
.(D,E[boxT (liftN)])

~k.X ′, which

contradicts the hypothesis, so (C,M)
~̀
.X +~k Y is ultimately irreducible and because

~̀ 6= ∅, X 6= ε and Y 6= ε we trivially conclude (C,M)
~̀
.X +~k Y⊥.

• Case of (C,M)
~̀
.X ⇀ (D,N)

~̀′
.X ′ and (D,N)

~̀′
.X ′⊥. We proceed by cases on the

introduction of (C,M)
~̀
.X ⇀ (D,N)

~̀′
.X ′:

– Case of head. If (C,M)
~̀
.X ⇀ (D,N)

~̀
.X, then because the head rule can be applied

regardless of the local labels and the remaining stack we also have (C,M)
~̀
.X +~k

Y ⇀ (D,N)
~̀
.X +~k Y by the same rule. By inductive hypothesis we get that

(D,N)
~̀
.X +~k Y⊥ and conclude (C,M)

~̀
.X +~k Y⊥.

– Case of step-in. If M ≡ E[boxT (liftP )] for some E,P and (C,E[boxT (liftP )])
~̀
.X ⇀

(idQ, P ~̀′)
~̀′
.(C,E[boxT (liftP )])

~̀
.X for (Q, ~̀′) = freshlabels(P, T ), then because the

step-in rule can be applied regardless of the local labels and the remaining stack we

also have (C,E[boxT (liftP )])
~̀
.X+~k Y ⇀ (idQ, P ~̀′)

~̀′
.(C,E[boxT (liftP )])

~̀
.X+~k Y by

the same rule. By inductive hypothesis we get (idQ, P ~̀′)
~̀′
.(C,E[boxT (liftP )])

~̀
.X+~k

Y⊥ and conclude (C,E[boxT (liftP )])
~̀
.X +~k Y⊥.

– Case of step-out. In this case we necessarily have ~̀ 6= ∅, X 6= ε. IfM ≡ ~k′ for some ~k′,

X = (D,E[boxT (liftP )])
~̀′
.X ′ for some E,P and (C, ~k′)

~̀
.(D,E[boxT (liftP )])

~̀′
.X ′ ⇀

(D,E[(~̀, C, ~k′)])
~̀′
.X ′, then because +~k can only alter ~̀′ and X ′ and the step-out

rule does not depend on them, we also have (C, ~k′)
~̀
.(D,E[boxT (liftP )])

~̀′
.X ′+~kY ⇀

(D,E[(~̀, C, ~k′)])
~̀′
.X ′ +~k Y by the same rule. By inductive hypothesis we get that

(D,E[(~̀, C, ~k′)])
~̀′
.X ′ +~k Y 6⊥ and conclude (C, ~k′)

~̀
.(D,E[boxT (liftP )])

~̀′
.X ′ +~k Y⊥.

3.1.3 Summary

In this section we introduced the concept of stacked configuration and we based a de-
terministic stacked semantics on it. This semantics effectively circumvents the problem
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that we encountered with box in the previous small-step semantics. We then estab-
lished the subset of “benign” stacked configurations in which we are actually interested,
namely well-formed and reachable configurations. Lastly, we gave definitions for the
convergence, deadlock and divergence of stacked configurations, which we proved to be
mutually exclusive relations, similarly to how we did with small-step configurations in
Chapter 2.

3.2 Machine Semantics

In this section we finally introduce a machine operational semantics for Proto-Quipper-
M, which is the focus of this thesis. We call this a machine semantics because it is heavily
inspired by the concept of abstract machine, which is something we ought to touch upon.

3.2.1 Abstract Machines

In computer science, an abstract machine is simply a theoretical model of a computer.
To this effect, computer is to be intended in the most abstract way possible, that is,
something that computes. In fact, it is irrelevant whether the theoretical model is actu-
ally implementable in hardware, as long as it describes a computation the way a realistic
mechanical computer would carry it out (read: algorithmically). Usually, this is done by
means of a state transition system. Because an abstract machine allows us to know not
only what a program written in a given programming language evaluates to, but also how
exactly it is evaluated, abstract machines are often employed to define the semantics of
programming languages.

In the context of lambda-calculi, an abstract machine specification does two main
things. The first one is fixing an evaluation strategy. For instance, whereas the basic
semantics for the lambda-calculus leave the door open for both call-by-value and call-by-
name strategies, any individual abstract machine must commit to either a call-by-value
or a call-by-name strategy. The second thing an abstract machine does is provide a
concrete algorithm to carry out some of the operations which are otherwise assumed
to be elementary, such as the substitution of values for variables within a term, or the
exploration of a term in search of a redex. A number of abstract machines already
exist that formalize the evaluation of a lambda-term. Notable examples include the
SECD machine [9], which implements a call-by-value semantics and is based on multiple
evaluation stacks, the Krivine machine [8], which implements a call-by-name semantics,
and the CEK machine [4], which also implements a call-by-value semantics, but using
continuations rather than a stack. We describe briefly this last machine, since it is the
one that most inspired our machine semantics for Proto-Quipper-M. The CEK machine
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takes its name from the shape of its states, which are triples of the form

〈C,E,K〉,

where C is called control and corresponds to the term currently being evaluated, E is the
environment, that is, an associative array from variable names to values, and K is the
continuation and represents the next action to perform once C has been fully evaluated.
For the sake of this presentation, we use the terms of the basic untyped lambda-calculus,
that is:

M,N ::= x | λx.M |MN.

The only values of this language are closures, that is, pairs {λx.M,E} of abstractions
together with their definition environment. Therefore, the environment can be seen as
nothing more than a list of bindings of the form

x 7→ {λy.M,E}.

When the control is a single variable name, we look that variable up in the environment
to obtain the corresponding closure, whose abstraction becomes the new control and
whose environment becomes the new environment. This is formalized by the following
rule:

{λx.M,E ′} = lookup(x,E)

〈x,E,K〉 → 〈λx.M,E ′, K〉
var

where lookup(x,E) finds the first occurrence of x in E and returns the corresponding
closure. When the control is an application MN , we start by evaluating M to an
abstraction. While we do so, we must remember that after we are done we must proceed
to evaluate N . This is where continuations come into play. A continuation of the form
FArg(N,E,K) represents a reminder that after we are done evaluating the current control
(whatever it might be), we should start evaluating N in the environment E, and then
proceed in a similar fashion with continuation K. The rule for evaluating applications
is thus the following:

〈MN,E,K〉 → 〈M,E,FArg(N,E,K)〉
split

Once we are done evaluating M to a term of the form λx.P , we can start evaluating N .
Here we find ourselves in a symmetric situation: as we evaluate N we must remember
that after we are done we must apply λx.P to the result. Since functions are represented
as closures, this reminder is represented by a continuation of the form FApp(λx.P,E,K),
where E is the environment in which λx.P was defined. We therefore introduce a third
rule to our CEK machine:

〈λx.P,E,FArg(N,E ′, K)〉 → 〈N,E ′,FApp(λx.P,E,K)〉
shift



CHAPTER 3. TOWARDS A MACHINE SEMANTICS 78

Lastly, once N has also been evaluated to an abstraction λy.L, we can finally apply λx.P
to λy.L. Concretely, this means that we start evaluating P under the environment E in
which λx.P was defined, with the additional binding of x to λy.L. With the following
rule, the CEK machine is complete:

〈λy.L,E ′,FApp(λx.P,E,K)〉 → 〈P, (x 7→ {λy.L,E ′}) :: E,K〉
join

where :: denotes the concatenation of environments. To see more clearly how these
rules interact with each other in order to reduce a term, consider the evaluation of
(λx.xx)(λy.y) to λy.y.

〈(λx.xx)(λy.y), [],Done〉 → 〈λx.xx, [],FArg(λy.y, [],Done)〉 split

→ 〈λy.y, [],FApp(λx.xx, [],Done)〉 shift

→ 〈xx, [x 7→ {λy.y, []}],Done〉 join

→ 〈x, [x 7→ {λy.y, []}],FArg(x, [x 7→ {λy.y, []}],Done)〉 split

→ 〈λy.y, [],FArg(x, [x 7→ {λy.y, []}],Done)〉 var

→ 〈x, [x 7→ {λy.y, []}],FApp(λy.y, [],Done)〉 shift

→ 〈λy.y, [],FApp(λy.y, [],Done)〉 var

→ 〈y, [y 7→ {λy.y, []}],Done〉 join

→ 〈λy.y, [],Done〉. var

3.2.2 An Abstract Machine for Proto-Quipper-M

As we anticipated earlier, our machine semantics for Proto-Quipper-M is largely influ-
enced by the CEK machine. In particular, we retain the use of continuations as a means
to schedule the various phases of the evaluation of a term, although we organize them
in a stack rather than one within the other. Note that this change is purely syntac-
tic, since in practice the continuations of the CEK machine already recursively define
a stack. Another difference between the CEK machine and our semantics is that for
the sake of simplicity we keep relying on the substitution function M [N/x] to evaluate
function applications instead of employing environments to the same effect. This choice
does not fundamentally detract from the the results that we prove in this thesis, which
are expected to hold for any sensible explicit implementation of substitutions. We just
leave such an implementation as future work. In conclusion, our machine configurations
are composed of a circuit, a term which builds the circuit, and a stack.

Definition 3.2.1 (Machine Configuration). A machine configuration is a triple

(C,M, S),
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where C is a circuit, M is a term with no free variables and S is a stack, which is defined
by the following grammar:

Stack elements H ::= FArg(M) | FApp(V )

| ALabel(M) | ACirc(V )

| TRight(M) | TLeft(V )

| Box (Q, ~̀) | Sub(C,M, ~̀, T )

| Let(x, y,M) | Force,

Stacks S,R ::= ε | H.S.

It is worth noting that although stacked configuration and machine configurations
may appear very different at first glance, they are based on the common intuition that
a computation is easily modelled by a stack. The only difference between the two is the
extent to which we apply this intuition: whereas with stacked configurations we only push
a frame onto the stack when evaluating an entirely new configuration as part of a boxing
operation (while still reducing everything else “in place”), with machine configurations
we push a frame onto the stack every time we encounter a composite term. Let ⇒ be a
reduction relation for machine configurations. We give the following rules:

(C,MN,S)⇒ (C,M,FArg(N).S)
app-split

(C, V,FArg(N).S)⇒ (C,N,FApp(V ).S)
app-shift

(C, V,FApp(λx.M).S)⇒ (C,M [V/x], S)
app-join

(C, apply(M,N), S)⇒ (C,M,ALabel(N).S)
apply-split

(C, V,ALabel(N).S)⇒ (C,N,ACirc(V ).S)
apply-shift

(C ′, ~k′) = append(C,~k, ~̀, D, ~̀′)

(C,~k,ACirc(~̀, D, ~̀′).S)⇒ (C ′, ~k′, S)
apply-join

〈M,N〉 is not a value

(C, 〈M,N〉, S)⇒ (C,M,TRight(N).S)
tuple-split
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(C, V,TRight(N).S)⇒ (C,N,TLeft(V ).S)
tuple-shift

(C,W,TLeft(V ).S)⇒ (C, 〈V,W 〉, S)
tuple-join

(Q, ~̀) = freshlabels(M,T )

(C, boxT M,S)⇒ (C,M,Box (Q, ~̀).S)
box-open

∅;Q ` ~̀ : T

(C, liftM,Box (Q, ~̀).S)⇒ (idQ,M~̀, Sub(C,M, ~̀, T ).S)
box-sub

(D, ~̀′, Sub(C,M, ~̀, T ).S)⇒ (C, (~̀, D, ~̀′), S)
box-close

(C, let 〈x, y〉 = M inN,S)⇒ (C,M,Let(x, y,N).S)
let-split

(C, 〈V,W 〉,Let(x, y,M).S)⇒ (C,M [V/x][W/y], S)
let-join

(C, forceM,S)⇒ (C,M,Force.S)
force-open

(C, liftM,Force.S)⇒ (C,M, S)
force-close

In light of the previous exposition of the rules for the CEK machine, the rules for the
machine semantics should be self-explanatory. Generally, every binary term constructor
(such as the application or the tuple) has an associated split rule, which defines how
a term is split into smaller sub-terms and which is evaluated first, a shift rule, which
defines how and when we switch to evaluating the second term, and a join rule, which
defines the way the results of the two sub-terms are put together to obtain the result
of the whole term. To keep track of what to do next, these rules employ two kinds
of continuations, one that keeps track of the right sub-term while the left one is being
evaluated (like FArg) and one that does the opposite (like FApp). The case of unary
constructors (such as boxT or force) is similar, although the kind of information that
is stored on the stack in this case varies. For example, the Sub continuation, which
roughly corresponds to a stack frame of the stacked semantics, has to store the entire
circuit and term whose evaluation was temporarily interrupted by the boxing operation,
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as well as the new local labels introduced by it and their associated type (the latter for
bookkeeping reasons which will be clear in the next chapter). On the other hand, the
Force continuation does not need to store any additional information, since all the force
operator does is undo the lifting of a term.

Notice how the definition of the machine semantics effectively allows us to relinquish
the notion of evaluation context. Whereas in the small-step and stacked semantics we
sometimes had to reason about where a reduction occurred within a term (see, as an
example, the step-in rule of the stacked semantics), in the machine semantics we always
reduce a redex whose components are immediately available in the term component and
on top of the stack. If a redex is not immediately available, the term being evaluated is
broken down into smaller pieces, and this decomposition operation is an integral part of
the semantics. As a result, the “descent” into a term in search of a redex is no longer
implicit in the derivation of an individual step of the reduction relation, but rather it is
explicit in the reduction sequence itself.

Naturally, we expect the machine semantics to be deterministic, like the small-step
and the stacked semantics. We prove that this is the case with the following results.

Lemma 3.2.1. Every machine configuration (C,M, S) can be reduced by at most one
rule of the machine semantics.

Proof. We first partition the rules into two sets: one containing the rules that require
M to be a value (app-shift, app-join, apply-shift, apply-join, tuple-shift, tuple-join, box-
sub, box-close, let-join and force-close) and the other containing the rules that require
M not to be a value (app-split, apply-split, tuple-split, box-open, let-split, force-open).
Naturally, the applicability of a rule from the first set to any given configuration excludes
the possibility of applying any rule from the second set to the same configuration, and
vice-versa. Consider now the first set. Each of the rules contained in this set requires
a different stack head in order to be applied, so at most one rule from the first set can
be applied to any given configuration. Consider now the second set. Each of the rules
contained in this set requires a different shape of M in order to be applied, so at most
one rule from the second set can be applied to any given configuration. We conclude
that every machine configuration (C,M, S) can be reduced by at most one rule of the
machine semantics.

Proposition 3.2.2 (Determinism of Machine Semantics). The reduction relation ⇒ is
deterministic. That is, if (C,M, S) ⇒ (D,N,R), then for every stacked configuration
(D′, N ′, R′) such that (C,M, S)⇒ (D′, N ′, R′) we have D = D′, N ≡ N ′ and R = R′.

Proof. We already known by Lemma 3.2.1 that at most one rule can be applied to
reduce any given machine configuration. What is left to do is prove that each rule is



CHAPTER 3. TOWARDS A MACHINE SEMANTICS 82

deterministic by itself. The proof is trivial, since substitution, append, freshlabels and
the typing judgement are all functions.

3.2.3 Initiality and Reachability

The same reasoning about what kind of configuration we can start a computation from
that we made for the stacked semantics can (and must) be made for the machine seman-
tics. The following definitions are not fundamentally different from the corresponding
definitions that we gave for stacked configurations.

Definition 3.2.2 (Initial Machine Configuration). A machine configuration is said to
be initial when it is of the form (C,M, ε). The set of initial machine configurations is
denoted by Ima.

Definition 3.2.3 (Reachable Machine Configuration). A machine configuration of the
form (C,M, S) is said to be reachable when either of the following is true:

1. (C,M, S) ∈ Ima,

2. There exists a machine configuration (D,N,R) such that (D,N,R) is reachable and
(D,N,R)⇒ (C,M, S).

3.2.4 Convergence, Deadlock and Divergence

We also give the usual definitions of convergence, deadlock and divergence.

Definition 3.2.4 (Converging Machine Configuration). Let ↓ be the smallest unary
relation over machine configurations such that:

1. For every circuit C and value V , (C, V, ε) ↓,

2. If (C,M, S)⇒ (D,N,R) and (D,N,R) ↓, then (C,M, S) ↓.

We say that a configuration (C,M, S) is converging when (C,M, S) ↓.

Definition 3.2.5 (Deadlocking Machine Configuration). Let ⊥ be the smallest unary
relation over machine configurations such that:

1. If there exists no (D,N,R) such that (C,M, S) ⇒ (D,N,R) and S 6= ε, then
(C,M, S)⊥,

2. If (C,M, S)⇒ (D,N,R) and (D,N,R)⊥, then (C,M, S)⊥.

We say that a configuration (C,M, S) goes into deadlock when (C,M, S)⊥.
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Definition 3.2.6 (Diverging Machine Configuration). Let ↑ be the largest unary relation
over machine configurations such that whenever (C,M, S) ↑ there exists (D,N,R) such
that (C,M, S) ⇒ (D,N,R) and (D,N,R) ↑. We say that a configuration (C,M, S) is
diverging when (C,M, S) ↑.

Notice how similar these definitions are to the corresponding definitions given in Section
3.1.2 for stacked configurations, and how different they are from the corresponding defi-
nitions given in Section 2.5.2 for small-step configurations. This is further proof of what
we briefly mentioned previously, that is, that the stacked semantics and the machine
semantics are built on the same intuition. Like we did with the previous semantics, we
prove that the convergence, deadlock and divergence relations are mutually exclusive on
machine configurations.

Proposition 3.2.3. The relations ↓,⊥ and ↑ are mutually exclusive over machine con-
figurations. That is, for every machine configuration (C,M, S), the following are true:

1. If (C,M, S) ↓, then (C,M, S) 6⊥,

2. If (C,M, S) ↓, then (C,M, S) 6 ↑,

3. If (C,M, S)⊥, then (C,M, S) 6 ↑.

Proof. We prove each claim separately:

1. We proceed by induction on (C,M, S) ↓:

• Case of M ≡ V and S = ε. Since (C, V, ε) is irreducible, but the stack is empty,
there is no way for (C, V, ε) to go into deadlock, so we conclude (C, V, ε) 6⊥.

• Case of (C,M, S) ⇒ (D,N, S ′) and (D,N, S ′) ↓. Since (C,M, S) is reducible, it
must be that (C,M, S)⇒ (D,N, S ′) (⇒ is deterministic) and (D,N, S ′)⊥ in order
for (C,M, S) to go into deadlock. However, by inductive hypothesis we know that
(D,N, S ′) 6⊥, so this is impossible and we conclude (C,M, S) 6⊥.

2. We proceed by induction on (C,M, S) ↓:

• Case of M ≡ V and S = ε. Since (D, V, ε) is irreducible, there is no way for it to
diverge, so we conclude (D, V, ε) 6 ↑.

• Case of (C,M, S) ⇒ (D,N, S ′) and (D,N, S ′) ↓. Since (D,N, S ′) 6 ↑ by inductive
hypothesis and (C,M, S) cannot reduce to any other configuration (⇒ is determin-
istic), there is no way for (C,M, S) to diverge, so we conclude (C,M, S) 6 ↑.

3. We proceed by induction on (C,M, S)⊥:

• Case in which (C,M, S) irreducible and S 6= ε. Since (C,M, S) is irreducible, there
is no way for it to diverge, so we conclude (C,M, S) 6 ↑.
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• Case of (C,M, S) ⇒ (D,N, S ′) and (D,N, S ′)⊥. Since (D,N, S ′) 6 ↑ by inductive
hypothesis and (C,M, S) cannot reduce to any other configuration (⇒ is determin-
istic), there is no way for (C,M, S) to diverge, so we conclude (C,M, S) 6 ↑.

We also prove that convergence, deadlock and divergence are total on machine config-
urations, like we did in the small-step case. In this case, however, we need the following
lemma.

Lemma 3.2.4. If (C,M, S) is irreducible, then M is a value.

Proof. We prove the contrapositive. That is, if M is not a value then (C,M, S) is
reducible. We proceed by cases on the form of M :

• Case M ≡ x. This case is impossible, since by the definition of machine configuration
M must contain no free variables.

• Case M ≡ ~̀. In this case M is a value and the claim is vacuously true.

• Case M ≡ λx.N . In this case M is a value and the claim is vacuously true.

• Case M ≡ NP . In this case (C,NP, S) can be reduced by the app-split rule.

• Case M ≡ 〈N,P 〉. If N and P are both values then 〈N,P 〉 is a value too and the
claim is vacuously true. Otherwise, (C, 〈N,P 〉, S) can be reduced by the tuple-split
rule.

• Case M ≡ let 〈x, y〉 = N inP . In this case (C, let 〈x, y〉 = N inP, S) can be reduced by
the let-split rule.

• Case M ≡ liftN . In this case M is a value and the claim is vacuously true.

• Case M ≡ forceN . In this case (C, forceN,S) can be reduced by the force-open rule.

• Case M ≡ boxT N . In this case (C, boxT N,S) can be reduced by the box-open rule.

• Case M ≡ apply(N,P ). In this case (C, apply(N,P ), S) can be reduced by the apply-
split rule.

• Case M ≡ (~̀, D, ~̀′). In this case M is a value and the claim is vacuously true.

Proposition 3.2.5. Every machine configuration (C,M, S) either converges, goes into
deadlock or diverges, that is:

(C,M, S) ↓ ∨(C,M, S)⊥ ∨ (C,M, S) ↑ .
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Proof. Let clen be a function that, given a machine configuration, returns the number
of reduction steps that can be taken starting from that configuration. The clen function
is defined as the least fixed point of the following equation on functions from machine
configurations to N∞:

clen(C,M, S) =

{
clen(D,N,R) + 1 if (C,M, S)⇒ (D,N,R),

0 otherwise.

If clen(C,M, S) = ∞, that means that (C,M, S) ⇒ (D,N,R) and clen(D,N,R) = ∞.
Because ↑ is defined as the largest relation such that (C,M, S) ↑ implies (C,M, S) ⇒
(D,N,R) and (D,N,R) ↑, we conclude that (C,M, S) ↑. On the other hand, if
clen(C,M, S) ∈ N, we proceed by induction on clen(C,M, S):

• Case clen(C,M, S) = 0. In this case (C,M, S) is irreducible and by Lemma 3.2.4 we
know M ≡ V . If S = ε, then we trivially conclude (C, V, ε) ↓. Otherwise, if S 6= ε, we
trivially conclude (C, V, S)⊥.

• Case clen(C,M, S) = n + 1. In this case we know that (C,M, S) ⇒ (D,N,R) and
clen(D,N,R) = n. By inductive hypothesis, we know that either (D,N,R) ↓ or
(D,N,R)⊥ or (D,N,R) ↑. We exclude the last option, because if (D,N,R) ↑, then
clen(D,N,R) (and as a consequence clen(C,M, S)) would be undefined, contradicting
the hypothesis. If (D,N,R) ↓, we have (C,M, S) ⇒ (D,N,R) and we conclude
(C,M, S) ↓, whereas if (D,N,R)⊥ we conclude (C,M, S)⊥ by the same reasoning.

3.2.5 Summary

In this section we introduced a machine semantics for Proto-Quipper-M inspired by the
CEK abstract machine. This semantics takes the stack approach of the stacked semantics
even further, effectively pushing a new frame onto the stack every time a sub-term has
to be evaluated. As a result, this semantics is devoid of contextual rules. Similarly
to what we did with the stacked semantics in Section 3.1, we established the subset of
“benign” machine configurations in which we are actually interested, namely reachable
configurations. Lastly, we gave definitions for the convergence, deadlock and divergence
of machine configurations, which we proved to be mutually exclusive and total (when
considered in disjunction) relations.



Chapter 4

Correspondence Results

We are at a point where we have presented three different semantics for the evaluation
of Proto-Quipper-M programs and we have analyzed their individual properties. In this
chapter, we start looking at the various semantics in relationship with each other, in
order to eventually prove that the machine semantics that we arrived to in Chapter
3 is ultimately equivalent to the small-step semantics given in Chapter 2 and, as a
consequence, to the original big-step operational semantics given by Rios and Selinger.
To this effect, we first focus on the relationship between the stacked semantics and
the other two semantics. Then, in light of the respective results, we prove that the
computations carried out in the small-step and machine semantics are equivalent by
proving that they are simulated by the same computation in the stacked semantics.

4.1 From Small-step to Stacked Semantics

Since we plan to use the stacked semantics as a “middle ground” on which the small-
step and machine semantics ought to agree, when in this section we prove results about
the relationship between the small-step and stacked semantics we mainly focus on the
direction that goes from the former to the latter.

4.1.1 Configurations

In Section 3.1.1 we alluded to some sort of relationship between small-step configurations
of the form (C,M) and stacked configurations of the form (C,M)∅.ε. To formalize this
relationship, we define the following function:

fromSmallStep(C,M) = (C,M)∅.ε.

Note that although we focus on one direction of this relationship, the set of small-step
configurations and the set Ist of initial stacked configurations are effectively in bijection,

86
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since fromSmallStep is trivially invertible.

4.1.2 Reductions

The most relevant result that we prove in this section is that a single reduction step in
the small-step semantics can always be simulated by a reduction sequence in the stacked
semantics.

Lemma 4.1.1. Let ⇀+ be the transitive closure of ⇀. If (C,M) → (C ′,M ′), then for

every ~k and X we have

(C,M)
~k.X ⇀+ (C ′,M ′)

~k.X.

Furthermore, if M ≡ E[boxT (liftN)] then we also have C ′ ≡ C,M ′ ≡ E[(~̀, D, ~̀′)] and

(idQ, N~̀)
~̀
.X ⇀+ (D, ~̀′)

~̀
.X,

for all X and for (Q, ~̀) = freshlabels(N, T ).

Proof. By induction on the derivation of (C,M)→ (C ′,M ′). We distinguish two cases.

If M 6≡ E[boxT (liftN)], then we immediately conclude(C,M)
~k.X ⇀ (C ′,M ′)

~k.X, for all
~k and X, by the head rule. Otherwise, if M ≡ E[boxT (liftN)], we proceed by cases on
E:

• Case E ≡ [·]. In this case we have

(Q, ~̀) = freshlabels(N, T ) (idQ, N~̀)→ . . .→ (D, ~̀′)

(C, boxT (liftN))→ (C, (~̀, D, ~̀))
box

Let (C1,M1) → (C2,M2), (C2,M2) → (C3,M3), . . . , (Cn−1,Mn−1) → (Cn,Mn) be

the sequence of reduction steps denoted by (idQ, N~̀) → . . . → (D, ~̀′), such that

(idQ, N~̀) ≡ (C1,M1) and (Cn,Mn) ≡ (D, ~̀′). By applying the inductive hypothesis to

each of these reduction steps, we get (idQ, N~̀)
~̀
.X ⇀+ (C2,M2)

~̀
.X, (C2,M2)

~̀
.X ⇀+

(C3,M3)
~̀
.X, up until (Cn−1,Mn−1)

~̀
.X ⇀+ (D, ~̀′)

~̀
.X, for all X, and therefore

(idQ, N~̀)
~̀
.X ⇀+ (D, ~̀′)

~̀
.X, for all X, by the transitivity of ⇀+. We therefore

consider the following derivation:

(Q, ~̀) = freshlabels(N, T )

(C, boxT (liftN))~k.X ′ ⇀ (idQ, N~̀)
~̀.(C, boxT (liftN))~k.X ′

step-in

and by appropriately settingX = (C, boxT (liftN))
~k.X ′ we get (C, boxT (liftN))

~k.X ′ ⇀+

(D, ~̀′)
~̀
.(C, boxT (liftN))

~k.X ′, for all X ′, thanks to the transitivity of ⇀+. Next, we
consider the following derivation:

(D, ~̀′)~̀.(C, boxT (liftN))~k.X ′ ⇀ (C, (~̀, D, ~̀′))~k.X ′
step-out
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by which we conclude (C, boxT (liftN))
~k.X ′ ⇀+ (C, (~̀, D, ~̀′))

~k.X ′, for all ~k and X ′,
thanks to the transitivity of ⇀+.

• Case E ≡ FP . In this case we have

(C,F [boxT (liftN)])→ (C ′,M ′)

(C,F [boxT (liftN)]P )→ (C ′,M ′P )
ctx-app-left

By inductive hypothesis we know that C ≡ C ′, that M ′ ≡ F [(~̀, D, ~̀′)]P and that

(idQ, N~̀)
~̀
.X ⇀+ (D, ~̀′)

~̀
.X, for all X and for (Q, ~̀) = freshlabels(N, T ). By the

same reasoning used in the E ≡ [·] case we can derive (C,E[boxT (liftN)])
~k.X ′ ⇀

(idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~k.X ′ by the step-in rule. Similarly, we can derive

(D, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X ′ ⇀ (C,E[(~̀, D, ~̀′)])
~k.X ′ by the step-out rule. There-

fore, by setting X = (C,E[boxT (liftN)])
~k.X ′ we conclude (C,E[boxT (liftN)])

~k.X ′ ⇀+

(C,E[(~̀, D, ~̀′)])
~k.X ′, for all ~k and X ′, thanks to the transitivity of ⇀+.

• Case E ≡ V F . This case is proven in the same way as the E ≡ FP case, except with
ctx-app-right instead of ctx-app-left.

• Case E ≡ 〈F, P 〉. This case is proven in the same way as the E ≡ FP case, except
with ctx-tuple-left instead of ctx-app-left.

• Case E ≡ 〈V, F 〉. This case is proven in the same way as the E ≡ FP case, except
with ctx-tuple-right instead of ctx-app-left.

• Case E ≡ let 〈x, y〉 = F inP . This case is proven in the same way as the E ≡ FP
case, except with ctx-let instead of ctx-app-left.

• Case E ≡ forceF . This case is proven in the same way as the E ≡ FP case, except
with ctx-force instead of ctx-app-left.

• Case E ≡ boxU F . This case is proven in the same way as the E ≡ FP case, except
with ctx-box instead of ctx-app-left.

• Case E ≡ apply(F, P ). This case is proven in the same way as the E ≡ FP case,
except with ctx-apply-left instead of ctx-app-left.

• Case E ≡ apply(V, F ). This case is proven in the same way as the E ≡ FP case,
except with ctx-apply-right instead of ctx-app-left.

Corollary 4.1.1.1. Suppose (C,M) and (C ′,M ′) are two small-step configurations. If
(C,M)→ (C ′,M ′), then fromSmallStep(C,M) ⇀+ fromSmallStep(C ′,M ′).
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Proof. The claim follows immediately from Lemma 4.1.1 by setting ~k = ∅ and X = ε.

A weaker result holds in the other direction. Specifically, a reduction sequence in the
stacked semantics can be simulated by a reduction sequence in the small-step semantics
only if the former begins and ends on configurations of the same length and all of the
intermediate configurations have length greater or equal to that of the endpoints. In
other words, the small-step semantics can only simulate computations that begin and
end in the same stack frame. This is to be expected, since in the small-step semantics the
stack of sub-reductions introduced by the boxing operator exists only in the derivation
tree of the reduction sequence, and not in the reduction sequence itself, so a computa-
tion (C,M) →∗ (D,N) where (C,M) and (D,N) belong to different sub-reductions is
effectively meaningless.

Lemma 4.1.2. Let (C,M)
~k.X and (D,N)

~k.X be two stacked configurations of length

m. If (C,M)
~k.X ⇀+ (D,N)

~k.X and all the intermediate configurations in this reduction
have length m or greater, then (C,M)→+ (D,N).

Proof. By induction on the length of the reduction (C,M)
~k.X ⇀+ (D,N)

~k.X:

• Case of 1. In this case we have (C,M)
~k.X ⇀ (D,N)

~k.X. The only rule which is
consistent with the hypothesis is head, so we know that (C,M) → (D,N) and the
claim is trivially true.

• Case of n+ 1. In this case we have (C,M)
~k.X ⇀ (C ′,M ′)

~̀
.X ′ ⇀+ (D,N)

~k.X and we

proceed by cases on the introduction of (C,M)
~k.X ⇀ (C ′,M ′)

~̀
.X ′:

– Case of head. In this case we have C ′ ≡ C, ~̀ = ~k and X ′ = X and we know that
(C,M)→ (C ′,M ′).By inductive hypothesis we also know that (C ′,M ′)→+ (D,N),
so by the transitivity of →+ we conclude (C,M)→+ (D,N).

– Case of step-in. In this case we know that M ≡ E[boxT (liftN)] and we have

(C,E[boxT (liftN)])
~k.X ⇀ (idQ, N~̀)

~̀
.(C,E[boxT (liftN)])

~k.X, where (Q, ~̀) =

freshlabels(N, T ). We know that (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~k.X is a configura-

tion of length m+1, so in order for it to eventually reduce to (D,N)
~k.X there must

be a shortening reduction somewhere between (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~k.X

and (D,N)
~k.X. Because the only shortening reductions are introduced by the

step-out rule we must have

(idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~k.X ⇀+ (D′, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X

⇀ (C,E[(~̀, D′, ~̀′)])
~k.X

⇀∗ (D,N)
~k.X,
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where every intermediate configuration in (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~k.X ⇀+

(D′, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X has length greater or equal than m + 1. By ap-
plying the inductive hypothesis on this reduction, which has length less than
n, we get (idQ, N~̀) →+ (D′, ~̀′) and therefore (C, boxT (liftN)) → (C, (~̀, D′, ~̀′))
by the box rule. By applying Theorem 2.5.3 we also get (C,E[boxT (liftN)]) →
(C,E[(~̀, D′, ~̀′)]). At this point, if (C,E[(~̀, D′, ~̀′)])

~k.X = (D,N)
~k.X then triv-

ially (C,E[(~̀, D′, ~̀′)]) = (D,N) and the claim is proven. Otherwise, we have

a reduction sequence (C,E[(~̀, D′, ~̀′)])
~k.X ⇀+ (D,N)

~k.X, of length less than

n, so by inductive hypothesis we get (C,E[(~̀, D′, ~̀′)]) →+ (D,N) and conclude
(C,E[boxT (liftN)]) ⇀+ (D,N).

– Case of step-out. This case is impossible since it immediately violates the hypothesis
that every intermediate configuration is of length m or greater.

Corollary 4.1.2.1. Suppose (C,M) and (D,N) are two small-step configurations. If
fromSmallStep(C,M) ⇀+ fromSmallStep(D,N), then (C,M)→+ (D,N).

Proof. The claim follows immediately from Lemma 4.1.2 by setting ~k = ∅ and X = ε.

These two results will play a relevant role in the following sections, and they can be
summarized graphically in the following diagram:

(C,M) (D,N)

(C,M)
~̀
.X (D,N)

~̀
.X

+

+

4.1.3 Convergence, Deadlock and Divergence

For the sake of the equivalence between the small-step and machine semantics, it is not
essential that the fromSmallStep function preserve all three of the convergence, deadlock
and divergence relations between the small-step and the stacked semantics. In particular,
we will see that it is sufficient to prove that fromSmallStep preserves convergence and that
whenever (C,M) goes into deadlock, then fromSmallStep(C,M) also goes into deadlock.
If we consider that to converge essentially means to evaluate to a term of a certain form,
we can see that the first result is a trivial consequence of the two previous lemmata, as
can be seen by this specific instance of the diagram that we just presented:

(C,M) (D,N)

(C,M)∅.ε (D,N)∅.ε

+

fromSmallStep fromSmallStep

+
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More formally, we give the following result.

Proposition 4.1.3. (C,M) ↓ if and only if fromSmallStep(C,M) ↓.

Proof. It is easy to see that a small-step configuration (C,M) converges if and only if
(C,M) →∗ (D, V ) for some D, V . It is equally easy to see that a stacked configuration
(C,M)∅.ε converges if and only if (C,M)∅.ε ⇀∗ (D, V )∅.ε for some D, V . As a result,
the claim follows trivially from corollaries 4.1.1.1 and 4.1.2.1.

A similar intuition applies to the deadlocking case. However, because small-step
configurations can go into deadlock because of a sub-reduction introduced by box, the
proof of the second result is less trivial.

Lemma 4.1.4. Suppose (C,M) is a small-step configuration. If (C,M)⊥, then
fromSmallStep(C,M)⊥.

Proof. We proceed by induction on (C,M)⊥:

• Case in which (C,M) is irreducible, M 6≡ V and M 6≡ E[boxT (liftN)]. Consider
fromSmallStep(C,M) = (C,M)∅.ε. This configuration cannot be reduced by the head
rule, since this would imply the reducibility of (C,M), nor by the step-in rule, since
M 6≡ E[boxT (liftN)], nor by step-out, since M 6≡ V and the rest of the stack is empty.
Therefore (C,M)∅.ε is irreducible and because M 6≡ V we conclude (C,M)∅.ε⊥.

• Case of (C,M) → (D,N) and (D,N)⊥. By Lemma 4.1.1 we know that
fromSmallStep(C,M) ⇀+ fromSmallStep(D,N). By inductive hypothesis we know
that fromSmallStep(D,N)⊥ and conclude that fromSmallStep(C,M)⊥.

• Case of M ≡ E[boxT (liftN)] and (idQ, N~̀)⊥, where (Q, ~̀) = freshlabels(N, T ).
In this case we have fromMachine(C,E[boxT (liftN)]) = (C,E[boxT (liftN)])∅.ε ⇀

(idQ, N~̀)
~̀
.(C,E[boxT (liftN)])∅.ε by the step-in rule and inductive hypothesis we

know that fromMachine(idQ, N~̀) = (idQ, N~̀)
∅.ε⊥. From this and Lemma 3.1.5 we get

that (idQ, N~̀)
~k.X⊥ for all ~k and X, including ~k = ~̀ and X = (C,E[boxT (liftN)])∅.ε,

so we know (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])∅.ε⊥ and conclude (C,E[boxT (liftN)])∅.ε⊥.

• Case ofM ≡ E[boxT (liftN)] and (idQ, N~̀)→∗ (D, V ), where (Q, ~̀) = freshlabels(N, T )
and V is not a label tuple. In this case we have fromMachine(C,E[boxT (liftN)]) =

(C,E[boxT (liftN)])∅.ε ⇀ (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])∅.ε by the step-in rule and we

know (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])∅.ε ⇀∗ (D, V )

~̀
.(C,E[boxT (liftN)])∅.ε by Lemma

4.1.1. Since (D, V )
~̀
.(C,E[boxT (liftN)])∅.ε cannot be reduced by the head rule (since

V is a value), nor by the step-in rule (since V cannot be of the form F [boxT (liftP )]
for any F, P ), nor by the step-out rule (since V is not a label tuple), and the rest of
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the stack is not empty, we get that (D, V )
~̀
.(C,E[boxT (liftN)])∅.ε⊥ and conclude that

(C,E[boxT (liftN)])∅.ε⊥.

4.1.4 Summary

In this section we established a relationship between small-step configurations and stacked
configurations via the fromSmallStep function. We showed that a reduction sequence be-
tween small-step configurations can be simulated by a reduction sequence between the
corresponding stacked configurations, and vice-versa (to an extent). As a result, we
proved that fromMachine preserves convergence between small-step and stacked config-
urations, and that whenever a small-step configuration goes into deadlock, then so does
the corresponding stacked configuration.

4.2 From Machine to Stacked Semantics

We now explore the “other side” of the equivalence between the small-step and ma-
chine semantics, that is, the relationship between the machine semantics and the stacked
semantics, with emphasis on the direction that goes from the former to the latter.

4.2.1 Configurations

Whereas the relationship between small-step and stacked configurations is trivial and
mainly concerns initial configurations, the relationship between machine and stacked
configurations is at the same time more pervasive (it holds for all configurations, not
just initial ones) and slightly more complicated to define. For this purpose, we formalize
this relationship via a fromMachine function which maps machine configurations into
stacked configurations:



CHAPTER 4. CORRESPONDENCE RESULTS 93

fromMachine(C,M, ε) = (C,M)∅.ε

fromMachine(C,M,FArg(N).S) = fromMachine(C,MN,S)

fromMachine(C,M,FApp(V ).S) = fromMachine(C, VM,S)

fromMachine(C,M,ALabel(N).S) = fromMachine(C, apply(M,N), S)

fromMachine(C,M,ACirc(V ).S) = fromMachine(C, apply(V,M), S)

fromMachine(C,M,TRight(N).S) = fromMachine(C, 〈M,N〉, S)

fromMachine(C,M,TLeft(V ).S) = fromMachine(C, 〈V,M〉, S)

fromMachine(C,M,Box (Q, ~̀).S) = fromMachine(C, boxT M,S) where ∅;Q ` ~̀ : T

fromMachine(C,M, Sub(D,N, ~̀, T ).S) = (C,M)
~̀
. fromMachine(D, boxT (liftN), S)

fromMachine(C,M,Let(x, y,N).S) = fromMachine(C, let 〈x, y〉 = M inN,S)

fromMachine(C,M,Force.S) = fromMachine(C, forceM,S).

Before we discuss this definition in greater detail, it is worth noting that by restricting
the domain of fromMachine to the set Ima of initial machine configurations, we trivially
have a bijection between Ima and the set Ist of initial stacked configurations, which
is analogous to the one we had in Section 4.1.1 between small-step configurations and
initial stacked configurations.

Informally, the fromMachine function takes the term that the machine configuration is
currently focused on and gradually unwinds the stack to rebuild the term being evaluated
in its entirety. The only case in which we actually change the current stack frame in the
resulting stacked configuration is, unsurprisingly, when we encounter a continuation of
type Sub. As a result, the machine stack is encoded in the resulting stacked configuration
partly as the configuration stack itself, and partly as the structure of the terms contained
within each individual stack frame. This structure is not arbitrary. In fact, we have that
it always corresponds to the structure of an evaluation context, as we prove in the
following result.

Proposition 4.2.1. If fromMachine(C,M, S) = (D,N)
~̀
.X, then C ≡ D and N is of the

form E[M ] for some evaluation context E.

Proof. By induction on |S|, the size of S, defined in the natural manner. If |S| = 0, it
means that S = ε. In this case we have fromMachine(C,M, ε) = (C,M)∅.ε and the claim
is true for E ≡ [·]. If |S| = n + 1, suppose S ≡ H.S ′, where |S ′| = n. We proceed by
cases on H:

• Case H ≡ FArg(N). In this case we have fromMachine(C,M,FArg(N).S ′) =
fromMachine(C,MN,S ′). We know that MN ≡ E[M ] for E ≡ [·]N . Furthermore,
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by inductive hypothesis we get that fromMachine(C,E[M ], S ′) = (C,E ′[E[M ]])
~̀
.X

for some E ′ and by Proposition 2.5.7 we conclude fromMachine(C,M,FArg(N).S ′) =

(C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ FApp(V ). In this case we have fromMachine(C,M,FApp(V ).S ′) =
fromMachine(C, VM,S ′). We know that VM ≡ E[M ] for E ≡ V [·]. Fur-
thermore, by inductive hypothesis we get that fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude

that fromMachine(C,M,FApp(V ).S ′) = (C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ ALabel(N). In this case we have fromMachine(C,M,ALabel(N).S ′) =
fromMachine(C, apply(M,N), S ′). We know that apply(M,N) ≡ E[M ] for E ≡
apply([·], N). Furthermore, by inductive hypothesis we get fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude that

fromMachine(C,M,ALabel(N).S ′) = (C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ ACirc(V ). In this case we have fromMachine(C,M,ACirc(V ).S ′) =
fromMachine(C, apply(V,M), S ′). We know that apply(V,M) ≡ E[M ] for E ≡
apply(V, [·]). Furthermore, by inductive hypothesis we get fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~k.X for some E ′ and by Proposition 2.5.7 we can conclude that

fromMachine(C,M,ACirc(V ).S ′) = (C,E ′′[M ])
~k.X for some E ′′.

• Case H ≡ TRight(N). In this case we have fromMachine(C,M,TRight(N).S ′) =
fromMachine(C, 〈M,N〉, S ′). We know that 〈M,N〉 ≡ E[M ] for E ≡ 〈[·], N〉.
Furthermore, by inductive hypothesis we get that fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude that

fromMachine(C,M,TRight(N).S ′) = (C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ TLeft(V ). In this case we have fromMachine(C,M,TLeft(V ).S ′) =
fromMachine(C, 〈V,M〉, S ′). We know that 〈V,M〉 ≡ E[M ] for E ≡ 〈V, [·]〉.
Furthermore, by inductive hypothesis we get that fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude that

fromMachine(C,M,TLeft(V ).S ′) = (C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ Box (Q, ~̀). In this case we have fromMachine(C,M,Box (Q, ~̀).S ′) =

fromMachine(C, boxT M,S ′), where ∅;Q ` ~̀ : T . We know that boxT M ≡ E[M ] for
E ≡ boxT [·]. Furthermore, by inductive hypothesis we get fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude that

fromMachine(C,M,Box (Q, ~̀′).S ′) = (C,E ′′[M ])
~k.X for some E ′′.

• Case H ≡ Sub(D,N, ~̀, T ). In this case fromMachine(C,M, Sub(D,N, ~̀, T ).S ′) =

(C,M)
~̀
. fromMachine(D, boxT (liftN), S ′) and the claim is trivially true for E ≡ [·].
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• Case H ≡ Let(x, y,N). In this case we have fromMachine(C,M,Let(x, y,N).S ′) =
fromMachine(C, let 〈x, y〉 = M inN,S ′). We know that let 〈x, y〉 = M inN ≡ E[M ]
for E ≡ let 〈x, y〉 = [·] inN . Furthermore, by inductive hypothesis we get that

fromMachine(C,E[M ], S ′) = (C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7

we conclude fromMachine(C,M,Let(x, y,N).S ′) = (C,E ′′[M ])
~̀
.X for some E ′′.

• Case H ≡ Force. In this case we know that fromMachine(C,M,Force.S ′) =
fromMachine(C, forceM,S ′). We also know that forceM ≡ E[M ] for E ≡ force [·].
Furthermore, by inductive hypothesis we get that fromMachine(C,E[M ], S ′) =

(C,E ′[E[M ]])
~̀
.X for some E ′ and by Proposition 2.5.7 we eventually conclude that

fromMachine(C,M,Force.S ′) = (C,E ′′[M ])
~k.X for some E ′′.

The following result goes even further, as it proves that the evaluation context E
that we introduced in the previous lemma, as well as the locally available labels ~̀ and
the rest of the stack X all depend exclusively on the machine stack S.

Proposition 4.2.2. If two machine configurations (C,M, S) and (D,N, S) share the

same stack S, then fromMachine(C,M, S) = (C,E[M ])
~̀
.X and fromMachine(D,N, S) =

(D,E[N ])
~̀
.X for the same E, ~̀ and X.

Proof. The existence of E is guaranteed by Proposition 4.2.1. The identity of E, ~̀ and
X can be proven trivially by induction on the length of S.

4.2.2 Reductions

Because the machine semantics is, intuitively, more fine-grained than the stacked se-
mantics, it comes as no surprise that distinct machine configurations are mapped by
fromMachine to the same stacked configuration. As an example, take the configurations
(C, V,FArg(W ).ε) and (C,W,FApp(V ).ε), for any values V,W . We have

fromMachine(C, V,FArg(W ).ε) = fromMachine(C, V W, ε) = (C, V W )∅.ε,

fromMachine(C,W,FApp(V ).ε) = fromMachine(C, V W, ε) = (C, V W )∅.ε.

Intuitively, this is due to the fact that the two configurations represents two different
phases in the evaluation of the same application VW , which in contrast can be evaluated
in a single step in the stacked semantics. In fact, most of the rules of the machine
semantics only serve to decompose or move around terms (e.g, the split or shift rules)
and because they do not actually evaluate anything, they have no appreciable effect on
the corresponding stacked configuration. This will be a crucial aspect to consider in the
coming results, so we ought to formalize it. Let ⇒b be the proper subset of ⇒ that
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can be derived by only using rules for ⇒ whose conclusion (C,M, S) ⇒ (D,N,R) is
such that fromMachine(C,M, S) = fromMachine(D,N,R). These rules are specifically
app-split, app-shift, apply-split, apply-shift, let-split, tuple-split, tuple-shift, tuple-join,
box-open, force-open. Also, let ⇒r be the subset of ⇒ that can be derived by only using
the remaining rules, that is, app-join, apply-join, box-sub, box-close, let-join, force-close,
such that

(C,M, S)⇒ (D,N,R) ⇐⇒ (C,M, S)⇒b (D,N,R) ∨ (C,M, S)⇒r (D,N,R).

The most essential result that we must prove is that there is a limit to the number of
times we can reduce a machine configuration (C,M, S) without causing any change in
the corresponding stacked configuration fromMachine(C,M, S). In other words, we must
prove that ⇒b is strongly normalizing.

Lemma 4.2.3. The reduction relation ⇒b is strongly normalizing.

Proof. Let #t be a function on terms defined as such:

#t(V ) = 0,

#t(boxT M) = #t(forceM) = #t(let 〈x, y〉 = M inN) = #t(M) + 1,

#t(MN) = #t(apply(M,N)) = #t(M) + #t(N) + 2,

#t(〈M,N〉) = #t(M) + #t(N) + 3.

Now let #s be a function on machine stacks defined as such:

#s(ε) = #s(Sub(D,N, ~̀, T ).S ′) = 0,

#s(Box (Q, ~̀).S ′) = #s(Force.S ′) = #s(Let(x, y,M).S ′) = #s(S
′),

#s(FArg(M).S ′) = #s(ALabel(M).S ′) = #t(M) + 1 + #s(S
′),

#s(TRight(M).S ′) = #t(M) + 2 + #s(S
′),

#s(FApp(V ).S ′) = #s(ACirc(V ).S ′) = #s(S
′),

#s(TLeft(V ).S ′) = 1 + #s(S
′).

Finally, let #(C,M, S) = #t(M)+#s(S). It is trivial to see that both #t and #s, and as a
consequence #, are non-negative. Because of this, it is sufficient to show that whenever
(C,M, S) ⇒b (D,N, S ′) then #(D,N, S ′) < #(C,M, S) to prove that ⇒b is strongly
normalizing. We proceed by cases on the introduction of (C,M, S)⇒b (D,N, S ′):

• Case of app-split. In this case (C,MN,S) ⇒b (C,M,FArg(N).S). We have
#(C,MN,S) = #t(M) + #t(N) + 2 + #s(S) and #(C,M,FArg(N).S) = #t(M) +
#t(N) + 1 + #s(S) and the claim is proven.
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• Case of app-shift. In this case (C, V,FArg(N).S) ⇒b (C,N,FApp(V ).S). We have
#(C, V,FArg(N).S) = #t(N) + 1 + #s(S) and #(C,N,FApp(V ).S) = #t(N) + #s(S)
and the claim is proven.

• Case of apply-split. In this case (C, apply(M,N), S)⇒b (C,M,ALabel(N).S). We have
#(C, apply(M,N), S) = #t(M) + #t(N) + 2 + #s(S) and #(C,M,ALabel(N).S) =
#t(M) + #t(N) + 1 + #s(S) and the claim is proven.

• Case of apply-shift. In this case (C, V,ALabel(N).S)⇒b (C,N,ACirc(V ).S). We have
#(C, V,ALabel(N).S) = #t(N) + 1 + #s(S) and #(C,N,ACirc(V ).S) = #t(N) +
#s(S) and the claim is proven.

• Case of let-split. In this case (C, let 〈x, y〉 = M inN,S)⇒b (C,M,Let(x, y,N).S). We
have #(C, let 〈x, y〉 = M inN,S) = #t(M) + 1 + #s(S) and #(C,M,Let(x, y,N).S) =
#t(M) + #s(S) and the claim is proven.

• Case of tuple-split. In this case (C, 〈M,N〉, S) ⇒b (C,M,TRight(N).S). We have
#(C, 〈M,N〉, S) = #t(M)+#t(N)+3+#s(S) and #(C,M,TRight(N).S) = #t(M)+
#t(N) + 2 + #s(S) and the claim is proven.

• Case of tuple-shift. In this case (C, V,TRight(N).S)⇒b (C,N,TLeft(V ).S). We have
#(C, V,TRight(N).S) = #t(N) + 2 + #s(S) and #(C,N,TLeft(V ).S) = #t(N) + 1 +
#s(S) and the claim is proven.

• Case of tuple-join. In this case (C,W,TLeft(V ).S) ⇒b (C, 〈V,W 〉, S). We have
#(C,W,TLeft(V ).S) = #s(S) + 1 and #(C, 〈V,W 〉, S) = #s(S) and the claim is
proven.

• Case of box-open. In this case (C, boxT M,S) ⇒b (C,M,Box (Q, ~̀).S). We have

#(C, boxT M,S) = #t(M) + 1 + #s(S) and #(C,M,Box (Q, ~̀).S) = #t(M) + #s(S)
and the claim is proven.

• Case of force-open. In this case (C, forceM,S) ⇒b (C,M,Force.S). We have
#(C, forceM,S) = #t(M) + 1 + #s(S) and #(C,M,Force.S) = #t(M) + #s(S) and
the claim is proven.

Now we can prove the most significant result of this section, which is similar to the one
we gave in Lemma 4.1.1. Namely, we prove that a single reduction step in the machine
semantics can always be simulated by zero or one steps in the stacked semantics.

Lemma 4.2.4. Suppose (C,M, S) and (C ′,M ′, S ′) are two machine configurations such
that (C,M, S)⇒ (C ′,M ′, S ′). The following hold:
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1. If (C,M, S)⇒b (C ′,M ′, S ′), then fromMachine(C,M, S) = fromMachine(C ′,M ′, S ′),

2. If (C,M, S)⇒r (C ′,M ′, S ′), then fromMachine(C,M, S) ⇀ fromMachine(C ′,M ′, S ′).

Proof. By cases on the introduction of (C,M, S)⇒ (C ′,M ′, S ′):

• Case of app-split. In this case we have (C,NP, S) ⇒b (C,N,FArg(P ).S) and we im-
mediately conclude fromMachine(C,N,FArg(P ).S) = fromMachine(C,NP, S) by the
definition of fromMachine.

• Case of app-shift. In this case we have (C, V,FArg(P ).S) ⇒ (C,P,FApp(V ).S) and
we immediately conclude

fromMachine(C, V,FArg(P ).S) = fromMachine(C, V P, S)

= fromMachine(C,P,FApp(V ).S).

• Case of app-join. In this case we have (C, V,FApp(λx.N).S) ⇒r (C,N [V/x], S). By
propositions 4.2.1 and 4.2.2 we know that

fromMachine(C, V,FApp(λx.N).S) = fromMachine(C, (λx.N)V, S)

= (C,E[(λx.N)V ])
~̀
.X,

fromMachine(C,N [V/x], S) = (C,E[N [V/x]])
~̀
.X.

Because (C, (λx.N)V ) → (C,N [V/x]) by the app rule, we get (C,E[(λx.N)V ]) →
(C,E[N [V/x]]) by Theorem 2.5.3. Furthermore, by Corollary 2.5.6.1 we know that
E[(λx.N)V ] 6≡ E ′[boxT (liftP )] for any E ′, P and therefore by the head rule we conclude

(C,E[(λx.N)V ])
~̀
.X ⇀ (C,E[N [V/x]])

~̀
.X.

• Case of apply-split. In this case we have (C, apply(N,P ), S) ⇒b (C,N,ALabel(P ).S)
and we conclude fromMachine(C,N,ALabel(P ).S) = fromMachine(C, apply(N,P ), S)
by the definition of fromMachine.

• Case of apply-shift. In this case we have (C, V,ALabel(P ).S) ⇒b (C,P,ACirc(V ).S)
and we immediately conclude

fromMachine(C, V,ALabel(P ).S) = fromMachine(C, apply(V, P ), S)

= fromMachine(C,P,ACirc(V ).S).
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• Case of apply-join. In this case we have (C,~k,ACirc((~̀, D, ~̀′)).S)⇒r (C ′, ~k′, S), where

(C ′, ~k′) = append(C,~k, ~̀, D, ~̀′). By propositions 4.2.1 and 4.2.2 we know that

fromMachine(C,~k,ACirc((~̀, D, ~̀′)).S) = fromMachine(C, apply((~̀, D, ~̀′), ~k), S)

= (C,E[apply((~̀, D, ~̀′), ~k)])
~̀′′
.X,

fromMachine(C, ~k′, S) = (C,E[~k′])
~̀′′
.X.

Because (C, apply((~̀, D, ~̀′), ~k)) → (C, ~k′) by the apply rule, we have that

(C,E[apply((~̀, D, ~̀′), ~k)]) → (C,E[~k′]) by Theorem 2.5.3. Furthermore, by Corollary

2.5.6.1 we know that E[apply((~̀, D, ~̀′), ~k)] 6≡ E ′[boxT (liftP )] for any E ′, P and
therefore by the head rule we conclude

(C,E[apply((~̀, D, ~̀′), ~k)])
~̀′′
.X ⇀ (C,E[~k′])

~̀′′
.X.

• Case of tuple-split. In this case we have (C, 〈N,P 〉, S)⇒b (C,N,TRight(P ).S) and we
immediately conclude fromMachine(C,N,TRight(P ).S) = fromMachine(C, 〈N,P 〉, S)
by the definition of fromMachine.

• Case of tuple-shift. In this case we have (C, V,TRight(P ).S) ⇒b (C,P,TLeft(V ).S)
and we immediately conclude

fromMachine(C, V,TRight(P ).S) = fromMachine(C, 〈V, P 〉, S)

= fromMachine(C,P,TLeft(V ).S).

• Case of tuple-join. In this case we have (C,W,TLeft(V ).S)⇒b (C, 〈V,W 〉, S) and we
immediately conclude fromMachine(C,W,TLeft(V ).S) = fromMachine(C, 〈V,W 〉, S)
by the definition of fromMachine.

• Case of box-open. In this case we have (C, boxT N,S) ⇒b (C,N,Box (Q, ~̀).S),

where (Q, ~̀) = freshlabels(N, T ). Since we know by the definition of freshlabels

that ∅;Q ` ~̀ : T , we immediately conclude fromMachine(C,N,Box (Q, ~̀).S) =
fromMachine(C, boxT N,S).

• Case of box-sub. In this case (C, liftN,Box (Q, ~̀).S) ⇒r (idQ, N~̀, Sub(C,N, ~̀, T ).S),

where ∅;Q ` ~̀ : T . By propositions 4.2.1 and 4.2.2 we know that

fromMachine(C, liftN,Box (Q, ~̀).S) = fromMachine(C, boxT (liftN), S)

= (C,E[boxT (liftN)])
~̀′
.X,

fromMachine(idQ, N~̀, Sub(C,N, ~̀, T ).S) = (idQ, N~̀)
~̀
. fromMachine(C, boxT (liftN), S)

= (idQ, N~̀)
~̀
.(C,E[boxT (liftN)])

~̀′
.X,



CHAPTER 4. CORRESPONDENCE RESULTS 100

and by the step-in rule we conclude

(C,E[boxT (liftN)])
~̀′
.X ⇀ (idQ, N~̀)

~̀
.(C,E[boxT (liftN)])

~̀′
.X.

• Case of box-close. In this case we have (D, ~̀′, Sub(C,N, ~̀, T ).S) ⇒r (C, (~̀, D, ~̀′), S).
By propositions 4.2.1 and 4.2.2 we know that

fromMachine(D, ~̀′, Sub(C,N, ~̀, T ).S) = (D, ~̀′)
~̀
. fromMachine(C, boxT (liftN), S)

= (D, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X,

fromMachine(C, (~̀, D, ~̀′), S) = (C,E[(~̀, D, ~̀′)])
~k.X,

and by the step-out rule we conclude

(D, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X ⇀ (C,E[(~̀, D, ~̀′)])
~k.X.

• Case of let-split. In this case we have (C, let 〈x, y〉 = N inP, S)⇒b (C,N,Let(x, y, P ).S)
and we conclude fromMachine(C,N,Let(x, y, P ).S) = fromMachine(C, let 〈x, y〉 =
N inP, S) by the definition of fromMachine.

• Case of let-join. In this case we have (C, 〈V,W 〉,Let(x, y,N).S)⇒r (C,N [V/x][W/y], S).
By propositions 4.2.1 and 4.2.2 we know that

fromMachine(C, 〈V,W 〉,Let(x, y,N).S) = fromMachine(C, let 〈x, y〉 = 〈V,W 〉 inN,S)

= (C,E[let 〈x, y〉 = 〈V,W 〉 inN ])
~̀
.X,

fromMachine(C,N [V/x][W/y], S) = (C,E[N [V/x][W/y]])
~̀
.X.

Because (C, let 〈x, y〉 = 〈V,W 〉 inN) → (C,N [V/x][W/y]) by the let rule, we get
(C,E[let 〈x, y〉 = 〈V,W 〉 inN ]) → (C,E[N [V/x][W/y]]) by Theorem 2.5.3 and by the
head rule we conclude

(C,E[let 〈x, y〉 = 〈V,W 〉 inN ])
~̀
.X ⇀ (C,E[N [V/x][W/y]])

~̀
.X.

• Case of force-open. In this case we have (C, forceN,S)⇒b (C,N,Force.S) and we im-
mediately conclude fromMachine(C,N,Force.S) = fromMachine(C, forceN,S) by the
definition of fromMachine.
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• Case of force-close. In this case we have (C, liftN,Force.S) ⇒r (C,N, S). By propo-
sitions 4.2.1 and 4.2.2 we know that

fromMachine(C, liftN,Force.S) = fromMachine(C, force(liftN), S)

= (C,E[force(liftN)])
~̀
.X,

fromMachine(C,N, S) = (C,E[N ])
~̀
.X.

Because (C, force(liftN)) → (C,N) by the force rule, we get (C,E[force(liftN)]) →
(C,E[N ]) by Theorem 2.5.3 and by the head rule we conclude

(C,E[force(liftN)])
~̀
.X ⇀ (C,E[N ])

~̀
.X.

Like we did in Section 4.1.2, it is useful to represent the result of the lemma that we
just proved in a diagrammatic way, as follows:

(C,E[M ])
~̀
.X (D,F [N ])

~k.Y

(C,M, S) (D,N,R)

fromMachine

r

fromMachine

(C,E[M ])
~̀
.X

(C,M, S) (D,N,R)

fromMachine

b

fromMachine

Or, more generally and synthetically, as a single diagram:

(C,E[M ])
~̀
.X (D,F [N ])

~k.Y

(C,M, S) (D,N,R)

∗

+

fromMachine fromMachine

4.2.3 Convergence, Deadlock and Divergence

In order to prove the equivalence between the small-step and machine semantics in
the next section, it is sufficient to prove that fromMachine preserves the convergence
of reachable configurations and that whenever (C,M, S) goes into deadlock then also
fromMachine(C,M, S) goes into deadlock.
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Let us start with deadlock. Informally, a machine configuration goes into deadlock
when it evaluates to an irreducible configuration whose stack is not empty. Similarly, a
stacked configuration goes into deadlock when it evaluates to an irreducible configuration
in which either the stack is not empty, or the term in the head is not a value. Because
we know that a computation in the machine semantics can always be simulated by a
computation in the stacked semantics, to show that whenever a machine configuration
goes into deadlock then the corresponding stacked configuration also goes into dead-
lock it is sufficient to show that every irreducible machine configuration (C,M, S) such
that S is not empty is mapped by fromMachine to an irreducible stacked configuration

(C,E[M ])
~̀
.X such that either E[M ] is not a value or X is not empty.

Lemma 4.2.5. Suppose (C, V, S) is a machine configuration. If (C, V, S) is irreducible

and S 6= ε, then fromMachine(C, V, S) = (C,E[V ])
~̀
.X is irreducible and either E[V ] is

not a value or ~̀ 6= ∅, X 6= ε.

Proof. Suppose S = H.S ′. We proceed by cases on H:

• Case of FArg(N). This case is impossible, since it would allow (C, V, S) to be reduced
by the app-shift rule, regardless of V , contradicting the hypothesis.

• Case of FApp(W ). In this case W 6≡ λx.N , since otherwise (C, V,FApp(λx.N).S ′)
would be reducible by the app-join rule. We have fromMachine(C, V,FApp(W ).S ′) =

fromMachine(C,WV, S ′) = (C,E[WV ])
~k.X. This configuration cannot be reduced by

the head rule (since by Theorem 2.5.3 the reducibility of (C,E[WV ]) would imply
the reducibility of (C,WV ), which is absurd since W 6≡ λx.N), nor by the step-
in rule (since WV is a proto-redex and therefore by Proposition 2.5.6 E[WV ] 6≡
F [boxT (liftP )], for any F, P ), nor by the step-out rule (since E[WV ] cannot be a

value). Since (C,E[WV ])
~k.X is irreducible and E[WV ] is not a value, the claim is

proven.

• Case of ALabel(N). This case is impossible, since it would allow (C, V, S) to be reduced
by the apply-shift rule, regardless of V , contradicting the hypothesis.

• Case of ACirc(W ). In this case W 6≡ (~̀, D, ~̀′), or else (C, V,ACirc((~̀, D, ~̀′)).S ′) would
be reducible by the apply-join rule. We have fromMachine(C, V,ACirc(W ).S ′) =

fromMachine(C, apply(W,V ), S ′) = (C,E[apply(W,V )])
~k.X. This configuration

cannot be reduced by the head rule (since by Theorem 2.5.3 the reducibility of
(C,E[apply(W,V )]) would imply the reducibility of (C, apply(W,V )), which is ab-

surd since W 6≡ (~̀, D, ~̀′)), nor by the step-in rule (since apply(W,V ) is a proto-
redex and therefore by Proposition 2.5.6 E[apply(W,V )] 6≡ F [boxT (liftP )], for any
F, P ), nor by the step-out rule (since E[apply(W,V )] cannot be a value). Since

(C,E[apply(W,V )])
~k.X is irreducible and E[apply(W,V )] is not a value, the claim is

proven.
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• Case of TRight(N). This case is impossible, since it would allow (C, V, S) to be reduced
by the tuple-shift rule, regardless of V , contradicting the hypothesis.

• Case of TLeft(W ). This case is impossible, since it would allow (C, V, S) to be reduced
by the tuple-join rule, regardless of V , contradicting the hypothesis.

• Case of Box (Q, ~̀). In this case V 6≡ liftN , since otherwise (C, liftN,Box (Q, ~̀).S ′)

would be reducible by the box-sub rule. We have fromMachine(C, V,Box (Q, ~̀).S ′) =

fromMachine(C, boxT V, S
′) = (C,E[boxT V ])

~k.X, where ∅;Q ` ~̀ : T . This configu-
ration cannot be reduced by the head rule (since by Theorem 2.5.3 the reducibility
of (C,E[boxT V ]) would imply the reducibility of (C, boxT V ), which is absurd since
V 6≡ liftN), nor by the step-in rule (since V 6≡ liftN and boxT V is a proto-redex, so by
Proposition 2.5.6 E[boxT V ] 6≡ F [boxT (liftP )] for any other F, P ), nor by the step-out

rule (since E[boxT (liftN)] cannot be a value). Since (C,E[boxT V ])
~k.X is irreducible

and E[boxT V ] is not a value, the claim is proven.

• Case of Sub(D,N, ~̀, T ). In this case V 6≡ ~̀′, or else (C, ~̀′, Sub(D,N, ~̀, T ).S ′) would

be reducible by the box-close rule. We have fromMachine(C, V, Sub(D,N, ~̀, T ).S ′) =

(C, V )
~̀
. fromMachine(D, boxT (liftN), S ′) = (C, V )

~̀
.(D,E[boxT (liftN)])

~k.X. This con-
figuration cannot be reduced by the head rule (since V is a value), nor by the step-
in rule (since V cannot be of the form F [boxT (liftP )], for any F, P ), nor by the

step-out rule (since V 6≡ ~̀′). Since (C, V )
~̀
.(D,E[boxT (liftN)])

~k.X is irreducible and

(D,E[boxT (liftN)])
~k.X 6= ε, the claim is proven.

• Case of Let(x, y,N). In this case we know V 6≡ 〈V ′, V ′′〉, since otherwise
(C, 〈V ′, V ′′〉,Let(x, y,N).S ′) would be reducible by the let-join rule. We have
fromMachine(C, V,Let(x, y,N).S ′) = fromMachine(C, let 〈x, y〉 = V inN,S ′) =

(C,E[let 〈x, y〉 = V inN ])
~k.X. This configuration cannot be reduced by the head rule

(since by Theorem 2.5.3 the reducibility of (C,E[let 〈x, y〉 = V inN ]) would imply the
reducibility of (C, let 〈x, y〉 = V inN), which is absurd since V 6≡ 〈V ′, V ′′〉), nor by the
step-in rule (since let 〈x, y〉 = V inN is a proto-redex and therefore by Proposition
2.5.6 E[let 〈x, y〉 = V inN ] 6≡ F [boxT (liftP )], for any F, P ), nor by the step-out rule

(since E[let 〈x, y〉 = V inN ] cannot be a value). Since (C,E[let 〈x, y〉 = V inN ])
~k.X is

irreducible and E[let 〈x, y〉 = V inN ] is not a value, the claim is proven.

• Case of Force. In this case we know V 6≡ liftN , since otherwise (C, liftN,Force.S ′)
would be reducible by the force-close rule. We have fromMachine(C, V,Force.S ′) =

fromMachine(C, forceV, S ′) = (C,E[forceV ])
~k.X. This configuration cannot be re-

duced by the head rule (since by Theorem 2.5.3 the reducibility of (C,E[forceV ])
would imply the reducibility of (C, forceV ), which is absurd since V 6≡ liftN), nor
by the step-in rule (since forceV is a proto-redex and therefore by Proposition 2.5.6
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E[forceN ] 6≡ F [boxT (liftP )], for any F, P ), nor by the step-out rule (since E[forceV ]

cannot be a value). Since (C,E[forceV ])
~k.X is irreducible and E[forceV ] is not a

value, the claim is proven.

Lemma 4.2.6. Suppose (C,M, S) is a machine configuration. If (C,M, S)⊥, then
fromMachine(C,M, S)⊥.

Proof. It is easy to see that a machine configuration (C,M, S) goes into deadlock if and
only if (C,M, S) ⇒∗ (D, V,R) for some irreducible (D, V,R) such that R 6= ε. It is

also easy to see that a stacked configuration (C,M)
~̀
.X goes into deadlock if and only

if (C,M)
~̀
.X ⇀∗ (D,N)

~k.Y for some irreducible (D,N)
~k.Y such that either N is not

a value or ~k 6= ∅, Y 6= ε. By a finite number of applications of Lemma 4.2.4 we know
that fromMachine(C,M, S) ⇀∗ fromMachine(D, V,R) and by Lemma 4.2.5 we know that

fromMachine(D, V,R) = (D,E[V ])
~k.Y for some E,~k, Y such that either E[V ] is not a

value or ~k 6= ∅, Y 6= ε. We therefore conclude that fromMachine(C,M, S)⊥.

Having proven this result first, it is now easier to prove that fromMachine preserves
the convergence of reachable configurations. However, in order to proceed, we must first
prove that fromMachine preserves reachability.

Lemma 4.2.7. If (C,M, S) is a reachable machine configuration, then we have that
fromMachine(C,M, S) is a reachable stacked configuration.

Proof. By induction on the reachability of (C,M, S). In the case in which S = ε we
have fromMachine(C,M, ε) = (C,M)∅.ε ∈ Ist, which is reachable. In the case in which
there exists (D,N, S ′) such that (D,N, S ′) is reachable and (D,N, S ′) ⇒ (C,M, S) we
proceed by cases on the introduction of (D,N, S ′)⇒ (C,M, S):

• Case of app-split. In this case we have (D,NP, S ′) ⇒ (D,N,FArg(P ).S ′). By induc-
tive hypothesis we know that fromMachine(D,NP, S ′) is reachable, so we immediately
conclude that fromMachine(D,N,FArg(P ).S ′) = fromMachine(D,NP, S ′) is reachable.

• Case of app-shift. In this case we have (D, V,FArg(P ).S ′)⇒ (D,P,FApp(V ).S ′). By
inductive hypothesis we know that fromMachine(D, V,FArg(P ).S ′) is reachable. Also,
by the definition of fromMachine we have

fromMachine(D, V,FArg(P ).S ′) = fromMachine(D, V P, S ′)

= fromMachine(D,P,FApp(V ).S ′),

so we conclude that fromMachine(D,P,FApp(V ).S ′) is reachable.
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• Case of app-join. In this case we have (D, V,FArg(λx.N).S ′) ⇒ (D,N [V/x], S ′).
By propositions 4.2.1 and 4.2.2 we know that fromMachine(D, V,FArg(λx.N).S ′) =

fromMachine(D, (λx.N)V, S ′) = (D,E[(λx.N)V ])
~̀
.X, fromMachine(D,N [V/x], S ′) =

(D,E[N [V/x]])
~̀
.X for the same E, ~̀,X, and by inductive hypothesis we know that

(D,E[(λx.N)V ])
~̀
.X is reachable. Because (D, (λx.N)V ) → (D,N [V/x]) by the

β-reduction rule, by Theorem 2.5.3 we get (D,E[(λx.N)V ]) → (D,E[N [V/x]]).
Also, because (λx.N)V is a redex, we know by Corollary 2.5.6.1 that E[(λx.N)V ] 6≡
E ′[boxT (liftP )] for any E ′, so we get (D,E[(λx.N)V ])

~̀
.X ⇀ (D,E[N [V/x]])

~̀
.X by

the head rule and conclude that (D,E[N [V/x]])
~̀
.X is reachable.

• Case of apply-split. In this case we have (D, apply(N,P ), S ′)⇒ (D,N,ALabel(P ).S ′).
By inductive hypothesis we know that fromMachine(D, apply(N,P ), S ′) is reachable, so
we conclude that fromMachine(D,N,ALabel(P ).S ′) = fromMachine(D, apply(N,P ), S ′)
is reachable.

• Case of apply-shift. In this case we have (D, V,ALabel(P ).S ′)⇒ (D,P,ACirc(V ).S ′).
By inductive hypothesis we know that fromMachine(D, V,ALabel(P ).S ′) is reachable.
Also, by the definition of fromMachine we have

fromMachine(D, V,ALabel(P ).S ′) = fromMachine(D, apply(N,P ), S ′)

= fromMachine(D,P,ACirc(V ).S ′),

so we conclude that fromMachine(D,P,ACirc(V ).S ′) is reachable.

• Case of apply-join. Case of app-join. In this case we have (D,~k,ACirc((~̀, D′, ~̀′)).S ′)⇒
(C, ~k′, S ′), where (C, ~k′) = append(D,~k, ~̀, D′, ~̀′). By propositions 4.2.1 and 4.2.2 we

know fromMachine(D,~k,ACirc((~̀, D′, ~̀′)).S ′) = fromMachine(D, apply((~̀, D′, ~̀′), ~k), S ′) =

(D,E[apply((~̀, D′, ~̀′), ~k)])
~̀′′
.X and fromMachine(C, ~k′, S ′) = (C,E[~k′])

~̀′′
.X, for the

same E, ~̀′′, X, and by inductive hypothesis we know (D,E[apply((~̀, D′, ~̀′), ~k)])
~̀′′
.X is

reachable. Because (D, apply((~̀, D′, ~̀′), ~k)) → (C, ~k′) by the apply rule, by Theorem

2.5.3 we get (D,E[apply((~̀, D′, ~̀′), ~k)])→ (C,E[~k′]). Also, because apply((~̀, D′, ~̀′), ~k)

is a redex, we know by Corollary 2.5.6.1 that E[apply((~̀, D′, ~̀′), ~k)] 6≡ E ′[boxT (liftP )]

for any E ′, so we get (D,E[apply((~̀, D′, ~̀′), ~k)])
~̀′′
.X ⇀ (C,E[~k′])

~̀′′
.X by the head rule

and conclude that (C,E[~k′])
~̀′′
.X is reachable.

• Case of tuple-split. In this case we have (D, 〈N,P 〉, S ′)⇒ (D,N,TRight(P ).S ′). By in-
ductive hypothesis we know that fromMachine(D, 〈N,P 〉, S ′) is reachable, so we imme-
diately conclude that fromMachine(D,N,TRight(P ).S ′) = fromMachine(D, 〈N,P 〉, S ′)
is reachable.
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• Case of tuple-shift. In this case we have (D, V,TRight(P ).S ′) ⇒ (D,P,TLeft(V ).S ′).
By inductive hypothesis we know that fromMachine(D, V,TRight(P ).S ′) is reachable.
Also, by the definition of fromMachine we have

fromMachine(D, V,TRight(P ).S ′) = fromMachine(D, 〈V, P 〉, S ′)
= fromMachine(D,P,TLeft(V ).S ′),

so we conclude that fromMachine(D,P,TLeft(V ).S ′) is reachable.

• Case of tuple-join. In this case we have (D,W,TLeft(V ).S ′) ⇒ (D, 〈V,W 〉, S ′). By
inductive hypothesis we immediately know that fromMachine(D,W,TLeft(V ).S ′) =
fromMachine(D, 〈V,W 〉, S ′) is reachable and the claim is trivially true.

• Case of box-open. In this case we have (D, boxT N,S
′) ⇒ (D,N,Box (Q, ~̀).S ′),

where (Q, ~̀) = freshlabels(N, T ). By inductive hypothesis we know that the config-
uration fromMachine(D, boxT N,S

′) is reachable, so we immediately conclude that

fromMachine(D,N,Box (Q, ~̀).S ′) = fromMachine(D, boxT N,S
′) is reachable.

• Case of box-sub. In this case (D, liftN,Box (Q, ~̀).S ′) ⇒ (idQ, N~̀, Sub(D,N, ~̀, T ).S ′).

By inductive hypothesis we know that fromMachine(D, liftN,Box (Q, ~̀).S ′) =
fromMachine(D, boxT (liftN), S ′) is reachable. We also know that

fromMachine(idQ, N~̀, Sub(D,N, ~̀, T ).S ′)

= (idQ, N~̀)
~̀
. fromMachine(D, boxT (liftN), S ′).

By Proposition 4.2.1 we get fromMachine(D, boxT (liftN), S ′) = (D,E[boxT (liftN)])
~k.X

for some E,~k and X. Finally, by the step-in rule we have (D,E[boxT (liftN)])
~̀
.X ⇀

(idQ, N~̀)
~̀
.(D,E[boxT (liftN)])

~̀
.X, where (Q, ~̀) = freshlabels(N, T ), and conclude that

the latter is reachable.

• Case of box-close. In this case we have (D, ~̀′, Sub(C,N, ~̀, T ).S ′) ⇒ (C, (~̀, D, ~̀′), S ′).

By propositions 4.2.1 and 4.2.2 we know that fromMachine(D, ~̀′, Sub(C,N, ~̀, T ).S ′) =

(D, ~̀′)
~̀
. fromMachine(C, boxT (liftN), S ′) = (D, ~̀′)

~̀
.(C,E[boxT (liftN)])

~k.X and

fromMachine(C, (~̀, D, ~̀′), S ′) = (C,E[(~̀, D, ~̀′)])
~k.X, for the same E,~k,X, and by

inductive hypothesis we know that (D, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X is reachable.

Because we have (D, ~̀′)
~̀
.(C,E[boxT (liftN)])

~k.X ⇀ (C,E[(~̀, D, ~̀′)])
~k.X by the

step-out rule, we conclude that (C,E[(~̀, D, ~̀′)])
~k.X is reachable.

• Case of let-split. In this case we have (D, let 〈x, y〉 = N inP, S ′) ⇒
(D,N,Let(x, y, P ).S ′). By inductive hypothesis we know fromMachine(D, let 〈x, y〉 =
N inP, S ′) is reachable, so we conclude that fromMachine(D,N,Let(x, y, P ).S ′) =
fromMachine(D, let 〈x, y〉 = N inP, S ′) is reachable.
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• Case of let-join. In this case (D, 〈V,W 〉,Let(x, y,N).S ′)⇒ (D,N [V/x][W/y], S ′). By
propositions 4.2.1 and 4.2.2 we know that fromMachine(D, 〈V,W 〉,Let(x, y,N).S ′) =

fromMachine(D, let 〈x, y〉 = 〈V,W 〉 inN,S ′) = (D,E[let 〈x, y〉 = 〈V,W 〉 inN ])
~̀
.X and

fromMachine(D,N [V/x][W/y], S ′) = (D,E[N [V/x][W/y]])
~̀
.X, for the same E, ~̀,X,

and by inductive hypothesis we know that (D,E[let 〈x, y〉 = 〈V,W 〉 inN ])
~̀
.X is reach-

able. Because (D, let 〈x, y〉 = 〈V,W 〉 inN) → (D,N [V/x][W/y]) by the let rule,
by Theorem 2.5.3 we get (D,E[let 〈x, y〉 = 〈V,W 〉 inN ]) → (D,E[N [V/x][W/y]]).
Also, because let 〈x, y〉 = 〈V,W 〉 inN is a redex, we know by Corollary 2.5.6.1 that
E[let 〈x, y〉 = 〈V,W 〉 inN ] 6≡ E ′[boxT (liftP )] for any E ′, so we get (D,E[let 〈x, y〉 =

〈V,W 〉 inN ])
~̀
.X ⇀ (D,E[N [V/x][W/y]])

~̀
.X by the head rule and conclude that

(D,E[N [V/x][W/y]])
~̀
.X is reachable.

• Case of force-open. In this case we have (D, forceN,S ′) ⇒ (D,N,Force.S ′). By
inductive hypothesis we know that fromMachine(D, forceN,S ′) is reachable, so we im-
mediately conclude that fromMachine(D,N,Force.S ′) = fromMachine(D, forceN,S ′) is
reachable.

• Case of force-close. In this case we have (D, liftN,Force.S ′) ⇒ (D,N, S ′). By
propositions 4.2.1 and 4.2.2 we know that fromMachine(D, liftN,Force.S ′) =

fromMachine(D, force(liftN), S ′) = (D,E[force(liftN)])
~̀
.X, fromMachine(D,N, S ′) =

(D,E[N ])
~̀
.X for the same E, ~̀,X, and by inductive hypothesis we know that

(D,E[force(liftN)])
~̀
.X is reachable. Because (D, force(liftN)) → (D,N) by the

force rule, by Theorem 2.5.3 we get (D,E[force(liftN)]) → (D,E[N ]). Also, be-
cause force(liftN) is a redex, we know by Corollary 2.5.6.1 that E[force(liftN)] 6≡
E ′[boxT (liftP )] for any E ′, so we get (D,E[force(liftN)])

~̀
.X ⇀ (D,E[N ])

~̀
.X by the

head rule and conclude that (D,E[N ])
~̀
.X is reachable.

We can now prove that fromMachine preserves convergence between reachable machine
configurations and reachable stacked configurations.

Proposition 4.2.8. Suppose (C,M, S) is a reachable machine configuration. (C,M, S) ↓
if and only if fromMachine(C,M, S) ↓.

Proof. We start by proving that if (C,M, S) ↓, then fromMachine(C,M, S) ↓. We proceed
by induction on (C,M, S) ↓:

• Case M ≡ V and S = ε. In this case fromMachine(C, V, ε) = (C, V )∅.ε and the claim
is trivially true.
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• Case (C,M, S) ⇒ (D,N, S ′) and (D,N, S ′) ↓. In this case we know by in-
ductive hypothesis that fromMachine(D,N, S ′) ↓. By Lemma 4.2.4 we get that
fromMachine(C,M, S) ⇀∗ fromMachine(D,N, S ′) and by the definition of converging
stacked configuration we conclude fromMachine(C,M, S) ↓.

We now need to prove that if fromMachine(C,M, S) ↓, then (C,M, S) ↓. We proceed by
induction on fromMachine(C,M, S) ↓:

• Case fromMachine(C,M, S) = (C, V )∅.ε. We know that fromMachine(C,M, S) =

(C,E[M ])
~̀
.X by Proposition 4.2.1. For E[M ] ≡ V to be true we must have E ≡ [·]

and M ≡ V . We must also have ~̀= ∅ and X = ε. The only way to have E ≡ [·], ~̀= ∅
and X = ε is to have S = ε. If S = H.S ′ were non-empty, we would either have ~̀ 6= ∅
and X 6= ε (in case of an H of type Sub) or E 6= [·] (for any other H), which would
contradict the hypothesis. Therefore we have M ≡ V and S = ε and we conclude
(C, V, ε) ↓.

• Case fromMachine(C,M, S) ⇀ (D,N)
~k.X ′ and (D,N)

~k.X ′ ↓. Let (C ′,M ′, S ′) be the
normal form of (C,M, S) with respect to ⇒b. We distinguish two cases:

– If (C ′,M ′, S ′) is also normal with respect to⇒, then either (C,M, S)⊥ or (C,M, S) ↓.
Because by Lemma 4.2.6 (C,M, S)⊥ would imply fromMachine(C,M, S)⊥, contra-
dicting Proposition 3.1.3, we conclude (C,M, S) ↓

– If (C ′,M ′, S ′) is not normal with respect to ⇒, then we have (C ′,M ′, S ′) ⇒r

(D′, N ′, S ′′) and by Lemma 4.2.4 we know that fromMachine(C ′,M ′, S ′) ⇀
fromMachine(D′, N ′, S ′′). At the same time, by the definition of ⇒b we know that
fromMachine(C ′,M ′, S ′) = fromMachine(C,M, S). Because ⇀ is deterministic,

this necessarily entails fromMachine(D′, N ′, S ′′) = (D,N)
~k.X ′ and consequently

fromMachine(D′, N ′, S ′′) ↓. By inductive hypothesis we get (D′, N ′, S ′′) ↓ and
conclude (C,M, S) ↓ by the definition of converging machine configuration.

4.2.4 Summary

In this section we established a relationship between machine configurations and stacked
configurations via the fromMachine function, which gradually unwinds the stack of a
machine configuration to obtain an equivalent stacked configuration. We showed that for
every machine configuration (C,M, S), the stacked configuration fromMachine(C,M, S)

is of the form (C,E[M ])
~̀
.X for some E, ~̀,X that depend exclusively on S. As for the

actual operational semantics, we showed that a reduction step in the machine semantics
either leaves the corresponding stacked configuration unchanged, or can be simulated by
a single reduction step in the stacked semantics. Lastly, we also proved that fromMachine
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preserves convergence between machine and stacked configurations and that whenever
a machine configuration goes into deadlock, then so does the corresponding stacked
configuration.

4.3 Equivalence Between Small-step and Machine

Semantics

Finally, in this last section we cover the relationship between the small-step semantics
and the machine semantics. In particular, as we anticipated, we prove that they are
essentially equivalent. Concretely, this means that converging computations in the small-
step semantics translate to converging computations in the machine semantics (which
converge to the same values), that computations that go into deadlock in the small-step
semantics translate to computations that go into deadlock in the machine semantics, and
– last but not least – that diverging computations in the small-step semantics translate to
diverging computations in the machine semantics, and vice-versa. In order to prove these
results, let us formalize the relationship between small-step and machine configurations
through a simple load function, defined as such:

load(C,M) = (C,M, ε).

This function is very similar to fromSmallStep. Like fromSmallStep it is trivially invertible,
and as such is establishes a bijection between small-step configurations and the set Ima
of initial machine configurations. In addition, load has the following property:

fromMachine ◦ load = fromSmallStep,

which will be essential in the coming proofs. The property is actually trivial to prove,
as for every small-step configuration (C,M) we have:

fromMachine(load(C,M)) = fromMachine(C,M, ε) = (C,M)∅.ε = fromSmallStep(C,M).

4.3.1 Convergence

As we mentioned at the beginning of this chapter, we prove that corresponding small-
step and machine configurations evaluate to the same circuit and value in the respective
semantics by proving that the two computations are simulated by the same computation
in the stacked semantics. To this effect, lemmata 4.1.1 and 4.2.4 are going to play a
paramount role. Specifically, we want the diagrams that we introduced in sections 4.1.2
and 4.2.2 to compose as follows:



CHAPTER 4. CORRESPONDENCE RESULTS 110

(C,M) (D, V )

(C,M)∅.ε (D, V )∅.ε

(C,M, ε) (D, V, ε)

∗

fromSmallStep

load

fromSmallStep

load∗

∗

fromMachine fromMachine

For simplicity, we prove the two directions of the equivalence separately and then put
them together to prove our goal.

Lemma 4.3.1. Suppose (C,M) and (D, V ) are small-step configurations. If (C,M)→∗
(D, V ), then load(C,M)⇒∗ load(D, V ).

Proof. The case in which (C,M) = (D, V ) is trivially true, so let us consider the case
in which (C,M) →+ (D, V ). First of all, by Lemma 4.1.1 we get that (C,M)∅.ε ⇀+

(D, V )∅.ε. In parallel, by propositions 4.1.3 and 4.2.8 we have that load(C,M) = (C,M, ε)
converges, since fromSmallStep(C,M) = (C,M)∅.ε = fromMachine(C,M, ε) and (C,M, ε)
is trivially reachable. This entails that there exists a normal form (D′, V ′, ε) such that
(C,M, ε) ⇒∗ (D′, V ′, ε). By Lemma 4.2.4 this implies that fromMachine(C,M, ε) ⇀∗

fromMachine(D′, V ′, ε), or (C,M)∅.ε ⇀∗ (D′, V ′)∅.ε. We now have (C,M)∅.ε ⇀+ (D, V )∅.ε
and (C,M)∅.ε ⇀∗ (D′, V ′)∅.ε. Because ⇀ is deterministic and because (D, V )∅.ε and
(D′, V ′)∅.ε are both normal forms, we get that (D, V )∅.ε = (D′, V ′)∅.ε, that is, D = D′

and V = V ′, and we conclude load(C,M)⇒∗ (D, V, ε).

Lemma 4.3.2. Suppose (C,M) and (D, V ) are two small-step configurations. If
load(C,M)⇒∗ load(D, V ), then (C,M)→∗ (D, V ).

Proof. The case in which load(C,M) = load(D, V ) is trivially true, so let us consider
the case in which load(C,M) ⇒+ load(D, V ). By Proposition 4.2.8 we know that
fromMachine(load(C,M)) = fromSmallStep(C,M) converges, and by Proposition 4.1.3
we know that (C,M) converges too. That is, (C,M)→∗ (D′, V ′). By Lemma 4.3.1 this
entails load(C,M) ⇒∗ load(D′, V ′). Since load(D, V ) and load(D′, V ′) are both normal
forms, (D, V ) 6= (D′, V ′) would contradict the determinism of ⇒. As a result, we know
that (D, V ) = (D′, V ′) and conclude (C,M)→∗ (D, V ).

Theorem 4.3.3 (Equivalence in Convergence). Suppose (C,M) and (D, V ) are small-
step configurations. We have that (C,M) →∗ (D, V ) if and only if load(C,M) ⇒∗
load(D, V ).

Proof. The claim follows immediately from lemmata 4.3.1 and 4.3.2.

Corollary 4.3.3.1. Suppose (C,M) is a small-step configuration. We have that (C,M) ↓
if and only if load(C,M) ↓.
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Proof. The claim follows immediately from Theorem 4.3.3 and the definition for converg-
ing small-step and machine configurations. Alternatively, it follows from propositions
4.1.3 and 4.2.8.

4.3.2 Deadlock and Divergence

The equivalence between the small-step and machine semantics is stronger than that
between the big-step and the small-step semantics, as we now show that whenever a
small-step computation goes into deadlock or diverges, then the corresponding machine
computation goes into deadlock or diverges, respectively. For simplicity, we prove both
results first in one direction and then in the other.

Lemma 4.3.4. Suppose (C,M) is a small-step configuration. If (C,M)⊥, then
load(C,M)⊥.

Proof. First of all, by Lemma 4.1.4 we know that fromSmallStep(C,M)⊥. Now, suppose
load(C,M) 6⊥. By Proposition 3.2.5 we know that either load(C,M) ↓ or load(C,M) ↑.
Because load(C,M) = (C,M, ε) is trivially reachable, by Proposition 4.2.8 we know
that if load(C,M) ↓ then fromMachine(load(C,M)) = fromSmallStep(C,M) ↓, which
contradicts Proposition 3.1.3, so load(C,M) 6 ↓. On the other hand, load(C,M) ↑ would
entail an infinite computation starting from load(C,M). By lemmata 4.2.4 and 4.2.3
this would entail an infinite computation starting from fromMachine(load(C,M)) =
fromSmallStep(C,M) too, which would contradict fromSmallStep(C,M)⊥, since
fromSmallStep(C,M)⊥ implies that the same computation is finite (⇀ is deterministic).
Because load(C,M) 6⊥ ultimately leads to a contradiction, we conclude load(C,M)⊥.

Lemma 4.3.5. Suppose (C,M) is a small-step configuration. If (C,M) ↑, then
load(C,M) ↑.

Proof. First of all, because the computation starting from (C,M) is infinite, by Lemma
4.1.1 we know that the computation starting from fromSmallStep(C,M) is also infi-
nite (⇀ is deterministic). Now, suppose load(C,M) 6 ↑. By Proposition 3.2.5 we know
that either load(C,M) ↓ or load(C,M)⊥. Because load(C,M) is trivially reachable,
by Proposition 4.2.8 we know that if load(C,M) ↓ then fromMachine(load(C,M)) =
fromSmallStep(C,M) ↓. This contradicts the fact that the computation starting from
fromSmallStep(C,M) is infinite, since fromSmallStep(C,M) ↓ implies that the same com-
putation is finite, so load(C,M) 6 ↓. On the other hand, if load(C,M)⊥, by Lemma 4.2.6
we know that fromMachine(load(C,M)) = fromSmallStep(C,M)⊥. However, this contra-
dicts the fact that the computation starting from fromSmallStep(C,M) is infinite, since
fromSmallStep(C,M)⊥ implies that the same computation is finite, so load(C,M) 6⊥.
Because load(C,M) 6 ↑ ultimately leads to a contradiction, we conclude load(C,M) ↑.
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Now that we have these two results, we can use them to prove the other direction in a
much more straightforward way.

Lemma 4.3.6. Suppose (C,M) is a small-step configuration. If load(C,M)⊥, then
(C,M)⊥.

Proof. Suppose (C,M) 6⊥. By Proposition 2.5.9 we know that either (C,M) ↓ or
(C,M) ↑. However, by Corollary 4.3.3.1 (C,M) ↓ entails load(C,M) ↓, while by Lemma
4.3.5 (C,M) ↑ entails load(C,M) ↑. Because both these conclusions contradict Proposi-
tion 3.2.3, we conclude that (C,M)⊥.

Lemma 4.3.7. Suppose (C,M) is a small-step configuration. If load(C,M) ↑, then
(C,M) ↑.

Proof. Suppose (C,M) 6 ↑. By Proposition 2.5.9 we know that either (C,M) ↓ or
(C,M)⊥. However, by Corollary 4.3.3.1 (C,M) ↓ entails load(C,M) ↓, while by Lemma
4.3.4 (C,M)⊥ entails load(C,M)⊥. Because both these conclusions contradict Proposi-
tion 3.2.3, we conclude that (C,M) ↑.

Eventually, the four lemmata can be summarized in the following two theorems, which,
together with Theorem 4.3.3, complete the picture of the equivalence between the small-
step and machine semantics. Figure 4.1 illustrates the same result.

Theorem 4.3.8 (Equivalence in Deadlock). Suppose (C,M) is a small-step configura-
tion. We have that (C,M)⊥ if and only if load(C,M)⊥.

Proof. The claim follows immediately from lemmata 4.3.4 and 4.3.6.

Theorem 4.3.9 (Equivalence in Divergence). Suppose (C,M) is a small-step configu-
ration. We have that (C,M) ↑ if and only if load(C,M) ↑.

Proof. The claim follows immediately from lemmata 4.3.5 and 4.3.7.
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Figure 4.1: The final relationship between the small-step semantics modelled after Proto-
Quipper-M’s big-step semantics and the machine semantics proposed in this thesis.



Conclusions and Future Work

In the first part of this thesis we reviewed Quipper, a functional language for the de-
scription of quantum circuits, and explained its limitations as an embedded language
in Haskell. We consequently presented Rios and Selinger’s work on Proto-Quipper-M,
a member of the Proto-Quipper research language family, which aims at formalizing
relevant fragments of Quipper in a type-safe way. We introduced the intuition behind
Proto-Quipper-M, its categorical model for quantum circuits and its syntax. We also
discussed its linear type system, which allows the enforcement of the no-cloning prop-
erty of quantum states at compile time, effectively overcoming one of Quipper’s greatest
weaknesses. Last, but not least, we presented Proto-Quipper-M’s big-step operational
semantics.

By rewriting the big-step rules of Proto-Quipper-M into small-step rules, we obtained
an equivalent semantics which is small-step save for the case of circuit boxing. We
showed that this semantics behaves well with respect to Proto-Quipper-M’s type system
by proving subject reduction and progress results. In the second part of the thesis, we
defined a stacked semantics for Proto-Quipper-M, which overcomes the aforementioned
problems with circuit boxing by organizing all of the sub-reductions introduced by a
boxing operation in an explicit stack. We used this semantics as an intermediate step in
the definition of a machine semantics for Proto-Quipper-M, which takes this approach
even further. Inspired by abstract machines such as the CEK machine, this semantics
models every phase of the evaluation of a program as a continuation on a stack. Lastly,
we concluded this thesis by proving that the proposed machine semantics is equivalent
to the initial small-step semantics and – as a consequence – to the original big-step
semantics given by Rios and Selinger.

Related Work

It is worth mentioning that the author’s curricular internship revolved around the re-
embedding in Haskell of the original Proto-Quipper-M specification by Rios and Selinger.
Although a proposal for the addition of linear types to Haskell [2] has been approved and a
portion of it has recently been released as part of GHC 9.0.1, at the time of the internship
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this linear extension was still unavailable. In fact, the very goal of the internship was
to investigate alternative methods to enforce Quipper’s linearity constraints in Haskell
in the absence of a full-fledged linear type system. To this effect, we relied on the work
of Paykin and Zdancewic [11], which take full advantage of some of the most advanced
GHC extensions related to type-level computing to offer a framework for the embedding
of domain-specific linear languages in Haskell. We report two main findings. First and
foremost, we found that Paykin and Zdancewic’s work was not sufficient to enforce Proto-
Quipper-M’s linearity constraints to their full extent. Specifically, we found it impossible
to model the domain and codomain of circuits at compile time. As such, whenever we
encountered a term of the form (~̀, D, ~̀′), we had to resort to run time checks to enforce

that D ∈ ML(Q,Q′) for the same Q and Q′ used to type ~̀ and ~̀′. Secondly, despite
the fact that Paykin and Zdancewic’s framework is designed specifically to allow the
definition of the semantics of the embedded languages in a big-step manner, we found
it exceedingly hard to implement the boxing operator boxT , due to the same reasons
that made the box rule of the small-step semantics difficult to handle in this thesis. In
retrospect, this validates our desire to provide a true small-step semantics for Proto-
Quipper-M.

Future Work

The point of arrival of this thesis is a minimal abstract machine which accurately models
the operational semantics of the Proto-Quipper-M language, and therefore formalizes a
fundamental fragment of the behavior of Quipper itself. From here, we can expect most
of the future work to be focused on one of two directions.

The first direction is that of expanding the current machine specification to progres-
sively model a larger and larger portion of Quipper. First and foremost, we have that
a considerable number of language features included in the original Proto-Quipper-M
specifications by Rios and Selinger have been omitted in this thesis for the sake of fea-
sibility. These are not domain specific features, and include things such as sequencing
operators, sum types, pattern matching, naturals, lists, and so on. Although not essential
for circuit building, these are the features that usually make a programming language
practical and, as a consequence, useful. Therefore, it would be appropriate, although
unchallenging (and probably tedious) to extend the current machine specification with
these programming constructs and to show that this extension does not compromise the
results that we have given. More interestingly, the proposed machine semantics could
be used as a starting point to model some of Quipper’s most advanced features, which
have no counterpart in Proto-Quipper-M. A prime example of such a feature is dynamic
lifting, which refers to the ability to measure the intermediate state of qubits in the midst
of the execution of a circuit and to use the resulting classical information to build the
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remaining portion of the circuit on the fly.

The second direction is one that we briefly mentioned in the introduction of this thesis,
and it is not completely orthogonal to the first one. The research direction in question is
the one that focuses on the static analysis of interesting properties of Quipper programs.
In this case, our machine semantics could be used as a reference model to define concepts
such as the time needed to construct a circuit, or the number of qubits required by it.
The estimation of the latter quantity, in particular, would be extremely valuable in a
time where quantum resources are still scarce, and it is not trivial to compute, especially
if dynamic lifting is involved.

Lastly, as a side note, the machine itself could be made more concrete than it currently
is. As we mentioned in Section 3.2.2, when designing our machine we chose to keep relying
on an abstract substitution function for reasons of simplicity. Taking further inspiration
from the CEK machine, an explicit substitution algorithm could be implemented by
endowing our own machine with an environment component and rules to look up variables
inside an environment. One major obstacle in this approach is that our environments
would contain linear resources, and thus would have to be handled differently from how
they are treated in the CEK machine. Note that this concretization operation is not
essential, but it would be particularly beneficial to any research focusing – for example
– on the static estimation of the circuit generation time of Quipper programs.
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