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“When I was in college,

I wanted to be involved in things that would change the world”

Elon Musk





Sommario

Il compito di determinare o verificare la paternità di un testo anonimo basandosi solo

su analisi del documento è molto antico, e risale almeno all’era medievale, per la quale

l’attribuzione affidabile di un testo ad un’antica autorità conosciuta era essenziale per

determinarne la veridicità. Più recentemente, questo problema dell’attribuzione della

“paternità” di un documento ha guadagnato maggiore importanza a causa delle nuove

applicazioni nell’analisi forense, nelle scienze umanistiche e nel commercio elettronico, e

lo sviluppo di metodi computazionali per affrontarlo.

Nella forma più semplice, ci vengono dati esempi di scrittura di un certo numero di

candidati autori e ci viene chiesto di determinare chi di loro è l’autore di un documento

di autore ignoto. In questo caso, il problema dell’attribuzione dell’autore si adatta al

paradigma moderno di un problema di categorizzazione del testo. I componenti dei

sistemi di categorizzazione del testo sono ormai abbastanza ben compresi: I documenti

sono rappresentati come vettori numerici che catturano le statistiche delle caratteristiche

potenzialmente rilevanti del testo, e i metodi di apprendimento automatico sono utilizzati

per trovare classificatori che separino i documenti che appartengono a classi diverse.

La maggior parte dei lavori pubblicati si concentra sull’attribuzione a serie chiusa dove si

presume che l’autore del testo preso in esame sia necessariamente un membro di un insieme

ben definito di autori candidati. Questa impostazione si adatta a molte applicazioni

forensi in cui di solito individui specifici hanno accesso a certe risorse, hanno conoscenza

di certe questioni, ecc. In questo lavoro viene mostrata una panoramica generale di ciò

che è l’attribuzione d’autore al giorno d’oggi, con uno sguardo sia dal punto di vista

dell’information retrieval che delle metodologie più utilizzate, prestando molta attenzione

nella selezione dei dataset per non creare bias di apprendimento. Vengono confrontati

dataset molto diversi tra loro sia per contenuto testuale, livello di formalità del linguaggio

e lunghezza media dei documenti scritti dagli autori. Confrontando il lavoro con altri

correlati, verrà mostrato come alcuni risultati ottenuti sono potenzialmente interessanti e

portino a migliorare ulteriormente la confidenza del modello per questo particolare tipo

di task.





Abstract

Authorship attribution is the process of identifying the author of a given text and from

the machine learning perspective, it can be seen as a classification problem. In the

literature, there are a lot of classification methods for which feature extraction techniques

are conducted. In this thesis, we explore information retrieval techniques such as Doc2Vec

and other useful feature selection and extraction techniques for a given text with different

classifiers. The main purpose of this work is to lay the foundations of feature extraction

techniques in authorship attribution. At the end of this work, we show how we compared

our results with related works and how we managed to improve, to the best of our

knowledge, the results on a particular dataset, very known in this field.
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CHAPTER 1

Introduction

1.1 Motivation and Problem Statement

The task of determining or verifying the authorship of an anonymous text based solely

on internal evidence is a very old one, dating back at least to the medieval scholastics,

for whom the reliable attribution of a given text to a known ancient authority was

essential to determining the text’s veracity. More recently, this problem of authorship

attribution has gained greater prominence due to new applications in forensic analysis,

humanities scholarship, and electronic commerce, and the development of computational

methods for addressing the problem. In the simplest form of the problem, we are given

examples of the writing of a number of candidate authors and are asked to determine

which of them authored a given anonymous text. In this straightforward form, the

authorship attribution problem fits the standard modern paradigm of a text categorization

problem. The components of text categorization systems are by now fairly well understood:

Documents are represented as numerical vectors that capture statistics of potentially

relevant features of the text, and machine learning methods are used to find classifiers

that separate documents that belong to different classes. A scientific approach to the

authorship attribution problem was first proposed in the late 19th century in the work of

Mendenhall (1887), who studied the authorship of texts attributed to Bacon, Marlowe,

and Shakespeare. The key idea was that the writing of each author could be characterized

by a unique curve expressing the relationship between word length and relative frequency

of occurrence; these characteristic curves would thus provide a basis for author attribution

of anonymous texts. This early work was put on a firmer statistical basis in the early

20th century with the search for invariant properties of textual statistics Zipf (1932). The

existence of such invariants suggested the possibility that some related feature might be

found that was at least invariant for any given author, though possibly varying among

different authors. The majority of published works in authorship attribution focus on
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closed-set attribution where it is assumed that the author of the text under investigation

is specifically a member of a given well-defined set of candidate authors. This setting

fits many forensic applications where usually specific individuals have access to certain

resources, have knowledge of certain issues, etc. A more general framework is open-set

attribution [33]. A special case of the latter is authorship verification where the set of

candidate authors is singleton. This is essentially a one-class classification problem since

the negative class (i.e., all texts by all other authors) is huge and extremely heterogeneous.

In authorship attribution it is not always realistic to assume that the texts of known

authorship and the texts under investigation belong in the same genre and are in the same

thematic area. In most applications, there are certain restrictions that do not allow the

construction of a representative training corpus. Unlike other text categorization tasks,

a recent trend in authorship attribution research is to build cross-genre and cross-topic

models, meaning that the training and test corpora do not share the same properties.

One crucial issue in any authorship attribution approach is to quantify the personal style

of authors, a line of research also called stylometry [58]. Ideally, stylometric features

should not be affected by shifts in topic or genre variations and they should only depend

on personal style of the authors. However, it is not yet clear how the topic/genre factor

can be separated from the personal writing style.

In this work In this work we will give a general snapshot of what authorship attribution

is nowadays. We will give a key of reading from the point of view of both information

retrieval and the most used methodologies, paying much attention to the selection of

datasets in order not to create learning bias. In our experiment we will compare datasets

that are very different from each other both in text content, formality and average length

of documents written by authors. We will analyze the methods to extract the best

information from the documents and how to select the classifier that best suits this type

of task. We will compare the results obtained with those found in related work, taking

care to recreate the same experiment performed. Finally, we will give hints for future

work and a long-term vision for this branch of text categorization.

1.2 Thesis Structure

The rest of this thesis is organized into the following chapters:

• Chapter 2. Chapter 2 provides a more detailed introduction to this task and

what are the different scenarios we may encounter when tackling the authorship

attribution.

• Chapter 3. Chapter 3 presents a background in information retrieval, listing some
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of the most common techniques used in previous authorship attribution works for

extracting useful data representing the texts.

• Chapter 4. Chapter 4 lists a variety of related works in authorship attribution,

focusing on works that used SVM as a classifier and that used either one of the

Reuters Corpus dataset or The Guardian dataset to test their model.

• Chapter 5. Chapter 5 describes our experiment in terms of the setup, the dataset

preparation, the process of features extraction and the classifier selection.

• Chapter 6. Chapter 6 shows the best results we obtained from the experiments

we conducted on the selected datasets.

15
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CHAPTER 2

Authorship attribution

”Science is the systematic

classification of experience.”

George Henry Lewes

Authorship Attribution tackles the problem of determining who, among a set of

authors, wrote the document at hand. This aforementioned task has relevant applications

ranging from plagiarism detection to Forensic Linguistics, such as identifying authorship

of threatening emails or malicious code. Applied areas such as law and journalism can

also benefit from authorship attribution, where identifying the true author of a piece

of text (such as a ransom note) may help save lives or catch the offenders. In the next

section we will briefly present the approach to this task in the era before machine learning.

Later, we will discuss the different approaches of this particular task, whether to approach

it as a profile-based or an instance-based problem, depending on which domain are we

tackling: single-domain or cross-domain. In the last section, we will introduce the latest

state of the art approaches for this particular classification task.

2.1 State of the Art

The first attempts to quantify the writing style go back to the 19th century, with the

pioneering study of Mendenhall (1887) on the plays of Shakespeare, followed by statistical

studies in the first half of the 20th century by Yule (1938, 1944) and Zipf (1932) [66]

[68] [71]. Later, the detailed study by Mosteller and Wallace (1964) on the authorship of

“The Federalist Papers” (a series of 146 political essays written by John Jay, Alexander

Hamilton, and James Madison, 12 of which claimed by both Hamilton and Madison)

was undoubtedly the most influential work in authorship attribution [58]. Their method

17



was based on Bayesian statistical analysis of the frequencies of a small set of common

words (e.g., “and,” “to,” etc.) and produced significant discrimination results between

the candidate authors. Essentially, the work of Mosteller and Wallace (1964) initiated

nontraditional authorship attribution studies, as opposed to traditional human-expert-

based methods. Since then and until the late 1990s, research in authorship attribution was

dominated by attempts to define features for quantifying writing style, a line of research

known as “stylometry” [20]. Hence, a great variety of measures, including sentence length,

word length, word frequencies, character frequencies, and vocabulary richness functions,

had been proposed. Rudman (1998) estimated that nearly 1,000 different measures had

been proposed by the late 1990s [51]. The authorship attribution methodologies proposed

during that period were computer-assisted rather than computer-based, meaning that

the aim was rarely at developing a fully automated system. In certain cases, there

were methods that achieved impressive preliminary results and made many people think

that the solution of this problem was too close. The most characteristic example is the

CUSUM (or QSUM) technique [40] that gained publicity and was accepted in courts as

expert evidence; however, the research community heavily criticized it and considered it

generally unreliable [21]. Actually, the main problem of that early period was the lack of

objective evaluation of the proposed methods. In most of the cases, the testing ground

was literary works of unknown or disputed authorship (e.g., the Federalist Papers case),

so the estimation of attribution accuracy was not even possible. The main methodological

limitations of that period concerning the evaluation procedure were the following:

• The textual data were too long (usually including entire books) and probably not

stylistically homogeneous.

• The number of candidate authors was too small (usually two or three).

• The evaluation corpora were not controlled for topic.

• The evaluation of the proposed methods was mainly intuitive (usually based on

subjective visual inspection of scatterplots).

• The comparison of different methods was difficult due to lack of suitable benchmark

data.

Since the late 1990s, things have changed in authorship attribution studies. The vast

amount of electronic texts available through Internet media (e-mail messages, blogs, online

forums, etc.) have increased the need for efficiently handling this information. This fact

had a significant impact in scientific areas such as information retrieval, machine learning,

and natural language processing (NLP). The development of these areas influenced

authorship attribution technology as described:
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• Information retrieval research developed efficient techniques for representing and

classifying large volumes of text.

• Powerful machine learning algorithms became available to handle multidimensional

and sparse data, allowing more expressive representations. Moreover, standard

evaluation methodologies have been established to compare different approaches on

the same benchmark data.

• NLP research developed tools able to analyze text efficiently and provided new

forms of measures for representing the style (e.g., syntax-based features).

More importantly, the plethora of available electronic texts revealed the potential

of authorship analysis in various applications [37] in diverse areas including intelligence

(e.g., attribution of messages or proclamations to known terrorists, linking different

messages by authorship) [1], criminal law (e.g., identifying writers of harassing messages,

verifying the authenticity of suicide notes) and civil law (e.g., copyright disputes) [7], and

computer forensics (e.g., identifying the authors of source code of malicious software) [14]

in addition to the traditional application to literary research (e.g., attributing anonymous

or disputed literary works to known authors) [5]. Hence, (roughly) the last decade can

be viewed as a new era of authorship analysis technology, this time dominated by efforts

to develop practical applications dealing with real-world texts (e.g., e-mail messages,

blogs, online forum messages, source code, etc.) rather than solving disputed literary

questions. Emphasis has now been given to the objective evaluation of the proposed

methods as well as the comparison of different methods based on common benchmark

corpora. In addition, factors playing a crucial role in the accuracy of the produced models

are examined, such as the training text size [39], the number of candidate authors [31],

and the distribution of training texts over the candidate authors [57].

2.2 Training’s methods

In every authorship-identification problem, there is a set of candidate authors, a set of

text samples of known authorship covering all the candidate authors (training corpus),

and a set of text samples of unknown authorship (test corpus); each one of them should be

attributed to a candidate author. In this survey, we distinguish the authorship attribution

approaches according to whether they treat each training text individually or cumulatively

(per author). In more detail, some approaches concatenate all the available training

texts per author in one big file and extract a cumulative representation of that author’s

style (usually called the author’s profile) from this concatenated text. That is, the

differences between texts written by the same author are disregarded. Such an approach

just described is called “profile-based approach” and early work in authorship attribution
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has followed this practice [46]. On the other hand, another family of approaches requires

multiple training text samples per author to develop an accurate attribution model. That

is, each training text is individually represented as a separate instance of authorial style.

Such “instance-based approaches1” are described in the next section, followed by hybrid

approaches attempting to combine characteristics of profile-based and instance-based

methods. We then compare these two basic approaches and discuss their strengths and

weaknesses across several factors.

2.2.1 Profile-based approach

One way to handle the available training texts per author is to concatenate them in

one single text file. This large file is used to extract the properties of the author’s style.

An unseen text is, then, compared with each author file, and the most likely author is

estimated based on a distance measure. It should be stressed that there is no separate

representation of each text sample but only one representation of a large file per author.

As a result, the differences between the training texts by the same author are disregarded.

Moreover, the stylometric measures extracted from the concatenated file may be quite

different in comparison to each of the original training texts.

Figure 2.1: Typical architecture of profile-based in authorship attribution approaches. [58]

A typical architecture of a profile-based approach is depicted in figure 2.1. Note that

1Note that this term should not be confused with instance-based learning methods[45]
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x denotes a vector of text representation features. Hence, xA is the profile of Author A,

and xu is the profile of the unseen text. The profile-based approaches have a very simple

training process. Actually, the training phase just comprises the extraction of profiles

for the candidate authors. Then, the attribution model is usually based on a distance

function that computes the differences of the profile of an unseen text and the profile

of each author. Let PR(x) be the profile of text x and d[PR(x), PR(y)] the distance

between the profile of text x and the profile of text y. Then, the most likely author of

an unseen text x is given in 2.1, where A is the set of candidate authors and xa is the

concatenation of all training texts for author a.

author(x) = arga∈Amin d(PR(x), PR(xa) (2.1)

2.2.2 Instance-based approach

The majority of the modern authorship-identification approaches considers each training

text sample as a unit that contributes separately to the attribution model. In other

words, each text sample of known authorship is an instance of the problem in question.

A typical architecture of such an instance-based approach is shown in figure 2.2. In

detail, each text sample of the training corpus is represented by a vector of attributes (x)

following methods described earlier, and a classification algorithm is trained using the set

of instances of known authorship (training set) to develop an attribution model. Then,

this model will be able to estimate the true author of an unseen text.

Figure 2.2: Typical architecture of instance-based in authorship attribution approaches. [58]
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Note that such classification algorithms require multiple training instances per class

for extracting a reliable model. Therefore, according to instance-based approaches, in case

we have only one, but a quite long, training text for a particular candidate author (e.g.,

an entire book), this should be segmented into multiple parts, probably of equal length.

From another point of view, when there are multiple training text samples of variable

length per author, the training text instance length should be normalized. To that end,

the training texts per author are segmented to equal-sized samples [52]. In all these

cases, the text samples should be long enough so that the text representation features

can adequately represent their style. Various lengths of text samples have been reported

in the literature. Sanderson and Guenter (2006) produced chunks of 500 characters [52].

Koppel et al. (2006) segmented the training texts into chunks of about 500 words [31].

Hirst and Feiguina (2007) conducted experiments with text blocks of varying length (i.e.:

200, 500, and 1000 words) and reported significantly reduced accuracy as the text-block

length decreases [19]. Therefore, the choice of the training instance text sample is not a

trivial process and directly affects the performance of the attribution model.

2.3 Identify the task

Since authorship attribution has been studied for many decades now, we have witnessed

the rise of many different subtasks. In the next part of this section we will illustrate one

of the main difference between approaching a single domain or a cross domain dataset in

order to get the stylometric markers of each authors. We will also discuss the difference

between closed set and open set authorship attribution problem.

2.3.1 Single domain vs Cross domain

When dealing with a dataset with documents written by different authors, the first

analysis to carry is to identify the different topics of each document written by the same

author. This analysis is very important for the rest of the analysis, because previous

works have shown a degradation in terms of performance when approaching cross domain

dataset, being suited for the single domain approach. The reason behind this is trivial:

content words used by the same author will vary a lot when writing about different

topics (such as: motors, science, literature,or politics). What should remain steady in

the style of writing of an author across different topics should be function words, the use

of punctuation ..etc Although a lot of work showed good results in both context ([54],

[27], [47]) for the rest of this work, we will focus on single domain authorship attribution,

but we will also show results of our model trained on a cross domain dataset2.

2The Guardian, described in Chapter 4.
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2.3.2 Closed set vs Open set

The simplest kind of authorship attribution problem—and the one that has received the

most attention—is the one in which we are given a small closed set of candidate authors

and are asked to attribute an anonymous text to one of them. Usually, it is assumed that

we have copious quantities of text by each candidate author and that the anonymous

text is reasonably long. A number of recent survey papers amply cover the variety of

methods used for solving this problem, known as closed set authorship attribution.

A significant fact that examination of the literature reveals is that nearly all research in

the field only considers the simplest version of the problem.

Unfortunately, this “vanilla” version of the authorship attribution problem does not

often arise in the real world. We often encounter situations in which our list of candi-

dates might be very large and in which there is no guarantee that the true author of

an anonymous text is even among the candidates. [34] Similarly, almost all work in

authorship attribution has focused on the case in which the candidate set is a closed

set—the anonymous text is assumed to have been written by one of the known candidates.

The more general case, in which the true author of an anonymous text might not be one of

the known candidates, reduces to the binary authorship verification problem: determine

if the given document was written by a specific author or not. Some references of works

tackling open set authorship attribution problem are shown in Koppel et al. (2011) and

in Badirli et al. (2019). However, we decided to focus our work on tackling the closed set

authorship attribution problem, but we will leave some thoughts for future work in the

final chapter.

2.4 Research question

Statistical authorship attribution has a long history, culminating in the use of modern

machine learning classification methods. Nevertheless, most of this work suffers from the

limitation of assuming a small closed set of candidate authors and essentially unlimited

training text for each. Real-life authorship attribution problems, however, typically fall

short of this ideal. As in [32], three scenarios are presented for which solutions to the

basic attribution problem are inadequate. For example, we may encounter scenarios such

as:

1. There is no candidate set at all. In this case, the challenge is to provide as much

demographic or psychological information as possible about the author. This is the

profiling problem.
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2. There are many thousands of candidates for each of whom we might have a very

limited writing sample. This is the needle-in-a-haystack problem.

3. There is no closed candidate set but there is one suspect. In this case, the challenge

is to determine if the suspect is or is not the author. This is the verification problem.

In the following section we will show how machine learning methods can be adapted

to handle the special challenges of each variant.

2.4.1 Profiling the author

Even in cases where we have an anonymous text and no candidate authors, we would like to

say something about the anonymous author. That is, we wish to exploit the sociolinguistic

observation that different groups of people speaking or writing in a particular genre and in

a particular language use that language differently [6]. This authorship profiling problem

is of growing importance in the current global information environment applications,

existing in forensics, security, and commercial settings. For example, authorship profiling

can help police identify characteristics of the perpetrator of a crime when there are

too few (or too many) specific suspects to consider. Similarly, large corporations may

be interested in knowing what types of people like or dislike their products, based on

analysis of blogs and online product reviews. The question we therefore ask is: How

much can we discern about the author of a text simply by analyzing the text itself? It

turns out that, with varying degrees of accuracy, we can say a great deal indeed. One of

the approaches to authorship profiling is to apply machine learning to text categorization.

The process is as follows: First, we take a given corpus of training documents, each

labeled according to its category for a particular profiling dimension. For example, when

addressing classification by author gender, training documents are labeled as either male

or female. Each document is then processed to produce a numerical vector, each of whose

elements represents some feature of the text that might help discriminate the relevant

categories. A machine learning method then computes a classifier that, to the extent

possible, classifies the training examples correctly. Finally, the predictive power of the

classifier is tested on out-of-training data. Essentially the same paradigm can be used for

authorship attribution, where the training texts are known writings of given candidate

authors.[25]

2.4.2 Finding a needle in a haystack

Consider now the scenario where we seek to determine the specific identity of a document’s

author, but there are many thousands of potential candidates. We call this the needle-in-

a-haystack attribution problem. In this case, standard text-classification techniques are
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unlikely to give reasonable accuracy and may require excessive computation time to learn

classification models; however, in [32] and [33] it states that if we are willing to tolerate

our system telling us it does not know the answer, we can achieve high accuracy for the

cases where the system does give us an attribution it considers reliable. Recent works,

[56] and [63] have addressed the problem with tackling a large set of candidate authors

while keeping the documents very short, also known as “micro-messages” or “tweets”3.

2.4.3 Verification of an author

Considering the case in which we are given examples of the writing of a single author and

are asked to verify that a given target text was or was not written by this author. As a

categorization problem, verification is significantly more difficult than basic attribution,

and virtually no work has been done on it (but see Halteren 2004), outside the framework

of plagiarism detection Zu Eissen et al. 2007. If, for example, all we wished to do is to

determine if a text had been written by Shakespeare or by Marlowe, it would be sufficient

to use their respective known writings, to construct a model distinguishing them, and to

test the unknown text against the model. If, on the other hand, we need to determine

if a text was written by Shakespeare, it is difficult to assemble a representative sample

of non-Shakespeare texts. The situation in which we suspect that a given author may

have written some text, but do not have an exhaustive list of alternative candidates, is

a common one [32]. The problem is complicated by the fact that a single author may

vary his or her style from text to text or may unconsciously drift stylistically over time,

not to mention the possibility of conscious deception. Thus, we must learn to somehow

distinguish between relatively shallow differences that reflect conscious or unconscious

changes in an author’s style and deeper differences that reflect styles of different authors.

3As the name recall, the name of the posts on the popular social media platform Twitter. Its main
characteristics is that originally only 140 characters per post were allowed (at the moment of writing, it
has been upgraded up to 280 characters per tweet).

25



26



CHAPTER 3

Text characteristics analysis

The main problem in working with

language processing is that machine

learning algorithms cannot work on

the raw text directly. So, we need some

feature extraction techniques to

convert text into a matrix(or vector)

of features.

In order to identify the authorship of an unknown text document using machine

learning the document needs to be quantified first. The simple and natural way to

characterize a document is to consider it as a sequence of tokens grouped into sentences

where each token can be one of the three: word, number, punctuation mark. To quantify

the overall writing style of an author, stylometric features are defined and studied in

different domains. Mainly, computations of stylometric features can be categorized into

five groups as lexical, character, semantic, syntactic, and application specific features.

Lexical and character features mainly considers a text document as a sequence of word

tokens or characters, respectively. This makes it easier to do computations compared to

other features. On the other hand, syntactic and semantic features require deeper linguistic

analysis and more computation time. Application specific features are defined based on

the text domains or languages. These five features are studied and the methods to extract

them are also provided for interested readers. Moreover there’s a sixth characteristic

regarding only hand-written text, which was used for years in the past and it’s still

studied nowadays [44], which is the graphological analysis. Although the problem of

recognition of handwriting text is still far from its final solution, in this work, we will

focus only on the first 5 characteristics because the main focus since the digitalization

era has been on studies of digital text characteristics analysis.
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3.1 Character Features

Based on these features a sentence consists of a characters sequence. Some of the

character-level features are alphabetic characters count, digit characters count, uppercase

and lowercase character counts, letter and character n-gram frequencies. This type

of feature extraction techniques has been found quite useful to quantify the writing

style.[16] A more practical approach in character-level features are the extraction of

n-gram characters. This procedure of extracting such features are language independent

and require less complex toolboxes. On the other hand, comparing to word n-grams

approach the dimensional of these approaches are vastly increased and it has a curse of

dimensional problem. A simple way of explaining what a character n-grams could be

with the following example: assume that a word “thesis” is going to be represented by

2-gram characters. So, the resulting sets of points will be “th”, “he”, “es”, “si”, “is”.

A simple python algorithm is shown in 3.1:

Code Listing 3.1: Split word into character n-grams, parametric on n.

def get_char_n_gram(text , n=2):

""" Convert text into character n-grams list """

return [text[i:i+n] for i in range(len(text)-n+1)]

# Examples character 2-grams

print(get_char_n_gram("thesis"))

>>Out: [’th’, ’he’, ’es’, ’si’, ’is’]

print(get_char_n_gram("student", n=3))

>>Out: [’stu’, ’tud’, ’ude’, ’den’, ’ent’]

In [54] 10 character n-grams categories have been identified, being proven as the most

successful feature in both single-domain and cross-domain Authorship Attribution.

These 10 categories are grouped into 3 groups: Affix n-grams, Word n-grams, Punctuation

n-grams.

3.1.1 Affix n-grams

Character n-grams are generally too short to represent any deep syntax, but some of them

can reflect morphology to some degree. In particular, the following affix-like features are

extracted by looking at n-grams that begin or end a word:

• prefix: A character n-gram that covers the first n characters of a word that is at

least n+1 characters long.
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• suffix: A character n-gram that covers the last n characters of a word that is at

least n + 1 characters long.

• space-prefix: A character n-gram that begins with a space.

• space-suffix: A character n-gram that ends with a space.

3.1.2 Word n-grams

While character n-grams are often too short to capture entire words, some types can

capture partial words and other word-relevant tokens. There’s a distinction among:

• whole-word: A character n-gram that covers all characters of a word that is

exactly n characters long.

• mid-word: A character n-gram that covers n characters of a word that is at least

n + 2 characters long, and that covers neither the first nor the last character of the

word.

• multi-word: N -grams that span multiple words, identified by the presence of a

space in the middle of the n-gram.

3.1.3 Punctuation n-grams

The main stylistic choices that character n-grams can capture are the author’s preferences

for particular patterns of punctuation. The following features characterize punctuation

by its location in the n-gram.

• beg-punct: A character n-gram whose first character is punctuation, but middle

characters are not.

• mid-punct: A character n-gram with at least one punctuation character that is

neither the first nor the last character.

• end-punct: A character n-gram whose last character is punctuation, but middle

characters are not.

In Table 3.1 we can see an example of the n-gram categories (n = 3) for the sentence

“The actors wanted to see if the pact seemed like an old-fashioned one.”. In [54] they’ve

observed that in their data almost 80% of the n-grams in the punct-beg and punct-mid

categories contain a space. They stated that “this tight coupling of punctuation and

spaces is due to the rules of English orthography: most punctuation marks require a space

29



Table 3.1: Example of the n-gram categories (n=3) for the sentence: The actors wanted to see
if the pact seemed like an old-fashioned one.
The n-grams that appear in more than one category are in bold.

Category Category n-grams

prefix act wan pac see lik fas
suffix ors ted act med ike ned

space-prefix ac wa to se if th pa li an ol on
space suffix he rs ed to ee if ct ke an
whole-word The see the old one
mid-word cto tor ant nte eem eme ash shi hio ion one

multi-word e a s w d t o s e i f t e p t s d l n o d o
beg-punct -fa
mid-punct d-f
end-punct ld- ne.

following them”. The 20% of n-grams that have punctuation but no spaces correspond

mostly to the exceptions to this rule: quotation marks, mid-word hyphens, etc. The

authors of [54] conducted an experiment on Reuters Corpus Volume 1 (RCV1) dataset

both the CCAT 10 split and the CCAT 50 split1. They’ve also used the Guardian dataset

as a cross-domain authorship attribution experiment. In their work they stated that for

the single-domain the top four categories for authorship attribution are: prefix, suffix,

space-prefix and mid-word. On the other hand, for cross-domain authorship attribution the

top four categories have been proven to be: prefix, space-prefix, beg-punct and mid-punct.

For both single-domain and cross-domain authorship attribution, prefix and space-prefix

are strong features, and are generally better than the suffix features, perhaps because

authors have more control over prefixes in English, while suffixes are often obligatory

for grammatical reasons. For cross-domain authorship attribution, beg-punct and mid-

punct they found to be the top features, likely because an author’s use of punctuation

is consistent even when the topic changes. For single-domain authorship attribution,

mid-word was also a good feature, probably because it captured lexical information that

correlates with authors’ preferences towards writing about specific topic.

3.2 Lexical Features

Lexical features relate to the words or vocabulary of a language. It is the very plain

way of representing a sentence structure that consists of words, numbers, punctuation

marks. These features are very first attempts to attribute authorship in earlier studies

1CCAT 10/CCAT 50 split on RCV1 dataset is the selection of the 10/50 most prolific authors
belonging to the Corporate/Industrial Category (CCAT)
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[13], [2], [61]. The main advantage of Lexical features is that it is universal and can be

applied to any language easily. These features consist of bag of words representation,

word N-grams, vocabulary richness, number of punctuation marks, average number of

words in a sentence, and many more. Even though the number of lexical features can vary

a lot, not all of them are good for every authorship attribution problem. That is why, it

is important to know how to extract these features and try out different combinations on

different classifiers.

3.2.1 Bag of Words

It is the representation of a sentence with frequency of words. It is a simple and efficient

solution but it disregards word-order information. At the very beginning, we applied this

representation to our datasets, using the already implemented CountV ectorizer from

sklearn.feature extraction.text. We gave this hyper-parameter to the function:

• max df=0.8

• max features=10000

• min df=0.02

• ngram range=(1, 2)

In the approach, for each text fragment the number of instances of each unique word is

found to create a vector representation of word counts. We capped the max number of

features to 10’000 words and discarding the words with a higher frequency of 0.8 across

the document and a lower frequency of 0.02. We’ve also taken into account both single

word and word bi-grams. In order to give the reader a better perspective of the impact of

this process for the task of authorship attribution, we choose two among the top ten most

prolific authors in the RCV1 dataset: David Lawder and Alexander Smith. In Figure 3.1

we can see the number of documents written by the two selected authors in the RCV1

corpus for the CCAT topic.

With a simple snippet of python code shown in 3.2, we can get the most common

words for an author across all the documents we gathered in the dataset.

Code Listing 3.2: Top 20 most common words in a document or a collection of document by

the same author.

from collections import Counter

def get_most_common_words_in_df(df , n=20):

""" Split a collection of document in single word and order by

frequencies across all documents """
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Figure 3.1: The number of documents written by David Lawder and Alexander Smith in the
Reuters Corpus for the CCAT topic.

most_common_words = Counter(" ".join(df["articles"]).split ()).

most_common(n)

return most_common_words

# Examples

# 1. Top 20 words with their frequency for every document written by

David Lawder

print(get_most_common_words_in_df(dataset[dataset[’author ’]==’David

Lawder ’]))

>>Out: [(’the’, 7844), (’to’, 5133), (’of’, 3875), (’and’, 3746), (’a

’, 3719), (’in’, 3552), (’said’,

1749), (’that’, 1720), (’for’, 1574

), (’GM’, 1453), (’on’, 1286), (’at

’, 1267), (’its’, 1153), (’The’,

1098), (’with’, 990), (’is’, 957),

(’it’, 897), (’will’, 875), (’by’,

868), (’from’, 824)]

# 2. Top 20 words without their frequency for every document written

by David Lawder

print([m[0] for m in get_most_common_words_in_df(dataset[dataset[’

author ’]==’David Lawder ’])])
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>>Out: [’the’,

’to’,

’of’,

’and’,

’a’,

’in’,

’said’,

’that’,

’for’,

’GM’,

’on’,

’at’,

’its’,

’The’,

’with’,

’is’,

’it’,

’will’,

’by’,

’from’]

Figure 3.2: Frequency usage of the top 20 words used in the RCV1 corpus by David Lawder,
compared to the frequencies of the same words in the corpus by Alexander Smith.

As expected top words are determiners that every writer uses while constructing an
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Figure 3.3: Image Generated on for every word in Reuters Corpus data for the documents
written by David Lawder.

English sentence. For example, for David Lawder top 20 words are ”the, to, of, and, a,

in, said, that, for, GM, on, at, its, The, with, is, it, will, by, from” but for Alexander

Smith they are “the, of, to, and, a, in, said, was, for, on, it, had, by, be, its, is, with,

would, that, as” in decreasing order. Even though the two sets are mostly the same, the

orders and the frequency are different for most authors.

The main assumption with authorship attribution problems is that every authors

word usage and content differs and based on these differences the work of one author can

be differentiated from the other. In order to illustrate this assumption, in Figure 3.2 we

can see the top 20 words in the RCV1 corpus in the document written by David Lawder,

compared to the same words in the documents of Alexander Smith.

In Figure 3.3 & Figure 3.4 we plotted using the Word Cloud identikit of David Lawder

and Alexander Smith, generated by every document written by them in the RCV1 corpus.

3.2.2 Word N-grams

It is a type of probabilistic language model for predicting the next item in the form of a

(n-1) order. Considering n-grams are useful since Bag of words miss out the word order

when considering a text. For example, a phrasal verb “take on” can be missed out by

Bag of words representation which considers “take” and “on” as two separate words.

N-gram also establishes the approach of “Skip-gram” language model. An N-gram is a

consecutive sub-sequence of length N of some sequence of sentence while a Skip-gram is
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Figure 3.4: Image Generated on for every word in Reuters Corpus Volume 1 corpus data for
the documents written by Alexander Smith.

a N-length sub-sequence where the components occur at a distance of at most k from

each other [42]. In order to extract N-grams from a given text data a simple snippet of

code is shown in Code Listing 3.3, tested for the word grams on the documents written

by David Lawder and Alexander Smith of the RCV1 corpus data. No pre-processing on

the dataset, such as discarding stopwords, has been done while constructing the N-grams.

For David Lawder “the, of the, General Motors Corp.” are the most occurrent uni-gram,

bi-gram and three-gram respectively whilst in Alexander Smith documents they are “the,

of the, said it would”.

Code Listing 3.3: Get the top 3 most common grams in the corpus, for uni-grams, bi-grams

and three-grams.

from collections import Counter

from nltk import ngrams

def get_Xigram(text , n):

"""Get n-grams for a given text. The number of grams are controlled

by parameter n"""

return list(ngrams(text.split(), n))

def get_top_3_gram(df):

""" Return a list of three elements , each one containing the top 3

most common grams in the corpus
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given as a Dataframe parameter. The

three elements corresponds to the

uni -gram , bi -grams and three -grams.

"""

result = []

for i in range(1,4):

result.append(Counter(get_Xigram(" ".join(df["articles"]), i)).

most_common(3))

return result

print(get_top_3_gram(df_david_lawder))

print(get_top_3_gram(df_alexander_smith))

Table 3.2: Top 3 uni-grams, bi-grams and three-grams by David Lawder and Alexander Smith
in the Reuters corpus data.

Author Uni-gram Bi-gram Three-gram

David Lawder the of the General Motors Corp.
David Lawder to in the United Auto Workers
David Lawder of for the Ford Motor Co.

Alexander Smith the of the said it would
Alexander Smith of in the the end of
Alexander Smith to said the a result of

Table 3.2 contains top 3 uni-grams, bi-grams, three-grams from the authors David

Lawder and Alexander Smith.

3.2.3 Vocabulary Richness

It is also referred as vocabulary diversity. It attempts to quantify the diversity of the

vocabulary text. It is simply the ratio of V/N where V refers to the total number of

unique tokens and N refers to the total number of tokens in the considered texts [58]. As

an example, we applied this feature to the RCV1 CCAT 10 dataset2. A snippet of the

code to extract such feature, is shown in 3.4.

Code Listing 3.4: Calculate vocabulary richness in Reuters Corpus Volume 1 CCAT 10 split

dataset.

tmp_df = dataset

tmp_df["num_unique_words"] = tmp_df["articles"].apply(lambda x: len

(set(str(x).split ()))/len(str(x).

split ()))

2The top ten most prolific authors in the RCV1 corpus, selecting the documents belonging to the
CCAT topic
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objects = {}

for author_i in tmp_df.author.unique ():

objects[author_i] = sum(tmp_df[tmp_df.author==author_i][’

num_unique_words ’])/len(tmp_df[

tmp_df.author==author_i])

plt.bar(range(len(objects)), list(objects.values ()), align=’center ’

)

plt.xticks(range(len(objects)), list(objects.keys()))

ax = plt.gca()

plt.setp(ax.get_xticklabels (), rotation=30 , horizontalalignment=’

right ’)

plt.show()

For this portion of the dataset, has been found the lowest vocabulary richness in

Marcel Michelson and the highest in Jim Gilchrist. Overall distribution of vocabulary

richness is plotted in Figure 3.5.

Figure 3.5: Bar Plot of vocabulary richness of Reuters Corpus CCAT 10 authors across all
their documents.
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3.2.4 Stylometric features

These are features such as number of sentences in a text piece, number of words in a

text piece, average number of words in a sentence, average word length in a text piece,

number of periods, number of exclamation marks, number of commas, number of colons,

number of semicolons, number of incomplete sentences, number of uppercase, title case,

camel case, lower case letters. We computed these features comparing the stylometric

differences for the documents belonging to David Lawder and the ones of Alexander

Smith in the RCV1 corpus. Overall distribution of some of the features introduced here

(such as: number of punctuation, number of words upper case, number of words title,

average length of the word, number of stopwords) are applied and the resulting density

measures are calculated for each of the two authors and shown in Table 3.3. Among these

five features introduced, number of punctuations and number of stop words usage varies

the most among the authors and hence they can be better distinguisher comparing to

other feature sets.

Table 3.3: Comparing some stylometric features between David Lawder and Alexander Smith
calculated on the documents in the Reuters corpus data and normalized by the number of
documents.

Stylometric Feature David Lawder Alexander Smith

Number of punctuation symbols 101.7800 88.7300
Number of uppercase words 12.5900 9.8900

Number of title words 76.5900 68.3000
Word length mean 5.0900 5.1100

Number of stopwords 191.3800 234.9700

3.2.5 Function Words

Function words are the words that have little meaning on their own but they’re necessary

to construct a sentence in English language. They express grammatical relationships

among other words within a sentence, or specify the attitude or mood of the speaker.

Some of the examples of function words might be prepositions, pronouns, auxiliary

verbs, conjunctions, grammatical articles. Words that are not functions words are called

as content words and they can also be studied to further analysis the use case in the

authorship attribution problems. The search for a single invariant measure of textual style

was natural in the early stages of stylometric analysis, but with the development of more

sophisticated multivariate analysis techniques, larger sets of features could be considered.

Among the earliest studies to use multivariate approaches was that of Mosteller and

Wallace (1964), who considered distributions of FWs. The reason for using FWs in
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preference to others is that we do not expect their frequencies to vary greatly with the

topic of the text, and hence, we may hope to recognize texts by the same author on

different topics. It also is unlikely that the frequency of FW use can be consciously

controlled, so one may hope that use of FWs for attribution will minimize the risk of

being deceived [9]. Many studies since that of Mosteller and Wallace (1964) have shown

the efficacy of FWs for authorship attribution in different scenarios [2], [3], [30], [69],

confirming the hypothesis that different authors tend to have different characteristic

patterns of FW use. Typical modern studies using FWs in English use lists of a few

hundred words, including pronouns, prepositions, auxiliary and modal verbs, conjunctions,

and determiners. Numbers and interjections are usually included as well since they are

essentially independent of topic, although they are not, strictly speaking, FWs. Results

of different studies using somewhat different lists of FW have been similar, indicating

that the precise choice of FW is not crucial. Discriminators built from FW frequencies

often perform at levels competitive with those constructed from more complex features.

3.2.6 Term Frequency - Inverse Document Frequency

It stands for term frequency-inverse document frequency. It is often used as a weight in

feature extraction techniques. The reason why Tf-Idf is a good feature can be explained

in an example. Let’s assume that a text summarization needs to be done using few

keywords. One strategy is to pick the most frequently occurring terms meaning words

that have high term frequency (tf ). The problem here is that, the most frequent word

is a less useful metric since some words like ’a’, ’the’ occur very frequently across all

documents. Hence, a measure of how unique a word across all text documents needs to

be measured as well (idf ). Hence, the product of tf x idf (3.3) of a word gives a measure

of how frequent this word is in the document multiplied by how unique the word is with

respect to the entire corpus of documents. Words with a high tf-idf score are assumed to

provide the most information about that specific text [58].

TF (t) =
Number of times term t appears in a document

Total numbers of terms in the document
(3.1)

IDF (t) = loge(
Total number of documents

Number of documents with term t in it
) (3.2)

Tf − Idf = TF (t) ∗ IDF (t) (3.3)

As an example, we built a Tf-Idf model by considering documents alone within the text

corpus for the authors David Lawder and Alexander Smith. In the model, not only the

single forms of word tokens but their n-grams are considered as well. Table 3.4 provides
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the top 5 words with highest Tf-Idf scores for the two authors. Comparing between Table

3.2 and Table 3.4 new meaningful words have appeared that could serve as a new feature

for each author such as “dow, kmart, coupe” for David Lawder or “hsbc, pensions, panel”

for Alexander Smith.

Table 3.4: Top 5 Term Frequency - Inversed Document Frequency words n-grams by David
Lawder and Alexander Smith in the Reuters Corpus data.

Author Token Value Author Token Value

David Lawder dow 0.7020 Alexander Smith hsbc 0.6970
David Lawder kmart 0.6580 Alexander Smith pensions 0.6010
David Lawder south 0.5590 Alexander Smith bzw 0.5920
David Lawder coupe 0.5390 Alexander Smith panel 0.5790
David Lawder bags 0.5170 Alexander Smith read 0.5700

3.3 Syntactic Features

For certain text grammatical and syntactic features could be more useful compared to

lexical or character level features. However, this kind of feature extraction techniques

requires specific usage of Part of Speech taggers. Some of these features consider the

frequency of nouns, adjectives, verbs, adverbs, prepositions, and tense information (past

tense,etc). The motivation for extracting these features is that authors tend to use similar

syntactic patterns unconsciously [58]. Some researchers are also interested in exploring

different dialects of the same language and building classifiers based on features derived

from syntactic characteristic of the text. One great example is the work that aims to

discriminate between texts written in either the Netherlandic or the Flemish variant of

the Dutch language [64]. The feature set in this case consists of lexical, syntactic and

word-n grams build on different classifiers and F1 has been recorded for each cases.

Employed syntactic features are function words ratio, descriptive words to nominal words

ratio personal pronouns ratio, question words ratio, question mark ratio, exclamation

mark ratio [64].

3.4 Semantic Features

Features that we discussed so far aim at analyzing the structural concept of a text.

Semantic feature extraction from text data is a bit challenging. That might explain why

there is limited work in this area. One example is the work of Yang who has proposed

combination of lexical and semantic features for short text classification [67]. Their

approach consists of choosing a broader domain related to target categories and then
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applying topic models such as Latent Dirichlet Allocation to learn a certain number

of topics from longer documents. The most discriminative feature words of short text

are then mapped to corresponding topics in longer documents [67]. Their experimental

results show significant improvements compared to other related techniques studying

short text classification. Positivity, neutrality, and negativity index, and synonym usage

preference are good examples of semantic features. Distributed representation of words,

Word2Vec, is also an attempt to extract and represent the semantic features of a word,

sentence, and paragraph [41]. The usage of Word2Vec in authorship attribution tasks has

not yet been studied explicitly. Due to the application domain dependency of Word2Vec

features their usage will be introduced when discussing application specific feature sets.

3.4.1 Positivity and Negativity index

In order to understand the general mood and the preference of positive and negative

sentence structure in each author’s work, a positivity and negativity score has been

calculated for the authors David Lawder and Alexander Smith for the documents in the

RCV1 corpora. The code is shown in Code Listing 3.5, whereas in Figure 3.6 we can see

the results that points out Alexander Smith writing more negative articles than David

Lawder. Both of the authors wrote the majority of the articles classified as positive than

negative.

Code Listing 3.5: Compute sentence Positivity and Negativity scores.

from nltk.sentiment.vader import SentimentIntensityAnalyzer

nltk.download(’vader_lexicon ’)

# Pre -Processing

SIA = SentimentIntensityAnalyzer ()

# Applying Model , Variable Creation

sentiment = pd.concat([df_david_lawder , df_alexander_smith])

sentiment[’polarity_score ’]=sentiment.articles.apply(lambda x:SIA.

polarity_scores(x)[’compound ’])

sentiment[’neutral_score ’]=sentiment.articles.apply(lambda x:SIA.

polarity_scores(x)[’neu’])

sentiment[’negative_score ’]=sentiment.articles.apply(lambda x:SIA.

polarity_scores(x)[’neg’])

sentiment[’positive_score ’]=sentiment.articles.apply(lambda x:SIA.

polarity_scores(x)[’pos’])

sentiment[’sentiment ’]=’’

sentiment.loc[sentiment.polarity_score>0,’sentiment ’]=’POSITIVE ’

sentiment.loc[sentiment.polarity_score==0,’sentiment ’]=’NEUTRAL ’

sentiment.loc[sentiment.polarity_score<0,’sentiment ’]=’NEGATIVE ’

# Normalize for Size
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auth_sent= sentiment.groupby([’author ’,’sentiment ’])[[’articles ’]].

count ().reset_index ()

for x in [’David Lawder ’, ’Alexander Smith’]:

auth_sent.articles[auth_sent.author == x] = (auth_sent.articles[

auth_sent.author == x]/\

auth_sent[auth_sent.author ==x].articles.sum())*100

ax= sns.barplot(x=’sentiment ’, y=’articles ’,hue=’author ’,data=

auth_sent)

ax.set(xlabel=’Author ’, ylabel=’Sentiment Percentage ’)

ax.figure.suptitle("Author by Sentiment", fontsize = 24)

plt.show()

Figure 3.6: Bar Plot of sentiment analysis for 2 of the authors in the Reuters Corpus CCAT 10
corpora across all their documents.

3.5 Application Specific Features

When the application domain of the authorship attribution problems are different such as

email messages or online forum messages, author style can be better characterized using

structural, content specific, and language specific features. In such domains, the use of
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greetings and farewells, types of signatures, use of indentation, paragraph lengths, font

color, font size could be good features [58].

3.5.1 Vector embeddings of words (Word2Vec)

Word2Vec3 leverages the context of the target words. Essentially, we want to use the

surrounding words to represent the target words with a Neural Network whose hidden layer

encodes the word representation. Similar words are close to each other in the vector space.

For example, it was shown in [43] that vector[King] − vector[Man] + vector[Woman]

results in the vector that is closest to the representation of the vector[Queen]. Figure 3.7

shows this representation in a simple way. The ways to make use of Word2Vec in the

dataset is various. For example, a Word2Vec model can either be built by considering

every authors text data separately, or can be imported using previously trained word

vectors on other large text corpus. It can, then, be plotted into two dimensional vector

space by using dimensionality reduction techniques (TSNE, for example4). We can also

make use of pre-trained word vectors of Glove to see the difference of usages in such

words between an author and a pretrained word vector. Moving with the idea of training

Word2Vec per author, one can also do a cosine distance measure for the same word or

same sentence. There are two types of Word2Vec, Skip-gram and Continuous Bag of

Words (CBOW). I will briefly describe how these two methods work in the following

paragraphs.

Figure 3.7: Examples of Word2Vec representation with vector distance.

3.5.1.1 Skip-gram

For skip-gram, the input is the target word, while the outputs are the words surrounding

the target words. For instance, in the sentence “I have a cute dog”, the input would be

3https://code.google.com/archive/p/word2vec/
4t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction

that is particularly well suited for the visualization of high-dimensional datasets
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“a”, whereas the output is “I”, “have”, “cute”, and “dog”, assuming the window size is

5. All the input and output data are of the same dimension and one-hot encoded. The

network contains 1 hidden layer whose dimension is equal to the embedding size, which

is smaller than the input/output vector size. At the end of the output layer, a softmax

activation function is applied so that each element of the output vector describes how

likely a specific word will appear in the context. In mathematics, the softmax function, or

normalized exponential function is a generalization of the logistic function that squashes

a K-dimensional vector z of arbitrary real values to a K-dimensional vector δ(z) of real

values, where each entry is in the range (0,1) and all the entries add up to 1. The target

is a (K-1)-dimensional space, so one dimension has been lost.

With skip-gram, the representation dimension decreases from the vocabulary size (V) to

the length of the hidden layer (N). Furthermore, the vectors are more “meaningful” in

terms of describing the relationship between words. The vectors obtained by subtracting

two related words sometimes express a meaningful concept such as gender or verb tense,

as shown in the following figure (dimensionality reduced).

3.5.1.2 Continuous Bag Of Words (CBOW)

Continuous Bag of Words (CBOW)5 is very similar to skip-gram, except that it swaps

the input and output. The idea is that given a context, we want to know which word is

most likely to appear in it.

The biggest difference between Skip-gram and CBOW is that the way the word vectors

are generated. For CBOW, all the examples with the target word as target are fed into

the networks, and taking the average of the extracted hidden layer. For example, assume

we only have two sentences, “He is a nice guy” and “She is a wise queen”. To compute

the word representation for the word “a”, we need to feed in these two examples, “He

is nice guy”, and “She is wise queen” into the Neural Network and take the average of

the value in the hidden layer. Skip-gram only feed in the one and only one target word

one-hot vector as input.

It is claimed that Skip-gram tends to do better in rare words. Nevertheless, the

performance of Skip-gram and CBOW are generally similar.

3.5.2 Vector embeddings of documents (Doc2Vec)

Distributed word representation in a vector space (word embeddings) is a novel technique

that allows to represent words in terms of the elements in the neighborhood. Distributed

representations can be extended to larger language structures like phrases, sentences,

5https://iksinc.online/tag/continuous-bag-of-words-cbow/
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paragraphs and documents. The capability to encode semantic information of texts and

the ability to handle high-dimensional datasets are the reasons why this representation

is widely used in various natural language processing tasks such as text summarization,

sentiment analysis and syntactic parsing [36].

Figure 3.8: Paragraph Vector-Distributed Memory model.

The goal of doc2vec is to create a numeric representation of a document, regardless of

its length. Unlike words, documents do not come in logical structures such as words, so

the another method has to be found. The concept that Mikilov and Le [36] had used

was simple, yet clever: they used the word2vec model, but instead of using just words to

predict the next word, we also added another feature vector, which is document-unique.

When training the word vectors W, the document vector D is trained as well, and in the

end of training, it holds a numeric representation of the document.

Figure 3.9: Paragraph Vector-Distributed Bag of Words model.

The model above is called Distributed Memory version of Paragraph Vector (PV-DM)

Figure 3.8. It acts as a memory that remembers what is missing from the current context

— or as the topic of the paragraph. While the word vectors represent the concept of

a word, the document vector intends to represent the concept of a document. As in
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word2vec, another algorithm, which is similar to skip-gram may be used Distributed Bag

of Words version of Paragraph Vector (PV-DBOW). As we can see in Figure 3.9, this

algorithm is actually faster (as opposed to word2vec) and consumes less memory, since

there is no need to save the word vectors.
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CHAPTER 4

Techniques and data collection

for Authorship Attribution

‘State of the Art is the frenetic and

relentless pursuit of doing what its best

at that time! ’

Da Anunciação Marco

There are different types of authorship attribution studies in the literature such as

predicting the date of authorship of historical texts or text genre detection [62], [26].

Vast majority of previous works focuses on authorship identification by taking into

consideration the stylistic features of authors such as use of grammar, function words,

frequent word allocations [2], [13], [19]. Some of the well-known problems in authorship

attribution are disputed Federalist Papers classification and Shakespearean Authorship

Dispute. The Federalist Papers are a collection of 85 articles and essays written by

Alexander Hamilton, James Madison, and John Jay to persuade the citizens of New York

to ratify the U.S. Constitution. Authorship of twelve of these papers has been in dispute.

To address this problem, using linear support vector machines as classifier and relative

frequencies of words as features a study identified these papers to be written by James

Madison [46].

Another dispute in authorship attribution among scholars across the world is whether

William Shakespeare wrote the works attributed to him or not. It was argued that

Shakespeare was not even educated and more than 80 authors were suggested to be the

author of the writings that were under the name of Shakespeare. Christopher Marlowe is

considered the most likely candidate to write these works under the name of Shakespeare

when he was in jail. In order to analyze the stylistic fingerprint of Shakespeare and
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Marlowe and non-Shakespearean authors, namely Chapman, Jonson, Middleton, a corpus

has been put together [13].

The classification results for non-Shakespearean author candidates turned out to be highly

accurate (Johnson %100, Chapman %92.9 and Middleton %88.9). The results supported

the hypothesis that writing styles of Marlowe and Shakespeare were as distinguishable as

other authors unless Marlowe did not show a linear change in style over time. Meaning,

Marlowe has found not to be the authors of Shakespearean writings. Another interesting

study on the unknown texts is also done based on word-level features, vocabulary richness

and syntactic features by using Liblinear SVM for classification purposes [61]. Even

though the classification accuracy results are not as high as other related works features

like ‘number of unique words’ should be noted for use in any attribution problem.

Usefulness of function words in authorship attribution is introduced by Mosteller and

Wallace in their work on Federalist papers [46]. Argamon and Levitan has compared the

characteristic features of frequent words, pairs and collocations using the SMO algorithm,

and implemented it for two class (American or British) author nationality classification

problem. Their results conclude that function words are useful as stylistic text attribution

and frequent words are the best features among others. The reason behind it is that

a given same size frequent collocations has less different words comparing to frequent

words so it carries less discriminatory features [2]. In summary, there has been substantial

work done in authorship attribution and mainly people in forensic linguistic or computer

scientists aim to build ‘stylistic fingerprint of author’ by using several features of a given

text such as function words, stylometry. It is a classification problem and several classifiers

are used such as Näıve Bayes, SVM. Among them, SVM is observed to fit best for these

kinds of problems.

4.1 Support Vector Machine

Support Vector Machines (SVMs) recently gained popularity in the learning community

[65]. In its simplest linear form, an SVM is a hyperplane that separates a set of positive

examples from a set of negative examples with maximum interclass distance, the margin.

Figure 4.1 shows such a hyperplane with the associated margin. The formula for the

output of a linear SVM is show in Equation 4.1, where w is the normal vector to the

hyperplane, and x is the input vector. The margin is defined by the distance of the

hyperplane to the nearest of the positive and negative examples.

u = w ∗ x+ b (4.1)
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Maximizing the margin can be expressed as an optimization problem, as shown in

Equation 4.2:

minimize
1

2
||w||2 subject to yi(w ∗ xi + b) ≥ 1,∀i (4.2)

where xi is the i − th training example and yi ∈ −1, 1 is the correct output of the

SVM for the i− th training example. Note that the hyperplane is only determined by

the training instances xi on the margin, the support vectors. Support vector machines are

based on the structural risk minimization principle from computational learning theory

[65]. The idea is to find a model for which we can guarantee the lowest true error. This

limits the probability that the model will make an error on an unseen and randomly

selected test example. An SVM finds a model which minimizes (approximately) a bound

on the true error by controlling the model complexity (VC-Dimension). This avoids

over-fitting, which is the main problem for other semi-parametric models.

Figure 4.1: Support Vector Machine Hyperplane with the associated margin formula.

4.1.1 Support Vector Machine for authorship attribution

Unlike currently used classification approaches, like neural networks or decision trees,

SVM allows for the processing of hundreds of thousands of features. This offers the

opportunity to use all words of a text as inputs instead of a few hundred carefully selected

characteristic words only. In similar text classification problems aiming at thematic

categorization, the SVM has been shown to be quite effective [23], [12]. A SVM is able

to classify a text with respect to content. In the framework of author attribution, it is
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not clear whether a specific topic addressed by the author or the structural or stylistic

features of the authors language lead to a successful classification. Among the earliest

methods to be applied were various types of neural networks, typically using small sets

of FWs as features [21]. More recently, Hirst and Feiguina used neural networks on

a wide variety of features. Other studies have used k-nearest neighbor [69], support

vector machines [10], [30], [70], and Bayesian regression [37]. Comparative studies on

machine learning methods for topic-based text categorization problems [12], [23] have

shown that in general, support vector machine (SVM) learning is at least as good for text

categorization as any other learning method, and the same has been found for authorship

attribution [70]. The distinctive advantage of the SVM for text categorization is its ability

to process many thousand different inputs. This opens the opportunity to use all words

in a text directly as features. For each word wi the number of times of occurrence is

recorded. Typically a corpus contains more than 100,000 different words, with each text

covering only a small fraction. Joachims [23] used the SVM for the classification of text

into different topic categories. As features he uses word stems. To establish statistically

significant features he requires that each feature occurs at least three times in a text.

The empirical evaluation was done on two test collections: the Reuter-21578 news agency

data set covering different topics and the Ohsumed corpus of William Hersh describing

diseases. Using about 10000 features in every case, the two SVM versions (polynomial

and rbf) performed substantially better than the currently best performing conventional

methods (naive Bayes, Rocchio, decision trees, k-nearest neighbor). Joachims et al. [24]

used a transductive SVM for text categorization which is able to exploit the information

in unlabeled training data. Dumais et al. [12] use linear SVMs for text categorization

because they are both accurate and fast. They are 35 times faster to train than the

next most accurate (a decision tree) of the tested classifiers. They applied SVMs to the

Reuter-21578 collection, emails and web pages. Drucker et al. [11] classify emails as spam

and non spam. They find that boosting trees and SVMs have similar performance in

terms of accuracy and speed. SVMs train significantly faster.

4.2 Studies on Reuters Corpus

Reuters is the world’s largest international multimedia news agency, providing myriad news

and mutual fund information available on Reuters.com, video, mobile, and interactive

television platforms. Reuters Corpus Volume 1 (RCV1) is drawn from one of those online

databases1. This dataset consists of all English language stories produced by Reuters

journalists between August 20, 1996 and August 19, 1997. The dataset is made available

on two CD-ROMs and has been formatted in XML by Reuters, Ltd. in 2000, for research

1Reuters corpora [Online]. Available, http://trec.nist.gov/data/reuters/reuters.html; 2000

50

Reuters.com
http://trec.nist.gov/data/reuters/reuters.html


purposes. Both the archiving process and later preparation of the XML dataset involved

substantial verification and validation of the content, attempts to remove spurious or

duplicated documents, normalization of dateline and byline formats, addition of copyright

statements, and so on [8]. The stories cover a range of content typical of a large English

language international newswire. They vary from a few hundred to several thousand

words in length.

It consists of a collection of newswire stories written in English that cover four main

topics: corporate/industrial (CCAT), economics (ECAT), government/social (GCAT)

and markets (MCAT). Although it was not compiled for authorship attribution task, it

has been adapted to this task in previous works. For example, in [57]; [48] the 10 most

prolific authors were chosen from the CCAT category, and then, 50 examples per author

for training and 50 examples for testing were selected randomly with no overlapping

between training and testing sets. In further sections, we will reference to this corpus as

RCV1-10.

In Houvardas and Stamatatos [22], the authors proposed another adaptation of the RCV1

corpus for the authorship attribution task. They choose the 50 most prolific authors from

the Reuters Corpus, keeping 50 examples per author for training and 50 examples per

author for testing with no overlapping between them. We will refer to this corpus as

RCV1-50.

The RCV1-10 and RCV1-50 datasets are both balanced over different authors and have

their genre fixed to news. The main category of the news in both cases is fixed to

corporate/industrial, but there are many subtopics covered in the news and the length of

the texts is short (from 2 to 8 KBytes). These corpora resemble a more realistic scenario,

when the amount of texts is limited and the number of candidate authors is large.

4.2.1 Studies on Reuters Corpus on authorship attribution

Although, not particularly designed for evaluating author identification approaches, the

RCV1 corpus contains ‘by-lines’ in many documents indicating authorship. In particular,

there are 109,433 texts with indicated authorship and 2,361 different authors in total.

RCV1 texts are short (approximately 2KBytes – 8KBytes), so they resemble a realworld

author identification task where only short text samples per author may be available.

Moreover, all the texts belong to the same text genre (newswire stories), so the genre

factor is reduced in distinguishing among the texts. On the other hand, there are many

duplicates (exactly the same or plagiarized texts). The RCV1 corpus has already been

used in author identification experiments. In Khmelev and Teahan [28] the top 50 authors

(with respect to total size of articles) were selected. Moreover, in the framework of the

AuthorID project, the top 114 authors of RCV1 with at least 200 available text samples

were selected [37]. In contrast to these approaches, in this study, the criterion for selecting
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the authors was the topic of the available text samples. Hence, the top 50 authors of texts

labeled with at least one subtopic of the class CCAT (corporate/industrial) were selected.

That way, it is attempted to minimize the topic factor in distinguishing among the texts.

Therefore, since steps to reduce the impact of genre have been taken, it is to be hoped

that authorship differences will be a more significant factor in differentiating the texts.

Consequently, it is more difficult to distinguish among authors when all the text samples

deal with similar topics rather than when some authors deal mainly with economics,

others with foreign affairs etc. The training corpus consists of 2,500 texts (50 per author)

and the test corpus includes other 2,500 texts (50 per author) non-overlapping with the

training texts [22].

4.3 The guardian corpus: a case of cross-topic au-

thorship attribution

First introduced by Stamatatos [59], The Guardian corpus is composed of texts published

in The Guardian daily newspaper. The texts were downloaded using the publicly available

API2 and preprocessed to keep the unformatted main text. The majority of the corpus

comprises opinion articles (comments). The newspaper describes the opinion articles

using a set of tags indicating its subject. There are eight top-level tags (World, U.S., U.K.,

Belief, Culture, Life&Style, Politics, Society), each one of them having multiple subtags.

It is possible (and very common) for an article to be described by multiple tags belonging

to different main categories (e.g., a specific article may simultaneously belong to U.K.,

Politics, and Society). In order to have a clearer picture of the thematic area of the

collected texts, they only used articles that belong to a single main category. Therefore,

each article can be described by multiple tags, all of them belonging to a single main

category. Moreover, articles coauthored by multiple authors were discarded. In addition

to opinion articles on several thematic areas, the presented corpus comprises a second

text genre-book reviews. The book reviews are also described by a set of tags similar to

the opinion articles. However, no thematic tag restriction was taken into account when

collecting book reviews. Note that since all texts come from the same newspaper, they

are expected to have been edited according to the same rules, so any significant difference

among the texts is not likely to be attributed to the editing process.

Table 6.6 shows details about The Guardian Corpus (“TGC”). It comprises texts from

thirteen authors selected on the basis of having published texts in multiple thematic areas

(Politics, Society, World, U.K.) and different genres (opinion articles and book reviews).

At most 100 texts per author and category have been collected—all of them published

2Open Platform, GUARDIAN, http://explorer.content.guardianapis.com/
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Table 4.1: Details about The Guardian Corpus (“TGC”) distribution in every topic among
the authors.

Author Politics Society World UK Books

CB 12 4 11 14 16
GM 6 3 41 3 0
HY 8 6 35 5 3
JF 9 1 100 16 2
MK 7 0 36 3 2
MR 8 12 23 24 4
NC 30 2 9 7 5
PP 14 1 66 10 72
PT 17 36 12 5 4
RH 22 4 3 15 39
SH 100 5 5 6 2
WH 17 6 22 5 7
ZW 4 14 14 6 4

Total: 254 94 377 119 160

within a decade (from 1999 to 2009). Note that the opinion article thematic areas can be

divided into two pairs of low similarity, namely Politics-Society and World-U.K. In other

words, the Politics texts are more likely to have some thematic similarities with World

or U.K. texts than with the Society texts. TGC provides texts on two different genres

from the same set of authors. Moreover, one genre is divided into four thematic areas.

Therefore, it can be used to examine authorship attribution models under cross-genre

and cross-topic conditions [15]. Stamatatos (2013) demonstrated that high frequency

character n-grams allow to discriminate effectively between authors not only for single-

topic authorship attribution, but also for cross-topic authorship attribution. Sapkota

et al. [53] improved the prediction results in cross-topic authorship attribution using an

enriched training corpus in order to predict authors on a corpus with different topics. The

role of preprocessing steps was evaluated in [38]. The approach proposed in that paper is

considered to be more topic-neutral by their authors, because they replace the named

entities and some topic-related words while preprocessing the corpus. Their approach

showed the importance of preprocessing, because it gave the improvement of 4%. In [59], it

is mentioned that the use of semantic features for the authorship attribution task usually

improves the obtained results, however, very few attempts have been done to exploit

high-level features for stylometric purposes. More recently, the usage of the distributed

document representation for the cross-topic authorship attribution task has shown great

results in terms of accuracy [49] and [15], because of its capability to encode the semantic

information of texts in a low dimension vector,. Recently, the Paragraph Vector (Doc2vec)

model was proposed by Le & Mikolov [36] for learning distributed representation for
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both sentences and documents. The Doc2vec model basically treats each document as

a special word and learns both document vectors and word vectors simultaneously by

predicting the target word. Vectors obtained by the Doc2vec model outperforms both

bag-of-words and word ngrams models producing the new state-of-the-art results for

several text classification and sentiment analysis tasks [15]. The Guardian corpus offers

the opportunity to explore a scenario with different topics under the same genre with

the exception of the category “Books reviews,” which is considered as another genre.

It is assumed that each category represents a topic, which is different enough from the

other categories. In contrast to the previously described benchmarks, The Guardian is

a cross-topic, cross-genre and unbalanced benchmark, representing in this way a very

challenging scenario.

At the beginning of this work, we wondered which dataset would best validate our

work. In fact, we quickly realized the importance of using a dataset that did not present

bias and invalidate our results. Contrary to some previous work ([10], [29]), we thought

it was not appropriate to use datasets that could not be reproduced by other authors

and on which results could not be compared. In the work of Potthast et al. [50], the

authors performed the reimplementation of 15 authorship attribution methodologies and

concluded that very few of them achieve consistent results across different corpora. In

this work, we show the consistency of our approach on 4 different datasets, evaluating a

wide range of testing scenarios [49]. Despite what we had initially included, datasets used

in the literature such as Enron’s email collection and documents collected experimentally,

we decided not to use them because they were not recognized as valid by other studies

on authorship attribution. We would have liked to obtain the twitter dataset used by

Layton et al. in [35], to have a comparison also with very short text; we wrote him and

his collaborators an email but we never got a reply :(.

The datasets we selected at the end of the selection process are the following:

• RCV1: both in the form RCV1 10 and RCV1 50, i.e. 10 and 50 authors always

belonging to the CCAT category, in order to reproduce the same conditions of

previous related works.

• GDELT: A selection of 45 authors taken from a work of [17], selected by BigQuery,

available on the GDELT project3.

• AFR4: This dataset consists of reviews of fine foods from amazon. The data span

3The GDELT Project is one of the largest publicly available digitized book database which has more
than 3.5 million books published from 1800-2015. The GDELT Project is an open platform for research
and analysis of global society and thus all datasets released by the GDELT Project are available for
unlimited and unrestricted use for any academic, commercial, or governmental use of any kind without
any fee. https://www.gdeltproject.org/about.html

4Amazon Food Reviews available at https://snap.stanford.edu/data/web-FineFoods.html
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a period of more than 10 years, including all 500,000 reviews up to October 2012.

Reviews include product and user information, ratings, and a plain text review. It

also includes reviews from all other Amazon categories.

All previously selected datasets were used as authorship attribution closed set analysis

and in single topic context. We then also selected the TGC dataset (The Guardian

Corpus) as a comparison and benchmark of our study for a cross-topic and cross-genre

dataset to show the performance of the model in both single topic and cross topic contexts

and understand critical points and differences between them.
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CHAPTER 5

Our approach

In authorship attribution problems, there is a set of candidate authors and a set of text

samples in the training set covering some of the works of the authors. In the test dataset,

there are samples of texts and each of them needs to be attributed to a candidate author.

In the next sections, we are going to describe the experiment we carried out taking care

of the chronological path of the events. Our main focus has always been on closed set

authorship attribution, training with instance-based approach (i.e. extracting features by

not considering the other available text samples in the training). The three milestones

can be summarized as follows:

1. Dataset selection and preparation

2. Method selection

3. Features extraction

5.1 Dataset preparation

In section 4.6 we have already shown the datasets we selected. In particular, in this

section we are going to show the procedures done to prepare the datasets for the next

steps. For the single topic authorship attribution task we decided to select the RCV1

dataset, the dataset of 45 Victorian era book authors from the GDELT project and the

dataset of amazon food reviews collected in the first decade of the 2000s. Regarding the

cross domain authorship attribution task, we selected the dataset extracted from The

Guardian newspaper.
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5.1.1 Reuters Corpus

It consists of a collection of newswire stories written in English that cover four main

topics: corporate/industrial (CCAT), economics (ECAT), government/social (GCAT)

and markets (MCAT). We sent a request to obtain the dataset on this webpage https:

//trec.nist.gov/data/reuters/reuters.html. After few days, we gathered the RCV1

Corpus as it contains 810,000 Reuters, English Language News stories (about 2.5 GB).

First of all we had to convert the dataset, that contained folders of xml files, into a big csv

with author’s labels and document text. Code Listing 5.1 shows the process of documents

and authors extraction, using ‘xml‘ python library. We decided to take into account

this properties of the document: text, title, headline, byline, dateline, lang, corpus path,

corpus subdirectory, corpus filename.

Code Listing 5.1: Extract and Parse RCV1 XML document into csv.

import os

import xml.etree.ElementTree as ET

for f in files:

try:

data_path = os.sep.join([dir_path , f])

raw_data = open(data_path).read()

try:

xml_parse = ET.fromstring(raw_data)

except:

print(D,"/",f,"failed to parse XML.")

continue

def get_text(tag):

stuff = xml_parse.find(tag)

if stuff:

return stuff.text

else:

return None

text = "\n\n".join([str(p.text) for p in xml_parse.findall(".//p")]

)

title = get_text("title")

headline = get_text("headline")

byline = get_text("byline")

dateline = get_text("dateline")

#this bit got funky in the XML parse

lang_key = [k for k in xml_parse.attrib if "lang" in k][0]

lang = xml_parse.attrib[lang_key]
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code_classes = [c.attrib["class"]

for c in xml_parse.findall(".// codes")]

codes = {cc: [c.attrib["code"] for c in

xml_parse.findall(".// codes[@class=’%s ’]/code"%cc)]

for cc in code_classes}

dcs = {d.attrib["element"]: d.attrib["value"]

for d in xml_parse.findall(".//dc")}

#assemble output

output = {"text": text ,

"title": title ,

"headline": headline ,

"byline": byline ,

"dateline": dateline ,

"lang": lang ,

"corpus_path": corpus_path ,

"corpus_subdirectory": D,

"corpus_filename": f,

}

# merge and flatten the other big hashmaps

output.update(codes.items())

output.update(dcs.items())

result.append(output)

except Exception as e:

print(e)

The dataset was then filtered only with the documents with a “byline” property

defined. We end up with 109’433 documents written by 2400 distinct authors. At this

point, we labeled this portion of the RCV1 original dataset as the “Full RCV1 dataset”.

In order to test and compare our approach, reproducing the testing scenario described in

previous research [58], the 10 most prolific authors were chosen from the CCAT category,

and then, 50 examples per author for training and 50 examples for testing were selected

randomly with no overlapping between training and testing sets. We will reference to

this portion of the RCV1 dataset as the “RCV1 10”. In previous works [22], the authors

proposed another adaptation of the RCV1 corpus for the authorship attribution task.

They choose the 50 most prolific authors from the Reuters Corpus, keeping 50 examples

per author for training and 50 examples per author for testing with no overlapping

between them. We will refer to this corpus as the RCV1 50.

The RCV1 10 and RCV1 50 datasets are both balanced over different authors and have

their genre fixed to news. The majority of our work has been conducted on the RCV1 50,
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although to compare results with previous works we will show also the same techniques

applied to the RCV1 10 corpus. Table 5.1 shows the main metrics to describe these

different portions of the original dataset.

Table 5.1: Main metrics to describe different portion of the Reuters Corpus dataset.

Name N# docs N# authors Avg docs length Avg n# docs/author
Full RCV1 109433 2400 3061.95 45.60
RCV1 10 1000 10 3093.82 100
RCV1 50 5000 50 3251.16 100

5.1.2 GDELT

The GDELT Project is one of the largest publicly available digitized book database which

has more than 3.5 million books published from 1800-2015. The GDELT Project is an

open platform for research and analysis of global society and thus all datasets released by

the GDELT Project are available for unlimited and unrestricted use for any academic,

commercial, or governmental use of any kind without any fee1. The whole digitized

dataset is publicly available and interested researchers can freely perform SQL queries

using the Google big query platform. For example; the book names, publication year,

quotations, themes, the original text of the book of “Mark Twain” which were written

between 1890 to 1900 can be found as follows using the Big query platform of Google in

Code Listing 5.2.

Code Listing 5.2: Google Big Query on GDELT.

SELECT Themes , V2Themes , Quotations , AllNames ,

Trans l a t i on In fo , BookMeta Ident i f i e r , BookMeta Title ,

BookMeta Creator , BookMeta Subjects , BookMeta Year ,

FROM (TABLE QUERY( [ gde l t−bq : i n t e r n e t a r c h i v e b o o k s ] ,

’REGEXP EXTRACT( t a b l e i d , r ”(\d{4})”) BETWEEN ”1890”

AND ”1900” ’ ) )

WHERE BookMeta Creator CONTAINS ”Mark Twain”

LIMIT 50

To decrease the bias and create a reliable dataset the following criteria have been

chosen to filter out authors: English language writing authors, authors that have enough

books available (at least 5), 19th century authors. With these criteria 50 authors have

been selected and their books were queried through Big Query Gdelt database. The next

1https://www.gdeltproject.org/about.html
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task has been cleaning the dataset due to OCR reading problems in the original raw

form. To achieve that, firstly all books have been scanned through to get the overall

number of unique words and each words frequencies. While scanning the texts, the first

500 words and the last 500 words have been removed to take out specific features such

as the name of the author, the name of the book and other word specific features that

could make the classification task easier. After this step, we have chosen top 10, 000

words that occurred in the whole 50 authors text data corpus. The words that are not in

top 10, 000 words were removed while keeping the rest of the sentence structure intact.

Afterwards, the words are represented with numbers from 1 to 10, 000 reverse ordered

according to their frequencies. The entire book is split into text fragments with 1000

words each. We separately maintained author and book identification number for each

one of them in different arrays. Text segments with less than 1000 words were filled with

zeros to keep them in the dataset as well. 1000 words make approximately 2 pages of

writing, which is long enough to extract a variety of features from the document. The

reason why we have represented top 10, 000 words with numbers is to keep the anonymity

of texts and allow researchers to run feature extraction techniques faster. Dealing with

large amounts of text data can be more challenging than numerical data for some feature

extraction techniques. When gathering the dataset, we decided to discard 5 authors for

which their writings were not consistent enough for the authorship attribution task. We

ended up with a full dataset with 53’678 documents instances, each one containing 1000

words. In order to make training methods reliable across dataset, we decided to select

100 documents of each authors, with a 50/50 split (i.e. 50 documents in the training set,

50 documents in the testing set, no overlapping among them). In the following sections,

we will refer to this as the ”GDELT 45”. Table 5.2 shows the metrics that describe best

this dataset.

Table 5.2: Main metrics to describe different portion of the GDELT Corpus dataset.

Name N# docs N# authors Avg docs length Avg n# docs/author
Full GDELT 53678 45 4950.61 1192.84
GDELT 45 4500 45 4911.91 100

5.1.3 Amazon Food Reviews

This dataset consists of reviews of fine foods from amazon. The data span of over a

period of more than 10 years, including all 500,000 reviews up to October 2012. Reviews

include product and user information, ratings, and a plain text review. It also includes

reviews from all other Amazon categories. We decided to consider this dataset for our

experiment, because we were missing a more “everyday” example of dataset to work

61



with. As Table 5.3 shows, the average documents length is dramatically lower than the

other two datasets presented previously, providing us with a good challenge to show

consistency of our method across all these different scenarios. Moreover, in order to

make training methods reliable across dataset, we decided to select 100 reviews of each

customers, with a 50/50 split (i.e. 50 reviews in the training set, 50 reviews in the testing

set, no overlapping among them). In the following sections, we will refer to this as the

”AFR 50”.

Table 5.3: Main metrics to describe different portion of the Amazon Food Reviews dataset.

Name N# docs N# authors Avg docs length Avg n# docs/author
Full AFR 568454 256059 380.70 2.2
AFR 50 5000 50 990.45 100

5.1.4 The Guardian newspaper

Although the majority of our time and effort was focused on the first 3 single domain

datasets for closed set authorship attribution task, we wanted to test our approach

with a cross domain dataset. The Guardian corpus is composed of texts published in

The Guardian daily newspaper. The majority of the corpus comprises opinion articles

(comments). The newspaper describes the opinion articles using a set of tags indicating

its subject. There are eight top-level tags (World, U.S., U.K., Belief, Culture, Life&Style,

Politics, Society), each one of them having multiple subtags. In order to test and compare

our approach, we reproduce the testing scenario described in the previous research [59]

using the Guardian corpus. The experimental scenario is as follows:

1. Select at most ten samples per author in each topic category (in Figure 5.1 we

can see the distribution of the samples per author for the Politics category after

considering the restriction of ten samples per author)

2. Use the samples in the Politics category as training set and train the classifier

3. Finally, test the classifier using another topic category different from Politics (four

possible pairings)

5.2 Features extraction

After the choice of dataset and classification method, all our energies were spent on

the choice of feature extraction. In order to identify the authorship of an unknown

text document using machine learning the document needs to be quantified first. The
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Figure 5.1: The Guardian samples distribution for the Politics topic.

simple and natural way to characterize a document is to consider it as a sequence of

tokens grouped into sentences where each token can be one of the three: word, number,

punctuation mark. As with the choice of classification method, we initially attempted a

naive approach. In fact, many studies have focused on using methods such as TFIDF

and Bag Of Words. In fact, our experiment is mainly aimed at showing that simple

numerical text representation methods such as TFIDF or BOW, applied with the right

hyperparameters, can somehow yield good performance in the same way as other more

complex methods such as Doc2Vec or n-grams character selection.

5.2.1 Term Frequency - Inverse Document Frequency & Bag

Of Words

Once taken the route of the simple feature extraction approach via TFIDF and BOW, we

had to choose the hyperparameters that would play a main role in the model performances

for this task. We initially chose a classical approach to the problem, extracting features

with both TFIDFVectorizer and CountVectorizer, with standard hyperparameters.
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In Code Listing 5.3 we can see the initialization of the vectorizers with the chosen

hyperparameters after a long process of tuning and validation.

Code Listing 5.3: TFIDF & BOW Vectorizer.

tfidf_vec = TfidfVectorizer(max_df=0.75, max_features=None ,

min_df=0.02 , use_idf=False , tokenizer=custom_tokenizer ,

ngram_range=(1, 4))

counter_vect = CountVectorizer(max_df=0.8, max_features=10000 ,

min_df=0.02 , tokenizer=custom_tokenizer , ngram_range=(1, 2))

After that, we shifted our focus to the tokenizer that instead of choosing to use the

standard one, we preferred to use a “custom” one. We initially used a robust tokenizer

for text categorization tasks, but we realized that for this kind of authorship attribution

problem, some approaches valid for many text categorization problems would not work. In

fact, in Code Listing 5.4 shows the choice of the three tokenizers we tried experimentally

and which sequentially showed better and better results. The first one we tried was

a custom tokenizer with classical approaches to text categorization. In fact, we used

a “snowball” type stemmer for the English language and applied it to all the filtered

words. We also converted all words to lowercase and removed the words from the English

stopwords group. This type of tokenizer proved to be the weakest of the three because it

removes too many features that best distinguish and characterize a text with respect to

the author of the document itself.

Code Listing 5.4: Custom tokenizer for TFIDF and BOW.

def tokenize_and_stem(text):

"""

Below function tokenizes and lemmatizes the texts. It also does

some cleaning by removing non

dictionary words

This can be used to replace default tokenizer provided by feature

extraction api of sklearn.

:param text: str

:return: list

"""

stemmer = SnowballStemmer("english")

stop_words = stopwords.words("english")

tokens = [word.lower() for sent in nltk.sent_tokenize(text) for

word in nltk.word_tokenize(sent)]

filtered_tokens = []

for token in tokens:

if re.search(r’[a-zA -Z-]{4,}’, token) and token not in stop_words

and len(wn.synsets(token)) > 0:

token.strip ()
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filtered_tokens.append(token)

filtered_tokens = [stemmer.stem(token) for token in filtered_tokens

]

return filtered_tokens

def simple_tokenizer(text):

text = re.sub(’"([^"]*)"’, ’’, text)

tokens = [word.lower() for sent in nltk.sent_tokenize(text) for

word in nltk.word_tokenize(sent)]

filtered_tokens = []

for token in tokens:

if len(wn.synsets(token)) > 0:

token.strip ()

filtered_tokens.append(token)

return filtered_tokens

def only_remove_quoting_tokenizer(text):

text = re.sub(’"([^"]*)"’, ’’, text)

tokens = [word.lower() for sent in nltk.sent_tokenize(text) for

word in nltk.word_tokenize(sent)]

return tokens

In fact, the approach of purposely modifying words and removing stopwords, in the

literature on authorship attribution has proven to be a wrong one. The most frequent

words defined as “non-content” categorize worse than a text in the sense of content

and introduce noise, but better classify a text in respect of the author who wrote it,

especially in cross domain contexts in which are precisely the content words that go to

introduce noise. After evaluating our results with the available datasets, we agreed to

change our approach regarding the tokenizer. We tried to build a simpler tokenizer called

“simple tokenizer” that would remove only the words between double-quotes because they

were considered as phrases or quotation words and therefore would not classify well the

text in respect of the author who reported them, after which we only removed those words

that, after transforming them into lowercase, were not found as synonyms of an English

dictionary (and therefore words that do not conform to the dictionary). This second

approach showed better results than the first, but once again we wondered if the approach

of removing words that did not conform to the dictionary was a correct approach for

author attribution analysis. With these premises in fact, in the third and last approach

we thought about removing only the words or phrases contained in quotation marks,

therefore without removing the wrong or not present words in the official dictionary of

the English language. This last approach, called “only remove quoting tokenizer” proved

to be the best of the three, thus underlining the importance of stopwords and common

mistakes or words commonly used by the author and not present in the official English
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dictionary, regarding this specific task of authorship attribution. Just for the purpose of

making the reader aware, as a tokenizer we tried two additional approaches but they did

not show the desired results. Along the lines of thinking that the content words of a text

are the ones that litter the numerical representation of a text the most in an authorship

attribution context, one of the approaches attempted was text distortion. In fact as also

shown in some previous articles [60], using text distortion for autorship attribution tasks,

especially in cross domain contexts, could be very effective. The concept behind text

distortion is to obfuscate and hide words in a document based on their frequency, so as

not to create noise during feature extraction and focus only on the most relevant words.

In the case of authorship attribution, the opposite is applied, i.e. less frequent words in

a text are obfuscated (i.e. replaced by symbols like ∗ and #) and the same applies to

numbers. This approach can be divided into two: an approach that is length-preserving

and an approach that particularly shortens the length of the text in order to make feature

extraction even easier. In the first case we replace all letters of the selected target word

with ∗ or # symbols for numbers, in the second case we replace the selected word with

only one ∗ or # symbol for numbers, shortening the resulting text. We applied both of

these two approaches as tokenizers of TFIDF and BOW, but the results obtained did not

even pass the threshold of mention as they were considered completely unsuccessful.

5.2.2 Grid Search Cross Validation

In almost any Machine Learning project, we train different models on the dataset and

selecting the one with the best performance. However, there is almost a room for

improvement as we cannot say for sure that this particular model is best for the problem

at hand, hence our aim is to improve the model in any way possible. One important factor

in the performances of these models are their hyperparameters, once we set appropriate

values for these hyperparameters, the performance of a model can improve significantly.

At the state of the art, we can say that one of the well-established approaches is to

optimize the values of the hyperparameters of a model using GridSearchCV. Note that

there is no way to know in advance the best values for hyperparameters so ideally, we

need to try all possible values to know the optimal values. Doing this manually could take

a considerable amount of time and resources and thus we use GridSearchCV to automate

the tuning of hyperparameters. GridSearchCV is a function that comes in Scikit-learn’s

model selection package. This function helps to loop through predefined hyperparameters

and fit the model on the training set. So, in the end, we can select the best parameters

from the listed hyperparameters. As mentioned above, we pass predefined values for

hyperparameters to the GridSearchCV function. We do this by defining a dictionary in

which we mention a particular hyperparameter along with the values it can take.
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Code Listing 5.5: GridSearchCV with BOW, TFIDF and SGD.

pipeline = Pipeline([

(’vect’, CountVectorizer ()),

(’tfidf ’, TfidfTransformer ()),

(’clf’, SGDClassifier ()),

])

# uncommenting more parameters will give better exploring power but

will

# increase processing time in a combinatorial way

parameters = {

’vect__max_df ’: (0.5, 0.75 , 1.0),

’vect__max_features ’: (None , 5000 , 10000 , 50000),

’vect__ngram_range ’: ((1, 1), (1, 2)), # unigrams or bigrams

’tfidf__use_idf ’: (True , False),

’tfidf__norm ’: (’l1’, ’l2’),

’clf__max_iter ’: (20 ,),

’clf__alpha ’: (0.00001 , 0.000001),

’clf__penalty ’: (’l2’, ’elasticnet ’),

’clf__max_iter ’: (10 , 50 , 80 ,),

}

# find the best parameters for both the feature extraction and the

# classifier

grid_search = GridSearchCV(pipeline , parameters , n_jobs=-1, verbose=1

)

print("Performing grid search ...")

print("pipeline:", [name for name , _ in pipeline.steps])

print("parameters:")

print(parameters)

t0 = time.time()

grid_search.fit(dataset[’articles ’], dataset[’author ’])

print("done in %0.3fs" % (time.time() - t0))

print()

print("Best score: %0.3f" % grid_search.best_score_)

print("Best parameters set:")

best_parameters = grid_search.best_estimator_.get_params ()

for param_name in sorted(parameters.keys()):

print("\t%s: %r" % (param_name , best_parameters[param_name]))

In Code Listing 5.5 we can see an example of GridSearchCV applied to the datasets

with a simple pipeline with: CountVectorizer, TfidfTransformer and SGDClassifier.

The pool of parameters we chose were based on previous research on same datasets.
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GridSearchCV tries all the combinations of the values passed in the dictionary and

evaluates the model for each combination using the Cross-Validation method. Hence

after using this function we get accuracy/loss for every combination of hyperparameters

and we can choose the one with the best performance. The result of this first attempt at

GridSearchCV was shown in Code Listing 5.3, the picture of the final hyperparameter

tuning we mentioned earlier in the section.

5.2.3 Vector embeddings of documents

Since we did not want to rely only on some classical feature extraction methods such as

TFIDF and BOW mentioned above, recent studies have shown how the use of techniques

such as the vector spacing model that transforms document instances into vectors can be

successfully applied to tasks such as autorship attribution. To make the reader understand

better, the broad idea is to transform each author’s documents into vectors of fixed size.

These vectors will be “similar” for documents of the same author, so on documents of

unknown author we will look for the collection of documents whose representation in

vector format is closest to the vector representation of the document of unknown author.

We used the Doc2vec [36] method available in the freely downloadable GENSIM module

in order to implement our proposal. The implementation of the Doc2vec method requires

the following three parameters:

1. the number of features to be returned (length of the vector)

2. the size of the window that captures the neighborhood

3. the minimum frequency of words to be considered into the model

The values of these parameters depend on the used corpus. In a previous work [49] it

reported a representation of 300 features, a window size equal to 10 and minimum frequency

of 5. In Code Listing 5.6 we can see the implementation of the tagging document algorithm

and the computation of the 2 different models for document embedding: Distributed

Memory Model and Distributed Bag Of Words Model.

Code Listing 5.6: Doc2Vec for features extraction with gensim python library.

from gensim.models.doc2vec import TaggedDocument

import gensim

from tqdm import tqdm

from gensim.models import Doc2Vec

def tag_dataset(df):
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return df.apply(lambda r: TaggedDocument(words=

only_remove_quoting_tokenizer(r[’

articles ’]), tags=[r.author]), axis

=1)

df_train_tagged = tag_dataset(df_train)

df_test_tagged = tag_dataset(df_test)

import multiprocessing

cores = multiprocessing.cpu_count ()

model_dmm = Doc2Vec(dm=1, dm_mean=1, vector_size=300 , window=10,

negative=5, min_count=1, workers=

cores , alpha=0.065 , min_alpha=0.065

)

model_dmm.build_vocab([x for x in tqdm(df_train_tagged.values)])

model_dbow = Doc2Vec(dm=0, vector_size=300 , negative=5, hs=0,

min_count=2, sample = 0, workers=

cores)

model_dbow.build_vocab([x for x in tqdm(df_train_tagged.values)])

d2v_model = model_dmm

from sklearn import utils

# time

def train_d2v_model(model , df):

for epoch in range(30):

model.train(utils.shuffle([x for x in tqdm(df.values)]),

total_examples=len(df.values),

epochs=1)

model.alpha -= 0.002

model.min_alpha = model_dmm.alpha

model.save(os.path.join(base_dir , ’d2v_{}_model.vec’.format(

PROJECT_NAME)))

After the evaluation of both models, we decided to keep only the Distributed Memory

Model which resulted in better performance in terms of the score values of the testing set.

5.3 Method selection

At this point, we had to face the problem of deciding the classifier method that would

best solve our authorship attribution task. Although in previous studies over the past

decades on authorship attribution SVM has been shown to be very convincing ([10], [30],
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[70]), we initially wanted to construct an experimental approach that would lead us to

exclude the other classifiers for our task.

5.3.1 Manual approach

Our very first naive approach was to compare on different portions of the dataset

(increasing number of authors) different classification methods to see which one performed

best. Initially, we considered the authorship attribution study for groups of authors

consisting of 6 or 10 authors. In truth, as many previous studies show, an authorship

attribution model must perform well especially in situations where the group of authors

is composed of several dozen candidates. The classifiers initially chosen were:

• Naive Bayes

• Multinomial Naive Bayes

• Logistic Regression

• XGBoost

• XGBoost with Neural Networks

• Random Forest

Figure 5.2: Accuracy scores for different groups of authors on Reuters Corpus dataset.
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For text representation, we chose to use TFIDF and Bag Of Words, comparing the

results depending on the dataset, the number of authors, and the method used. In

Figure 5.2 we can see the accuracy score of the testing set of the various classifiers tested

on the groups of authors increasing from right to left on the RCV1 dataset.

Figure 5.3: Accuracy scores for different groups of authors on GDELT corpus dataset.

As on the groups of “small” authors, i.e. composed of 6 authors and 10 authors,

almost all the classifiers exceed the threshold of 95% accuracy that validates the approach

even in non-research contexts. The classifier that seems to perform best among the

various groups of authors increasing in number is RandomForest. On the other hand, it

has been shown that decision tree type classifiers struggle to maintain high performance

when the number of features used increases.

In fact in Figure 5.3 and Figure 5.4 we can see that in all 3 single topic datasets the

various methods proposed have a decrease in performance when the number of authors

increases reaching 50 authors (or 45 in the case of the GDELT dataset). This is probably

due to the fact that by keeping the number of documents per author fixed at 50 in

the training test (and in the testing set), the number of features to represent grows

proportionately as the number of authors increases. Therefore, we need to select a

classification method that remains stable as the number of features we want to represent

increases, and therefore remains valid for 6, 10, 30, 50 authors (and more).
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Figure 5.4: Accuracy scores for different groups of authors on Amazon Food Reviews dataset.

5.3.2 Tree-based Pipeline Optimization Tool

Therefore, considering the more or less unsuccessful approaches of the methods presented

in the previous section, we tried to find an approach that would validate our choice and

those of previous works on the use of the Support Vector Machine as a classification

method. Our choice fell on Tree-based Pipeline Optimization Tool (TPOT)2, an automated

machine learning (autoML) tool in Python. In order to give the reader of what TPOT is

and how it works, we’ll report the first paragraph quoting the TPOT website:

TPOT is meant to be an assistant that gives you ideas on how to solve

a particular machine learning problem by exploring pipeline configurations

that you might have never considered, then leaves the fine-tuning to more

constrained parameter tuning techniques such as grid search.

So TPOT helps you find good algorithms. TPOT is built on the scikit learn library

and follows the scikit learn API closely. It can be used for regression and classification

tasks and has special implementations for medical research. TPOT is open source,

well documented, and under active development. It’s development was spearheaded by

researchers at the University of Pennsylvania. TPOT appears to be one of the most

popular autoML libraries, with more than 7,800 GitHub stars as of the moment of writing.

2http://epistasislab.github.io/tpot/
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TPOT has what its developers call a genetic search algorithm to find the best parameters

and model ensembles. It could also be thought of as a natural selection or evolutionary

algorithm. TPOT tries a pipeline, evaluates its performance, and randomly changes

parts of the pipeline in search of better performing algorithms (An example is shown in

Figure 5.5). This power of TPOT comes from evaluating all kinds of possible pipelines

automatically and efficiently. Doing this manually is cumbersome and slower.

Figure 5.5: An example TPOT Pipeline from TPOT docs.

In Code Listing A.1 we show a snippet of code we used for extracting TPOT pipeline

with hyper parameters and research space.

Code Listing 5.7: TPOT pipeline generation.

!pip install -q tpot

from tpot import TPOTClassifier , TPOTRegressor

pipeline_optimizer = TPOTClassifier(generations=5, population_size=20

, cv=5,

random_state=42 , verbosity=2, scoring=’accuracy ’, config_dict=’TPOT

sparse ’)

pipeline_optimizer.fit(tfidf_train , df_train[’target ’])

print(pipeline_optimizer.score(tfidf_test , df_test[’target ’]))

pipeline_optimizer.export(’tpot_exported_pipeline.py’)

We chose the most appropriate hyperparameters and ran TPOT optimization pipelines

on all 3 datasets with 50 authors 3. The result is shown in Code Listing 5.8 for all 3

single domain selected datasets, thus proving that SVM is the best choice as a model

classifier for this task.

345 in the case of GDELT
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Code Listing 5.8: TPOT pipeline extracted.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.svm import LinearSVC

# NOTE: Make sure that the outcome column is labeled ’target ’ in the

data file

tpot_data = pd.read_csv(’PATH/TO/DATA/FILE’, sep=’COLUMN_SEPARATOR ’,

dtype=np.float64)

features = tpot_data.drop(’target ’, axis=1)

training_features , testing_features , training_target , testing_target

= \

train_test_split(features , tpot_data[’target ’], random_state=42)

# Average CV score on the training set was: 0.6912

exported_pipeline = LinearSVC(C=0.5, dual=True , loss="squared_hinge",

penalty="l2", tol=1e-05)

# Fix random state in exported estimator

if hasattr(exported_pipeline , ’random_state ’):

setattr(exported_pipeline , ’random_state ’, 42)

exported_pipeline.fit(training_features , training_target)

results = exported_pipeline.predict(testing_features)
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CHAPTER 6

Results and Evaluation

In this chapter we are going to show the best results obtained by setting up the training

phase as described in the previous chapters. Most of the parameter tuning was done

on just one dataset1, and then the same setup was used to produce results for all our

datasets.

6.1 Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a

classification model (or “classifier”) on a set of test data for which the true values are

known. To help the reader better understand what this is all about, we can give a

practical example with authorship attribution. Suppose we have an unknown document

and we have a verification problem where we have to indicate whether Shakespeare is the

author of the unknown document or not. The confusion matrix takes the form it has in

Figure 6.1 and 4 types of values show up:

• true positives (TP): These are cases in which we predicted yes (Shakespeare

is the author of the unknown document), and he really was the author of that

document.

• true negatives (TN): We predicted no, and he didn’t write that document.

• false positives (FP): We predicted yes, but he didn’t actually write that document.

(Also known as a ”Type I error.”)

• false negatives (FN): We predicted no, but in reality he did write that document.

(Also known as a ”Type II error.”)

1The Reuters Corpus, RCV1
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These aforementioned definitions will come in very handy to better understand all

the metrics used to evaluate the model we built.

Figure 6.1: A confusion matrix example with 4 classes of values: true positive, true negative,
false positive and false negative.

6.2 Metrics used

In order to evaluate the performance of the model being built, we computed for each

training phase, 2 different scores on the testing set: the accuracy score and the F1 score2.

The accuracy score, one of the more obvious metrics, is the measure of all the correctly

identified authors of each documents. It’s mostly used when all the classes are equally

important.

Accuracy =
TruePositive+ TrueNegative

(TruePositive+ FalsePositive+ TrueNegative+ FalseNegative)
(6.1)

The F1 score can be interpreted as a weighted average of the precision3 and recall4, where

an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of

precision and recall to the F1 score are equal.

The formula for the F1 score is:

2http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
3The measure of the correctly identified positive cases from all the predicted positive cases.
4The measure of the correctly identified positive cases from all the actual positive cases.
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F1 =
2 ∗ (precision ∗ recall)

(precision+ recall)
(6.2)

where:

• Precision: is the fraction of relevant instances among the retrieved instances.

• Recall: is the fraction of relevant instances that have been retrieved over the total

amount of relevant instances.

To summarise the differences between the F1 and the accuracy:

• Accuracy is used when the True Positives and True negatives are more important

while F1 is used when the False Negatives and False Positives are crucial.

• Accuracy can be used when the class distribution is similar while F1 is a better

metric when there are imbalanced classes.

• In most real-life classification problems, imbalanced class distribution exists and

thus F1 is a better metric to evaluate our model on.

6.3 Results obtained over different datasets

In this section we will present and discuss the best results obtained for the different

datasets selected, with particular attention to the type of feature representation, the

number of authors, the choice of division between training and testing sets, and whether

or not the authors’ documents belong to different categories.

6.3.1 Reuters Corpus results

The first results we show refer to the Reuters Corpus as it was the dataset on which we

did cross validation and hyperparameters tuning. In fact both the choices of features

representation, the parameters and the tokenizer, the classifier parameters were all chosen

according to the performance of this corpus, especially in the portion that we called

RCV1-50, that is the selection of 100 documents per author, for the 50 most prolific

authors of the Reuters corpus, for the CCAT category.

Precisely for this reason in Table 6.1 are shown the 3 best results on this portion of the

dataset in terms of both accuracy score and F1. As can be seen from the table, the best

results were obtained with the linear SVM classifier, with tfidf as the method of feature

representation, and gradually increasing results were obtained thanks to the study of

a better selection of words on the tokenizer. In fact we denote “stock tokenizer” the

standard tokenizer of the python library sklearn.feature extraction.text.TfidfVectorizer.
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While in the other two approaches we changed the tokenizer, setting a “custom” one,

at first leaving all words except the text between double quotes. The best result was

obtained with a variation of this custom tokenizer, called “only-remove-quotes-tokenizer”,

removing the words between double quotes but with a length of greater than one word

(i.e. the single words between double quotes were left intact) and in addition we used

not only the representation of a word ngram, but we also chose to represent the pair of

neighboring words to better identify the author of a text. The reasoning behind this type

of representation and the reason why we got the best result is because the use of words

between double quotes could better distinguish the author of a text, while the sentences

enclosed by double quotes were discarded because they certainly belong to a quote, and

therefore do not distinguish the style of an author.

Table 6.1: Accuracy score and F1 macro score for Reuters Corpus 50 authors CCAT category.

Model Accuracy F1
LinearSVC (combinedDFs),
tfidf, stock tokenizer

0.7644 0.7600

LinearSVC (combinedDFs),
tfidf, only-remove-quotes-
tokenizer

0.7884 0.7842

LinearSVC (com-
binedDFs), tfidf,
only-remove-quotes-
tokenizer (threshold 1),
ngram=(1,2)

0.7984 0.7949

In Table 6.2 we can see the results of the same models on the portion of the reuters

corpus dataset, of the 100 documents extracted by each author, selecting the 10 most

prolific authors with the documents belonging to the CCAT category.

The Reuters dataset being frequently used in other authorship attribution studies,

also allows us to compare the results in terms of accuracy with other models that we are

aware of. In Table 6.3 we can see some of the models that achieved the best results for

the authorship attribution task on the Reuters Corpus both for the RCV1-10 portion and

for the RCV1-50 portion. At the end of the table we reported the best result achieved

with our method, that for both of the portion of the dataset (i.e. the 10 authors and the

50 authors) showed the highest accuracy score to the best of our knowledge.

For the RCV1-10 portion of the reuters corpus the results of our approach improved

the best accuracy score achieved with local histograms method in [55] by 6, 71% and for

the RCV1-50 we improved by 6, 11% the results obtained in [49] with the doc2vec words

model.
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Table 6.2: Accuracy score and F1 macro score for Reuters Corpus 10 authors CCAT category.

Model Accuracy F1
LinearSVC (combinedDFs),
tfidf, simple tokenizer

0.8780 0.8760

LinearSVC (combinedDFs),
tfidf, only-remove-quotes-
tokenizer

0.9080 0.9060

LinearSVC (com-
binedDFs), tfidf,
only-remove-quotes-
tokenizer (threshold 1),
ngram=(1,2)

0.9220 0.9210

Table 6.3: Accuracy score for Reuters Corpus 10 and 50 authors in the CCAT category.

Model RCV1-10 RCV1-50
D2V words[49] 0.8280 0.7524
Local histograms [55] 0.8640 -
Tensor space models [48] 0.8080 -
Character and word n-grams
[54]

0.7940 -

N-gram feature selection [22] - 0.7404
Our approach 0.9220 0.7984

6.3.2 GDELT Corpus results

Regarding the dataset downloaded from the GDELT project, composed of documents

belonging to Victorian era books belonging to 45 authors, the 3 best results obtained are

shown in Table 6.4.

Table 6.4: Accuracy score and F1 macro score for GDELT 45 authors.

Model Accuracy F1
LinearSVC (combinedDFs),
tfidf, stock tokenizer

0.7355 0.7090

LinearSVC (combinedDFs),
tfidf, only-remove-quotes-
tokenizer

0.7426 0.7173

LinearSVC (com-
binedDFs), d2v dmm

0.7716 0.7489

As can be seen from the results, in this only case for this type of dataset the best

method for text representation was not tfidf, although the tfidf model along with the
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“custom” tokenizer of only-remove-quotes-tokenizer still performed well. The best method

for the representation of documents in vectors, fell on the Distributed Memory Mean

(dmm) model that obtained the highest accuracy score. The reason why tfidf didn’t

get the best result is not clear to us, but we point out that this type of dataset differs

from the others for the style of writing (Old English of the mid-nineteenth century), the

length of the documents, on average they contain about 1000 characters more than the

reuters dataset and about 3000 more than the amazon reviews dataset. In addition, the

authors’ documents were extracted from books, whose style is very different from the

style of news or reviews, where grammatical errors or abbreviations are nil and where

quotations are hardly present, except in the form of dialogue of the characters in the

story. Unfortunately, to the best of our knowledge we do not have similar previous studies

to compare the results obtained on the same type of task and dataset. However, being a

similar context (50 vs 45 authors) and similar training methodology (100 documents per

author, 50 documents for the training phase and 50 for the testing phase), we can safely

say that the results obtained with this type of dataset are lower than those obtained with

the same methodology with the Reuters corpus and proved to be the lowest results in

terms of accuracy compared to all the datasets that we previously selected for this task.

6.3.3 Amazon Food Reviews Corpus results

The dataset of amazon product review collections in the food category showed the best

results in the context of author attribution for a group of 50 authors with 100 documents

each, 50 in the training phase and 50 in the testing phase. The best results obtained in

terms of accuracy and F1 are shown in Table 6.5.

Table 6.5: Accuracy score and F1 macro score for Amazon Food Reviews 50 authors dataset.

Model Accuracy F1
LinearSVC (combinedDFs),
tfidf, simple tokenizer

0.7704 0.7674

LinearSVC (combinedDFs),
tfidf, stock tokenizer

0.7836 0.7817

LinearSVC (com-
binedDFs), tfidf,
only-remove-quotes-
tokenizer, ngram=(1,2)

0.8388 0.8368

Why our proposed model resulted in better performance on this dataset is not 100%

clear to us, but we may give the reader some observation we made after evaluating this

results. It is a given and established fact now that the length of the text in a task

such as authorship attribution is crucial for the successful authorship attribution of an
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anonymous text. Yet the average length of this dataset is much shorter than that of the

other datasets compared; the average length of a review (i.e. an author’s document in

this dataset) is in fact about 66% shorter than a news document in the Reuters corpus

and about 75% shorter than a text in the GDELT corpus. The lexicon of the reviews in

this corpus is more mundane, including abbreviations, punctuation, grammatical errors,

and short, disconnected periods. Probably because of the characteristic of being short

texts, the use of one or two common keywords across product reviews means that the

author is better recognized than in other contexts. Also for this dataset, to the best of

our knowledge, there are no studies on authorship attribution that would allow us to

compare the metrics of our approach in terms of performance.

6.3.4 The Guardian Corpus results

Although our study primarily focused on authorship attribution on single-category

documents, we wanted to collect one of the datasets widely used in previous studies to

compare how our approach performs on cross-topic datasets compared to single-topic

datasets and how much better or worse it performs compared to models from previous

studies specifically designed to address the problem of authorship attribution in the

context of cross-topic documents. The dataset in question is selected from The Guardian

newspaper. The context is very different from previous ones for the number of authors

in the entire dataset (13) and the selection of author papers (that was described in

subsection 5.1.4). We followed this approach by using the authors’ papers in the Politics

category as training and then performed testing on 4 portions of the testing set with the

authors’ papers belonging to the Books, World, Uk, and Society categories.

Table 6.6: Accuracy score and F1 macro score for The Guardian Corpus with LinearSVC
(combinedDFs), tfidf, only-remove-quotes-tokenizer.

Training topic vs Test topic Accuracy F1
Politics vs Books 0.7446 0.7640
Politics vs World 0.7560 0.7470
Politics vs Uk 0.7890 0.7010
Politics vs Society 0.8863 0.7430
Average 0.7940 0.7388

In the Table 6.6 we can see the results obtained with the linearSVC(combinedDFs)

model, with feature extraction method tfidf and with the “custom” tokenizer only-remove-

quotes-tokenizer. In the last row we can see the calculated average accuracy score and

F1 obtained. Taking the work of [49] as a benchmark for this dataset, we can state

that the results obtained with our approach in the context of cross-topic authorship

attribution did not come close to the benchmark, thus demonstrating that the two types
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of authorship attribution tasks probably need different approaches in order to obtain per-

formances adequate to the case study and the dataset with which they are to be compared.

In Figure 6.2 we can see the metrics evaluated for each dataset on the best scoring

models. The metrics shown are: accuracy, precision macro, recall macro, F1 macro. In

blue we can see the result of the reuters dataset on the portion composed of 50 authors,

while in yellow the best result obtained on the dataset of amazon food reviews.

Figure 6.2: Accuracy, precision, recall and F1 for every dataset showing only the best result
achieved for each one.
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CHAPTER 7

Conclusion

In this thesis work we have given a general overview of what authorship attribution is

and how it can be addressed with acceptable results nowadays. We first saw the various

types of tasks that can be addressed: instance-based versus profile-based approach. We

also saw the differences of single domain documents or previous work on cross domain

datasets. We also saw the difference between closed and open set of authors. We listed

the main information retrieval techniques for representing and extracting useful text

information, including tf-idf and bag of words, as well as doc2vec. In Chapter 4 we then

listed in detail the state of the art work on authorship attribution and the corpora used,

as well as the main classifiers. We have seen how SVM is widely used among machine

learning models for some of its peculiar features (including the speed of training and the

scalability as features increase). We also showed how Reuters Corpus and The Guardian

datasets are the most used datasets for autorship attribution work. In chapter 5 we

have described the work we have done starting from the preparation of the dataset, the

selection and extraction of features and finally the choice of the model using an automatic

optimization tool (TPOT). In the last chapter 6 we showed the best metrics obtained

with our approach, comparing them also with results obtained reproducing the same

scenario of related works. We showed how for the RCV1-10 dataset we improved to the

best of our knowledge by 6.71% the accuracy of the model compared to the best result

obtained with using local histograms. We also improved the RCV1-50 dataset by 6.11%

over the best result obtained using a doc2vec word model. We then also reported results

for 4 total datasets, including a dataset of Victorian-era books collected by the GDELT

project and the amazon food reviews dataset, which showed the best results in terms of

accuracy among the top 3 datasets that are united by number of authors and number of

documents in training and testing. We then also showed how our approach did not show

significant improvements on The Guardian corpus dataset, thus proving suboptimal cross

domain and cross topic performance.
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In this work we mainly focused our efforts towards author attribution in its most

straightforward form, i.e. we are given examples of the writing of a number of candidate

authors and are asked to determine which of them authored a given anonymous text

[32]. This approach to author attribution has been the only one studied until the last

decade, as it is already quite complex. The enormous steps forward both in terms of

modern computing power and in terms of studies of new models of machine learning,

have allowed us to leave the concept of classical attribution and explore some of the tasks

still unsolved.

The open set authorship attribution One of the closest problems to being solved

in this field of authorship attribution is undoubtedly moving from a closed set group of

authors to an open set group of authors. This revolution in approach allows us to have

a group of authors in the supervised training phase and a classifier who must take into

account that in the testing phase it may have to deal with labels (i.e. authors in this

case) that it has never seen in the training phase and classify them as unknown. This

approach is complex because it puts together similarities between the verification problem

and the needle-in-haystack problem with the classic approach of author attribution in

a closed set. During the study of our work we have tried to validate our approach by

dealing also with a type of open set of author attribution. In fact, we removed 10% of

the authors from each dataset in the training phase and moved them to the testing phase.

To give the reader a better understanding we show a practical example: for the dataset

RCV1-50 with 50 authors, for each of them we collected 100 documents. In the closed set

authorship attribution approach we would have had a 50/50 split, i.e. 50 documents of

each author would have gone in the training phase and 50 documents of each author in

the testing phase, thus leading to a balanced splitting between the classes. In the open

set authorship attribution approach, we selected 5 of the 50 authors whose 100% of the

documents (i.e., 100 documents) we placed in the testing phase by moving them out of

the training phase. We thus obtained an unbalanced splitting of classes with a total of

50 documents for 45 authors in the training phase (a total of 2250 documents) and 50

documents for 45 authors, adding 100 documents for each of the 5 remaining authors

in the testing phase, ending up with a total of 2750 documents in the testing phase.

For the open set authorship attribution approach we used a One Vs Rest classifier from

the python library sklearn.multiclass.OneV sRestClassifier i.e. we built a classifier

for each author, giving his 50 documents as positive examples and all other documents

belonging to the other authors as negative examples. We then inserted an additional

label in the training phase, marking it as “unknown author” for the testing phase. The

results obtained with the datasets selected in this work are shown in Figure 7.1. We

excluded the dataset from The Guardian Corpus as the number of authors in the full
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dataset was too small to allow for reliable results without introducing learning bias.

Figure 7.1: Accuracy, precision, recall and f1-macro for Reuters Corpus, GDELT corpus and
Amazon Food Reviews corpus for the open set authorship attribution task (10% of unknown
authors).

As we can see from the results obtained, there is a lot of room for improvement in

terms of accuracy. In fact, we obtained results up to almost 25% lower than the values

obtained for the datasets considering the closed set authorship attribution problem. These

considerations made us mainly focus on the classical approach, but they give us the

idea that many studies could come out on this particular type of authorship attribution

subtask in the next years, as we have not yet found a valid approach that works for all

types of datasets and for different authors set size.
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[49] Juan-Pablo Posadas-Durán, Helena Gómez-Adorno, Grigori Sidorov, Ildar Batyr-

shin, David Pinto, and Liliana Chanona-Hernández. Application of the distributed

document representation in the authorship attribution task for small corpora. Soft

Computing, 21(3):627–639, 2017.

[50] Martin Potthast, Sarah Braun, Tolga Buz, Fabian Duffhauss, Florian Friedrich,
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APPENDIX A

Code

All the datasets, the notebooks and the results obtained are available at this public link:

https://drive.google.com/drive/folders/0AM8tHyzDct5GUk9PVA

A.1 Closed set authorship attribution code

In Code Listing A.1 we can see how we built our TPOT pipeline to get the classifier

model we did use later on in the training process.

Code Listing A.1: TPOT pipeline generation.

!pip install -q tpot

from tpot import TPOTClassifier , TPOTRegressor

pipeline_optimizer = TPOTClassifier(generations=5, population_size=20

, cv=5,

random_state=42 , verbosity=2, scoring=’accuracy ’, config_dict=’TPOT

sparse ’)

pipeline_optimizer.fit(tfidf_train , df_train[’target ’])

print(pipeline_optimizer.score(tfidf_test , df_test[’target ’]))

pipeline_optimizer.export(’tpot_exported_pipeline.py’)

Code Listing A.2 shows how we adapted doc2vec method to our task and the hyperpa-

rameter used when training doc2vec model. In the last lines of code of Code Listing A.2

we can see how to extract features vectors from the doc2vec model and the documents.

Code Listing A.2: D2V training and features extraction.

from gensim.models.doc2vec import TaggedDocument

import gensim

from tqdm import tqdm

from gensim.models import Doc2Vec
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def tag_dataset(df):

return df.apply(lambda r: TaggedDocument(words=

only_remove_quoting_tokenizer(r[’

articles ’]), tags=[r.author]), axis

=1)

df_train_tagged = tag_dataset(df_train)

df_test_tagged = tag_dataset(df_test)

import multiprocessing

cores = multiprocessing.cpu_count ()

print(cores)

model_dmm = Doc2Vec(dm=1, dm_mean=1, vector_size=300 , window=10,

negative=5, min_count=1, workers=

cores , alpha=0.065 , min_alpha=0.065

)

model_dmm.build_vocab([x for x in tqdm(df_train_tagged.values)])

model_dbow = Doc2Vec(dm=0, vector_size=300 , negative=5, hs=0,

min_count=2, sample = 0, workers=

cores)

model_dbow.build_vocab([x for x in tqdm(df_train_tagged.values)])

d2v_model = model_dmm

from sklearn import utils

# time

def train_d2v_model(model , df):

for epoch in range(30):

model.train(utils.shuffle([x for x in tqdm(df.values)]),

total_examples=len(df.values),

epochs=1)

model.alpha -= 0.002

model.min_alpha = model_dmm.alpha

model.save(os.path.join(base_dir , ’d2v_{}_model.vec’.format(

PROJECT_NAME)))

def vec_for_learning(model , tagged_docs):

sents = tagged_docs.values

targets , regressors = zip(*[(doc.tags[0], model.infer_vector(doc.

words , steps=20)) for doc in sents]

)

return targets , regressors

training_target , training_features = vec_for_learning(d2v_model ,
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df_train_tagged)

testing_target , testing_features = vec_for_learning(d2v_model ,

df_test_tagged)

In Code Listing A.3 we reported the code use to train the support vector machine

with the features vectors chosen and how we evaluate the main metrics shown in chapter

6.

Code Listing A.3: Training SVM model and retrieve score metrics.

def double_pipeline ():

exported_pipeline = make_pipeline(

make_union(

FunctionTransformer(copy),

SelectFwe(score_func=f_classif , alpha=0.004)

),

LinearSVC(C=10.0, dual=True , loss="squared_hinge", penalty="l2",

tol=0.000001 , max_iter=10)

)

set_param_recursive(exported_pipeline.steps , ’random_state ’, 42)

return exported_pipeline

def single_pipeline ():

exported_pipeline = LinearSVC(C=20.0, dual=True , loss="hinge",

penalty="l2", tol=0.0001)

if hasattr(exported_pipeline , ’random_state ’):

setattr(exported_pipeline , ’random_state ’, 42)

return exported_pipeline

exported_pipeline.fit(training_features , training_target)

predicted = exported_pipeline.predict(testing_features)

accuracy_result = accuracy_score(testing_target , predicted)

precision_result = precision_score(testing_target , predicted , average

=’macro ’)

recall_result = recall_score(testing_target , predicted , average=’

macro ’)

f1_result = f1_score(testing_target , predicted , average=’macro ’)

print(f"Accuracy: {accuracy_result}\nPrecision: {precision_result}\

nRecall: {recall_result}\nF1_macro:

{f1_result}")

Finally, Code Listing A.4 shows the piece of code we used to cross validate our

model just trained with StratifiedShuffleSplit. We chose this type of split when cross

validating because we wanted to end up with the same number of samples in the training

set and in the testing set overall and also for each authors.
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Code Listing A.4: Cross validation for balanced class.

from sklearn.model_selection import StratifiedKFold , KFold ,

StratifiedShuffleSplit

import numpy as np

skf = StratifiedShuffleSplit(n_splits=10 , test_size=0.5, random_state

=42)

for train , test in skf.split(X, y):

print(’train - {} | test - {}’.format(

np.bincount(y[train]), np.bincount(y[test])))

# evaluate model

scores = cross_val_score(exported_pipeline , X, y, scoring=’accuracy ’,

cv=skf , n_jobs=-1)

# report performance

print(’Accuracy: %.3f (%.3f)’ % (mean(scores), std(scores)))

A.2 Open set authorship attribution code

In Code Listing A.5 we can see the code for splitting the training set from the testing set

documents in the open set authorship attribution scenario.

Code Listing A.5: Training and Testing set split for open set autorship attribution.

# Even split 50 & 50 per author and document

df_train = dataset.groupby(’author ’).head(N_DOCS/2).reset_index(drop=

True)

if OPEN_SET:

df_train = df_train[df_train.groupby(’author ’).ngroup () < (

NUM_AUTHORS-OPEN_SET_NUM_AUTHORS)]

print_stats_dataset(df_train)

df_train.head()

# get difference between dataset and df_train for df_test

df_test = pd.concat([dataset ,df_train]).drop_duplicates(keep=False)

print_stats_dataset(df_test)

df_test.head()
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