
ALMA MATER STUDIORUM · UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

DEPARTMENT of COMPUTER SCIENCE and ENGINEERING (DISI)

TWO-YEAR MASTER’S DEGREE in COMPUTER ENGINEERING

MASTER’S THESIS

In

Intelligent Systems M

Automated Configuration of Offline/Online

Algorithms: an Empirical Model Learning

Approach

Supervisor: Candidate:

Prof. MILANO MICHELA MINERVA MICHELA

Co-supervisors:

Dr. DE FILIPPO ALLEGRA

Dr. BORGHESI ANDREA

Academic Year 2019/2020

Session III

ii

iii

Abstract

The energy management system is the intelligent core of a virtual power plant and

it manages power flows among units in the grid. This implies dealing with optimization

under uncertainty because entities such as loads and renewable energy resources have

stochastic behaviors. A hybrid offline/online optimization technique can be applied in

such problems to ensure efficient online computation.

This work devises an approach that integrates machine learning and optimization

models to perform automatic algorithm configuration. It is inserted as the top

component in a two-level hierarchical optimization system for the VPP, with the goal

of configuring the low-level offline/online optimizer.

Data from the low-level algorithm is used for training machine learning models -

decision trees and neural networks – that capture the highly complex behavior of both

the controlled VPP and the offline/online optimizer. Then, Empirical Model Learning

is adopted to build the optimization problem, integrating usual mathematical

programming and ML models.

The proposed approach successfully combines optimization and machine learning

in a data-driven and flexible tool that performs automatic configuration and forecasting

of the low-level algorithm for unseen input instances.

iv

Table of Contents

Abstract .. iii

Table of Contents .. iv

List of Figures ... vii

List of Graphs .. ix

List of Tables ... xi

List of Acronyms ... xiii

Introduction .. 1

1 Virtual Power Plant .. 3

1.1 Smart Grid .. 3

1.2 Virtual Power Plant .. 5

1.3 Energy Management System ... 6

2 Optimization Under Uncertainty ... 9

2.1 Robust Optimization in VPPs .. 9

2.2 Anticipatory Optimization Algorithms .. 10

2.3 Hybrid Offline/Online Anticipatory Algorithms 12

2.3.1 Modeling Online Stochastic Optimization 13

2.3.2 Offline Information and Scenario Sampling 15

2.3.3 Contingency Table .. 17

2.3.4 Fixing Heuristic .. 18

2.3.5 Hybrid Offline/Online Method ... 20

2.3.6 VPP Model .. 21

2.3.7 Execution and Data Generation .. 24

3 Machine Learning Models .. 28

3.1 Machine Learning .. 28

3.1.1 Building a Supervised Model ... 30

3.2 Decision Trees ... 33

3.2.1 Decision Stump ... 34

v

3.2.2 Decision Tree .. 35

3.2.3 Random Forest .. 38

3.3 Neural Networks .. 39

3.3.1 Neuron .. 40

3.3.2 Feed-Forward Neural Network ... 41

3.3.3 Training a Neural Network ... 43

3.3.4 Neural Network Design .. 46

3.4 Additional ML Techniques .. 47

3.4.1 Radial Basis Function ... 48

3.4.2 K-Nearest Neighbors .. 48

3.4.3 Linear Regression ... 48

3.4.4 Support Vector Machine ... 49

3.4.5 Principal Component Analysis ... 49

4 Empirical Model Learning ... 50

4.1 EML ... 50

4.2 Optimization Problem Modeling ... 53

4.3 Empirical Model Embedding ... 54

4.3.1 Decision Trees .. 55

4.3.2 Neural Networks ... 58

5 Problem and Implementation .. 60

5.1 System .. 61

5.2 Dataset Analysis .. 63

5.3 Machine Learning Models ... 69

5.3.1 All Models .. 71

5.3.2 Final Empirical Models .. 83

5.4 Combinatorial Optimization Model ... 88

5.4.1 Optimization Model .. 88

5.4.2 Optimization Approach ... 91

5.4.3 Empirical Model Learning .. 91

6 Experiments and Results .. 94

6.1 Comparative Experiments .. 94

6.1.1 Results ... 95

vi

6.2 Final Use Cases .. 97

6.2.1 Results ... 99

7 Conclusions .. 108

References ... 111

Appendices

A Dataset Analysis .. 115

A.1 All Variables .. 115

A.2 Number of Traces and Cost ... 117

B Machine Learning .. 119

B.1 All Models ... 119

B.2 Decision Trees ... 122

C Final ML Models .. 124

D Comparative Experiments ... 125

vii

List of Figures

Figure 1: Virtual power plant schema. .. 8

Figure 2: Online stochastic optimization is modeled as an n-stage problem. All

the functions involved in the model are represented: peek, next, and A. At stage 𝑘: 𝑠𝑘

is the system state, 𝑥𝑘 the decision taken, and 𝑜𝑘 are the observed variables - the related

observed uncertainty is 𝜉𝑘 -. ... 14

Figure 3: Decision tree with depth two. The target of the prediction is the means

of transport to reach a destination – a categorical target. Features are the distance to

the destination, the weather temperature on that day and the presence of a bus strike.

 .. 34

Figure 4: Decision Stump. Same classification problem of Figure 3: the target of

the prediction is the means of transport to reach a destination. 34

Figure 5: Inference in a Decision Tree. In red the sequence of decisions for a

sample that is labeled as “walk”. .. 36

Figure 6: Neuron schema. The input is an n-dimensional vector x and the output

is the prediction y. 𝑎 is the neuron activity. The bias 𝑏 can be treated as an additional

weight 𝑤𝑛+1 with input signal constant to 1 to simplify the notation. We adopt this

notation hereinafter. ... 40

Figure 7: Commonly used activation functions: Sigmoid, ReLU, and tanh. 41

Figure 8: General high-level architecture of a multi-layer feed-forward neural

network. .. 42

Figure 9: Two-layers neural network; all signals are detailed for the input sample

𝑖. Every circle represents a signal: input features 𝑥𝑖, hidden features 𝑧𝑖
(1) = 𝑊(1)𝑥𝑖 and

 𝑧𝑖
(2) = 𝑊(2)ℎ(𝑊(1)𝑥𝑖), output 𝑦̂𝑖. Although the output 𝑦̂𝑖 is a scalar here, it might as

well be a vector and, in that case, 𝑣 is a matrix.. ... 42

Figure 10: Gradient Descent in a two-dimension parameter space. The blue star

is the starting point (i.e. the value of parameters at the beginning 𝑤0), while the red

star is the optimum. Arrows represent the descent performed in each GD iteration...

 .. 45

Figure 11: In EML, the optimization problem is composed of the (original) core

combinatorial structure and a empirical machine learning model. 53

Figure 12: Representation of a DT in EML. A path 𝜋 in the DT is represented by

a logical implication involving all conditions 𝑐𝑠𝑡(𝑏𝑗) along the path, leading to the

label 𝐶𝜋. ... 56

Figure 13: Neuron schema in EML, adopting a similar notation to section 3. .. 58

Figure 14: General overview of the entire VPP optimization system. The low-

level hybrid offline/online optimizer performs stochastic optimization for the VPP.

The high-level optimizer allows both decision-making on the configuration and

https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494409
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494409
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494409
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494409
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494410
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494410
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494411
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494411
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494412
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494412
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494412
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494412
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494413
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494414
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494414
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494416
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494416
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494416
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494416
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494417
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494417
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494418
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494418
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494418
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494419
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494420
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494420
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494420

viii

performance forecasting for the low-level optimizer; it is data-driven, flexible, and

customizable by the user. ... 62

Figure 15: Composition of the custom combinatorial optimization model. It

builds over a set of basic variables and constraints. Empirical ML models are

integrated via EML. The objective and additional constraints are interactively

specified by the user to fit the specific use case. .. 90

https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494420
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494420
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494421
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494421
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494421
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65494421

ix

List of Graphs

Graph 1: Pair plot for number of traces, solution cost, and time. 65

Graph 2: Average solution cost across all 100 instances, for each value of the

number of traces. The variance is also reported in each bar. 67

Graph 3: Standard deviation for the solution cost across all 100 instances, for

each value of the number of traces. .. 67

Graph 4: Average online resolution time across all 100 instances, for each value

of the number of traces. The variance is also reported in each bar. 67

Graph 5: Standard deviation for the online resolution time across all 100

instances, for each value of the number of traces. ... 68

Graph 6: Scatterplot between average memory and number of traces. The

instance id is colored. ... 69

Graph 7: Scatterplot between maximum memory and number of traces. The

instance id is colored. ... 69

Graph 8: Feature importance for the RF. Features 0-4 are PV, 5-9 are Load, and

10 is cost. .. 73

Graph 9: Feature importance for the RF. Features 0-4 are PV, 5-9 are Load, 10

is cost, and 11 is time. .. 75

Graph 10: Feature importance for the RF. Features 0-4 are PV, 5-9 are Load, 10

is time, 11 is cost, and 12 is memory. .. 79

Graph 11: Feature importance for the RF model that aggegates scores of single

regressors. In order: score of the regressors for average memory, cost, and time. 80

Graph 12: Number of traces and Cost suggested by the optimizers under different

memory bounds. The proposed ML models are compared. For each memory costraint

value, the result is averaged across all instances and time constraint values. 100

Graph 13: Number of traces and Cost suggested by the optimizers under different

time bounds. The proposed ML models are compared. For each time costraint value,

the result is averaged across all instances and memory constraint values. 100

Graph 14: nTraces and Cost suggested by the DT11-based optimizer under

different memory bounds, averaged across all instances, for each time constraint value.

 .. 103

Graph 15: nTraces and Cost suggested by the DT11-based optimizer under

different time bounds, averaged across all instances, for each memory constraint value.

 .. 103

Graph 16: Optimization results (Memory, Time, nTraces, and Cost) for each

proposed optimizer on instance #13. Different constraint values are imposed for the

cost improvement w.r.t. baseline. ... 106

https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490774
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490775
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490775
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490776
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490776
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490777
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490777
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490778
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490778
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490779
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490779
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490780
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490780
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490781
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490781
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490782
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490782
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490783
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490783
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490784
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490784
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490785
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490785
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490785
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490786
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490786
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490786
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490787
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490787
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490787
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490788
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490788
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490788
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490789
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490789
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490789

x

Graph 17: Optimization results (Memory, Time, nTraces, and Cost) for the DT11-

based optimizer on several instances. Different constraint values are imposed for the

cost improvement w.r.t. baseline. ... 107

Graph 18: Pair plot for solution cost and time, where the number of traces is

colored. ... 116

Graph 19: Pair plot for number of traces and resolution time, where the solution

cost is colored. .. 116

Graph 20: Pair plot for number of traces and solution cost, where the resolution

time is colored. ... 116

Graph 21: Scatterplot between solution cost and nTraces for one instance (#1).

 .. 117

Graph 22: Scatterplot of the average cost per nTraces. For each value of nTraces

we average all solution costs. ... 117

Graph 23: Scatterplot of the average number of traces per cost. For each value

of cost we average all number of traces. .. 117

Graph 24: Scatterplot of the average number of traces per cost, with binned cost.

We perform binning on the cost with a range of 5, i.e. we split the cost’s domain in

intervals of length 5 and we group together all data points whose cost is within an

interval. For each interval we average the number of traces. 117

Graph 25: Scatterplot of solution cost and number of traces, with the instance id

colored. ... 118

Graph 26: For the first 20 instances, scatterplot of solution cost and number of

traces, with the instance id colored. This helps to shed light on how the instance

influences the relationship between cost and nTraces. .. 118

Graph 27: Feature importance for the RF regressor that takes as features PV (0-

4), Load (5-9), and average memory (10). A RF Classifier is used beforehand for

dimensionality reduction of both PV and Load. .. 121

https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490790
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490790
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490790
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490792
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490792
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490793
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490793
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490794
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490794
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490795
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490795
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490796
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490796
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490797
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490797
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490797
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490797
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490798
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490798
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490799
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490799
https://d.docs.live.net/a952a14f3beeaf22/Documenti/anno%202%20magistrale/tesi/TESI.docx#_Toc65490799

xi

List of Tables

Table 1: Test set performance for the best regressors that predict nTraces using

cost and (if applicable) PV/load as features. .. 73

Table 2: Test set performance for regressors that predict nTraces using time as

feature. .. 75

Table 3: Test set performance for regressors that predict nTraces using time, cost

and (if applicable) PV/load as features. ... 76

Table 4: Test set performance for the best regressors that predict nTraces using

average memory and (if applicable) PV/load as features. .. 77

Table 5: Test set performance for regressors that predict nTraces using maximum

memory as feature. ... 77

Table 6: Test set performance for the best regressors that predict nTraces using

all the remaining variables as features. .. 79

Table 7: Test set performance for the best regressors that predict nTraces using

all the remaining variables as features. .. 81

Table 8: Test set performance of experimental DTs on the standardized dataset.

 .. 83

Table 9: Test set performance, depth, and training time of DT5. 85

Table 10: Test set performance, depth, and training time of DT9. 85

Table 11: Test set performance, depth, and training time of DT11. 86

Table 12: Test set performance, depth, and training time of DT15. 86

Table 13: Test set performance and training time of NNs. 86

Table 14: Information on times and dimensions of combinatorial optimization

models with embedded ML models. .. 92

Table 15: Comparative experiments for DT9, DT11, DT15, and NN. For each

problem we report objective and constraints, resolution time for the high-level

optimizer and, for each variable of interest, the solution value. 96

Table 16: Average resolution time for the high-level optimizer. 99

Table 17: Standard deviation of each solution value across all instances, averaged

across all experiments (i.e. constraints’ values) for each ML model. 101

Table 18: Solutions of the high-level optimization model based on DT11,

averaged across all instances. The first two columns (memc and timec) are the

constraints. The remaining columns are the solution found: in this specific problem,

nTraces are the variable suggested by the system whereas memory, time, and cost

represent forecasts. ... 102

Table 19: Average resolution time for the high-level optimizer. 104

Table 20: Average maximum cost improvement found by each optimizer. 105

Table 21: Statistics on each column of the dataset containing records of runs of

the hybrid offline/online algorithm. ... 115

xii

Table 22: Test set performance for classifiers that predict nTraces using cost, PV,

and load as features. ... 119

Table 23: Test set performance for regressors that predict nTraces using cost and

(if applicable) PV/load as features. .. 120

Table 24: Test set performance for regressors that predict nTraces using average

memory and (if applicable) PV/load as features. ... 121

Table 25: Test set performance for regressors that predict nTraces using all

remaining variables as features. The model is unified, namely, a unique regressor takes

all features and predicts nTraces. ... 122

Table 26: Test set performance on all dataset’s normalizations for experimental

DTs that do not use PV/Load as features. .. 123

Table 27: Test set performance on all dataset’s normalizations for experimental

DTs that use PV/Load as features. ... 123

Table 28: Hyperparameters selected for the NN models. Some of them (in blue)

are embedded into the combinatorial optimization problem and used in optimization

experiments. ... 124

Table 29: Complete comparative experiments for DT9, DT11, DT15, NN. For each

problem we report objective and constraints, resolution time for the high-level

optimizer and, for each variable of interest, the solution value. 126

xiii

List of Acronyms

• Adam: Adaptive moment estimation.

• ANN: Artificial neural network.

• DER: Distributed energy resource.

• DT: Decision tree.

• DS: Decision stump.

• EML: Empirical Model Learning.

• EMS: Energy management system.

• GD: Gradient descent.

• GRS: Greedy recursive splitting.

• KDE: Kernel density estimate.

• KNN: K-nearest neighbors.

• LASSO: Least absolute shrinkage and selection operator.

• LR: Linear regression.

• MAE: Mean absolute error.

• MILP: mixed-integer linear programming-

• ML: Machine learning.

• MSE: Mean squared error.

• NN: Neural network.

• nTraces: Number of traces.

• PCA: Principal component analysis.

• PV: RES generation power.

• ReLU: Rectified linear unit.

• RES: Renewable energy source.

• RBF: Radial basis function

• RF: Random forest.

• SGD: Stochastic gradient descent.

• SVM: Support vector machine.

• VPP: Virtual power plant.

1

Introduction

Smart grids are the evolution of electrical grids, interconnected infrastructures

that deliver electrical energy to consumers. They integrate novel power sources into a

distributed energy resources scenario. Smart grids leverage state-of-the-art control and

information techniques to perform monitoring, control, and forecasting on the complex

network of distributed entities, named virtual power plant. The core of the VPP is the

energy management system; it is the orchestrator of such a large system and it manages

its power flows. By virtue of the EMS, a smart grid enables enhanced energy

efficiency, flexibility, security, and reliability in the power distribution; it promotes

green power sources thus helping the environment and it allows money savings by

adopting smart energy management.

 The EMS in a VPP decides power flows in the grid and it operates under a

specific objective, usually the minimization of operational costs. This is a problem of

optimization under uncertainty because a smart grid integrates elements with

stochastic behavior, e.g. renewable energy resources and loads. Hybrid offline/online

algorithms can be applied to perform online optimization, namely, to decide power

flows in real-time given the real conditions of the system. They adopt hefty stochastic

optimization algorithms but shift part of their computation offline to reduce online

costs. An offline/online technique is based on the expensive offline computation of a

contingency table; it contains information on possible online scenarios called traces.

In the online step, a very efficient fixing heuristic makes decisions guided by the

contingency table; it adjusts offline-computed solutions to actual conditions. The

number of traces guiding the fixing heuristic is a fundamental parameter to configure;

it balances a tradeoff between solution quality and computation cost.

This work devises an approach to perform automatic configuration of the

offline/online algorithm for new unseen instances. It introduces a combinatorial

optimization problem on top of the offline/online method, resulting in a two-levels

2

hierarchical optimization system for the VPP. We want to define problem-specific

objectives and constraints for the low-level optimization, for example concerning

solution quality, online computation time, or resources. These are entailed in the high-

level optimization problem. The proposed approach is used ahead of the online step to

guide its design or get forecasts about its performance on unseen instances. It is an

automatic tool for the configuration of the low-level algorithm that allows one to

automatically decide or predict its parameters, run-time, or computational resources

based on desired constraints and objectives.

The high-level optimizer captures the behavior of the controlled system, both the

VPP and the hybrid offline/online algorithm. We leverage machine learning

techniques, with a focus on decision trees and neural networks, to model the highly

complex relationships between variables involved in the system.

The proposed approach leverages Empirical Model Learning to integrate

empirical ML models and combinatorial optimization problems. Machine learning

models that capture real-world relationships among variables are embedded in the

optimization problem via EML; once encoded, they are used by the solver to generate

solutions and boost the resolution process. The EML-based approach allows a flexible

and completely data-driven design of the optimization model; it does not require

specific knowledge about the VPP system or the hybrid optimization process, and it

removes the need of a manually-crafted modeling phase by domain experts. EML

brings together declarative models from optimization research and predictive models

from machine learning, and it shows that optimization in complex real-world systems

is possible.

We perform a preliminary study on machine learning techniques to assess how

the relationships among variables are captured by different models. Then, we build

decision trees and neural networks and we finally embed them in combinatorial

optimization models. We compare optimization models based on DTs and NNs on

several examples to shed light on their strengths and weaknesses. Finally, we apply

different high-level optimizers, modeled using trees with distinct hyperparameters, on

two real-world use cases.

3

Chapter 1

Virtual Power Plant

1.1 Smart Grid

Production, provisioning and consumption of electricity has been an important

matter of research since the 18th century. The provisioning infrastructures currently

used across the world to distribute power descend from the first alternating current

(AC) system studied by Nikola Tesla with Westinghouse Electric in the late 1880s.

The generation of electricity was localized around communities in a time when the

energy demand was ridiculous compared to today, namely, few lightbulbs and power-

alimented devices. A limited number of significant changes were made to the power

distribution networks ever since. The “centralized top-down” power grid is designed

for a unidirectional delivery of electricity to consumers. Power is generated in few

large power plants, and from these locations it is distributed to customers through the

power grid infrastructure. These systems are not designed for the continuously rising

demand of the 21st century; the centralized design implies energy losses, in particular

for long distances, together with significant construction and maintenance costs.

Moreover, regular electrical grids do not meet the need of flexibility and they do not

exploit the significant amount of data and resources available nowadays.

In recent years both production and consumption of energy have been advancing

rapidly. Electrical grids have evolved with a progressive shift towards decentralized

generation of energy. The development of several new energy resources allows

production of sufficient amounts of energy to support the always-growing demand of

energy. The introduction of green resources also meets the necessity of switching to

environment friendly energy sources to reduce human’s footprint on a growingly

impacted Earth. Moreover, consumers’ products and needs are changing in this

direction: new smart sensors, devices, and smart appliances are available to consumers

at large scale. An increasing number of products are becoming part of the electric

4

networks; an important example of this phenomenon is the growing market of electric

vehicles.

This evolution is happening in parallel with large changes in computational

capabilities available to humans. Technologies like cloud computing and big data

techniques allow generation, storing, and elaboration of massive amounts of data. In

the meantime, Artificial Intelligence (AI) allows scientists to use these data for

analyzing and forecasting tasks in several different applications.

Finding themselves in between these two worlds, smart grids represent the

modern evolution of regular electrical grids and assumed a role of increasing

importance in both industrial and academic research. According to the European Union

Regulation 347/2013 [1], “‘Smart grid’ means an electricity network that can

integrate in a cost efficient manner the behavior and actions of all users connected to

it, including generators, consumers and those that both generate and consume, in

order to ensure an economically efficient and sustainable power system with low losses

and high levels of quality, security of supply and safety”.

A smart grid integrates distributed energy resources (DERs), both conventional

sources and new types such as renewable resources (RESs). DERs represent the most

important factor for decentralized generation and consumption of energy. They can be

generation systems - both renewable and non-renewable, such as wind and solar power

plants, biomass plants, gas generators, and conventional energy generation sources -,

energy storage systems (ESS) or loads - such as building loads -. DER elements that

are peculiar in smart grids are energy microgeneration entities; for example, a building

that produces, stores, and shares energy generated through renewable sources.

Smart grids enable the most recent technologies to be integrated in the power

system, both for production and consumption. Some examples are green energy

sources such as wind and solar energy units for production, or smart home devices and

electric vehicles for consumption.

Smart grids overcome the mono-directionality of the old infrastructure. They

introduce a two-way dialog where not only electricity but also information is

5

exchanged between producers and customers. Data resulting from this communication

is used by the systems for management purposes.

Smart grids use digital information, automation, and control technologies to

increase energetic efficiency (namely, use less energy), provide flexibility and ensure

security and reliability of the electric grid. They integrate smart technologies for

monitoring and forecasting on all actors involved in the grid, from producers to smart

appliances and devices. They leverage technology and data to increase economic

efficiency for customers and to increase sustainability of the power system.

1.2 Virtual Power Plant

In a smart grid, several decentralized entities are connected and interact in a

complex way. This sophisticated system must be orchestrated in order to achieve

maximum efficiency while maintaining reliability. The network control structure must

evolve to be able to handle distributed power resources, to ensure the flexibility

requested to energy systems, to meet the needs of increasingly complex customer

devices and to manage the variability of RESs. virtual power plants (VPPs) come into

play in this important role.

A VPP is a distributed power plant; it aggregates and manages units connected to

the electrical grid to produce, store, and use energy, allowing them to operate as a

unified power plant. It clusters and orchestrates several little distributed energy

resources, generating a more flexible and secure energy supply compared to a

conventional power system. A VPP is able to generate the same amount of power of a

large standard central power plant; however, it achieves this by aggregating and

managing an entire network of DERs. Units in a VPP can be scattered across hundreds

of private, commercial, and industrial locations, concentrated in a single area. This rich

aggregation of micro energy assets is combined into a single entity, operating in the

same manner of a conventional power plant, by means of a centralized control system.

The VPP leverages the bidirectional flow of information of its smart grid: it receives

6

power measurements, capacity, and availability information from DERs [2] and uses

them to efficiently orchestrate utilities.

The VPP allows DERs to participate in the energy market and to provide grid

ancillary services, such as power reserve or frequency regulation, allowing to enhance

the power system’s stability. It enhances both flexibility and stability in the power grid

by providing services to better match supply/demand and allowing traditional utilities

to plan and optimize production efficiency. Compared to a conventional energy

management system, a VPP encourages a more dynamic and diverse energy market

and it facilitates the use of cleaner energy sources. It increases economic returns for

entities in the grid; this encourages more renewable installations, leading to a further

push towards a sustainable energy supply. The VPP con operate so as to optimize

energy flows over time, leading to economic savings both for consumers and for

producers. Additionally, the structure itself of a VPP decreases energy loss in

transportation because generation and consumption are localized in a specific area.

1.3 Energy Management System

The core of the intelligent VPP is the energy management system (EMS). The

EMS manages loads, storages, and generators. It coordinates power flows among all

entities and can perform forecasting and optimization for the entire grid.

This system leverages state-of-the-art techniques in information technology to

identify optimum power dispatch, for example real time large data transfer, advanced

forecast with smart algorithms and optimization strategies. Data science and machine

learning algorithms are used to generate accurate predictions for power generation,

load demand and electricity pricing forecast.

The EMS can balance provision fluctuations by turning up or down the energy

supply to suit both the energy demand and the production. As energy demands

constantly changes over time during the day, utilities must turn power on and off

depending on the amount of energy needed at a specific moment.

7

VPP addresses uncertainty leveraging on the EMS. Power plants based on RESs

introduce a new modus operandi named “feed it and forget it” [3] that adds complexity

to the VPP operation. RESs have a stochastic and uncontrollable behavior; they

produce and inject power into the electric network not following the demand, but

according to external variables such as the time in the day, period in the year and

weather conditions. This behavior makes it difficult to integrate the power generated

by RES-based plants. Conventional power plants or large storage systems are used to

balance both the demand of loads and the variable generation introduced by RESs. The

smart grid provides the data and automation that enable RESs to put energy into the

grid and optimize its use; the EMS plays a key role by managing all the entities

interacting in this network.

The energy management system is also responsible for optimization in a VPP. It

can operate by minimizing generation costs or maximizing profits. The cost of energy

depends on availability and it fluctuates during the day; electricity is more expensive

to provide at peak times because secondary - often less efficient - power plants must

be operative to meet larger demands. Optimization algorithms in a VPP leverage

power forecasts and compute the optimum projected power dispatch for all its energy

assets. This enables units to operate optimally for maximum return. Based on the

current energy price and the status of DERs, the EMS decides how much energy should

be produced, which generator should be used to produce the required energy and

whether the surplus energy should be stored or sold to the energy market external to

the VPP. Sophisticated smart grids enable utilities, in cooperation with customers, to

manage and moderate electricity usage especially during peak demand times, resulting

in reduced costs for utilities and costumers. Moreover, by encouraging to defer

electricity usage away from peak hours, electricity production is more distributed

throughout the day, reducing costs and inefficient fluctuations. The EMS also performs

forecasting on the smart grid systems, to predict and manage energy usage under

different conditions and over time, leading to lower production cost.

The EMS plays an important role in assuring not only optimization but also

stability and reliability of the grid. It manages electricity consumption in real time and

8

receives continuous feedback information from DERs themselves. This greater insight

allows the use of techniques to reduce, predict and overcome outages. Forecasting is

used to predict energy fluctuations due to disruptions in the VPP caused by utility

failures or weather conditions; the system can automatically identify problems in

rerouting and restore power delivery.

Figure 1: Virtual power plant schema. From ABB1.

1 https://new.abb.com/power-generation/service/advanced-services

9

Chapter 2

Optimization Under Uncertainty

The increasing amount and complexity of Distributed Energy Resources

connected to the smart grid has brought some challenges to the management of the

power system network. New optimization models are required to guide and control

distributed units in the grid. In this context, virtual power plants play an important role

by ensuring that the power produced, stored, and consumed by DERs is efficiently

managed.

The energy management system of the VPP orchestrates entities and power flows

with a certain objective, e.g. aiming at minimizing costs. In this process, the EMS

considers several uncertainty factors that come into play in the smart grid, such as

power generation from renewable resources. Uncertainty must be addressed so as not

to compromise the reliability of the system. As a consequence, the optimization

process performed by the EMS to decide power flows is a problem of making decisions

under uncertainty, i.e. stochastic optimization.

This chapter provides information on methods for optimization under uncertainty

and on how a VPP system can be modeled in optimization problems. These techniques

represent the low-level optimizer inside the system proposed in this work.

2.1 Robust Optimization in VPPs

In [4] an optimization model to be employed in the EMS is presented. The

proposed approach aims at minimizing operational costs by deciding the optimal

planning of power flows for each point in time. It integrates into the model the

necessary uncertainty elements.

10

The optimization approach is composed of two steps. The first is an offline day-

ahead phase (a robust step) that computes optimized demand shifts to minimize the

expected daily operating costs of the VPP. It uses a robust approach based on scenarios

for modeling uncertainties present in the system, e.g. stemming from RESs such as

wind or solar sources, and produces an estimated cost.

The second step is an online greedy optimization algorithm (greedy heuristic). It

receives as inputs the optimized load shifts and it manages power flows in each

timestamp in the VPP based on the real situation, with the aim of reaching the optimal

real cost. This approach uses the optimized shifts produced by the first step to

minimize, for each timestamp, the real operational cost, while allowing to fully cover

the optimally shifted energy demand and avoiding the loss of energy actually produced

by RES generators. It computes the real optimal value for the power flow variables

based on the actual realization of uncertain quantities, assuming that the shifts have

been planned by leveraging the first offline step; each timestamp is optimized one at

time.

The first robust step produces good optimized shift that do not significantly

deviate, in terms of cost, from the model with no uncertainty. On the other hand,

according to the results in [4], the greedy step causes a significant loss in the quality

of results.

2.2 Anticipatory Optimization Algorithms

A two-step optimization algorithm allows online decision-making in a VPP. The

basic online step leverages a greedy heuristic that causes degradation in the quality of

solutions, as mentioned in section 2.1. A way to improve the performance consists in

replacing the greedy heuristic with a sampling-based stochastic anticipatory algorithm

[5]. These algorithms were first developed for offline optimization, but they can be

leveraged in online situations.

11

Offline applications are the usual focus for methodologies proposed in literature

for stochastic optimization [6]. These methods usually base their optimization process

on building a statistical model of future uncertainty, leveraging a sampling process that

yields a set of scenarios. The Sample Average Approximation method [7] [8] solves

stochastic optimization by adopting a simulation approach based on Monte Carlo

simulation. It approximates the expected objective function of the stochastic problem

with a function estimate on random samples; then, it solves with deterministic

optimization techniques the resulting sample average approximation problems, in

order to obtain candidate solutions for the original stochastic problem. This approach

finds robust solutions by relying on one copy of the decision variables for each

scenario and linking them via non-anticipativity constraints. It converges under

reasonable assumptions and outperform greedy approaches.

Recent computational improvements in resources and techniques allowed the

application of similar approaches to online optimization, leading to stochastic online

anticipatory algorithms. Optimization problems under uncertainty usually benefit

from an online approach; uncertainty progressively resolves in the online phase and

decisions are made reacting and adapting to actual external events, allowing the

discovery of robust high-quality solutions. An algorithm is called anticipatory if at

some point it anticipates the future, namely, it makes use of information on the future

to make decisions. While the algorithm at each time stamp can not fully know the

future, i.e. the situation in following timestamps, it makes decisions based on inputs

and possible future outcomes; future outcomes are estimated relying on possible

scenarios delineated by past observations and current inputs.

Online anticipatory algorithms are effective [9] [10] but often computationally

expensive, making them problematic as online decisions must be taken in short time

frames. They usually rely on sampling to generate scenarios that estimate possible

developments for a fixed number of future steps, called look-ahead horizon. Larger

sample size leads to higher accuracy but also bigger problems to solve. This represents

a problem because many use cases prescribe to make online decisions under strict time

12

constraints. As a consequence, methods must be adopted to improve the efficiency of

these methodologies; for instance, a conditional sampler can be exploited to generate

scenarios taking into account past observations [11].

In many situations a significant amount of information is available before the

online execution, in an offline phase where time constraints are relaxed. For example,

an EMS might have access to energy production and consumption forecast for the

smart grid. This offline information can be exploited for characterizing uncertain

elements, for sampling likely outcomes, called scenarios, and for supporting online

optimization strategies.

2.3 Hybrid Offline/Online Anticipatory Algorithms

Optimization under uncertainty can combine an online and an offline phase in

order to achieve good solution quality with minimum online cost. A simple approach

to tackle such problems is to deal with the offline and online phase separately,

respectively via a sampling-based method and a heuristic. However, [12] [13] show

that substantial improvements can be obtained by treating these two phases in an

integrated fashion.

In particular, [13] proposes three methods that leverage an offline preparation

phase to reduce the online computational cost of a sampling-based anticipatory

algorithm, while maintaining the quality in the solution. The methods build on an

online sampling-based anticipatory algorithm but shift part of the computation to an

offline stage. The proposed hybrid offline/online approaches combine:

1. A technique to identify the probability of future outcomes based on past

observations.

2. An expensive offline computation of a contingency table; it contains pre-computed

solutions to guide online choices.

13

3. An efficient solution-fixing heuristic that adapts the pre-computed solutions to run-

time conditions; it represents the core of the online computation.

These hybrid offline/online approaches are highly generic, i.e. they can be applied

to any generic stochastic anticipatory algorithm.

The system devised in our work builds on one of the approaches proposed in [13]

named 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌, that leverages a contingency table containing robust

solutions.

2.3.1 Modeling Online Stochastic Optimization

Online stochastic optimization is modeled as an n-stage problem, where at each

stage some uncertainty gets resolved and some decisions are made. Each stage 𝑘

(starting from 𝑘 = 1 to n) is associated to a state variable 𝑠𝑘 that summarizes the effect

of past observed uncertainties and decisions, and a decision variable 𝑥𝑘 that represents

the decision taken. Uncertainty is modeled through a set of random variables 𝜉𝑖 and it

is assumed to be exogenous, i.e. it is only influenced by external factors and not by

decisions. At each stage some random variables are observed; a 𝑝𝑒𝑒𝑘 function

determines which variables are observed depending on the state at that stage, and it

returns a set 𝑂 of indexes of the observed variables:

𝑂 = 𝑝𝑒𝑒𝑘(𝑠𝑘). (1)

The set of unobserved variables is denoted as Ō. Hence, among the random uncertainty

variables, 𝜉𝑂 denotes observed and 𝜉Ō denotes unobserved ones.

2.3.1.1 Sampling-based Anticipatory Algorithm

The hybrid method starts from a given online sampling-based anticipatory

algorithm, with the aim of reducing its online computational cost. It can be applied to

a generic algorithm because it takes the algorithm itself as input.

14

An anticipatory algorithm 𝐴 is sampling-based when it estimates future outcomes

by leveraging scenarios. A scenario 𝜔 is a possible situation and it specifies a value

𝜉𝑖
𝜔 for each random variable. The 𝐴 algorithm determines the decisions 𝑥𝑘 at stage 𝑘

based on a set of scenarios 𝛺, the system state 𝑠𝑘 and values for the observed

uncertainty 𝜉𝑂:

𝑥𝑘 = 𝐴(𝑠𝑘, 𝜉𝑂 , { 𝜉𝜔 }𝜔∈𝛺). (2)

The state transition function 𝑛𝑒𝑥𝑡 determines the next state after the decision is

established, given the system state 𝑠𝑘, the decision taken 𝑥𝑘 and observed uncertainty

𝜉𝑂:

𝑠𝑘+1 = 𝑛𝑒𝑥𝑡(𝑠𝑘, 𝑥𝑘, 𝜉𝑂). (3)

Figure 2: Online stochastic optimization is modeled as an n-stage problem. All

the functions involved in the model are represented: peek, next, and A. At stage

𝑘: 𝑠𝑘 is the system state, 𝑥𝑘 the decision taken, and 𝑜𝑘 are the observed variables

- the related observed uncertainty is 𝜉𝑂 -.

2.3.1.2 Base Behavior

The anticipatory algorithm 𝐴 is an important component, but not the only one, of

the online behavior of a system that includes stochastic optimization in an n-stage

problem.

Given the initial state 𝑠1, indices of observed variables 𝑂 initially empty, a set of

scenarios 𝛺 and the random variables 𝜉 representing uncertainty in the system, each

online step 𝑘 involves different phases. First, uncertainty is observed: a set of values,

sampled from 𝜉𝑘 based on 𝑝𝑒𝑒𝑘 and on the state 𝑠𝑘, go from unobserved (𝜉Ō) to

15

observed (𝜉𝑂). Then, the anticipatory algorithm 𝐴 outlines the decision 𝑥𝑘 and finally

the next state 𝑠𝑘 is determined via the 𝑛𝑒𝑥𝑡 function. The following pseudocode

outlines this behavior and is referred hereinafter as 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸:

Algorithm 1 ANTICIPATE(𝑠1, 𝜉)

 Requires:

𝛺 : set of sampled scenarios

𝑂 = ∅ : indices of observed variables

for 𝑘 = 1, …, n do

 𝑂 ← 𝑂 ∪ 𝑝𝑒𝑒𝑘(𝑠𝑘)

 𝑥𝑘 ← 𝐴(𝑠𝑘, 𝜉𝑂 , {𝜉𝜔}𝜔∈𝛺)

 𝑠𝑘+1 ← 𝑛𝑒𝑥𝑡(𝑠𝑘, 𝑥𝑘 , 𝜉𝑂)

return 𝑠, 𝑥

This behavior represents the hefty anticipatory algorithm originally adopted in the

online step. However, its application is not necessarily limited to the online phase. In

fact, the hybrid method explained in the following sections is based on the idea of

shifting the expensive computation of 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 to an offline stage.

2.3.2 Offline Information and Scenario Sampling

Offline information 𝐼 is defined as a collection of observed uncertain values and

it can be exploited to support online optimization. In many use cases it is possible to

have access, during the offline phase, to information such as historical data, data from

simulations, predictions and forecasts. Following its definition, offline information I

is a collection of (observed) scenarios 𝜔. We assume that 𝐼 is representative of the

actual probability distribution of the random variables.

The set of scenarios 𝛺 involved in the sampling-based anticipatory algorithm

must be as representative as possible in order to maximize its effectiveness. Offline

16

information 𝐼 can be leveraged in order to define such a representative 𝛺 set: 𝛺 can be

obtained via random uniform sampling from 𝐼.

In a stochastic optimization problem, uncertainty progressively resolves itself as

random variables are observed at each stage. If variables 𝜉𝑖 are not statistically

independent, a set of scenarios 𝛺 that was relevant at the beginning might lose its

relevance when uncertainty is resolved. For instance, in a VPP a set of scenarios 𝛺

involving power generation by wind plants is not relevant in a day with no wind

detected.

Namely, we want a conditional sampler that generates scenarios consistent with

past observations 𝜉𝑂, allowing us to sample at stage 𝑘 the unobserved variables 𝜉Ō

according to the conditional distribution 𝑃(𝜉Ō|𝜉𝑂). If scenarios are sampled from the

offline information 𝐼, this effect is created by sampling based on the conditional

probability of scenarios 𝜔 in 𝐼 with respect to past observations; following the

fundamental rule for probability calculus, this is computed as:

𝑃(𝜉Ō
𝜔|𝜉𝑂) =

𝑃(𝜉Ō
𝜔 𝜉𝑂)

𝑃(𝜉𝑂)
, 𝜔 ∊ 𝐼

(4)

Here, 𝑃(𝜉Ō
𝜔 𝜉𝑂) is the joint probability, i.e. probability for observed and unobserved

values to occur together, and 𝑃(𝜉𝑂) is the marginal probability for observed values,

i.e. probability that these values are observed. Estimation of the joint probability can

be obtained using a density estimation method, e.g. Gaussian Mixture Models [14] or

Kernel Density Estimation [15]. Offline information can be exploited to train any of

these methods and obtain an estimator 𝑃̃(𝜉Ō
𝜔 𝜉𝑂), in short 𝑃̃(𝜉), for the joint

distribution of random variables. On the other hand, the marginal probability can be

computed from the estimator 𝑃̃(𝜉) through marginalization, i.e. aggregating the

contribution of all unobserved variables 𝜉Ō:

𝑃̃(𝜉𝑂) = ∑ 𝑃̃ (𝜉Ō
𝜔 𝜉Ō

𝜔′)

𝜔′∊𝐼

(5)

17

Hence, an estimator 𝑃̃(𝜉Ō
𝜔|𝜉𝑂) for the conditional probability is:

𝑃̃(𝜉Ō
𝜔|𝜉𝑂) =

𝑃̃(𝜉Ō
𝜔 𝜉𝑂)

∑ 𝑃̃(𝜉Ō
𝜔 𝜉Ō

𝜔′)𝜔′∊𝐼

 , 𝜔 ∊ 𝐼

(6)

and it is proportional to the true probability value: 𝑃(𝜉Ō
𝜔|𝜉𝑂) ∝ 𝑃̃(𝜉Ō

𝜔|𝜉𝑂).

If scenarios are drawn from the offline information 𝐼 following this probability

rule, their distribution takes into account the effect of past observations, namely,

observed variables.

2.3.3 Contingency Table

In the offline phase there are not strict time constraint or resource limits, e.g.

parallelization can be exploited. Therefore, it is possible to reduce the computational

cost of the online algorithm at the expense of adding a costly offline step. The offline

information I can be exploited, if significant time is available in the offline phase, to

perform an offline simulation of online situations, aimed at preparing for all possible

developments. Each scenario 𝜔 in 𝐼 is considered as if it was a real sequence of online

observations; 𝜔 is fed to an anticipatory algorithm, for example the expensive online

algorithm typically adopted in the online phase introduced in Section 2.3.1.2. This

process produces a set of robust solutions, in form of a contingency table, that can be

used as input data to guide a lightweight online method. The latter method is the only

computation actually performed during the online phase. This approach results in a

very expensive offline computation that allows significantly lighter online steps.

The offline process is referred to as 𝐵𝑈𝐼𝐿𝐷𝑇𝐴𝐵𝐿𝐸. It takes as input the

anticipatory algorithm 𝐴𝐴, analogous to the anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and

with the same input parameters, together with the initial state of the system 𝑠1. For

each scenario 𝜔 ∊ 𝐼, 𝐴𝐴 is applied obtaining the sequence of states 𝑠𝜔 visited by the

system and the sequence of decisions 𝑥𝜔 outlined by the algorithm. The contingency

table 𝑇 is the data structure resulting from this process: a pool of traces, namely,

scenarios paired with information on state sequences and decisions.

18

Algorithm 2 BUILDTABLE(𝑠1, 𝐴𝐴)

 Requires:

𝐼 : offline information

𝑇 = ∅ : contingency table

for 𝜔 ∊ 𝐼 do

 𝑠𝜔 , 𝑥𝜔 ← 𝐴𝐴(𝑠1, 𝜉
𝜔)

 𝑇 ← 𝑇 ∪ (𝜉𝜔 , 𝑠𝜔 , 𝑥𝜔)

return 𝑇 = 𝜉𝜔 , 𝑠𝜔 , 𝑥𝜔
𝜔∊𝐼

2.3.4 Fixing Heuristic

The augmented information contained in the contingency table is used online to

guide the efficient fixing heuristic, whose purpose is to adapt pre-computed solutions

to real online conditions. The fixing heuristic solves a light optimization problem, with

the aim of selecting decisions that have the largest change of being optimal, based on

the actual state and observations. The objective function is:

𝑎𝑟𝑔𝑚𝑎𝑥 {𝑃∗(𝑥𝑘|𝑠𝑘𝜉𝑂): 𝑥𝑘 ∊ 𝑋𝑘} (7)

where 𝑃∗ represents the probability for the decision 𝑥𝑘 to be optimal, conditioned by

the state 𝑠𝑘 and the observed uncertainty 𝜉𝑂, and 𝑋𝑘 is the feasible decision space.

An estimation of 𝑃∗ in the objective of the fixing heuristic can be obtained by

leveraging the contingency table 𝑇. In short, the heuristic is translated, for discrete or

numeric problems respectively, into the problem of minimizing the weighted

Hamming or Euclidian distances with respect to traces in 𝑇. Complete proof of the

process to obtain estimators for 𝑃∗ is reported in [13].

We report here, for sake of completeness, how the objective function is

materialized for the two categories of problems. We denote with a compact notation

19

𝑃(𝜔) the probability that the same state as the trace 𝜔 is reached, and then everything

goes according to the plan; it can be approximated as:

𝑃(𝜔) ∝ 𝑃̃(𝑠𝑠𝑘+1
𝜔 | 𝑠𝑘)𝑃̃(𝜉Ō

𝜔 | 𝜉𝑂),𝜔 ∈ 𝑇 (8)

where 𝑃̃(𝜉Ō
𝜔 | 𝜉𝑂) is the estimator detailed in Eq. (5) and 𝑃̃(𝑠𝑠𝑘+1

𝜔 | 𝑠𝑘) is a similar

estimator for states that can be obtained with an analogous process.

• Discrete problems.

The objective function for the fixing heuristic becomes:

𝑎𝑟𝑔𝑚𝑖𝑛 {−∑ ∑ 𝑙𝑜𝑔 𝑝𝑗𝑣
𝑣 ∈ 𝐷𝑗

𝑚

𝑗=1

⟦𝑥𝑘𝑗 = 𝑣⟧: 𝑥𝑘 ∊ 𝑋𝑘}

(9)

where ⟦∗⟧ denotes the truth value of the predicate *, 𝐷𝑗 is the domain of 𝑥𝑘𝑗

and 𝑣 is one possible value for it. The probability 𝑝𝑗𝑣 for the j-th value and 𝑣

is estimated as:

𝑝𝑗𝑣 =
∑ 𝑃(𝜔)𝜔 ∈ 𝑇, 𝑥𝑘𝑗

𝜔=𝑣

∑ 𝑃(𝜔)𝜔 ∈ 𝑇

(10)

• Numeric problems.

The objective function for the fixing heuristic becomes:

𝑎𝑟𝑔𝑚𝑖𝑛 {∑ ∑ 𝑝𝜔
1

2𝜎𝑗
𝜔 ∈ 𝑇

𝑚

𝑗=1

(𝑥𝑘𝑗 − 𝑥𝑘𝑗
𝜔)

2
: 𝑥𝑘 ∊ 𝑋𝑘}

(11)

Where the probability 𝑝𝜔 is estimated as:

𝑝𝜔 =
𝑃(𝜔)

∑ 𝑃(𝜔′)𝜔′∈𝑇

(12)

The fixing heuristic is the core of the highly efficient online step. Intuitively, the

behavior of the online phase with the heuristic follows a similar approach to the one

in 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸. First some uncertainty is observed, then a decision is outlined, and

20

finally the next state is computed; the difference is the peculiar logic adopted to take

decisions. Its pseudocode is reported below:

Algorithm 3 FIXING(𝑠1, 𝜉, 𝑇)

 Requires:

 objective : objective function for the

 heuristic, as in Eq.

(7), (9) or (11)

𝑂 = ∅ : indices of observed variables

for 𝑘 = 1, …, n do

 𝑂 ← 𝑂 ∪ 𝑝𝑒𝑒𝑘(𝑠𝑘)

 𝛺 ← 𝑡𝑜𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝜔 ∈ 𝑇 𝑏𝑦 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃(𝜔) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞. (8)

 𝑝𝑗𝑣 𝑜𝑟 𝑝𝜔 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐸𝑞. (10) 𝑜𝑟 (12), 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝛺

 𝑥𝑘 ← 𝑠𝑜𝑙𝑣𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝐸𝑞. (9) 𝑜𝑟 (11)

 𝑠𝑘+1 ← 𝑛𝑒𝑥𝑡(𝑠𝑘, 𝑥𝑘 , 𝜉𝑂)

return 𝑠, 𝑥

2.3.5 Hybrid Offline/Online Method

The low-level optimizer in our system is a hybrid offline/online technique for

optimization under uncertainty. We adopt a methodology proposed in [13] that

combines the methods introduced in sections 2.3.2 to 2.3.4.

The hybrid offline/online algorithm adopts the contingency table and the fixing

heuristic. The main idea is to leverage the offline step to compute robust solutions for

all scenarios 𝜔 in the offline information 𝐼, obtaining the contingency table 𝑇. Then,

in the online step these augmented data are used as a guidance for the efficient solution-

fixing heuristic 𝐹𝐼𝑋𝐼𝑁𝐺, that takes into consideration the real online situation. Robust

21

solutions are obtained using 𝐵𝑈𝐼𝐿𝐷𝑇𝐴𝐵𝐿𝐸, detailed in section 2.3.3, where the

(expensive) 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 is adopted as the anticipatory algorithm 𝐴𝐴. In other words,

the anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 is used offline.

In this setting, the aim of the fast fixing heuristic is to match the quality of robust

solutions obtained via the expensive anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸. Intuitively,

the anticipatory algorithm usually employed online is moved offline; the online step

leverages a much lighter optimization problem whose aim is to match the quality of

the offline solution. The cost to pay for the significant reduction of online cost is the

introduction of a heavy offline step.

Pseudocode for the hybrid offline/online method is reported below.

Algorithm 4 CONTINGENCY(𝑠1, 𝜉)

 Requires:

𝑂 = ∅ : indices of observed variables

𝑃̃(𝜉) ← train estimator for the joint

 distribution of random variables on

 offline information I

𝑇 ← BUILDTABLE(𝑠1, ANTICIPATE)

𝑃̃(𝑠𝑘 𝑠𝑘+1) ← train estimator for the joint

 distribution of states on T, for all

 steps k

s, x = FIXING(𝑠1, 𝜉, 𝑇)

return 𝑠, 𝑥

2.3.6 VPP Model

A Virtual Problem Plant aggregates and manages power generation, storage and

load units. The energy management system orchestrates them: it decides power flows

22

with the aim of satisfying the power demand of loads, respect regulations and physical

limits, and minimize the operating costs [16] [17]. The uncertainty factors that come

into play in this system are the generation from Renewable Energy Sources and the

demand by load units.

The EMS optimization problem in a VPP can be translated in terms of an

optimization problem under uncertainty by specifying all variables and functions that

come into play. In particular:

• The sampling-based anticipatory algorithm for making decisions 𝐴.

• The decision, state, and random variables; respectively 𝑥, 𝑠 and 𝜉.

• The 𝑝𝑒𝑒𝑘 and 𝑛𝑒𝑥𝑡 functions.

• The feasible space for decisions 𝑋𝑘.

• A cost metric that allows one to evaluate the quality of solutions.

• A technique for obtaining the probability estimator 𝑃̃.

The low-level optimizer of the system proposed in this work leverages such an

optimization problem to model the controlled VPP. The model is introduced in [13].

Complete information about it can be found in the related repository2.

The sampling-based anticipatory algorithm 𝐴 adopted as the basic algorithm is a

Mathematical Programming model based on the Sample Average Approximation.

The decision at stage 𝑘 is represented by a decision vector 𝑥𝑘. Its components

specify the power flow 𝑥𝑘𝑗 through each node 𝑗 in the system - generation, storage or

load units; for example, 𝑥𝑘𝑆 indicates the power flow for the storage unit. The state

component 𝑠𝑘𝑆 refers to the power level stored in this unit, while 𝑠𝑘𝐷 gives information

about its flow direction. The random variable 𝜉𝑘 has components for each uncertainty

factor: 𝜉𝑘𝑅 corresponds to the RES generation and 𝜉𝑘𝐿 to the load.

2 https://github.com/alleDe/OffOn

23

The 𝑝𝑒𝑒𝑘 function decides which random variable to observe at each stage; it

returns 𝑅 and 𝐿 for stage k:(𝑘, 𝑅) and (𝑘, 𝐿). The 𝑛𝑒𝑥𝑡 function incorporates the logic

for the state change. The storage charge level at stage 𝑘 + 1 is proportional to the

charge level and the storage power flow in the previous stage 𝑘, with a dependency on

the charging efficiency of the storage unit 𝜂. The flow direction at 𝑘 + 1 depends on

the direction of the power flow at stage 𝑘. Formally:

𝑠𝑘+1,𝑆 = 𝑠𝑘 + 𝜂𝑥𝑘,𝑆 (13)

𝑠𝑘+1,𝐷 = 0 𝑖𝑓 𝑥𝑘,𝑆 ≥ 0, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (14)

The set 𝑋𝑘, representing the feasible decision space, is defined by a separate

problem with its constraints and variables. Its objective and constraints enforce power

balance in the system and physical limits for units and power flows. The corresponding

mathematical program is:

𝜉𝑘𝐿 = ∑𝑥𝑗𝑖 + 𝜉𝑘𝑅

𝑚

𝑗=1

(15)

𝑙𝑗 ≤ 𝑥𝑘𝑗 ≤ 𝑢𝑗 , 𝑗 = 1,… 𝑚 (16)

0 ≤ 𝑠𝑘 + 𝜂𝑥𝑘,𝑆 ≤ 𝛤 (17)

𝜉𝑘𝐿 = ∑𝑥𝑗𝑖 + 𝜉𝑘𝑅

𝑚

𝑗=1

(18)

𝑥𝑘 ∊ ℝ
𝑚 (19)

Each power flow is associated to a cost 𝑐𝑘𝑗 at stage 𝑘. The storage unit is

associated to a cost as well, related to its wearing off; this cost occurs when the flow

direction in the storage system changes and it is proportional to a cost value 𝛼. Hence,

the total operational cost incurred at stage 𝑘 is modeled as:

∑𝑐𝑘𝑗 𝑥𝑘𝑗 + 𝛼|𝑠𝑘,𝐷 − 𝑠𝑘+1,𝐷|

𝑚

𝑗=1

(20)

24

It is worth to note that the cost term related to storage wear-off implies that the

anticipatory algorithm 𝐴 must solve an NP-hard problem, whereas the fixing heuristic

does not.

Kernel Density Estimation [15] with Gaussian Kernels is the technique adopted

for computing approximations of the probability distributions. It is used for obtaining

the estimator for the joint distribution of the random variables 𝑃̃(𝜉) and its derivates,

and in a similar computation for computing the estimator 𝑃̃(𝑠𝑘𝑠𝑘+1) and its derivates.

2.3.7 Execution and Data Generation

The execution of the hybrid offline/online approach based on contingency table

generates data that are used as to build the high-level optimizer. This section provides

detail on how these data were obtained.

2.3.7.1 Experimental Setup

The experimental setup to generate the data is similar to the one introduced in

[13].

The hybrid offline/online approach is applied on real instances for the virtual

power plant system. An instance is a specific realization of uncertainty in the system,

i.e. a sequence of realizations for the stages. Uncertainty realization is obtained by

sampling values for the random variables associated to RES generation (PV) and loads

(Load). Sampling is performed so as to ensure statistical independence between

variables, similarly to a realistic situation. The result of this process is the offline

information I and the sequence of observations, namely, a sequence of values for PV

and Load for all stages.

The problem is modeled using real physical bounds for power generation, realistic

power flow limits, initial battery state, efficiency, according to [17] [18]. The time

frame for the whole optimization problem is a full day (24 hours), and two subsequent

stages are 15 minutes apart; the electricity price is also assumed to change every 15

25

minutes. Therefore, the horizon for the optimization problem involves 96 stages – 4

stages x 24 hours.

The baseline method adopted for comparing the hybrid offline/online approaches

is a myopic (greedy) heuristic. In this setting it is represented by the anticipatory

algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 run with an empty set of scenarios, formally 𝛺 = ∅.

The instances used in the experiments that generate our dataset are 100. Each

instance is fed as input to the optimization approaches 100 times, varying the number

of traces in the contingency table 𝑇 from 1 to 100. For each run the following data are

recorded:

• Sequence of realizations for the variables 𝑃𝑉 and 𝐿𝑜𝑎𝑑 in all stages, i.e.

information on the instance.

• 𝑛𝑇𝑟𝑎𝑐𝑒𝑠 = |𝑇|, number of traces in the contingency table 𝑇 used in that run.

• Cost of the solution found by the approach. Lower cost indicates a better

solution quality.

• Time required by the approach for online computation.

• Average memory used during the online computation.

• Maximum memory used during the online computation.

• Average CPU amount used during the online computation.

• Maximum CPU amount used during the online computation.

These experiments yield a set of 100 x 100 = 10000 entries. It is the dataset used in the

following sections.

2.3.7.2 Results

Results reported in [13] show that the hybrid offline-online approach substantially

reduces the computational time of the online phase, at the expense of a hefty offline

step. At the same time it achieves high solution quality, comparable with the

anticipatory algorithm.

26

According to the results, there is a noticeable tradeoff between online

computational time and solution quality in the optimization methods. Experiments

compare the baseline (greedy heuristic), 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌 and the original anticipatory

algorithm (𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸) when adopted as optimization approach in the online phase.

The greedy heuristic is outperformed by all optimization methods by a significant

margin. 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌 leads to a significant reduction in online time expense

compared to 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and it yields solutions whose cost is worse but remarkably

close to the original 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 algorithm.

Increasing the number of guiding traces leads to a decrease in the solution value

(i.e. worse quality) in 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. The online cost has a significant increase for

𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and when the number of traces increases, while it slightly rises

for 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. Namely, the gap in time performance gets larger with the

number of scenarios.

There is room for improving the applicability and efficiency of hybrid

offline/online methods. A fundamental direction to explore is how to determine the

number of guiding traces for the fixing heuristic. The number of traces is not fixed,

and the optimal value can depend on the actual condition of the problem to be

optimized. Furthermore, the study reported in [13] underlines the cost/quality tradeoff

between online computational time and solution quality. Namely, increasing the

number of traces leads to better solution quality but degrades the online time required

by the methods.

This motivates the system designed hereinafter. We design and construct a system

that builds on the hybrid offline/online approach based on fixing heuristic and

contingency table, i.e. 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. The proposed system is aimed at

automatically suggesting the optimal algorithm configuration (i.e. number of traces)

based on the instance of the problem to solve, taking into account constraints such as

desired solution quality and time and memory availability. The system has a more

general purpose than a suggestion system: not only it suggests the configuration of the

27

hybrid optimizer, but it can also provide forecasts about its performance or required

online time and resources. Moreover, the system is designed to be highly flexible and

thus it can work in the opposite direction. For example, it can provide an estimation of

required time and resources for an instance when the optimization method must reach

a desired solution quality.

28

Chapter 3

Machine Learning Models

Variables involved in the VPP optimization problem interact through complex

non-linear relationships. For this particular reason the relationships among variables

are captured via machine learning models. They allow to express highly complex

relationship and they provide large flexibility in modeling.

The proposed system focuses specifically on decision trees an artificial neural

networks. These models are suitable for modeling the runtime behavior of optimization

algorithms [19]. Moreover, they perform good modeling on our dataset, as proved in

next sections, and they are supported by EML.

3.1 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that is heavily

grounded on mathematics and statistics. In recent years, with the increase of

computational resources and amounts of data produced and consumed, ML has

experienced a growing importance in computer science and sciences in general,

becoming ubiquitous in many fields. At a high level, ML is aimed at detecting patterns

in data and using them to make predictions and decisions. It is useful for automating

analysis and tasks that humans usually perform, often outperforming usual human-

based approaches. Compared to classic statistics, ML is generally focused on large

datasets, on making predictions and on providing highly flexible models.

The construction of ML models typically involves several steps. They have been

adopted for the development of our system:

1. Collection of background information on the application and the task.

2. Data collection. Data are the core of ML models.

29

3. Data preprocessing: cleaning, preprocessing, transformation. A thorough

preprocessing of data is a fundamental step to ensure the success of ML techniques.

4. ML algorithm/model selection, based on the specific application and data

themselves.

5. ML model building and evaluation.

6. Use of results. Use either the ML model itself, or patterns and predictions obtained

with it.

Data involved in ML problems are usually organized in a table, where:

• Each row is a data point from the set, usually called example or sample.

• Each column is called feature and it represents a measure that can be performed

on samples.

Machine learning techniques are typically grouped in two major categories:

• Supervised. In a supervised model, the input for an example is a set of features

and the output is the desired class label or value. The general supervised

learning problem takes as input examples with features and corresponding

labels/values; it produces as result the ML model that predicts the label/value

for new unseen examples. Hence, the goal of supervised ML is to use data to

find a model that outputs the right label or value based on input features. The

operation performed by these methods is not searching but learning, as a model

must be able to operate on unseen data.

If the objective of the prediction is:

- a categorical label, the task is called classification.

- a numeric value, the task is called regression.

This framework is highly generic: it can be applied any problem that involves

any input/output mapping.

• Unsupervised. In the general unsupervised learning problem, no class labels or

values are given for the input data. The goal of unsupervised ML is to find

important patterns in data or to associate data points to meaningful labels.

30

When an unsupervised model is constructed only features are available, with

no explicit target labels/values, and we perform computations on them that are

useful for the specific task. There are several things that we might want to do

in an unsupervised ML task: clustering, outlier detection, similarity search,

visualization, ranking and so on.

The way our problem is structured makes it a typical use case for supervised machine

learning.

3.1.1 Building a Supervised Model

3.1.1.1 Training

The construction of a ML model is called training and it yields a custom model

that fits the data used to build it. The input of this phase is called training set; in

supervised ML, it is the dataset of features and target values. The output is a trained

model. At inference time, the model takes only features as inputs.

Given a specific category of ML models, training can be interpreted as searching

among all possible model’s values and parameters. It is the task of finding the model

with the correct values and parameters that better fits the training set. The quality of

this fit can be assessed in several ways. Accuracy is usually adopted in classification

tasks; on the other hand, some formulation of error or distance is the typical choice for

regression, e.g. mean squared error. In other words, training is equivalent to

minimizing the training error or maximizing the accuracy.

3.1.1.2 Testing

A ML model must be able to generalize, i.e. to make predictions on unseen data

rather than training data. This is the fundamental difference between the ability to learn

and to memorize. A model might generate perfect predictions on the training set,

achieving a training error of 0. However, it does not necessarily have the same

performance on new data. The phenomenon of obtaining a (significantly) larger error

31

on new data compared to the one on the training set is called overfitting. In this

situation the model is too specific to the exact training set, and it does not generalize

well; it might have captured patterns in the training set that are noise rather than general

characteristics. Overfitting is more likely when the model is complicated or the amount

of training data is low. On the other hand, a model that is too simple does not capture

significant patterns in the training data; in this situation, named underfitting, also the

training error is significantly large. It is fundamental to test models on data not used in

the training phase in order to detect these two opposite situations.

The construction of a supervised learning model involves two steps:

1. Training phase: build the model based on training data. The training error assesses

the model’s prediction on this set.

2. Testing phase: the model makes predictions on test data, i.e. data not seen in the

training phase. Usually the test set is similar to the training set: samples

characterized by features are associated to their target values. The test error

evaluates the model’s performance on this set, i.e. how far its predictions are to the

real targets. The test error is a better estimate of the model’s ability to generalize.

The goal of machine learning is to learn rather than memorize, i.e. perform well in new

situations. Therefore, it is fundamental to perform both steps, and the real indicator of

a model’s quality is test error.

Test data can not influence the training phase in any way; this is sometimes

referred to as the golden rule of machine learning. The test error measures the

performance of the model on new data. If the test set contains samples used during

training, the assessment is not accurate and the model overfits part of the test data.

Defining a ML model requires both training and test sets to be carefully

constructed in order to allow a fair evaluation of performances. The construction of

models in the experiments hereinafter follow these fundamentals machine learning

practices.

32

3.1.1.3 Validating

Machine learning models are characterized by parameters that control how well

the model fits the dataset; these are the parameters that during the training phase are

adjusted to find the best model for the training set. ML models also have hyper-

parameters, for example the tree depth in a decision tree. Hyper-parameters generally

control the model’s complexity. They are not learned in the training step: it is always

possible to fit the training data better (i.e., lower training error) by making the model

more complex, but this inevitably leads to overfitting. Hence, values for

hyperparameters are fixed before training a model.

Values for hyper-parameters should be selected in order to achieve the lowest test

error possible. However, using test data in the construction of a model – even for

choosing hyperparameters – violates the golden rule of ML. To overcome this

situation, part of the training data is usually kept separate and used as a surrogate test

set at training time; in this setting, the training set is split in two sets:

• Training set: data actually used to train the model.

• Validation set: used to test the model. The error represents an approximation

of the test error.

Hyper-parameter selection is performed with the guidance of the validation error.

Several models with different candidate values for hyper-parameters are trained on the

limited training set and tested on the validation set. The set of hyper-parameters

achieving the lowest validation error is selected. Usually, after choosing hyper-

parameters, the final model is trained on the entire training set in order to exploit the

full dataset when fitting it.

Cross-validation is a technique aimed at improving the validation step. In k-fold

cross-validation, the entire training set is split into k subsets of roughly the same size

called folds. A model is trained on k-1 folds and validated on the remaining one. This

process is repeated k times, where each iteration adopts a different fold as validation

set. The final cross-validation error is the average validation error across all k

iterations; it represents a more accurate approximation of the test error compared to

33

standard validation. With this approach, every training sample contributes in

validation and training without violating the golden rule of ML; at the same time, a

large portion of the dataset (k-1 folds over k) is used for training models. The pitfall is

a larger computational cost, as each cross-validation score involves the training of k

models; this score is computed for each hyper-parameter set to evaluate, hence the

hyper-parameter selection process becomes expensive. A larger number of folds yields

a more accurate error estimation but a higher computational cost. In leave-one-out

cross-validation, one training example is used for validating each model.

Machine learning models involved in our system adopt the cross-validation

approach for selecting hyper-parameters. The process of constructing a ML model

involves the separation of data into a training and a test set. The first is used for

building the model, the latter is kept apart and used for testing at the very end. In order

to select hyper-parameters, within the cross-validation process, the training set is split

again into an actual training set and a validation set. Once hyper-parameters are

selected, the model is trained on the entire training set. This final model is used at

inference time to perform predictions.

3.2 Decision Trees

A decision tree (DT) is a supervised machine learning model consisting of a

nested sequence of if-else decisions, called splitting rules, based on the features. A

class label or a numerical value is returned at the end of each sequence. The first rule

– at depth 0 - is called root, intermediate rules are called nodes, and the final parts are

the leaves of the DT.

34

Root

Nodes

Leaves

3.2.1 Decision Stump

The building block of a DT is a simple splitting rule based on thresholding one

feature. A DT composed of only one splitting rule is also called Decision Stump (DS).

In the training phase of a DS, the aim is to find the best rule to fit the training set –

namely, a feature, a threshold, and leaf values. This is achieved by first defining a score

that evaluates the quality of the model, then searching for the rule that yields the best

score. Hence, training is reduced in searching among all possible rules the one with

best score. Usual scores adopted during this search are accuracy for classification and

mean squared error for regression.

Figure 4: Decision Stump. Same

classification problem of Figure 3: the

target of the prediction is the means of

transport to reach a destination.

Figure 3: Decision tree with depth two. The target of the

prediction is the means of transport to reach a destination – a

categorical target. Features are the distance to the destination, the

weather temperature on that day and the presence of a bus strike.

35

3.2.2 Decision Tree

DTs are an extension of DSs that allow sequences of splits based on multiple

features. While a DS has small expressive capability and limited accuracy, a DT is

more general and can achieve large accuracy even in complex scenarios.

It is computationally infeasible to train a DT with the same approach used for

DSs, namely, by exhaustively searching for the best DT among all possible sequences

of rules. The most common DT learning algorithm reported in literature, called Greedy

Recursive Splitting (GRS), addresses this issue. Starting from the full training set, GRS

trains a DS on it. The original set is split by the DS’s rule into subsets, one for each

leaf; GRS fits an additional DS on each leaf’s data, resulting in a depth-2 DT. This

process is repeated for increasing depths until a stopping criterion is met. Several

stopping criteria are reported in literature; for example, a leaf has few samples or it

only has one label, no rule improves accuracy/error on the resulting sets or a user-

defined maximum depth is reached. Each leaf in the resulting DT is associated to a

label or a value based on the training samples that end up in that leaf.

Depth is a fundamental hyper-parameter to handle while fitting a DT. A DS is a

DT with depth 1. The larger is the depth, the more complex is the model, hence the

larger is the risk of overfitting.

At inference time a sample is fed to the DT. The values of its features determine

a path inside the tree, i.e. a sequence of decisions leading to a leaf. The DT’s prediction

for the sample is the value associated to that leaf.

36

Decision trees are some of the easiest ML models, yet very used in real-world

applications. They are highly interpretable: even non-experts can examine a DT

structure and understand what happens. They are easy to implement compared to other

ML models, their learning is fast and inference is very fast. Moreover, they can handle

both categorical and numerical data, and can elegantly deal with missing values in the

training set. They do not require input data in specific formats hence there is no need

for special data pre-processing. The major pitfall of these models is the difficulty of

finding the optimal set of rules; GRS is often not accurate and might require very deep

trees that easily overfit. As DTs are usually prone to overfitting, stopping criteria and

mechanisms such as pruning must be adopted to allow good generalization

capabilities. Ensemble versions of DTs are often adopted to reduce overfitting and are

called random forests.

The remaining part of this section provides a technical explanation of

classification and regression DTs. They are some of the ML models adopted in our

experiments.

Figure 5: Inference in a Decision Tree. In red the

sequence of decisions for a sample that is labeled as

“walk”.

37

3.2.2.1 Classification

The score criterion commonly used to train rules (i.e. select splits) in a

classification DT is information gain: the selected split is the one that decreases

entropy of labels the most. Entropy measures the randomness of a set of data, namely,

how many bits of information are encoded in the average sample. Low entropy

indicates a very predictable set carrying small information whereas large entropy

indicates randomness. If 𝑠𝑒𝑡 has 𝑘 classes and 𝑝𝑐 is the probability of each class 𝑐, the

entropy is:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠𝑒𝑡) = −∑𝑝𝑐𝑙𝑜𝑔(𝑝𝑐)

𝑘

𝑐=1

(21)

Assume 𝑦 is the set of labels for the training samples, with cardinality 𝑛. A rule

splits 𝑦 into two subsets 𝑦𝑦𝑒𝑠 and 𝑦𝑛𝑜, with 𝑛𝑦𝑒𝑠 and 𝑛𝑛𝑜 examples respectively.

Information gain for the split is:

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦) −
𝑛𝑦𝑒𝑠

𝑛
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑦𝑒𝑠) −

𝑛𝑛𝑜
𝑛
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑛𝑜)

(22)

Information gain is large if labels are “more predictable” (“less random”) in the next

layer. Even if a split does not increase classification accuracy at one depth, the hope is

that it makes classification easier at the next depth, as the resulting sets are less random.

In a classification DT each leaf is associated to a class label. Its value is usually

the mode of labels for the training samples in that leaf, i.e. the most common training

label.

3.2.2.2 Regression

Regression DTs follow a similar approach compared to classification DTs while

dealing with numerical predictions. Several functions are reported in literature to

measure the quality of a split. Mean Squared Error (MSE) and Mean Absolute Error

(MAE) are two of the most common criteria, respectively defined as:

38

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

(23)

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

(24)

where the training set to split has 𝑛 samples, each of them has true target value 𝑦𝑖 and

prediction after the split 𝑦̂𝑖.

In a regression DTs each leaf is associated to a numerical value, for example the

mean or median of target values for samples in the terminal node.

3.2.3 Random Forest

In general, ensemble methods are models that have models as input, in a

framework sometimes referred to as meta-learning. The aim of ensemble methods is

to obtain meta-models that achieve higher accuracy or lower error compared to the

input ones. Some ensemble techniques, named boosting-based methods, start from

models that easily underfit and are aimed at improving the training error. On the other

hand, averaging-based methods build on models that overfit and their goal is to limit

overfitting.

Random forests (RFs) are the ensemble version of decision trees. They average a

set of deep randomized DTs with the goal of increasing performance and controlling

overfitting. The idea is that a single DT makes error in predictions; however,

aggregating the result of multiple different DTs yields better performance, as errors of

a single DT are corrected by all the others. Randomization must be included in the

construction of RF in order to obtain different trees with independent errors. Two

ingredients are fundamental for providing randomization:

• Bagging: using bootstrap samples for ensemble learning. A bootstrap sample

of the original training set is a set of the same size, obtained by sampling with

39

replacement from it. Each DT in the ensemble is trained on a different bootstrap

sample, hence it will have different splits.

• Random Trees: when training a DT, each split is decided within a random

subset of the features instead of all possible features. Different trees will have

different splits as the subset of feature to search at each split is random.

The meta-model predicts a single value that aggregates the outputs of all models,

usually the majority-predicted label for classification and the average output value for

regression. Although single DTs in a RF are affected by overfitting, if their errors are

independent aggregating predictions hides the single weaknesses. This results in a

better generalization capability, i.e. lower test error.

3.3 Neural Networks

Artificial neural networks (ANNs or NNs) are supervised learning models and are

the core of deep learning. A trained NN model performs a non-linear transformation

that represent a complex mapping between an input and an output vector. A NN is a

composition of simple functions in multiple layers connected together via weights and

non-linearities. More layers yield more complex mappings.

NNs are divided into two main categories, depending on their architecture:

• feed-forward neural networks if neurons are connected in an acyclic graph –

signals only proceed forward in the network;

• recurrent neural networks that introduce cycles in neurons connections.

We focus our attention on the first as they are adopted in our experiments.

The increasing amount of available data and computational capabilities has

contributed to the growth of NNs’ popularity in recent years. NNs are currently the

base of state-of-the-art systems in Computer Vision and Natural Language

Understanding, yielding unprecedented performances on difficult tasks.

40

3.3.1 Neuron

The neuron is the basic unit of computation in a NN and it represents a function.

It accepts some input signals in form of a vector 𝑥, it computes their weighted sum and

it adds a bias 𝑏. Finally, it applies a (non-linear) activation function ℎ, also referred to

as non-linearity; the argument of the activation function is sometimes called neuron

activity. Weight values are learned during the training process. Formally, assuming 𝑥

is the 𝑛-dimensional input vector and 𝑤 is the vector representing weights, the output

is:

𝑦 = ℎ(𝑏 + 𝑤𝑇𝑥) = ℎ(𝑏 +∑𝑤𝑗 𝑥𝑗

𝑛

𝑗=1

)

(25)

𝑎 = 𝑏 + 𝑤𝑇𝑥 (26)

Figure 6: Neuron schema. The input is an n-dimensional vector x and

the output is the prediction y. 𝑎 is the neuron activity. The bias 𝑏 can be

treated as an additional weight 𝑤𝑛+1 with input signal constant to 1 to

simplify the notation. We adopt this notation hereinafter.

41

The activation function is used for providing non-linearity between inputs and

outputs and it is the secret for the NN’s flexibility and expressive power; some

examples of it include Sigmoid, rectified linear unit (ReLU) or hyperbolic tangent

(tanh).

𝑅𝑒𝐿𝑈:

𝑚𝑎𝑥(0, 𝑥)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑:

𝜎(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)

𝑡𝑎𝑛ℎ:

𝑡𝑎𝑛ℎ(𝑥)

3.3.2 Feed-Forward Neural Network

The output of a neuron can become input to other neurons in a subsequent layer,

resulting in the architecture of a deep network. A feed-forward neural network,

sometimes called Multi-Layer Perceptron (MLP), comprises neurons connected in an

acyclic graph. Neural networks typically contain multiple layers of neurons: the first

is called input layer, the last is the output layer and in the middle there are hidden

layers. Neurons in middle layers are also called hidden or latent features, and they are

a representation of the original vector in a latent space.

If 𝑥𝑖 is the 𝑛-dimensional input vector for example 𝑖, 𝑤(𝑘) represents weights in

layer 𝑘 and 𝑣 are weights after last layer, the NN’s prediction 𝑦̂𝑖 is given by:

𝑦̂𝑖 = 𝑣𝑇ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖)) (27)

Figure 7: Commonly used activation functions: Sigmoid, ReLU, and tanh.

42

Figure 9: Two-layers neural network; all signals are detailed for the input sample

𝑖. Every circle represents a signal: input features 𝑥𝑖, hidden features 𝑧𝑖
(1) =

𝑊(1)𝑥𝑖 and 𝑧𝑖
(2) = 𝑊(2)ℎ(𝑊(1)𝑥𝑖), output 𝑦̂𝑖. Although the output 𝑦̂𝑖 is a scalar

here, it might as well be a vector and, in that case, 𝑣 is a matrix.

Figure 8: General high-level architecture of a multi-layer feed-forward neural

network.

43

Non-linear activation functions between neurons are fundamental as the neuron

itself performs a linear transformation, and if the activation is linear, then neuron and

activation still represent a linear transformation. Adding non-linearities increases the

expressive power of the model; it allows the NN to express more complex patterns in

data compared to linear models such as Support Vector Machines (SVMs) [20].

The multiple-layered architecture is fundamental for the decomposition capability

typical of Deep Learning models. A NN represents complex objects as hierarchical

combination of re-useable parts (neurons), similarly to a simple grammar. Thanks to

the network’s architecture, neurons in shallow layers capture local properties while

neurons in deep layers have a vision on broader patterns. For example, in an Optical

Character Recognition (OCR) problem the input of the neural network is an image;

each neuron recognizes a part of a digit, with shallow neurons recognizing small parts

and deeper neurons recognizing combinations of parts.

Non-linearity elements and a sufficiently complex architecture allow feed-

forward neural networks to be universal approximators [21] [22] [23], i.e. they can

approximate arbitrarily well any well-behaved function.

3.3.3 Training a Neural Network

The training process a NN is based on a simple idea: if all structures are

differentiable, weights are adjusted to reduce the prediction error. The training phase

makes use of both the input and the desired output for the neural network, i.e. the

feature vector and the target, as in a typical supervised learning setting. Training finds

network parameters (weights and biases) that allow the NN to make predictions as

close as possible to the desired target. A loss function is used to measure the error in

prediction. Hence, training consists in learning weights and biases that reduce the

network’s loss.

ML models training ultimately consists in an optimization problem: finding the

set of parameters that maximize or minimize an objective function – the loss or error.

While DT training is a discrete optimization problem, NN is a typical example of

44

continuous optimization. Gradient descent (GD) and its derivative methods [24] are

the most popular class of training algorithms for continuous optimization in ML. GD

is an iterative optimization algorithm; in order to reach the optimum point of the

objective, it moves in the parameter space in the direction suggested by the gradient.

Given a model with parameters 𝑤 and loss function 𝑓, the approach is the following

• Start with a guess for model’s parameters 𝑤0.

• Successively refine the model’s parameters at each iteration 𝑖:

- Compute the gradient of 𝑓 w.r.t. 𝑤 for all training examples:

𝛻𝑓(𝑤𝑖) (28)

- Guided by the gradient, adjust 𝑤 with the aim of obtaining the largest

loss reduction:

𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖𝛻𝑓(𝑤𝑖) (29)

𝛼𝑖 is called step size or learning rate. This computation decreases the

value of 𝑓 if the step size is small enough.

• Stop when a stopping criterion is met, usually threshold the gradient value:

||𝛻𝑓(𝑤𝑡)|| ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (30)

The objective function 𝑓 must be differentiable. If it is convex and it admits optima,

GD converges to a global optimum. Stochastic Gradient Descent (SGD) is a version

of GD where the gradient is computed on a randomly-selected training example instead

of all samples; SGD allows fast iterations with massive training sets. Most GD-

derivative techniques are between GD and SGD: the parameters’ update is performed

by batches, i.e. groups of random training samples of intermediate size, allowing fast

convergence a good solution quality with large datasets. Adam (Adaptive moment

estimation) [25] focuses on learning rate scheduling and it is currently one of the most

popular GD-based optimization algorithms; neural networks used in our experiments

leverage this training method.

45

NN training requires the computation of the gradient of the loss with respect to

the network’s parameters, in order to incrementally adjust them to reduce the loss.

Backpropagation is a technique to compute gradients in the NN and it is the base of

gradient training for these models. It computes gradients via recursive application of

the chain rule from calculus and it consists of two steps:

1. Forward Propagation. Training examples are fed to the neural network,

computing the NN’s output for them. With current and desired target values it

is possible to compute the loss, i.e. how well current weights perform on

samples.

2. Backpropagation: compute the gradient of the loss with respect to the weights.

After backpropagation Gradient Descent is applied, changing the NN’s weights to

reduce the error.

Figure 10: Gradient Descent in a two-dimension parameter space. The blue

star is the starting point (i.e. the value of parameters at the beginning 𝑤0),

while the red star is the optimum. Arrows represent the descent performed

in each GD iteration.

46

3.3.4 Neural Network Design

The NN’s architecture must be handled properly in order to limit overfitting. The

deeper is a neural network (i.e. more layers), the more complex and prone to overfitting

it is. Regularization techniques are used to avoid overfitting, for example:

• L2-regularization or similar: add a penalty for large weights.

• Early stopping: stop GD training if the validation error does not improve.

• Dropout: randomly set some neurons to 0 on each GD training.

Neural networks are extremely powerful and flexible, but they must be carefully

designed in order to obtain good performances. Several hyperparameters are involved

in these models:

• Related to the NN architecture, for example number of layers, number of

neurons per layer, activation functions, weights’ initialization.

• Related to the GD algorithm, e.g. learning rate and batch size. GD-based

algorithms are very sensitive to the learning rate, in particular for deep models:

its value heavily affects convergence speed and model’s performance, thus it

must be carefully tuned.

Neural networks can be easily employed in both classification and regression

tasks by adopting specific output layers and loss functions:

• Regression: no specific output layer is used, the predicted value 𝑦̂𝑖 is the output

of last neurons (it might also be a vector). Mean Squared Error or Mean

Absolute Error can be used as loss functions. Formally, for a NN of 3 layers

and MSE:

𝑦̂𝑖 = 𝑣𝑇ℎ (𝑊(3)ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖)))
(31)

47

𝑓(𝑣,𝑊(3),𝑊(2), 𝑊(1)) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

(32)

• Classification: For multi-class or multi-label classification, 𝑣 is a matrix and

the output layer in the NN has one neuron for each class. The softmax function

is used as activation function in the final layer to obtain a probability

distribution over classes, i.e. probability value for each class:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦̂𝑖,𝑗) =
𝑒𝑥𝑝(𝑦̂𝑖,𝑗)

∑ (𝑒𝑥𝑝(𝑦̂𝑖,𝑐))
𝑘
𝑐=1

, 𝑗 = 1, …𝑘

(33)

𝑦̂𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑣
𝑇ℎ (𝑊(3)ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖)))]

(34)

where there are 𝑘 classes; 𝑦̂𝑖 is a vector of 𝑘 elements, one element 𝑦̂𝑖,𝑐 for

each class 𝑐 indicating the probability for sample 𝑖 to belong to class 𝑐.

Softmax loss, also called cross-entropy loss, is generally adopted as the error

function. It measures the performance of a classification model whose output

is a probability value:

𝑓(𝑣,𝑊(3),𝑊(2),𝑊(1)) =∑(−𝑦̂𝑖,𝑐𝑖̃ + 𝑙𝑜𝑔 (∑(𝑒𝑥𝑝(𝑦̂𝑖,𝑐))

𝑘

𝑐=1

))

𝑛

𝑖=1

(35)

where example 𝑖 has true class 𝑐𝑖̃.

This activation function and loss is the general formulation. For mono-class

and mono-label tasks these same functions are applied.

3.4 Additional ML Techniques

In sections 3.2 and 3.3 we reported the theoretical basis for decision trees and

neural networks, the main machine learning methods under investigation in our

system. Additional techniques are explored to model the relationships among variables

but, for sake of brevity, we do not describe them in detail. They are used for exploration

and they are not adopted in the combinatorial optimization model for the proposed

system, thus a thorough technical explanation is not necessary. Nevertheless, we

48

provide a brief introduction on additional ML models and techniques used in our

experiments, together with references useful for a reader to gather further information.

3.4.1 Radial Basis Function

A Radial Basis Function (RBF) [26] is a function that depends on the distance

between the input point and another point in the input domain. An example is Gaussian

RBF, where the function is a gaussian, i.e.

𝑔𝑅𝐵𝐹(𝑥, 𝑥̃) = 𝑒𝑥𝑝 (
|| 𝑥 − 𝑥̃||2

2𝜎2
)

(36)

where 𝑥 is the input point and 𝑥̃ is the selected point in the domain. Gaussian RBFs

are universal approximators, i.e. a sum of a large enough number of these functions

can approximate any continuous function to arbitrary precision. RBFs are adopted in

ML literature as basis in linear regression with modified basis, as kernels in SVMs and

as activation functions in NNs.

3.4.2 K-Nearest Neighbors

K-nearest neighbors (KNN) [27] is a supervised ML technique. KNN assigns the

target value to a new unseen point based on the values of its k closest examples from

the training set. In classification, the assigned label is usually the most common label

among the neighboring training points, i.e. the mode. In regression it usually the mean

or the median among the neighbors’ target values.

3.4.3 Linear Regression

Linear regression with polynomial or Gaussian RBF basis [28]. Linear regression

is a statistical technique to approximate the relationship between a response and one

or more explanatory variables with a linear model. With a non-linear feature transform

(often called change of basis) it is possible to manipulate the features and represent

49

polynomial or more complex relationships. Such a model in machine learning is

trained by adjusting the model’s weights to minimize the prediction error.

3.4.4 Support Vector Machine

Support vector machines (SVMs) for classification and regression [20] [29] [30].

SVMs are a supervised learning technique; they represent the model that maximizes

the margin between the training patterns and the decision boundary. For example, in

classification tasks SVMs yield the maximum-margin classifier; this is the model that

separates points in the input space with the hyperplane that is the farthest from all

classes, i.e. longest distance to the closest examples in all classes. A change of basis

allows such models to represent non-linear relationships. SVMs with L2 regularization

and gaussian RBF [31] are extensively used in ML as they have fast training and

testing, and they provide good performances as out-of-the-box models.

3.4.5 Principal Component Analysis

Principal component analysis (PCA) [32] is an unsupervised machine learning

algorithm. It is a linear latent-factor model, i.e. a technique that simultaneously learns

a change of basis from data and their representation in it. PCA represents the points of

the dataset from their high-dimensional vector space to a different (usually lower-

dimensional) space, by projecting them into the principal components, i.e. the

directions of maximum variation for the data. Following the interpretation of PCA as

a latent-factor model, principal components represent the new basis while the

representation of data is the data themselves projected. PCA finds the low-dimensional

hyper-plane minimizing variance in the projected space; it can also be viewed as the

hyperplane minimizing the orthogonal distance to data. PCA is one of the most

common techniques for dimensionality reduction and data visualization, and it is also

adopted for data interpretation, outlier detection, and other applications.

50

Chapter 4

Empirical Model Learning

In the framework of a VPP’s EMS, an additional combinatorial optimization

problem can be introduced. Positioned on top of the hybrid online/offline algorithm, it

has user-defined objectives and constraints. Its aim is to help the tuning of the online

phase, e.g. choose number of traces in the contingency table, and to obtain forecasts

about online performances.

The relationship between variables involved in this problem are modeled with

machine learning. This allows to capture complex non-linear relationships with an

automatic and data-driven approach. However, standard optimization tools are not

designed to handle such situations, as the optimization problem involving these

variables must model these special relationships. Namely, the modeling process must

include these relations. Different approaches are reported in literature for leveraging

ML to boost modeling of optimization problems [33]. The work proposed here focuses

on Empirical Model Learning that allows embedding of ML models in the optimization

model.

4.1 EML

A combinatorial optimization model encapsulates a description of the real-world

system it deals with. This is usually a manually-defined model that describes only

important aspects of the system, namely, making simplifications of the real world. A

good high-fidelity model is fundamental for the success of the optimization process,

and it needs to balance a tradeoff between complexity and accuracy: scarcity of details

yields a poor description of the system with poor solution quality, whereas abundance

of details leads to complex models with infeasible computational time. The modeling

phase requires a thorough analysis of the system itself with the help of domain experts.

51

Although literature exposes methods to address modeling for real-world systems, high-

complexity systems still represent a challenge for optimization problems due to

modeling. Empirical Model Learning (EML) [34] 3 merges the two fields of machine

learning and optimization in this exact direction: it leverages ML to tame high-

complexity systems modeling, making such systems treatable in combinatorial

optimization.

EML is a technique that allows combinatorial optimization in highly complex

systems. It handles optimization for complex real-world systems in two steps, adopting

a similar approach to the one followed in our work:

• Given a system that is hard to model by conventional means, use a machine

learning model (Empirical Model) to approximate its input/output behavior,

i.e. the relations between variables.

• Encapsulate these relationships into components of a combinatorial

optimization problem, i.e. constraints and objectives. In other words, embed

trained ML models into the optimization problem.

The technique proposed in [34] is focused on the modeling side of the

optimization problem and it digs into methods for performing the embedding, with

emphasis on specific ML models (decision trees, random forests and artificial neural

networks) and several optimization techniques (local search, mixed integer linear

programming, constraint programming, SAT modulo theories). A well-designed

modeling of empirical models is fundamental for the entire optimization process:

embeddings should be designed so that the optimization engine can exploit the

empirical model’s structure for boosting the search operation. Hence, embedding is

not just a matter of encoding ML models, because it must address the efficient use of

optimization components – variables, constraints, and objectives.

3 https://emlopt.github.io

52

An EML-based system is capable of suggesting optimal decisions in a highly-

complex real-world setting. EML allows the integration of advanced predictive

modeling and big data analysis techniques into prescriptive analytics, by virtue of its

ability to integrate machine learning into combinatorial optimization. EML can be

interpreted as a technique to merge predictive and prescriptive analytics.

The approach stemming from EML is data-driven and automatic. Compared to

classic optimization modeling it offers a new vision where part of the prescriptive

model is extracted from data; EML-based models are crafted on real-world data

because they rely on empirical machine learning models to obtain components of the

prescriptive optimization problem.

EML introduces approximations in its embeddings that are necessary to allow

usefulness of the techniques: “In EML, models are useful if they provide adequate

accuracy, and if they can be effectively exploited by solvers for finding high-quality

solutions” [34]. However, this is not peculiar of EML: models in both predictive and

prescriptive analysis introduce some forms of approximation; these are inevitable to

enable the applicability of the techniques. machine learning models are based on

statistics and approximation is fundamental to allow their generalization capability.

Also classic optimization techniques have approximations: usual human-defined

optimization models are approximations of the real system, and this is the key for

modeling computationally-feasible problems.

The Empirical Model Learning approach enables the application of optimization

techniques to complex real-world problems that used to be hard to tackle. Additionally,

it easies the need for hand-crafted models by domain experts and it opens up new

application areas. Designing a good empirical model may still be a non-trivial task,

but EML allows better accuracy compared to manually-crafted expert-designed

approaches. Experiments in [34] show the clear advantages of using a data-extracted

model in terms of quality of the final solutions.

53

4.2 Optimization Problem Modeling

Combinatorial optimization problems handled with EML can be formulated as a

set of variables, constraints, and objectives. Assume z is the vector of observables, 𝑥

is the vector of decision variables 𝑥𝑖, each with domain 𝐷𝑖, 𝑓 is the cost function to

optimize and 𝑔𝑗 are predicates representing constraints, e.g. inequalities. These are

typical components of a combinatorial optimization problem, referred to as the core

combinatorial structure. EML brings an additional part into this model: a function ℎ

representing the embedding of the empirical machine learning models. It specifies how

the observables 𝑧 depend on the decision variables 𝑥, hence providing an approximate

description of the behavior of the high-complexity system.

A general optimization problem modeled with EML has the following

formulation, where (37), (38) and, (40) are the core combinatorial structure and (39)

is the EML-specific contribution:

𝑚𝑖𝑛 𝑓(𝑥, 𝑧) (37)

𝑔𝑗(𝑥, 𝑧), ∀𝑗 ∈ 𝐽 (38)

𝑧 = ℎ(𝑥) (39)

𝑥𝑖 ∈ 𝐷𝑖 , ∀ 𝑥𝑖 ∈ 𝑥 (40)

4 https://emlopt.github.io/assets/

Figure 11: In EML, the optimization problem is composed of the

(original) core combinatorial structure and a empirical machine learning

model. From: M. Lombardi, M. Milano, EML repository 4

54

Modeling such combinatorial optimization problem includes three main steps:

1. Define the core combinatorial structure of the problem. This phase consists in

defining a combinatorial optimization model as in usual optimization

workflow.

2. Obtain the empirical model, i.e. train machine learning models involving

variables of interest for either regression or classification. This step includes

the classic machine learning model construction process, as described in

section 3.1.1.

3. Embed the empirical model in the combinatorial optimization problem. This

step is peculiar of EML and it represents its core. Embedding is possible if and

only if the ML models are associated to an encoding for the optimization

problem adopted. EML defines these encodings, with a design that allows the

encoded ML model to be exploited by the optimization approach for boosting

the search process.

At the end of these steps the problem is entirely modeled, and it can be solved with a

usual optimization model resolution technique.

4.3 Empirical Model Embedding

Embedding a trained machine learning model into an optimization problem

requires to define encodings for the ML model. They translate the empirical model

into custom variables and constraints to be integrated inside the core combinatorial

structure.

The integration also requires defining an operational semantics, whose goal is to

allow the efficient use of encoded components. Operational semantic refers to any

procedure that helps the optimization engine to boost the search process by reasoning

over the specific empirical ML model, e.g. exploiting bound computation or constraint

propagation. It may be provided implicitly by the underlying solver or in some cases

it is defined explicitly together with the encoding, by adopting specific algorithms and

components in the optimization problem. In a MILP problem for example, once the

55

ML model has been embedded its equations are automatically taken it into account by

the solver for computing bounds and generating cuts, thus improving the search phase.

EML presents embedding techniques for artificial neural networks, decision trees,

and random forests and four combinatorial optimization approaches, namely, local

search (LS), mixed (non) integer linear programming (MILP), constraint programming

(CP), and SAT modulo theories (SMT). Our experiments will focus specifically on

NNs and DTs as empirical models, and MILP as optimization technique.

4.3.1 Decision Trees

Decision trees and random forest embedding into a combinatorial optimization

problem is introduced in [35].

To embed a DT, in the first step all the necessary variables are introduced into the

model: a decision variable for each input attribute, assume 𝑥 is a vector representing

input features, and a decision variable for the class 𝑦. Categorical attributes and classes

can be modeled as integer variables.

Then, consistency on the relationship given by the DT is modeled and enforced:

𝑦 = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒(𝑥) (41)

A simple encoding follows the intuition that a tree defines several paths, and each

path is an implication. Hence, a DT can be then encoded as a set of constraints that

represent boolean predicates for its paths. Assume 𝜋 is a path from root to leaf in the

tree, 𝐶(𝜋) is the class corresponding to the leaf in the path 𝜋 and each 𝑏𝑗 ∈ 𝜋 is a

branch along the path. Each expression 𝑐𝑠𝑡(𝑏𝑗) represents the condition in the branch

𝑏𝑗 and is given by:

56

𝑐𝑠𝑡(𝑏𝑗) =

{

 ⋁ ⟦𝑥(𝑏𝑗) = 𝑣⟧ 𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐

𝑣∈ 𝐿(𝑏𝑗)

⟦𝑥(𝑏𝑗) ≤ 𝑡(𝑏𝑗)⟧ 𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑎𝑛𝑑 𝑏𝑗 𝑖𝑠 𝑎 𝑙𝑒𝑓𝑡 − 𝑏𝑟𝑎𝑛𝑐ℎ

⟦𝑥(𝑏𝑗) > 𝑡(𝑏𝑗)⟧ 𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑎𝑛𝑑 𝑏𝑗 𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 − 𝑏𝑟𝑎𝑛𝑐ℎ

(42)

where ⟦∗⟧ denotes the truth value of the boolean predicate/constraint *, and 𝑥(𝑏𝑗) is

the attribute variable tested in branch 𝑏𝑗. A simple rule-based encoding is obtained

following the observation that each path 𝜋 from root to leaf can be interpreted as a

logical implication that includes all branches along the path:

⋀ 𝑐𝑠𝑡(𝑏𝑗) ⇒ ⟦𝑦 = 𝐶(𝜋)⟧ , 𝜋 ∈ 𝑝𝑎𝑡ℎ𝑠

𝑏𝑗 ∈𝜋

(43)

This expression applied to each path in the tree is sufficient to encode a DT.

Figure 12: Representation of a DT in EML. A path 𝜋 in the DT

is represented by a logical implication involving all conditions

𝑐𝑠𝑡(𝑏𝑗) along the path, leading to the label 𝐶(𝜋).

57

However, it is possible to obtain a formulation of the encoding that yields a

stronger propagation. The key observation is that the set of leaves labeled with a

certain class specifies all and only the input configurations that should be associated

to such class. The class variable 𝑦 takes the value 𝑐 if and only if at least one of the

implications associated to the paths 𝜋𝑐 labeled with 𝑐 is true. This allows one to encode

an entire tree as a set of clauses, formally:

∀ 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∶ ⟦𝑦 = 𝑐⟧ ⇔ ⋁ [⋀ 𝑐𝑠𝑡(𝑏𝑗)

𝑏𝑗 ∈𝜋𝑐

]

𝜋𝑐: 𝐶(𝜋𝑐)= 𝑐

(44)

If logical constraints are not supported by the optimization approach, it is possible

to obtain a formulation equivalent to Eq. (44); to do that, the left-to-right and right-to-

left implications associated with the biconditional operator (⇔) are separately

modeled. In particular, the right-to-left implication corresponds to Eq. (43) and for the

whole DT it translates to:

∀ 𝜋 ∈ 𝑝𝑎𝑡ℎ𝑠 ∶ ∏ 𝑐𝑠𝑡(𝑏𝑗) ≤ ⟦𝑦 = 𝐶(𝜋)⟧

𝑏𝑗 ∈ 𝜋

(45)

where ⟦∗⟧ is 1 if the logical expression * is true and 0 if it is false. Intuitively, this

equation forces the class variable 𝑦 to take the value 𝐶(𝜋) if the current values of the

attribute variables are such that all the 𝑐𝑠𝑡(𝑏𝑗) constraints are satisfied. On the other

hand, if 𝑦 takes the value 𝐶(𝜋), then at least one of the conjunctions of 𝑐𝑠𝑡(𝑏𝑗)

constraints associated to that class must be true. This leads to the formulation for the

left-to-right implication of Eq. (44) as:

∀ 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∶ ⟦𝑦 = 𝑐⟧ ≤ ∑ [∏ 𝑐𝑠𝑡(𝑏𝑗)

𝑏𝑗 ∈ 𝜋𝑐

]

𝜋𝑐: 𝐶(𝜋𝑐)= 𝑐

(46)

In an optimization problem formulated as a MILP, the decision tree is embedded

according to the following steps:

58

1. Obtain the decision tree in rule format, transforming the DT into a set of rules.

Every rule represents a path from the root to a leaf. Each rule is composed of

attribute name, attribute type, and threshold test needed to go on along the

path. The last element of the rule represents the class label of the leaf.

2. Introduce a binary variable for each rule. A constraint is used to enforce that

only one rule can be active at a time.

3. Process all conditions in all rules to maximize efficiency, e.g. collapse

conditions on the same attribute for each rule.

4.3.2 Neural Networks

Additional works in literature besides EML examine how neural networks can be

efficiently employed in combinatorial optimization problems [36]. A neural network

is a declarative non-linear model. It can be embedded in a combinatorial optimization

model directly by inserting variables for its inputs and outputs in the model, then

introducing the NN’s equations in the model.

To embed a NN, variables to model inputs and outputs for each neuron are

introduced. Then, the neuron’s equations are directly inserted into the model; each

neuron is represented in the combinatorial problem by a variable and a neuron

constraint, that ties the neuron’s input and outputs. In a network where several neurons

are combined, each edge is modeled as a constraint on the connected neurons.

{
𝑎 = 𝑏 + 𝑤𝑇𝑥
𝑦 = ℎ(𝑎)

(47)

Figure 13: Neuron schema in EML, adopting a similar

notation to section 3.

59

The embedding is straightforward as long as the optimizer supports the activation

functions adopted in the neurons. If the activation is not directly implemented by the

solver, workarounds can be adopted to yield them. For example, indicator constraints

and a slack variable are used to build ReLU activations in MILP problems [37].

However, there are some aspects that must be considered when neural networks

are embedded, as reported in [37]. In NNs with several hidden layers and neurons that

use non-linear functions, the cost function might be not convex [38]. Some solvers rely

on convexity for providing globally optimal results; in this case the solver would

converge to a local optimum, possibly different from the global optimum. Another

potential problem is numerical stability in the resolution process. Some MINLP

solvers, for example, perform inversion on the model’s functions in some of their

resolution steps. Even when an activation function is invertible, due to the finite

precision of the underlying machine, inversion may be possible only within a

restriction of the function’s domain; this might lead to loss of some feasible solutions

or even software crashes. The issue can be addressed by restricting domains of the

input/output variables of each neuron; according to [37], in rare cases this process

might accidentally eliminate a high-quality solution.

60

Chapter 5

Problem and Implementation

In a VPP optimization problem, the conventional optimizer decides power flows

in the grid. Assume this component adopts the hybrid online/offline approach for

performing optimization under uncertainty, leveraging the fixing heuristic and a

contingency table. Design choices must be taken on this component to balance the

tradeoff between solution quality and online computational resources. The algorithm

can be tuned to achieve a good solution quality or to satisfy time/memory constraints,

depending on the requirements in a specific situation.

We propose a high-level optimizer that incorporates the behavior of both the

controlled system, i.e. the VPP, and the online/offline optimizer. Inserted in a multi-

level hierarchical optimization system, this new component is used to guide

configuration decisions or perform forecasts on the low-level online optimization

process. machine learning models are used to capture the complex behavior of the

VPP/hybrid optimizer system. The high-level optimizer leverages EML to incorporate

them into its combinatorial optimization model.

This section focuses on the design of the high-level optimizer. After an

introduction on the multi-level hierarchical optimization system, the machine learning

models are presented, and finally the proposed optimizer is detailed.

The system’s construction (both ML models and optimization problems) and all

experiments are performed on cloud with the Google Colab5 platform. This allows us

to leverage larger computational resources compared to local machines and to facilitate

shareability of models, results, and code. The main tool adopted for training and testing

5 https://colab.research.google.com/

61

machine learning models is scikit-learn6, although neural networks are modeled in

Keras7 for TensorFlow8. IBM cplex9 is used as solver for the combinatorial

optimization problem. For all these tools we used the offered Python APIs.

The construction of ML models, the modeling of the high-level optimizer and all

the experiments are performed using data already produced by the hybrid

offline/online optimizer as detailed in section 2.3.7.

5.1 System

 The complete optimization system proposed in this work for the virtual power

plant is structured as a hierarchy of optimizers:

1. Low-level optimizer. Optimization under uncertainty is performed adopting the

hybrid offline/online approach. Specifically, the online step of this component

leverages the fixing heuristic and the offline-computed contingency table, as

described in section 2.3.5. This is the real VPP optimization, namely, deciding

power flows based on the objective (cost minimization) and based on the

stochastic factors.

2. High-level optimizer. The high-level optimizer performs decision-making at a

higher level, on top of the first optimizer. It incorporates the behavior of both

the controlled VPP system and the low-level optimizer, learned through

machine learning models. It does not have the same view of low-level

optimizers, i.e. all power flows. However, it handles factors involved in the

low-level stochastic optimization, e.g. number of traces for the contingency

table, online optimizer’s computational cost. This optimizer is highly flexible:

6 https://scikit-learn.org

7 https://keras.io

8 https://www.tensorflow.org

9 https://www.ibm.com/analytics/cplex-optimizer

62

it is customizable to allow the definition of the desired constraints and

objective, and it can be easily used for either deciding the low-level optimizer’s

configuration or forecasting its behavior.

Figure 14: General overview of the entire VPP optimization system.

The low-level hybrid offline/online optimizer performs stochastic

optimization for the VPP. The high-level optimizer allows both

decision-making on the configuration and performance forecasting

for the low-level optimizer; it is data-driven, flexible, and

customizable by the user.

63

5.2 Dataset Analysis

Before building models, we perform a thorough data analysis on the dataset. This

phase is fundamental for understanding the quality of the dataset and deciding whether

data cleaning or preprocessing is necessary before building ML models. It also allows

to capture evident patterns or relations and it gives information on which ML

approaches might be suitable for representing them.

Data used to construct the high-level optimizer concerns the behavior of the low-

level hybrid offline/online optimizer that leverages the fixing heuristic and a

contingency table computed offline, i.e. CONTINGENCY in section 2.3.5. The dataset

is the result of several runs of this algorithm, with different parameters and on different

problem instances. An instance is the data optimized by the low-level optimizer, i.e. a

sequence of realizations of the stochastic variables of the VPP. Specifically, the dataset

is generated with 100 different instances. Each instance is fed as input to the hybrid

optimization approach (with fixing heuristic) 100 times, for a varying number of traces

in the contingency table 𝑇 from 1 to 100. As a consequence, the dataset is composed

of 100 x 100 = 10000 entries. The features are data associated to each run of the hybrid

optimizer; there are information on its input (i.e. data regarding the instance), its

configuration, the time and computational resources required for the online

optimization, and the solution:

• Information about the instance

- PV and Load. Sequence of realization for the variables 𝑃𝑉 and 𝐿𝑜𝑎𝑑 in

all stages. These features represent information on the instance. Each

of them is a vector of 96 values.

• Configuration of the hybrid offline/online optimizer

- 𝑛𝑇𝑟𝑎𝑐𝑒𝑠 = |𝑇|. Number of traces in the contingency table 𝑇 used by

the fixing heuristic in that run.

• Solution found by the hybrid offline/online optimizer

64

- Cost. Solution value, i.e. cost, found by the hybrid offline/online

optimizer, in kEuros. Lower cost indicates a better solution quality.

• Information on run-time and resources required by the online computation of

the hybrid optimizer

- CostNorm. Solution cost, normalized to the baseline.

- Time. Time required by the hybrid offline/online optimizer for the

online computation, in seconds.

- TimeNorm. Time, normalized to the baseline.

- AvgMem. Average memory used by the hybrid offline/online optimizer

during the online computation, in MB.

- AvgMemNorm. Average memory, normalized to the baseline.

- MaxMem. Maximum memory used by the hybrid offline/online

optimizer during the online computation, in MB.

- AvgCPU. Average CPU amount used by the hybrid offline/online

optimizer during the online computation, in % of used CPU.

- AvgCPUNorm. Average CPU amount, normalized to the baseline.

- MaxCPU. Maximum CPU amount used by the hybrid offline/online

optimizer during the online computation, in % of used CPU.

We plot pairwise relationships between all variables relevant in our models. In

the plot grid, when two variables are involved the scatterplot is reported. On the other

hand, when one variable is plotted against itself (i.e. diagonal of the grid), the

univariate distribution plot is drawn; it shows the marginal distribution for the variable.

These plots give information about the distribution and the relationships between

variables; they are fundamental when building machine learning models as they might

suggest the adoption of specific techniques and help us understand why some models

have a good (or poor) performance.

65

According to the plots above:

• There is a strong correlation between number of traces and resolution time,

apparently a quadratic or low-degree polynomial relationship. Namely, time

increases as the number of traces grows, and this trend is present in all

instances.

Graph 1: Pair plot for number of traces, solution cost, and time.

66

• The solution cost does not have such a neat correlation with the number of

traces. For low values of nTraces, cost decreases as the traces increase. On the

other hand, for a high number of traces (after approximately 40 nTraces) it is

constant. This is not surprising because for small amounts of nTraces adding

new traces to guide the fixing heuristic helps the solution quality; when their

amount is already large, the cost does not benefit from adding traces.

• Similar correlation between time and solution cost. For low values of time the

cost goes down as the time grows, whereas cost is constant when time changes

for larger values of time. However, for small values of time the correlation

between cost and time is less neat compared to the one with nTraces. It is worth

to mention that this relationship might be indirect, i.e. due to the fact that time

is strongly correlated to nTraces and nTraces is to cost.

• The solution cost follows a gaussian distribution, according to its marginal

distribution. Time on the other hand is more present for small values and its

distribution decreases as its value increases.

Additional plots are reported in Appendix A help to shed light on the relationship

between the variables. In particular:

• It is confirmed that the correlation between time and cost is a consequence of

the strong relationships between time-nTraces and nTraces-cost.

• From the marginal distribution of cost with number of traces colored, we see

that the probability density of cost if we fix nTraces is a gaussian that is higher

and thinner for large values of nTraces.

• Correlation between nTraces and time is very clear, and it is not influenced by

cost. This strong correlation can be exploited to predict nTraces given the time,

as a quadratic or polynomial model would fit it perfectly.

We plot below the dataset with bar charts showing average and variance values

for solution cost and resolution time across all 100 instances, varying the number of

67

traces. It is important to explore these relationships because they represent the most

important parts of the behavior that the high-level optimization model must capture.

Graph 2: Average solution cost across all 100 instances, for each value of the

number of traces. The variance is also reported in each bar.

Graph 4: Average online resolution time across all 100 instances, for each value

of the number of traces. The variance is also reported in each bar.

Graph 3: Standard deviation for the solution cost across all 100 instances, for each

value of the number of traces.

68

These plots confirm the previous considerations about the relationship between

number of traces and solution cost. For low number of traces the cost is influenced by

the number of traces, namely, more traces yield a better solution quality. On the other

hand, after 40 traces the solution cost is approximately constant and nTraces does not

influence it. The variability of solution cost for all instances is also higher for low

number of traces compared to a large nTraces.

The computational time is strongly correlated to number of traces: as nTraces

grows the time grows, following a low-degree polynomial relationship. The variance

increases steadily as nTraces grows.

We leverage scatter plots to examine the relationship between number of traces

and memory (either average or maximum) used by the hybrid optimizer in the online

computation. We also color the instance id to examine how this relationship is

influenced by characteristics of each instance. Plots are reported below.

According to the graphs, maximum memory and nTraces have a positive linear

relationship that is strong and is not influenced by the instance.

The relationship between nTraces and average memory is more complex. For

small amounts of traces, all instances have the same value of average memory, and

there is a linear positive correlation between average memory and nTraces. On the

Graph 5: Standard deviation for the online resolution time across all 100 instances,

for each value of the number of traces.

69

other hand, for large values of nTraces the relation is less neat. For some instances

there is still a positive linear correlation between the two variables, whereas for other

instances the relationship is more chaotic and increasing nTraces leads to lower

average memory.

5.3 Machine Learning Models

We construct ML models that capture the behavior of the low-level components

in the system, i.e. controlled VPP and offline/online optimizer.

Specifically, variables involved are: number of traces (nTraces), computational

time and average memory of the online algorithm, solution cost, and two variables

related to the instance, i.e. the sequence of PV and Load values. There are three

relationships among variables that are relevant to model:

• Relationship between nTraces and computational time;

Graph 6: Scatterplot between average memory

and number of traces. The instance id is colored.

Graph 7: Scatterplot between maximum memory

and number of traces. The instance id is colored.

70

• Relationship between nTraces and solution cost;

• Relationship between nTraces and given memory.

They can be modeled by either taking or not taking into account information on the

instance, namely, PV and Load.

The number of traces is an integer between 1 and 100 and can be considered a

categorical value. However, the best models that predict this target treat it as numerical

value, i.e. regression instead of classification. Regressors will be adopted, and

constraints enforcing nTraces to be integer can be applied later in the optimization

model.

All models are built and evaluated by performing a 0.8/0.2 train/test random split,

i.e. 80% of randomly selected samples from the dataset are used for training and the

remaining 20% for testing.

We evaluate the performance of models in terms of:

• Accuracy on the test set for classification tasks. The accuracy score reports the

number of correct class predictions across all samples. Assume there are 𝑛 test

samples, 𝑦̂𝑖 is the predicted label for sample i and 𝑦𝑖 is its ground truth (i.e.

real) label; then the accuracy score is:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
 ∑⟦𝑦𝑖 = 𝑦̂𝑖⟧

𝑛

𝑖=1

(48)

where ⟦∗⟧ is 1 if the predicate * is true, 0 otherwise. Values are between 0 and

1, larger values indicate better the performance.

• R-Squared (R2 or coefficient of determination) score on the test set for

regression tasks. Assume 𝑦̂𝑖 is the predicted value for sample i and 𝑦𝑖 is its

ground truth (i.e. real value), there are 𝑛 test samples, 𝜇 is the mean value of 𝑦

across all samples; then R2 is:

71

𝜇 =
1

𝑛
 ∑𝑦𝑖

𝑛

𝑖=1

(49)

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝜇)2
𝑛
𝑖=1

(50)

A larger value indicates better the performance; the best possible R2 score is

1.0 and it can assume negative values.

It is worth to note that the numerator in (50) is the sum of squared errors (SSE):

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

= ∑(𝜀𝑖)
2

𝑛

𝑖=1

(51)

and it has the same formulation of the MSE in (23) except for a constant.

Hence, R2 has a correspondence to a prediction error measure: low values of

this score indicate large errors whereas the largest value (i.e. R2 =1) correspond

to an error of 0.

5.3.1 All Models

Although adopting EML to integrate empirical models with the optimization

problem limits the available types of ML models, we perform a preliminary analysis

in a general way. We explore several state-of-the-art machine learning techniques, and

we do not limit to the models used in EML, namely, decision trees and neural network.

With this approach we compare the final ML techniques to different ones; this allows

us to understand whether the final empirical models used in the optimization problem

perform a good modeling of data, or other ML methods outperform them. This phase

is also important to explore and guide the design of empirical models that will be

employed in our system.

72

5.3.1.1 ML Models Exploration

We leverage different machine learning techniques to capture the relationships

between two or more variables. For the same set of variables and targets we build

several models with multiple ML techniques and we compare their performance.

We report here, for sake of brevity, details and results only for the best models

obtained with each ML method. Complete results with additional models are reported

in Appendix B.

i. nTraces and cost

Focus on the relationship between number of traces and solution value. Each

model predicts nTraces and uses as features either cost, PV and load or just cost. Plots

in Appendix A help to shed light on the relation between these two variables.

The best model found for each ML technique are:

• Linear regression with change of basis to quadratic base, i.e. polynomial base

degree 2. Cost, PV, and load are used as features.

• Extra Trees regressor is a random forest with additional randomness. In each

node in the tree the split threshold is selected among a set of values randomly

chosen, instead of taking the best value possible, yielding regularization

effects. We use two trained random forest classifier (max depth 6, num trees 5)

to generate a “feature encoding” for PV and Load. This process yields an

informed (i.e. trained) representation of PV and Load; it works as

dimensionality reduction for the two vectors, each going from 96 to 5

dimension. It brings a slight improvement compared to the original 96-

dimensional representation. Then, use Extra Trees to perform regression taking

as features the cost and the two reduced PV and Load vectors.

73

- Visualization of feature importance for the best RF model:

- Using only the cost as feature (i.e., no PV and load) results in a slight

degradation: 0.85111 vs 0.89015 R2 score. Remarkably, cost alone

already achieves a high score; adding PV and Load as predictors

improves the performnce but not by a large amount.

• NN regression. Architecture [400], ReLU as activation function, Adam with

learning rate 0.001, no validation-based early stopping, batch size 200, 500

epochs. Cost, PV and load are used as features.

• Support Vector Machine regressor with Radial Basis Function kernel and

regularization parameter C=100. Cost, PV and load are used as features.

Model LR RF NN SVM

R2 0.28743 0.89077 0.07606 0.90514

Table 1: Test set performance for the best regressors that predict nTraces

using cost and (if applicable) PV/load as features.

Linear regression and neural networks do not perform well on the test set. Random

forests on the other hand achieve good results, with R2>0.88; using additional

regularization or feature cleaning allow to improve the performance only slightly

(~2%). Support Vector Machines achieve the highest score, but the improvement is

slight compared to RFs (1%).

Graph 8: Feature importance for the RF. Features 0-4 are

PV, 5-9 are Load, and 10 is cost.

74

It is worth to remember that for nTraces > 40 (approx.), the solution value is

constant. This implies that the datasets (training and test sets) have several nTraces

associated to the same features’ values. Hence, a regressor that takes as feature cost,

PV, and Load and predicts nTraces can not always predict the right value of nTraces.

At test time the regressor will predict one value for nTraces; it might be not close to

the ground truth but not necessarily wrong as the pattern itself in the datasets is

ambiguous – in the training set, similar features are associated to several different

values of nTraces from 40 to 100. The regressor can not reach a very high test error as

the problem is ill-posed due to the data itself.

As noted before, for a number of traces lower than 40, the solution value changes

when nTraces varies. In this situation, the instance also influences the solution value:

as shown in the graphs in Appendix A, based on the instance there is a growing or

decreasing trend in the cost-nTraces relationship. As a consequence, it is reasonable to

use PV and Load as features because they are characteristic of each instance and thus

they might help to capture relevant patterns.

ii. nTraces and time

Focus on the relationship between number of traces and computation time. Each

model predicts nTraces using as feature only the time. The dataset suggests a strong

polynomial relationship between the two variables, hence it is reasonable to model it

with a linear regression with polynomial basis.

We use a linear regressor, and we explore different polynomial bases:

• Linear regression with change of basis to quadratic base, i.e. polynomial base

with degree 2.

• Linear regression with change of basis to polynomial base with degree 3.

• Linear regression with change of basis to logarithmic base.

75

Basis Pol 2 Pol 3 Log

R2 0.98718 0.99573 0.99273

Table 2: Test set performance for regressors that predict nTraces using

time as feature.

The models yield good performance on the test set, in accordance to the

relationship found during the dataset analysis.

iii. nTraces and time/cost

We try to condense the previous two models into one, i.e. a unified model that

captures the relationship between number of traces, solution cost and computation

time. This model predicts nTraces taking as features time, cost, PV, and load.

The models are:

• Random forest classifier for performing dimensionality reduction of PV and

Load (max depth 6, number of trees 5), followed by Extra Tree that performs

the actual regression taking time, cost, and reduced PV and Load. The score is

remarkably high. However, according to the feature importance value, the only

feature that influences these predictions is time whereas the other variables

have little importance, as shown in Graph 9.

Graph 9: Feature importance for the RF. Features 0-4 are PV, 5-9 are

Load, 10 is cost, and 11 is time.

76

• SVM regressor with Radial Basis Function kernel and regularization parameter

C=100.

Model RF SVM

R2 0.9999 0.0

Table 3: Test set performance for regressors that predict nTraces using

time, cost and (if applicable) PV/load as features.

According to the results, when we fix time the number of traces is determined and

vice versa. This is consistent with the results in the previous sections: these two

variables have a strong correlation, and this is captured by the unified model proposed

here. As a consequence, if we specify the same time and different solution costs this

model will predict the same value for nTraces. It is not possible to obtain different

costs for the same time: this model captures the relationship between time and nTraces

and not the relationship between the other variables, because the latter are weaker

compared to the first.

iv. nTraces and memory

Focus on the relationship between online memory usage (either average or

maximum) and computation time.

In the dataset analysis we explored the relationship between these variables. This

information can be leveraged to guide the construction of empirical models:

• Random forest or SVM regressor to predict nTraces from average memory and

instance information (PV and Load). PV and Load are relevant when nTraces

has a large value, hence they should be used as features.

• Linear regression should capture the strong relationship between maximum

memory and nTraces.

Best models, for each ML technique, that predict the number of traces given the

average memory; they all take memory, PV, and Load as features:

77

• Lasso Linear regressor, i.e. Linear regressor with LASSO (least absolute

shrinkage and selection operator) or L1 regularization.

• RF regressor (max depth 20), with RF Classifier (max depth 6, 5 DTs) for dim

reduction of inputs. As shown by the feature importance (reported in

Appendix B), the prediction is completely based on memory and it ignores PV

and Load.

• SVM regressor with linear kernel.

Model LLR RF SVM

R2 0.65790 0.94722 0.76906

Table 4: Test set performance for the best regressors that predict nTraces

using average memory and (if applicable) PV/load as features.

Models that predict the number of traces given the maximum Memory; they do

not use PV and Load as features:

• Lasso regression with polynomial base with degree 3.

• SVM regressor with linear kernel.

Model LLR SVM

R2 0.99777 0.98632

Table 5: Test set performance for regressors that predict nTraces using

maximum memory as feature.

Random forests are the best predictors for average memory given nTraces when

PV and Load are used as features, with high R2 scores on the test set. On the other

hand, linear regression and SVM do not capture the relationship well.

The relationship between nTraces and maximum memory is approximated well

by a linear regression with polynomial basis.

78

v. Total

We study a complete model that predicts nTraces given all or some values of

average memory, time, PV, Load. There are two possible design approaches for this

system:

• Unified model. A unique regressor that takes as features all possible inputs.

- Pros: a unique model is easier to handle compared to multiple models

as it requires only one model design and training, hence it can be easily

applied to different problems.

- Cons: a unique regressor is less accurate because it must capture the

relationships between all variables. This is not trivial, as showed in the

previous section when a single model dealt with time and cost.

Furthermore, it is not modular, i.e. adding or removing an input variable

requires a new training of the complete model; this makes it less

suitable for a flexible and configurable system.

• Separate models. Several regressors, each predicts nTraces for one of the input

variables and is designed specifically on the relationship between its input and

nTraces. The prediction of the single regressors are then aggregated to obtain

a unique value.

- Pros: it is more accurate as each regressor captures the specific

relationship between nTraces and its feature. It is also modular, i.e. it is

flexible and allows to remove or add input variables just by removing

or adding single models rather than training a complete new unique

model.

- Cons: it is less straightforward to transport separate models to

completely new problems, as they require a specific model design for

each input variable.

79

Unified models:

• PCA (5 principal components) for dimensionality reduction of PV and Load.

Then, Extra Trees regressor with max depth 20.

• PCA (5 principal components) for dimensionality reduction of PV and Load.

Then, NN with architecture [280], activation tanh, maximum epochs 500,

using average memory. Similarly to the RFs, also in NNs time and memory

have a major impact on nTraces prediction.

• SVM regressor with linear kernel.

Model RF NN SVM

R2 0.99999 0.98555 0.94796

Table 6: Test set performance for the best regressors that predict nTraces

using all the remaining variables as features.

The models have high performance on test sets. However, they might not have

the desired behavior. They predict nTraces by considering mostly time (the most

important input) and a bit of memory, without taking into consideration other

variables. This can be observed from the feature importance in random forests,

reported in Graph 10. In other words, if we feed the model values for time, cost and

memory, the model will predict nTraces bases on time and neglecting other features.

Graph 10: Feature importance for the RF. Features 0-4 are PV, 5-9 are Load,

10 is time, 11 is cost, and 12 is memory.

80

Separate models: we use separate regressors, one for each feature time, memory

and cost, to predict nTraces. Each regressor is customized on the specific relationship

between its input and the target, both in terms of model and of features (namely,

whether to use PV and Load). Each regressor provides a suggested value for nTraces,

and all the suggestions are aggregated to produce a single value.

• Single regressors:

- Time. Linear regressor with logarithmic basis, only time as features:

0.99208

- Cost. PCA (5 components) for PV and Load followed by an Extra Trees

regressor (depth max 40): 0.88972

- Average mem. PCA (5 components) for PV and Load followed by an

Extra Trees regressor (depth max 40): 0.89107

• Aggregate prediction. We explore different ways to aggregate the three values

obtained with the regressors:

- Minimum value suggested. This represents a conservative approach, as

choosing the minimum nTraces implies using the minimum run-time

and memory in the online phase.

- Random forest with 10 trees, max depth 5.

- Linear regression.

- SVM regression with RBF basis.

Graph 11: Feature importance for the RF model that

aggegates scores of single regressors. In order: score of the

regressors for average memory, cost, and time.

81

Aggregation Min RF LR SVM

R2 0.90401 0.97259 0.89382 0.57057

Table 7: Test set performance for the best regressors that predict nTraces

using all the remaining variables as features.

Results show that separate regressors aggregate yield a good performance on the

test set. Random forest is the best aggregation method, leading to an R2 of 0.97.

5.3.1.2 Decision Trees

In this section we specifically focus on decision trees, since they are the most

important models involved in the proposed system for the next experiments. We

explore how DTs with different hyperparameters capture the relationships between

variables.

For each setting (i.e. hyperparameters and dataset’s normalization) we build four

separate models, one model for each possible prediction target. Each model uses as

features the three remaining variables. Average memory is considered rather than

maximum memory because it is a better estimator of the resource required throughout

the entire optimization process. The four models are:

• Regressor predicting computation time given memory, cost, and nTraces;

• Regressor predicting average memory given time, cost, and nTraces;

• Regressor predicting solution cost given time, memory, and nTraces;

• Regressor predicting number of traces given time, memory, and cost.

We compare models that adopt or do not adopt instance information (PV and

Load) as features. PV and Load are used in an aggregate form: instead of taking the

entire vectors, we use as features the vectors’ mean values.

Hyperparameter tuning is not performed on decision trees in these experiments.

For some DTs we specify a maximum depth, in order to examine the performance of

shallow models. For other trees no maximum depth is specified in the training process:

the DT is grown to the maximum depth possible.

82

We compare the performance on the original dataset and on its standardized and

min-max scaled version. Standardization and min-max scaling are two different forms

of data normalization:

• Standardization, sometimes called z-score: feature 𝑗 for the sample 𝑖 (𝑥𝑖,𝑗) is

transformed to:

𝑠𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗

(52)

where 𝜇𝑗 is the mean and 𝜎𝑗 is the standard deviation for feature 𝑗 over the

training set. This process brings the transformed feature’s distribution to have

mean 0 and standard deviation 1. The test set is processed using 𝜇 and 𝜎 values

from the training set.

• Min-max feature scaling: feature 𝑗 for the sample 𝑖 (𝑥𝑖,𝑗) is transformed to:

𝑛𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝑚𝑗

𝑀𝑗 − 𝑚𝑗

(53)

where 𝑚𝑗 is the minimum and 𝑀𝑗 is the maximum value for feature 𝑗 over the

training set. This process brings all values of the transformed feature to the

range [0, 1]. The test set is processed using 𝑚 and 𝑀 values from the training

set.

Hyperparameters and test set performance for the different DT models are in

Table 8. We report here for brevity only the standardized dataset because it is used in

the final proposed model. Results for all dataset forms are in Appendix B.

Features Target DT depth bound DT depth R2

No

PV/Load as

features

nTraces
1 1 0.7525

No 7 1.0000

Cost
5 5 0.0979

No 54 -0.4925

Time No 22 1.0000

Average Memory 1 1 0.5648

83

No 23 0.9980

PV/Load as

features

nTraces
1 1 0.7525

No 7 1.0000

Cost
5 5 0. 5219

No 21 0.9431

Time No 17 1.0000

Average Memory
1 1 0.5648

No 22 0. 9914

Table 8: Test set performance of experimental DTs on the standardized dataset.

According to the results, the performance of decision trees is not heavily

influenced by the normalization (i.e. standardization or min-max scaling) of data.

Prediction of nTraces, time, and average memory is not influenced by the usage

of instance-specific data as features, i.e. PV and Load. On the other hand, the cost

regressor experiences a significant decrease in test error when PV and load are added

among features.

5.3.2 Final Empirical Models

We design and train the final models that will be embedded into the combinatorial

optimization problem with EML: decision trees and neural networks.

These two ML techniques were studied and proved suitable in literature for

modeling the runtime behavior of optimization algorithms [19]. This motivates their

adoption in the model proposed in this work. Moreover, they are the main empirical

models supported by EML. We do not select random forests as they are supported by

EML but not extensively tested. Furthermore, they do not lead to significant

improvements in terms of performance on the test set compared to decision trees.

Hence, we focus our study of non-GD-based models on DTs.

For each setting (ML technique and dataset’s normalization) we build 3 models,

one for each target variable among solution cost, average memory and resolution time.

84

They are slightly different from the ones introduced in the previous section: the target

is predicted based on nTraces and (if applicable) PV/Load. In other words, regressors

only take nTraces and PV/Load as features and they do not use other variables. As

mentioned before, we adopt average memory because it is a better estimator of the

resources used throughout the entire optimization process, compared to maximum

memory.

5-fold Cross-validation is used to perform hyperparameter tuning, with the aim of

selecting the tree’s depth or the NN’s architecture and training setting.

We experiment with the three different data normalization forms: original,

standardized and min-max scaled. We build several DT and NN models:

• Decision trees with maximum depth max 5, 9, 11 or unbound. This is not

necessarily the real depth of the trees; it is the maximum depth, after which the

tree expansion is stopped during training. In this setting, cross-validation

chooses the best depth from 1 to the max depth specified.

• Neural networks. Cross-validation is used to select:

- The architecture among three choices, where each layer has 100

neurons and the number of layers varies from 2 to 4. Namely,

[100, 100], [100, 100, 100], and [100, 100, 100, 100].

- The activation between ReLU and tanh.

- The batch size among 100, 200, and 400.

- The number of epochs among 50, 100, and 500.

5.3.2.1 Training Results

For each model we report hyperparameters selected with cross-validation, R2

score on the test set and training time. It is important to distinguish between two times:

resolution time is a variable in the dataset and it is the time taken by the online

optimization phase; training time (t.time) is the time used for training the ML model.

In blue results for the models adopted in our system, as explained in the next section.

85

Times are in seconds. For data normalization forms, Orig. is the original dataset, Std.

is the standardized version and M.m.s. is the data with min-max feature scaling.

DT5 - DT maximum depth 5:

Features
Data

Norm.

Model

Solution Cost Resolution Time Average Memory

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time

nTraces

Orig. 3 0.0866 1.2096 5 0.9992 1.2812 5 0.8342 1.2651

Std. 3 0.0866 1.2438 5 0.9992 1.2896 5 0.8342 1.2805

M.m.s. 3 0.0866 1.2762 5 0.9992 1.2538 5 0.8342 1.3185

nTraces,

PV and

 Load

Orig. 5 0.5231 2.3500 5 0.9992 2.4220 5 0.8659 2.3673

Std. 5 0.5232 2.3023 5 0.9992 2.3598 5 0.8659 2.3750

M.m.s. 5 0.5231 2.2692 5 0.9992 2.3097 5 0.8659 2.3485

Table 9: Test set performance, depth, and training time of DT5.

DT9 - DT maximum depth 9:

Features
Data

Norm.

Model

Solution Cost Resolution Time Average Memory

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time

nTraces

Orig. 3 0.0866 2.4186 9 0.9999 2.3729 9 0.9019 2.4110

Std. 3 0.0880 2.5610 9 0.9999 2.4757 9 0.9019 2.4831

M.m.s. 3 0.0880 2.3363 9 0.9999 2.5101 9 0.9019 2.5122

nTraces,

PV and

 Load

Orig. 9 0.8645 9.6251 9 0.9999 4.4393 9 0.9566 4.5104

Std. 9 0.8685 4.4050 9 0.9999 7.4907 9 0.9566 6.4911

M.m.s. 9 0.8645 4.3009 9 0.9999 4.3908 9 0.9556 4.4500

Table 10: Test set performance, depth, and training time of DT9.

DT11 - DT maximum depth 11:

Features
Data

Norm.

Model

Solution Cost Resolution Time Average Memory

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time

nTraces

Orig. 3 0.0866 2.8448 9 0.9999 2.2116 11 0.9032 2.6202

Std. 3 0.0866 2.6708 9 0.9999 2.2992 11 0.9032 2.6954

M.m.s. 3 0.0866 2.6737 9 0.9999 2.1524 11 0.9032 2.6644

nTraces, Orig. 11 0.9338 10.0952 10 0.9999 5.9117 11 0.9637 5.0474

86

PV and

 Load

Std. 11 0.9391 4.9230 10 0.9999 5.0698 11 0.9619 7.5382

M.m.s. 11 0.9342 4.9433 10 0.9999 5.0030 11 0.9662 7.3752

Table 11: Test set performance, depth, and training time of DT11.

DT15 - DT maximum depth unbound:

Features
Data

Norm.

Model

Solution Cost Resolution Time Average Memory

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time

nTraces

Orig. 3 0.0866 3.2392 8 0.9999 1.8410 10 0.9029 2.2193

Std. 3 0.0866 3.2422 8 0.9999 1.8698 10 0.9029 2.2474

M.m.s. 3 0.0866 3.3010 8 0.9999 1.8588 10 0.9029 2.0783

nTraces,

PV and

 Load

Orig. 18 0.9465 7.6124 10 0.9999 9.9832 14 0.9640 9.7557

Std. 15 0.9546 7.5718 10 0.9999 14.4162 20 0.9715 8.9079

M.m.s. 17 0.9489 7.5641 10 0.9999 11.8649 20 0.9684 8.9700

Table 12: Test set performance, depth, and training time of DT15.

NN - NN; hyperparameters selected for each model are reported in Appendix C:

Features
Data

Norm.

Model

Solution Cost Resolution Time Average Memory

R2 T.Time R2 Time R2 T.Time

nTraces

Original 0.0845 713.4111 0.9999 729.8035 0.6694 740.0153

Std. 0.0928 717.4230 0.9999 733.1245 0.7896 726.6838

M.m.s. 0.0824 729.0209 0.9999 726.8239 0.7411 735.1767

nTraces,

PV and

 Load

Original 0.1272 734.1813 0.9998 726.3660 0.7178 740.6667

Std. 0.9295 733.1343 0.9999 725.0056 0.8050 727.2530

M.m.s. 0.9210 741.6749 0.9999 728.7338 0.8017 729.1535

Table 13: Test set performance and training time of NNs.

Neural networks have significantly higher training times compared to any

decision tree. Among DTs, larger depth is related to a slight increase in training time.

Performance on the test set for DTs gets better when the depth is larger. DT15

achieves the best errors while in DT11 and DT9 it is slightly larger. There is a significant

gap in performance between these models and DT5, in particular in the prediction of

cost (respectively, R2 of 0.95+ and 0.52), most likely indicating a severe overfitting of

87

the latter compared to other trees. The largest difference in performance is for the cost

regressor, while prediction of time is not heavily influenced by hyperparameters and

it is very high in all cases, with R2 >0.99. Neural networks achieve similar

performances in the prediction of cost and time, but lead to a lower test score on

memory compared to the worst DT model: 0.79 for NNs and 0.83 for DT5.

Remarkably, the performance of neural networks is better in terms of test scores

when the datasets are normalized, namely, standardized or min-max scaled.

Normalization of datasets has a beneficial effect in the objective function of the neural

network [39] [40] [41], leading to faster and more stable convergence during gradient

descent; this explains a better test score in that situations. On the other hand, the

performance of decision trees is not influenced by normalization on the training set.

The better NN performance motivates the adoption of standardized data in the final

models.

For both NNs and DTs, models predicting time and average memory do not

perform significantly better when information of the instance (PV and Load) is used

among the features. On the other hand, predictors of the solution cost that take into

account PV and Load outperform models that do not use instance-specific features.

We decide to use only nTraces as feature for both memory and time regressors,

obtaining similar predictions with less complex ML models; on the other hand, we use

nTraces, PV, and Load for models predicting the cost.

5.3.2.2 Final models

We select some of the machine learning models proposed in section 5.3.2.1, with

the guidance of the results reported. These will be embedded in the high-level

optimization problem with EML. In particular:

• We compare each technique and hyperparameter setting mentioned in the

previous section. Namely, we adopt the following groups of models:

- DT5: decision tree with maximum depth in training 5.

- DT9: decision tree with maximum depth in training 9.

88

- DT11: decision tree with maximum depth in training 11.

- DT15: decision tree with maximum depth in training unbound. The

deepest tree selected with this setting has depth 15, hence the name.

- NN: neural network.

• For each technique we use three separate regressors, one for each target

variable:

- Solution cost based on nTraces, PV, and Load;

- Average memory based on nTraces;

- Solution time based on nTraces.

The features for each regressors are selected in order to obtain the simplest

model possible yielding satisfactory test results; details on this selection are in

the previous section.

• We use the standardized datasets, as NN lead to a better performance on these

data compared to their original form.

Complete details on models’ architecture, training time, and test performance are

reported in the previous part of section 5.3.2.

5.4 Combinatorial Optimization Model

In this section we provide information on the combinatorial optimization model

that is proposed and tested in our experiments. This model represents the high-level

optimizer within the entire system.

5.4.1 Optimization Model

The combinatorial optimization model in the proposed system has the following

formulation. (56) is the EML-specific contribution while (54), (55), and (57) are the

core combinatorial structure:

89

𝑚𝑖𝑛 𝑓(𝑥, 𝑧) (54)

𝑔𝑗(𝑥, 𝑧), ∀𝑗 ∈ 𝐽 (55)

𝑧 = ℎ(𝑥) (56)

𝑥𝑖 ∈ 𝐷𝑖 , ∀ 𝑥𝑖 ∈ 𝑥 (57)

Variables specifically involved in the model are:

• nTraces: number of traces;

• time: computation time for the online optimization phase;

• avgMem: average memory used in the online optimization;

• cost: solution cost obtained by the hybrid online/offline optimizer;

• PV and Load: instance-specific data; they are the aggregated versions of the

sequence of PV and Load values, namely, their average.

Because the high-level optimizer incorporates the behavior of both the controlled

system (VPP) and the low-level optimizer (hybrid online/offline algorithm), variables

carry information about both these systems.

The optimization model contains, among 𝑔𝑗 in (55), some constraints that force

nTraces to be an integer. Although the number of traces is an integer, nTraces is treated

as a numerical value by the ML models. A possible solution to obtain correct nTraces

values is to keep the variable as numerical throughout the entire optimization process,

and round its value to an integer in the final solution. However, with this approach the

optimization process is not aware of the real constraints; this might result in solutions

that are not actually feasible. Therefore, we decide to enforce the type for nTraces

already in the optimization model as additional constraints.

The ML models embedded in the optimization problem are the 3 regressors

specified in section 5.3.2. Their encodings are represented by equation (56).

The core combinatorial structure (54), (55), and (57) depends on the specific

problem. The optimization problem is flexible and the system is interactive: constraints

90

and the objective function are specified by the user. In other words, the user specifies

the core combinatorial structure desired for the use case.

The modeling process of the optimization problem does not require domain-

specific knowledge on the VPP or on the low-level optimizer. They can be treated as

a black box, whose input/output relationship is modeled through machine learning and

incorporated leveraging EML.

The combinatorial optimization problem is a prescriptive model, but it is data-

driven thanks to the integration of ML provided by EML. The system is customizable

as it allows the definition of the desired constraints and objectives. It is also highly

flexible: it can be easily used for either deciding the low-level optimizer’s

configuration or forecasting its behavior, namely, the problem’s input and output

(constraints and optimization objective) can be easily specified based on the user’s

needs.

Figure 15: Composition of the custom combinatorial

optimization model. It builds over a set of basic variables and

constraints. Empirical ML models are integrated via EML. The

objective and additional constraints are interactively specified by

the user to fit the specific use case.

91

5.4.2 Optimization Approach

The optimization problem in our system is a MILP (mixed-integer linear

programming) [42], modeled and solved using the IBM cplex solver. EMLLib10

provides functionalities to embed machine learning models into this solver.

Mixed-integer linear programming (MILP) is a field of mathematical

programming that addresses linear problems with continuous and integer decision

variables. It provides techniques to find extreme points of linear objective functions

with linear or integrality constraints. MILP solvers can leverage the problem’s

structure (i.e. constraints and cost function) to improve the efficiency of the search

process, by adopting techniques such as linearization, cutting planes, branching, and

constraint propagation.

5.4.3 Empirical Model Learning

In previous sections we detailed the machine learning models used to approximate

the input-output relationship in the complex optimization system. Now, we embed the

trained empirical model into the high-level combinatorial optimization problem. We

adopt EMLLib10, library that implements EML and is associated to [34]. Once the

Empirical ML model has been encoded, its equations are automatically taken it into

account by the solver for boosting the search process, e.g. for computing bounds and

generating cuts.

In order to avoid re-building the optimization model for every experiment, we

construct and save a unique base model containing:

• Basic variables and constraints;

• Embedded ML models.

10 https://github.com/emlopt/emllib

https://github.com/emlopt/emllib

92

All experiments start from this model and add custom constraints and objectives based

on the specific requirements.

Below we report information on the embedded models. Times reported are the

sum for all three models. The embedding time is the time needed to embed the three

empirical models into the optimization problem with EML. The loading time is the

time needed to load the pre-constructed base model from disk.

Model

ML model info Combinatorial optimization model info

Training time

(sec)

Embedding

time (sec)

Loading time

(sec)

Variables

number

Constraints

number

Model size

on memory

DT5 4.8725 0.1201 0.0335 100 457 104 KB

DT9 9.3638 7.2999 0.8926 571 4596 7.77 MB

DT11 9.9177 48.3547 4.1838 1064 10295 46 MB

DT15 11.6890 466.6453 27.2517 2119 25455 1.03 GB

NN 2192.9426 2.9675 0.2445 2854 1003 1.06 MB

Table 14: Information on times and dimensions of combinatorial optimization

models with embedded ML models.

According to the results, ANNs are significantly slower in training compared to

DTs. Among DTs, training is faster when the DT has a smaller depth.

Remarkably, all trees have less variables compared to the ANN but a significantly

larger amount of constraints, except for DT5. This results in DTs with depth 9, 11 and

15 to have slower embedding/loading times and larger size with respect to ANNs,

while this is not true for depth 5 trees. These trends are consistent with the models’

architecture and with how EML represent them. The number of neurons in the NN is

relatively large, and the number of variables introduced by EML has a roughly linear

correlation with the number of neurons in a NN and with the depth of a DT. The

number of paths in a tree grows significantly when the tree gets deeper and broader,

and so does the amount of constraints used by EML to encode it.

93

In DTs the model’s depth heavily influences the optimization model. Deep trees

have a greater number of both constraints and variables compared to smaller models.

The size that the optimization model takes on disk depends on these factors: it is larger

when the trees are deeper, reaching a very large 1.03 GB size for DT15. The times to

embed trees and to load the pre-formed optimization model are related to the amount

of variables and constraints. As a consequence, they increase significantly when the

depth increases; for example, the embedding time and loading time are respectively 60

and 27 times larger in DT9 compared to DT5.

94

Chapter 6

Experiments and Results

Experiments are focused on the behavior of the high-level optimizer, inserted on

top of the low-level optimizer. The latter is the hybrid offline/optimization technique

that leverages the fixing heuristic and a contingency table.

We perform two groups of experiments. First, we examine the performance of

optimization models when the embedded empirical models are either decision trees or

neural networks. We test them on several comparative experiments aimed at finding

weaknesses and strengths of models. Then, guided by the results of the preliminary

experiments, we select the best machine learning models to use in the high-level

optimizer, and we test the resulting system in two real-world scenarios.

The empirical models used in the following experiments are the ones detailed in

section 5.3.2, and the combinatorial optimization model is detailed in section 5.4.

6.1 Comparative Experiments

In comparative experiments on decision trees and neural networks each model

under test is applied to the same problem in a similar setting. We examine the

performance of the two ML techniques by means of time to solve the optimization

problem and solution quality. This allows us to select the model to use in the complete

experiments reported in the next section.

We compare different DTs hyperparameters, namely, different maximum depths

used for training: 9, 11, and unbound. Information the hyperparameters of both DTs

and NNs are reported in section 5.3.2.

Several problems are considered in these experiments:

• Minimize the number of traces, given constraints on the solution value.

95

• Minimize the solution value, given constraints on memory or time.

• Minimize the time, given constraints on memory or solution cost.

• Minimize the memory, given constraints on solution cost.

We perform these experiments for different values of the variables involved in

constraints. Experiments are designed to compare and find weaknesses in models. We

explore both normal values and edge cases, i.e. constraints’ values very close to the

domain limit for the variable, in order to shed light on differences in behaviors among

models.

The optimization models in these experiments are not instance specific: we do not

constrain PV and Load to particular values.

6.1.1 Results

Below are the solutions found for the optimization problem and the resolution

times. We report here, for brevity, only relevant problems; other experiments highlight

similar behaviors and are described in Appendix D.

Variables involved in the solution change based on the problem, thus they are

reported one per row. Times are in sec. A timeout of 1200 sec is set for the solver:

after that time, the resolution process is stopped and the solution returned by the solver

is the current optimum point, if existing. It is important to distinguish between two

times: time is a variable in the dataset and it is the time taken by the online optimization

phase; resolution time (Res. time) is the time taken by our high-level optimizer to find

a solution.

Objective

(minimized)
Constraints

Solution

Variable

Empirical ML Model

DT9 DT11 DT15 NN

Value
Res.

time
Value

Res.

time
Value

Res.

time
Value

Res.

time

nTraces Cost <= 398
nTraces 1

0.2191
1

1.5095
1

5.1944
No

solution
1200

Mem 88.92 88.92 88.92

96

Time 6.93 6.93 9.51

Cost <= 256

nTraces

No

solution
0.1494

24

1.2049

24

6.2743
No

solution
1200 Mem 2953.95 2953.95

Time 381.99 381.99

Cost

Mem <= 3963,

Time <= 2128

Cost 255.91
0.2724

254.83
2.0288

254.83
6.6248

453.06
1200

nTraces 13 24 24 37

Mem <= 819,

Time <= 71

Cost 268.10
0.2346

268.10
1.1606

268.10
4.3203

337.06
1200

nTraces 3 3 3 8

Time

Cost <= 398
Time 6.93

0.2190
6.93

1.6775
9.51

5.3994
5.56

593.4029
nTraces 1 1 1 2

Cost <= 256
Time

No

solution
0.1834

381.99
1.2097

381.99
5.8430

No

solution
1200

nTraces 24 24

Mem Cost <= 256
Mem

No

solution
0.1493

2953.95
1.1909

2953.95
5.8295

6166.68
1200

nTraces 24 24 77

Table 15: Comparative experiments for DT9, DT11, DT15, and NN. For

each problem we report objective and constraints, resolution time for the

high-level optimizer and, for each variable of interest, the solution value.

According to the results, optimization models derived from ANNs are

significantly slower in obtaining solutions compared to all DTs-based models. Among

the latter, the depth of the trees influences the optimization solving time: increasing

the tree depth results in slower resolution time.

NNs in some problems do not find any solution in useful time (1200 sec);

however, they find a solution if constraints for these problems have relaxed values.

This is most likely a consequence of NNs not predicting the values requested by the

constraints for those variables. When we constraint values at the boundaries of the

variables’ domains, DTs find reasonable solutions while NNs do not. This is a sign

that NNs underfit compared to DTs.

From these experiments we can examine how DTs’ depth influences the results

of the optimization problem. DT9 has faster embedding time and resolution time (0.20

- 0.40 sec), but struggles in finding solutions for extreme values, similarly to a neural

97

network, and often solutions are not consistent with deeper trees. DT11 has slightly

slower embedding and resolution (res time 0.90 - 1.60 sec); it finds all the solutions,

they are almost always equal to the deep tree even if not as good as DT15 for extreme

values.

These experiments are important as they demonstrate that the proposed

optimization system not only minimizes the requested objective and respects

constraints, but also gives suggestions on other variables.

6.2 Final Use Cases

The proposed system is tested on two case studies. They are similar to real-world

scenarios where the optimizer could be employed:

• Optimal Number of Traces: Find the low-level optimizer’s configuration (i.e.

number of traces) that yields the best cost given time and memory constraints.

Given time/resources requirements specified by the user, namely, constraints

limiting computation time or memory, minimize the solution cost. The

optimizer outputs the number of traces required to obtain this solution value,

together with the predicted solution cost, memory and time.

In this problem:

- Constraints: memory and resolution time.

- Objective: minimize solution cost.

- Output: number of traces; forecast on solution cost, memory, and time.

• Solution Improvement over Baseline: Find the optimal time/resources

configuration (i.e. time and memory) required to reach a solution improvement

with respect to the greedy heuristic.

Each instance is associated to a baseline solution value, given by the cost

obtained with the greedy heuristic (section 2.1). Given a value of improvement

for the solution cost w.r.t. the baseline specified by the user, i.e. a constraint on

the solution cost, minimize the number of traces to obtain it. The optimizer

98

outputs memory and time required to obtain the desired improvement, together

with the predicted number of traces and solution cost.

In this problem:

- Constraints: solution cost.

- Objective: minimize number of traces.

- Output: memory and resolution time; forecast on number of traces and

solution cost.

We experiment on these scenarios only with decision tree models, with different

maximum depths in training (5, 9, 11, and 15); information on these DTs are in section

5.3.2. We do not experiment with neural networks given the poor performance on the

test set; additionally, according to results in section 6.1, they yield optimization models

that are significantly slow in the resolution process and, as a consequence, they can

not find useful solutions in many cases.

The optimization problem is structured as specified in section 5.4.1. Constraints

in the core combinatorial structure are the constraints for the specific experiment,

defined by the user. We also add two constraints that bind the PV and Load variables

in the optimization problem to the values of the instance considered in the specific run;

this allows the optimization problem and its solution to be instance-specific.

We test on 42 new and unseen instances; they were not present in the dataset used

to build ML models. Each instance was solved with the greedy heuristic, yielding a

solution cost that represents a baseline for the hybrid offline/optimization approach.

For the first use case (Optimal Number of Traces):

• We experiment on a set of 5 values for average memory and a set of 7 values

for computation time. We perform the experiments adopting a grid-search-like

approach, i.e. we fix one value for the memory and perform experiments for

99

each time value, with one run for each instance and for each combination of

values.

- The average memory values are (in MB): 512, 1024, 2048, 4096, 8192

- The solution time values are (in sec): 50, 70, 90, 110, 250, 500, 750

For the second use case (Solution Improvement over Baseline):

• We experiment on a set of values for solution cost improvement w.r.t. the

baseline. We perform one run for each instance.

- The improvements in solution cost over the baseline (in %) start from

2% and sequentially increase by 2% or 3% until no solution is found,

i.e.: 2, 5, 7, 10, 12, 15, 17…

6.2.1 Results

We report in this section solutions obtained by the high-level optimizer on the two

use cases under examination, together with information on resolution times.

6.2.1.1 Optimal Number of Traces

Table 16 documents the average resolution times for the optimization problem for

all ML models. This is the time taken by our high-level solver to find a solution; it is

not to be confused with the variable time, that represents the resolution time of the

low-level hybrid optimizer and is a variable in the dataset.

 Empirical ML Model

DT5 DT9 DT11 DT15

Res. Time (sec) 0.0040 0.1073 0.6196 4.7341

Table 16: Average resolution time for the high-level optimizer.

According to the results, the decision tree’s depth heavily influences the

resolution time of the proposed high-level optimizer. Increasing the depth from 5 to

15 leads to a growth in time by a factor of more than 103.

100

For each memory constraint value, we average the optimization results (i.e.,

nTraces suggested and solution cost forecasted) across all instances and time constraint

values. We report in Graph 12 how these values change when the memory constraint

value varies, for all the proposed ML models. The same operation is repeated with

memory and time switched in Graph 13.

Graph 12: Number of traces and Cost suggested by the optimizers under different memory bounds. The proposed

ML models are compared. For each memory costraint value, the result is averaged across all instances and time

constraint values.

Graph 13: Number of traces and Cost suggested by the optimizers under different time bounds. The proposed ML

models are compared. For each time costraint value, the result is averaged across all instances and memory

constraint values.

101

Trends emerging from these results are not surprising. When we allow more

memory and/or time (i.e. constraints are relaxed) the solution gets better in terms of

cost (i.e. lower cost) compared to tighter bounds; at the same time, the optimal number

of traces increases as more traces required to reach a better solution. Remarkably this

trend is not captured by DT5; for this model the solution cost is approximately constant

for all time and memory values, while nTraces changes only slightly. DT5’s behavior

is a typical evidence of underfitting, as it indicates that the model did not learn a

relationship between the predictors and the target variables.

In general, results show that trees with depth 9,11, and 15 find similar solutions

whereas DT5 leads to results that are quite different compared to the other models.

For each constraint (i.e. fixing the values of memory and time constraints) we

compute the standard deviation of the solution’s values (i.e. cost and nTraces) found

across all instances. We report here, for each model, this standard deviation averaged

across all constraints’ values:

Solution

Variable

Empirical ML Model

DT5 DT9 DT11 DT15

Cost 37.21 56.70 57.36 55.04

nTraces 2.86 3.59 3.19 3.15

Table 17: Standard deviation of each solution value across all instances,

averaged across all experiments (i.e. constraints’ values) for each ML

model.

Solutions in the shallowest DT (DT5) are not significantly influenced by the

instance, as demonstrated by a smaller standard deviation in results; feeding different

instances (i.e., PV and Load values) to the same problem leads to the same solution.

DT5 is also less sensible to the value of constraints, i.e. the solution found by the

optimizer is almost always the same despite the constraint. This behavior is not present

in deeper trees and it is most likely due to underfitting of DT5 compared to the others.

It not a desirable behavior; in fact, we aim at obtaining a model that performs specific

predictions based on the instance’s characteristics.

102

Below are solutions found for the optimization problem based on DT11, averaged

across all instances, for some of the constraints value experimented:

Constraints Solution

Memc Timec nTraces Mem Time Cost

512

50 2.82 369.37 17.33 397.77

110 2.82 369.37 17.33 397.77

500 2.82 369.37 17.33 397.77

750 2.82 369.37 17.33 397.77

1024

50 4.27 579.50 28.35 392.03

110 5.88 755.93 44.20 387.89

500 5.88 755.93 44.20 387.89

750 5.88 755.93 44.20 387.89

2048

50 4.27 579.50 28.35 392.03

110 8.39 1068.37 74.41 379.49

500 12.82 1532.35 146.36 374.04

750 12.09 1450.42 134.71 374.04

8192

50 4.27 579.50 28.35 392.03

110 8.39 1068.37 74.41 379.49

500 19.70 2455.50 307.24 369.61

750 23.21 2869.46 432.03 360.55

Table 18: Solutions of the high-level optimization model based on DT11,

averaged across all instances. The first two columns (memc and timec) are

the constraints. The remaining columns are the solution found: in this

specific problem, nTraces are the variable suggested by the system whereas

memory, time, and cost represent forecasts.

 In general, these results demonstrate that the proposed system is able to suggest

the optimal configuration (i.e. number of traces) given time/resources constraints, and

at the same time to make predictions about cost, time, and memory.

The optimizer finds feasible solutions, as demonstrated by the fact that time and

memory in each solution are below the requested values. As expected, for tight

memory constraints (i.e. small values of the memory bound), the solution memory

value is closer to its bound compared to how the solution time is to the time bound.

103

Vice versa, for tight time bounds the result’s time is closer to its constraint compared

to memory.

The two graphs below give a complete and clearer vision of trends emerging from

Table 18. For the same optimization problem, in Graph 14 we plot how results

(nTraces suggested and solution cost forecasted) change when the memory constraint

varies, for each value of the time constraint. Graph 15 reports the same operation with

memory and time switched. All constraints’ values experimented are reported, and

results are averaged across all instances.

 Graph 15: nTraces and Cost suggested by the DT11-based optimizer under different time bounds, averaged across

all instances, for each memory constraint value.

Graph 14: nTraces and Cost suggested by the DT11-based optimizer under different memory bounds, averaged

across all instances, for each time constraint value.

104

Remarkably, for low values of the memory bound (e.g. 512 MB) the optimization

result is not affected by the time constraint imposed: increasing the time yields the

same result, as we can see in Graph 15. On the other hand, when the memory constraint

is less strict the result changes for different time values. For middle values of this

constraint, the result changes for small values of time until a specific point, after which

it remains constant when the time bound changes. Graph 14 show that this trend is also

present when variables are switched; if the time constraint is tight (e.g. 50 sec), the

best result is obtained with a low memory value (bound 1024 MB) and increasing the

memory bound does not improve the solution.

This result is particularly interesting as it demonstrates that the high-level

optimizer is able to suggest optimal configurations with consistent time/memory

values for the low-level optimizer: if one of the constraints specified by the user is

tight, our system suggests the configuration that yields the best solution value

reachable with that constraint and that, at the same time, uses the smallest resources

possible. For example, for a strict time bound, the suggested nTraces value is the

configuration with lowest memory possible among all values that lead to the best

solution cost; increasing the memory allowance does not change this solution.

6.2.1.2 Solution Improvement over Baseline

Below is the average resolution time for the proposed optimizer depending on the

machine learning model.

 Empirical ML Model

DT5 DT9 DT11 DT15

Res. Time (sec) 0.0077 0.1183 0.5888 4.0262

Table 19: Average resolution time for the high-level optimizer.

Results are consistent with the ones found in the previous experiment: as the decision

tree’s depth increases, the time to solve the combinatorial optimization problem grows.

105

We report the maximum cost improvement found by each optimization model,

averaged across instances and all experiments:

 Empirical ML Model

DT5 DT9 DT11 DT15

Improvement

w.r.t. baseline
6.09% 10.13% 10.60% 12.65%

Table 20: Average maximum cost improvement found by each optimizer.

A larger DT depth is beneficial to the quality of the result found by the high-level

optimizer: deep trees detect larger improvements in cost compared to shallower ones.

In Graph 16 below we examine only one instance (#13). For the different DTs we

visualize how optimization results (i.e. memory, time, cost, and nTraces) change based

on the imposed improvement. Memory, time, and cost are normalized by the baseline

value, i.e. ratio of the values between the hybrid optimizer and the greedy heuristic.

To allow a better visualization we also plot the baseline, whose value is trivial (namely,

1) since variables are reported normalized. In the cost plot we also visualize the

constraint value; a cost improvement of x% corresponds to a baseline-normalized cost

of (1-x), e.g. 2% improvement is equivalent to 0.98. In all plots the cost improvement

is reported as decimal value, i.e. 0.x corresponds to a x% improvement.

106

As we would expect, the memory and time suggested by the approach increase as

the required cost improvement grows. While the shallowest DT finds an improvement

of up to 2%, the deepest tree reaches 15%. The results found by DT11 and DT15 are

very close in value, although DT11 stops at 12%, while DT9 sometimes finds different

solutions, e.g. for 5% and 7% improvement. As shown by the cost plot, DT15 finds

solutions that are closer to the constraint value. This result is not surprising as

shallower DTs overfit compared to a deeper DT (i.e. DT15): this results in less precise

models that provide coarser predictions compared to DT15.

In Graph 17 we compare optimization results (i.e. memory, time, cost, and

nTraces) of DT11 on different instances: #1, #6, #10, #13, #31, and #32. For sake of

clarity we only examine few instances that are significant; the remaining have similar

behaviors.

In general, results in Graph 17 demonstrate that the proposed high-level optimizer

is able to tell the user whether a desired cost improvement is feasible and, if it is, to

suggest time/memory configurations to reach it and to forecast number of traces and

cost.

 Graph 16: Optimization results (Memory, Time, nTraces, and Cost) for each proposed optimizer on

instance #13. Different constraint values are imposed for the cost improvement w.r.t. baseline.

107

Using the hybrid offline/online approach allows one to obtain an improvement in

the solution value compared to the greedy heuristic, up to 30% for some instances

according to the prediction. The instance heavily influences the maximum

improvement reachable and the time/memory required. Instance #1 reaches a 22% cost

improvement with very little memory/time increase w.r.t. baseline, and the

memory/time increase does not change significantly when the improvement grows.

Also instance #10 has a constant resource requirement, but it is large (80x increase in

memory and 500x in time). Instance #6 and #31 show a constant requirement of

memory and time (respectively, large and small) up to a certain improvement, and then

they skyrocket. Instances #13 and #32 show a steady increase in the resource as the

improvement grows.

Graph 17: Optimization results (Memory, Time, nTraces, and Cost) for the DT11-based optimizer on several

instances. Different constraint values are imposed for the cost improvement w.r.t. baseline.

108

Chapter 7

Conclusions

In conclusion, we devise an approach to perform automatic configuration of an

algorithm operating on new unseen instances. The proposed method is a combinatorial

optimization model that integrates machine learning models via Empirical Model

Learning. It is located on top of a hybrid offline/online optimizer, resulting in a two-

levels hierarchical system that performs stochastic optimization for the energy

management system in a virtual power plant. Results show that our approach allows

both automatic decision-making and forecasting on the configuration, online run-time,

and computational resources of the low-level algorithm.

The proposed model incorporates information on the behavior of both the

underlying controlled VPP and the low-level optimizer. Machine learning techniques

are adopted to approximate the behavior of this highly complex system. We use

Empirical Model Learning to embed the trained ML models in the combinatorial

optimization problem.

By virtue of EML, the optimization model leverages ML to perform decision-

making and forecasting over a controller and its controlled system. The high-level

optimizer guides the configuration of the low-level one, with no direct communication

and with little knowledge of its internal details: the knowledge is given by ML models.

Results demonstrate that EML is well-suited for building multi-level optimization

systems. By bringing together machine learning and mathematical programming, with

EML it is possible to tackle stochastic optimization problems in complex real-world

systems.

Integrating machine learning via EML, the optimization model’s design is data-

driven and automatic; it does not require domain expertise or a hand-crafted modeling

109

process. The proposed system is customizable and interactive, as the user defines

constraints and objectives based on the specific use case. Furthermore, it is highly

flexible; a variable in the optimization problem can be easily inserted inside constraints

or objectives, or it can be predicted based on other variables. This flexibility allows

one to perform any desired automatic decision-making and forecasting.

As shown by results, relationships between variables in the system are highly

complex and hard to formalize manually. Machine learning techniques are well-suited

to capture the knowledge about the system’s behavior.

Among the proposed models, artificial neural networks yield poor performance,

although they result in smaller optimization problems. The ML model has a larger test

set error and training time compared to DTs. The optimization model has a

significantly higher solving time, and the quality of its solutions is worse in terms of

the ability to find results in different situations.

In decision trees there is a tradeoff between solution quality and times/size related

to the model, based on depth. Deeper trees have a larger time for training, embedding,

and solving the optimization problem; additionally, the optimization model has a

greater memory size and number of variables and constraints. However, the

performance of a deeper ML model is better in terms of test error and so is the quality

of the solution found by the optimizer; for example, deep DTs allow to have solutions

sensible on the specific instance. The suggested DT has a middle depth, 11 in our

experiments; it yields comparable solution quality with respect to the deepest tree, with

a significantly smaller and less time-consuming optimization model.

The proposed system is ready to be adopted for performing automatic

configuration and forecasting on the low-level optimization algorithm in a VPP. In

future works it is possible to further experiment with neural networks; their

architecture is highly flexible, thus future studies might focus on tuning them to

overcome the pitfalls that emerged in our experiments. Another direction for additional

110

studies is to explore the use of random forests as ML models embedded in the

combinatorial optimization problem. Finally, since results demonstrate the flexibility

of an EML-based system, it is possible to re-use our approach and adopt machine

learning to deal with other complex algorithms and real-world optimization problems.

111

References

[1] E. U. Council and E. U. Parliament, EU Regulation No 347/2013 on

guidelines for trans-European energy infrastructure and repealing, April

2013.

[2] Q. Yang, T. Yang and W. Li, Smart Power Distribution Systems,

Elsevier, 2019.

[3] P. Lombardi, T. Sokolnikova, Z. Styczynski and N. Voropai, "Virtual

power plant management considering energy storage systems," in IFAC,

2012.

[4] A. De Filippo, M. Lombardi, M. Milano and A. Borghetti, "Robust

Optimization for Virtual Power Plants," in Italian Association for

Artificial Intelligence - IAAI, Nov 2017.

[5] A. De Filippo, M. Lombardi and M. Milano, "Hybrid Offline/Online

Optimization Under Uncertainty," in European Conference on Artificial

Intelligence - ECAI, Santiago de Compostela, Spain, 2020.

[6] W. B. Powell, "A Unified Framework for Optimization Under

Uncertainty," in Optimization Challenges in Complex, Networked and

Risky Systems, INFORMS, 2016.

[7] A. J. Kleywegt, A. Shapiro and T. Homem-de-Mello, "The Sample

Average Approximation Method for Stochastic Discrete Optimization,"

SIAM Journal on Optimization, vol. 12, no. 2, p. 479–502, Jan 2002.

[8] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser and A.

Shapiro, "The Sample Average Approximation Method Applied to

Stochastic Routing Problems: A Computational Study," Computational

Optimization and Applications, vol. 24, p. pages289–333, 2003.

[9] R. Bent and P. V. Hentenryck, Online Stochastic Combinatorial

Optimization, The MIT Press, 2006.

[10] P. V. Hentenryck, R. Bent and E. Upfal, "Online stochastic

optimization under time constraints," Annals of Operations Research, vol.

177, p. 151–183, Jun 2010.

112

[11] A. B. Philpott and V. L. d. Matos, "Dynamic sampling algorithms for

multi-stage stochastic programs with risk aversion," European Journal of

Operational Research, vol. 218, no. 2, p. 470–483, 2012.

[12] A. De Filippo, M. Lombardi and M. Milano, "Methods for off-

line/online optimization under uncertainty," in International Joint

Conferences on Artificial Intelligence - IJCAI, 2018.

[13] A. De Filippo, M. Lombardi and M. Milano, "How to Tame Your

Anticipatory Algorithm," in International Joint Conference on Artificial

Intelligence - IJCAI, Macao, 2019.

[14] C. Lee and J. Gauvain, "Maximum a posteriori estimation for

multivariate Gaussian mixture observations of Markov chains," in IEEE

Transactions on Speech and Audio Processing, May 1994.

[15] B. Silverman, "Density Estimation for Statistics and Data Analysis,"

Monographs on Statistics and Applied Probability, 2018.

[16] R. Palma-Behnke, C. Benavides, E. Aranda, J. Llanos and D. S´aez,

"Energy management system for a renewable based microgrid with a

demand side management mechanism," in IEEE Symposium on

Computational Intelligence Applications In Smart Grid - CIASG, Paris,

2011.

[17] H. Bai, S. Miao, X. Ran and C. Ye, "Optimal dispatch strategy of a

virtual power plant containing battery switch stations in a unified

electricity market," Energies, vol. 8, no. 3, p. 2268–2289, 2015.

[18] A. N. Espinosa and L. N. Ochoa, "Low voltage networks models and

low carbon technology profiles," Manchester, June 2015.

[19] F. Hutter, L. Xu, H. H. Hoos and K. Leyton-Brown, "Algorithm

runtime prediction: Methods & evaluation," Artificial Intelligence, vol.

206, p. 79–111, 2014.

[20] H. Drucker, C. J. C. Burges, L. Kaufman and A. J. Smola, "Support

vector regression machines," in International Conference on Neural

Information Processing Systems - NeurIPS, Denver, Colorado, 1997.

[21] K. HORNIK, "Approximation Capabilities of Multilayer Feedforward

Networks," Neural Networks, vol. 4, pp. 251-257, 1991.

[22] M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, "Multilayer

feedforward networks with a nonpolynomial activation function can

113

approximate any function," Neural Networks, vol. 6, no. 6, pp. 861-867,

1993.

[23] D. Yarotsky, "Universal approximations of invariant maps by neural

networks," 2018.

[24] S. Ruder, "An overview of gradient descent optimization algorithms,"

Jun 2017.

[25] D. Kingma and J. Ba, "Adam: A Method for Stochastic

Optimization," in International Conference on Learning Representations,

2014.

[26] M. J. L. O, "Introduction to Radial Basis Function Networks,"

Edinburgh, Scotland, 1996.

[27] N. Altman, "An Introduction to Kernel and Nearest-Neighbor

Nonparametric Regression," The American Statistician, vol. 46, no. 3, pp.

175-185, 1992.

[28] R. Kondor, "Regression by linear combination of basis," 2004.

[29] T. Evgeniou and M. Pontil, "Support Vector Machines: Theory and

Applications," in Advanced Course on Artificial Intelligence - ACAI,

Chania, Greece, 2001.

[30] M. A. Hearst, S. T. Dumais, J. P. E. Osuna and B. Scholkopf,

"Support vector machines," IEEE Intelligent Systems and their

Applications, pp. 18-28, 2008.

[31] B. Hammer and K. A. Gersmann, "Note on the Universal

Approximation Capability of Support Vector Machines," Neural

Processing Letters, vol. 17, p. 43–53, 2003.

[32] J. Shlens, "A Tutorial on Principal Component Analysis," Mountain

View, California, 2020.

[33] M. Lombardi and M. Milano, "Boosting Combinatorial Problem

Modeling with Machine Learning," in International Joint Conference on

Artificial Intelligence - IJCAI, 2018.

[34] M. Lombardi, M. Milano and A. Bartolini, "Empirical decision model

learning," Artificial Intelligence, vol. 244, p. 343–367, 2017.

[35] A. Bonfietti, M. Lombardi and M. Milano, "Embedding Decision

Trees and Random Forests in Constraint Programming," in International

114

Conference on Integration of Constraint Programming, Artificial

Intelligence, and Operations Research - CPAIOR, 2015.

[36] G. Zhang and W. B. Kleijn, "Training Deep Neural Networks via

Optimization Over Graphs," in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018.

[37] R. Anderson, J. M. Huchette, C. Tjandraatmadja and J. P. Vielma,

"Strong mixed-integer programming formulations for trained neural

networks," Mathematical Programming, vol. 183, p. 3–39, 2020.

[38] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous and Y. LeCun,

"The Loss Surface of Multilayer Networks," in International Conference

on Artificial Intelligence and Statistics - AISTATS, 2015.

[39] J. Sola and J. Sevilla, "Importance of input data normalization for the

application of neural networks to complex industrial problems," in IEEE

Transactions on IEEE Transactions on, 1997.

[40] L. Xiao-tong, "Study on Data Normalization in BP Neural Network,"

Mechanical Engineering & Automation, 2010.

[41] D. T.Jayalakshmi, "Statistical Normalization and Back Propagation,"

International Journal of Computer Theory and Engineering, vol. 3, no. 1,

2011.

[42] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke and A.

Mahajan, "Mixed-integer nonlinear optimization," Acta Numerica, vol. 22,

pp. 1-131, 2013.

[43] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola and V. Vapnik,

"Support Vector Regression Machines," in International Conference on

Neural Information Processing Systems - NeurIPS, Denver, Colorado, Dec

1996.

[44] H. Zou, T. Hastie and R. Tibshirani, "Sparse Principal Component

Analysis," Journal of Computational and Graphical Statistics, vol. 15, no.

2, p. 265–286, 2007.

115

Appendix A

Dataset Analysis

In section 5.2 we perform an analysis on the dataset used to train machine learning

models that are embedded in the high-level optimizer. We report here additional

information and plots regarding the dataset.

A.1 All Variables

General statistics on the dataset:

nTraces
Sol Cost

(k€)

Sol

Cost

Norm

Time

(sec)

Time

Norm

Mem

Avg

(MB)

Mem

Avg

Norm

Mem

Max

(MB)

CPU

Avg

(%)

CPU

Norm

CPU

Max

(%)

mean 50.5 373.89 0.79 1956.59 1334.67 4545.20 89.28 5576.30 0.26 1.93 1.52

std 28.87 47.28 0.10 1714.41 1183.00 2328.99 46.09 2889.62 0.23 1.70 2.10

min 1.00 243.19 0.51 4.26 3.08 17.08 0.34 90.91 0.00 0.00 0.00

25% 25.75 339.66 0.73 426.62 287.41 2811.98 56.19 3358.76 0.06 0.50 0.30

50% 50.50 372.03 0.79 1470.31 994.90 4596.65 89.19 5618.45 0.24 1.71 0.50

75% 75.25 405.03 0.85 3209.42 2181.75 6348.72 125.11 8014.44 0.37 2.65 2.10

max 100.00 563.83 1.25 5871.14 5045.00 10046.60 201.74 10534.83 1.03 10.10 8.90

Table 21: Statistics on each column of the dataset containing records of

runs of the hybrid offline/online algorithm.

We report in Graph 18 the pairwise plot between time and solution cost, where

nTraces is colored. In this situation when one variable is plotted against itself, i.e.

diagonal of the grid, we show a Kernel Density Estimate (KDE) layered by the colored

variable, i.e. nTraces in this example.

Graph 19 and 20 present similar pairwise plots where variables are, respectively,

nTraces and time with cost colored, and nTraces and cost with time colored.

116

Graph 18: Pair plot for solution cost and time, where the number of traces is colored.

Graph 19: Pair plot for number of traces and

resolution time, where the solution cost is colored.
Graph 20: Pair plot for number of traces and

solution cost, where the resolution time is colored.

117

A.2 Number of Traces and Cost

These plots detail the relationship between nTraces and cost.

Graph 22: Scatterplot of the average cost per

nTraces. For each value of nTraces we average all

solution costs.

Graph 21: Scatterplot between solution cost and

nTraces for one instance (#1).

Graph 23: Scatterplot of the average number of

traces per cost. For each value of cost we average all

number of traces.

Graph 24: Scatterplot of the average number of

traces per cost, with binned cost. We perform

binning on the cost with a range of 5, i.e. we split

the cost’s domain in intervals of length 5 and we

group together all data points whose cost is within

an interval. For each interval we average the

number of traces.

118

Graph 25: Scatterplot of solution cost and number of traces, with the instance id

colored.

Graph 26: For the first 20 instances, scatterplot of solution cost and number of

traces, with the instance id colored. This helps to shed light on how the instance

influences the relationship between cost and nTraces.

119

Appendix B

Machine Learning

In section 5.3 several machine learning techniques are explored to model the

relationship between variables, then the final models are trained and tested. We report

here complete results regarding the ML models analyzed while building the high-level

optimizer.

B.1 All Models

We leverage different machine learning techniques to capture the relationships

between two or more variables. Here reported are results for all ML models

experimented, for those sets of variables that were reported partially in section 5.3.1.1.

i. nTraces and cost

Focus on the relationship between number of traces and solution value. Each

model predicts nTraces and uses as features either cost, PV, and load or just cost.

Classifiers, using cost, PV, and Load as features:

Model Accuracy

KNN: cross-validation to choose K (K=5 to 8). Best: 5 0.009

SVM classifier: cross-validation to choose the regularization parameter C (C=10-4

to 104, multiplying by 10). Best: 1

0.002

Table 22: Test set performance for classifiers that predict nTraces using cost,

PV, and load as features.

120

Regressors:

Model R2

Linear regression with change of basis to quadratic base, i.e. polynomial base of

degree 2, with cost, PV, and load as features.

0.28744

Linear regression with change of basis to quadratic base, i.e. polynomial base of

degree 2, just cost as feature.

0.07482

Random forest regression, 100 trees with max depth 40. 0.88113

Extra Trees regressor, 100 trees with max depth 40. 0.88836

Random Trees Embedding (completely random untrained RF, 5 trees with max depth

6) to generate a feature embedding for PV and Load. Then, use Extra Tree (100 trees,

max depth 40) to perform regression taking as features: cost, embedded PV and Load

0.89015

Same as above, using only PV and Load as features. 0.02513

Same as above, using cost and Load as features. 0.88939

Same as above, using PV and cost as features. 0.89083

Same as above, using only cost as features. We note that cost alone achieves a high

score, adding PV and Load improves it but not by a large amount.

0.85111

Use an informed (i.e. trained) representation of PV and Load, generated using a

trained RF classifier (5 trees with max depth 6). Then use an Extra Tree to perform

regression with features cost, embedded PV and Load. There is a slight compared to

the uninformed representation.

0.89077

NN regression - architecture (400,), ReLU as activation, Adam optimizer, learning

rate 0.001, no validation early stopping, batch size 200, 500 epochs.

0.07606

Use NN classifier - architecture (400,) with 5 final classes – to generate feature

embedding for PV and Load. Then, similarly to above, use an Extra Tree to perform

regression with features cost, embedded PV and Load.

0.85102

Use PCA (with 5 p.c.) to generate feature embedding for PV and Load. Then apply

Extra Trees Regressor as above with reduced PV, Load and cost.

0.88972

Support Vector Machine regressor with RBF kernel, regularization parameter C=100. 0.90514

Table 23: Test set performance for regressors that predict nTraces using

cost and (if applicable) PV/load as features.

121

ii. nTraces and memory

Models that predicts the number of traces using as features either average

memory, PV, and load or just the average memory.

Model R2

Linear regressor Lasso, all features. 0.65789

Linear regression Lasso with polynomial basis degree 2, all features. 0.65216

Linear regressor Lasso, just memory as feature. 0.64951

Linear regression Lasso with polynomial basis degree 3, just memory as feature. 0.66070

Random forest regressor, maximum depth 20, all features. 0.93232

RF regressor (maximum depth 20), preceded by PCA (5 p.c.) for dim reduction of PV

and Load.

0.94614

RF regressor (maximum depth 20), preceded by RF Classifier for dim reduction of

PV and Load. As shown by features’ importance in Graph 27 the prediction is

completely based on memory and it ignores PV and Load.

0.94722

Extra Tree Regressor, 100 trees with maximum depth 40, all features. 0.83576

SVR with RBF kernel, all features. 0.00005

SVR with linear kernel, all features. 0.76906

Table 24: Test set performance for regressors that predict nTraces using

average memory and (if applicable) PV/load as features.

Graph 27: Feature importance for the RF regressor that takes as features PV (0-4),

Load (5-9), and average memory (10). A RF Classifier is used beforehand for

dimensionality reduction of both PV and Load.

122

iii. Total

Unified models:

Model R2

Extra Trees regressor (maximum depth 20), using average memory. 0.99999

Extra Trees regressor (maximum depth 20), using maximum memory. 0.99999

PCA (with 5 p.c.) for dim. reduction of PV and Load. Then, Extra Trees regressor

(maximum depth 20), using average memory.

0.99999

NN with architecture [280], activation tanh, maximum epochs 500, using average

memory.

0.98165

PCA (with 5 p.c.) for dim. reduction of PV and Load. Then, NN with architecture

[280], activation tanh, maximum epochs 500, using average memory.

0.98555

SVR with RBF kernel, using average memory. 0

SVR with linear kernel, using average memory. 0.94796

Table 25: Test set performance for regressors that predict nTraces using

all remaining variables as features. The model is unified, i.e. a unique

regressor takes all features and predicts nTraces.

B.2 Decision Trees

In this section we report complete results for experiments focused on the decision

trees in Section 5.3.1.2. We experiment with 4 models on 3 forms of data normalization

(original, standardized, and min-max scaled).

Results for models that do not use PV/Load as features:

 Model

nTraces Cost Time Average memory

Original

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 54 5 24 1 26

R2 0.7525 1.0000 -0.5038 0.0979 1.0000 0.5648 0.9973

Standardized

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 54 5 22 1 23

R2 0.7525 1.0000 -0.4925 0.0979 1.0000 0.5648 0.9980

123

Min-max feature scaling

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 54 5 21 1 23

R2 0.7525 1.0000 -0.4748 0.0979 1.0000 0.5648 0.9976

Table 26: Test set performance on all dataset’s normalizations for

experimental DTs that do not use PV/Load as features.

Results for models that use PV/Load as features:

 Model

nTraces Cost Time Average memory

Original

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 21 5 22 1 27

R2 0.7525 1.0000 0.9391 0.5219 1.0000 0.5648 0.9882

Standardized

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 21 5 17 1 22

R2 0.7525 1.0000 0.9431 0.5219 1.0000 0.5648 0.9914

Min-max feature scaling

DT depth bound 1 No No 5 No 1 No

DT depth 1 7 21 5 13 1 22

R2 0.7525 1.0000 0.9446 0.5219 1.0000 0.5648 0.9920

Table 27: Test set performance on all dataset’s normalizations for

experimental DTs that use PV/Load as features.

124

Appendix C

Final ML Models

Here reported are complete information about the architecture and

hyperparameters selected for neural networks in section 5.3.2.2. These models are the

ones embedded into the combinatorial optimization model used in optimization

experiments.

Cross-validation is used to select hyperparameters in the neural network among:

• Arch: The architecture among:

- [100, 100], “2” in the table below.

- [100, 100, 100], “3” in the table below.

- [100, 100, 100, 100], “4” in the table below.

• Act: The activation between ReLU (R) and tanh (T).

• BS: Batch size among 100, 200, and 400.

• Ep: Epochs among 50, 100, and 500.

Hyperparameters selected for neural networks are the following:

Features
Data

Norm.

Model

Cost Time Average Memory

Arch Act BS Ep Arch Act BS Ep Arch Act BS Ep

nTraces

Orig. 3 R 200 50 3 R 100 100 4 R 200 100

Std. 3 R 100 100 2 R 200 100 4 R 100 100

M.m.s. 4 R 100 100 2 R 200 50 4 R 100 100

nTraces,

PV and

 Load

Orig. 3 R 100 100 3 R 100 100 4 R 100 100

Std. 4 R 100 100 2 R 100 100 4 T 100 100

M.m.s. 4 R 100 100 4 R 100 50 4 R 100 100

Table 28: Hyperparameters selected for the NN models. Some of them

(in blue) are embedded into the combinatorial optimization problem and

used in optimization experiments.

125

Appendix D

Comparative Experiments

We report complete results for the comparative experiments detailed in section

6.1. An additional problem is under analysis: as a sanity check, we minimize time,

memory or solution value for a fixed number of traces given as constraint; results

should be similar with all the three objectives. This is the last set of experiments

reported in the table. Times are in seconds.

Objective

(minimized)
Constraints Variable

Empirical ML Model

DT 9 DT 11 DT 15 NN

Value
Res.

Time
Value

Res.

time
Value

Res.

time
Value

Res.

time

nTraces

Cost <= 398

nTraces 1

0.2191

1

1.5096

1

5.1944
No

solution
1200 Mem 88.92 88.92 88.92

Time 6.93 6.93 9.51

Cost <= 279

nTraces 3

0.1924

3

1.2222

3

6.0768
No

solution
1200 Mem 396.82 396.82 396.82

Time 18.39 18.39 18.39

Cost <= 256

nTraces

No

solution
0.1494

24

1.2049

24

6.2743
No

solution
1200 Mem 2953.95 2953.95

Time 381.99 381.99

Cost <= 516

nTraces 1

0.2554

1

1.4513

1

5.2468

2

151.96

91
Mem 88.92 88.92 88.92 70.97

Time 6.93 6.93 9.51 5.56

Cost

Mem <= 3963,

Time <= 2128

Cost 255.91
0.2724

254.83
2.0288

254.83
6.6248

453.06
1200

nTraces 13 24 24 37

Mem <= 819,

Time <= 71

Cost 268.10
0.2346

268.10
1.1606

268.10
4.3203

337.06
1200

nTraces 3 3 3 8

Mem <= 586,

Time <= 71

Cost 268.10
0.2331

268.10
1.0574

268.10
4.3037

283.68
1200

nTraces 3 3 3 6

126

Mem <= 9203,

Time <= 71

Cost 281.29
0.2253

281.29
0.9138

281.29
3.8255

394.42
1200

nTraces 1 1 1 2

Mem <= 9203,

Time <= 5385

Cost 255.91
0.2760

254.83
1.6010

254.83
6.1637

317.07
1200

nTraces 13 24 24 50

Time

-
Time 6.93

0.2484
6.93

1.3874
9.51

5.6524
5.56 363.03

72 nTraces 1 1 1 2

Cost <= 397
Time 6.93

0.2190
6.93

1.6775
9.51

5.3994
5.56 593.40

29 nTraces 1 1 1 2

Cost <= 397,

Time >= 1099

Time 1136.16
0.2130

1136.16
0.9668

1136.16
4.3337

1138.68 78.829

8 nTraces 44 44 44 44

Time >= 1099
Time 1001.86

0.2494
1001.86

1.0806
1001.86

4.2975
1001.07 34.331

4 nTraces 41 41 41 41

Cost <= 256
Time No

solution
0.1835

381.99
1.2097

381.99
5.8430

No

solution
1200

nTraces 24 24

Cost <= 516
Time 6.93

0.2421
6.93

1.5417
9.51

5.8043
5.56 264.38

07 nTraces 1 1 1 2

Mem

Cost <= 398 Mem 88.92 0.2173 88.92 1.6402 88.92 5.4473 70.97 1200

Cost <= 256
Mem No

solution
0.1493

2953.95
1.1909

2953.95
5.8295

6166.68
1200

nTraces 24.00000 24.00000 77

Cost <= 516 Mem 88.92 0.2426 88.92 1.5467 88.92 5.5582 70.97 1200

Mem

nTraces == 25

Mem 3096.36

0.0705

3096.36

0.5273

3096.36

3.4764

2976.92

13.913

8
Time 411.11 411.11 411.11 409.94

Cost 261.44 261.44 386.55 443.02

Time

Mem 3096.36

0.0838

3096.36

0.5190

3096.36

3.3477

2444.10

13.868

0
Time 411.11 411.11 411.11 802.16

Cost 261.44 261.44 386.55 443.02

Cost

Mem 3096.36

0.0802

3096.36

0.5374

3096.36

3.4372

1892.42

1179.8

35
Time 411.11 411.11 411.11 409.94

Cost 255.91 254.83 254.83 243.19

Table 29: Complete comparative experiments for DT9, DT11, DT15, NN.

For each problem we report objective and constraints, resolution time for

the high-level optimizer and, for each variable of interest, the solution

value.

