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Abstract 

 

The energy management system is the intelligent core of a virtual power plant and 

it manages power flows among units in the grid. This implies dealing with optimization 

under uncertainty because entities such as loads and renewable energy resources have 

stochastic behaviors. A hybrid offline/online optimization technique can be applied in 

such problems to ensure efficient online computation. 

This work devises an approach that integrates machine learning and optimization 

models to perform automatic algorithm configuration. It is inserted as the top 

component in a two-level hierarchical optimization system for the VPP, with the goal 

of configuring the low-level offline/online optimizer. 

Data from the low-level algorithm is used for training machine learning models - 

decision trees and neural networks – that capture the highly complex behavior of both 

the controlled VPP and the offline/online optimizer. Then, Empirical Model Learning 

is adopted to build the optimization problem, integrating usual mathematical 

programming and ML models. 

The proposed approach successfully combines optimization and machine learning 

in a data-driven and flexible tool that performs automatic configuration and forecasting 

of the low-level algorithm for unseen input instances. 
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Introduction 

 

Smart grids are the evolution of electrical grids, interconnected infrastructures 

that deliver electrical energy to consumers. They integrate novel power sources into a 

distributed energy resources scenario. Smart grids leverage state-of-the-art control and 

information techniques to perform monitoring, control, and forecasting on the complex 

network of distributed entities, named virtual power plant. The core of the VPP is the 

energy management system; it is the orchestrator of such a large system and it manages 

its power flows. By virtue of the EMS, a smart grid enables enhanced energy 

efficiency, flexibility, security, and reliability in the power distribution; it promotes 

green power sources thus helping the environment and it allows money savings by 

adopting smart energy management. 

 The EMS in a VPP decides power flows in the grid and it operates under a 

specific objective, usually the minimization of operational costs. This is a problem of 

optimization under uncertainty because a smart grid integrates elements with 

stochastic behavior, e.g. renewable energy resources and loads. Hybrid offline/online 

algorithms can be applied to perform online optimization, namely, to decide power 

flows in real-time given the real conditions of the system. They adopt hefty stochastic 

optimization algorithms but shift part of their computation offline to reduce online 

costs. An offline/online technique is based on the expensive offline computation of a 

contingency table; it contains information on possible online scenarios called traces. 

In the online step, a very efficient fixing heuristic makes decisions guided by the 

contingency table; it adjusts offline-computed solutions to actual conditions. The 

number of traces guiding the fixing heuristic is a fundamental parameter to configure; 

it balances a tradeoff between solution quality and computation cost. 

This work devises an approach to perform automatic configuration of the 

offline/online algorithm for new unseen instances. It introduces a combinatorial 

optimization problem on top of the offline/online method, resulting in a two-levels 
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hierarchical optimization system for the VPP. We want to define problem-specific 

objectives and constraints for the low-level optimization, for example concerning 

solution quality, online computation time, or resources. These are entailed in the high-

level optimization problem. The proposed approach is used ahead of the online step to 

guide its design or get forecasts about its performance on unseen instances. It is an 

automatic tool for the configuration of the low-level algorithm that allows one to 

automatically decide or predict its parameters, run-time, or computational resources 

based on desired constraints and objectives. 

The high-level optimizer captures the behavior of the controlled system, both the 

VPP and the hybrid offline/online algorithm. We leverage machine learning 

techniques, with a focus on decision trees and neural networks, to model the highly 

complex relationships between variables involved in the system. 

The proposed approach leverages Empirical Model Learning to integrate 

empirical ML models and combinatorial optimization problems. Machine learning 

models that capture real-world relationships among variables are embedded in the 

optimization problem via EML; once encoded, they are used by the solver to generate 

solutions and boost the resolution process. The EML-based approach allows a flexible 

and completely data-driven design of the optimization model; it does not require 

specific knowledge about the VPP system or the hybrid optimization process, and it 

removes the need of a manually-crafted modeling phase by domain experts. EML 

brings together declarative models from optimization research and predictive models 

from machine learning, and it shows that optimization in complex real-world systems 

is possible. 

We perform a preliminary study on machine learning techniques to assess how 

the relationships among variables are captured by different models. Then, we build 

decision trees and neural networks and we finally embed them in combinatorial 

optimization models. We compare optimization models based on DTs and NNs on 

several examples to shed light on their strengths and weaknesses. Finally, we apply 

different high-level optimizers, modeled using trees with distinct hyperparameters, on 

two real-world use cases. 
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Chapter 1  

Virtual Power Plant 

 

1.1 Smart Grid 

Production, provisioning and consumption of electricity has been an important 

matter of research since the 18th century. The provisioning infrastructures currently 

used across the world to distribute power descend from the first alternating current 

(AC) system studied by Nikola Tesla with Westinghouse Electric in the late 1880s. 

The generation of electricity was localized around communities in a time when the 

energy demand was ridiculous compared to today, namely, few lightbulbs and power-

alimented devices. A limited number of significant changes were made to the power 

distribution networks ever since. The “centralized top-down” power grid is designed 

for a unidirectional delivery of electricity to consumers. Power is generated in few 

large power plants, and from these locations it is distributed to customers through the 

power grid infrastructure. These systems are not designed for the continuously rising 

demand of the 21st century; the centralized design implies energy losses, in particular 

for long distances, together with significant construction and maintenance costs. 

Moreover, regular electrical grids do not meet the need of flexibility and they do not 

exploit the significant amount of data and resources available nowadays.  

In recent years both production and consumption of energy have been advancing 

rapidly. Electrical grids have evolved with a progressive shift towards decentralized 

generation of energy. The development of several new energy resources allows 

production of sufficient amounts of energy to support the always-growing demand of 

energy. The introduction of green resources also meets the necessity of switching to 

environment friendly energy sources to reduce human’s footprint on a growingly 

impacted Earth. Moreover, consumers’ products and needs are changing in this 

direction: new smart sensors, devices, and smart appliances are available to consumers 

at large scale. An increasing number of products are becoming part of the electric 
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networks; an important example of this phenomenon is the growing market of electric 

vehicles.  

This evolution is happening in parallel with large changes in computational 

capabilities available to humans. Technologies like cloud computing and big data 

techniques allow generation, storing, and elaboration of massive amounts of data. In 

the meantime, Artificial Intelligence (AI) allows scientists to use these data for 

analyzing and forecasting tasks in several different applications.  

Finding themselves in between these two worlds, smart grids represent the 

modern evolution of regular electrical grids and assumed a role of increasing 

importance in both industrial and academic research. According to the European Union 

Regulation 347/2013 [1], “‘Smart grid’ means an electricity network that can 

integrate in a cost efficient manner the behavior and actions of all users connected to 

it, including generators, consumers and those that both generate and consume, in 

order to ensure an economically efficient and sustainable power system with low losses 

and high levels of quality, security of supply and safety”.  

A smart grid integrates distributed energy resources (DERs), both conventional 

sources and new types such as renewable resources (RESs). DERs represent the most 

important factor for decentralized generation and consumption of energy. They can be 

generation systems - both renewable and non-renewable, such as wind and solar power 

plants, biomass plants, gas generators, and conventional energy generation sources -, 

energy storage systems (ESS) or loads - such as building loads -. DER elements that 

are peculiar in smart grids are energy microgeneration entities; for example, a building 

that produces, stores, and shares energy generated through renewable sources. 

Smart grids enable the most recent technologies to be integrated in the power 

system, both for production and consumption. Some examples are green energy 

sources such as wind and solar energy units for production, or smart home devices and 

electric vehicles for consumption. 

Smart grids overcome the mono-directionality of the old infrastructure. They 

introduce a two-way dialog where not only electricity but also information is 
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exchanged between producers and customers. Data resulting from this communication 

is used by the systems for management purposes. 

Smart grids use digital information, automation, and control technologies to 

increase energetic efficiency (namely, use less energy), provide flexibility and ensure 

security and reliability of the electric grid. They integrate smart technologies for 

monitoring and forecasting on all actors involved in the grid, from producers to smart 

appliances and devices. They leverage technology and data to increase economic 

efficiency for customers and to increase sustainability of the power system.  

 

1.2 Virtual Power Plant 

In a smart grid, several decentralized entities are connected and interact in a 

complex way. This sophisticated system must be orchestrated in order to achieve 

maximum efficiency while maintaining reliability. The network control structure must 

evolve to be able to handle distributed power resources, to ensure the flexibility 

requested to energy systems, to meet the needs of increasingly complex customer 

devices and to manage the variability of RESs. virtual power plants (VPPs) come into 

play in this important role.  

A VPP is a distributed power plant; it aggregates and manages units connected to 

the electrical grid to produce, store, and use energy, allowing them to operate as a 

unified power plant. It clusters and orchestrates several little distributed energy 

resources, generating a more flexible and secure energy supply compared to a 

conventional power system. A VPP is able to generate the same amount of power of a 

large standard central power plant; however, it achieves this by aggregating and 

managing an entire network of DERs. Units in a VPP can be scattered across hundreds 

of private, commercial, and industrial locations, concentrated in a single area. This rich 

aggregation of micro energy assets is combined into a single entity, operating in the 

same manner of a conventional power plant, by means of a centralized control system. 

The VPP leverages the bidirectional flow of information of its smart grid: it receives 
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power measurements, capacity, and availability information from DERs [2] and uses 

them to efficiently orchestrate utilities. 

The VPP allows DERs to participate in the energy market and to provide grid 

ancillary services, such as power reserve or frequency regulation, allowing to enhance 

the power system’s stability. It enhances both flexibility and stability in the power grid 

by providing services to better match supply/demand and allowing traditional utilities 

to plan and optimize production efficiency. Compared to a conventional energy 

management system, a VPP encourages a more dynamic and diverse energy market 

and it facilitates the use of cleaner energy sources. It increases economic returns for 

entities in the grid; this encourages more renewable installations, leading to a further 

push towards a sustainable energy supply. The VPP con operate so as to optimize 

energy flows over time, leading to economic savings both for consumers and for 

producers. Additionally, the structure itself of a VPP decreases energy loss in 

transportation because generation and consumption are localized in a specific area. 

 

1.3 Energy Management System 

The core of the intelligent VPP is the energy management system (EMS). The 

EMS manages loads, storages, and generators. It coordinates power flows among all 

entities and can perform forecasting and optimization for the entire grid.  

This system leverages state-of-the-art techniques in information technology to 

identify optimum power dispatch, for example real time large data transfer, advanced 

forecast with smart algorithms and optimization strategies. Data science and machine 

learning algorithms are used to generate accurate predictions for power generation, 

load demand and electricity pricing forecast. 

The EMS can balance provision fluctuations by turning up or down the energy 

supply to suit both the energy demand and the production. As energy demands 

constantly changes over time during the day, utilities must turn power on and off 

depending on the amount of energy needed at a specific moment. 
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VPP addresses uncertainty leveraging on the EMS. Power plants based on RESs 

introduce a new modus operandi named “feed it and forget it” [3] that adds complexity 

to the VPP operation. RESs have a stochastic and uncontrollable behavior; they 

produce and inject power into the electric network not following the demand, but 

according to external variables such as the time in the day, period in the year and 

weather conditions. This behavior makes it difficult to integrate the power generated 

by RES-based plants. Conventional power plants or large storage systems are used to 

balance both the demand of loads and the variable generation introduced by RESs. The 

smart grid provides the data and automation that enable RESs to put energy into the 

grid and optimize its use; the EMS plays a key role by managing all the entities 

interacting in this network. 

The energy management system is also responsible for optimization in a VPP. It 

can operate by minimizing generation costs or maximizing profits. The cost of energy 

depends on availability and it fluctuates during the day; electricity is more expensive 

to provide at peak times because secondary - often less efficient - power plants must 

be operative to meet larger demands. Optimization algorithms in a VPP leverage 

power forecasts and compute the optimum projected power dispatch for all its energy 

assets. This enables units to operate optimally for maximum return. Based on the 

current energy price and the status of DERs, the EMS decides how much energy should 

be produced, which generator should be used to produce the required energy and 

whether the surplus energy should be stored or sold to the energy market external to 

the VPP. Sophisticated smart grids enable utilities, in cooperation with customers, to 

manage and moderate electricity usage especially during peak demand times, resulting 

in reduced costs for utilities and costumers. Moreover, by encouraging to defer 

electricity usage away from peak hours, electricity production is more distributed 

throughout the day, reducing costs and inefficient fluctuations. The EMS also performs 

forecasting on the smart grid systems, to predict and manage energy usage under 

different conditions and over time, leading to lower production cost.  

The EMS plays an important role in assuring not only optimization but also 

stability and reliability of the grid. It manages electricity consumption in real time and 
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receives continuous feedback information from DERs themselves. This greater insight 

allows the use of techniques to reduce, predict and overcome outages. Forecasting is 

used to predict energy fluctuations due to disruptions in the VPP caused by utility 

failures or weather conditions; the system can automatically identify problems in 

rerouting and restore power delivery. 

 

 

 

Figure 1: Virtual power plant schema. From ABB1. 

 

 

 

 

1 https://new.abb.com/power-generation/service/advanced-services 
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Chapter 2  

Optimization Under Uncertainty 

 

The increasing amount and complexity of Distributed Energy Resources 

connected to the smart grid has brought some challenges to the management of the 

power system network. New optimization models are required to guide and control 

distributed units in the grid. In this context, virtual power plants play an important role 

by ensuring that the power produced, stored, and consumed by DERs is efficiently 

managed.  

The energy management system of the VPP orchestrates entities and power flows 

with a certain objective, e.g. aiming at minimizing costs. In this process, the EMS 

considers several uncertainty factors that come into play in the smart grid, such as 

power generation from renewable resources. Uncertainty must be addressed so as not 

to compromise the reliability of the system. As a consequence, the optimization 

process performed by the EMS to decide power flows is a problem of making decisions 

under uncertainty, i.e. stochastic optimization. 

This chapter provides information on methods for optimization under uncertainty 

and on how a VPP system can be modeled in optimization problems. These techniques 

represent the low-level optimizer inside the system proposed in this work. 

 

2.1 Robust Optimization in VPPs 

In [4] an optimization model to be employed in the EMS is presented. The 

proposed approach aims at minimizing operational costs by deciding the optimal 

planning of power flows for each point in time. It integrates into the model the 

necessary uncertainty elements. 
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The optimization approach is composed of two steps. The first is an offline day-

ahead phase (a robust step) that computes optimized demand shifts to minimize the 

expected daily operating costs of the VPP. It uses a robust approach based on scenarios 

for modeling uncertainties present in the system, e.g. stemming from RESs such as 

wind or solar sources, and produces an estimated cost.  

The second step is an online greedy optimization algorithm (greedy heuristic). It 

receives as inputs the optimized load shifts and it manages power flows in each 

timestamp in the VPP based on the real situation, with the aim of reaching the optimal 

real cost. This approach uses the optimized shifts produced by the first step to 

minimize, for each timestamp, the real operational cost, while allowing to fully cover 

the optimally shifted energy demand and avoiding the loss of energy actually produced 

by RES generators. It computes the real optimal value for the power flow variables 

based on the actual realization of uncertain quantities, assuming that the shifts have 

been planned by leveraging the first offline step; each timestamp is optimized one at 

time.  

The first robust step produces good optimized shift that do not significantly 

deviate, in terms of cost, from the model with no uncertainty. On the other hand, 

according to the results in [4], the greedy step causes a significant loss in the quality 

of results. 

 

2.2 Anticipatory Optimization Algorithms 

A two-step optimization algorithm allows online decision-making in a VPP. The 

basic online step leverages a greedy heuristic that causes degradation in the quality of 

solutions, as mentioned in section 2.1. A way to improve the performance consists in 

replacing the greedy heuristic with a sampling-based stochastic anticipatory algorithm 

[5]. These algorithms were first developed for offline optimization, but they can be 

leveraged in online situations. 

 



11 

 

Offline applications are the usual focus for methodologies proposed in literature 

for stochastic optimization [6]. These methods usually base their optimization process 

on building a statistical model of future uncertainty, leveraging a sampling process that 

yields a set of scenarios. The Sample Average Approximation method [7] [8] solves 

stochastic optimization by adopting a simulation approach based on Monte Carlo 

simulation. It approximates the expected objective function of the stochastic problem 

with a function estimate on random samples; then, it solves with deterministic 

optimization techniques the resulting sample average approximation problems, in 

order to obtain candidate solutions for the original stochastic problem. This approach 

finds robust solutions by relying on one copy of the decision variables for each 

scenario and linking them via non-anticipativity constraints. It converges under 

reasonable assumptions and outperform greedy approaches. 

 

Recent computational improvements in resources and techniques allowed the 

application of similar approaches to online optimization, leading to stochastic online 

anticipatory algorithms. Optimization problems under uncertainty usually benefit 

from an online approach; uncertainty progressively resolves in the online phase and 

decisions are made reacting and adapting to actual external events, allowing the 

discovery of robust high-quality solutions. An algorithm is called anticipatory if at 

some point it anticipates the future, namely, it makes use of information on the future 

to make decisions. While the algorithm at each time stamp can not fully know the 

future, i.e. the situation in following timestamps, it makes decisions based on inputs 

and possible future outcomes; future outcomes are estimated relying on possible 

scenarios delineated by past observations and current inputs. 

Online anticipatory algorithms are effective [9] [10] but often computationally 

expensive, making them problematic as online decisions must be taken in short time 

frames. They usually rely on sampling to generate scenarios that estimate possible 

developments for a fixed number of future steps, called look-ahead horizon. Larger 

sample size leads to higher accuracy but also bigger problems to solve. This represents 

a problem because many use cases prescribe to make online decisions under strict time 
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constraints. As a consequence, methods must be adopted to improve the efficiency of 

these methodologies; for instance, a conditional sampler can be exploited to generate 

scenarios taking into account past observations [11]. 

In many situations a significant amount of information is available before the 

online execution, in an offline phase where time constraints are relaxed. For example, 

an EMS might have access to energy production and consumption forecast for the 

smart grid. This offline information can be exploited for characterizing uncertain 

elements, for sampling likely outcomes, called scenarios, and for supporting online 

optimization strategies. 

 

2.3 Hybrid Offline/Online Anticipatory Algorithms 

Optimization under uncertainty can combine an online and an offline phase in 

order to achieve good solution quality with minimum online cost. A simple approach 

to tackle such problems is to deal with the offline and online phase separately, 

respectively via a sampling-based method and a heuristic. However, [12] [13] show 

that substantial improvements can be obtained by treating these two phases in an 

integrated fashion. 

 

In particular, [13] proposes three methods that leverage an offline preparation 

phase to reduce the online computational cost of a sampling-based anticipatory 

algorithm, while maintaining the quality in the solution. The methods build on an 

online sampling-based anticipatory algorithm but shift part of the computation to an 

offline stage. The proposed hybrid offline/online approaches combine: 

1. A technique to identify the probability of future outcomes based on past 

observations. 

2. An expensive offline computation of a contingency table; it contains pre-computed 

solutions to guide online choices. 
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3. An efficient solution-fixing heuristic that adapts the pre-computed solutions to run-

time conditions; it represents the core of the online computation. 

These hybrid offline/online approaches are highly generic, i.e. they can be applied 

to any generic stochastic anticipatory algorithm. 

The system devised in our work builds on one of the approaches proposed in [13] 

named 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌, that leverages a contingency table containing robust 

solutions. 

 

2.3.1 Modeling Online Stochastic Optimization  

Online stochastic optimization is modeled as an n-stage problem, where at each 

stage some uncertainty gets resolved and some decisions are made. Each stage 𝑘 

(starting from 𝑘 = 1 to n) is associated to a state variable 𝑠𝑘 that summarizes the effect 

of past observed uncertainties and decisions, and a decision variable 𝑥𝑘 that represents 

the decision taken. Uncertainty is modeled through a set of random variables 𝜉𝑖 and it 

is assumed to be exogenous, i.e. it is only influenced by external factors and not by 

decisions. At each stage some random variables are observed; a 𝑝𝑒𝑒𝑘 function 

determines which variables are observed depending on the state at that stage, and it 

returns a set 𝑂 of indexes of the observed variables: 

𝑂 = 𝑝𝑒𝑒𝑘(𝑠𝑘). (1) 

The set of unobserved variables is denoted as Ō. Hence, among the random uncertainty 

variables, 𝜉𝑂 denotes observed and 𝜉Ō denotes unobserved ones. 

 

2.3.1.1 Sampling-based Anticipatory Algorithm 

The hybrid method starts from a given online sampling-based anticipatory 

algorithm, with the aim of reducing its online computational cost. It can be applied to 

a generic algorithm because it takes the algorithm itself as input. 
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An anticipatory algorithm 𝐴 is sampling-based when it estimates future outcomes 

by leveraging scenarios. A scenario 𝜔 is a possible situation and it specifies a value 

𝜉𝑖
𝜔  for each random variable. The 𝐴 algorithm determines the decisions 𝑥𝑘 at stage 𝑘 

based on a set of scenarios 𝛺, the system state 𝑠𝑘 and values for the observed 

uncertainty 𝜉𝑂:  

𝑥𝑘  =  𝐴( 𝑠𝑘, 𝜉𝑂 , { 𝜉𝜔 }𝜔∈𝛺). (2) 

The state transition function 𝑛𝑒𝑥𝑡 determines the next state after the decision is 

established, given the system state 𝑠𝑘, the decision taken 𝑥𝑘 and observed uncertainty 

𝜉𝑂:   

𝑠𝑘+1  =  𝑛𝑒𝑥𝑡( 𝑠𝑘, 𝑥𝑘, 𝜉𝑂).  (3) 

 

 

Figure 2: Online stochastic optimization is modeled as an n-stage problem. All 

the functions involved in the model are represented: peek, next, and A. At stage 

𝑘: 𝑠𝑘 is the system state, 𝑥𝑘 the decision taken, and 𝑜𝑘 are the observed variables 

- the related observed uncertainty is 𝜉𝑂 -. 

 

2.3.1.2 Base Behavior 

The anticipatory algorithm 𝐴 is an important component, but not the only one, of 

the online behavior of a system that includes stochastic optimization in an n-stage 

problem.  

Given the initial state 𝑠1, indices of observed variables 𝑂 initially empty, a set of 

scenarios 𝛺 and the random variables 𝜉 representing uncertainty in the system, each 

online step 𝑘 involves different phases. First, uncertainty is observed: a set of values, 

sampled from 𝜉𝑘 based on 𝑝𝑒𝑒𝑘 and on the state 𝑠𝑘, go from unobserved (𝜉Ō) to 
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observed (𝜉𝑂). Then, the anticipatory algorithm 𝐴 outlines the decision 𝑥𝑘 and finally 

the next state 𝑠𝑘  is determined via the 𝑛𝑒𝑥𝑡 function. The following pseudocode 

outlines this behavior and is referred hereinafter as 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸: 

Algorithm 1 ANTICIPATE(𝑠1, 𝜉) 

 Requires: 

𝛺 : set of sampled scenarios  

𝑂 =  ∅ : indices of observed variables 

 

for 𝑘 = 1, …, n do 

 𝑂 ← 𝑂 ∪  𝑝𝑒𝑒𝑘(𝑠𝑘) 

 𝑥𝑘  ←  𝐴(𝑠𝑘, 𝜉𝑂 , {𝜉𝜔}𝜔∈𝛺)  

 𝑠𝑘+1  ←  𝑛𝑒𝑥𝑡(𝑠𝑘, 𝑥𝑘 , 𝜉𝑂) 

return 𝑠, 𝑥 

 

This behavior represents the hefty anticipatory algorithm originally adopted in the 

online step. However, its application is not necessarily limited to the online phase. In 

fact, the hybrid method explained in the following sections is based on the idea of 

shifting the expensive computation of 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 to an offline stage. 

 

2.3.2 Offline Information and Scenario Sampling 

Offline information 𝐼 is defined as a collection of observed uncertain values and 

it can be exploited to support online optimization. In many use cases it is possible to 

have access, during the offline phase, to information such as historical data, data from 

simulations, predictions and forecasts. Following its definition, offline information I 

is a collection of (observed) scenarios 𝜔. We assume that 𝐼 is representative of the 

actual probability distribution of the random variables. 

The set of scenarios 𝛺 involved in the sampling-based anticipatory algorithm 

must be as representative as possible in order to maximize its effectiveness. Offline 
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information 𝐼 can be leveraged in order to define such a representative 𝛺 set: 𝛺 can be 

obtained via random uniform sampling from 𝐼. 

 

In a stochastic optimization problem, uncertainty progressively resolves itself as 

random variables are observed at each stage. If variables 𝜉𝑖 are not statistically 

independent, a set of scenarios 𝛺 that was relevant at the beginning might lose its 

relevance when uncertainty is resolved. For instance, in a VPP a set of scenarios 𝛺 

involving power generation by wind plants is not relevant in a day with no wind 

detected. 

Namely, we want a conditional sampler that generates scenarios consistent with 

past observations 𝜉𝑂, allowing us to sample at stage 𝑘 the unobserved variables 𝜉Ō 

according to the conditional distribution 𝑃(𝜉Ō|𝜉𝑂). If scenarios are sampled from the 

offline information 𝐼, this effect is created by sampling based on the conditional 

probability of scenarios 𝜔 in 𝐼 with respect to past observations; following the 

fundamental rule for probability calculus, this is computed as:  

𝑃(𝜉Ō
𝜔|𝜉𝑂) =

𝑃( 𝜉Ō
𝜔 𝜉𝑂 )

𝑃( 𝜉𝑂 )
, 𝜔 ∊ 𝐼 

(4) 

Here, 𝑃( 𝜉Ō
𝜔 𝜉𝑂 ) is the joint probability, i.e. probability for observed and unobserved 

values to occur together, and 𝑃( 𝜉𝑂 ) is the marginal probability for observed values, 

i.e. probability that these values are observed. Estimation of the joint probability can 

be obtained using a density estimation method, e.g. Gaussian Mixture Models [14] or 

Kernel Density Estimation [15]. Offline information can be exploited to train any of 

these methods and obtain an estimator �̃�( 𝜉Ō
𝜔 𝜉𝑂), in short �̃�( 𝜉), for the joint 

distribution of random variables. On the other hand, the marginal probability can be 

computed from the estimator �̃�( 𝜉) through marginalization, i.e. aggregating the 

contribution of all unobserved variables 𝜉Ō:  

�̃�(𝜉𝑂) = ∑ �̃� ( 𝜉Ō
𝜔 𝜉Ō

𝜔′)

𝜔′∊𝐼

 
(5) 
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Hence, an estimator �̃�(𝜉Ō
𝜔|𝜉𝑂) for the conditional probability is:  

�̃�(𝜉Ō
𝜔|𝜉𝑂) =

�̃�( 𝜉Ō
𝜔 𝜉𝑂 )

∑ �̃�( 𝜉Ō
𝜔 𝜉Ō

𝜔′)𝜔′∊𝐼

 , 𝜔 ∊ 𝐼 

 

(6) 

and it is proportional to the true probability value: 𝑃(𝜉Ō
𝜔|𝜉𝑂)  ∝  �̃�(𝜉Ō

𝜔|𝜉𝑂).  

If scenarios are drawn from the offline information 𝐼 following this probability 

rule, their distribution takes into account the effect of past observations, namely, 

observed variables. 

 

2.3.3 Contingency Table 

In the offline phase there are not strict time constraint or resource limits, e.g. 

parallelization can be exploited. Therefore, it is possible to reduce the computational 

cost of the online algorithm at the expense of adding a costly offline step. The offline 

information I can be exploited, if significant time is available in the offline phase, to 

perform an offline simulation of online situations, aimed at preparing for all possible 

developments. Each scenario 𝜔 in 𝐼 is considered as if it was a real sequence of online 

observations; 𝜔 is fed to an anticipatory algorithm, for example the expensive online 

algorithm typically adopted in the online phase introduced in Section 2.3.1.2. This 

process produces a set of robust solutions, in form of a contingency table, that can be 

used as input data to guide a lightweight online method. The latter method is the only 

computation actually performed during the online phase. This approach results in a 

very expensive offline computation that allows significantly lighter online steps. 

The offline process is referred to as 𝐵𝑈𝐼𝐿𝐷𝑇𝐴𝐵𝐿𝐸. It takes as input the 

anticipatory algorithm 𝐴𝐴, analogous to the anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and 

with the same input parameters, together with the initial state of the system 𝑠1. For 

each scenario 𝜔 ∊ 𝐼, 𝐴𝐴 is applied obtaining the sequence of states 𝑠𝜔  visited by the 

system and the sequence of decisions 𝑥𝜔 outlined by the algorithm. The contingency 

table 𝑇 is the data structure resulting from this process: a pool of traces, namely, 

scenarios paired with information on state sequences and decisions. 
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Algorithm 2 BUILDTABLE(𝑠1, 𝐴𝐴) 

 Requires: 

𝐼 : offline information  

𝑇 =  ∅ : contingency table 

  

for 𝜔 ∊ 𝐼 do 

 𝑠𝜔 , 𝑥𝜔 ← 𝐴𝐴(𝑠1, 𝜉
𝜔) 

 𝑇 ← 𝑇 ∪ (𝜉𝜔 , 𝑠𝜔 , 𝑥𝜔) 

return 𝑇 =  𝜉𝜔 , 𝑠𝜔 , 𝑥𝜔
𝜔∊𝐼

 

 

 

2.3.4 Fixing Heuristic 

The augmented information contained in the contingency table is used online to 

guide the efficient fixing heuristic, whose purpose is to adapt pre-computed solutions 

to real online conditions. The fixing heuristic solves a light optimization problem, with 

the aim of selecting decisions that have the largest change of being optimal, based on 

the actual state and observations. The objective function is:  

𝑎𝑟𝑔𝑚𝑎𝑥 {𝑃∗(𝑥𝑘|𝑠𝑘𝜉𝑂): 𝑥𝑘 ∊ 𝑋𝑘} (7) 

where 𝑃∗ represents the probability for the decision 𝑥𝑘 to be optimal, conditioned by 

the state 𝑠𝑘 and the observed uncertainty 𝜉𝑂, and 𝑋𝑘 is the feasible decision space. 

 

An estimation of 𝑃∗ in the objective of the fixing heuristic can be obtained by 

leveraging the contingency table 𝑇. In short, the heuristic is translated, for discrete or 

numeric problems respectively, into the problem of minimizing the weighted 

Hamming or Euclidian distances with respect to traces in 𝑇. Complete proof of the 

process to obtain estimators for 𝑃∗ is reported in [13].  

We report here, for sake of completeness, how the objective function is 

materialized for the two categories of problems. We denote with a compact notation 
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𝑃(𝜔) the probability that the same state as the trace 𝜔 is reached, and then everything 

goes according to the plan; it can be approximated as:  

𝑃(𝜔) ∝ �̃�( 𝑠𝑠𝑘+1
𝜔  | 𝑠𝑘)�̃�( 𝜉Ō

𝜔 | 𝜉𝑂),𝜔 ∈ 𝑇 (8) 

where �̃�( 𝜉Ō
𝜔 | 𝜉𝑂) is the estimator detailed in Eq. (5) and �̃�( 𝑠𝑠𝑘+1

𝜔  | 𝑠𝑘) is a similar 

estimator for states that can be obtained with an analogous process. 

• Discrete problems.  

The objective function for the fixing heuristic becomes: 

𝑎𝑟𝑔𝑚𝑖𝑛 {−∑ ∑ 𝑙𝑜𝑔 𝑝𝑗𝑣
𝑣 ∈ 𝐷𝑗

𝑚

𝑗=1

⟦𝑥𝑘𝑗 = 𝑣⟧: 𝑥𝑘 ∊ 𝑋𝑘} 

 

(9) 

where ⟦∗⟧ denotes the truth value of the predicate *, 𝐷𝑗  is the domain of 𝑥𝑘𝑗 

and 𝑣 is one possible value for it. The probability 𝑝𝑗𝑣 for the j-th value and 𝑣 

is estimated as: 

𝑝𝑗𝑣  =  
∑ 𝑃(𝜔)𝜔 ∈ 𝑇, 𝑥𝑘𝑗

𝜔=𝑣

∑ 𝑃(𝜔)𝜔 ∈ 𝑇
 

 

 

(10) 

• Numeric problems. 

The objective function for the fixing heuristic becomes: 

𝑎𝑟𝑔𝑚𝑖𝑛 {∑ ∑ 𝑝𝜔  
1

2𝜎𝑗
𝜔 ∈ 𝑇

𝑚

𝑗=1

(𝑥𝑘𝑗 − 𝑥𝑘𝑗
𝜔 )

2
: 𝑥𝑘 ∊ 𝑋𝑘} 

 

(11) 

Where the probability 𝑝𝜔 is estimated as:  

𝑝𝜔  =  
𝑃(𝜔)

∑ 𝑃(𝜔′)𝜔′∈𝑇
 

 

(12) 

 

The fixing heuristic is the core of the highly efficient online step. Intuitively, the 

behavior of the online phase with the heuristic follows a similar approach to the one 

in 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸. First some uncertainty is observed, then a decision is outlined, and 
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finally the next state is computed; the difference is the peculiar logic adopted to take 

decisions. Its pseudocode is reported below: 

Algorithm 3 FIXING(𝑠1, 𝜉, 𝑇) 

 Requires: 

 objective : objective function for the  

            heuristic, as in Eq. 

(7), (9) or (11) 

𝑂 =  ∅ : indices of observed variables 

  

for 𝑘 = 1, …, n do 

 𝑂 ← 𝑂 ∪  𝑝𝑒𝑒𝑘(𝑠𝑘) 

 𝛺 ← 𝑡𝑜𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝜔 ∈ 𝑇 𝑏𝑦 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃(𝜔) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞. (8)  

 𝑝𝑗𝑣 𝑜𝑟 𝑝𝜔  ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐸𝑞. (10) 𝑜𝑟 (12), 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝛺  

 𝑥𝑘  ←  𝑠𝑜𝑙𝑣𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝐸𝑞. (9) 𝑜𝑟 (11)  

 𝑠𝑘+1  ←  𝑛𝑒𝑥𝑡(𝑠𝑘, 𝑥𝑘 , 𝜉𝑂) 

return 𝑠, 𝑥 

 

 

2.3.5 Hybrid Offline/Online Method 

The low-level optimizer in our system is a hybrid offline/online technique for 

optimization under uncertainty. We adopt a methodology proposed in [13] that 

combines the methods introduced in sections 2.3.2 to 2.3.4. 

 

The hybrid offline/online algorithm adopts the contingency table and the fixing 

heuristic. The main idea is to leverage the offline step to compute robust solutions for 

all scenarios 𝜔 in the offline information 𝐼, obtaining the contingency table 𝑇. Then, 

in the online step these augmented data are used as a guidance for the efficient solution-

fixing heuristic 𝐹𝐼𝑋𝐼𝑁𝐺, that takes into consideration the real online situation. Robust 
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solutions are obtained using 𝐵𝑈𝐼𝐿𝐷𝑇𝐴𝐵𝐿𝐸, detailed in section 2.3.3, where the 

(expensive) 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 is adopted as the anticipatory algorithm 𝐴𝐴. In other words, 

the anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 is used offline. 

In this setting, the aim of the fast fixing heuristic is to match the quality of robust 

solutions obtained via the expensive anticipatory algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸. Intuitively, 

the anticipatory algorithm usually employed online is moved offline; the online step 

leverages a much lighter optimization problem whose aim is to match the quality of 

the offline solution. The cost to pay for the significant reduction of online cost is the 

introduction of a heavy offline step. 

Pseudocode for the hybrid offline/online method is reported below. 

Algorithm 4 CONTINGENCY(𝑠1,  𝜉) 

 Requires: 

𝑂 =  ∅ : indices of observed variables 

 

�̃�( 𝜉) ← train estimator for the joint  

   distribution of random variables on       

   offline information I  

𝑇 ← BUILDTABLE(𝑠1, ANTICIPATE) 

�̃�( 𝑠𝑘 𝑠𝑘+1) ← train estimator for the joint  

      distribution of states on T, for all  

      steps k 

s, x = FIXING(𝑠1,  𝜉, 𝑇) 

return 𝑠, 𝑥 

 

 

2.3.6 VPP Model 

A Virtual Problem Plant aggregates and manages power generation, storage and 

load units. The energy management system orchestrates them: it decides power flows 
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with the aim of satisfying the power demand of loads, respect regulations and physical 

limits, and minimize the operating costs [16] [17]. The uncertainty factors that come 

into play in this system are the generation from Renewable Energy Sources and the 

demand by load units. 

The EMS optimization problem in a VPP can be translated in terms of an 

optimization problem under uncertainty by specifying all variables and functions that 

come into play. In particular: 

• The sampling-based anticipatory algorithm for making decisions 𝐴. 

• The decision, state, and random variables; respectively 𝑥, 𝑠 and 𝜉. 

• The 𝑝𝑒𝑒𝑘 and 𝑛𝑒𝑥𝑡 functions. 

• The feasible space for decisions 𝑋𝑘. 

• A cost metric that allows one to evaluate the quality of solutions. 

• A technique for obtaining the probability estimator �̃�. 

The low-level optimizer of the system proposed in this work leverages such an 

optimization problem to model the controlled VPP. The model is introduced in [13]. 

Complete information about it can be found in the related repository2.  

 

The sampling-based anticipatory algorithm 𝐴 adopted as the basic algorithm is a 

Mathematical Programming model based on the Sample Average Approximation. 

The decision at stage 𝑘 is represented by a decision vector 𝑥𝑘. Its components 

specify the power flow 𝑥𝑘𝑗 through each node 𝑗 in the system - generation, storage or 

load units; for example, 𝑥𝑘𝑆 indicates the power flow for the storage unit. The state 

component 𝑠𝑘𝑆 refers to the power level stored in this unit, while 𝑠𝑘𝐷 gives information 

about its flow direction. The random variable 𝜉𝑘 has components for each uncertainty 

factor: 𝜉𝑘𝑅 corresponds to the RES generation and 𝜉𝑘𝐿 to the load. 

 

2 https://github.com/alleDe/OffOn 
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The 𝑝𝑒𝑒𝑘 function decides which random variable to observe at each stage; it 

returns 𝑅 and 𝐿 for stage k:(𝑘, 𝑅) and (𝑘, 𝐿). The 𝑛𝑒𝑥𝑡 function incorporates the logic 

for the state change. The storage charge level at stage 𝑘 + 1 is proportional to the 

charge level and the storage power flow in the previous stage 𝑘, with a dependency on 

the charging efficiency of the storage unit 𝜂. The flow direction at 𝑘 + 1 depends on 

the direction of the power flow at stage 𝑘. Formally: 

𝑠𝑘+1,𝑆  =  𝑠𝑘  +  𝜂𝑥𝑘,𝑆 (13) 

𝑠𝑘+1,𝐷  =  0 𝑖𝑓 𝑥𝑘,𝑆 ≥ 0, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (14) 

The set 𝑋𝑘, representing the feasible decision space, is defined by a separate 

problem with its constraints and variables. Its objective and constraints enforce power 

balance in the system and physical limits for units and power flows. The corresponding 

mathematical program is:  

𝜉𝑘𝐿  =  ∑𝑥𝑗𝑖  +  𝜉𝑘𝑅

𝑚

𝑗=1

 

 

(15) 

𝑙𝑗  ≤  𝑥𝑘𝑗  ≤  𝑢𝑗      , 𝑗 = 1,…  𝑚 (16) 

0 ≤  𝑠𝑘 +  𝜂𝑥𝑘,𝑆   ≤  𝛤 (17) 

𝜉𝑘𝐿  =  ∑𝑥𝑗𝑖  +  𝜉𝑘𝑅

𝑚

𝑗=1

 

 

(18) 

𝑥𝑘  ∊  ℝ
𝑚 (19) 

Each power flow is associated to a cost 𝑐𝑘𝑗 at stage 𝑘. The storage unit is 

associated to a cost as well, related to its wearing off; this cost occurs when the flow 

direction in the storage system changes and it is proportional to a cost value 𝛼. Hence, 

the total operational cost incurred at stage 𝑘 is modeled as: 

∑𝑐𝑘𝑗 𝑥𝑘𝑗 + 𝛼|𝑠𝑘,𝐷 − 𝑠𝑘+1,𝐷|

𝑚

𝑗=1

 

 

(20) 
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It is worth to note that the cost term related to storage wear-off implies that the 

anticipatory algorithm 𝐴 must solve an NP-hard problem, whereas the fixing heuristic 

does not. 

Kernel Density Estimation [15] with Gaussian Kernels is the technique adopted 

for computing approximations of the probability distributions. It is used for obtaining 

the estimator for the joint distribution of the random variables �̃�( 𝜉) and its derivates, 

and in a similar computation for computing the estimator �̃�( 𝑠𝑘𝑠𝑘+1) and its derivates. 

 

2.3.7 Execution and Data Generation 

The execution of the hybrid offline/online approach based on contingency table 

generates data that are used as to build the high-level optimizer. This section provides 

detail on how these data were obtained.  

 

2.3.7.1 Experimental Setup 

The experimental setup to generate the data is similar to the one introduced in 

[13]. 

The hybrid offline/online approach is applied on real instances for the virtual 

power plant system. An instance is a specific realization of uncertainty in the system, 

i.e. a sequence of realizations for the stages. Uncertainty realization is obtained by 

sampling values for the random variables associated to RES generation (PV) and loads 

(Load). Sampling is performed so as to ensure statistical independence between 

variables, similarly to a realistic situation. The result of this process is the offline 

information I and the sequence of observations, namely, a sequence of values for PV 

and Load for all stages.  

The problem is modeled using real physical bounds for power generation, realistic 

power flow limits, initial battery state, efficiency, according to [17] [18]. The time 

frame for the whole optimization problem is a full day (24 hours), and two subsequent 

stages are 15 minutes apart; the electricity price is also assumed to change every 15 
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minutes. Therefore, the horizon for the optimization problem involves 96 stages – 4 

stages x 24 hours. 

The baseline method adopted for comparing the hybrid offline/online approaches 

is a myopic (greedy) heuristic. In this setting it is represented by the anticipatory 

algorithm 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 run with an empty set of scenarios, formally 𝛺 = ∅. 

 

The instances used in the experiments that generate our dataset are 100. Each 

instance is fed as input to the optimization approaches 100 times, varying the number 

of traces in the contingency table 𝑇 from 1 to 100. For each run the following data are 

recorded: 

• Sequence of realizations for the variables 𝑃𝑉 and 𝐿𝑜𝑎𝑑 in all stages, i.e. 

information on the instance. 

• 𝑛𝑇𝑟𝑎𝑐𝑒𝑠 = |𝑇|, number of traces in the contingency table 𝑇 used in that run. 

• Cost of the solution found by the approach. Lower cost indicates a better 

solution quality. 

• Time required by the approach for online computation. 

• Average memory used during the online computation. 

• Maximum memory used during the online computation. 

• Average CPU amount used during the online computation. 

• Maximum CPU amount used during the online computation. 

These experiments yield a set of 100 x 100 = 10000 entries. It is the dataset used in the 

following sections. 

 

2.3.7.2 Results 

Results reported in [13] show that the hybrid offline-online approach substantially 

reduces the computational time of the online phase, at the expense of a hefty offline 

step. At the same time it achieves high solution quality, comparable with the 

anticipatory algorithm. 
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According to the results, there is a noticeable tradeoff between online 

computational time and solution quality in the optimization methods. Experiments 

compare the baseline (greedy heuristic), 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌 and the original anticipatory 

algorithm (𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸) when adopted as optimization approach in the online phase. 

The greedy heuristic is outperformed by all optimization methods by a significant 

margin. 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌 leads to a significant reduction in online time expense 

compared to 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and it yields solutions whose cost is worse but remarkably 

close to the original 𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 algorithm. 

Increasing the number of guiding traces leads to a decrease in the solution value 

(i.e. worse quality) in 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. The online cost has a significant increase for 

𝐴𝑁𝑇𝐼𝐶𝐼𝑃𝐴𝑇𝐸 and when the number of traces increases, while it slightly rises 

for 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. Namely, the gap in time performance gets larger with the 

number of scenarios.  

 

There is room for improving the applicability and efficiency of hybrid 

offline/online methods. A fundamental direction to explore is how to determine the 

number of guiding traces for the fixing heuristic. The number of traces is not fixed, 

and the optimal value can depend on the actual condition of the problem to be 

optimized. Furthermore, the study reported in [13] underlines the cost/quality tradeoff 

between online computational time and solution quality. Namely, increasing the 

number of traces leads to better solution quality but degrades the online time required 

by the methods. 

This motivates the system designed hereinafter. We design and construct a system 

that builds on the hybrid offline/online approach based on fixing heuristic and 

contingency table, i.e. 𝐶𝑂𝑁𝑇𝐼𝑁𝐺𝐸𝑁𝐶𝑌. The proposed system is aimed at 

automatically suggesting the optimal algorithm configuration (i.e. number of traces) 

based on the instance of the problem to solve, taking into account constraints such as 

desired solution quality and time and memory availability. The system has a more 

general purpose than a suggestion system: not only it suggests the configuration of the 
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hybrid optimizer, but it can also provide forecasts about its performance or required 

online time and resources. Moreover, the system is designed to be highly flexible and 

thus it can work in the opposite direction. For example, it can provide an estimation of 

required time and resources for an instance when the optimization method must reach 

a desired solution quality. 
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Chapter 3  

Machine Learning Models  

 

Variables involved in the VPP optimization problem interact through complex 

non-linear relationships. For this particular reason the relationships among variables 

are captured via machine learning models. They allow to express highly complex 

relationship and they provide large flexibility in modeling. 

The proposed system focuses specifically on decision trees an artificial neural 

networks. These models are suitable for modeling the runtime behavior of optimization 

algorithms [19]. Moreover, they perform good modeling on our dataset, as proved in 

next sections, and they are supported by EML. 

 

3.1 Machine Learning 

Machine learning (ML) is a subfield of artificial intelligence (AI) that is heavily 

grounded on mathematics and statistics. In recent years, with the increase of 

computational resources and amounts of data produced and consumed, ML has 

experienced a growing importance in computer science and sciences in general, 

becoming ubiquitous in many fields. At a high level, ML is aimed at detecting patterns 

in data and using them to make predictions and decisions. It is useful for automating 

analysis and tasks that humans usually perform, often outperforming usual human-

based approaches. Compared to classic statistics, ML is generally focused on large 

datasets, on making predictions and on providing highly flexible models. 

The construction of ML models typically involves several steps. They have been 

adopted for the development of our system: 

1. Collection of background information on the application and the task. 

2. Data collection. Data are the core of ML models. 
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3. Data preprocessing: cleaning, preprocessing, transformation. A thorough 

preprocessing of data is a fundamental step to ensure the success of ML techniques. 

4. ML algorithm/model selection, based on the specific application and data 

themselves. 

5. ML model building and evaluation. 

6. Use of results. Use either the ML model itself, or patterns and predictions obtained 

with it. 

 

Data involved in ML problems are usually organized in a table, where: 

• Each row is a data point from the set, usually called example or sample. 

• Each column is called feature and it represents a measure that can be performed 

on samples. 

Machine learning techniques are typically grouped in two major categories: 

• Supervised. In a supervised model, the input for an example is a set of features 

and the output is the desired class label or value. The general supervised 

learning problem takes as input examples with features and corresponding 

labels/values; it produces as result the ML model that predicts the label/value 

for new unseen examples. Hence, the goal of supervised ML is to use data to 

find a model that outputs the right label or value based on input features. The 

operation performed by these methods is not searching but learning, as a model 

must be able to operate on unseen data. 

If the objective of the prediction is: 

- a categorical label, the task is called classification. 

- a numeric value, the task is called regression. 

This framework is highly generic: it can be applied any problem that involves 

any input/output mapping. 

• Unsupervised. In the general unsupervised learning problem, no class labels or 

values are given for the input data. The goal of unsupervised ML is to find 

important patterns in data or to associate data points to meaningful labels. 
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When an unsupervised model is constructed only features are available, with 

no explicit target labels/values, and we perform computations on them that are 

useful for the specific task.  There are several things that we might want to do 

in an unsupervised ML task: clustering, outlier detection, similarity search, 

visualization, ranking and so on. 

The way our problem is structured makes it a typical use case for supervised machine 

learning. 

 

3.1.1 Building a Supervised Model 

3.1.1.1 Training 

The construction of a ML model is called training and it yields a custom model 

that fits the data used to build it. The input of this phase is called training set; in 

supervised ML, it is the dataset of features and target values. The output is a trained 

model. At inference time, the model takes only features as inputs. 

Given a specific category of ML models, training can be interpreted as searching 

among all possible model’s values and parameters. It is the task of finding the model 

with the correct values and parameters that better fits the training set. The quality of 

this fit can be assessed in several ways. Accuracy is usually adopted in classification 

tasks; on the other hand, some formulation of error or distance is the typical choice for 

regression, e.g. mean squared error. In other words, training is equivalent to 

minimizing the training error or maximizing the accuracy. 

 

3.1.1.2 Testing 

A ML model must be able to generalize, i.e. to make predictions on unseen data 

rather than training data. This is the fundamental difference between the ability to learn 

and to memorize. A model might generate perfect predictions on the training set, 

achieving a training error of 0. However, it does not necessarily have the same 

performance on new data. The phenomenon of obtaining a (significantly) larger error 
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on new data compared to the one on the training set is called overfitting. In this 

situation the model is too specific to the exact training set, and it does not generalize 

well; it might have captured patterns in the training set that are noise rather than general 

characteristics. Overfitting is more likely when the model is complicated or the amount 

of training data is low. On the other hand, a model that is too simple does not capture 

significant patterns in the training data; in this situation, named underfitting, also the 

training error is significantly large. It is fundamental to test models on data not used in 

the training phase in order to detect these two opposite situations. 

The construction of a supervised learning model involves two steps: 

1. Training phase: build the model based on training data. The training error assesses 

the model’s prediction on this set. 

2. Testing phase: the model makes predictions on test data, i.e. data not seen in the 

training phase. Usually the test set is similar to the training set: samples 

characterized by features are associated to their target values. The test error 

evaluates the model’s performance on this set, i.e. how far its predictions are to the 

real targets. The test error is a better estimate of the model’s ability to generalize. 

The goal of machine learning is to learn rather than memorize, i.e. perform well in new 

situations. Therefore, it is fundamental to perform both steps, and the real indicator of 

a model’s quality is test error.  

Test data can not influence the training phase in any way; this is sometimes 

referred to as the golden rule of machine learning. The test error measures the 

performance of the model on new data. If the test set contains samples used during 

training, the assessment is not accurate and the model overfits part of the test data.  

Defining a ML model requires both training and test sets to be carefully 

constructed in order to allow a fair evaluation of performances. The construction of 

models in the experiments hereinafter follow these fundamentals machine learning 

practices. 
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3.1.1.3 Validating 

Machine learning models are characterized by parameters that control how well 

the model fits the dataset; these are the parameters that during the training phase are 

adjusted to find the best model for the training set. ML models also have hyper-

parameters, for example the tree depth in a decision tree. Hyper-parameters generally 

control the model’s complexity. They are not learned in the training step: it is always 

possible to fit the training data better (i.e., lower training error) by making the model 

more complex, but this inevitably leads to overfitting. Hence, values for 

hyperparameters are fixed before training a model.  

Values for hyper-parameters should be selected in order to achieve the lowest test 

error possible. However, using test data in the construction of a model – even for 

choosing hyperparameters – violates the golden rule of ML. To overcome this 

situation, part of the training data is usually kept separate and used as a surrogate test 

set at training time; in this setting, the training set is split in two sets: 

• Training set: data actually used to train the model. 

• Validation set: used to test the model. The error represents an approximation 

of the test error. 

Hyper-parameter selection is performed with the guidance of the validation error. 

Several models with different candidate values for hyper-parameters are trained on the 

limited training set and tested on the validation set. The set of hyper-parameters 

achieving the lowest validation error is selected. Usually, after choosing hyper-

parameters, the final model is trained on the entire training set in order to exploit the 

full dataset when fitting it. 

Cross-validation is a technique aimed at improving the validation step. In k-fold 

cross-validation, the entire training set is split into k subsets of roughly the same size 

called folds. A model is trained on k-1 folds and validated on the remaining one. This 

process is repeated k times, where each iteration adopts a different fold as validation 

set. The final cross-validation error is the average validation error across all k 

iterations; it represents a more accurate approximation of the test error compared to 
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standard validation. With this approach, every training sample contributes in 

validation and training without violating the golden rule of ML; at the same time, a 

large portion of the dataset (k-1 folds over k) is used for training models. The pitfall is 

a larger computational cost, as each cross-validation score involves the training of k 

models; this score is computed for each hyper-parameter set to evaluate, hence the 

hyper-parameter selection process becomes expensive. A larger number of folds yields 

a more accurate error estimation but a higher computational cost. In leave-one-out 

cross-validation, one training example is used for validating each model. 

 

Machine learning models involved in our system adopt the cross-validation 

approach for selecting hyper-parameters. The process of constructing a ML model 

involves the separation of data into a training and a test set. The first is used for 

building the model, the latter is kept apart and used for testing at the very end. In order 

to select hyper-parameters, within the cross-validation process, the training set is split 

again into an actual training set and a validation set. Once hyper-parameters are 

selected, the model is trained on the entire training set. This final model is used at 

inference time to perform predictions. 

 

3.2 Decision Trees 

A decision tree (DT) is a supervised machine learning model consisting of a 

nested sequence of if-else decisions, called splitting rules, based on the features. A 

class label or a numerical value is returned at the end of each sequence. The first rule 

– at depth 0 - is called root, intermediate rules are called nodes, and the final parts are 

the leaves of the DT. 
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3.2.1 Decision Stump 

The building block of a DT is a simple splitting rule based on thresholding one 

feature. A DT composed of only one splitting rule is also called Decision Stump (DS). 

In the training phase of a DS, the aim is to find the best rule to fit the training set – 

namely, a feature, a threshold, and leaf values. This is achieved by first defining a score 

that evaluates the quality of the model, then searching for the rule that yields the best 

score. Hence, training is reduced in searching among all possible rules the one with 

best score. Usual scores adopted during this search are accuracy for classification and 

mean squared error for regression. 

 

Figure 4: Decision Stump. Same 

classification problem of Figure 3: the 

target of the prediction is the means of 

transport to reach a destination. 

Figure 3: Decision tree with depth two. The target of the 

prediction is the means of transport to reach a destination – a 

categorical target. Features are the distance to the destination, the 

weather temperature on that day and the presence of a bus strike. 
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3.2.2 Decision Tree 

DTs are an extension of DSs that allow sequences of splits based on multiple 

features. While a DS has small expressive capability and limited accuracy, a DT is 

more general and can achieve large accuracy even in complex scenarios.  

It is computationally infeasible to train a DT with the same approach used for 

DSs, namely, by exhaustively searching for the best DT among all possible sequences 

of rules. The most common DT learning algorithm reported in literature, called Greedy 

Recursive Splitting (GRS), addresses this issue. Starting from the full training set, GRS 

trains a DS on it. The original set is split by the DS’s rule into subsets, one for each 

leaf; GRS fits an additional DS on each leaf’s data, resulting in a depth-2 DT. This 

process is repeated for increasing depths until a stopping criterion is met. Several 

stopping criteria are reported in literature; for example, a leaf has few samples or it 

only has one label, no rule improves accuracy/error on the resulting sets or a user-

defined maximum depth is reached. Each leaf in the resulting DT is associated to a 

label or a value based on the training samples that end up in that leaf. 

Depth is a fundamental hyper-parameter to handle while fitting a DT. A DS is a 

DT with depth 1. The larger is the depth, the more complex is the model, hence the 

larger is the risk of overfitting. 

 

At inference time a sample is fed to the DT. The values of its features determine 

a path inside the tree, i.e. a sequence of decisions leading to a leaf. The DT’s prediction 

for the sample is the value associated to that leaf. 
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Decision trees are some of the easiest ML models, yet very used in real-world 

applications. They are highly interpretable: even non-experts can examine a DT 

structure and understand what happens. They are easy to implement compared to other 

ML models, their learning is fast and inference is very fast. Moreover, they can handle 

both categorical and numerical data, and can elegantly deal with missing values in the 

training set. They do not require input data in specific formats hence there is no need 

for special data pre-processing. The major pitfall of these models is the difficulty of 

finding the optimal set of rules; GRS is often not accurate and might require very deep 

trees that easily overfit. As DTs are usually prone to overfitting, stopping criteria and 

mechanisms such as pruning must be adopted to allow good generalization 

capabilities. Ensemble versions of DTs are often adopted to reduce overfitting and are 

called random forests. 

 

The remaining part of this section provides a technical explanation of 

classification and regression DTs. They are some of the ML models adopted in our 

experiments. 

 

Figure 5: Inference in a Decision Tree. In red the 

sequence of decisions for a sample that is labeled as 

“walk”. 
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3.2.2.1 Classification 

The score criterion commonly used to train rules (i.e. select splits) in a 

classification DT is information gain: the selected split is the one that decreases 

entropy of labels the most. Entropy measures the randomness of a set of data, namely, 

how many bits of information are encoded in the average sample. Low entropy 

indicates a very predictable set carrying small information whereas large entropy 

indicates randomness. If 𝑠𝑒𝑡 has 𝑘 classes and 𝑝𝑐 is the probability of each class 𝑐, the 

entropy is: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠𝑒𝑡) = −∑𝑝𝑐𝑙𝑜𝑔(𝑝𝑐)

𝑘

𝑐=1

 

 

(21) 

Assume 𝑦 is the set of labels for the training samples, with cardinality 𝑛. A rule 

splits 𝑦 into two subsets 𝑦𝑦𝑒𝑠 and 𝑦𝑛𝑜, with 𝑛𝑦𝑒𝑠 and 𝑛𝑛𝑜 examples respectively. 

Information gain for the split is: 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦) −
𝑛𝑦𝑒𝑠

𝑛
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑦𝑒𝑠) −

𝑛𝑛𝑜
𝑛
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑛𝑜) 

 

(22) 

Information gain is large if labels are “more predictable” (“less random”) in the next 

layer. Even if a split does not increase classification accuracy at one depth, the hope is 

that it makes classification easier at the next depth, as the resulting sets are less random.  

In a classification DT each leaf is associated to a class label. Its value is usually 

the mode of labels for the training samples in that leaf, i.e. the most common training 

label. 

 

3.2.2.2 Regression 

Regression DTs follow a similar approach compared to classification DTs while 

dealing with numerical predictions. Several functions are reported in literature to 

measure the quality of a split. Mean Squared Error (MSE) and Mean Absolute Error 

(MAE) are two of the most common criteria, respectively defined as: 
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𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

 

(23) 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

 

(24) 

where the training set to split has 𝑛 samples, each of them has true target value 𝑦𝑖 and 

prediction after the split �̂�𝑖. 

In a regression DTs each leaf is associated to a numerical value, for example the 

mean or median of target values for samples in the terminal node. 

 

3.2.3 Random Forest 

In general, ensemble methods are models that have models as input, in a 

framework sometimes referred to as meta-learning. The aim of ensemble methods is 

to obtain meta-models that achieve higher accuracy or lower error compared to the 

input ones. Some ensemble techniques, named boosting-based methods, start from 

models that easily underfit and are aimed at improving the training error. On the other 

hand, averaging-based methods build on models that overfit and their goal is to limit 

overfitting. 

Random forests (RFs) are the ensemble version of decision trees. They average a 

set of deep randomized DTs with the goal of increasing performance and controlling 

overfitting. The idea is that a single DT makes error in predictions; however, 

aggregating the result of multiple different DTs yields better performance, as errors of 

a single DT are corrected by all the others. Randomization must be included in the 

construction of RF in order to obtain different trees with independent errors. Two 

ingredients are fundamental for providing randomization: 

• Bagging: using bootstrap samples for ensemble learning. A bootstrap sample 

of the original training set is a set of the same size, obtained by sampling with 
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replacement from it. Each DT in the ensemble is trained on a different bootstrap 

sample, hence it will have different splits. 

• Random Trees: when training a DT, each split is decided within a random 

subset of the features instead of all possible features. Different trees will have 

different splits as the subset of feature to search at each split is random. 

The meta-model predicts a single value that aggregates the outputs of all models, 

usually the majority-predicted label for classification and the average output value for 

regression. Although single DTs in a RF are affected by overfitting, if their errors are 

independent aggregating predictions hides the single weaknesses. This results in a 

better generalization capability, i.e. lower test error.  

 

3.3 Neural Networks 

Artificial neural networks (ANNs or NNs) are supervised learning models and are 

the core of deep learning. A trained NN model performs a non-linear transformation 

that represent a complex mapping between an input and an output vector. A NN is a 

composition of simple functions in multiple layers connected together via weights and 

non-linearities. More layers yield more complex mappings. 

NNs are divided into two main categories, depending on their architecture: 

• feed-forward neural networks if neurons are connected in an acyclic graph – 

signals only proceed forward in the network; 

• recurrent neural networks that introduce cycles in neurons connections.  

We focus our attention on the first as they are adopted in our experiments. 

The increasing amount of available data and computational capabilities has 

contributed to the growth of NNs’ popularity in recent years. NNs are currently the 

base of state-of-the-art systems in Computer Vision and Natural Language 

Understanding, yielding unprecedented performances on difficult tasks. 
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3.3.1 Neuron  

The neuron is the basic unit of computation in a NN and it represents a function. 

It accepts some input signals in form of a vector 𝑥, it computes their weighted sum and 

it adds a bias 𝑏. Finally, it applies a (non-linear) activation function ℎ, also referred to 

as non-linearity; the argument of the activation function is sometimes called neuron 

activity. Weight values are learned during the training process. Formally, assuming 𝑥 

is the 𝑛-dimensional input vector and 𝑤 is the vector representing weights, the output 

is: 

𝑦 = ℎ(𝑏 + 𝑤𝑇𝑥) = ℎ(𝑏 +∑𝑤𝑗  𝑥𝑗

𝑛

𝑗=1

) 

 

(25) 

𝑎 = 𝑏 + 𝑤𝑇𝑥 (26) 

 

 

 

Figure 6: Neuron schema. The input is an n-dimensional vector x and 

the output is the prediction y. 𝑎 is the neuron activity. The bias 𝑏 can be 

treated as an additional weight 𝑤𝑛+1 with input signal constant to 1 to 

simplify the notation. We adopt this notation hereinafter. 
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The activation function is used for providing non-linearity between inputs and 

outputs and it is the secret for the NN’s flexibility and expressive power; some 

examples of it include Sigmoid, rectified linear unit (ReLU) or hyperbolic tangent 

(tanh). 

 

𝑅𝑒𝐿𝑈: 

𝑚𝑎𝑥(0, 𝑥) 

 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 

𝜎(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

 

 

 

𝑡𝑎𝑛ℎ: 

𝑡𝑎𝑛ℎ(𝑥) 

 

 

 

 

 

3.3.2 Feed-Forward Neural Network 

The output of a neuron can become input to other neurons in a subsequent layer, 

resulting in the architecture of a deep network. A feed-forward neural network, 

sometimes called Multi-Layer Perceptron (MLP), comprises neurons connected in an 

acyclic graph. Neural networks typically contain multiple layers of neurons: the first 

is called input layer, the last is the output layer and in the middle there are hidden 

layers. Neurons in middle layers are also called hidden or latent features, and they are 

a representation of the original vector in a latent space. 

If 𝑥𝑖 is the 𝑛-dimensional input vector for example 𝑖, 𝑤(𝑘) represents weights in 

layer 𝑘 and 𝑣 are weights after last layer, the NN’s prediction �̂�𝑖 is given by: 

�̂�𝑖 = 𝑣𝑇ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖)) (27) 

Figure 7: Commonly used activation functions: Sigmoid, ReLU, and tanh.  
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Figure 9: Two-layers neural network; all signals are detailed for the input sample 

𝑖. Every circle represents a signal: input features 𝑥𝑖, hidden features 𝑧𝑖
(1) =

𝑊(1)𝑥𝑖 and  𝑧𝑖
(2) = 𝑊(2)ℎ(𝑊(1)𝑥𝑖), output �̂�𝑖. Although the output �̂�𝑖 is a scalar 

here, it might as well be a vector and, in that case, 𝑣 is a matrix. 

Figure 8: General high-level architecture of a multi-layer feed-forward neural 

network. 
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Non-linear activation functions between neurons are fundamental as the neuron 

itself performs a linear transformation, and if the activation is linear, then neuron and 

activation still represent a linear transformation. Adding non-linearities increases the 

expressive power of the model; it allows the NN to express more complex patterns in 

data compared to linear models such as Support Vector Machines (SVMs) [20]. 

The multiple-layered architecture is fundamental for the decomposition capability 

typical of Deep Learning models. A NN represents complex objects as hierarchical 

combination of re-useable parts (neurons), similarly to a simple grammar. Thanks to 

the network’s architecture, neurons in shallow layers capture local properties while 

neurons in deep layers have a vision on broader patterns. For example, in an Optical 

Character Recognition (OCR) problem the input of the neural network is an image; 

each neuron recognizes a part of a digit, with shallow neurons recognizing small parts 

and deeper neurons recognizing combinations of parts. 

Non-linearity elements and a sufficiently complex architecture allow feed-

forward neural networks to be universal approximators [21] [22] [23], i.e. they can 

approximate arbitrarily well any well-behaved function. 

 

3.3.3 Training a Neural Network 

The training process a NN is based on a simple idea: if all structures are 

differentiable, weights are adjusted to reduce the prediction error. The training phase 

makes use of both the input and the desired output for the neural network, i.e. the 

feature vector and the target, as in a typical supervised learning setting. Training finds 

network parameters (weights and biases) that allow the NN to make predictions as 

close as possible to the desired target. A loss function is used to measure the error in 

prediction. Hence, training consists in learning weights and biases that reduce the 

network’s loss.  

ML models training ultimately consists in an optimization problem: finding the 

set of parameters that maximize or minimize an objective function – the loss or error. 

While DT training is a discrete optimization problem, NN is a typical example of 
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continuous optimization. Gradient descent (GD) and its derivative methods [24] are 

the most popular class of training algorithms for continuous optimization in ML. GD 

is an iterative optimization algorithm; in order to reach the optimum point of the 

objective, it moves in the parameter space in the direction suggested by the gradient. 

Given a model with parameters 𝑤 and loss function 𝑓, the approach is the following 

• Start with a guess for model’s parameters 𝑤0. 

• Successively refine the model’s parameters at each iteration 𝑖: 

- Compute the gradient of 𝑓 w.r.t. 𝑤 for all training examples: 

𝛻𝑓(𝑤𝑖) (28) 

- Guided by the gradient, adjust 𝑤 with the aim of obtaining the largest 

loss reduction: 

𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖𝛻𝑓(𝑤𝑖) (29) 

𝛼𝑖 is called step size or learning rate. This computation decreases the 

value of 𝑓 if the step size is small enough.  

• Stop when a stopping criterion is met, usually threshold the gradient value: 

||𝛻𝑓(𝑤𝑡)|| ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (30) 

The objective function 𝑓 must be differentiable. If it is convex and it admits optima, 

GD converges to a global optimum. Stochastic Gradient Descent (SGD) is a version 

of GD where the gradient is computed on a randomly-selected training example instead 

of all samples; SGD allows fast iterations with massive training sets. Most GD-

derivative techniques are between GD and SGD: the parameters’ update is performed 

by batches, i.e. groups of random training samples of intermediate size, allowing fast 

convergence a good solution quality with large datasets. Adam (Adaptive moment 

estimation) [25] focuses on learning rate scheduling and it is currently one of the most 

popular GD-based optimization algorithms; neural networks used in our experiments 

leverage this training method. 
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NN training requires the computation of the gradient of the loss with respect to 

the network’s parameters, in order to incrementally adjust them to reduce the loss. 

Backpropagation is a technique to compute gradients in the NN and it is the base of 

gradient training for these models. It computes gradients via recursive application of 

the chain rule from calculus and it consists of two steps: 

1. Forward Propagation. Training examples are fed to the neural network, 

computing the NN’s output for them. With current and desired target values it 

is possible to compute the loss, i.e. how well current weights perform on 

samples. 

2. Backpropagation: compute the gradient of the loss with respect to the weights.  

After backpropagation Gradient Descent is applied, changing the NN’s weights to 

reduce the error. 

 

Figure 10: Gradient Descent in a two-dimension parameter space. The blue 

star is the starting point (i.e. the value of parameters at the beginning 𝑤0), 

while the red star is the optimum. Arrows represent the descent performed 

in each GD iteration. 
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3.3.4 Neural Network Design 

The NN’s architecture must be handled properly in order to limit overfitting. The 

deeper is a neural network (i.e. more layers), the more complex and prone to overfitting 

it is. Regularization techniques are used to avoid overfitting, for example: 

• L2-regularization or similar: add a penalty for large weights. 

• Early stopping: stop GD training if the validation error does not improve. 

• Dropout: randomly set some neurons to 0 on each GD training. 

 

Neural networks are extremely powerful and flexible, but they must be carefully 

designed in order to obtain good performances. Several hyperparameters are involved 

in these models: 

• Related to the NN architecture, for example number of layers, number of 

neurons per layer, activation functions, weights’ initialization. 

• Related to the GD algorithm, e.g. learning rate and batch size. GD-based 

algorithms are very sensitive to the learning rate, in particular for deep models: 

its value heavily affects convergence speed and model’s performance, thus it 

must be carefully tuned. 

 

Neural networks can be easily employed in both classification and regression 

tasks by adopting specific output layers and loss functions: 

• Regression: no specific output layer is used, the predicted value �̂�𝑖 is the output 

of last neurons (it might also be a vector). Mean Squared Error or Mean 

Absolute Error can be used as loss functions. Formally, for a NN of 3 layers 

and MSE: 

�̂�𝑖 = 𝑣𝑇ℎ (𝑊(3)ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖))) 
(31) 



47 

 

𝑓(𝑣,𝑊(3),𝑊(2), 𝑊(1)) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

 

(32) 

• Classification: For multi-class or multi-label classification, 𝑣 is a matrix and 

the output layer in the NN has one neuron for each class. The softmax function 

is used as activation function in the final layer to obtain a probability 

distribution over classes, i.e. probability value for each class: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̂�𝑖,𝑗) =
𝑒𝑥𝑝(�̂�𝑖,𝑗)

∑ (𝑒𝑥𝑝(�̂�𝑖,𝑐))
𝑘
𝑐=1

, 𝑗 = 1, …𝑘 

 

(33) 

�̂�𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑣
𝑇ℎ (𝑊(3)ℎ (𝑊(2)ℎ(𝑊(1)𝑥𝑖)))] 

 

(34) 

where there are 𝑘 classes; �̂�𝑖 is a vector of 𝑘 elements, one element �̂�𝑖,𝑐 for 

each class 𝑐 indicating the probability for sample 𝑖 to belong to class 𝑐. 

Softmax loss, also called cross-entropy loss, is generally adopted as the error 

function. It measures the performance of a classification model whose output 

is a probability value: 

𝑓(𝑣,𝑊(3),𝑊(2),𝑊(1)) =∑(−�̂�𝑖,𝑐�̃� + 𝑙𝑜𝑔 (∑(𝑒𝑥𝑝(�̂�𝑖,𝑐))

𝑘

𝑐=1

))

𝑛

𝑖=1

 

 

(35) 

where example 𝑖 has true class 𝑐�̃�. 

This activation function and loss is the general formulation. For mono-class 

and mono-label tasks these same functions are applied. 

 

3.4 Additional ML Techniques 

In sections 3.2 and 3.3 we reported the theoretical basis for decision trees and 

neural networks, the main machine learning methods under investigation in our 

system. Additional techniques are explored to model the relationships among variables 

but, for sake of brevity, we do not describe them in detail. They are used for exploration 

and they are not adopted in the combinatorial optimization model for the proposed 

system, thus a thorough technical explanation is not necessary. Nevertheless, we 



48 

 

provide a brief introduction on additional ML models and techniques used in our 

experiments, together with references useful for a reader to gather further information. 

 

3.4.1 Radial Basis Function 

A Radial Basis Function (RBF) [26] is a function that depends on the distance 

between the input point and another point in the input domain. An example is Gaussian 

RBF, where the function is a gaussian, i.e. 

𝑔𝑅𝐵𝐹(𝑥, �̃�) = 𝑒𝑥𝑝 (
|| 𝑥 −  �̃�||2

2𝜎2
) 

 

(36) 

where 𝑥 is the input point and �̃� is the selected point in the domain. Gaussian RBFs 

are universal approximators, i.e. a sum of a large enough number of these functions 

can approximate any continuous function to arbitrary precision. RBFs are adopted in 

ML literature as basis in linear regression with modified basis, as kernels in SVMs and 

as activation functions in NNs. 

 

3.4.2 K-Nearest Neighbors 

K-nearest neighbors (KNN) [27] is a supervised ML technique. KNN assigns the 

target value to a new unseen point based on the values of its k closest examples from 

the training set. In classification, the assigned label is usually the most common label 

among the neighboring training points, i.e. the mode. In regression it usually the mean 

or the median among the neighbors’ target values. 

 

3.4.3 Linear Regression 

Linear regression with polynomial or Gaussian RBF basis [28]. Linear regression 

is a statistical technique to approximate the relationship between a response and one 

or more explanatory variables with a linear model. With a non-linear feature transform 

(often called change of basis) it is possible to manipulate the features and represent 
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polynomial or more complex relationships. Such a model in machine learning is 

trained by adjusting the model’s weights to minimize the prediction error. 

 

3.4.4 Support Vector Machine 

Support vector machines (SVMs) for classification and regression [20] [29] [30]. 

SVMs are a supervised learning technique; they represent the model that maximizes 

the margin between the training patterns and the decision boundary. For example, in 

classification tasks SVMs yield the maximum-margin classifier; this is the model that 

separates points in the input space with the hyperplane that is the farthest from all 

classes, i.e. longest distance to the closest examples in all classes. A change of basis 

allows such models to represent non-linear relationships. SVMs with L2 regularization 

and gaussian RBF [31] are extensively used in ML as they have fast training and 

testing, and they provide good performances as out-of-the-box models. 

 

3.4.5 Principal Component Analysis 

Principal component analysis (PCA) [32] is an unsupervised machine learning 

algorithm. It is a linear latent-factor model, i.e. a technique that simultaneously learns 

a change of basis from data and their representation in it. PCA represents the points of 

the dataset from their high-dimensional vector space to a different (usually lower-

dimensional) space, by projecting them into the principal components, i.e. the 

directions of maximum variation for the data. Following the interpretation of PCA as 

a latent-factor model, principal components represent the new basis while the 

representation of data is the data themselves projected. PCA finds the low-dimensional 

hyper-plane minimizing variance in the projected space; it can also be viewed as the 

hyperplane minimizing the orthogonal distance to data. PCA is one of the most 

common techniques for dimensionality reduction and data visualization, and it is also 

adopted for data interpretation, outlier detection, and other applications. 
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Chapter 4  

Empirical Model Learning  

 

In the framework of a VPP’s EMS, an additional combinatorial optimization 

problem can be introduced. Positioned on top of the hybrid online/offline algorithm, it 

has user-defined objectives and constraints. Its aim is to help the tuning of the online 

phase, e.g. choose number of traces in the contingency table, and to obtain forecasts 

about online performances.  

The relationship between variables involved in this problem are modeled with 

machine learning. This allows to capture complex non-linear relationships with an 

automatic and data-driven approach. However, standard optimization tools are not 

designed to handle such situations, as the optimization problem involving these 

variables must model these special relationships. Namely, the modeling process must 

include these relations. Different approaches are reported in literature for leveraging 

ML to boost modeling of optimization problems [33]. The work proposed here focuses 

on Empirical Model Learning that allows embedding of ML models in the optimization 

model. 

 

4.1 EML 

A combinatorial optimization model encapsulates a description of the real-world 

system it deals with. This is usually a manually-defined model that describes only 

important aspects of the system, namely, making simplifications of the real world. A 

good high-fidelity model is fundamental for the success of the optimization process, 

and it needs to balance a tradeoff between complexity and accuracy: scarcity of details 

yields a poor description of the system with poor solution quality, whereas abundance 

of details leads to complex models with infeasible computational time. The modeling 

phase requires a thorough analysis of the system itself with the help of domain experts. 
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Although literature exposes methods to address modeling for real-world systems, high-

complexity systems still represent a challenge for optimization problems due to 

modeling. Empirical Model Learning (EML) [34] 3 merges the two fields of machine 

learning and optimization in this exact direction: it leverages ML to tame high-

complexity systems modeling, making such systems treatable in combinatorial 

optimization. 

EML is a technique that allows combinatorial optimization in highly complex 

systems. It handles optimization for complex real-world systems in two steps, adopting 

a similar approach to the one followed in our work: 

• Given a system that is hard to model by conventional means, use a machine 

learning model (Empirical Model) to approximate its input/output behavior, 

i.e. the relations between variables. 

• Encapsulate these relationships into components of a combinatorial 

optimization problem, i.e. constraints and objectives. In other words, embed 

trained ML models into the optimization problem. 

The technique proposed in [34] is focused on the modeling side of the 

optimization problem and it digs into methods for performing the embedding, with 

emphasis on specific ML models (decision trees, random forests and artificial neural 

networks) and several optimization techniques (local search, mixed integer linear 

programming, constraint programming, SAT modulo theories). A well-designed 

modeling of empirical models is fundamental for the entire optimization process: 

embeddings should be designed so that the optimization engine can exploit the 

empirical model’s structure for boosting the search operation. Hence, embedding is 

not just a matter of encoding ML models, because it must address the efficient use of 

optimization components – variables, constraints, and objectives. 

 

 

3 https://emlopt.github.io 
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An EML-based system is capable of suggesting optimal decisions in a highly-

complex real-world setting. EML allows the integration of advanced predictive 

modeling and big data analysis techniques into prescriptive analytics, by virtue of its 

ability to integrate machine learning into combinatorial optimization. EML can be 

interpreted as a technique to merge predictive and prescriptive analytics. 

The approach stemming from EML is data-driven and automatic. Compared to 

classic optimization modeling it offers a new vision where part of the prescriptive 

model is extracted from data; EML-based models are crafted on real-world data 

because they rely on empirical machine learning models to obtain components of the 

prescriptive optimization problem. 

EML introduces approximations in its embeddings that are necessary to allow 

usefulness of the techniques: “In EML, models are useful if they provide adequate 

accuracy, and if they can be effectively exploited by solvers for finding high-quality 

solutions” [34]. However, this is not peculiar of EML: models in both predictive and 

prescriptive analysis introduce some forms of approximation; these are inevitable to 

enable the applicability of the techniques. machine learning models are based on 

statistics and approximation is fundamental to allow their generalization capability. 

Also classic optimization techniques have approximations: usual human-defined 

optimization models are approximations of the real system, and this is the key for 

modeling computationally-feasible problems. 

The Empirical Model Learning approach enables the application of optimization 

techniques to complex real-world problems that used to be hard to tackle. Additionally, 

it easies the need for hand-crafted models by domain experts and it opens up new 

application areas. Designing a good empirical model may still be a non-trivial task, 

but EML allows better accuracy compared to manually-crafted expert-designed 

approaches. Experiments in [34] show the clear advantages of using a data-extracted 

model in terms of quality of the final solutions. 
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4.2 Optimization Problem Modeling 

Combinatorial optimization problems handled with EML can be formulated as a 

set of variables, constraints, and objectives. Assume z is the vector of observables, 𝑥 

is the vector of decision variables 𝑥𝑖, each with domain 𝐷𝑖, 𝑓 is the cost function to 

optimize and 𝑔𝑗 are predicates representing constraints, e.g. inequalities. These are 

typical components of a combinatorial optimization problem, referred to as the core 

combinatorial structure. EML brings an additional part into this model: a function ℎ 

representing the embedding of the empirical machine learning models. It specifies how 

the observables 𝑧 depend on the decision variables 𝑥, hence providing an approximate 

description of the behavior of the high-complexity system.  

 

 

A general optimization problem modeled with EML has the following 

formulation, where (37), (38) and, (40) are the core combinatorial structure and (39) 

is the EML-specific contribution: 

𝑚𝑖𝑛 𝑓(𝑥, 𝑧) (37) 

𝑔𝑗(𝑥, 𝑧), ∀𝑗 ∈ 𝐽 (38) 

𝑧 = ℎ(𝑥) (39) 

𝑥𝑖 ∈ 𝐷𝑖  , ∀ 𝑥𝑖 ∈ 𝑥  (40) 

4  https://emlopt.github.io/assets/ 

Figure 11: In EML, the optimization problem is composed of the 

(original) core combinatorial structure and a empirical machine learning 

model. From: M. Lombardi, M. Milano, EML repository 4 
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Modeling such combinatorial optimization problem includes three main steps: 

1. Define the core combinatorial structure of the problem. This phase consists in 

defining a combinatorial optimization model as in usual optimization 

workflow. 

2. Obtain the empirical model, i.e. train machine learning models involving 

variables of interest for either regression or classification. This step includes 

the classic machine learning model construction process, as described in 

section 3.1.1. 

3. Embed the empirical model in the combinatorial optimization problem. This 

step is peculiar of EML and it represents its core. Embedding is possible if and 

only if the ML models are associated to an encoding for the optimization 

problem adopted. EML defines these encodings, with a design that allows the 

encoded ML model to be exploited by the optimization approach for boosting 

the search process. 

At the end of these steps the problem is entirely modeled, and it can be solved with a 

usual optimization model resolution technique. 

 

4.3 Empirical Model Embedding 

Embedding a trained machine learning model into an optimization problem 

requires to define encodings for the ML model. They translate the empirical model 

into custom variables and constraints to be integrated inside the core combinatorial 

structure.  

The integration also requires defining an operational semantics, whose goal is to 

allow the efficient use of encoded components. Operational semantic refers to any 

procedure that helps the optimization engine to boost the search process by reasoning 

over the specific empirical ML model, e.g. exploiting bound computation or constraint 

propagation. It may be provided implicitly by the underlying solver or in some cases 

it is defined explicitly together with the encoding, by adopting specific algorithms and 

components in the optimization problem. In a MILP problem for example, once the 
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ML model has been embedded its equations are automatically taken it into account by 

the solver for computing bounds and generating cuts, thus improving the search phase. 

EML presents embedding techniques for artificial neural networks, decision trees, 

and random forests and four combinatorial optimization approaches, namely, local 

search (LS), mixed (non) integer linear programming (MILP), constraint programming 

(CP), and SAT modulo theories (SMT). Our experiments will focus specifically on 

NNs and DTs as empirical models, and MILP as optimization technique. 

 

4.3.1 Decision Trees 

Decision trees and random forest embedding into a combinatorial optimization 

problem is introduced in [35]. 

 

To embed a DT, in the first step all the necessary variables are introduced into the 

model: a decision variable for each input attribute, assume 𝑥 is a vector representing 

input features, and a decision variable for the class 𝑦. Categorical attributes and classes 

can be modeled as integer variables.  

Then, consistency on the relationship given by the DT is modeled and enforced: 

𝑦 = 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒(𝑥)  (41) 

A simple encoding follows the intuition that a tree defines several paths, and each 

path is an implication. Hence, a DT can be then encoded as a set of constraints that 

represent boolean predicates for its paths. Assume 𝜋 is a path from root to leaf in the 

tree, 𝐶(𝜋) is the class corresponding to the leaf in the path 𝜋 and each 𝑏𝑗 ∈ 𝜋 is a 

branch along the path. Each expression 𝑐𝑠𝑡(𝑏𝑗 ) represents the condition in the branch 

𝑏𝑗 and is given by: 
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𝑐𝑠𝑡(𝑏𝑗 ) =  

{
 
 

 
 ⋁ ⟦𝑥(𝑏𝑗)  =  𝑣⟧    𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐

𝑣∈ 𝐿(𝑏𝑗)

⟦𝑥(𝑏𝑗)  ≤  𝑡(𝑏𝑗)⟧    𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑎𝑛𝑑 𝑏𝑗  𝑖𝑠 𝑎 𝑙𝑒𝑓𝑡 − 𝑏𝑟𝑎𝑛𝑐ℎ 

⟦𝑥(𝑏𝑗)  >  𝑡(𝑏𝑗)⟧    𝑖𝑓 𝑥(𝑏𝑗) 𝑖𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑎𝑛𝑑 𝑏𝑗  𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 − 𝑏𝑟𝑎𝑛𝑐ℎ 

 

(42) 

where ⟦∗⟧ denotes the truth value of the boolean predicate/constraint *, and 𝑥(𝑏𝑗) is 

the attribute variable tested in branch 𝑏𝑗. A simple rule-based encoding is obtained 

following the observation that each path 𝜋 from root to leaf can be interpreted as a 

logical implication that includes all branches along the path:  

⋀ 𝑐𝑠𝑡(𝑏𝑗 ) ⇒  ⟦𝑦 =  𝐶(𝜋)⟧  , 𝜋 ∈ 𝑝𝑎𝑡ℎ𝑠

𝑏𝑗 ∈𝜋 

  

 

(43) 

 

This expression applied to each path in the tree is sufficient to encode a DT. 

Figure 12: Representation of a DT in EML. A path 𝜋 in the DT 

is represented by a logical implication involving all conditions 

𝑐𝑠𝑡(𝑏𝑗 ) along the path, leading to the label 𝐶(𝜋). 
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However, it is possible to obtain a formulation of the encoding that yields a 

stronger propagation. The key observation is that the set of leaves labeled with a 

certain class specifies all and only the input configurations that should be associated 

to such class. The class variable 𝑦 takes the value 𝑐 if and only if at least one of the 

implications associated to the paths 𝜋𝑐 labeled with 𝑐 is true. This allows one to encode 

an entire tree as a set of clauses, formally: 

∀ 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∶  ⟦𝑦 = 𝑐⟧ ⇔ ⋁ [ ⋀ 𝑐𝑠𝑡(𝑏𝑗 )

𝑏𝑗 ∈𝜋𝑐 

]

𝜋𝑐: 𝐶(𝜋𝑐)= 𝑐

 

 

(44) 

If logical constraints are not supported by the optimization approach, it is possible 

to obtain a formulation equivalent to Eq. (44); to do that, the left-to-right and right-to-

left implications associated with the biconditional operator (⇔) are separately 

modeled. In particular, the right-to-left implication corresponds to Eq. (43) and for the 

whole DT it translates to:  

∀ 𝜋 ∈ 𝑝𝑎𝑡ℎ𝑠 ∶  ∏ 𝑐𝑠𝑡(𝑏𝑗 ) ≤ ⟦𝑦 =  𝐶(𝜋)⟧

𝑏𝑗 ∈ 𝜋

  

 

(45) 

where ⟦∗⟧ is 1 if the logical expression * is true and 0 if it is false. Intuitively, this 

equation forces the class variable 𝑦 to take the value 𝐶(𝜋) if the current values of the 

attribute variables are such that all the 𝑐𝑠𝑡(𝑏𝑗 ) constraints are satisfied. On the other 

hand, if 𝑦 takes the value 𝐶(𝜋), then at least one of the conjunctions of 𝑐𝑠𝑡(𝑏𝑗 ) 

constraints associated to that class must be true. This leads to the formulation for the 

left-to-right implication of Eq. (44) as:  

∀ 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∶  ⟦𝑦 = 𝑐⟧ ≤  ∑ [ ∏ 𝑐𝑠𝑡(𝑏𝑗 )

𝑏𝑗 ∈ 𝜋𝑐

]

𝜋𝑐: 𝐶(𝜋𝑐)= 𝑐

 

 

(46) 

 

In an optimization problem formulated as a MILP, the decision tree is embedded 

according to the following steps: 
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1. Obtain the decision tree in rule format, transforming the DT into a set of rules. 

Every rule represents a path from the root to a leaf. Each rule is composed of 

attribute name, attribute type, and threshold test needed to go on along the 

path. The last element of the rule represents the class label of the leaf. 

2. Introduce a binary variable for each rule. A constraint is used to enforce that 

only one rule can be active at a time. 

3. Process all conditions in all rules to maximize efficiency, e.g. collapse 

conditions on the same attribute for each rule. 

 

4.3.2 Neural Networks 

Additional works in literature besides EML examine how neural networks can be 

efficiently employed in combinatorial optimization problems [36]. A neural network 

is a declarative non-linear model. It can be embedded in a combinatorial optimization 

model directly by inserting variables for its inputs and outputs in the model, then 

introducing the NN’s equations in the model.  

To embed a NN, variables to model inputs and outputs for each neuron are 

introduced. Then, the neuron’s equations are directly inserted into the model; each 

neuron is represented in the combinatorial problem by a variable and a neuron 

constraint, that ties the neuron’s input and outputs. In a network where several neurons 

are combined, each edge is modeled as a constraint on the connected neurons. 

{
𝑎 = 𝑏 + 𝑤𝑇𝑥
𝑦 = ℎ(𝑎)

  

 

(47) 

Figure 13: Neuron schema in EML, adopting a similar 

notation to section 3. 
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The embedding is straightforward as long as the optimizer supports the activation 

functions adopted in the neurons. If the activation is not directly implemented by the 

solver, workarounds can be adopted to yield them. For example, indicator constraints 

and a slack variable are used to build ReLU activations in MILP problems [37]. 

However, there are some aspects that must be considered when neural networks 

are embedded, as reported in [37]. In NNs with several hidden layers and neurons that 

use non-linear functions, the cost function might be not convex [38]. Some solvers rely 

on convexity for providing globally optimal results; in this case the solver would 

converge to a local optimum, possibly different from the global optimum. Another 

potential problem is numerical stability in the resolution process. Some MINLP 

solvers, for example, perform inversion on the model’s functions in some of their 

resolution steps. Even when an activation function is invertible, due to the finite 

precision of the underlying machine, inversion may be possible only within a 

restriction of the function’s domain; this might lead to loss of some feasible solutions 

or even software crashes. The issue can be addressed by restricting domains of the 

input/output variables of each neuron; according to [37], in rare cases this process 

might accidentally eliminate a high-quality solution. 
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Chapter 5  

Problem and Implementation 

 

In a VPP optimization problem, the conventional optimizer decides power flows 

in the grid. Assume this component adopts the hybrid online/offline approach for 

performing optimization under uncertainty, leveraging the fixing heuristic and a 

contingency table. Design choices must be taken on this component to balance the 

tradeoff between solution quality and online computational resources. The algorithm 

can be tuned to achieve a good solution quality or to satisfy time/memory constraints, 

depending on the requirements in a specific situation. 

We propose a high-level optimizer that incorporates the behavior of both the 

controlled system, i.e. the VPP, and the online/offline optimizer. Inserted in a multi-

level hierarchical optimization system, this new component is used to guide 

configuration decisions or perform forecasts on the low-level online optimization 

process. machine learning models are used to capture the complex behavior of the 

VPP/hybrid optimizer system. The high-level optimizer leverages EML to incorporate 

them into its combinatorial optimization model. 

This section focuses on the design of the high-level optimizer. After an 

introduction on the multi-level hierarchical optimization system, the machine learning 

models are presented, and finally the proposed optimizer is detailed.  

 

The system’s construction (both ML models and optimization problems) and all 

experiments are performed on cloud with the Google Colab5 platform. This allows us 

to leverage larger computational resources compared to local machines and to facilitate 

shareability of models, results, and code. The main tool adopted for training and testing 

 

5 https://colab.research.google.com/ 
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machine learning models is scikit-learn6, although neural networks are modeled in 

Keras7 for TensorFlow8. IBM cplex9 is used as solver for the combinatorial 

optimization problem. For all these tools we used the offered Python APIs. 

The construction of ML models, the modeling of the high-level optimizer and all 

the experiments are performed using data already produced by the hybrid 

offline/online optimizer as detailed in section 2.3.7.  

 

5.1 System 

 The complete optimization system proposed in this work for the virtual power 

plant is structured as a hierarchy of optimizers: 

1. Low-level optimizer. Optimization under uncertainty is performed adopting the 

hybrid offline/online approach. Specifically, the online step of this component 

leverages the fixing heuristic and the offline-computed contingency table, as 

described in section 2.3.5. This is the real VPP optimization, namely, deciding 

power flows based on the objective (cost minimization) and based on the 

stochastic factors. 

2. High-level optimizer. The high-level optimizer performs decision-making at a 

higher level, on top of the first optimizer. It incorporates the behavior of both 

the controlled VPP system and the low-level optimizer, learned through 

machine learning models. It does not have the same view of low-level 

optimizers, i.e. all power flows. However, it handles factors involved in the 

low-level stochastic optimization, e.g. number of traces for the contingency 

table, online optimizer’s computational cost. This optimizer is highly flexible:  

 

 

6 https://scikit-learn.org 

7 https://keras.io 

8 https://www.tensorflow.org 

9 https://www.ibm.com/analytics/cplex-optimizer 
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it is customizable to allow the definition of the desired constraints and 

objective, and it can be easily used for either deciding the low-level optimizer’s 

configuration or forecasting its behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: General overview of the entire VPP optimization system. 

The low-level hybrid offline/online optimizer performs stochastic 

optimization for the VPP. The high-level optimizer allows both 

decision-making on the configuration and performance forecasting 

for the low-level optimizer; it is data-driven, flexible, and  

customizable by the user. 
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5.2 Dataset Analysis 

Before building models, we perform a thorough data analysis on the dataset. This 

phase is fundamental for understanding the quality of the dataset and deciding whether 

data cleaning or preprocessing is necessary before building ML models. It also allows 

to capture evident patterns or relations and it gives information on which ML 

approaches might be suitable for representing them.  

 

Data used to construct the high-level optimizer concerns the behavior of the low-

level hybrid offline/online optimizer that leverages the fixing heuristic and a 

contingency table computed offline, i.e. CONTINGENCY in section 2.3.5. The dataset 

is the result of several runs of this algorithm, with different parameters and on different 

problem instances. An instance is the data optimized by the low-level optimizer, i.e. a 

sequence of realizations of the stochastic variables of the VPP. Specifically, the dataset 

is generated with 100 different instances. Each instance is fed as input to the hybrid 

optimization approach (with fixing heuristic) 100 times, for a varying number of traces 

in the contingency table 𝑇 from 1 to 100. As a consequence, the dataset is composed 

of 100 x 100 = 10000 entries. The features are data associated to each run of the hybrid 

optimizer; there are information on its input (i.e. data regarding the instance), its 

configuration, the time and computational resources required for the online 

optimization, and the solution: 

• Information about the instance 

- PV and Load. Sequence of realization for the variables 𝑃𝑉 and 𝐿𝑜𝑎𝑑 in 

all stages. These features represent information on the instance. Each 

of them is a vector of 96 values. 

• Configuration of the hybrid offline/online optimizer 

- 𝑛𝑇𝑟𝑎𝑐𝑒𝑠 = |𝑇|. Number of traces in the contingency table 𝑇 used by 

the fixing heuristic in that run. 

• Solution found by the hybrid offline/online optimizer 
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- Cost. Solution value, i.e. cost, found by the hybrid offline/online 

optimizer, in kEuros. Lower cost indicates a better solution quality. 

• Information on run-time and resources required by the online computation of 

the hybrid optimizer 

- CostNorm. Solution cost, normalized to the baseline. 

- Time. Time required by the hybrid offline/online optimizer for the 

online computation, in seconds. 

- TimeNorm. Time, normalized to the baseline. 

- AvgMem. Average memory used by the hybrid offline/online optimizer 

during the online computation, in MB. 

- AvgMemNorm. Average memory, normalized to the baseline. 

- MaxMem. Maximum memory used by the hybrid offline/online 

optimizer during the online computation, in MB. 

- AvgCPU. Average CPU amount used by the hybrid offline/online 

optimizer during the online computation, in % of used CPU. 

- AvgCPUNorm. Average CPU amount, normalized to the baseline. 

- MaxCPU. Maximum CPU amount used by the hybrid offline/online 

optimizer during the online computation, in % of used CPU. 

 

We plot pairwise relationships between all variables relevant in our models. In 

the plot grid, when two variables are involved the scatterplot is reported. On the other 

hand, when one variable is plotted against itself (i.e. diagonal of the grid), the 

univariate distribution plot is drawn; it shows the marginal distribution for the variable. 

These plots give information about the distribution and the relationships between 

variables; they are fundamental when building machine learning models as they might 

suggest the adoption of specific techniques and help us understand why some models 

have a good (or poor) performance. 
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According to the plots above: 

• There is a strong correlation between number of traces and resolution time, 

apparently a quadratic or low-degree polynomial relationship. Namely, time 

increases as the number of traces grows, and this trend is present in all 

instances. 

Graph 1: Pair plot for number of traces, solution cost, and time. 
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• The solution cost does not have such a neat correlation with the number of 

traces. For low values of nTraces, cost decreases as the traces increase. On the 

other hand, for a high number of traces (after approximately 40 nTraces) it is 

constant. This is not surprising because for small amounts of nTraces adding 

new traces to guide the fixing heuristic helps the solution quality; when their 

amount is already large, the cost does not benefit from adding traces. 

• Similar correlation between time and solution cost. For low values of time the 

cost goes down as the time grows, whereas cost is constant when time changes 

for larger values of time. However, for small values of time the correlation 

between cost and time is less neat compared to the one with nTraces. It is worth 

to mention that this relationship might be indirect, i.e. due to the fact that time 

is strongly correlated to nTraces and nTraces is to cost. 

• The solution cost follows a gaussian distribution, according to its marginal 

distribution. Time on the other hand is more present for small values and its 

distribution decreases as its value increases. 

Additional plots are reported in Appendix A help to shed light on the relationship 

between the variables. In particular: 

• It is confirmed that the correlation between time and cost is a consequence of 

the strong relationships between time-nTraces and nTraces-cost. 

• From the marginal distribution of cost with number of traces colored, we see 

that the probability density of cost if we fix nTraces is a gaussian that is higher 

and thinner for large values of nTraces. 

• Correlation between nTraces and time is very clear, and it is not influenced by 

cost. This strong correlation can be exploited to predict nTraces given the time, 

as a quadratic or polynomial model would fit it perfectly. 

 

We plot below the dataset with bar charts showing average and variance values 

for solution cost and resolution time across all 100 instances, varying the number of 
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traces. It is important to explore these relationships because they represent the most 

important parts of the behavior that the high-level optimization model must capture. 

Graph 2: Average solution cost across all 100 instances, for each value of the 

number of traces. The variance is also reported in each bar. 

Graph 4: Average online resolution time across all 100 instances, for each value 

of the number of traces. The variance is also reported in each bar. 

Graph 3: Standard deviation for the solution cost across all 100 instances, for each 

value of the number of traces. 
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These plots confirm the previous considerations about the relationship between 

number of traces and solution cost. For low number of traces the cost is influenced by 

the number of traces, namely, more traces yield a better solution quality. On the other 

hand, after 40 traces the solution cost is approximately constant and nTraces does not 

influence it. The variability of solution cost for all instances is also higher for low 

number of traces compared to a large nTraces. 

The computational time is strongly correlated to number of traces: as nTraces 

grows the time grows, following a low-degree polynomial relationship. The variance 

increases steadily as nTraces grows. 

 

We leverage scatter plots to examine the relationship between number of traces 

and memory (either average or maximum) used by the hybrid optimizer in the online 

computation. We also color the instance id to examine how this relationship is 

influenced by characteristics of each instance. Plots are reported below. 

According to the graphs, maximum memory and nTraces have a positive linear 

relationship that is strong and is not influenced by the instance.  

The relationship between nTraces and average memory is more complex. For 

small amounts of traces, all instances have the same value of average memory, and 

there is a linear positive correlation between average memory and nTraces. On the 

Graph 5: Standard deviation for the online resolution time across all 100 instances, 

for each value of the number of traces. 
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other hand, for large values of nTraces the relation is less neat. For some instances 

there is still a positive linear correlation between the two variables, whereas for other 

instances the relationship is more chaotic and increasing nTraces leads to lower 

average memory. 

 

 

 

5.3 Machine Learning Models 

We construct ML models that capture the behavior of the low-level components 

in the system, i.e. controlled VPP and offline/online optimizer.  

Specifically, variables involved are: number of traces (nTraces), computational 

time and average memory of the online algorithm, solution cost, and two variables 

related to the instance, i.e. the sequence of PV and Load values. There are three 

relationships among variables that are relevant to model: 

• Relationship between nTraces and computational time; 

Graph 6: Scatterplot between average memory 

and number of traces. The instance id is colored. 

Graph 7: Scatterplot between maximum memory 

and number of traces. The instance id is colored. 
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• Relationship between nTraces and solution cost; 

• Relationship between nTraces and given memory. 

They can be modeled by either taking or not taking into account information on the 

instance, namely, PV and Load. 

The number of traces is an integer between 1 and 100 and can be considered a 

categorical value. However, the best models that predict this target treat it as numerical 

value, i.e. regression instead of classification. Regressors will be adopted, and 

constraints enforcing nTraces to be integer can be applied later in the optimization 

model. 

 

All models are built and evaluated by performing a 0.8/0.2 train/test random split, 

i.e. 80% of randomly selected samples from the dataset are used for training and the 

remaining 20% for testing. 

We evaluate the performance of models in terms of: 

• Accuracy on the test set for classification tasks. The accuracy score reports the 

number of correct class predictions across all samples. Assume there are 𝑛 test 

samples, �̂�𝑖 is the predicted label for sample i and 𝑦𝑖 is its ground truth (i.e. 

real) label; then the accuracy score is: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
 ∑⟦𝑦𝑖  =  �̂�𝑖⟧ 

𝑛

𝑖=1

 

 

(48) 

where ⟦∗⟧ is 1 if the predicate * is true, 0 otherwise. Values are between 0 and 

1, larger values indicate better the performance. 

• R-Squared (R2 or coefficient of determination) score on the test set for 

regression tasks. Assume �̂�𝑖 is the predicted value for sample i and 𝑦𝑖 is its 

ground truth (i.e. real value), there are 𝑛 test samples, 𝜇 is the mean value of 𝑦 

across all samples; then R2 is: 



71 

 

𝜇 =
1

𝑛
 ∑𝑦𝑖

𝑛

𝑖=1

 

 

(49) 

𝑅2  =  1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝜇)2
𝑛
𝑖=1

 

 

(50) 

A larger value indicates better the performance; the best possible R2 score is 

1.0 and it can assume negative values. 

It is worth to note that the numerator in (50) is the sum of squared errors (SSE): 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

= ∑(𝜀𝑖)
2

𝑛

𝑖=1

 

 

(51) 

and it has the same formulation of the MSE in (23) except for a constant. 

Hence, R2 has a correspondence to a prediction error measure: low values of 

this score indicate large errors whereas the largest value (i.e. R2 =1) correspond 

to an error of 0. 

 

5.3.1  All Models 

Although adopting EML to integrate empirical models with the optimization 

problem limits the available types of ML models, we perform a preliminary analysis 

in a general way. We explore several state-of-the-art machine learning techniques, and 

we do not limit to the models used in EML, namely, decision trees and neural network. 

With this approach we compare the final ML techniques to different ones; this allows 

us to understand whether the final empirical models used in the optimization problem 

perform a good modeling of data, or other ML methods outperform them. This phase 

is also important to explore and guide the design of empirical models that will be 

employed in our system. 
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5.3.1.1 ML Models Exploration 

We leverage different machine learning techniques to capture the relationships 

between two or more variables. For the same set of variables and targets we build 

several models with multiple ML techniques and we compare their performance. 

We report here, for sake of brevity, details and results only for the best models 

obtained with each ML method. Complete results with additional models are reported 

in Appendix B. 

 

i. nTraces and cost 

Focus on the relationship between number of traces and solution value. Each 

model predicts nTraces and uses as features either cost, PV and load or just cost. Plots 

in Appendix A help to shed light on the relation between these two variables. 

The best model found for each ML technique are: 

• Linear regression with change of basis to quadratic base, i.e. polynomial base 

degree 2. Cost, PV, and load are used as features. 

• Extra Trees regressor is a random forest with additional randomness. In each 

node in the tree the split threshold is selected among a set of values randomly 

chosen, instead of taking the best value possible, yielding regularization 

effects. We use two trained random forest classifier (max depth 6, num trees 5) 

to generate a “feature encoding” for PV and Load. This process yields an 

informed (i.e. trained) representation of PV and Load; it works as 

dimensionality reduction for the two vectors, each going from 96 to 5 

dimension. It brings a slight improvement compared to the original 96-

dimensional representation. Then, use Extra Trees to perform regression taking 

as features the cost and the two reduced PV and Load vectors. 
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- Visualization of feature importance for the best RF model:  

 

 

 

 

 

 

 

 

 

 

 

- Using only the cost as feature (i.e., no PV and load) results in a slight 

degradation: 0.85111 vs 0.89015 R2 score. Remarkably, cost alone 

already achieves a high score; adding PV and Load as predictors 

improves the performnce but not by a large amount. 

• NN regression. Architecture [400], ReLU as activation function, Adam with 

learning rate 0.001, no validation-based early stopping, batch size 200, 500 

epochs. Cost, PV and load are used as features. 

• Support Vector Machine regressor with Radial Basis Function kernel and 

regularization parameter C=100. Cost, PV and load are used as features. 

 

Model LR RF NN SVM 

R2 0.28743 0.89077 0.07606 0.90514 

Table 1: Test set performance for the best regressors that predict nTraces 

using cost and (if applicable) PV/load as features. 

Linear regression and neural networks do not perform well on the test set. Random 

forests on the other hand achieve good results, with R2>0.88; using additional 

regularization or feature cleaning allow to improve the performance only slightly 

(~2%). Support Vector Machines achieve the highest score, but the improvement is 

slight compared to RFs (1%). 

Graph 8: Feature importance for the RF. Features 0-4 are 

PV, 5-9 are Load, and 10 is cost. 
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It is worth to remember that for nTraces > 40 (approx.), the solution value is 

constant. This implies that the datasets (training and test sets) have several nTraces 

associated to the same features’ values. Hence, a regressor that takes as feature cost, 

PV, and Load and predicts nTraces can not always predict the right value of nTraces. 

At test time the regressor will predict one value for nTraces; it might be not close to 

the ground truth but not necessarily wrong as the pattern itself in the datasets is 

ambiguous – in the training set, similar features are associated to several different 

values of nTraces from 40 to 100. The regressor can not reach a very high test error as 

the problem is ill-posed due to the data itself. 

As noted before, for a number of traces lower than 40, the solution value changes 

when nTraces varies. In this situation, the instance also influences the solution value: 

as shown in the graphs in Appendix A, based on the instance there is a growing or 

decreasing trend in the cost-nTraces relationship. As a consequence, it is reasonable to 

use PV and Load as features because they are characteristic of each instance and thus 

they might help to capture relevant patterns.  

 

ii. nTraces and time 

Focus on the relationship between number of traces and computation time. Each 

model predicts nTraces using as feature only the time. The dataset suggests a strong 

polynomial relationship between the two variables, hence it is reasonable to model it 

with a linear regression with polynomial basis. 

We use a linear regressor, and we explore different polynomial bases: 

• Linear regression with change of basis to quadratic base, i.e. polynomial base 

with degree 2. 

• Linear regression with change of basis to polynomial base with degree 3. 

• Linear regression with change of basis to logarithmic base. 
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Basis Pol 2 Pol 3 Log 

R2 0.98718 0.99573 0.99273 

Table 2: Test set performance for regressors that predict nTraces using 

time as feature. 

The models yield good performance on the test set, in accordance to the 

relationship found during the dataset analysis. 

 

iii. nTraces and time/cost 

We try to condense the previous two models into one, i.e. a unified model that 

captures the relationship between number of traces, solution cost and computation 

time. This model predicts nTraces taking as features time, cost, PV, and load. 

 

The models are: 

• Random forest classifier for performing dimensionality reduction of PV and 

Load (max depth 6, number of trees 5), followed by Extra Tree that performs 

the actual regression taking time, cost, and reduced PV and Load. The score is 

remarkably high. However, according to the feature importance value, the only 

feature that influences these predictions is time whereas the other variables 

have little importance, as shown in Graph 9. 

 

Graph 9: Feature importance for the RF. Features 0-4 are PV, 5-9 are 

Load, 10 is cost, and 11 is time. 
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• SVM regressor with Radial Basis Function kernel and regularization parameter 

C=100. 

 

Model RF SVM 

R2 0.9999 0.0 

Table 3: Test set performance for regressors that predict nTraces using 

time, cost and (if applicable) PV/load as features. 

According to the results, when we fix time the number of traces is determined and 

vice versa. This is consistent with the results in the previous sections: these two 

variables have a strong correlation, and this is captured by the unified model proposed 

here. As a consequence, if we specify the same time and different solution costs this 

model will predict the same value for nTraces. It is not possible to obtain different 

costs for the same time: this model captures the relationship between time and nTraces 

and not the relationship between the other variables, because the latter are weaker 

compared to the first. 

 

iv. nTraces and memory 

Focus on the relationship between online memory usage (either average or 

maximum) and computation time.  

In the dataset analysis we explored the relationship between these variables. This 

information can be leveraged to guide the construction of empirical models: 

• Random forest or SVM regressor to predict nTraces from average memory and 

instance information (PV and Load). PV and Load are relevant when nTraces 

has a large value, hence they should be used as features. 

• Linear regression should capture the strong relationship between maximum 

memory and nTraces. 

 

Best models, for each ML technique, that predict the number of traces given the 

average memory; they all take memory, PV, and Load as features: 
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• Lasso Linear regressor, i.e. Linear regressor with LASSO (least absolute 

shrinkage and selection operator) or L1 regularization. 

• RF regressor (max depth 20), with RF Classifier (max depth 6, 5 DTs) for dim 

reduction of inputs. As shown by the feature importance (reported in  

Appendix B), the prediction is completely based on memory and it ignores PV 

and Load.  

• SVM regressor with linear kernel. 

 

Model LLR RF SVM 

R2 0.65790 0.94722 0.76906 

Table 4: Test set performance for the best regressors that predict nTraces 

using average memory and (if applicable) PV/load as features. 

 

Models that predict the number of traces given the maximum Memory; they do 

not use PV and Load as features: 

• Lasso regression with polynomial base with degree 3. 

• SVM regressor with linear kernel. 

 

Model LLR SVM 

R2 0.99777 0.98632 

Table 5: Test set performance for regressors that predict nTraces using 

maximum memory as feature. 

 

Random forests are the best predictors for average memory given nTraces when 

PV and Load are used as features, with high R2 scores on the test set. On the other 

hand, linear regression and SVM do not capture the relationship well. 

The relationship between nTraces and maximum memory is approximated well 

by a linear regression with polynomial basis.  
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v. Total 

We study a complete model that predicts nTraces given all or some values of 

average memory, time, PV, Load. There are two possible design approaches for this 

system: 

• Unified model. A unique regressor that takes as features all possible inputs. 

- Pros: a unique model is easier to handle compared to multiple models 

as it requires only one model design and training, hence it can be easily 

applied to different problems. 

- Cons: a unique regressor is less accurate because it must capture the 

relationships between all variables. This is not trivial, as showed in the 

previous section when a single model dealt with time and cost. 

Furthermore, it is not modular, i.e. adding or removing an input variable 

requires a new training of the complete model; this makes it less 

suitable for a flexible and configurable system. 

• Separate models. Several regressors, each predicts nTraces for one of the input 

variables and is designed specifically on the relationship between its input and 

nTraces. The prediction of the single regressors are then aggregated to obtain 

a unique value. 

- Pros: it is more accurate as each regressor captures the specific 

relationship between nTraces and its feature. It is also modular, i.e. it is 

flexible and allows to remove or add input variables just by removing 

or adding single models rather than training a complete new unique 

model. 

- Cons: it is less straightforward to transport separate models to 

completely new problems, as they require a specific model design for 

each input variable. 
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Unified models: 

• PCA (5 principal components) for dimensionality reduction of PV and Load. 

Then, Extra Trees regressor with max depth 20. 

• PCA (5 principal components) for dimensionality reduction of PV and Load. 

Then, NN with architecture [280], activation tanh, maximum epochs 500, 

using average memory. Similarly to the RFs, also in NNs time and memory 

have a major impact on nTraces prediction. 

• SVM regressor with linear kernel. 

 

Model RF NN SVM 

R2 0.99999 0.98555 0.94796 

Table 6: Test set performance for the best regressors that predict nTraces 

using all the remaining variables as features. 

The models have high performance on test sets. However, they might not have 

the desired behavior. They predict nTraces by considering mostly time (the most 

important input) and a bit of memory, without taking into consideration other 

variables. This can be observed from the feature importance in random forests, 

reported in Graph 10. In other words, if we feed the model values for time, cost and 

memory, the model will predict nTraces bases on time and neglecting other features. 

 

 

 

 

 

 

 

 

Graph 10: Feature importance for the RF. Features 0-4 are PV, 5-9 are Load, 

10 is time, 11 is cost, and 12 is memory. 
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Separate models: we use separate regressors, one for each feature time, memory 

and cost, to predict nTraces. Each regressor is customized on the specific relationship 

between its input and the target, both in terms of model and of features (namely, 

whether to use PV and Load). Each regressor provides a suggested value for nTraces, 

and all the suggestions are aggregated to produce a single value. 

• Single regressors: 

- Time. Linear regressor with logarithmic basis, only time as features: 

0.99208 

- Cost. PCA (5 components) for PV and Load followed by an Extra Trees 

regressor (depth max 40): 0.88972 

- Average mem. PCA (5 components) for PV and Load followed by an 

Extra Trees regressor (depth max 40):   0.89107 

• Aggregate prediction. We explore different ways to aggregate the three values 

obtained with the regressors: 

- Minimum value suggested. This represents a conservative approach, as 

choosing the minimum nTraces implies using the minimum run-time 

and memory in the online phase. 

- Random forest with 10 trees, max depth 5. 

- Linear regression.  

- SVM regression with RBF basis. 

Graph 11: Feature importance for the RF model that 

aggegates scores of single regressors. In order: score of the 

regressors for average memory, cost, and time. 
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Aggregation Min RF LR SVM 

R2 0.90401 0.97259 0.89382 0.57057 

Table 7: Test set performance for the best regressors that predict nTraces 

using all the remaining variables as features.  

Results show that separate regressors aggregate yield a good performance on the 

test set. Random forest is the best aggregation method, leading to an R2 of 0.97. 

 

5.3.1.2 Decision Trees 

In this section we specifically focus on decision trees, since they are the most 

important models involved in the proposed system for the next experiments. We 

explore how DTs with different hyperparameters capture the relationships between 

variables. 

For each setting (i.e. hyperparameters and dataset’s normalization) we build four 

separate models, one model for each possible prediction target. Each model uses as 

features the three remaining variables. Average memory is considered rather than 

maximum memory because it is a better estimator of the resource required throughout 

the entire optimization process. The four models are: 

• Regressor predicting computation time given memory, cost, and nTraces; 

• Regressor predicting average memory given time, cost, and nTraces; 

• Regressor predicting solution cost given time, memory, and nTraces; 

• Regressor predicting number of traces given time, memory, and cost. 

We compare models that adopt or do not adopt instance information (PV and 

Load) as features. PV and Load are used in an aggregate form: instead of taking the 

entire vectors, we use as features the vectors’ mean values. 

Hyperparameter tuning is not performed on decision trees in these experiments. 

For some DTs we specify a maximum depth, in order to examine the performance of 

shallow models. For other trees no maximum depth is specified in the training process: 

the DT is grown to the maximum depth possible. 
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We compare the performance on the original dataset and on its standardized and 

min-max scaled version. Standardization and min-max scaling are two different forms 

of data normalization: 

• Standardization, sometimes called z-score: feature 𝑗 for the sample 𝑖 (𝑥𝑖,𝑗) is 

transformed to: 

𝑠𝑖,𝑗 = 
𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
 

(52) 

where 𝜇𝑗 is the mean and 𝜎𝑗 is the standard deviation for feature 𝑗 over the 

training set. This process brings the transformed feature’s distribution to have 

mean 0 and standard deviation 1. The test set is processed using 𝜇 and 𝜎 values 

from the training set.  

• Min-max feature scaling: feature 𝑗 for the sample 𝑖 (𝑥𝑖,𝑗) is transformed to: 

𝑛𝑖,𝑗 = 
𝑥𝑖,𝑗 − 𝑚𝑗

𝑀𝑗 − 𝑚𝑗
 

(53) 

where 𝑚𝑗 is the minimum and 𝑀𝑗 is the maximum value for feature 𝑗 over the 

training set. This process brings all values of the transformed feature to the 

range [0, 1]. The test set is processed using 𝑚 and 𝑀 values from the training 

set.  

 

Hyperparameters and test set performance for the different DT models are in 

Table 8. We report here for brevity only the standardized dataset because it is used in 

the final proposed model. Results for all dataset forms are in Appendix B. 

Features Target DT depth bound DT depth R2 

No 

PV/Load as 

features 

nTraces 
1 1 0.7525 

No 7 1.0000 

Cost 
5 5 0.0979 

No 54 -0.4925 

Time No 22 1.0000 

Average Memory 1 1 0.5648 
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No 23 0.9980 

PV/Load as 

features 

nTraces 
1 1 0.7525 

No 7 1.0000 

Cost 
5 5 0. 5219 

No 21 0.9431 

Time No 17 1.0000 

Average Memory 
1 1 0.5648 

No 22 0. 9914 

Table 8: Test set performance of experimental DTs on the standardized dataset. 

According to the results, the performance of decision trees is not heavily 

influenced by the normalization (i.e. standardization or min-max scaling) of data.  

Prediction of nTraces, time, and average memory is not influenced by the usage 

of instance-specific data as features, i.e. PV and Load. On the other hand, the cost 

regressor experiences a significant decrease in test error when PV and load are added 

among features. 

 

5.3.2 Final Empirical Models 

We design and train the final models that will be embedded into the combinatorial 

optimization problem with EML: decision trees and neural networks. 

These two ML techniques were studied and proved suitable in literature for 

modeling the runtime behavior of optimization algorithms [19]. This motivates their 

adoption in the model proposed in this work. Moreover, they are the main empirical 

models supported by EML. We do not select random forests as they are supported by 

EML but not extensively tested. Furthermore, they do not lead to significant 

improvements in terms of performance on the test set compared to decision trees. 

Hence, we focus our study of non-GD-based models on DTs. 

 

For each setting (ML technique and dataset’s normalization) we build 3 models, 

one for each target variable among solution cost, average memory and resolution time. 
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They are slightly different from the ones introduced in the previous section: the target 

is predicted based on nTraces and (if applicable) PV/Load. In other words, regressors 

only take nTraces and PV/Load as features and they do not use other variables. As 

mentioned before, we adopt average memory because it is a better estimator of the 

resources used throughout the entire optimization process, compared to maximum 

memory. 

5-fold Cross-validation is used to perform hyperparameter tuning, with the aim of 

selecting the tree’s depth or the NN’s architecture and training setting. 

We experiment with the three different data normalization forms: original, 

standardized and min-max scaled. We build several DT and NN models: 

• Decision trees with maximum depth max 5, 9, 11 or unbound. This is not 

necessarily the real depth of the trees; it is the maximum depth, after which the 

tree expansion is stopped during training. In this setting, cross-validation 

chooses the best depth from 1 to the max depth specified. 

• Neural networks. Cross-validation is used to select: 

- The architecture among three choices, where each layer has 100 

neurons and the number of layers varies from 2 to 4. Namely, 

[100, 100], [100, 100, 100], and [100, 100, 100, 100]. 

- The activation between ReLU and tanh. 

- The batch size among 100, 200, and 400. 

- The number of epochs among 50, 100, and 500. 

 

5.3.2.1 Training Results 

For each model we report hyperparameters selected with cross-validation, R2 

score on the test set and training time. It is important to distinguish between two times: 

resolution time is a variable in the dataset and it is the time taken by the online 

optimization phase; training time (t.time) is the time used for training the ML model. 

In blue results for the models adopted in our system, as explained in the next section. 
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Times are in seconds. For data normalization forms, Orig. is the original dataset, Std. 

is the standardized version and M.m.s. is the data with min-max feature scaling. 

DT5 - DT maximum depth 5: 

Features 
Data 

Norm. 

Model 

Solution Cost Resolution Time Average Memory 

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time 

nTraces 

Orig. 3 0.0866 1.2096 5 0.9992 1.2812 5 0.8342 1.2651 

Std. 3 0.0866 1.2438 5 0.9992 1.2896 5 0.8342 1.2805 

M.m.s. 3 0.0866 1.2762 5 0.9992 1.2538 5 0.8342 1.3185 

nTraces,  

PV and 

 Load  

Orig. 5 0.5231 2.3500 5 0.9992 2.4220 5 0.8659 2.3673 

Std. 5 0.5232 2.3023 5 0.9992 2.3598 5 0.8659 2.3750 

M.m.s. 5 0.5231 2.2692 5 0.9992 2.3097 5 0.8659 2.3485 

Table 9: Test set performance, depth, and training time of DT5. 

DT9 - DT maximum depth 9: 

Features 
Data 

Norm. 

Model 

Solution Cost Resolution Time Average Memory 

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time 

nTraces 

Orig. 3 0.0866 2.4186 9 0.9999 2.3729 9 0.9019 2.4110 

Std. 3 0.0880 2.5610 9 0.9999 2.4757 9 0.9019 2.4831 

M.m.s. 3 0.0880 2.3363 9 0.9999 2.5101 9 0.9019 2.5122 

nTraces,  

PV and 

 Load  

Orig. 9 0.8645 9.6251 9 0.9999 4.4393 9 0.9566 4.5104 

Std. 9 0.8685 4.4050 9 0.9999 7.4907 9 0.9566 6.4911 

M.m.s. 9 0.8645 4.3009 9 0.9999 4.3908 9 0.9556 4.4500 

Table 10: Test set performance, depth, and training time of DT9. 

DT11 - DT maximum depth 11: 

Features 
Data 

Norm. 

Model 

Solution Cost Resolution Time Average Memory 

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time 

nTraces 

Orig. 3 0.0866 2.8448 9 0.9999 2.2116 11 0.9032 2.6202 

Std. 3 0.0866 2.6708 9 0.9999 2.2992 11 0.9032 2.6954 

M.m.s. 3 0.0866 2.6737 9 0.9999 2.1524 11 0.9032 2.6644 

nTraces,  Orig. 11 0.9338 10.0952 10 0.9999 5.9117 11 0.9637 5.0474 
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PV and 

 Load  

Std. 11 0.9391 4.9230 10 0.9999 5.0698 11 0.9619 7.5382 

M.m.s. 11 0.9342 4.9433 10 0.9999 5.0030 11 0.9662 7.3752 

Table 11: Test set performance, depth, and training time of DT11. 

DT15 - DT maximum depth unbound:  

Features 
Data 

Norm. 

Model 

Solution Cost Resolution Time Average Memory 

Depth R2 T.Time Depth R2 T.Time Depth R2 T.Time 

nTraces 

Orig. 3 0.0866 3.2392 8 0.9999 1.8410 10 0.9029 2.2193 

Std. 3 0.0866 3.2422 8 0.9999 1.8698 10 0.9029 2.2474 

M.m.s. 3 0.0866 3.3010 8 0.9999 1.8588 10 0.9029 2.0783 

nTraces,  

PV and 

 Load  

Orig. 18 0.9465 7.6124 10 0.9999 9.9832 14 0.9640 9.7557 

Std. 15 0.9546 7.5718 10 0.9999 14.4162 20 0.9715 8.9079 

M.m.s. 17 0.9489 7.5641 10 0.9999 11.8649 20 0.9684 8.9700 

Table 12: Test set performance, depth, and training time of DT15. 

NN - NN; hyperparameters selected for each model are reported in Appendix C: 

Features 
Data 

Norm. 

Model 

Solution Cost Resolution Time Average Memory 

R2 T.Time R2 Time R2 T.Time 

nTraces 

Original 0.0845 713.4111 0.9999 729.8035 0.6694 740.0153 

Std. 0.0928 717.4230 0.9999 733.1245 0.7896 726.6838 

M.m.s. 0.0824 729.0209 0.9999 726.8239 0.7411 735.1767 

nTraces,  

PV and 

 Load  

Original 0.1272 734.1813 0.9998 726.3660 0.7178 740.6667 

Std. 0.9295 733.1343 0.9999 725.0056 0.8050 727.2530 

M.m.s. 0.9210 741.6749 0.9999 728.7338 0.8017 729.1535 

Table 13: Test set performance and training time of NNs. 

 

Neural networks have significantly higher training times compared to any 

decision tree. Among DTs, larger depth is related to a slight increase in training time. 

Performance on the test set for DTs gets better when the depth is larger. DT15 

achieves the best errors while in DT11 and DT9 it is slightly larger. There is a significant 

gap in performance between these models and DT5, in particular in the prediction of 

cost (respectively, R2 of 0.95+ and 0.52), most likely indicating a severe overfitting of 
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the latter compared to other trees. The largest difference in performance is for the cost 

regressor, while prediction of time is not heavily influenced by hyperparameters and 

it is very high in all cases, with R2 >0.99. Neural networks achieve similar 

performances in the prediction of cost and time, but lead to a lower test score on 

memory compared to the worst DT model: 0.79 for NNs and 0.83 for DT5. 

Remarkably, the performance of neural networks is better in terms of test scores 

when the datasets are normalized, namely, standardized or min-max scaled. 

Normalization of datasets has a beneficial effect in the objective function of the neural 

network [39] [40] [41], leading to faster and more stable convergence during gradient 

descent; this explains a better test score in that situations. On the other hand, the 

performance of decision trees is not influenced by normalization on the training set. 

The better NN performance motivates the adoption of standardized data in the final 

models. 

For both NNs and DTs, models predicting time and average memory do not 

perform significantly better when information of the instance (PV and Load) is used 

among the features. On the other hand, predictors of the solution cost that take into 

account PV and Load outperform models that do not use instance-specific features. 

We decide to use only nTraces as feature for both memory and time regressors, 

obtaining similar predictions with less complex ML models; on the other hand, we use 

nTraces, PV, and Load for models predicting the cost. 

 

5.3.2.2 Final models 

We select some of the machine learning models proposed in section 5.3.2.1, with 

the guidance of the results reported. These will be embedded in the high-level 

optimization problem with EML. In particular: 

• We compare each technique and hyperparameter setting mentioned in the 

previous section. Namely, we adopt the following groups of models: 

- DT5: decision tree with maximum depth in training 5. 

- DT9: decision tree with maximum depth in training 9. 
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- DT11: decision tree with maximum depth in training 11. 

- DT15: decision tree with maximum depth in training unbound. The 

deepest tree selected with this setting has depth 15, hence the name. 

- NN: neural network. 

• For each technique we use three separate regressors, one for each target 

variable: 

- Solution cost based on nTraces, PV, and Load; 

- Average memory based on nTraces; 

- Solution time based on nTraces. 

The features for each regressors are selected in order to obtain the simplest 

model possible yielding satisfactory test results; details on this selection are in 

the previous section. 

• We use the standardized datasets, as NN lead to a better performance on these 

data compared to their original form. 

Complete details on models’ architecture, training time, and test performance are 

reported in the previous part of section 5.3.2.  

 

5.4 Combinatorial Optimization Model 

In this section we provide information on the combinatorial optimization model 

that is proposed and tested in our experiments. This model represents the high-level 

optimizer within the entire system. 

 

5.4.1 Optimization Model 

The combinatorial optimization model in the proposed system has the following 

formulation. (56) is the EML-specific contribution while (54), (55), and (57) are the 

core combinatorial structure: 
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𝑚𝑖𝑛 𝑓(𝑥, 𝑧) (54) 

𝑔𝑗(𝑥, 𝑧), ∀𝑗 ∈ 𝐽 (55) 

𝑧 = ℎ(𝑥) (56) 

𝑥𝑖 ∈ 𝐷𝑖  , ∀ 𝑥𝑖 ∈ 𝑥  (57) 

Variables specifically involved in the model are: 

• nTraces: number of traces; 

• time: computation time for the online optimization phase; 

• avgMem: average memory used in the online optimization; 

• cost: solution cost obtained by the hybrid online/offline optimizer; 

• PV and Load: instance-specific data; they are the aggregated versions of the 

sequence of PV and Load values, namely, their average. 

Because the high-level optimizer incorporates the behavior of both the controlled 

system (VPP) and the low-level optimizer (hybrid online/offline algorithm), variables 

carry information about both these systems. 

The optimization model contains, among 𝑔𝑗 in (55), some constraints that force 

nTraces to be an integer. Although the number of traces is an integer, nTraces is treated 

as a numerical value by the ML models. A possible solution to obtain correct nTraces 

values is to keep the variable as numerical throughout the entire optimization process, 

and round its value to an integer in the final solution. However, with this approach the 

optimization process is not aware of the real constraints; this might result in solutions 

that are not actually feasible. Therefore, we decide to enforce the type for nTraces 

already in the optimization model as additional constraints. 

The ML models embedded in the optimization problem are the 3 regressors 

specified in section 5.3.2. Their encodings are represented by equation (56). 

The core combinatorial structure (54), (55), and (57) depends on the specific 

problem. The optimization problem is flexible and the system is interactive: constraints 
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and the objective function are specified by the user. In other words, the user specifies 

the core combinatorial structure desired for the use case. 

 

 

 

The modeling process of the optimization problem does not require domain-

specific knowledge on the VPP or on the low-level optimizer. They can be treated as 

a black box, whose input/output relationship is modeled through machine learning and 

incorporated leveraging EML. 

The combinatorial optimization problem is a prescriptive model, but it is data-

driven thanks to the integration of ML provided by EML. The system is customizable 

as it allows the definition of the desired constraints and objectives. It is also highly 

flexible: it can be easily used for either deciding the low-level optimizer’s 

configuration or forecasting its behavior, namely, the problem’s input and output 

(constraints and optimization objective) can be easily specified based on the user’s 

needs. 

 

Figure 15: Composition of the custom combinatorial 

optimization model. It builds over a set of basic variables and 

constraints. Empirical ML models are integrated via EML. The 

objective and additional constraints are interactively specified by 

the user to fit the specific use case. 
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5.4.2 Optimization Approach 

The optimization problem in our system is a MILP (mixed-integer linear 

programming) [42], modeled and solved using the IBM cplex solver.  EMLLib10 

provides functionalities to embed machine learning models into this solver. 

Mixed-integer linear programming (MILP) is a field of mathematical 

programming that addresses linear problems with continuous and integer decision 

variables. It provides techniques to find extreme points of linear objective functions 

with linear or integrality constraints. MILP solvers can leverage the problem’s 

structure (i.e. constraints and cost function) to improve the efficiency of the search 

process, by adopting techniques such as linearization, cutting planes, branching, and 

constraint propagation.  

 

5.4.3 Empirical Model Learning 

In previous sections we detailed the machine learning models used to approximate 

the input-output relationship in the complex optimization system. Now, we embed the 

trained empirical model into the high-level combinatorial optimization problem. We 

adopt EMLLib10, library that implements EML and is associated to [34]. Once the 

Empirical ML model has been encoded, its equations are automatically taken it into 

account by the solver for boosting the search process, e.g. for computing bounds and 

generating cuts. 

 

In order to avoid re-building the optimization model for every experiment, we 

construct and save a unique base model containing: 

• Basic variables and constraints; 

• Embedded ML models. 

 

10 https://github.com/emlopt/emllib 

https://github.com/emlopt/emllib
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All experiments start from this model and add custom constraints and objectives based 

on the specific requirements. 

 

Below we report information on the embedded models. Times reported are the 

sum for all three models. The embedding time is the time needed to embed the three 

empirical models into the optimization problem with EML. The loading time is the 

time needed to load the pre-constructed base model from disk. 

 

Model 

ML model info Combinatorial optimization model info 

Training time 

(sec) 

Embedding 

time (sec) 

Loading time 

(sec) 

Variables 

number 

Constraints 

number 

Model size 

on memory 

DT5 4.8725 0.1201 0.0335 100 457 104 KB 

DT9 9.3638 7.2999 0.8926 571 4596 7.77 MB 

DT11 9.9177 48.3547 4.1838 1064 10295 46 MB 

DT15 11.6890 466.6453 27.2517 2119 25455 1.03 GB 

NN 2192.9426 2.9675 0.2445 2854 1003 1.06 MB 

Table 14: Information on times and dimensions of combinatorial optimization 

models with embedded ML models. 

According to the results, ANNs are significantly slower in training compared to 

DTs. Among DTs, training is faster when the DT has a smaller depth. 

Remarkably, all trees have less variables compared to the ANN but a significantly 

larger amount of constraints, except for DT5. This results in DTs with depth 9, 11 and 

15 to have slower embedding/loading times and larger size with respect to ANNs, 

while this is not true for depth 5 trees. These trends are consistent with the models’ 

architecture and with how EML represent them. The number of neurons in the NN is 

relatively large, and the number of variables introduced by EML has a roughly linear 

correlation with the number of neurons in a NN and with the depth of a DT. The 

number of paths in a tree grows significantly when the tree gets deeper and broader, 

and so does the amount of constraints used by EML to encode it. 
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In DTs the model’s depth heavily influences the optimization model. Deep trees 

have a greater number of both constraints and variables compared to smaller models. 

The size that the optimization model takes on disk depends on these factors: it is larger 

when the trees are deeper, reaching a very large 1.03 GB size for DT15. The times to 

embed trees and to load the pre-formed optimization model are related to the amount 

of variables and constraints. As a consequence, they increase significantly when the 

depth increases; for example, the embedding time and loading time are respectively 60 

and 27 times larger in DT9 compared to DT5. 
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Chapter 6  

Experiments and Results 

 

Experiments are focused on the behavior of the high-level optimizer, inserted on 

top of the low-level optimizer. The latter is the hybrid offline/optimization technique 

that leverages the fixing heuristic and a contingency table. 

We perform two groups of experiments. First, we examine the performance of 

optimization models when the embedded empirical models are either decision trees or 

neural networks. We test them on several comparative experiments aimed at finding 

weaknesses and strengths of models. Then, guided by the results of the preliminary 

experiments, we select the best machine learning models to use in the high-level 

optimizer, and we test the resulting system in two real-world scenarios. 

The empirical models used in the following experiments are the ones detailed in 

section 5.3.2, and the combinatorial optimization model is detailed in section 5.4.  

 

6.1 Comparative Experiments 

In comparative experiments on decision trees and neural networks each model 

under test is applied to the same problem in a similar setting. We examine the 

performance of the two ML techniques by means of time to solve the optimization 

problem and solution quality. This allows us to select the model to use in the complete 

experiments reported in the next section. 

We compare different DTs hyperparameters, namely, different maximum depths 

used for training: 9, 11, and unbound. Information the hyperparameters of both DTs 

and NNs are reported in section 5.3.2. 

Several problems are considered in these experiments: 

• Minimize the number of traces, given constraints on the solution value. 
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• Minimize the solution value, given constraints on memory or time. 

• Minimize the time, given constraints on memory or solution cost. 

• Minimize the memory, given constraints on solution cost. 

We perform these experiments for different values of the variables involved in 

constraints. Experiments are designed to compare and find weaknesses in models. We 

explore both normal values and edge cases, i.e. constraints’ values very close to the 

domain limit for the variable, in order to shed light on differences in behaviors among 

models. 

The optimization models in these experiments are not instance specific: we do not 

constrain PV and Load to particular values. 

 

6.1.1 Results 

Below are the solutions found for the optimization problem and the resolution 

times. We report here, for brevity, only relevant problems; other experiments highlight 

similar behaviors and are described in Appendix D. 

Variables involved in the solution change based on the problem, thus they are 

reported one per row. Times are in sec. A timeout of 1200 sec is set for the solver: 

after that time, the resolution process is stopped and the solution returned by the solver 

is the current optimum point, if existing. It is important to distinguish between two 

times: time is a variable in the dataset and it is the time taken by the online optimization 

phase; resolution time (Res. time) is the time taken by our high-level optimizer to find 

a solution. 

Objective 

(minimized) 
Constraints 

Solution 

Variable 

Empirical ML Model 

DT9 DT11 DT15 NN 

Value 
Res. 

time 
Value 

Res. 

time 
Value 

Res. 

time 
Value 

Res. 

time 

nTraces Cost <= 398 
nTraces 1 

0.2191 
1 

1.5095 
1 

5.1944 
No 

solution 
1200 

Mem 88.92 88.92 88.92 
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Time 6.93 6.93 9.51 

Cost <= 256 

nTraces 

No 

solution 
0.1494 

24 

1.2049 

24 

6.2743 
No 

solution 
1200 Mem 2953.95 2953.95 

Time 381.99 381.99 

Cost 

Mem <= 3963,  

Time <= 2128 

Cost 255.91 
0.2724 

254.83 
2.0288 

254.83 
6.6248 

453.06 
1200 

nTraces 13 24 24 37 

Mem <= 819,  

Time <= 71 

Cost 268.10 
0.2346 

268.10 
1.1606 

268.10 
4.3203 

337.06 
1200 

nTraces 3 3 3 8 

Time 

Cost <= 398 
Time 6.93 

0.2190 
6.93 

1.6775 
9.51 

5.3994 
5.56 

593.4029 
nTraces 1 1 1 2 

Cost <= 256 
Time 

No 

solution 
0.1834 

381.99 
1.2097 

381.99 
5.8430 

No 

solution 
1200 

nTraces 24 24 

Mem Cost <= 256 
Mem 

No 

solution 
0.1493 

2953.95 
1.1909 

2953.95 
5.8295 

6166.68 
1200 

nTraces 24 24 77 

Table 15: Comparative experiments for DT9, DT11, DT15, and NN. For 

each problem we report objective and constraints, resolution time for the 

high-level optimizer and, for each variable of interest, the solution value. 

According to the results, optimization models derived from ANNs are 

significantly slower in obtaining solutions compared to all DTs-based models. Among 

the latter, the depth of the trees influences the optimization solving time: increasing 

the tree depth results in slower resolution time. 

NNs in some problems do not find any solution in useful time (1200 sec); 

however, they find a solution if constraints for these problems have relaxed values. 

This is most likely a consequence of NNs not predicting the values requested by the 

constraints for those variables. When we constraint values at the boundaries of the 

variables’ domains, DTs find reasonable solutions while NNs do not. This is a sign 

that NNs underfit compared to DTs. 

From these experiments we can examine how DTs’ depth influences the results 

of the optimization problem. DT9 has faster embedding time and resolution time (0.20 

- 0.40 sec), but struggles in finding solutions for extreme values, similarly to a neural 
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network, and often solutions are not consistent with deeper trees. DT11 has slightly 

slower embedding and resolution (res time 0.90 - 1.60 sec); it finds all the solutions, 

they are almost always equal to the deep tree even if not as good as DT15 for extreme 

values.   

These experiments are important as they demonstrate that the proposed 

optimization system not only minimizes the requested objective and respects 

constraints, but also gives suggestions on other variables. 

 

6.2 Final Use Cases 

The proposed system is tested on two case studies. They are similar to real-world 

scenarios where the optimizer could be employed:  

• Optimal Number of Traces: Find the low-level optimizer’s configuration (i.e. 

number of traces) that yields the best cost given time and memory constraints. 

Given time/resources requirements specified by the user, namely, constraints 

limiting computation time or memory, minimize the solution cost. The 

optimizer outputs the number of traces required to obtain this solution value, 

together with the predicted solution cost, memory and time. 

In this problem: 

- Constraints: memory and resolution time. 

- Objective: minimize solution cost. 

- Output: number of traces; forecast on solution cost, memory, and time. 

• Solution Improvement over Baseline: Find the optimal time/resources 

configuration (i.e. time and memory) required to reach a solution improvement 

with respect to the greedy heuristic.  

Each instance is associated to a baseline solution value, given by the cost 

obtained with the greedy heuristic (section 2.1). Given a value of improvement 

for the solution cost w.r.t. the baseline specified by the user, i.e. a constraint on 

the solution cost, minimize the number of traces to obtain it. The optimizer 



98 

 

outputs memory and time required to obtain the desired improvement, together 

with the predicted number of traces and solution cost. 

In this problem: 

- Constraints: solution cost. 

- Objective: minimize number of traces. 

- Output: memory and resolution time; forecast on number of traces and 

solution cost. 

 

We experiment on these scenarios only with decision tree models, with different 

maximum depths in training (5, 9, 11, and 15); information on these DTs are in section 

5.3.2. We do not experiment with neural networks given the poor performance on the 

test set; additionally, according to results in section 6.1, they yield optimization models 

that are significantly slow in the resolution process and, as a consequence, they can 

not find useful solutions in many cases. 

The optimization problem is structured as specified in section 5.4.1. Constraints 

in the core combinatorial structure are the constraints for the specific experiment, 

defined by the user. We also add two constraints that bind the PV and Load variables 

in the optimization problem to the values of the instance considered in the specific run; 

this allows the optimization problem and its solution to be instance-specific. 

 

We test on 42 new and unseen instances; they were not present in the dataset used 

to build ML models. Each instance was solved with the greedy heuristic, yielding a 

solution cost that represents a baseline for the hybrid offline/optimization approach. 

For the first use case (Optimal Number of Traces): 

• We experiment on a set of 5 values for average memory and a set of 7 values 

for computation time. We perform the experiments adopting a grid-search-like 

approach, i.e. we fix one value for the memory and perform experiments for 
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each time value, with one run for each instance and for each combination of 

values. 

- The average memory values are (in MB): 512, 1024, 2048, 4096, 8192 

- The solution time values are (in sec): 50, 70, 90, 110, 250, 500, 750 

For the second use case (Solution Improvement over Baseline): 

• We experiment on a set of values for solution cost improvement w.r.t. the 

baseline. We perform one run for each instance. 

- The improvements in solution cost over the baseline (in %) start from 

2% and sequentially increase by 2% or 3% until no solution is found, 

i.e.: 2, 5, 7, 10, 12, 15, 17… 

 

6.2.1 Results 

We report in this section solutions obtained by the high-level optimizer on the two 

use cases under examination, together with information on resolution times.  

 

6.2.1.1 Optimal Number of Traces 

Table 16 documents the average resolution times for the optimization problem for 

all ML models. This is the time taken by our high-level solver to find a solution; it is 

not to be confused with the variable time, that represents the resolution time of the 

low-level hybrid optimizer and is a variable in the dataset. 

 Empirical ML Model 

DT5 DT9 DT11 DT15 

Res. Time (sec) 0.0040 0.1073 0.6196 4.7341 

Table 16: Average resolution time for the high-level optimizer. 

According to the results, the decision tree’s depth heavily influences the 

resolution time of the proposed high-level optimizer. Increasing the depth from 5 to 

15 leads to a growth in time by a factor of more than 103.  
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For each memory constraint value, we average the optimization results (i.e., 

nTraces suggested and solution cost forecasted) across all instances and time constraint 

values. We report in Graph 12 how these values change when the memory constraint 

value varies, for all the proposed ML models. The same operation is repeated with 

memory and time switched in Graph 13. 

 

 
Graph 12: Number of traces and Cost suggested by the optimizers under different memory bounds. The proposed 

ML models are compared. For each memory costraint value, the result is averaged across all instances and time 

constraint values.  

Graph 13: Number of traces and Cost suggested by the optimizers under different time bounds. The proposed ML 

models are compared. For each time costraint value, the result is averaged across all instances and memory 

constraint values.  
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Trends emerging from these results are not surprising. When we allow more 

memory and/or time (i.e. constraints are relaxed) the solution gets better in terms of 

cost (i.e. lower cost) compared to tighter bounds; at the same time, the optimal number 

of traces increases as more traces required to reach a better solution. Remarkably this 

trend is not captured by DT5; for this model the solution cost is approximately constant 

for all time and memory values, while nTraces changes only slightly. DT5’s behavior 

is a typical evidence of underfitting, as it indicates that the model did not learn a 

relationship between the predictors and the target variables. 

In general, results show that trees with depth 9,11, and 15 find similar solutions 

whereas DT5 leads to results that are quite different compared to the other models. 

 

For each constraint (i.e. fixing the values of memory and time constraints) we 

compute the standard deviation of the solution’s values (i.e. cost and nTraces) found 

across all instances. We report here, for each model, this standard deviation averaged 

across all constraints’ values: 

Solution 

Variable 

Empirical ML Model 

DT5 DT9 DT11 DT15 

Cost 37.21 56.70 57.36 55.04 

nTraces 2.86 3.59 3.19 3.15 

Table 17: Standard deviation of each solution value across all instances, 

averaged across all experiments (i.e. constraints’ values) for each ML 

model. 

Solutions in the shallowest DT (DT5) are not significantly influenced by the 

instance, as demonstrated by a smaller standard deviation in results; feeding different 

instances (i.e., PV and Load values) to the same problem leads to the same solution. 

DT5 is also less sensible to the value of constraints, i.e. the solution found by the 

optimizer is almost always the same despite the constraint. This behavior is not present 

in deeper trees and it is most likely due to underfitting of DT5 compared to the others. 

It not a desirable behavior; in fact, we aim at obtaining a model that performs specific 

predictions based on the instance’s characteristics. 
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Below are solutions found for the optimization problem based on DT11, averaged 

across all instances, for some of the constraints value experimented:  

Constraints Solution 

Memc Timec nTraces Mem Time Cost 

512 

50 2.82 369.37 17.33 397.77 

110 2.82 369.37 17.33 397.77 

500 2.82 369.37 17.33 397.77 

750 2.82 369.37 17.33 397.77 

1024 

50 4.27 579.50 28.35 392.03 

110 5.88 755.93 44.20 387.89 

500 5.88 755.93 44.20 387.89 

750 5.88 755.93 44.20 387.89 

2048 

50 4.27 579.50 28.35 392.03 

110 8.39 1068.37 74.41 379.49 

500 12.82 1532.35 146.36 374.04 

750 12.09 1450.42 134.71 374.04 

8192 

50 4.27 579.50 28.35 392.03 

110 8.39 1068.37 74.41 379.49 

500 19.70 2455.50 307.24 369.61 

750 23.21 2869.46 432.03 360.55 

Table 18: Solutions of the high-level optimization model based on DT11, 

averaged across all instances. The first two columns (memc and timec) are 

the constraints. The remaining columns are the solution found: in this 

specific problem, nTraces are the variable suggested by the system whereas 

memory, time, and cost represent forecasts. 

 In general, these results demonstrate that the proposed system is able to suggest 

the optimal configuration (i.e. number of traces) given time/resources constraints, and 

at the same time to make predictions about cost, time, and memory. 

The optimizer finds feasible solutions, as demonstrated by the fact that time and 

memory in each solution are below the requested values. As expected, for tight 

memory constraints (i.e. small values of the memory bound), the solution memory 

value is closer to its bound compared to how the solution time is to the time bound. 
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Vice versa, for tight time bounds the result’s time is closer to its constraint compared 

to memory. 

The two graphs below give a complete and clearer vision of trends emerging from 

Table 18. For the same optimization problem, in Graph 14 we plot how results 

(nTraces suggested and solution cost forecasted) change when the memory constraint 

varies, for each value of the time constraint. Graph 15 reports the same operation with 

memory and time switched. All constraints’ values experimented are reported, and 

results are averaged across all instances. 

 

 Graph 15: nTraces and Cost suggested by the DT11-based optimizer under different time bounds, averaged across 

all instances, for each memory constraint value. 

Graph 14: nTraces and Cost suggested by the DT11-based optimizer under different memory bounds, averaged 

across all instances, for each time constraint value. 
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Remarkably, for low values of the memory bound (e.g. 512 MB) the optimization 

result is not affected by the time constraint imposed: increasing the time yields the 

same result, as we can see in Graph 15. On the other hand, when the memory constraint 

is less strict the result changes for different time values. For middle values of this 

constraint, the result changes for small values of time until a specific point, after which 

it remains constant when the time bound changes. Graph 14 show that this trend is also 

present when variables are switched; if the time constraint is tight (e.g. 50 sec), the 

best result is obtained with a low memory value (bound 1024 MB) and increasing the 

memory bound does not improve the solution.  

This result is particularly interesting as it demonstrates that the high-level 

optimizer is able to suggest optimal configurations with consistent time/memory 

values for the low-level optimizer: if one of the constraints specified by the user is 

tight, our system suggests the configuration that yields the best solution value 

reachable with that constraint and that, at the same time, uses the smallest resources 

possible. For example, for a strict time bound, the suggested nTraces value is the 

configuration with lowest memory possible among all values that lead to the best 

solution cost; increasing the memory allowance does not change this solution.  

 

6.2.1.2 Solution Improvement over Baseline 

Below is the average resolution time for the proposed optimizer depending on the 

machine learning model.  

 Empirical ML Model 

DT5 DT9 DT11 DT15 

Res. Time (sec) 0.0077 0.1183 0.5888 4.0262 

Table 19: Average resolution time for the high-level optimizer. 

Results are consistent with the ones found in the previous experiment: as the decision 

tree’s depth increases, the time to solve the combinatorial optimization problem grows. 
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We report the maximum cost improvement found by each optimization model, 

averaged across instances and all experiments: 

 Empirical ML Model 

DT5 DT9 DT11 DT15 

Improvement 

w.r.t. baseline 
6.09% 10.13% 10.60% 12.65% 

Table 20: Average maximum cost improvement found by each optimizer. 

A larger DT depth is beneficial to the quality of the result found by the high-level 

optimizer: deep trees detect larger improvements in cost compared to shallower ones.  

 

In Graph 16 below we examine only one instance (#13). For the different DTs we 

visualize how optimization results (i.e. memory, time, cost, and nTraces) change based 

on the imposed improvement. Memory, time, and cost are normalized by the baseline 

value, i.e. ratio of the values between the hybrid optimizer and the greedy heuristic. 

To allow a better visualization we also plot the baseline, whose value is trivial (namely, 

1) since variables are reported normalized. In the cost plot we also visualize the 

constraint value; a cost improvement of x% corresponds to a baseline-normalized cost 

of (1-x), e.g. 2% improvement is equivalent to 0.98. In all plots the cost improvement 

is reported as decimal value, i.e. 0.x corresponds to a x% improvement. 
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As we would expect, the memory and time suggested by the approach increase as 

the required cost improvement grows. While the shallowest DT finds an improvement 

of up to 2%, the deepest tree reaches 15%. The results found by DT11 and DT15 are 

very close in value, although DT11 stops at 12%, while DT9 sometimes finds different 

solutions, e.g. for 5% and 7% improvement. As shown by the cost plot, DT15 finds 

solutions that are closer to the constraint value. This result is not surprising as 

shallower DTs overfit compared to a deeper DT (i.e. DT15): this results in less precise 

models that provide coarser predictions compared to DT15. 

 

In Graph 17 we compare optimization results (i.e. memory, time, cost, and 

nTraces) of DT11 on different instances: #1, #6, #10, #13, #31, and #32. For sake of 

clarity we only examine few instances that are significant; the remaining have similar 

behaviors. 

In general, results in Graph 17 demonstrate that the proposed high-level optimizer 

is able to tell the user whether a desired cost improvement is feasible and, if it is, to 

suggest time/memory configurations to reach it and to forecast number of traces and 

cost.  

 Graph 16: Optimization results (Memory, Time, nTraces, and Cost) for each proposed optimizer on 

instance #13. Different constraint values are imposed for the cost improvement w.r.t. baseline. 
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Using the hybrid offline/online approach allows one to obtain an improvement in 

the solution value compared to the greedy heuristic, up to 30% for some instances 

according to the prediction. The instance heavily influences the maximum 

improvement reachable and the time/memory required. Instance #1 reaches a 22% cost 

improvement with very little memory/time increase w.r.t. baseline, and the 

memory/time increase does not change significantly when the improvement grows. 

Also instance #10 has a constant resource requirement, but it is large (80x increase in 

memory and 500x in time). Instance #6 and #31 show a constant requirement of 

memory and time (respectively, large and small) up to a certain improvement, and then 

they skyrocket. Instances #13 and #32 show a steady increase in the resource as the 

improvement grows. 

 

Graph 17: Optimization results (Memory, Time, nTraces, and Cost) for the DT11-based optimizer on several 

instances. Different constraint values are imposed for the cost improvement w.r.t. baseline. 
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Chapter 7  

Conclusions 

 

In conclusion, we devise an approach to perform automatic configuration of an 

algorithm operating on new unseen instances. The proposed method is a combinatorial 

optimization model that integrates machine learning models via Empirical Model 

Learning. It is located on top of a hybrid offline/online optimizer, resulting in a two-

levels hierarchical system that performs stochastic optimization for the energy 

management system in a virtual power plant. Results show that our approach allows 

both automatic decision-making and forecasting on the configuration, online run-time, 

and computational resources of the low-level algorithm. 

 

The proposed model incorporates information on the behavior of both the 

underlying controlled VPP and the low-level optimizer. Machine learning techniques 

are adopted to approximate the behavior of this highly complex system. We use 

Empirical Model Learning to embed the trained ML models in the combinatorial 

optimization problem.  

By virtue of EML, the optimization model leverages ML to perform decision-

making and forecasting over a controller and its controlled system. The high-level 

optimizer guides the configuration of the low-level one, with no direct communication 

and with little knowledge of its internal details: the knowledge is given by ML models. 

Results demonstrate that EML is well-suited for building multi-level optimization 

systems. By bringing together machine learning and mathematical programming, with 

EML it is possible to tackle stochastic optimization problems in complex real-world 

systems. 

Integrating machine learning via EML, the optimization model’s design is data-

driven and automatic; it does not require domain expertise or a hand-crafted modeling 
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process. The proposed system is customizable and interactive, as the user defines 

constraints and objectives based on the specific use case. Furthermore, it is highly 

flexible; a variable in the optimization problem can be easily inserted inside constraints 

or objectives, or it can be predicted based on other variables. This flexibility allows 

one to perform any desired automatic decision-making and forecasting.  

 

As shown by results, relationships between variables in the system are highly 

complex and hard to formalize manually. Machine learning techniques are well-suited 

to capture the knowledge about the system’s behavior. 

Among the proposed models, artificial neural networks yield poor performance, 

although they result in smaller optimization problems. The ML model has a larger test 

set error and training time compared to DTs. The optimization model has a 

significantly higher solving time, and the quality of its solutions is worse in terms of 

the ability to find results in different situations. 

In decision trees there is a tradeoff between solution quality and times/size related 

to the model, based on depth. Deeper trees have a larger time for training, embedding, 

and solving the optimization problem; additionally, the optimization model has a 

greater memory size and number of variables and constraints. However, the 

performance of a deeper ML model is better in terms of test error and so is the quality 

of the solution found by the optimizer; for example, deep DTs allow to have solutions 

sensible on the specific instance. The suggested DT has a middle depth, 11 in our 

experiments; it yields comparable solution quality with respect to the deepest tree, with 

a significantly smaller and less time-consuming optimization model. 

 

The proposed system is ready to be adopted for performing automatic 

configuration and forecasting on the low-level optimization algorithm in a VPP. In 

future works it is possible to further experiment with neural networks; their 

architecture is highly flexible, thus future studies might focus on tuning them to 

overcome the pitfalls that emerged in our experiments. Another direction for additional 
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studies is to explore the use of random forests as ML models embedded in the 

combinatorial optimization problem. Finally, since results demonstrate the flexibility 

of an EML-based system, it is possible to re-use our approach and adopt machine 

learning to deal with other complex algorithms and real-world optimization problems. 
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Appendix A  

Dataset Analysis 
 

In section 5.2 we perform an analysis on the dataset used to train machine learning 

models that are embedded in the high-level optimizer. We report here additional 

information and plots regarding the dataset. 

 

A.1 All Variables 

General statistics on the dataset: 

 

nTraces 
Sol Cost 

(k€) 

Sol 

Cost 

Norm 

Time 

(sec) 

Time 

Norm 

Mem 

Avg 

(MB) 

Mem 

Avg 

Norm 

Mem 

Max 

(MB) 

CPU 

Avg 

(%) 

CPU 

Norm 

CPU 

Max 

(%) 

mean 50.5 373.89 0.79 1956.59 1334.67 4545.20 89.28 5576.30 0.26 1.93 1.52 

std 28.87 47.28 0.10 1714.41 1183.00 2328.99 46.09 2889.62 0.23 1.70 2.10 

min 1.00 243.19 0.51 4.26 3.08 17.08 0.34 90.91 0.00 0.00 0.00 

25% 25.75 339.66 0.73 426.62 287.41 2811.98 56.19 3358.76 0.06 0.50 0.30 

50% 50.50 372.03 0.79 1470.31 994.90 4596.65 89.19 5618.45 0.24 1.71 0.50 

75% 75.25 405.03 0.85 3209.42 2181.75 6348.72 125.11 8014.44 0.37 2.65 2.10 

max 100.00 563.83 1.25 5871.14 5045.00 10046.60 201.74 10534.83 1.03 10.10 8.90 

Table 21: Statistics on each column of the dataset containing records of 

runs of the hybrid offline/online algorithm. 

 

We report in Graph 18 the pairwise plot between time and solution cost, where 

nTraces is colored. In this situation when one variable is plotted against itself, i.e. 

diagonal of the grid, we show a Kernel Density Estimate (KDE) layered by the colored 

variable, i.e. nTraces in this example. 

Graph 19 and 20 present similar pairwise plots where variables are, respectively, 

nTraces and time with cost colored, and nTraces and cost with time colored. 
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Graph 18: Pair plot for solution cost and time, where the number of traces is colored. 

 

Graph 19: Pair plot for number of traces and 

resolution time, where the solution cost is colored. 
Graph 20: Pair plot for number of traces and 

solution cost, where the resolution time is colored. 
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A.2 Number of Traces and Cost 

These plots detail the relationship between nTraces and cost. 

Graph 22: Scatterplot of the average cost per 

nTraces. For each value of nTraces we average all 

solution costs. 

Graph 21: Scatterplot between solution cost and 

nTraces for one instance (#1). 

Graph 23: Scatterplot of the average number of 

traces per cost. For each value of cost we average all 

number of traces. 

 

Graph 24: Scatterplot of the average number of 

traces per cost, with binned cost. We perform 

binning on the cost with a range of 5, i.e. we split 

the cost’s domain in intervals of length 5 and we 

group together all data points whose cost is within 

an interval. For each interval we average the 

number of traces. 
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Graph 25: Scatterplot of solution cost and number of traces, with the instance id 

colored. 

Graph 26: For the first 20 instances, scatterplot of solution cost and number of 

traces, with the instance id colored. This helps to shed light on how the instance 

influences the relationship between cost and nTraces. 
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Appendix B  

Machine Learning 

 

In section 5.3 several machine learning techniques are explored to model the 

relationship between variables, then the final models are trained and tested. We report 

here complete results regarding the ML models analyzed while building the high-level 

optimizer. 

 

B.1 All Models 

We leverage different machine learning techniques to capture the relationships 

between two or more variables. Here reported are results for all ML models 

experimented, for those sets of variables that were reported partially in section 5.3.1.1. 

 

i. nTraces and cost 

Focus on the relationship between number of traces and solution value. Each 

model predicts nTraces and uses as features either cost, PV, and load or just cost. 

 

Classifiers, using cost, PV, and Load as features: 

Model Accuracy 

KNN: cross-validation to choose K (K=5 to 8). Best: 5 0.009 

SVM classifier: cross-validation to choose the regularization parameter C (C=10-4 

to 104, multiplying by 10). Best: 1 

0.002 

Table 22: Test set performance for classifiers that predict nTraces using cost, 

PV, and load as features. 
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Regressors: 

Model R2 

Linear regression with change of basis to quadratic base, i.e. polynomial base of 

degree 2, with cost, PV, and load as features. 

0.28744 

Linear regression with change of basis to quadratic base, i.e. polynomial base of 

degree 2, just cost as feature. 

0.07482 

Random forest regression, 100 trees with max depth 40. 0.88113 

Extra Trees regressor, 100 trees with max depth 40. 0.88836 

Random Trees Embedding (completely random untrained RF, 5 trees with max depth 

6) to generate a feature embedding for PV and Load. Then, use Extra Tree (100 trees, 

max depth 40) to perform regression taking as features: cost, embedded PV and Load 

0.89015 

Same as above, using only PV and Load as features. 0.02513 

Same as above, using cost and Load as features. 0.88939 

Same as above, using PV and cost as features. 0.89083 

Same as above, using only cost as features. We note that cost alone achieves a high 

score, adding PV and Load improves it but not by a large amount. 

0.85111 

Use an informed (i.e. trained) representation of PV and Load, generated using a 

trained RF classifier (5 trees with max depth 6). Then use an Extra Tree to perform 

regression with features cost, embedded PV and Load. There is a slight compared to 

the uninformed representation. 

0.89077 

NN regression - architecture (400,), ReLU as activation, Adam optimizer, learning 

rate 0.001, no validation early stopping, batch size 200, 500 epochs. 

0.07606 

Use NN classifier - architecture (400,) with 5 final classes – to generate feature 

embedding for PV and Load. Then, similarly to above, use an Extra Tree to perform 

regression with features cost, embedded PV and Load. 

0.85102 

Use PCA (with 5 p.c.) to generate feature embedding for PV and Load. Then apply 

Extra Trees Regressor as above with reduced PV, Load and cost. 

0.88972 

Support Vector Machine regressor with RBF kernel, regularization parameter C=100. 0.90514 

Table 23: Test set performance for regressors that predict nTraces using 

cost and (if applicable) PV/load as features. 
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ii. nTraces and memory 

Models that predicts the number of traces using as features either average 

memory, PV, and load or just the average memory. 

Model R2 

Linear regressor Lasso, all features. 0.65789 

Linear regression Lasso with polynomial basis degree 2, all features. 0.65216 

Linear regressor Lasso, just memory as feature. 0.64951 

Linear regression Lasso with polynomial basis degree 3, just memory as feature. 0.66070 

Random forest regressor, maximum depth 20, all features. 0.93232 

RF regressor (maximum depth 20), preceded by PCA (5 p.c.) for dim reduction of PV 

and Load. 

0.94614 

RF regressor (maximum depth 20), preceded by RF Classifier for dim reduction of 

PV and Load. As shown by features’ importance in Graph 27 the prediction is 

completely based on memory and it ignores PV and Load.  

0.94722 

Extra Tree Regressor, 100 trees with maximum depth 40, all features. 0.83576 

SVR with RBF kernel, all features. 0.00005 

SVR with linear kernel, all features. 0.76906 

Table 24: Test set performance for regressors that predict nTraces using 

average memory and (if applicable) PV/load as features. 

Graph 27: Feature importance for the RF regressor that takes as features PV (0-4), 

Load (5-9), and average memory (10). A RF Classifier is used beforehand for 

dimensionality reduction of both PV and Load. 
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iii. Total 

Unified models: 

Model R2 

Extra Trees regressor (maximum depth 20), using average memory. 0.99999 

Extra Trees regressor (maximum depth 20), using maximum memory. 0.99999 

PCA (with 5 p.c.) for dim. reduction of PV and Load. Then, Extra Trees regressor 

(maximum depth 20), using average memory. 

0.99999 

NN with architecture [280], activation tanh, maximum epochs 500, using average 

memory. 

0.98165 

PCA (with 5 p.c.) for dim. reduction of PV and Load. Then, NN with architecture 

[280], activation tanh, maximum epochs 500, using average memory. 

0.98555 

SVR with RBF kernel, using average memory. 0 

SVR with linear kernel, using average memory. 0.94796 

Table 25: Test set performance for regressors that predict nTraces using 

all remaining variables as features. The model is unified, i.e. a unique 

regressor takes all features and predicts nTraces. 

 

B.2 Decision Trees 

In this section we report complete results for experiments focused on the decision 

trees in Section 5.3.1.2. We experiment with 4 models on 3 forms of data normalization 

(original, standardized, and min-max scaled). 

Results for models that do not use PV/Load as features: 

 Model 

nTraces Cost Time Average memory 

Original 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 54 5 24 1 26 

R2 0.7525 1.0000 -0.5038 0.0979 1.0000 0.5648 0.9973 

Standardized 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 54 5 22 1 23 

R2 0.7525 1.0000 -0.4925 0.0979 1.0000 0.5648 0.9980 
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Min-max feature scaling 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 54 5 21 1 23 

R2 0.7525 1.0000 -0.4748 0.0979 1.0000 0.5648 0.9976 

Table 26: Test set performance on all dataset’s normalizations for 

experimental DTs that do not use PV/Load as features. 

 

Results for models that use PV/Load as features: 

 Model 

nTraces Cost Time Average memory 

Original 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 21 5 22 1 27 

R2 0.7525 1.0000 0.9391 0.5219 1.0000 0.5648 0.9882 

Standardized 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 21 5 17 1 22 

R2 0.7525 1.0000 0.9431 0.5219 1.0000 0.5648 0.9914 

Min-max feature scaling 

DT depth bound 1 No No 5 No 1 No 

DT depth 1 7 21 5 13 1 22 

R2 0.7525 1.0000 0.9446 0.5219 1.0000 0.5648 0.9920 

Table 27: Test set performance on all dataset’s normalizations for 

experimental DTs that use PV/Load as features. 
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Appendix C  

Final ML Models 
 

Here reported are complete information about the architecture and 

hyperparameters selected for neural networks in section 5.3.2.2. These models are the 

ones embedded into the combinatorial optimization model used in optimization 

experiments. 

Cross-validation is used to select hyperparameters in the neural network among: 

• Arch: The architecture among: 

- [100, 100], “2” in the table below. 

- [100, 100, 100], “3” in the table below. 

- [100, 100, 100, 100], “4” in the table below. 

• Act: The activation between ReLU (R) and tanh (T). 

• BS: Batch size among 100, 200, and 400. 

• Ep: Epochs among 50, 100, and 500. 

Hyperparameters selected for neural networks are the following: 

Features 
Data 

Norm. 

Model 

Cost Time Average Memory 

Arch Act BS Ep Arch Act BS Ep Arch Act BS Ep 

nTraces 

Orig. 3 R 200 50 3 R 100 100 4 R 200 100 

Std. 3 R 100 100 2 R 200 100 4 R 100 100 

M.m.s. 4 R 100 100 2 R 200 50 4 R 100 100 

nTraces,  

PV and 

 Load  

Orig. 3 R 100 100 3 R 100 100 4 R 100 100 

Std. 4 R 100 100 2 R 100 100 4 T 100 100 

M.m.s. 4 R 100 100 4 R 100 50 4 R 100 100 

Table 28: Hyperparameters selected for the NN models. Some of them 

(in blue) are embedded into the combinatorial optimization problem and 

used in optimization experiments. 
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Appendix D  

Comparative Experiments 
 

We report complete results for the comparative experiments detailed in section 

6.1. An additional problem is under analysis: as a sanity check, we minimize time, 

memory or solution value for a fixed number of traces given as constraint; results 

should be similar with all the three objectives. This is the last set of experiments 

reported in the table. Times are in seconds. 

Objective 

(minimized) 
Constraints Variable 

Empirical ML Model 

DT 9 DT 11 DT 15 NN 

Value 
Res. 

Time 
Value 

Res. 

time 
Value 

Res. 

time 
Value 

Res. 

time 

nTraces 

Cost <= 398 

nTraces 1 

0.2191 

1 

1.5096 

1 

5.1944 
No 

solution 
1200 Mem 88.92 88.92 88.92 

Time 6.93 6.93 9.51 

Cost <= 279 

nTraces 3 

0.1924 

3 

1.2222 

3 

6.0768 
No 

solution 
1200 Mem 396.82 396.82 396.82 

Time 18.39 18.39 18.39 

Cost <= 256 

nTraces 

No 

solution 
0.1494 

24 

1.2049 

24 

6.2743 
No 

solution 
1200 Mem 2953.95 2953.95 

Time 381.99 381.99 

Cost <= 516 

nTraces 1 

0.2554 

1 

1.4513 

1 

5.2468 

2 

151.96

91 
Mem 88.92 88.92 88.92 70.97 

Time 6.93 6.93 9.51 5.56 

Cost 

Mem <= 3963, 

Time <= 2128 

Cost 255.91 
0.2724 

254.83 
2.0288 

254.83 
6.6248 

453.06 
1200 

nTraces 13 24 24 37 

Mem <= 819, 

Time <= 71 

Cost 268.10 
0.2346 

268.10 
1.1606 

268.10 
4.3203 

337.06 
1200 

nTraces 3 3 3 8 

Mem <= 586, 

Time <= 71 

Cost 268.10 
0.2331 

268.10 
1.0574 

268.10 
4.3037 

283.68 
1200 

nTraces 3 3 3 6 
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Mem <= 9203, 

Time <= 71 

Cost 281.29 
0.2253 

281.29 
0.9138 

281.29 
3.8255 

394.42 
1200 

nTraces 1 1 1 2 

Mem <= 9203, 

Time <= 5385 

Cost 255.91 
0.2760 

254.83 
1.6010 

254.83 
6.1637 

317.07 
1200 

nTraces 13 24 24 50 

Time 

- 
Time 6.93 

0.2484 
6.93 

1.3874 
9.51 

5.6524 
5.56 363.03

72 nTraces 1 1 1 2 

Cost <= 397 
Time 6.93 

0.2190 
6.93 

1.6775 
9.51 

5.3994 
5.56 593.40

29 nTraces 1 1 1 2 

Cost <= 397, 

Time >= 1099 

Time 1136.16 
0.2130 

1136.16 
0.9668 

1136.16 
4.3337 

1138.68 78.829

8 nTraces 44 44 44 44 

Time >= 1099 
Time 1001.86 

0.2494 
1001.86 

1.0806 
1001.86 

4.2975 
1001.07 34.331

4 nTraces 41 41 41 41 

Cost <= 256 
Time No 

solution 
0.1835 

381.99 
1.2097 

381.99 
5.8430 

No 

solution 
1200 

nTraces 24 24 

Cost <= 516 
Time 6.93 

0.2421 
6.93 

1.5417 
9.51 

5.8043 
5.56 264.38

07 nTraces 1 1 1 2 

Mem 

Cost <= 398 Mem 88.92 0.2173 88.92 1.6402 88.92 5.4473 70.97 1200 

Cost <= 256 
Mem No 

solution 
0.1493 

2953.95 
1.1909 

2953.95 
5.8295 

6166.68 
1200 

nTraces 24.00000 24.00000 77 

Cost <= 516 Mem 88.92 0.2426 88.92 1.5467 88.92 5.5582 70.97 1200 

Mem 

nTraces == 25 

Mem 3096.36 

0.0705 

3096.36 

0.5273 

3096.36 

3.4764 

2976.92 

13.913

8 
Time 411.11 411.11 411.11 409.94 

Cost 261.44 261.44 386.55 443.02 

Time 

Mem 3096.36 

0.0838 

3096.36 

0.5190 

3096.36 

3.3477 

2444.10 

13.868

0 
Time 411.11 411.11 411.11 802.16 

Cost 261.44 261.44 386.55 443.02 

Cost 

Mem 3096.36 

0.0802 

3096.36 

0.5374 

3096.36 

3.4372 

1892.42 

1179.8

35 
Time 411.11 411.11 411.11 409.94 

Cost 255.91 254.83 254.83 243.19 

Table 29: Complete comparative experiments for DT9, DT11, DT15, NN. 

For each problem we report objective and constraints, resolution time for 

the high-level optimizer and, for each variable of interest, the solution 

value. 


