ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Department of Computer Science and Engineering - DISI

Two year Master Degree in Computer Engineering

LEARNING DECLARATIVE PROCESS MODELS
FROM POSITIVE AND NEGATIVE TRACES

Supervisor:
Prof. Federico Chesani

Correlators:
Prof. Paola Mello Author
Prof. Daniela Loreti Elena Palmieri

Session II1

Academic year 2019-2020

Abstract

In the recent years, the growing number of recorded events made the interest in
process mining techniques expand. These techniques make it possible to learn the
model of a process, to compare a recent event log with an existing model or to
enhance the process model using the information extracted from the log. Most of
the existing process mining algorithms only make use of positive examples of a
business process in order to extract its model, however, negative ones can bring
magor benefits. In this work, a discovery algorithm, inspired by the one presented
by Mooney in 1995, that takes advantage of both positive and negative sequences
of actions is presented in two different versions that return a declarative model

connected respectively in disjunctive and conjunctive logic formulas.

Contents

I Prefininanics

(1.1 Process Mining|

(1.1.1 Basic concepts|.

(1.1.2 Guiding principles]

2.4 Examplel L

V2 T N2 1 X
[2.5.1 Backbone algorithm|
[2.5.2 CNF hierarchy of templates|

© O e W W

10
12
20
20
23

[2.5.4 CNF _gain function| 54

2.5.5 Example/. o000 55

[2.6 Optimization|, 56
[2.6.1 Smaller event log|o 56
[2.6.2 Analyzing only a subset of constraints| o7
[2.6.3 Assert and Retract predicates| 59

[3 Experimental results| 63
[3.1 Controlled event log| 63
[3.1.1 First set of negative traces| 66
[3.1.2 Second set of negative traces|. 68
[3.1.3 Third set of negative traces| 69
[3.1.4 Considerations on the performance| 70

[3.2 Pap "Test screening event log| 72
[3.3 Real-life event log with no negative traces| 75
3.4 Final considerations|. 78
4 Conclusions and future workl 81
M1 Futureworklo 83
[4.1.1 Optimization of the returned model| 83
[4.1.2 Properties of the activities| 84
“4.1.3 Unbounded variables in the modell. 86
[4.1.4 Using CLP|, 86
[4.1.5 ~Asserting traces 88
[4.1.6 Selecting preferred templates|. 88

Introduction

Process mining techniques [I] allow the analysis of business processes based
on event logs. It is in fact possible to extract knowledge from the logs
through specific algorithms that will then allow to infer modes, and other
information. Process mining techniques are mostly used when a process
model is not available, but they have other interesting applications such as
the analysis of an event log with the aim of comparing it with an existent
model to check whether the latter is compliant with the reality recorded in
the log, or the enhancement of an existing process through the information

extracted from the log.

The majority of the existing process mining algorithms only use event logs
composed of positive traces, sequences of events that represent an execution
the process from the beginning to the end; in this work we present an
algorithm that also analyzes sequences of actions that represent examples of
undesired behavior, called negative traces. Even though it is harder to find
event logs that contain a well-structured description of negative examples,
they can bring great benefits to the process mining algorithm. For example,
they can be used to understand why deviations from the common process
model occur or make it possible to specify parts of the process model in a

more effective way. The aim of this project is to create a process mining

algorithm that will be able to extract declarative process models from given
event logs that represent a particular business process. The models will be
expressed in Declare constraints that will either be connected in disjunctive
normal form (DNF) or in conjunctive normal form (CNF) formulas. This
algorithm will be created drawing inspiration from the one presented by
Mooney in his paper Encouraging experimental results on learning CNF from
1995 [14] and will have two different versions that will return the two distinct

process models.

This work is structured in four chapters. In the first one an overview
of the utilized technologies is presented, starting form a more detailed
description of process mining and all its possible applications. The other
two technologies described in this chapter are the process modelling language
that was used to define the constraints that will represent the process model,
and the programming language wherewith the program was written. In
the second chapter, the proposed algorithm is described in detail, with a
particular focus on the differences between the DNF and the CNF version,
and on the semantics of the different constraints and their correlations. The
third chapter presents a discussion on the experimental results obtained
testing the two implementations of the algorithm on the same event log.
In particular, there is a focus on the process models obtained and on
the temporal performances. The last chapter describes a few possible
future additions that could make the algorithm return simpler models in
an even shorter amount of time or that could make it possible to infer other
information from the event log, other than just the process model, when the
information in it contains more detailed data, for example if, other than the

name of the activity, it also specifies some properties of the said activity.

Chapter 1

Preliminaries

In this chapter, the three main technologies used in the project will be briefly

described, as to give an understanding of its basis.

1.1 Process Mining

Process mining [I] is a research discipline that relates to data science and
process management. Its goal is to discover, monitor and improve real
processes by extracting knowledge from event logs, and it includes three
main family of techniques: process discovery, conformance checking and

enhancement.

The growing interest in process mining in the last few years is due
to the recording of a growing number of events, that provide detailed
information about the history of the processes, and to the business processes’
need of improvement and support in competitive and rapidly changing

environments.

It is important to note that even though it is its most well-known use,
process mining is not limited to control-flow discovery. As previously stated,
discovery is one of the three main forms of process mining, but its scope is
not limited to control-flow as there are other perspectives that also have
significant relevance. Process mining is also not a specific type of data
mining, as it requires different representations and algorithms. Finally,
process mining is not limited to offline analysis, as a model discovered using

existing data can be later applied to running cases.

1.1.1 Basic concepts

The event log is the basis of process mining. Every process mining technique
assumes that events are sequentially recorded and that each of them refers to
an activity (i.e., a well-defined step in a process) and is related to a specific
case (i.e., a process instance). As mentioned above, the first technique of
process mining is discovery; it consists in taking an event log and creating a
model without using a priori information, and it is the most known and most
used among the process mining techniques. The second one is conformance,
a technique that compares an event log with an existent model of that
same process. Conformance is quite useful to check whether the reality,
as recorded in the log, complies with the model and vice versa. The third
and last technique is enhancement. It aims at improving or extending the

existing process model using the information extracted from the event log.

Process mining covers different perspectives, control-flow is the most
well-known and it focuses on the order of activities and finds a
characterization of all the possible paths that can be expressed, for example,

in terms of a Petri net. Another one is the organizational perspective, that

supports/

“‘world” g controls
business
processes software
people machines System

components

organizations records
events, e.g.,
i messages,
FP=CIes transactions
models - ’
analvzes _conflgures etc.
y implements
analyzes
o -
discovery
(process) ey event
model conformance Iogs
enhhancement

Figure 1.1: Positioning of the three main types of process mining [I]: (a)

discovery, (b) conformance checking, and (c) enhancement.

targets information about resources hidden in the log, such as the actors that
are involved. Its goal is to structure that information or to show the network
that connects it. The case perspective focuses on properties of cases, that
can be described by the values of the corresponding elements, their path
in the process or by the actors involved in it. Lastly, the time perspective
deals with timing and frequency of events. Indeed, thanks to timestamps
the process can be sped up by discovering bottle necks and improved by

monitoring the utilization of resources or measuring service levels.

A process mining project can be summarized in 5 stages, as described

in figure [1.2] The first one (Stage 0) concerns justification and planning.
In Stage 1 all the event data, models, questions, and objectives are
extracted from systems, domain experts and management, thus requiring
an understanding of the available data and the domain. Then, in Stage
2, the control-flow model is constructed and linked to the event log,
potentially already answering some of the questions and therefore triggering
adjustments. In Stage 3 the model should be relatively structured and can
be extended by adding other perspectives. The models obtained can then
be used to provide operational support (Stage 4).

1.1.2 Guiding principles

In [I] are introduced six guiding principles that should be taken into

consideration before applying process mining to real life settings:

e Event data should be trated as first-class citizen

One of the most important parts of process mining is event data. As
the quality of the produced model heavily depends on the input, event
logs should be treated as first-class citizens. This means that it should
be safe to assume that the events in the log actually happened and that
their attributes are correct. Furthermore, there should be no missing
events in the log and all the recorded ones should have well-defined
semantics. Finally, the data should be safe from both a privacy and

security point of view.

e Log extraction should be driven by questions

The extraction of the data from the database that contains the event

Stage 0: plan and justify

Understanding of Understanding of
the available data the domain

Stage 1: extract

Stage 2: create control-flow
model and connect event log

redesign
v o
Stage 3: create integrated 5 ‘
process model E adjust
£
intervene
Current
data
4 Stage 4: operational support I support

Figure 1.2: The life-cycle model describing a process mining project

consisting of five different stages [1]

log should be driven by specific questions. The same data can in fact be
used to discover many different process models, each of them centered
on a different aspect. For example, the data collected by a delivery

company can be used to discover life-cycle of a single delivery or the

one of an order line directed to the same customer. The only way to
discover the process model that we are interested in is to extract the

data that is meaningful for that particular model.

Concurrency, choice and other basic control-flow constructs

should be supported

As control-flow is the most well-known perspective of process
mining, basic workflow constructs, such as sequence, parallel routing
(AND-splits/joins), choice (XOR-splits/joins) and loops, supported
by all mainstream languages, should also be supported by process
mining techniques. However, as reported in [I], some of them are
not able to deal with concurrency and only support Markov chains,
leading to underfitting and/or extremely complex models. It is also
desirable to support OR-splits/joins because they provide a compact

representation of inclusive decisions and partial synchronizations.

Events should be related to model elements

Conformance checking and enhancement heavily rely on the
relationship between the elements in the model and the events in
the log as thanks to it the log can be replayed in the model to find
discrepancies. This relationship, though, can be hard to establish and

another problem is that events must be related to process instances.

Models should be treated as purposeful abstractions of reality

The view of reality that a model provides should be treated as a
purposeful abstraction of the behavior captured in the event log. The
different models derived from an event log can be thought of as different

maps that show a view of the same reality in different ways depending,

for example, on the different perspectives or the different levels of
granularity and precision. It is therefore important to choose the

correct representation and fine-tune it for the intended audience.

e Process mining should be a continuous process

Process mining should be a continuous process that uses both historical
event data and current data. Given the dynamic nature of processes, it
is in fact not advisable to see process mining just as a one-time activity
and instead keep correcting the model based on the new data brings
great benefits. Process mining tools can help end users by navigating
through processes, projecting dynamic information onto process maps,

and providing predictions regarding running cases.

1.2 Declarative process modeling

Imperative process models represent the whole process behavior at
once. The most used notation is based on a subclass of Petri Nets
called the Workflow Nets, but also other implementation exist, such
as BPMN. Imperative process models are well-suited for processes in
stable business-oriented environments such as production and administrative
processes, but they could result in the so-called “spaghetti processes” if
used for less static domains as, for example, the healthcare one. Declarative
process models [2] describe the processes through the adoption of constraints.
The main idea is that every event can happen, except the ones that do not
respect the constraints. This makes declarative process models appropriate
to represent dynamic domains where the processes can change. The key

difference is therefore that imperative process models explicitly specify every

possible sequence of activities, whereas declarative process models only state
what is not permitted, so everything that they do not specify is allowed.
Figure[l.3|and [I.4represent a model of the same process respectively through

an imperative and a declarative process model.

1010020

ohe
%[@ e
Kcel

Figure 1.3: Example of an imperative process mining model [3]

1.2.1 Declare

Declare is one of the most well-established declarative process modelling
languages. As stated in [4], it provides a set of predefined constraints
(repertoire) divided in two main types: existence constraints, that concern
the execution of a single activity, and relation constraints, that, on the
other hand, involve the execution of two activities. An example of an
existence constraint is Fristence(a), that specifies that activity e has to
be executed in every process instance and the constrained task is, therefore,
a. Response(a,b) is, instead, an instance of relation constraint. It states

that if activity a is executed, then activity b must eventually be executed

10

If A is performed,

B must be perfomed,
no matter
before or afterwards
(responded existence)

o B
o]

Whenever B is performed,
C must be performed
afterwards
and B can not be repeated
until C is done
(alternate response)

Figure 1.4: Example of a declarative process mining model [3]

after it. For relation constraints, activations and targets are defined; the
activation corresponds to the task whose activation triggers the activation
of obligations on the completion of the other one, that is for this reason
called target. So, still taking as an example the constraint Response(a,b),

the activation is a and the target is b.

Formally [4], a template is a predicate C,, € C, where C is the Declare
repertoire and n denotes its number of parameters (arity). A constraint is the
application of a template over tasks and is obtained assigning its parameters
to elements in A, where A is called log alphabet and is the set of symbols that
identify all the possible tasks and event classes. A parameter assignment 7,

is a function [1,n] — A where [1,n] is the set of integers ranging from 1 to

11

n. vy (i) assigns the i-th parameter of C/, to a task in A, in compliance with
the positional notation of the parameters of predicates. For the constraint
Response(a,b) then, v2(1) = a and v2(2) = b. From this, we can now define
a declarative process model as a tuple M = (A, C, I') where: A is a finite
non-empty set of tasks, C'is a finite non-empty repertoire of templates and
I'={Cym(i): Cme Cyn(i): [1,...,n] = A, i> 0} is aset of well-defined
constraints that corresponds to the set of all the constraints that derive from
the instantiation of every template C,, € C with every possible assignment

to a task in A.

1.2.2 Declare Templates

Below is given the definition of all the Declare templates that are used in
this thesis. Other than existence and relation templates, choice templates,
which description can be found in [5], and negation templates are introduced;
the latter define a negative relation between activities. This was necessary
because in Declare the NOT operator is not defined. For every template it

will also be specified its Linear Temporal Logic (LTL) expression.

Linear Temporal Logic

LTL is a special kind of logic and is used for describing sequences of
transitions between states in reactive systems [6]. A well-formed formula
p over E, where E is a subset of all the possible events, is a function p: E*
— {true, false}, where F is the set of all the possible events. Let 0 € E*
be a trace, if p is a well-formed formula and it holds that p(o) = true than

we say that p satisfies o, denoted by o = p. If p and ¢ are well-formed

12

formulas, then also true, false, !p, p A ¢, p V ¢, Op, Op, Op, pUq and pWyq

are well-formed formulas over E.

The LTL semantics are defined as:

position: o = e if and only if e = o[1], for e € E. Note that o]
denotes the i-th element of the trace, i.e. if 0 = (eq, ea, ..., €,), then

oli] = e;.

not (!): o = Ip if and only if not o = p.

and (A): o =p A gifandonlyif o = p and o = ¢
or (V): o EpVgifandonlyifo = poro = ¢

next (O): o E Op if and only if 02~ = p. o' indicates the suffix

of o starting at oli].

until (U): o = pUgq if and only if (J1<i<y @ (67 E ¢ A (Vigj<i @ 07

= p)))-

It is also possible to use the following abbreviations:

implication (p = q): for Ip V ¢.

equivalence (p <= q): for (p A q) V (Ip A lq).
true (true): for p Vv Ip.

false (false): for !true.

eventually (0): for Op = trueUp.

13

e always (0J): for Op = 10!p.

e weak until (W): for pWq = (pUq) Vv (Op).

Explained in other words, the operator always ((p) specifies that p holds at
every position in the trace, eventually (Qp) that p holds at least once in the
trace, next ((Op) that p holds in the next element of the trace, until (pUq)
that there is a position in the trace in which ¢ holds and p holds in all the
previous ones, and weak until (pWgq) that is similar to until but does not

require ¢ to ever become true.

Existence templates

These templates only involve one activity and they define the cardinality or

the position of that activity in the trace.

The template ezistence(A) indicates that activity A must be executed at
least once in the trace. A lower bound for the number of occurrences of
A can be specified creating the templates existence2(A) and existence3(A)
that respectively state that the activity A has to be executed at least twice
and three times. The absence(A) template has the opposite semantics with
respect to existence, activity A cannot be present in the trace. In this case,
we can include an upper bound that will state the maximum number of
occurrences of the activity. In absence2(A) and absence3(A) the upper
bounds are respectively 2 and 3, meaning that in the former A can be
executed 0 or 1 times and in the latter from 0 up to 2 times. Moreover,
the templates ezactlyl(A) and ezactly2(A) denote that activity A has to be
executed exactly the specified number of times. Finally, the template init(A)
asserts that the trace must start with activity A and its dual, last(A), that

14

template LTL expression
existence(A) O(A, te)
existence2(A) | O((A, tc) A Olexistence(A)))
existence3(A) | O((A, tc) A O(existence2(A)))

absence(A) lexistence(A)
absence2(A) lexistence2(A)
absence3(A) lexistence3(A)

exactlyl(A) existence(A) N absence2(A)

exactly2(A) existence2(A) N absence3(A)
init(A) (A, ts) V (A, tx))W(A, t.)
last(A) O(A A Oltrue)

Table 1.1: LTL expression of existence templates (t., ts and ty are event
types such that t. = completed, ts = started and t, = cancelled) [6]

template LTL expression
choice(A,B) OA Vv OB
exclusive_choice(A,B) | (0A V OB) A I(OA A OB)

Table 1.2: LTL expression of choice templates [6]

the trace must end with it.

Choice templates

The choice templates are only two, they describe a relation between two

activities and have, therefore, activities A and B as parameters.

The choice(A,B) template indicates that activities A and B eventually occur
in each process instance. There is no restriction, so it is possible that both
occur or that only one of them does. The ezclusive_choice(A,B) template is
more limiting because it forbids A and B to both occur in the same process

mstance.

15

Relation templates

A relation template defines a dependency between two activities, they all

have activities A and B as parameters.

The responded_existence(A,B) template specifies that if activity A is
executed, then activity B needs to be executed as well, either before or after
activity A. It is important to note that a constraint that derives from this
template will be satisfied if the activity A is never executed. The definition
of co-existence(A,B) is quite similar to the previous one, but it holds for
both activities: if activity A is executed, then activity B has to be executed

as well and, vice versa, if B is executed, then also A needs to be executed.

The previous templates did not consider the order of the activities, there
are though templates that specify it. response(A,B) imposes that every time
the activity A is executed, activity B needs to be executed after it. There can
still be other executions of A and other activities in between the two that are
taken into consideration. precedence(A,B), on the other hand, states that
if activity A is executed, then it must be preceded by activity B. Again,
there can be multiple executions of any activity between A and B. The
combination of these last two templates defines a bi-directional execution
order of two activities and is called succession(A,B). In order for it to hold,

both response(A,B) and precedence(A,B) must be satisfied.

Templates alternate_response(A,B), alternate_precedence(A,B) and
alternate_succession(A,B), are a stronger version of the templates that
were just described. In alternate_response(A,B) after the execution of
activity A an activity B needs to be executed, but there cannot be

other executions of activity A before the one of activity B. Similarly,

16

template

LTL expression

responded_ezistence(A,B)
co-existence(A,B)

O(A, tc) = O(B, t¢)
O(A, tc) <= O(B, t¢)

response(A,B)
precedence(A,B)
succession(A,B)

O((A, te) = O(B; te))
(B, ts) V (B, te) V (B, tx)))W(A, tc)
response(A,B) A precedence(A,B)

alternate_response(A,B)
alternate_precedence(A,B)
alternate_succession(A,B)

response(A,B) A O((A, tc) = O(precedence(B,A)))
precedence(A,B) A O((B, tc) = O(precedence(A,B)))
alternate_response(A,B) A alternate_precedence(A,B)

response(A,B) A O((A, tc) = O(B, ts))
precedence(A,B) A O(O(B, ts) = (A, tc))
chain_response(A,B) A chain_precedence(A,B)

chain_response(A,B)
chain_precedence(A,B)

chain_succession(A,B)

Table 1.3: LTL expression of relation templates (t., ts and ty are event types
such that t. = completed, ts = started and t, = cancelled) [6]

in alternate_precedence(A,B), if activity A is executed, activity B must
precede it but between the execution of the two, other activities can be
executed, except activity A. alternate_succession(A,B) is again defined as

the combination of alternate_response(A,B) and alternate_precedence(A,B).

Lastly, the templates chain_response(A,B), chain_precedence(A,B) and
chain_succession(A,B) are the strongest version. chain_response(A,B) states
that if activity A is executed, activity B needs to be executed right after
it; chain_precedence(A,B) that if activity A is executed, it must be directly
preceded by activity B. So, the two activities have to be next to each other.
chain_succession(A,B) is, as usual, the combination of the other two chain

templates.

17

responded existence (A, B) | A B alternate response(A, B) A sz B
co-existence(A, B) T ? alternate precedence(A, B) 724?
response(A, B) A » B alternate succession(A, B) A e=—>e B
precedence(A, B) A —»{ B chain response(A, B) A)-Eb B
succession(A, B) A -—»{ B chain precedence(A, B) A B
chain succession(A, B) A }cz-ﬁ B

Figure 1.5: Notation for the relation templates [3]

Negation templates

Negation templates are the negated version of the relation templates; please
note that these templates do not correspond to the logical negation, with
respect to LTL, of the relation templates because the NOT operator is not

defined in Declare.

The not_responded_existence(A,B) template specifies that if activity
A is executed, then activity B must never be executed in the
trace. As a consequence of this not being the logical negation of
responded_existence(A,B), if A never occurs, then both templates hold,
meaning that one does not exclude the other. not_co-ezistence(A,B) applies

the previous template from A to B and from B to A.

not_response(A,B) states that if activity A is executed, then activity B
cannot be executed anymore. Likewise, not_precedence(A,B) imposes that
activity A must not be preceded by activity B. These two templates are, as

usual, combined to obtain not_succession(A,B).

18

template LTL expression
not_responded_ezistence(A,B) O(A, te) = (O(B, t))
not_co-ezistence(A,B) not_responded_ezistence(A,B) N not_responded_existence(B,A)
not_response(A,B) O((A, tc) = 1(O((B, ts) V (B, tc))))

not_precedence(A,B) (0B, ts) = (1(A, t)))

not_succession(A,B) not_response(A,B) N not_precedence(A,B)
not_chain_response(A,B) O((A, tc) = O(I(B, ts)))
not_chain_precedence(A,B) OO, ts) = (A, te))
not_chain_succession(A,B) not_chain_response(A,B) N not_chain_precedence(A,B)

Table 1.4: LTL expression of negation templates (t. and ts are event types
such that t. = completed and ty = started) [0]

According to the not_chain_response(A,B) template, every time activity
A is executed, it cannot be directly followed by activity B and in order
for not_chain_precedence(A,B) to hold, activity A must never be directly
preceded by activity B. Combined together these two templates define

not_chain_succession(A,B).

-

i

not responded existence(4, B) | A

- - Ty
not chain response(A, B A =
not co-existence(A, B) P (A B) . H
<
not response(A, B) . H not chain precedence(A, B) -
not precedence(A, B) S H not chain succession(A, B)

|

Figure 1.6: Notation for the negation templates [3]

i

Ik

not succession(A, B)

1.3 Prolog

Prolog is a logic programming language designed in 1972 by Alain
Colmerauer and Philippe Roussel. Its name derives from PROgramming in
LOGic and it is based on Robert Kowalski’s interpretation of Horn clauses
[7]. Prolog has its roots in first-order logic and is intended as a declarative
programming language, meaning that the program logic is expressed in terms
of relations, that are represented as facts and rules. For more information

about Prolog see [§], [9] and [10].

Prolog is the chosen programming language for the project because, thanks
to its declarative nature, it is very well suited to represent the different traces
and to find patterns among them. Specifically it was used the SWI-Prolog
implementation [I1], that offers a rich set of features and libraries for

constraint programming.

1.3.1 Basic concepts

Formally, the Prolog language is a special case of logic programming. A

Prolog program is defined by a set of clauses defined as following:

(clausel) A.
(clause2) A :- By, Bo, ..., By.

(clause3) :- By, Bo, ..., By.

Clausel is a fact, clause2 is a rule and clause3 is a goal. A and B; are

atomic formulas, A is the head of the clause and B1, B, ..., B, is the body

20

of the clause. The symbol 7" indicates the conjunction and ”:-” the logic
implication in which A is the consequent and By, Bo, ..., B, the antecedent.

An atomic formula is a formula such as:

p(tll t2/ LRI 4 tn)

where p is a predicative symbol and tq, to, ..., t, are terms. A term can be
a constant (as they were in the previous example: bob, joe, tyler), a variable
(identified with a capital letter or preceded by the symbol “”: X, Variablel,
x) or another function that can have its own arguments, which are, again,
terms (f(a), f(g(X)), f(a, b)). A computation corresponds to the attempt
to prove that a formula logically follows a program, i.e., that a formula is
a theorem. The computation starts running a query (goal) and it aims at

finding a substitution for its variables so that given a program P and the

query:

:_p(tlr tay ... L)

If Xy, Xy, ..., X,, are the variables in ty, t9, ..., t,,, the meaning of the
query is
ix1, dx2, ..., dXn p(t:, tz, ..., tn)

And the substitution is

o = {Xy/s1, Xo/s32, .., Xuo/sn}

where s; are terms, and so that P |= [p(t1, te, ..., tm)]o

21

It is important to verify that in a unification of a variable X and a composed
term S, the latter does not contain the variable X. This would invalidate both
the termination of the algorithm and the correctness of the solution. For
example, the unification between p(X,X) and p(Y, f(Y)) would have the
substitution [X/Y, X/f(Y)] meaning that Y/f(Y), which would make the

computation enter in a loop without termination.

A Prolog program is a set of Horn clauses, a disjunction of literals in which
at most one of them is positive, that represent facts, rules and goals. The
facts express the objects and the relations among them; below are a few

examples of facts:

father (bob, joe).
father (bob, mary).

father (joe, tyler).

The rules are expressed on objects and relations and are divided in head and

body, following the if — then construct indicated by the symbol of implication

M.,

grandfather (X,Y) :—- father(X,Zz), father(Z,Y).

The head is the part on the left of the implication symbol (grandfather(X,Y)
in the example above) and the body is the part on the right (“father(X,Z),
father(Z,Y).”, where the symbol ”,” indicates a conjunction). Goals are
clauses that do not have a head and are based on the knowledge defined in

the facts and in the rules.

22

:— grandfather (X,Y) .

The goal is proved unifying it with the heads of the clauses in the program,
if a substitution for which the comparison succeeds exists then there are two
alternatives: if the found clause is a fact the program ends, if it is a rule,
then its body has to be verified as well. In the example, the goal unifies
with the rule

grandfather(X,Y) :— father(X,2), father(z,Y).

So now we have to also verify the body of this rule. Starting from
father(X,Y), it can be seen that it unifies with all the three facts, but Prolog
always starts the unification with the fact that is written above the others
in the program’s code, so in this case X is unified with bob and Z with joe.
Now we are left with the second part, but as Z is already unified with joe,
only the fact father(joe,tyler) is a good match and the variable Y is therefore
unified with tyler. Both formulas are now satisfied, so the original goal is

satisfied as well, and the given answer is:

grandfather (bob, tyler).

1.3.2 SLD Derivation

A SLD derivation for a goal G from the set of defined clauses P is a sequence
of goal clauses Gy, ..., G,, a sequence of variants of clauses of the program
Cy, ..., C,, and a sequence of most general unifier substitutions (we always

want the most general substitution, a substitution o; is more general than

23

another substitution oy if there exists a third one o3 so that o9 = 0y03) 071,
.., o so that Gy is derived from G and C;;; through the substitution

on. There exist three different types of derivation:

e Success if for n finite Gy, is equal to the empty clause.

e Finite failure if for n finite it is not possible to derive a new solver

from G, and G, is not equal to the empty clause.

e Infinite failure if it is always possible to derive new solvers, all

different from the empty clause.

There are, therefore, two forms of non-determinism; the first due to the
selection of an atom from the goal to unify with the head of the clause, that
is solved defining a calculation rule. This rule does not affect correctness
nor completeness, only efficiency; given a program, its success set does not
depend on the calculation rule used in the SLD resolution. The second form
depends on the choice of the clause that the program uses in a resolution
step, and is solved defining a research strategy. If more solutions exist for the
same goal, the SLD resolution must be able to find them all and guarantee

completeness.

24

Chapter 2

The algorithm

One of the main differences between this process mining algorithm and the
existing ones is precisely the use of negative traces. In this thesis with the
term negative traces we refer to all the traces that do not follow the common
path; the event log is considered to be split into positive traces and these
other traces like in Machine Learning. The other traces will, for convenience,
be referred to as negative traces, or negative examples. As very few other
declarative process discovery approaches, such as [12], we assume that the
log contains both positive and negative examples; meaning that, besides the
allowed cases, also instances of undesired behaviors can be exploited. This
allows to better control the degree of generalization of the resulting model, as
well as improve its simplicity by ignoring the parts of the model that are not
significant to discriminate positive and negative behaviors. The reason why
the majority of the process mining algorithms do not use negative traces is
that in most of the real-life situations, distinguish positive and negative cases
in the input log is a very hard and time-consuming task and in some cases it

might not even be possible, so it would be easier to work as if the negative

25

examples did not exist. This set constitutes a sort of "upside-down world”,
specular to the real world of positive, common and allowed cases. These
can be used to understand the reasons why deviations from the common
process model occur. This information is useful not only to clarify what
should be deemed compliant with the model and what should not, but also
to specify parts of the business process in a more synthetic and effective way,
for example a set of constraints that results form positive examples may be
substituted by a single one extracted from negative traces. See [13] for a full

discussion on this topic.

2.1 Underlying structure

In his paper [14], Mooney proposed two algorithms that learn-first order
Horn clauses, one that returns the final result as a disjunctive normal form
(DNF) expression and the other that returns it as a conjunctive normal form
(CNF) expression; for now, we will focus on the former. This algorithm,
presented in pseudocode below, was chosen as the backbone structure of
the project. It is important to state that even though Mooney’s algorithms
were thought for Horn clauses, the basic algorithms were heuristic covering
algorithms for learning DNF or CNF'; here they were adapted to process

mining, as described in the next subsection.

The algorithm is composed of two cycles, the outer one takes in input the
list of positive examples and the list of negative examples and ends when
the list of positive examples becomes empty. It makes a copy of the two sets
and then calls the inner cycle, that ends, instead, when the copied list of

negative examples is empty. The aim of this second cycle is to construct a

26

Algorithm 1 DNF learner by Mooney

Let Pos be all the positive examples.
Let DNF be empty.
Until Pos is empty do:
Let Neg be all the negative examples.
Set Term to empty and Pos2 to Pos.
Until Neg is empty do:
Choose the constraint C that maximizes the DNF-gain.
Add the constraint C to Term.
Remove from Neg all the examples that do not satisfy C.
Remove from Pos2 all the examples that do not satisfy C.
Add Term as one term of DNF
Remove from Pos all the examples that satisfy Term.

Return DNF.

27

term composed by constraints in AND that excludes all the negative traces
while covering at least one of the positives, and that will then be added in
OR to the model. Please note that this is not an extension of the Declare
language; saying that the terms will be in OR means that the produced
model will be presented in DNF, not that the OR is present in the language.
The internal representation of the model is simply implemented as a list of
lists, where the different lists will be presented in OR between each other
and the elements in the list in AND. Inside the second cycle, the algorithm
calls a function to choose the most convenient constraint and adds it, in
AND, to the term that it is building. Then, it removes from its copy of
the lists of positive and negative examples the ones that do not satisfy the
new constraint. After finding a term containing constraints that exclude all
the negative traces, or, in other words, when the list of negative examples
becomes empty, the inner loop ends, the term is added in OR to the previous
ones and all the positive traces that satisfy the new term are removed from
the original list of positive examples. When this list becomes empty, the
algorithm ends and returns the model. As the focus of the inner cycle is
to find a term that excludes all the negative traces, probably some of the
positive ones will be excluded as well. The outer cycle eliminates the covered
traces from the list of positive traces to make it possible for the inner cycle
to find a second term that will focus on finding different constraints. The
DNF gain, taking into consideration the number of positive traces covered, is
higher for the constraints that cover more positive traces, while excluding the
same number of negative traces; so changing the list, the chosen constraints

will change too.

28

2.1.1 Enhancements

To enhance the quality of the model given by the algorithm a few
modifications were made. Every term returned by the inner cycle is added
to it only if it covers at least one positive trace, otherwise it is discarded
as it would be redundant. The fact that the algorithm removes the positive
traces covered by the term from the list of the positive traces makes this
control quite easy to do as it possible to compare the old list to the new
one and, if the two are the same, it means that no positive trace has been

removed so no positive trace satisfies the new term.

Another major change with respect to Mooney’s algorithm is that this one
allows some traces not to be covered by the model. It is in fact possible that
a few traces, positive or negative, are in contrast with the other ones and
including them in the model would be impossible. A simple example, that
should not occur in a real event log, would be the case of the same trace
included in both the sets of positive and negative examples. In this case it
would obviously be impossible to create a model that includes the positive
one and simultaneously excludes the negative one. To avoid the program
to fail and not return any model, a control was added to make sure that
if the function of the inner cycle that chooses the next constraint to add
to the term fails, i.e., there are no more constraints that can be added and,
therefore, the negative traces left are not possible to exclude, these remaining
examples are removed and returned. The same thing happens if there are no
more terms that can cover the remaining positive traces; the inner cycle aims
to cover as many positive traces as possible, so if the term that it returns
covers no positive traces at all, it means that they cannot be covered in any

way and that they have to be discarded. As for the negative traces, they are

29

Algorithm 2 DNF version of the enhanced algorithm
Start :-

get_positive_traces(Pos),
get_negative_traces(Neg),
outer_cycle(Pos, Neg, Model, PosNotCovered, NegNotExcluded).

outer_cycle([], Neg, Model, PosNotCovered, NegNotExcluded).
outer_cycle(Pos, Neg, Model, PosNotCovered, NegNotExcluded) :-
inner_cycle(Pos, Neg, Term, NewNegNotExcluded),
remove_satisfying_traces(Pos, Term, PosLeft),
(PosLeft == Pos — PosNotCovered is Pos; Pos is []),
outer_cycle(PosLeft, Neg, [Term|Model], PosNotCovered,
NewNegNotExcluded).

inner_cycle(Pos, [|, Term, NewNegNotCovered).
inner_cycle(Pos, Neg, Term, NewNegNotCovered) :-
choose_constraint(Pos, Neg, Term, NewConstraint),
remove_not_satisfying_traces(Pos, NewConstraint, PosLeft),
remove_not_satisfying_traces(Neg, NewConstraint, NegLeft),
inner_cycle(PosLeft, NegLeft, [NewConstraint| Term],
NewNegNotCovered).
> Enters here if choose_constraint fails
inner_cycle(Pos, Neg, Term, NewNegNotCovered) :-
NewNegNotCovered is Neg,
inner_cycle(Pos, [|, Term, NewNegNotCovered).

30

stored in a variable that keeps track of their previous presence in the list.
When the algorithm comes to an end and returns the model, the discarded
traces are printed on the screen so the user can know that it would not have
been possible to discover a process model given the complete log, and that

the given one only describes a part of the it.

2.2 Hierarchy of templates

Before describing the details of the algorithm itself, it is necessary to explain
how the different templates among which the choose_constraint function will
look for the next constraint to add to the term, are organized. It is possible
to identify templates that are more specific than others, i.e., that pose a
tighter constraint on the traces. For example, the existence(A) template is
one of the most general ones as it only states that a certain activity has to
be executed in the trace, without specifying how many times or the time of
its execution. On the other hand, the template chain_succession(A,B) is one

of the most specialized as it imposes many conditions on the two activities.

In [4] can be found a subsumption map of Declare templates, shown
in Figure 2.1, that makes the general structure of the hierarchy easier to

understand.

The upper part, Figure (a), illustrates the subsumption hierarchy of
existence templates. Given two n-ary templates, we say that C is subsumed
by C’, written C C (", if for every trace t € A* and every parameter
assignment 7, from the parameters of C to tasks in A, whatever t
complies with the instantiation of C' with ~,, then t also complies with the

instantiation of C” with ~,. Following this definition, a template is more

31

(a)

Cardinality templates Participation(x) | AtMostOne(x)
[]
Position templates Init{x) | End(x) |
(b) Backward-unidirectional Forward-unidirectional

. Coupling templates . Negative templates
relation templates E = F relation templates 5 F

| RespondedFExistence(y, =) | CoFEnstence(z, y) | RespondedExistence(x, y) | NotCoExstence(x, y) |
) A A
| V
| Precedence(x, y) | Suecesston(x, y) | Response(x, y) | NotSuccession(x, y) |

I."-\I I.".'\I FAY

AlternateSuccession(x, y) | AlternateResponse(x, y) |

Alternate Precedence (x, y)

TAY FAY FAY
oy
| | | W

| ChainPrecedence(x, y) | ChainSuccession(x, y) | ChainResponse(x, y) | NotChainSuceession(z, y)

Figure 2.1: Subsumption map of Declare templates [4]. Please note that
Participation(z) corresponds to the template described as existence(X),

End(z) to last(X) and AtMostOne(z) to absence2(X)

specialized than another if it is subsumed by it; for example, response(a,b)
C responded_existence(a,b) so response(a,b) is more specialized than
responded_existence(a,b). On the other hand, responded_existence(a,b) is
more general than response(a,b). The templates are indicated in solid boxes
and the subsumption is drawn with a line that starts from the subsumed

template and ends in the subsuming one, with an empty triangular arrow.

Figure [2.1[b) shows that responded_existence(x,y) directly subsumes
response(x,y) and precedence(y,x). Both constraints strengthen the
conditions imposed by responded_existence by specifying that not only the
target must occur, but also in which relative position in the trace (after or

before the activation). However, as the role of activation and target are

32

swapped in precedence with respect to responded_existence, the latter and
Response belong to the type of forward unidirectional relation templates,

whereas precedence is a backward unidirectional relation template.

The direct child templates of response and precedence are
alternate_response and alternate_precedence. The concept of alternation
strengthens the parent template by adding the condition that between pairs
of activation and targets, no other activation can occur. The same concept
applies between alternate_response and alternate_precedence on one side

and chain_response and chain_precedence on the other.

The conjunction of a forward unidirectional relation template and a
backward unidirectional relation template belonging to the same level
of the subsumption hierarchy generates the so-called coupling templates:
succession(x,y). The coupling template co_existence(x,y) is equal to the
conjunction of responded_existence(x,y) and responded xistence(y,x). For
every coupling template C, the functions fw(C) and bw(C) are defined and
return respectively the related forward unidirectional relation template and
backward unidirectional relation template. Hence fw(succession(x,y)) =
response(x,y) and bw(succession(x,y)) = precedence(x,y). In Figure 2.1(b)

these functions are indicated by gray arcs labeled as forward and backward.

The negative templates negate the corresponding coupling templates
and the subsumption hierarchy gets reverted so that not_co_existence is

subsumed by not_succession that is subsumed by not_chain_succession.

Remembering that the templates used in this project are more than
the ones in Figure 2.1 the hierarchy was created thinking of it as
a tree that has more than one starting node. These correspond to

the most general templates and are existence(X), responded_existence(X),

33

aleternate_precedence(X,Y)

absence2(X)

/\ alternate_succession(X,Y) absence(X)

absence(X) exactlyl(X)

Figure 2.3: Subsumption map
Figure 2.2: Subsumption map of

of alternate_precedence(X,Y)
absence2(X) template.
template.
absence3(X)
absence(X) absence2(X) exactly2(X)

Figure 2.4: Subsumption map of absence3(X) template.

aleternate_response(X,Y)

L N

absence(X) alternate_succession(X,Y) chain_response(X,Y) chain_succession(X,Y)

Figure 2.5: Subsumption map of alternate_response(X,Y) template.

absence3(X), choice(X,Y) and not_chain_succession(X,Y). The specialization

of these templates creates the different branches of the tree.

In Figures to are shown all the subsumption maps used in

34

aleternate_succession(X,Y)

alternate_precedence(X,Y) AND
alternate_response(X,Y}

Figure 2.6: Subsumption map

of alternate_succession(X,Y)

template.

chain_response(X,Y)

T

chain_succession(X,Y)

absence(X)

chain_precedence(X,Y)

N

chain_succession(X,Y) absence(X)

Figure 2.7: Subsumption map of

Figure 2.8: Subsumption map of

chain_response(X,Y) template.

chain_precedence(X,Y) template.

chain_succession(X,Y)

chain_precedence(X,Y) AND
chain_response(X,Y)

Figure 2.9: Subsumption map of

chain_succession(X,Y) template.

choice(X,Y)

exactlyl(X)

exactly2(X)

exclusive_choice(X,Y)

Figure 2.10: Subsumption map of choice(X,Y) template.

the project. This hierarchy was taken from [I3], it is not as straight

forward as the one described above, but it makes it possible to provide

simpler models. For example, this hierarchy allows to take the template

35

choice(X,Y)

existence(X) existence2(X) existence3(X)

Figure 2.11: Subsumption map of choice(X,Y) template.

choice(X,Y)

exactlyl(Y) exactly2(Y) choice(Y,X)

Figure 2.12: Subsumption map of choice(X,Y) template.

choice(X,Y)

existence(Y) existence2(Y) existence3(Y)

Figure 2.13: Subsumption map of choice(X,Y) template.

chain_precedence(X,Y) directly as a specialization of precedence(X,Y)
without inserting also alternate_precedence(X,Y) in the model. A downside

of this is that every template will have a higher number of subsumed ones,

possibly slowing down the computation.

36

choice(X,Y)

O

init(X)

init(Y)

Figure 2.14: Subsumption map of

choice(X,Y) template.

Figure 2.15: Subsumption map of

exclusive_choice(X,Y) template.

exclusive_choice(X,Y)

exclusive_choice(Y,X)

co_existence(X,Y)

alternate_succession(X,Y)

chain_succession(X,Y)

succession(X,Y)

Figure 2.16: Subsumption map of co_ezistence(X,Y) template.

co_existence(X,Y)

alternate_succession(Y,X)

chain_succession(Y,X)

succession(Y,X)

Figure 2.17: Subsumption map of co_ezistence(X,Y) template.

It was not possible to create a single tree as it would have been unreadable

because of its dimension, moreover some of the maps had to be split into

multiple parts for the same reason.

This allows all the specialized constraints to be found just by using the

37

co_existence(X,Y) existence2(X)

responded_existence(X,Y)
AND co_existence(Y,X) exactly2(X) existence3(X)
responded_existence(Y,X)
Figure 2.18: Subsumption map of Figure 2.19: Subsumption map of
co_ezistence(X,Y) template. existence2(X,Y) template.

existence(X)

exactlyl(X) exactly2(X) existence2(X) existence3(X) init(X)

Figure 2.20: Subsumption map of ezxistence(X,Y) template.

not_chain_succession(X,Y)

T N

absence(X) absence(Y) not_co_existence(X,Y) not_succession(X,Y)

Figure 2.21: Subsumption map of not_chain_succession(X,Y) template.

findall function, as will be described in the next section.

In some cases, the specialization of one constraint can not lead to
one single specialized constraint, but to two constraints in AND. If
this happens, it is mandatory that the two constraints are considered
together. For a trace to satisfy that specialization of the original constraint,
both of the constraints must hold on it. For example, as visible in

Figure [2.18] the co_existence(X,Y) template can be specialized, following

38

not_co_existence(X,Y)

absence(X)

absence(Y)

not_co_existence(Y,X)

Figure 2.22: Subsumption map of not_co_ezistence(X,Y) template.

not_succession(X,Y)

absence(X)

absence(Y)

not_co_existence(X,Y)

Figure 2.23: Subsumption map of not_succession(X,Y) template.

precedence(X,Y)

absence(X)

init(X)

succession(X,Y)

Figure 2.24: Subsumption map of precedence(X,Y) template.

this hierarchy, in the pair of constraints responded_existence(X,Y) AND
responded_existence(Y,X). For a trace to satisfy this specialization, both of
the constraints must be valid on it. This pair of constraint will then be

considered as a single one that will therefore not be specialized further. It

39

precedence(X,Y)

N

_precedence(X,Y)

ion(X,Y)

Figure 2.25: Subsumption map of
precedence(X,Y) template.

responded_existence(X,Y)

N

succession(X,Y)

response(X,Y)

Figure 2.27: Subsumption map
of responded_existence(X,Y)
template.

responded_existence(X,Y)

N

chain_succession(X,Y)

chain_response(X,Y)

Figure 2.29: Subsumption map
of responded_existence(X,Y)
template.

precedence(X,Y)

N

chain_succession(X,Y)

chain_precedence(X,Y)

Figure 2.26: Subsumption map of
precedence(X,Y) template.

responded_existence(X,Y)

N

alternate_succession(X,Y)

alternate_response(X,Y)

Figure 2.28: Subsumption map
of responded_existence(X,Y)
template.

responded_existence(X,Y)

N

succession(Y,X)

precedence(Y,X)

Figure 2.30: Subsumption map
of responded_existence(X,Y)
template.

would be possible though, to specialize the constraints separately, but it

would be redundant because both of them are already considered singularly.

40

responded_existence(X,Y) responded_existence(X,Y)

N T

alternate_precedence(Y,X) alternate_succession(Y,X) chain_precedence(Y,X) chain_succession(Y,X)
Figure 2.31: Subsumption map Figure 2.32: Subsumption map
of responded_existence(X,Y) of responded_existence(X,Y)
template. template.

responded_existence(X,Y)

co_existence(X,Y) co_existence(Y,X) init(Y)

Figure 2.33: Subsumption map of responded_ezistence(X,Y) template.

response(X,Y) response(X,Y)
absence(X) succession(X,Y) alternate_response(X,Y) alternate_succession(X,Y)
Figure 2.34: Subsumption map of Figure 2.35: Subsumption map of
response(X,Y) template. response(X,Y) template.

2.3 Choose_Constraint function

The function called in the inner cycle that chooses the next constraint to

add to the term is called choose_constraint and it is written in code below.

41

response(X,Y)

chain_response(X,Y) chain_succession(X,Y)

Figure 2.36: Subsumption map of response(X,Y) template.

succession(X,Y)

precedence(X,Y) AND

alternate_succession(X,Y) chain_succession(X,Y) response(X,Y)

Figure 2.37: Subsumption map of succession(X,Y) template.

choose_constraint(ListOfPositiveExamples, ListOfNegativeExamples,
Term, NewConstraint) :-

combine(FirstLevelOfHierarchy,
Activities, GroundedFirstLevelOfHierarchy),

specialize_existing_constraints(GroundedFirstLevel OfHierarchy,
Term, ListOfPossibleCandidates),

get_best(ListOfPossibleCandidates, ListOfPositiveExamples,
ListOfNegativeExamples, NewConstraint).

This function has three parameters, the current lists of positive and negative
examples and the list of constraints already added to the term, and it returns

the constraint that will be added to the term by the inner cycle. The function

42

needs a list of possible constraints among which it will find the best one,
based on the positive and negative traces. To find these constraints, it
starts from the first level of the hierarchy and combines the templates with
all the possible activities found in the log. For example, if the most general
level of the hierarchy only contained the two templates existence(X) and
response(X,Y), and the activities found in the log were only a, b and ¢, then

the list of constraints would be:

[existence(a), existence(b), existence(c), response(a,b), response(a,c),

response(b,a), response(b,c), response(c,a), response(c,b)]

As the algorithm will present the model in DNF| i.e., every term will be
composed of constraints in AND, the first constraints that the function
will choose from are the most general ones, that are likely to cover both
many positive and many negative traces. In later iterations the function will
specialize the model and will have two different ways of doing it: the first
one is to choose another constraint, from another branch of the hierarchy, to
add in AND to the term; the second one is to specialize one of the existing

constraints following the hierarchy.

The reason why the function, differently from the algorithm proposed by
Mooney, always starts from the same set of constraints, and not from the
ones that already are in the term, is that most of the times many of them
would need to be considered anyways because some branches of the hierarchy
might not have been explored at all yet, so it is faster to remove the ones

that are already present than adding the ones that are not.

The next step consists checking which constraints are already in the term

and descending the hierarchy to find the more specialized ones. At the

43

end of this process the new set of constraints among which to choose in
order to find the one that better fits the log is complete and contains the
first-level constraints that are not already in the term and all the possible
specializations of the ones that were chosen in previous iterations. In this
function it is important to consider that, as we always start form the first
level, it is not enough to only look for specialization of the starting list of
constraints, because the term could already contain one. For example, if in
the first iteration the chosen constraint was existence(a) and in the second
one existence2(a), in the third iteration the starting list of constraints will
still contain existence(a) but looking only for its specializations will not be
enough as the term already contains one of them. The function finds the next
level of hierarchy and checks which of these new constraints are already in
the term. They are removed from the list of constraints that is being built
and added to the list that previously contained only the first level of the

hierarchy so they can be specialized as well.

In detail, considering the first constraint in the list, if it is already in the
term, then all its possible specializations are returned by a findall function
called on the hierarchy of templates. Then the constraints that are possible
candidates to be added to term and the ones that have already been chosen
to be part of it are identified and divided into two variables. The latter list
is added to the list of first-level constraints that still need to be checked
by the append function and then the function that specializes the existing
constraints is called recursively. Please note that here is only described the
main part of the function, if the constraint analyzed is not already in term,
it is inserted in the list of possible candidates to be added to term; on the
other hand, if the constraint is already in term but the findall function fails

it is because the constraint has no possible specializations, so it is simply

44

removed from all the lists.

Once it has the complete list of constraint to choose from, the program
removes the duplicates (the same constraint can be the specialization of two
different ones) and associates each one with a score, calculated through the
dnf_gain function below, called by the get_best function in the pseudocode

above, and then chooses the constraint that has the highest one.

dnf_gain(Constraint, ListOfPositiveTraces, ListOfNegativeTraces) :-
Let P be the number of examples in ListOfPositiveTraces,
Let N be the number of examples in ListOfNegativeTraces,
Let p be the number of examples in ListOfPositiveTraces that satisfy
Constraint,
Let n be the number of examples in ListOfNegativeTraces that satisfy

Constraint,

Return px(loglo(]ﬁ) - loglo(p%v))-

This function, described by Mooney [14], calculates the gain of each
constraint taking into consideration the number of positive examples P, the
number of negative examples N, the number of satisfied positive examples
p and the number of satisfied negative examples n. In our algorithm, if p is
0, the constraint is assigned a very low gain that assures that the constraint
will not be chosen. This assignment is necessary because the logarithm of
0 is -oo and it generates an error in Prolog. Anyways, a constraint that
does not cover any positive trace must not be added in the term as, being
in AND with all the other constraints, it would make the whole term cover

no positive trace and be discarded.

It is important to mention that the algorithm is based on the assumption

45

that every constraint ever chosen to be part of a term will remain in the
term. This is necessary because a constraint in AND with a more specific
one becomes useless, but it makes the process of finding the new constraint
to add way easier. Starting from the same set of templates and deleting
the general constraint every time a more specific one is added would in fact
mean that the specialize_existing_constraints function should not only look
for the presence in the term of the constraint that it is analyzing, but also
for the one of more specific constraints. This variation, analyzed in the next

chapter, would make the model simpler but the algorithm quite harder.

2.4 Example

To better understand how the algorithm works, here is an examples on an

extremely limited number of traces. Considering our event log to be:

Positive traces:
trace(pl, [event(a,1) ,event(b,2),event(c,3),event(c,4),event(d,5)]).
trace(p2, [event(a,1),event(c,2),event(c,3),event(a,4),event(b,5)]).
trace(p3, [event(a,1) ,event(e,2),event(c,3),event(a,4),event(b,5)]).
trace(p4, [event (f,1),event(g,2) ,event(i,3),event(k,4),event(h,5)]).

Negative traces:

trace(nl, [event(a,1),event(k,2),event(g,3),event(f,4),event(e,5)]).

trace(n2, [event(a,1),event(c,2),event(g,3),event(k,4),event(f,5)]).

46

The algorithm starts reading all the positive and negative traces, as the
termination condition is that the list of positive traces is empty, i.e. that
the model discovered covers all of them, it enters in the outer cycle. The first
instruction here is the call to the inner cycle function, that will immediately
call the choose_constraint function to find the best constraint to add to the
term. This function takes the set of starting templates, extracts all the
different activities from the traces and generates the list of constraints to
analyze. Then calls the get_best function that will compute the DNF gain
of each constraint and select the best one. Here, the first constraint selected

18

choice(h,b)

The choose_constraint function then ends, returning this constraint to the
inner cycle. It is now time for the inner cycle to assess how many negative
traces do not satisfy this constraint. In this case, the constraint is not valid
for any of them, as neither have activities h or b. This means that, thanks
to the remove function, the list of negative traces becomes empty and the
term, composed only by the constraint choice(h,b), is returned to the outer
cycle. The latter now has to check how many positive traces are covered
by this term; in this case every positive example has either the activity h
or the activity b, so all of the positive traces satisfy the constraint. The
remove function removes all the positive traces from the list, that becomes
empty and makes the algorithm return the model and end. The model is, in
this case, composed of only one constraint, as, by itself, it excludes all the

negative examples while covering all the positive ones.

47

2.5 DNF vs CNF

The CNF algorithm is dual to the DNF one described above. It returns
a model in the conjunctive normal form, meaning that it will be an AND
of OR. The DNF model was quite easy to understand even in case the log
contained positive traces that were completely different from each other as
it could describe every different group with a different term. The CNF
model is still able to do so, but in the opposite way. If the model has to be
described by the same constraints, every clause here will contain one of the
constraints that the DNF term contained and there will be as many clauses

as the number of constraints in the largest DNF term.

To better understand the differences between the models generated by the

two algorithms, if the positive traces in the log are:

trace(pl, [event(a,l), event(b,2), event(c,3), event(d,4)])

trace(p2, [event(a,1), event(b,2), event(b,3), event(c,4)])
trace(p3, [event(a,l), event(c,2), event(b,3), event(d,4)])
trace(p4, [event(k,1), event(c,2), event(a,3), event(d,4)])

And the negative ones:

trace(nl, [event(b,1), event(c,2), event(e,3), event(d,4)])

trace(n2, [event(c,1), event(b,2), event(d,3), event(a,4)])

A process model returned by the DNF algorithm could be:

48

(existence(a) AND precedence(a,b))

OR

existence(k)
Whereas the CNF algorithm could return a model such as:

(existence(a) OR existence(k))

AND

precedence(a,b)

Note that these two models are not optimal and would not be returned by

the algorithm.

2.5.1 Backbone algorithm

As mentioned before, the backbone of this algorithm was inspired by

Mooney’s CNF Learner. The pseudocode of his algorithm is given below.

The duality between this algorithm and the DNF one is quite easy to see.
In this case the outer cycle ends when all the negative traces are excluded by
the model and the inner cycle when all the positive ones satisfy the clause.
This means that every clause of the algorithm, composed of constraints in
OR, will need to necessarily cover all the positive traces in the log. Again,
the target language, Declare, does not support the OR, in the algorithm
the clauses are represented as lists of constraints just as the DNF terms,
and only when it comes to returning the model, it is printed to include it.

The inner cycle chooses the most convenient constraint based on a different

49

Algorithm 3 CNF learner by Mooney

Let Neg be all the negative examples.
Let CNF be empty.
Until Neg is empty do:
Let Pos be all the positive examples.
Set Clause to empty and Neg2 to Neg.
Until Pos is empty do:
Choose the constraint C that maximizes the CNF-gain.
Add the constraint C to Clause.
Remove from Pos all the examples that satisty C.
Remove from Neg2 all the examples that satisfy C.
Add Clause as one clause of CNF
Remove from Neg all the examples that do not satisfy

Clause.

Return CNF.

20

function that will be described in the next subsection. Then it removes from
its local lists of positive and negative examples all the traces that do satisfy
it; the DNF' algorithm on the other hand, removed the ones that did not.
This is because every clause needs to cover all the positive traces, and as
every constraint in them is in OR, the examples covered by one constraint
are covered by the whole clause too. Removing them from the list makes
later iterations focus on the ones that are not yet covered so the clause will
not have redundant constraints, that would probably include negative traces

too, making the model wider.

The last part of the outer cycle removes form the negative traces the ones
that do not satisfy the clause created in the inner cycle and adds it to the
model in AND with the other ones. Being in AND, the model is not just
as restrictive as the most restrictive clause, which was the reason why every
term of the DNF algorithm had to exclude all the negative traces, but every
one of them contributes to discard some of them. On the other hand, if a
clause does not cover a positive trace, it means that the whole model will
not cover it, so the inner cycle only ends when the list of positive examples

is empty.

In this version of the algorithm too there is the possibility of excluding
some traces, positive or negative, from the model instead of failing, if it is
not possible to produce a model that describes them. In this case, the inner
cycle takes care of the positive ones, while the outer one removes negatives

traces if the inner cycle fails to produce a clause that covers them.

o1

2.5.2 CNF hierarchy of templates

The hierarchy used for the CNF algorithm is the same as the one described
above. In this case, though, because the constraints in the clauses are in OR,
the set from which the first constraint is selected is not the one containing
all the most general templates, as it was for the DNF algorithm, but, on the
contrary, is the one made of all the most specialized templates. The hierarchy
of templates has to be scanned in reverse; starting from the templates that
were the leaves of the tree and possibly reaching the root nodes only in later

iterations. The templates in the starting set are:

[absence(X), init(X), end(X), exclusive_choice(X,Y), existence3(X), exactly2(X),

chain_succession(X,Y), not_responded_existence(X,Y)]

This set is substantially larger than its DNF correspondent. This is because
many of these are subsumed by responded_existence(X,Y), a template that

creates a subtree with many different branches.

Because of the way the hierarchy was written, it can remain otherwise
untouched, only the findall function used to retrieve the more general
constraints will need to be adapted to return the first term of the Prolog

fact, SubsumingConstraint, instead of the second one, SubsumedConstraint.

next_level_of_hyerarchy (SubsumingConstraint, SubsumedConstraint).

52

2.5.3 CNF choose_constraint function

The choose constraint function has to choose the best constraint to add to
the clause. It always starts building the clause from the most specialized

constraints and then adds more general ones in later iterations.

choose_constraint(ListOfPositiveExamples, ListOfNegativeExamples,
Clause, NewConstraint) :-
combine(LastLevel OfHierarchy,
Activities, GroundedLastLevelOfHierarchy),
generalize_existing_constraints(GroundedLastLevel OfHierarchy,
Term, ListOfPossibleCandidatesToCombine),
combine(ListOfPossibleCandidatesToCombine,
Activities, ListOfPossibleCandidates),
get_best(ListOfPossibleCandidates, ListOfPositiveExamples,
ListOfNegativeExamples, NewConstraint).

The main difference with respect to the DNF choose_constraint function
is the extra combination step. This step is necessary because in some
subtrees of the hierarchy the parent node is a template with two variables
and the child node only has one. Scanning the tree form the leaves to
the root, it is then possible that the more specialized constraint only
concerned one activity, while the more general one concerns two. For
example, as visible in Figure 2.24] both init(X) and absence(X) can be
generalized in precedence(X,Y). If the constraint that is already in the
clause is init(a), then the more general constraint returned from the function

generalize_existing_constraints will be precedence(a,Y) but to check how

23

many traces satisfy a constraint it is necessary for all of its variables to
be grounded. The combine step substitutes the value with every possible
activity, creating all the different constraints. Note that in case the template
given to the combine function is already grounded it will simply return it as

1t 1s.

2.5.4 CNF _gain function
The CNF _gain function is again described by Mooney.

cnf_gain(Constraint, ListOfPositiveTraces, ListOfNegativeTraces) :-
Let P be the number of examples in ListOfPositiveTraces,
Let N be the number of examples in ListOfNegativeTraces,
Let p be the number of examples in ListOfPositiveTraces that do not
satisfy Constraint,
Let n be the number of examples in ListOfNegativeTraces that do not

satisfy Constraint,

Return nx (logio(5%;:) ~ loglo(PJrLN)).

This function is dual with respect to the DNF _gain one. Here are taken
into consideration the numbers of traces, positive and negative, that do not
satisfy the constraint, and the number of not satisfied negative examples
is the one that is used as numerator in the calculation. This is because
the more negative traces are excluded by a clause, the more efficient the
algorithm will be. Also, the model will become simpler because the number
of constraints in it will be lower. If a constraint satisfies every negative trace,

meaning that n is 0, it is assigned a very low gain so it will not be selected.

o4

2.5.5 Example

Again, to better understand how this version of the algorithm works, it is
useful to look at an example on a small event log. For simplicity, we will

use the same event log used in the example on the DNF version.

Positive traces:

trace(pl, [event(a,1) ,event(b,2),event(c,3),event(c,4),event(d,5)]).
trace(p2, [event(a,1),event(c,2),event(c,3),event(a,4),event(b,5)]).
trace(p3, [event(a,1),event(e,2),event(c,3),event(a,4),event(b,5)]).

trace(p4, [event (f,1) ,event(g,2),event(i,3),event(k,4),event(h,5)]).

Negative traces:

trace(nl, [event(a,1),event(k,2),event(g,3),event(f,4),event(e,5)]).

trace(n2, [event(a,1),event(c,2),event(g,3),event(k,4),event(f,5)]).

The algorithm reads the positive and negative traces and enters in the outer
cycle which leads immediately to the inner one. The choose_constraint
function takes the set of starting templates, that in this case contains the
most specialized ones, and grounds them in the same way described for the
DNF version of the algorithm. The get_best function then calculates the

CNF gain of every constraint and return the best one, that in this case is
chain_succession(f,g)

The choose_constraint function, in turn, returns it to the inner cycle, that

will now compute how many positive traces are covered by this constraint

95

and then add it to the clause. In this case, the constraint is satisfied by all of
the positive traces because in trace p4 activity g directly follows activity f,
while in the other traces the two activities are not present, so the constraint
is considered valid. As the list of positive traces becomes empty, the inner
cycle ends and returns the clause to the outer one. Here, the negative traces
that do not satisfy the clause are removed from the list. Again, all the
negative traces are ruled out by the constraint because in both of them
activity f is preceded by activity g, not followed. The list of negative traces

becomes empty and the algorithm returns the model and ends.

2.6 Optimization

The algorithm, as it was described, is correct, but its execution is not
supported by average computers if the number of traces contained in the
event log is elevated. An optimization is then needed to make it possible for

the algorithm to find a process model regardless of the hardware.

2.6.1 Smaller event log

A first solution would be to use a smaller event log to create the model. This
would, on the one hand, make the computation lighter as it would decrease
the RAM usage and avoid the “Out of stack” error, i.e., the necessity of
the algorithm to use more memory than available. On the other hand, it is
possible that the model would be less precise, perhaps not including some
correct trace, or not excluding negative ones, that would otherwise have
been in the event log. As this solution could produce incorrect models it

should not be implemented.

26

2.6.2 Analyzing only a subset of constraints

A different approach would be to stop the analysis of the constraints as
soon as the algorithm finds a “good enough” one. This would require a
threshold that represents the minimum gain that a constraint should have
in order to be added to the term or clause. The first constraint found that
has a gain higher that this threshold would be chosen, and the other ones
would not be analyzed at all, making the computation extremely faster.
The threshold, though, would have to decrease at every iteration of the
outer cycle because, as the number of positive traces decreases, the number
of covered positive traces will reduce as well, and it may not be possible to

find any constraint with a high enough gain.

The choice of the starting value for the threshold heavily depends on the
dataset, so the best way to set it is to first set a very high one, then, based
on the gain of the first constraints analyzed, choose an appropriate value. In
the outer cycle the value can then decrease by a fixed quantity or based on
the number of traces excluded by the new term or clause. The drawback of
this solution is that the generated model is not going to be optimal, meaning
that the algorithm will not find the optimal one. For example, the model
found by the algorithm used this way is:

(existence (reject_application) AND
existence (receive_negative_feedback) AND
existence (approve_application) AND

not_chain precedence (approve_application,notify_approval))

OR

o7

Algorithm 4 Modifications to the original algorithm
> The assignment of the Threshold value would happen in the outer cycle

> The length of the term is equal to the number of iterations of the inner
cycle

length(Term, NumberOflterations),

Threshold is StartValue - DecreaseValue/NumberOflterations,

> The get_best function would return a constraint as soon as it founds
one that has a gain higher than the threshold
get_best([Constraint | ListOfPossibleCandidates], ListOfPositiveTraces,
ListOfNegativeTraces, Threshold, NewConstraint) :-
dnf_gain(Constraint, ListOfPositiveTraces, ListOfNegativeTraces,
Gain),
If Gain > Threshold,

NewConstraint is Constraint.

o8

(existence (receive_positive_feedback) AND

existence (notify_approval))

Whereas the one found on the same dataset but analyzing every constraint

18:

(exclusive_choice (send_acceptance_pack,
receive_negative_feedback)

AND

choice (send_acceptance_pack, receive_negative_feedback))

Both of these models are correct, but the second one is clearly simpler and
uses different constraints, whereas the model found by stopping the analysis
mostly uses existence constraints because, being in alphabetical order, they

are the ones that are analyzed first.

2.6.3 Assert and Retract predicates

The last analyzed technique is to use the Prolog predicates assert and
retract; they allow to store facts into the heap, therefore freeing the stack.
Instead of having the list of combined constraints stored in a variable,
every constraint is asserted and then they are retracted in smaller groups
to be analyzed. The asserted constraints need to be retracted based on
the template, the algorithm gets a list that contains all the templates and
then retracts every constraint. The result will be the first constraint found
in the heap that matches it, for example existence(a). In order to also

find the other two constraints (existence(b) and existence(c)) the retract

29

predicate above must be executed two more times. Note that if this is
executed in a recursive call, it will not be possible to use the same variable
for every execution because the retract predicate will bind the variable in
the template. A simple solution is to make a copy of the template using the
predicate copy_term and using it to retract the constraint needed, leaving

the original template untouched.

Assert and retract can also be used to implement the tabling technique
[15]. To calculate the gain, it is necessary to know how many traces satisfy
the constraint. This means that every trace is tested every time a constraint
is analyzed, but after the first call, we already know if a constraint is valid
on it, so it does not make sense to test it again. It is possible to assert a
fact that will avoid these useless calls to the verify_constraint function on

the traces that were already tested. It will look like

assert(verified(TracelID, Constraint, Answer)).

The variable Answer can only assume two values, “yes” or “no”; if the
value is "yes”, it means that the constraint is valid on that trace, on the
other hand, if the value is "no”, it means that the trace does not satisfy
the constraint. Note that, in this case, the predicate retract is not used
because the constraint remains valid or not valid on a trace for the whole
computation, whereas the list of constraints to analyze changes at every

iteration. In order to get the answer it is enough to call

verified(TraceID, Constraint, Answer)

60

With the variables TracelD and Constraint grounded. If the fact was
asserted, this will ground the variable Answer and return the value that

we are looking for.

This technique is based on the assumption that every trace has a different
identifier, if, for example, both positive and negative trace identifiers are
numbers that start form 1 for the first trace and increase for the following
ones, then there will be a trace with ID = 1 among the positives and another
one among the negatives. This would lead to errors because it is possible
that a constraint is valid for the positive trace with ID = 1 but not for the
negative one. The assert predicate called after the function verify_constraint
on the positive trace would then create a fact that would be found when
checking the constraint’s validity on the negative trace with the same ID.
Moreover, this is only useful to speed up the computation from the second
iteration of the inner cycle, as for the first one all the constraints have never
been analyzed before. The drawback is that it slows down the first iteration

a little.

Another observation that can be made is that if a constraint does not hold
on a trace, also more specified ones will not. For example, if the constraint
existence(a) does not hold on trace 1, then also exaclyl(a), exactly2(a),
existence2(a), existence3(a) and init(a) will not hold on it. It would be then
possible, when we find that a constraint does not hold on a trace, to get all
the specialized ones and assert them as well as not valid. The same reasoning
can be applied the other way around in the CNF version of the algorithm,
if we find that a specialized constraint holds, then also all the more general
ones will. In practice, though, this has the drawback of slowing down the

computation during the first iteration of the inner cycle, that was already

61

the slowest one. This is due to the fact that scanning the hierarchy every
time to find the other constraints to assert requires computational effort
as it is not enough to find all the immediate specializations of a template,
the hierarchy has to be analyzed till the leaf nodes. It is also possible
that this process generates doubles in the list, for example, the existence
constraint already has exactly2(X) and existence3(X) among its possible
specializations, but they are also the ones of existence2(X), so scanning the
whole hierarchy starting from existence(X) would produce a list with those
templates repeated twice. All in all, this is very useful if there are multiple
iterations of the inner cycle in the algorithm because even if the first one
becomes slower, the following ones will be extremely faster. As the models
that can be defined by only one constraint are quite rare, this technique was

implemented in the algorithm.

62

Chapter 3

Experimental results

The algorithm was tested on different event logs with the aim of, firstly,
assess whether it could find a correct process model and, secondly, analyzing
its performances. The process model of the first event log used was already
known, testing the algorithm on it allowed to confirm the correctness of the
discovered model. All the datasets were useful for the performance analysis;
the three different properties taken into consideration were the time taken
by the algorithm to return the final model and the occupation of the global

and local stack.

3.1 Controlled event log

The two algorithms were initially tried on a controlled event log

where the traces were artificially generated from a known process
model, described in figure and taken form [I3], so that they

could be excluded by a single constraint. The main focus will, in

63

fact, be on the three constraints exclusive_choice(send_acceptance_pack,
receive_negative_feedback), visible in the bottom part of the figure,
precedence(appraise_property, asses_loanrisk), at the top, and
precedence(assess_loan risk, assess_eligibility), that are valid for every
positive trace, but are the ones that the three different sets of negative

examples violate.

The log contains 64000 positive traces and has three different sets of

negative ones. The activities for this log are 16 and are listed below:

e appraise_property;

e approve_application;

e ask for_customer_feedback;
e assess_eligibility;

e assess_loan_risk;

e cancel_application;

e check credit_history;

e check_income_sources;

e notify_approval;

e notify_cancellation;

e receive_loan_application;
e receive_negative_feedback;

e receive_positive_feedback;

64

Initf][]

Appraise Propearty

Recaive Loan Application

Loan Risk Precedence

=[]l

Eligibility

Mot Co-Existence Exclusive Choice

I
|
I

ve Negative Feedback

Figure 3.1: Process model from which the positive and negative traces were

generated

65

e reject_application;
e send_acceptance_pack;

e verify receipt.

3.1.1 First set of negative traces

The first set contains 10240 negative examples and all of them can
be ruled out by the constraint exclusive_choice(send acceptance_pack,
receive_negative_feedback). The DNF version of the algorithm returned the

following model:

(exclusive_choice (send_acceptance_pack,
receive_negative_feedback)

AND

choice (send_acceptance_pack, receive_negative_feedback))

The reason of the presence of the constraint choice(send_acceptance_pack,
receive_negative_feedback) in the model is that the algorithm
starts analyzing only the most general constraints. Being
exclusive_choice(send_acceptance_pack, receive_negative_feedback) a
specialization of the previous constraint, it was not analyzed during
the first iteration of the inner cycle, but only on the second, after the
constraint choice(send_acceptance_pack, receive_negative_feedback) was
chosen and its specializations were included in the list of constraints to
analyze. The CNF version of the algorithm, on the other hand, starting

from the most specialized constraints and generalizing in the following

66

iterations, returned the model constituted only of expected constraint:

exclusive_choice (send_acceptance_pack, receive_negative_feedback)

Form a performance point of view, having to iterate only once, the CNF
algorithm was expected to be faster. After a running the two algorithms
a few times, it was possible to retrieve more accurate statistics. the time
taken by the CNF algorithm to return the model was around 297 seconds
(the algorithm always returns the same model but the time that it takes can
vary of a few seconds depending on what other thing the system is doing
while the algorithm is running; for example, I/O operations can slow it down
a little), whereas the DNF one took about 1129 seconds. The CNF algorithm
was around four times faster, even though it starts with a higher number
of templates in the initial set. The reason for this is that the template
not_chain_succession(X,Y), that is in the starting set of the DNF algorithm,
turned out to be harder to compute that the other ones, therefore slowing
down the whole algorithm. It is also important to consider that the starting
set of templates of the DNF algorithm contains a total of five templates,
three of which with two variables and two with one variable, while the CNF
one contains a total of eight templates, but three have two variables and
the other five have only one. As the templates with one variable create 16
constraints (the same as the number of activities) and the ones with two
create up to 240 constraints, the higher number of single-variable templates
does not make a great difference in the performance. Note that the two
variables must have different values, so all the constraint like response(a,a)

can be discarded.

67

3.1.2 Second set of negative traces

The second log contains 12800 negative traces that can be ruled out by the
constraint precedence(appraise_property, assess_loan risk). Both the DNF
and the CNF model, though, were quite different form this as the DNF one

was:

not_chain_succession(assess_loan_risk, appraise_property)
And the CNF one was:

chain_succession(receive_loan_application, appraise_property)

After checking the event log, both these models were verified to be correct
and they were found in a relatively short amount of time, as both the
algorithms had to only find one constraint and therefore only go through
one iteration of the inner cycle. The performance differences given by the
presence of the template not_chain_succession(X,Y) in the DNF version are
again striking, the CNF algorithm found the model in about 307 seconds,
while the DNF one found it in around 700 seconds, so the CNF was about

twice as fast.

The fact that the constraint precedence(appraise_property,
assess_loan risk) is not in any of the two models is easily explained
because both algorithms have found a correct model using only one
constraint, that belongs to the first set of constraints that were analyzed.
On the other hand, the template precedence(X,Y) is neither in the starting
set of the DNF algorithm nor in the one of the CNF algorithm.

68

3.1.3 Third set of negative traces

The third negative log contains 25600 traces, and it is made so that all
of them can be ruled out by the constraint precedence(assess_loan risk,
assess_eligibility). Having way more traces than the previous ones and not
having the constraint in the first set of analyzed ones, the algorithm was
expected to take a longer time to extract the model. Once it finished though

the DNF model was:

(not_chain_succession (assess_loan_.risk, appraise_property)
AND
not_chain_succession(assess_eligibility, assess_loan_risk)

AND

existence (assess_loan_risk))

The first constraint returned was existence(assess_loan risk) that
ruled out half of the negative examples, the second one was
not_chain_succession(assess_eligibility, —assess_loan risk) that ruled all
the remaining negative traces but one and, finally, the last one was
not_chain_succession(assess_loan_risk, appraise_property) that ruled out the

remaining negative trace. Luckily, this term supports all the positive traces.

The model returned by the CNF algorithm is, instead, compliant with the

expected one:

(precedence (assess_loan_risk, assess_eligibility)

OR

69

chain_succession (assess_loan_risk, assess_eligibility))

The first constraint found, chain_succession(assess_loan _risk,
assess_eligibility)), is valid on 63872 positive traces, the second one,
precedence(assess_loan risk, assess_eligibility), that was introduced in the
set of constraint to analyze as a specialization of the previous one, is the
one that was expected, so it covers all the positive traces. Both of them

rule out all the negative traces, so no other clause was needed.

Again, these two models are correct, and the reason why the expected
constraint is not in the DNF model is to be found in the starting set
of templates. If the algorithm starts with a starting set that contains
the constraint precedence(X,Y), then returned the model is, as expected,

precedence(assess_loan risk, assess_eligibility).

The performance of the CNF algorithm was, as anticipated, much better
that the one of the DNF. The former returned the model after an average
of 522 seconds, whereas the latter took about 1648 seconds. Here the DNF

version of the algorithm took around three times the time of the CNF.

3.1.4 Considerations on the performance

After also considering the previous tests, it is possible to conclude that, for
this controlled event log, the DNF will take about twice as long as the CNF
to choose a single constraint. In the first test the number of constraints
in the DNF model was 2 whereas the one in the CNF model was 1, in the
second test the two numbers were both 1, and here they were, respectively,
3 and 2. As the CNF model was found respectively about four times, two

times and three times faster than the DNF one, it is easy to see how for

70

global stack | local stack
first test DNF 42506608 3528
first test CNF 77821144 2568
second test DNF | 50136944 3040
second test CNF | 80386488 2568
third test DNF 92748272 4016
third test CNF 107962248 2568

Table 3.1: Stack occupation after the execution of the algorithm

every constraint by the DNF algorithm, the CNF on can find two.

Calling the predicate statistics(stacks, X) at the beginning and at the
end of the execution of the algorithm, it is possible to see the memory in
use divided in global and local stack. In all the tests, the result before the
algorithm started was the same for both the CNF and the DNF algorithms:

(11944, 1560

These are respectively the values that indicate the usage of the global and
local stack. In table[3.T]are listed the stack occupation recorded right before
the termination of the algorithm, after the model was found. They are also

visible in the graphs in figures [3.2] and

Global stack occupation Local stack occupation

test 2 test3

120000000 4500

4000

100000000
3500
80000000 3000
60000000 2500
2000
40000000 1500
1000

20000000
500
0 0

test 1 test 2 test 3 test 1

DNF mCNF mDNF mCNF

Figure 3.2: Subsumption map of Figure 3.3: Subsumption map of
co_ezistence(X,Y) template. existence2(X,Y) template.

71

These results reflect the different number of traces in the different tests.
It is evident how the third one, that has the highest number of negative
examples, had to store more facts using the assert predicate with respect to

the other two tests.

3.2 Pap Test screening event log

Another test was run on a different event log [16] that contains traces relative
to a pap test screening, that aims to detect the presence of the papillomavirus
infection in women over the age of 25. The number of activities was a little
higher than the one in the previous tests as they were:

e execute_biopsy_exam;

e cxecute_colposcopy_exam;

e execute_papTest_exam,;

e send_biopsy_sample;

e send_papTest_sample;

e send_letter_negative_biopsy;

e send_letter_negative_colposcopy;

e send_ letter_negative_papTest;

e send_result_doubt_colposcopy;

e send_result_inadequate_papTest;

72

e send result_negative_biopsy;

e send_result_negative_colposcopy;
e send result_negative_papTest;

e send_result_positive_biopsy;

e send_result_positive_papTest;

e invite;

e refuse;

e phone_call positive_biopsy;

phone_call_positive_papTest.

In contrast, the total number of traces was tremendously lower as there were
only 55 positive traces and 102 negative ones. This was reflected in the time
the two versions of the algorithm took to return the model; the CNF one
was again faster with about 3 seconds but this time the DNF was quite fast
too, giving the result after a little less than 5 seconds. The two models were

respectively:

(exclusive_choice (send_letter_negative_biopsy,
send_result_inadequate_papTest)
OR
chain_succession (phone_call positive_papTest,
execute_colposcopy-exam))

AND

73

global stack | local stack
DNF 174888 3336
CNF 142080 4768

Table 3.2: Stack occupation after the execution of the algorithm

(chain_succession (invite, refuse) OR chain_succession(invite,

execute_papTest_exam))

And

choice (refuse, send.result_inadequate_papTest)
OR
(exactlyl (send_letter_negative_papTest)

AND

choice (send_letter_negative_papTest, execute_colposcopy-exam))

The memory occupied by the algorithm reflects the fact that the traces are
less that the ones in the previous test, in able 3.2 are the two outputs of the

statistics function called with the parameter stacks for DNF and CNF.
Note that in this case, the output before the execution was:

(12960, 1672]

74

3.3 Real-life event log with no negative

traces

The final test was run on a real-life event log that contains events of sepsis
cases, a life-threatening condition typically caused by infection, from a
hospital [I7]. Everyone of the 1050 traces represents the pathway through
the hospital. The different activities are 16:

e admission_ic;
e admission_nc;
® Crp;

e er_registration;
e er_sepsis_triage;
e er_triage;

e iv_antibiotics;
e iv_liquid;

e lactic_acid;

e leucocytes;

e release_a;

e release_b;

e release_c;

5

e release_d;
e release_e;

e return_er.

This event log also recorded data attributes that could be used to extract
other useful information, see the next chapter for a full discussion on this

topic.

The peculiarity of this event log with respect to the previous ones is
that all the 1050 traces that it contains are to be considered positive. The
two algorithms described in the previous chapter are not suitable for this:
the CNF version’s termination condition is that the list of negative traces
becomes empty so it would end without returning any model; the DNF
version would instead consider the model impossible to return because the
inner cycle’s termination condition is that the list of negative traces is empty,
so it would return an empty list instead of a term and, as the empty list
does not cover any positive trace, they would all be considered impossible
to cover by any constraint. For this reason, the algorithm was extended to
be able to operate also when there are no negative examples. The DNF
version, starting form the most general constraints, it is bound to return a
model composed by very few constraints, all in OR as there is no negative
trace to exclude, whereas the CNF version will probably need to insert more
constraints in the model, again in OR, because it starts from the most

specialized constraints, that will probably not cover a high number of traces.

This event log, containing a small number of examples, made it possible
for the algorithm to return very easy models. The DNF one only has one

constraint:

76

absence3 (admission_ic)

While the CNF model has two:

absence? (release_e) OR absence (release_e)

Note that in the latter the first constraint found, absence(release_e), covered
all the positive traces but 6, which are covered by the second one. Besides,
the reason why the models are only composed of absence constraints is that
the sorting operation that removes the doubles also ordinates the constraints
in alphabetical order, so even though there were other constraints that
covered the same number of traces, the first one found were, in both cases,

the ones generated from the absence templates.

The time taken by the DNF version is double the one taken by the CNF
one, they are respectively about 14 and 7 seconds. The time taken by the
CNF algorithm to find the second constraint is less than 1 second, the very
low number of traces left and the fact that the function verify_constraint
asserts the results for the already analyzed traces make the second iteration
computationally much easier than usual. On the other hand, the DNF
algorithm is again slowed down by the computation of the constraints derived

from the not_chain_succession template.
The values for the stack again started from:
(12960, 1672]

At the end of the execution, they became the ones listed in table [3.3]

7

global stack | local stack
DNF 2008976 2064
CNF 1954464 2064

Table 3.3: Stack occupation after the execution of the algorithm

3.4 Final considerations

The complexity of the discovered model heavily depends on the event log.
The models returned by the CNF algorithm were simpler in the case of the
Pap test event log and of the first and third tests on the controlled event
log. On the other hand, the model given by the DNF version in the test
on the sepsis event log was the simpler one. On the second test on the
controlled event log both versions returned a model composed only of one
constraint. The reason why the two algorithms return different models lays
in their starting sets of templates. The sets of negative traces in the first and
third tests were made to be ruled out by a constraint that was respectively
already in the starting set of the CNF algorithm and a direct specialization
of the constraint with the highest gain in its starting set, whereas the path
to reach it was longer following the hierarchy from the DNF’s starting set.
In contrast, the model discovered using only positive traces, such as the
Sepsis one, will always be simpler if discovered by the DNF version of the

algorithm, even though it will be way more general than the CNF’s one.

In table|3.4]are given the temporal performance data for both the CNF and
the DNF versions of the algorithm. The column on the right emphasizes the
number of positive and negative traces in the different event logs, the first

addend represents the positive ones and the second addend the negative

78

Dataset DNF | CNF | Total number of traces
First test on controlled event log | 1129s | 297s 64000 + 10240
Second test on controlled event log | 700s | 307s 64000 + 12800
Third test on controlled event log | 1648s | 522s 64000 + 25600
Pap test event log 58 3s 55 + 102
Sepsis event log 14s 7s 1050

Table 3.4: Temporal performance

ones; note that the last dataset did not have any negative trace and the

number in the table corresponds to the positive ones.

The number of traces, as expected, highly influences the overall time
taken to return the model. Nevertheless, the CNF version of the algorithm
returned the process model considerably faster for every event log. As
previously stated, this was not predicted because the starting set of
templates of the CNF version is larger than the DNF version’s one, but
the tests made clear that the bottle neck of the latter is the analysis of the
constraints that come from the not_chain succession(X,Y) template. The
part that most influences the temporal performance of the algorithm was
observed to be, as it was anticipated, the first iteration of the inner cycle,
because all the constraints need to be tested on every trace. Later iterations
are faster thanks to the asserted facts that state whether a certain constraint

is valid on a trace or not.

The stack occupation too depends on the number of traces in the event
log. It is also important to note that it is also influenced by the number
of possible specializations of the constraints that are added to the term at
each iteration of the inner cycle. Constraints that are more general will,

in fact, usually have more specializations that the already specialized ones.

79

The focal point, though, is that thanks to the optimization described above,
the stack occupation never exceeds the limit and the algorithm is able to

run also on average computers.

80

Chapter 4

Conclusions and future work

In this work a declarative process mining algorithm was presented. It was
inspired by the one written by Mooney [14] and aimed at discovering the
model of a process that will be described by Declare constraints connected
by logical operators. It is crucial to remember that the focus of this thesis
is the utilization of event logs that contain both positive and negative
traces, whereas the majority of the existing process mining algorithms
compute the process model taking in input only positive examples. Negative
traces can lead to the discovery of easier and more accurate process models
because they allow to analyze the reasons why some traces deviate from
the path that leads to the successful completion of the process. At first
the technologies that were used in the project were discussed in detail as to
make the implementation of the algorithm clear for the reader. Secondly,
the algorithm’s implementation was thoroughly explained, with a particular
focus on the two different versions and on the relations among the several
Declare templates that are used to define the process model. The most

important part of the algorithm is in fact the selection of the correct

81

constraint to add to the model, which is done differently in two versions: the
DNF one starts from the most general constraints and then specializes them
in later iterations to return a model in disjunctive normal form, whereas the
CNF one starts from the most specialized constraints and then generalizes
them to return a model in conjunctive normal form. The comparison
between the two algorithms is carried on in the third chapter, where the

process models found by the algorithm for different event logs are examined.

Taking into consideration the test done on the sepsis cases event log, where
there were no negative examples, the DNF version of the algorithm returned
a model composed by one of the constraints that covered all the positive
traces. The algorithm could have chosen any of these constraints because,
as they all covered all the traces in the event log, they all represented a
correct process model. Having negative traces to analyze would probably
have ruled out a few of these constraints because some of them would have
covered some negative examples too. This would have led to a more precise

process model.

In the second chapter, the optimizations done to make the algorithm
run also on average computers are described. Obviously, there is more
that can be done to improve the algorithm both in terms of performance
and of functionalities. For example, as mentioned above, some event logs
record attributes for every activity that could be useful to discover other

information. Some of these additions are discussed in the next section.

82

4.1 Future work

4.1.1 Optimization of the returned model

The models returned by this algorithm contains both the original and the
specialized, or generalized, constraint. The original constraint, though, is
not relevant anymore because it is completely overwritten by the specialized,
or generalized, one. The choose_constraint function could be modified to
return both the new constraint added to the term, or to the clause in the
CNF version of the algorithm, and the new term or clause, that will be

referred to as list of constraints. In this case the function would become:

choose_constraint (ListOfPosEx, ListOfNegEx,

ListOfConstraintsInAND, NewListOfConstraints, NewConstraint)

The new list would simply contain the old constraints and the new one
or, in case of a specialization or generalization, would substitute the old
constraint with the new one and return the list with the same number of
elements as before. For example, if the constraint ezistence(a) is specialized
in 4nit(a) than the presence of existence(a) in the list becomes irrelevant, as
the new constraint is more restrictive. Removing the constraints from the list
would make it possible to generate simpler models, but it would be harder
to identify further specializations, or generalizations, in later iterations.
As already stated, the choose_constraint function with four parameters is

however still correct, but it is does not return the perfect model.

For example, the algorithm could return the following model:

83

(existence (a) AND response(b,c) AND init (a)) OR

response(a,d)

The first term contains both the constraint existence(a) and its specialization
init(a). The choose_constraint function described above would instead

remove the general constraint and return the model:

(response(b,c) AND init(a)) OR

response(a,d)

A different way to solve this problem would be to keep the
choose_constraint function as it is and then take out, from every term or
clause, the constraints that are useless because they have been specialized
or generalized. This solution would be simpler because the code would be
left essentially untouched, so there would not be the problem of finding
the specializations, or generalizations, of already specialized, or generalized,
constraints, and it would at the same time return the simplest model

possible.

4.1.2 Properties of the activities

The traces considered in this project are in the form:

trace(TracelD, [event(ActivityName, Timestamp), ...,

event(ActivityNameN, TimestampN)]).

The only two things that are taken into account are the name of the

84

activity and its timestamp. It is possible though that in the event log every
activity is associated with more information. For example, instead of just

ActivityName, the activity could be expressed as:

activity (ActivityName, _, _, ...)

And the traces would become:

trace(TracelD, [event(activity(ActivityName, _, _, ...), Timestamp), ...]).

Where the underscores indicate other properties of the activity. For example,
if the activity is a login on a website, then the other terms could contain
the username and the password of the user. If the username is john and the

password is 1234, the activity becomes:
activity(login, john, 1234)

This new information could be useful for future developments, it would make
it possible to perform other tasks, different from the generation of the model;
for instance, the user could perform a statistical research on how many times
a person logs in the website or how often people type the wrong password.

The latter could lead to identifying attempts of hacking a profile.

The drawback is that not every event log contains all this information; in
order to have correct conclusions, the data has to be complete and correct
for every activity. As described in Section [I.1.2] the event log should be
treated as a first-class citizen, otherwise every model that is extracted from

it will not reflect reality.

85

4.1.3 Unbounded variables in the model

The model returned by the algorithm could contain also templates instead of
only constraints. For example, response(X,Y), returned in the final model,
would simply mean that there must be at least two activities in every trace.
Here the variables could be existentially quantified or universally quantified
using a range restriction. Being able to choose templates to add to a term
would lead to different specializations. Other than the ones given by the
hierarchy, it would be possible to specialize the template by grounding its
variables. The template response(X,Y), having two unbounded variables,
would then lead to three new different kinds of specializations: the first one
given by the grounding of the variable X, the second one of the variable Y
and the third one of both variables. This means that even having only two

possible activities a and b, the number of new constraints to analyze would

be quite high, as can be seen in Figure [.1]

It is possible, though, that the models returned using this strategy would
be significantly simpler for some event logs, especially if combined with one

of the solutions in [4.1.1]

4.1.4 Using CLP

It could be possible to use constraint logic programming (CLP) [I8] both
for the implementation of the Prolog algorithm and for the processing of the
Declare variables. The variables would be defined on a finite domain rather
than being either bound, i.e., having a value, or unbound. Furthermore, the
programmer can specify rules that restrict the domain of the variables. This

makes it possible to solve complex problem with a minimum amount of code.

86

— response(a,Y)

— response(X,a)

— response(b,Y)

response(X,Y) S —

— response(X,b)

— response(a,b)

— response(b,a)

Figure 4.1: New specializations of the template response(X,Y)

For example, we could say that the variable X can only take on integer values
from 1 to 5, that, through an enumeration, can correspond to the activities
a, b, ¢, d, and e. Saying that the variables of a response constraint must be
different from each other would be quite easier, as it would be enough to state
that for the constraint response(X1, X2), X1 must be different from X2. The
same reasoning can be applied to say that for the exclusive_choice constraint,
exclusive_choice(X1, X2) is equivalent to exclusive_choice(X2, X1). This way

the verification instructions can be thought of as some sort of constraint.

87

4.1.5 Asserting traces

A further optimization that can be made using the assert predicate consists
in asserting every trace. This would allow to get rid of the variables that
contain them and, instead of verifying a constraint on every trace using a
recursive call, the same result could be obtained through a simple findall
function. The latter would call automatically the verify_constraint function
and return the list of traces for which the constraint is valid, therefore the
number of traces needed in the dnf_gain function would simply be calculated

as the length of that list.

4.1.6 Selecting preferred templates

Right now the DNF gain formula is:

)

P
~logno

p
x (1
p (0910p+n PIN

The value that it returns is strictly based on the number of positive and
negative traces covered by the constraint in relation to their total number.
It could be possible to assign a ”score boost” to the templates that the user
prefers to have in the model. For example, if the user wants the model to
contain mostly responded_existence constraints, we could state that the gain
of the responded _existence constraints is the one given by the formula above,
plus 100. This way, if one of them would have had the same score as, for
example, a choice constraint, we are sure that the choose_constraint function
will return the one that we are most interested in. Different templates could
have a different score boost that would help the algorithm structure the

model in the way requested by the user.

88

4+ ScoreBoost

P
(p x (lOglo b n—loglop+ N))

p+

The drawback would be that the returned model may not be the optimal
one, because the score boot could make the algorithm select a constraint
that would have had a lower DNF score, meaning that it covers less positive
traces or excludes less negative traces with respect to the constraint that

would have hat the highest DNF gain.

89

Bibliography

1]

IEEE Task Force on Process Mining, Process Mining Manifesto,
https://www.win.tue.nl/ieeetfpm/downloads/Process),

20Mining%20Manifesto.pdf

M. Pesic and W.M.P. van der Aalst, 2006, A Declarative Approach
for Flexible Business Processes Management https://wuw.
researchgate.net/publication/221585980_A_Declarative_

Approach_for_Flexible_Business_Processes_Management

Declarative process modeling and mining http://www.diag.
uniromal.it/~marrella/slides/pm17/LAB-07-Declarative_

Process_Modeling_and_Mining.pdf

Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali, Jan
Mendling, 2016, Resolving inconsistencies and redundancies in

declarative process models

Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marella,
Sebastian Sardina, 2016, Computing Trace Alignment against
Declarative Process Models through Planning

90

https://www.win.tue.nl/ieeetfpm/downloads/Process%20Mining%20Manifesto.pdf
https://www.win.tue.nl/ieeetfpm/downloads/Process%20Mining%20Manifesto.pdf
https://www.researchgate.net/publication/221585980_A_Declarative_Approach_for_Flexible_Business_Processes_Management
https://www.researchgate.net/publication/221585980_A_Declarative_Approach_for_Flexible_Business_Processes_Management
https://www.researchgate.net/publication/221585980_A_Declarative_Approach_for_Flexible_Business_Processes_Management
http://www.diag.uniroma1.it/~marrella/slides/pm17/LAB-07-Declarative_Process_Modeling_and_Mining.pdf
http://www.diag.uniroma1.it/~marrella/slides/pm17/LAB-07-Declarative_Process_Modeling_and_Mining.pdf
http://www.diag.uniroma1.it/~marrella/slides/pm17/LAB-07-Declarative_Process_Modeling_and_Mining.pdf

(6]

[10]

[11]

[12]

[13]

Pesic, M. (2008). Constraint-based workflow management systems:
shifting control to users. Technische Universiteit Eindhoven. https:

//doi.org/10.6100/IR638413

Robert Kowalski, Predicate Logic as a Programming Language, Memo
70, Department of Artificial Intelligence, Edinburgh University, 1973.
Also in Proceedings IFIP Congress, Stockholm, North Holland
Publishing Co., 1974, pp. 569-574. http://www.doc.ic.ac.uk/~rak/
papers/IFIPY2074.pdf

Lloyd, J. W. (1987). Foundations of Logic Programming. (2nd edition).
Springer-Verlag.

Ivan Bratko, Prolog Programming for Artificial Intelligence, 4th
Edition. Addison-Wesley 2012, ISBN 978-0-3214-1746-6, pp. I-XXI,
1-673

L. Console, E. Lamma, P. Mello, M. Milano, Programmazione Logica e

Prolog, Seconda Edizione UTET, 1997.
SWI-Prolog, https://www.swi-prolog.org/

Lamma E., Mello P., Riguzzi F., Storari S. (2008) Applying Inductive
Logic Programming to Process Mining. In: Blockeel H., Ramon J.,
Shavlik J., Tadepalli P. (eds) Inductive Logic Programming. ILP
2007. Lecture Notes in Computer Science, vol 4894. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-78469-2_16

Federico Chesani, Chiara Di Francescomarino, Chiara Ghidini, Daniela

Loreti, Fabrizio Maria Maggi, Paola Mello, Marco Montali, Sergio

91

https://doi.org/10.6100/IR638413
https://doi.org/10.6100/IR638413
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
https://www.swi-prolog.org/
https://doi.org/10.1007/978-3-540-78469-2_16

[14]

[15]

[16]

[17]

[18]

Tessaris, Process discovery on deviant traces and other stranger things,

To be submitted.

Mooney R.J., 1995, Encouraging experimental results on learning CNF.

https://doi.org/10.1007/BF00994661

Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan and Jia-Huai You,
2002, Implementation of a Linear Tabling Mechanism https:
//www.researchgate.net/publication/2862749_Implementation_

of_a_Linear_Tabling_ Mechanism

Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi,
and Sergio Storari, 2007, Inducing Declarative Logic-Based Models
from Labeled Traces https://www.researchgate.net/publication/
221586322_Inducing_Declarative_Logic-Based_Models_from_

Labeled_Traces

Sepsis Cases - Event log https://data.4tu.nl/articles/dataset/
Sepsis_Cases_-_Event_Log/12707639/1

Constraint Logic Programming in Prolog https://en.wikibooks.

org/wiki/Prolog/Constraint_Logic_Programming

92

https://doi.org/10.1007/BF00994661
https://www.researchgate.net/publication/2862749_Implementation_of_a_Linear_Tabling_Mechanism
https://www.researchgate.net/publication/2862749_Implementation_of_a_Linear_Tabling_Mechanism
https://www.researchgate.net/publication/2862749_Implementation_of_a_Linear_Tabling_Mechanism
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming
https://en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming

	Preliminaries
	Process Mining
	Basic concepts
	Guiding principles

	Declarative process modeling
	Declare
	Declare Templates

	Prolog
	Basic concepts
	SLD Derivation

	The algorithm
	Underlying structure
	Enhancements

	Hierarchy of templates
	Choose_Constraint function
	Example
	DNF vs CNF
	Backbone algorithm
	CNF hierarchy of templates
	CNF choose_constraint function
	CNF_gain function
	Example

	Optimization
	Smaller event log
	Analyzing only a subset of constraints
	Assert and Retract predicates

	Experimental results
	Controlled event log
	First set of negative traces
	Second set of negative traces
	Third set of negative traces
	Considerations on the performance

	Pap Test screening event log
	Real-life event log with no negative traces
	Final considerations

	Conclusions and future work
	Future work
	Optimization of the returned model
	Properties of the activities
	Unbounded variables in the model
	Using CLP
	Asserting traces
	Selecting preferred templates

