Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (14MB)
| Contatta l'autore
|
Abstract
Hybrid feedforward-feedback controllers are a valid alternative to the standard feedback PID controllers which are usually adopted in Industrial Automation. A correct feedforward action can increase the controller performances and it can also function as a real time fault detector in order to avoid dangerous crashes, while feedback is necessary to guarantee controller stability. This thesis focuses on the problem of determining the correct feedforward torque to control a servomechanism by providing two different procedures. First, a model-based approach is discussed with the idea to evaluate, through a Gaussian process based machine learning algorithm, the proper feedforward action to steer the mechanism along a given trajectory, starting from a known training set. The realization of the ideal model through the Euler-Lagrange procedure is reported, as well as the the Gaussian process training and test procedures. Then, an empirical approach is presented, which is able to determine the mechanical parameters of the system in order to evaluate the necessary feedforward torque through the Euler dynamical equation. Finally, these procedures are tested on a physical test bench and on an specific axis motion in the Wrap 250 packaging machine from TMC. The results from these tests display an average reduction of the feedback current for both the model-based and the empirical approaches, proof that the feedforward branch is working in cooperation with the feedback control loop.
Abstract
Hybrid feedforward-feedback controllers are a valid alternative to the standard feedback PID controllers which are usually adopted in Industrial Automation. A correct feedforward action can increase the controller performances and it can also function as a real time fault detector in order to avoid dangerous crashes, while feedback is necessary to guarantee controller stability. This thesis focuses on the problem of determining the correct feedforward torque to control a servomechanism by providing two different procedures. First, a model-based approach is discussed with the idea to evaluate, through a Gaussian process based machine learning algorithm, the proper feedforward action to steer the mechanism along a given trajectory, starting from a known training set. The realization of the ideal model through the Euler-Lagrange procedure is reported, as well as the the Gaussian process training and test procedures. Then, an empirical approach is presented, which is able to determine the mechanical parameters of the system in order to evaluate the necessary feedforward torque through the Euler dynamical equation. Finally, these procedures are tested on a physical test bench and on an specific axis motion in the Wrap 250 packaging machine from TMC. The results from these tests display an average reduction of the feedback current for both the model-based and the empirical approaches, proof that the feedforward branch is working in cooperation with the feedback control loop.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Colonna, Mattia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
feedforward control,Gaussian processes,servomechanism,model-based,machine learning,automatic machines
Data di discussione della Tesi
10 Marzo 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Colonna, Mattia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
feedforward control,Gaussian processes,servomechanism,model-based,machine learning,automatic machines
Data di discussione della Tesi
10 Marzo 2021
URI
Statistica sui download
Gestione del documento: