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Abstract

Strong gravitational lensing is one of the best performing methods to study the mass distribution

in the central regions of galaxy clusters. The formation of highly amplified and distorted multiple

images of background sources provides the constrains on the lens models. The progress witnessed

recently on the lens modeling techniques was made possible by the several observational programs

conducted with the Hubble Space Telescope (HST) and complemented by spectroscopic observa-

tions of a relatively large number of massive galaxy clusters. The effort made in these campaigns

produced high-quality photometric and spectroscopic data that improve our ability in identify-

ing the lensing observables and the development of new methods to combine lensing and galaxy

kinematics measurements to constrain the cluster mass distribution on a wide range of scales.

In this work we use these novel techniques to conduct a strong lensing analysis of the cluster

PSZ1 G311.65-18.48, with the aim of constructing a parametric lens model of the mass distri-

bution in its core. We use HST observations conducted in several bands, complemented with

VLT/MUSE spectroscopic observations. The MUSE observations provide redshift estimates for

the lensed sources and help reducing the mis-identification of the multiple images. Spectroscopic

data are also used to measure the inner velocity dispersion of a set of cluster member galaxies,

information incorporated into the lens model to better parametrize the sub-halo cluster compo-

nent. The multiple image and cluster member catalogues are the main ingredients required for

the construction of a parametric lens model with the software LENSTOOL.

Throughout this thesis we describe the process that led to the construction of the cluster final

model, which evolved through several intermediate steps where the model complexity increased

progressively. The aim was to recover the mass distribution which minimizes the differences

between observed and model-predicted multiple image positions. Our resulting reference model

is the first lens model for this galaxy cluster ever published and reproduces the observed multiple

images with very high accuracy. It can be used for several applications, including the character-

ization of the source producing the famous Sunburst Arc, or predicting the re-appearance of the

possible transient source recently reported by Vanzella et al. (2020 [1]).



Sommario

Il lensing gravitazionale forte è attualmente uno dei migliori metodi utilizzati per studiare la dis-

tribuzione di massa nel centro degli ammassi di galassie. Infatti, si può sfruttare il fenomeno di

formazione delle immagini multiple di sorgenti di background per porre dei constrains ai modelli

di lente. Negli ultimi anni si è stati testimoni di un miglioramento nelle tecniche di modellis-

tica, grazie alle campagne osservative condotte su grandi campioni di ammassi di galassie. Queste

osservazioni hanno prodotto infatti dati spettroscopici e fotometrici di alta qualità, che hanno aiu-

tato nell’identificazione delle immagini multiple. Questo ha inoltre permesso lo sviluppo di nuovi

metodi per combinare il lensing a misure cinematiche sulle galassie appartenenti all’ammasso,

per poterne determinare la distribuzione di massa su diverse scale.

In questo lavoro utilizziamo queste nuove tecniche per condurre un’analisi di lensing forte per

l’ammasso di galassie PSZ1 G311.65-18.48, e costruire un modello di lente parametrico della dis-

tribuzione di massa nella zona centrale. I nostri test si basano principalmente su osservazioni in

diverse bande del Telescopio Spaziale Hubble, combinati con dati spettroscopici dello strumento

MUSE al VLT. Infatti le osservazioni MUSE ci permettono ottenere misure di redshift per le

sorgenti lensate e quindi di migliorare l’identificazione delle immagini multiple. I dati spettro-

scopici sono utilizzati anche per compiere misure di dispersione di velocità interna delle galassie

appartenenti all’ammasso: queste informazioni cinematiche vengono incorporate nel modello di

lente, per caratterizzare al meglio la componente di sotto-aloni dell’ammasso di galassie. Il cat-

alogo di immagini multiple e di galassie membro ottenuti, sono gli ingredienti di base per la

costruzione di un modello parametrico con il software LENSTOOL.

Nel corso di questa tesi viene descritta la costruzione del modello finale per l’ammasso, risultato

da una serie di step intermedi in cui è stato progressivamente aumentato il livello di complessità.

Lo scopo è quello di ottenere una rappresentazione della distribuzione di massa che minimizzi le

differenze tra le posizioni delle immagini multiple osservate e predette dal modello. Il modello

di riferimento risultante, è il primo modello di lente pubblicato per questo ammasso di galassie,

e riproduce le immagini osservate con alta precisione. Questo potrà essere utilizzato per diverse

applicazioni, tra cui la caratterizzazione della sorgente che produce il famoso “Sunburst Arc” e

la predizione di future apparizioni del possibile transiente recentemente scoperto da Vanzella et

al., (2020 [1]).
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Chapter 1

Cosmology

1.1 Cosmological Principles

In order to build a scientific theory of the Universe, in the beginning it was necessary the construction

of simplified models based on some guiding principle. This is the so called Cosmological Principle, that

states the homogeneity and isotropy of the Universe on sufficiently large scales (meaning the scales traced

by the large-scale structure of the galaxies’ distribution): homogeneity is the property of being identical

in every point of space, while isotropy means appearing the same in every direction. In other words, in

the Universe there are neither privileged positions nor directions if observing a sufficiently large portion of

it; in fact the Universe is obviously not homogeneous, but there is quite good observational evidence that

the Universe does have these properties, such as the near-isotropy of the Cosmic Microwave Background

(CMB) radiation. Before the discovery of the CMB radiation that led to the theory of the expansion of

the Universe, the cosmologists supported the Steady State Model, which extended the homogeneity and

isotropy of space, to time as well: this was stated in the Perfect Cosmological Principle. The steady-

state Universe was abandoned in the 1960s in favor of the Big Bang model.

Another fundamental base of the description of our Universe is Einstein’s General Relativity theory:

since on large scales the main interacting force is gravity, the physical description of the Universe must

be based on how its geometry is shaped by gravity.
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1.1. COSMOLOGICAL PRINCIPLES CHAPTER 1. COSMOLOGY

1.1.1 Geometry of space

The first step towards the development of a cosmological model is to establish a metric for our Universe,

that allows to measure the interval between two space-time events:

ds2 = c2dt2 − gijdxidyj = c2dt2 − dl2 (1.1)

(with i,j=1,2,3) where the first term represents the time part, and the second term represent the space

part, and gij is the metric tensor describing the space-time geometry. This interval ds is invariant

under a change of coordinate system and the path of a light ray is given by ds2 = 0. Focusing on the

purely spatial term, in a homogeneous and isotropic Universe, this can assume three forms depending on

geometry: flat Euclidean space, positively curved (sferic), and negatively curved (iperbolic). These can

all be expressed in a general form using K, which is the Curvature Parameter and defines the constant

curvature of the Universe:

• K = 0 a flat, infinite space;

• K = +1 a closed space, geometrically a 3D sphere;

• K = −1 an open space, geometrically a 3D hyperboloid.

With this K parameter and under the Cosmological Principle assumptions, the metric tensor assumes a

simple form called the Friedmann-Robertson-Walker (FRW) metric with line element:

ds2 = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(1.2)

where a(t) is the scale factor of the Universe (or expansion parameter), a function of time which has

the dimensions of a length.

1.1.2 Redshift

It is useful to introduce a more directly observable parameter which is related to the scale factor a(t):

the redshift z. Consider luminous emitting source, since the source is moving with the expansion of the

Universe, its spectrum experiences a cosmological redshift quantified by

z =
λo − λe
λe

(1.3)
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where λe is the wavelength of radiation emitted by the source at the time te, while λo is the wavelength

of radiation observed at the origin of our coordinate system at a subsequent time to. In Weinberg (1972

[2]) it is demonstrated that the redshift is related to the scale factor as

1 + z =
a(to)

a(te)
(1.4)

where a(to) is the scale factor at the moment of the photon detection, and a(te) is the scale factor at the

moment of emission. So the redshift z is positive, meaning a shift of the spectrum to longer wavelengths,

only if the Universe is expanding.

1.2 Distances and the Hubble Law

We define the point P0 as the origin of a set of polar coordinates (r, θ, φ). We can assume dt = dφ =

dθ = 0 and integrate the FRW metric in this coordinate system to determine the distance measured by

a “chain” of observers in every point between P0 and a generic point P at time t. This is defined as the

Proper distance

dP =

∫ r

0

a(t)dr′√
1−Kr2

= a(t)F (r) (1.5)

with

F (r) =


arcsin(r) K = 1

r K = 0

arcsinh(r) K = −1.

(1.6)

The proper distance calculated ad the present time t0 is called

Comoving distance

dC := dP (t0) = a0F (r) (1.7)

where a0 = a(t0). Since the proper distance dP of a source can change in time as a consequence of the

time dependence of the scale factor, the source at P has a radial velocity with respect to P0:

vr = ȧF (r) =
ȧ

a
dP = H(t)dP . (1.8)

This equation is the Hubble law, and the quantity H(t) is improperly called the Hubble constant; in

fact, H(t) (Hubble parameter) it is not constant in time but at a fixed time assumes the same value in

every point of the Universe.
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From the Hubble law and the definition of the redshift z, in the limit where z is small, it can be shown

that

z = H0dP . (1.9)

It is also useful to express the cosmic scale factor for times t close to t0 expanding in a power series:

a(t) = a0

[
1 +H0 (t− t0)− 1

2
q0H

2
0 (t− t0)

2
+ · · ·

]
(1.10)

where

q0 = − ä (t0) a0

ȧ (t0)
2 (1.11)

is called the deceleration parameter, which is dimensionless.

We have seen that there is not a unique way to define a distance of an astronomical object in cosmology,

and in addition to the proper and comoving distance, which are not directly measurable, we can define

other kinds of distances that are, in principle, measurable:

the Luminosity distance of a source at a distance r at the time t with emitted power L and flux f, is

defined as :

dL ≡
(

L

4πf

)1/2

. (1.12)

Due to the expansion of the Universe it is necessary to take into account time-dilation effect, a stretch

of the spherical surface centred on the source, and a cosmological redshift on the photons; therefore we

obtain

dL = a(t0)r(1 + z). (1.13)

Useful to gravitational lensing purposes,

the Angular Diameter distance of a source in r at t with proper diameter DP and ∆θ the angle

subtended by it, is defined as:

dA :=
DP

∆θ
. (1.14)

So we can define the duality relation that follows:

dA = dL
a2(t)

a2 (t0)
=

dL
(1 + z)2

. (1.15)

5



1.3. FRIEDMANN MODELS CHAPTER 1. COSMOLOGY

1.3 Friedmann Models

The fundamental basis to every cosmological model stands in the system of Einstein’s Equations, which

sum up how the space-time geometry, described by the metric tensor gij , is determined by its energy

content (or equivalently, matter) described by the energy-momentym tensor Tij :

Rij −
1

2
gijR =

8πG

c4
Tij + Λgij (1.16)

where Λ is the cosmological constant, Rij and R are the Ricci tensor and Ricci scalar, respectively.

Einstein inserted the cosmological constant in his equations in order to find static solutions, since they

believed the Universe was static. Today we still need the presence of a cosmological constant, which is

used to formalize the vacuum energy. In the Big Bang Model assuming a FRW metric, the form of the

energy-momentum tensor is that of a perfect fluid. We can define

T̃ij := Tij +
Λc4

8πG
gij = −p̃gij +

(
p̃+ ρ̃c2

)
uiuj (1.17)

where ui is the velocity four-vector, p̃ and ρ̃ are the effective pressure and density respectively, related

to p and ρ by

p̃ = p− Λc4

8πG
, ρ̃ = ρ+

Λc2

8πG
. (1.18)

If the metric is FRW, the time-time and space-space components of (1.16) yield:

ä = −4π

3
G

(
ρ̃+

3p̃

c2

)
a , (1.19)

ȧ2 +Kc2 =
8π

3
Gρ̃a2 (1.20)

known as the Friedmann Equations. Those are related by a third equation, obtainable when assuming

the adiabatic expansion of the Universe:

d
(
ρc2a3

)
= −pda3 . (1.21)

1.3.1 Perfect fluid

The perfect fluid form for (1.17) is required by the Cosmological Principle and forms the basis for the

Friedmann models. To solve those equations it is necessary to specify an equation of state for the fluid
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in the form of p = p(ρ). In general we can write

p = wρc2. (1.22)

The value of the parameter w varies depending on the component we are considering

• w = 0 represents dust, pressureless material, it describes any non-relativistic fluid or gas;

• w = 1/3 represents radiation or, in general, a fluid of non-degenerate ultrarelativistic particles;

• w = −1 represents the cosmological constant, the vacuum component.

Inserting (1.22) in the condition (1.21) we obtain a relation between ρ , the scale factor, and w:

ρ ∝ a−3(1+w) . (1.23)

This results in the following equations for the different components of the Universe:

• ρM = ρ0,M

(
a0

a

)3
= ρ0,M (1 + z)3 in a dust dominated Universe;

• ρR = ρ0,R

(
a0

a

)4
= ρ0,R(1 + z)4 in a radiation dominated Universe;

• ρΛ = ρ0,Λ

(
a0

a

)0
= ρ0,Λ in a cosmological constant dominated Universe.

The values of ρ0,w are estimated today and as a consequence of the different evolution in time it is

possible to divide the evolution of the Universe in different epochs, in which we can consider only one

component to be dominant, and so disregard any contribution from the others. Following this argument

the duration of every epoch can be found by imposing the equivalence of different components energy

density:

• matter-radiation equivalence, ρM = ρR:

(1 + zeq) =
ρM,0
ρR,0

∼ 3 · 104 =⇒ zMR
eq ∼ 3 · 104

• matter-Λ equivalence, ρM = ρΛ:

(1 + zeq) =
(
ρΛ,0

ρM,0

)1/3

∼ 1.7 =⇒ zMΛ
eq ∼ 0.7

1.3.2 The Big Bang singularity

Friedmann Equations solutions give the time evolution of a(t), p(t) and ρ(t), when the equation of state

is known. They can be reformulated in terms of the Hubble parameter calculated today, H0, so from
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(1.20):

H2
0

(
1− Λc2

3H2
0

− ρ0

ρcrit,0

)
= −Kc

2

a2
0

. (1.24)

Where we defined the Universe Critical Density at t0 as:

ρcrit,0 :=
3H2

0

8πG
(1.25)

and we can define ρ0,Λ := Λc2

8πG so that the equation becomes:

H2
0 (1− Ω0,Λ − Ω0) = −Kc

2

a2
0

(1.26)

where we defined the Density Parameter Ω = Ω(t). For the w component Ωw = ρw
ρcrit

, which link the

content of energy of the Universe to its curvature (or geometry) as:

• K=0 =⇒ ΩΛ,0 + Ω0 = Ωtot,0 = 1 flat geometry;

• K=+1 =⇒ ΩΛ,0 + Ω0 = Ωtot,0 > 1 spherical geometry;

• K=-1 =⇒ ΩΛ,0 + Ω0 = Ωtot,0 < 1 hyperbolic geometry.

Combining (1.23) and (1.26) we obtain an expression for H(t) that reads:

H2(t) = H2
0

(a0

a

)2
[

1−
∑
w

Ω0,w +
∑
w

Ω0,w

(a0

a

)1+3w
]

(1.27)

It can be shown that if −1/3 < w < 1 the Universe history has a point in time where a(t)=0 and the

density diverges, known as the Big Bang singularity. We can write the first Friedmann Equation as

ä = −4π

3
G

(
ρ+

3p

c2

)
a = −4π

3
Gρ(1 + 3w)a (1.28)

where we substituted Eq.(1.22). We can see that ä < 0, provided (1 + 3w) > 0, since ρ > 0. This, along

with the observational evidence of the expansion of the Universe (ȧ > 0), establishes that the graph of

a(t) has negative concavity. It exists a moment in time (see Fig.(1.1)) where a(t)=0 and we can label

this moment t = 0, since the density diverges and it is a singularity: the Big Bang. This also implies

that the time between the singularity and the time t, must be always smaller than the characteristic

expansion time, also known as the Hubble time, τH = 1/H.

8
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Fig. 1.1. Evolution of the scale factor in different geometry universes. Note the negative concavity
of a(t) that shows the intersection with the time axis, instant called the Big Bang. Image from Coles,
Lucchin (2002 [3]).

1.3.3 Einstein-de Sitter Universe

The Einstein-de Sitter (EdS) Universe is a flat, one component model, so that Ω0,w = 1. With such

model one can obtain explicit solutions for all the parameters, written as follow:

a(t) = a0

(
t

t0

) 2
3(1+w)

, (1.29a)

t = t0(1 + z)
2

3(1+w) , (1.29b)

H(t) =
2

3(1 + w)

1

t
, (1.29c)

q =
1 + 3w

2
, (1.29d)

ρ =
1

6πG(1 + w)2t2
. (1.29e)

These equations imply that an EdS Universe is characterized by a Hubble parameter which decreases as

a function of time and a constant deceleration parameter, so in this Universe the expansion decelerates

constantly with time. The expansion parameter grows indefinitely with time, so the speed of expansion

is determined by the value of w. Until now the value of the density parameter Ω was considered at t = t0,

but Ω is a function of time as well so it is useful to have an expression to parametrize its evolution with
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redshift; from its definition and (1.27) we can rewrite:

Ω−1
w (z)− 1 =

Ω−1
0,w − 1

(1 + z)1+3w
(1.30)

For z →∞, Ω always tends to 1 and we can notice that if Ω0,tot is greater or smaller than one, then it

is greater or smaller than one at every redshift, so even if approaching the Big Bang it tends towards

unity, it never crosses the limit. On the other hand if Ω0,tot = 1 then it stays always one: this means

that the evolution of the Universe can not change its curvature.

1.3.4 Latest cosmological parameters results

The latest results from the Planck mission (Planck Collaboration et al., 2018 [4]), based on the mea-

surements of the CMB fluctuations, are consistent with a flat Universe with the following cosmological

parameters:

H0 = (67.4± 0.5) kms−1Mpc−1 , (1.31a)

Ωtot =
∑

Ωi + ΩΛ = 1.011± 0.006 , (1.31b)

Ωm = 0.315± 0.007 . (1.31c)

Results of (1.31b) type justify the restriction to flat cosmologies in our models. Other methods

have been used to measure H0: from the calibration of the tip of the red-giant branch for Type Ia

supernovae is found H0 = 69.8 ± 0.8 km s−1Mpc−1 (Freedman et al., 2019 [5]), while the H0LiCOW

collaboration based on the method of time delay on lensed quasars found H0 = 73.3+1.7
−1.8 km s−1Mpc−1

(Wong et al., 2019 [6]). The lower value found by Planck is to impute to the strong degeneracy of H0

with other parameters such as Ωm. However this result is in good agreement with the measurements

that exploit the baryon acoustic oscillations (BAOs) to calibrate the intrinsic magnitude of the SNe Ia,

finding H0 = 67.8± 1.3 km s−1Mpc−1 (Macaulay et al., 2019[7]). Anyway we can use the Planck result

to calculate the critical density today, finding ρcrit,0 ' 2× 10−29 g cm−3h2, where h = 0.677± 0.004.

In this work we adopt a ΛCDM cosmology with ΩΛ = 0.7, Ωm = 0.3 and H0 = 70 kms−1Mpc−1.
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1.4 Structure formation

The currently accepted Big Bang model presents different problems, most of which can be explained by

introducing an epoch of accelerated expansion in the early history of the Universe: the inflation phase.

The inflation theory is in agreement with homogeneous, isotropic, flat, and magnetic monopole-free

Universe models, and it is fundamental to introduce inhomogeneities in our theory. The idea is that

quantum fluctuations on microscopic scales in density and temperature at the end of the inflationary

phase can grow to create the large-scale structures we observe today.

1.4.1 Jeans instability

The origin of galaxies and galaxies clusters can be explained by Jeans gravitational instability theory,

that showes how small density fluctuations in the primordial fluid can grow in time depending on the bal-

ance between the structure self-gravity and pressure, leading eventually to collapse into a gravitationally

bound object. These density perturbations are defined as

δ :=
δρ

ρ
=
ρ− ρ̄
ρ̄

(1.32)

where −1 < δ < +∞ and it is dimensionless, and ρ̄ is the mean background density. Density fluctuations

are related to temperature fluctuations observable in the CMB spectrum and they have the same order

of magnitude, which is measured to be δT
T ∼ 10−5 (e.g. Smooth et al., 1992 [8]). Today the density

fluctuations amplitude is ' 102 so we know that they have grown between zls ' 103 (last-scattering

redshift, the moment CMB radiation formed) and z = 0. In order to develop this theory it is necessary

to introduce a length scale called the Cosmological Horizon radius: this is the radius of the region in

casual connection with the observer, meaning that inside this radius it is important to consider every

force counteracting gravity, while over this radius the only meaningful interaction is due to gravitational

force. Its definition is

RH(t) := a(t)

∫ t

0

cdt′

a (t′)
, (1.33)

it is possible to demonstrate that RH is a finite quantity that grows as the Universe expands.

Jeans theory (Jeans and Howard, 1902 [9]) starts by considering a static Universe and the idea is to study

the evolution of a perturbation applied to a known solution of our problem. Working in a Newtonian

approximation we need to look at the dynamics of the fluid that describes the Universe and the density

fluctuations. Consider a perfect fluid characterized by the density ρ, the velocity v, the gravitational
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potential φ, the pressure p, and the entropy S. The equations of hydrodynamics are:

∂ρ

∂t
+∇ · (ρv) = 0 Continuity equation, (1.34a)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇ρ−∇φ Euler equation, (1.34b)

∇2φ = 4πGρ Poisson equation, (1.34c)

dS

dt
= 0 Entropy conservation. (1.34d)

One solution of this system is the “background” one, so that ρ = p = φ =const. and v=0. Now we

can apply to this solution a small perturbation, so that δ << 1, and we can use the linear theory. The

perturbed system of equations, considering only first-order terms, is then


∂δρ
∂t + ρb∇ · δv = 0

∂δv
∂t = − c20

ρb
∇δρ+∇δφ

∇2δφ = 4πGδρ .

(1.35)

Jeans’ approach was to consider plane-wave solutions in the form of f(r, t) = fk exp(ik · r + iωt)

where r is the space vector, t the time coordinate, fk the amplitude, ω is the frequency and k = 2πk̂/λ

is the wave vector. Working on Fourier space we can obtain the dispersion relation:

ω2 = k2c2s − 4πGρb (1.36)

which has two different solution depending on ω2 sign, so the critical value between real and imaginary

solutions is ω2 = 0 that defines the Jeans scale as

λJ =
2π

kJ
= cs

√
π

Gρb
(1.37)

also expressed in terms of mass

MJ =
4

3
πρbλ

3
J . (1.38)

In order to have an indefinite growth of the perturbation, its scale-length must be larger than Jeans

scale, or equivalently, its mass must exceed the Jeans mass.
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1.4.2 Expanding Universe

To extend the Jeans criterion to an expanding Universe it is necessary to keep in mind the length-scales

given by Jeans scale (λJ) and the Horizon radius (RH), and also define the fundamental time-scales

given by the equivalence time (teq), corresponding to matter-radiation equivalence described in section

(1.3.1), and the decoupling time, when the baryonic matter and radiation decouple (zdec ≈ 1000).

We can describe our perturbation as a closed, spherical Universe (Ω > 1) in a less dense, flat, EdS

background Universe. Given its definition, we can “sync” the Hubble parameter of the two universes, in

order to find an expression relating the density fluctuation to the scale factor:

δ(t) ∝ a−2ρ−1
b . (1.39)

Thus, since the Universe is radiation and matter dominated before and after the equivalence, respectively,

we need to distinguish between different growth regimes:

when λ > RH all perturbations follow the evolution of the main component of the Universe

t < teq → δ ∝ a2 ∝ t (1.40a)

t > teq → δ ∝ a ∝ t2/3 ; (1.40b)

when λJ � λ < RH gravity effects are influenced by the microphysical processes. To study the

evolution of perturbations on scales smaller than the Horizon radius in an expanding Universe, we

need rewrite the system of the equation of hydrodynamics in terms of a velocity u = Hr + v. This

expression links the velocity in physical coordinates u, to the velocity in comoving coordinates v. Here,

the expansion of the Universe is parametrized by the Hubble law, and v is defined as the peculiar velocity

of the perturbation, namely a way to quantify its velocity component within respect to the expansion.

To solve the perturbed hydrodynamic equations we still look for a solution in wave form written as

f(x, t) = fk(t) exp(ik · x) where now the amplitude of the wave has a time dependency as well. It can

be demonstrated that this leads to a dispersion relation

δ̈k + 2
ȧ

a
δ̇k +

(
k2c2s − 4πGρb

)
δk = 0 (1.41)

which is an ordinary differential equation (ODE) of the second order describing how the density field

varies as a function of time in an expanding Universe. Note that the second term in the equation
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contains the Hubble parameter. Assuming the simple power law form δk ∝ tα the ODE solutions are

t > teq →

 δ− ∝ a−3/2 ∝ t−1

δ+ ∝ a ∝ t2/3
. (1.42)

Of course, we are interested in the growing solution: in a matter dominated Universe the perturbation

growth is linearly proportional to the expansion factor.

In a radiation dominated Universe, namely t < teq, the ODE (1.41) has a slightly different form:

δ̈k + 2
ȧ

a
δ̇k +

(
k2c2s −

32

3
πGρb

)
δk = 0 (1.43)

and the solutions are again a growing and a damping one. The problem arises when comparing the Jeans

scale and the Horizon radius in this epoch: it can be shown that the Jeans’ scale is always larger than

the Horizon Radius, meaning that in the radiation era it is not possible to find a solution for photons

density perturbations at scales smaller than the Horizon radius; the waves propagate at such high speed

that fluctuations are cancelled.

The solutions in Eq.(1.42) hold for every type of matter, but it must be considered that dark and

baryonic matter are coupled and interact gravitationally. Dark matter (DM) decouples from radiation

way earlier than baryons, and since that moment perturbations evolve as in Eq.(1.42); to find how dark

matter perturbations evolve before the equivalence we need to solve a dispersion relation in the form

δ̈k,DM + 2
ȧ

a
δ̇k,DM + k2c2sδk,DM − 4πGρb,DMδk,DM = 0 (1.44)

whose growing solution inside the Horizon radius (λ < RH) is

δk,DM = 1 +
3

2

a

aeq
. (1.45)

This solution implies that, since RH grows with time, different scales can enter the horizon at different

times, modifying their growth trend: indeed the so called Mezaros effect explains that dark matter

perturbations can grow up to a factor 5/2 in the radiative era, namely δ(teq)
δ(tH) ≤

5
2 .

Until teq baryons are coupled with radiation because of frequent Thompson scattering, and their

perturbations can not evolve. At tdec baryons perturbation can finally start to grow and we would

expect them to follow the solution δ+ in Eq.(1.42), but their growth is not free since dark matter

14



1.4. STRUCTURE FORMATION CHAPTER 1. COSMOLOGY

perturbations already had time to create potential wells, where the baryons can fall. We find solutions

to the dispersion relation of baryonic fluctuations for λJ � λ < RH at t > tdec, written as

δk,B = δk,DM

(
1− adec

a

)
. (1.46)

This expression parametrizes the baryon catch-up phenomenon: after decoupling baryonic fluctuations

evolve faster to “catch-up” with the dark matter perturbations evolution. In other words, the growth

of baryonic perturbations is accelerated by the presence of the dark matter potential wells. When

a � adec the size of the dark matter and baryon perturbation is equal, and the evolution continues

following Eq.(1.42).

1.4.3 Dissipation

As seen the Jeans criterion can be expressed in terms of mass rather than length. It is useful to

understand how the dark matter or the baryonic Jeans mass evolves with the cosmic time, to evaluate

when perturbations can grow and how massive they must be to not be dissipated. It is important to

distinguish between two types of dark matter: cold dark matter (CDM) and hot dark matter (HDM).

We talk about CDM if the dark matter particles are not relativistic at the epoch of decoupling from the

other components of the Universe; vice versa if the particles are still relativistic at the decoupling we

talk about HDM. This is important because we need to determine the behaviour of the mean particle

velocity in the different cosmological epochs, in order to use Eq.(1.38). It can be show that DM Jeans

mass in both scenarios grows until equivalence and then starts to decline: this means that there is a

maximum value for Jeans mass, and this is what sets apart the two scenarios. Simulations showed that

the maximum value of the DM Jeans mass, reached at equivalence is

• MJ(aeq) ≈ 105M� for CDM: all perturbations with mass greater than this value had the possibility

to grow and collapse to create smaller structures first (globular cluster sizes), leading to the large-

scale structures observed today by hierarchic aggregation (bottom-up scenario);

• MJ(aeq) ≈ 1015M� for HDM: only perturbations with such masses can collapse and form struc-

tures, meaning that the first structures formed would be greater than today’s galaxy clusters, and

all other smaller object formed by fragmentation (top-down scenario).

Current observations and studies on galaxy clusters and globular clusters ages lead to support CDM

scenarios for our Universe.

The baryonic Jeans scale is always as in Eq.(1.37) but in order to evaluate the particles motion we can
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now use the sound speed, since it is collisional matter. Also, in this case the Jeans mass grows until

reaching a maximum value at the time of decoupling, and then it decreases: since at decoupling baryons

loose the radiation support, it can be shown that there is a sharp drop in normalization. The maximum

value for baryons Jeans mass is MJ(adec) ≈ 1016M� but since the evolution of baryonic perturbation is

led by dark matter potential wells, it is not relevant.

So far we discussed how perturbations can grow. However, there are also damping solutions that we

did not consider yet. On scales λ < λJ , dissipation is important for both dark and baryonic matter:

• since dark matter is collision-less it is not real dissipation. Rather, it is a free streaming effect:

at decoupling DM particles propagate freely responding to the mean gravitational field of the

Universe, damping the fluctuations. We can define the free-streaming scale as the space travelled

by a DM particle in a time t, if the perturbation velocity is v :

λFS(t) = a(t)

∫ t

0

v (t′)

a (t′)
dt′. (1.47)

Thus the free-streaming mass is MFS ∝ λFSρDM and, if a perturbation at the time t has a mass

smaller than the free-streaming mass, it will be cancelled. It can be shown that free-streaming mass

grows as a function of time until equivalence, then it remains constant. Since the normalization

of both the Jeans and the FS mass is the same, at teq all perturbations with M < MFS(aeq) are

cancelled, because MJ(aeq) = MFS(aeq) but then the Jeans mass starts to decrease;

• since baryonic matter is collisional we can talk about dissipation caused by the continuous stochas-

tic process of particles collisions that dampens the wave. To quantify the total space travelled by

the particles we can define the Silk scale and mass, which follow λS ∝ a5/2 and MS ∝ a9/2 before

equivalence, and λS ∝ a9/4 and MS ∝ a15/4 after equivalence; Silk mass grows until decoupling,

where it reaches its maximum MS(adec) ≈ 1012M�.

Since the perturbation amplitude distribution changes depending on the considered scale, not all scales

grow at the same rate.

1.4.4 Non-linear theory

In today’s Universe we observe matter over-densities δ � 1 and this implies that there is a time when

the growth of perturbations becomes non-linear. This happens when the perturbations grow enough

to reach δ ≈ 1. In this regime on a non-linear description is needed. The growth of perturbations
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can be derived analytically only in a very simple approximation, whereas in every other case numerical

simulations are needed. Analytically the simplest way to study the non-linear evolution of perturbations

is considering a spherical and symmetric perturbation, with null initial co-moving velocity. To do so

the perturbation is described as a closed Universe in a background EdS Universe, and from that we can

find a condition for the positive solution to collapse:

δ+ >
3

5

1− Ωi
Ωi(1 + zi)

, (1.48)

where Ωi = Ω(ti) is the density parameter of the background Universe at ti. There is a threshold to

overcome within a time frame for the collapse to happen and this condition is always verified for flat

and closed background universe. However for open background universes it can be more difficult.

Dealing with the perturbation as a closed Universe we ensure its collapse at the so-called turn-around

point, where the scale factor is maximum (and the density is minimum) and then starts to decrease,

as seen in Fig.(1.1). We want to know what is the ratio between the perturbation density and the

background Universe density at the moment of the turn-around:

χ (tmax) :=
ρp (tmax)

ρ (tmax)
≈ 5.6. (1.49)

Thus, because of Eq.(1.32), we have that δ(tmax) = χ − 1 ≈ 4.6, meaning that the perturbation is

already non-linear at the turn-around time. After the turn-around time, the density increases together

with temperature, so matter heats up and the increasing pressure counteracts gravity, leading to an

equilibrium state. Simulations show that when the collapse stops the perturbation has radius Re at

te ≈ 2tmax, and then oscillates around this radius until it settles and virialize at tvir ≈ 3tmax. Between

the equilibrium and virial time the perturbation density is constant, while the background Universe is

still expanding, meaning that the ratio in density varies between these two instants:

ρp (te)

ρ (te)
≈ 228χ ≈ 180 (1.50)

and
ρp (tvir)

ρ (tvir)
≈ 328χ ≈ 400. (1.51)
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If we applied linear theory we would have found non-linear results, but 2 order of magnitude smaller,

δ+ (te) ≈ 1.686

δ+ (tvir) ≈ 2.20
(1.52)

stressing the importance of developing a non-linear theory. The problems in this approximation are

that spherical collapse is not realistic and the non-linear theory results are strongly dependent on the

cosmological model we choose to adopt.

1.4.5 Press-Schechter function

In order to test our models of cosmic structures evolution a connection with observables is needed. This

step is possible defining a mass function n(M)dM which gives the number of objects with mass between

M and M + dM at the time t per unit volume. Fixing a mass-to-light ratio (M/L), it is possible to

switch between the mass function and the luminosity function, which can be measured more easily.

The Press-Schechter mass function (Press & Schechter, 1974 [10]) was found starting from the following

assumptions: (i) the density perturbations distribution is Gaussian, as stated by the inflationary theory;

(ii) spherical collapse model with threshold value δc = 1.686, as found in linear theory in (1.52); (iii)

Jeans linear theory for the evolution of perturbations. Press and Schechter (1994), showed that the

mass function is

n(M)dM =

√
2

π

αρ̄M
M2
∗

(
M

M∗

)α−2

exp

[
−
(
M

M∗

)2α
]

dM, (1.53)

where n(M) is the number density mass of the halos with mass M , ρ̄M is the mean density of the halos

with mass M , α is the power law index and M∗ is a characteristic mass. In this form, Eq.(1.53) is a

power law function with an exponential cut off at M∗, which increases with time, meaning that as time

passes more massive structure are forming in the Universe (Fig 1.2).
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Fig. 1.2. Logarithmic Press-Schechter mass function, at different redshifts. At smaller redshifts the
“knee” of the function is shifted towards larger masses.
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Chapter 2

Gravitational Lensing

As seen in Chapter (1) Einstein’s Theory of Relativity describes how mass, and hence gravity, shapes

the geometry of space-time. A gravitational lens can occur when a sufficiently large mass concentration

creates a gravitational field strong enough to distort and magnify the light coming from other sources

behind it, along the same line of sight. In fact, light propagates on null geodesics as seen in (1.1.1)

and these paths are affected by the small- and large-scale matter clumps in our Universe. Gravitational

lensing is a powerful tool to study the distribution of matter in the cosmic structures and to observe

the distant Universe.

2.1 Weak field approximation

Light deflection can be described by Fermat’s principle, namely approaching the problem as light re-

fraction and defining an effective refraction index, n. In most astrophysical scenarios lenses are “weak”,

meaning that their gravitational potential is small, Φ� c2, and are small within respect to the source-

lens-observer system. Neglecting the expansion of the Universe, the line element of the local metric

tensor can be written as a small perturbation of the Minkowski metric,

ds2 = gµvdx
µdxv =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
(d~x)2. (2.1)

From the null geodesic form, ds2 = 0, the photon effective speed in the gravitational perturbation is

smaller than in its absence:

c′ =
d~x

dt
≈ c

(
1 +

2φ

c2

)
(2.2)
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This equation leads to the definition of the effective refraction index,

n =
c

c′
=

1

1 + 2φ/c2
≈ 1− 2φ

c2
(2.3)

needed to apply the Fermat’s principle. The total deflection angle of a photon is be the integral over

the gradient of the potential perpendicular to the light path, along the proper light path. However we

can adopt the Born approximation and integrate over the unperturbed light path:

~̂α(b) =
2

c2

∫ +∞

−∞
~∇⊥φdz (2.4)

where b is the impact parameter of the photon with respect to the mass M . If the lens is a point mass,

then the potential is Φ = −GM/r, where G is the gravitational constant and r =
√
x2 + y2 + z2 =

√
b2 + z2. Thus the deflection angle becomes

|~̂α| = 4GM

c2b
= 2

Rs
b

(2.5)

where Rs = 2GM/c2 is the Schwarzchild radius of a mass M . Having multiple point masses the total

deflection angle can be computed by superposition, given the linearity in M .

In a typical lensing system we can consider the source sphere, with radius DS centered on the

observer O, and the lens sphere, with radius DL centered on the lens. In all cases of astrophysical

interest deflection angles are small, therefore the spheres can be replaced by the corresponding tangent

planes, the source plane and the lens plane. As shown in Fig. (2.1), the separation between the ray and

the optical axis is described by the two-dimensional vector ~ξ on the lens plane, and by ~η on the source

plane, and DS , DL and DLS are angular diameter distances.

Since most of the deflection occurs within ∆z ∼ b and the distances to the source and the observer

are greater than this, we can apply the thin screen approximation and assume that the deflection occurs

in the lens plane. Considering now a more realistic model where the distribution of matter is three-

dimensional, this approximation allows to describe the matter distribution with its surface density,

Σ(~ξ) =

∫
ρ(~ξ, z)dz (2.6)
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Fig. 2.1. Lensing system geometry. Figure from Narayan and Bartelmann, 1997 [11]

where ρ is the 3D density. Given the linearity in M of (2.5), the deflection angle is

~α(~ξ) =
4G

c2

∫ (
~ξ − ~ξ′

)
Σ
(
~ξ′
)

∣∣∣~ξ − ~ξ′∣∣∣2 d2ξ′ (2.7)

2.2 The lens equation

In order to define the observable light path we need to derive a relation between the intrinsic source

position (~β) and the apparent one (~θ), also referred as the image position. From the geometry of Fig(2.1),

if ~̂α, ~θ, ~β are small, we can obtain the lens equation

~θDS = ~βDS + ~̂αDLS, (2.8)

and, by defining the reduced deflection angle,

~α(~θ) ≡ DLS

DS
~̂α(~θ), (2.9)
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we obtain ~β = ~θ − ~α(~θ). We can now define a length scale ξ0 on the lens plane, corresponding to a

length scale η0 on the source plane, such that ~x ≡ ~ξ
ξ0

and ~y ≡ ~η
η0
; this allows the derivation of a

dimensionless lens equation:

~y = ~x− ~α(~x) (2.10)

where

~α(~x) =
DLDLS

ξ0DS
~α (ξ0~x) (2.11)

is the scaled deflection angle.

2.2.1 Lensing potential and convergence

The deflection depends on the projection of the 3D potential on the lens plane and on the lens-source

system geometry. Hence with a proper rescaling we can define the effective lensing potential that

characterizes the mass distribution:

Ψ̂(~θ) =
DLS

DLDS

2

c2

∫
Φ
(
DL

~θ, z
)

dz. (2.12)

It can be shown that the gradient of the lensing potential is the reduced deflection angle. In dimensionless

form, this property can be written as

~∇xΨ(~x) = ~α(~x), (2.13)

where Ψ =
D2
L

ξ2
0

Ψ̂. In addition, the Laplacian of the lensing potential is twice the convergence κ, i.e.

κ(~x) =
1

2
∇2
xΨ(~x), (2.14)

where

κ(~θ) ≡ Σ(~θ)

Σcr
with Σcr =

c2

4πG

Ds

DLDLS
. (2.15)

As shown by Eq.(2.15), the convergence is the ratio between the surface density and the critical surface

density Σcr. The latest is a function of the angular diameter distances of the system.

From their definitions, lensing quantities such as the lensing potential (2.12) and the critical surface

density (2.15) strongly depends on distances. Fig.(2.2) shows how the factor Ds
DLDLS

varies with the lens

or source redshift. As it can be seen in Fig.(2.2a) to a larger source-lens distance corresponds a larger

convergence, it is easier to exceed the Σcr threshold for a higher source redshifts. When this happens,

the lens is called “strong”; for a given source redshift, varying the lens redshift, the maximum lensing
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effect is produced by lenses at intermediate distaces (blue curve) between the source and the observer.

The peaks of the curves in Fig.(2.2b) shift to higher redshifts if the source distance increases.

Fig. 2.2. How the distance factor varies with the source redshift (a), and how it varies with the lens
redshift when the distance to the source increases (b). Figure from M. Meneghetti lectures (2020 [12]).

2.2.2 First order lens mapping

The lens equation (2.8) ideally allows us to determine the unperturbed source position ~β corrisponding to

an observed image position ~θ, if the deflection angle ~α given in Eq.(2.4) is known. For an extended source

we should solve the lens equation for every point-source element in order to reconstruct its distorted

image. We can work using a first order approximation if the source size is significantly smaller than

the angular scale on which the deflection angle changes. By computing the distance between two points

~β and ~β′ = ~β + d~β on the source plane and mapping it on the lens plane we define a linear mapping

between the source and the lens plane, described by the Jacobian matrix

A ≡ ∂~β

∂~θ
=

(
δij −

∂αi(~θ)

∂θj

)
=

(
δij −

∂2Ψ̂(~θ)

∂θi∂θj

)
. (2.16)

This metric is called the lensing Jacobian. It is a rank-two symmetric tensor that can be split into an

isotropic and an anisotropic part

Aiso,i,j =
1

2
trAδij =

[
1− 1

2

(
Ψ̂11 + Ψ̂22

)]
δij

=

(
1− 1

2
∇2Ψ̂

)
δij = (1− κ)δij ,

(2.17a)
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Aanisoi,j = Ai,j −
1

2
trAδij = δij − Ψ̂ij −

1

2

(
1− Ψ̂11 + 1− Ψ̂22

)
δij

= −Ψ̂ij +
1

2

(
Ψ̂11 + Ψ̂22

)
δij

=

 − 1
2

(
Ψ̂11 − Ψ̂22

)
−Ψ̂12

−Ψ̂12
1
2

(
Ψ̂11 − Ψ̂22

)
.


(2.17b)

From (2.17b) we can define the shear tensor Γ, also often written in a form of a pseudo-vector, ~γ =

(γ1, γ2), whose components are

γ1 =
1

2

(
Ψ̂11 − Ψ̂22

)
(2.18)

γ2 = Ψ̂12 = Ψ̂21 (2.19)

The shear tensor has eigenvalues ±
√
γ2

1 + γ2
2 = ±γ, so we can write the shear tensor as

 γ1 γ2

γ2 −γ1

 = γ

 cos 2φ sin 2φ

sin 2φ − cos 2φ

 (2.20)

where φ identifies the direction of the eigenvector corresponding to the positive eigenvalue.

From (2.17a), we use the property (2.14) to make the convergence explicit. Summarizing, we can rewrite

the lensing Jacobian matrix as

A =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1


= (1− κ)

 1 0

0 1

− γ
 cos 2φ sin 2φ

sin 2φ − cos 2φ


(2.21)

from which we can see how the convergence determines an isotropic distortion of the image, so it’s

expandend/contracted in all directions by the same factor, while the shear determines an anisotropy by

stretching the shape along a particular direction. As shown in Fig.(2.3), a circular source of radius r

mapped on the lens plane will be an ellipse, with semi-major and -minor axes defined by

a =
r

1− κ− γ
=

r

λt
, b =

r

1− κ+ γ
=

r

λr
(2.22)

where λt and λr are the tangential and radial eigenvalues of the Jacobian matrix, respectively. The

ellipticity is defined as

e =
a− b
a+ b

=
γ

1− k
≡ g, (2.23)
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where we introduced the reduced shear g.

Fig. 2.3. Circular image distortion into an ellipse due to convergence and shear. Figure from S. Suyu
lectures (2016 [13]) .

2.2.3 Magnification

Along with distortions, gravitational lensing introduces a magnification effect. If we are observing a

lensed source, to compute the magnified flux within respect to the intrinsic one we only need to see

how the source area changes, since the surface brightness Iν is conserved (no photons are created or

absorbed). This property is explained by Liouville theorem. Given the ellipse axes in Eq.(2.22), we

want to compute how the area of the lensed image (I ) compares to the source intrinsic area (S ). We

obtain:

I = πab = πr2(detA)−1 = S(detA)−1 → µ ≡ 1

detA
=
I

S
, (2.24)

where µ is the magnification. The link between the intrinsic and observed flux can be expressed as

Fν =

∫
I

Iν(~θ)d2θ =

∫
S

ISν (~β(~θ))µ(~θ)d2β, (2.25)

where the first integral is over the image plane, while the second over the source plane. From Eq.(2.24),

we can define the radial (µr = 1/λr) and tangential (µt = 1/λt) magnification factors. Since the

magnification is a function of ~θ, there exists a set of critical points where detA = 0, namely where

λr = 0 and λt = 0. Along the lines defined by those conditions the magnification diverges. These

lines are called critical lines and they are defined on the lens plane. If we map them onto the source

plane using the lens equation we obtain the caustics. Since the Jacobian determinant vanishes along
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these lines, the regions of the lens plane separated by the critical lines have values of the Jacobian

determinant with opposite sign. This indicates that parities of the image formed on the two sides of the

critical lines are inverted. An image near a critical line will be characterized by a strong tangential or

radial deformation, as well as higher flux. Given a lens system, the number of images varies with the

source position. And it can be shown that the number of images changes by two when the source crosses

a caustic (P.Schneider, J. Ehlers, E.Falco, 1992 [14]): two images with opposite parity merge on the

critical line. Working with massive and complex lenses such as galaxy clusters, critical and caustic lines

can have extended and irregular shapes. A source can produce several multiple images. In addition,

many sources can be strongly lensed simultaneously as seen in Fig.(2.4). The figure shows the that

shows the model describing the mass distribution of the core of the galaxy cluster MACS J1206 (G.B.

Caminha et al., 2017 [15]).

Fig. 2.4. MACS J1206 galaxy cluster lens model. On the left, tangential (cyan) and radial (magenta)
critical lines on the image plane; on the right, tangential and radial caustic lines on the source plane,
along with the reconstructed position of the background sources. Figure from G.B. Caminha et al. (2017
[15]).

2.2.4 Time-delay

Light passage through a gravitational potential also leads to a delay in the travel time between the

source and the observer. Consequently, we see multiple images of the same source appearing on the lens

plane at different times. This time-delay has two components. One is geometrical, due to different path

taken by deflected light rays to reach the observer, and one is gravitational, and due to the different

effective speed of light in presence of a gravitational potential. It can be demonstrated that the total
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time-delay is described by a surface:

t(~θ) = tgeom + tgrav = =
1

c
(1 + zL)

DLDS

DLS︸ ︷︷ ︸
time-delay distance

[
1

2
(~θ − ~β)2 − Ψ̂(~θ)

]
︸ ︷︷ ︸

Fermat’s potential

=
D∆r

c
τ(~θ),

(2.26)

where zL is the lens redshift and the term (1 + zL) is a factor introduced to account for the expansion

of the Universe. The gradient of this surface gives the lens equation,

∇
[

1

2
(~θ − ~β)2 − Ψ̂(~θ)

]
= 0 (2.27)

Thus the images form at the stationary points of the time-delay surface. The curvature of this surface

is given by its Hessian matrix:

T =
∂2t(~θ)

∂θi∂θj
∝
(
δij − Ψ̂ij

)
= A. (2.28)

This defines a link between the image magnification and the curvature of the time-delay surface, given

the relation between the Hessian matrix and the lensing Jacobian. A flat time-delay surface at the image

positions will result in a divergent magnification factor, vice versa a more curved surface will result in

a smaller magnification. Different stationary points result in different types of images:

• Type I images: in the minima of the surface, both (2.28) eigenvalues are positive, so detA > 0 and

trA > 0 −→ positive magnification;

• Type II images: in the saddle points of the surface, (2.28) eigenvalues have opposite signs, so

detA > 0 −→ negative magnification (i.e. reversed image parity, not de-magnified);

• Type III images: in the maxima of the surface, both (2.28) eigenvalues are negative, so detA > 0

and trA < 0 −→ positive magnification;

Fig.(2.5) shows an example of one-dimensional time-delay functions for a circularly simmetric lens

for a source not directly behind it (Narayan and Bartelmann, 1997 [11]). The geometric time-delay is

described by a parabola and the gravitational function will vary depending on the considered potential.

In particular, for a source perfectly aligned with the centre of the lens (β = 0), we observe a configuration

called the Einstein ring: three stationary points, two of which (the minima) merge onto a single ring. We

can then introduce the Einstein radius, which is properly an angle, to define the radius of the Einstein
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Fig. 2.5. Geometric, gravitational, and total time-delay one dimensional functions. Figure form
Narayan and Bartelmann (1997 [11]).

ring as shown in Fig.(2.6):

θE =

√
4GM(θ)

c2
DLS

DsDL
(2.29)

this can be used as reference scale to work in dimensionless form.

Note that the one-dimensional representation can be misleading, since the surface is three-dimensional:

from the height difference of the stationary points of the surface is possible to determine the time-delay

between the appearance of the images. For example, the explosion of a supernova in a galaxy lensed

by MACS1149 galaxy cluster provided a opportunity to test model predictions of time-delay on short

timescales compared to a human lifetime. (Treu et al., 2016 [16]);

Fig.(2.7) shows the time-delay surface contours in the area of the lensed galaxy, where we can see

the multiple images of the Resfdal supernova. The time-delays between these images are of the order of

a few days.
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Fig. 2.6. A source S exactly behind the centre of an axially symmetric lens is mapped into the Einstein
ring, with angular radius given by θE . Figure from Narayan and Bartelmann (1997 [11]).

2.3 Extended lens profiles

Massive galaxies and galaxy clusters are powerful gravitational lenses, capable of distorting and multiple-

imaging several sources at the same time. Studying the mass distribution of these cosmic structures is

important to understand how they form and evolve over cosmic time and to constrain the cosmological

model (see e.g. Jullo et al. 2010 [17], Golse et al. 2002 [18]). Galaxies and clusters are characterized by

complex extended mass distributions, whose properties are determined by their mass surface density.

The surface density of an extended lens is characterized by several features, such as its mean density

profile, the shape of iso-density contours, the smoothness or clumpiness of the lens. The lensing prop-

erties also depend on the environment surrounding the lens. This description of analytical lens models

for extended lenses still use the thin screen approximation.
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Fig. 2.7. Resfdal supernova in MACS1149. S1 is a minima, so it’s taken as reference point and is the
first multiple image appeared, while S2 is a saddle point and appeared with a time-delay of 5 days, S3
is another minima and with a time-delay of 11 days and S4 is a saddle point with a time-delay of 26
days. Figure from Treu et al., 2016 [16].

2.3.1 Axially symmetric profiles

For such lenses the properties at a given radius r are the same in every direction. For example, the

lensing potential is Ψ̂(~θ) = Ψ̂(θ). This symmetry allows a one-dimensional description of most equations.

For a circularly symmetric lens, the deflection angle is radially directed and its amplitude only depends

on the distance from the lens center, i.e. the deflection angle is parallel to ~θ and its expression is the

same of Eq.(2.4) for the point mass, but in this case M = M(θ) so the mass considered is the mass

enclosed in a circle of radius θ, where the light ray passes. In dimensionless notation, introducing an

arbitrary reference scale ξ0, this can be written as

α(x) ≡ m(x)

x
with m(x) = 2

∫ x

0

x′κ (x′) dx′ (2.30)
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where m(x) is the dimensionless mass, defined as m(x) = M(ξ0x)
πξ2

0Σcr
. Therefore the lens equation is

y = x− m(x)

x
. (2.31)

To derive an expression for the convergence κ we rewrite the Laplacian in Eq.(2.14) in polar coordinates.

Then, from (2.15),

κ(x) =
1

2

m′(x)

x
(2.32)

and then the shear vector can be written as

γ(x) = |κ(x)− κ̄(x)| with κ̄(x) =
m(x)

x2
= 2π

∫ x
0
x′κ (x′) dx′

πx2
(2.33)

where κ̄(x) is the mean convergence in a circle of radius x. Using these results it can be demonstrated

(M. Meneghetti, 2017 [19]) that the determinant of the lensing Jacobian is

detA =
y

x︸︷︷︸
λt

dy

dx︸︷︷︸
λr

= [1− κ̄(x)][1 + κ̄(x)− 2κ(x)] (2.34)

where λr and λt are, respectively, the radial and tangential eigenvalues of the Jacobian as defined in

Sec.(2.2.2). Thus considering a circular source at the distance y from the center of the lens, its perimeter

would be mapped onto the lens plane point by point, since the deflection angle is parallel to both x

and y: as shown in Fig.(2.8) if the source dimension is δ this would be mapped into the mayor axis

of the ellipse image, subtending the same angle. Therefore to find the tangential deformation we can

simply compute the tangential eigenvalue of the Jacobian matrix, and to find the radial stretching we

can compute the radial eigenvalue of the Jacobian matrix. Posing detA in Eq.(2.34) equal to zero we

can find the critical lines:

α(x)/x = m(x)/x2 = κ̄(x) = 1 (2.35a)

α′(x) = m′(x)/x−m/x2 = 2κ(x)− κ̄(x) = 1. (2.35b)

Eq.(2.35a) and Eq.(2.35b) give the tangential and radial critical lines, respectively. Both these conditions

define circles on the lens plane.
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Fig. 2.8. Infinitesimal source of diameter δ mapped into an ellipse. Figure from P.Schneider, J. Ehlers,
E.Falco (1992 [14]).

2.3.2 Power-law profiles

These profiles can be described by a convergence profile proportional to the n-th power of the radius x,

such as
κ(x) =

3− n
2

x1−n ⇒ m(x) = x3−n

⇒ α(x) = x2−n

⇒ γ(x) =
n− 1

2
x1−n

⇒ y = x− x2−n

⇒ detA =
(
1− x1−n)︸ ︷︷ ︸

λt

(
1− (2− n)x1−n)︸ ︷︷ ︸

λr

(2.36)

where n is a parameter that can assume any real value, n > 1. In particular, we distinguish the following

cases:

• 1<n<2: mass and deflection angle profiles increase with x for all n, convergence and shear profiles

decrease instead. The tangential critical line is a circles of radius x = 1 ∀n and the corresponding

caustic line is a point in ycrit = 0 ∀n; on the other hand, the radial critical line size depends on

the value of n. Its size decreases as n increases, while the caustic line has the opposite trend. For

n = 2, the radial critical line does not exist. For all axially simmetric lenses there are serveral ways

to solve the lens equation, but the most useful is the so-called image diagram. Multiple image

positions can be found at the intersection of the deflection angle profile with the lines f(x) = x−y
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in order to find the multiple images positions x. As shown in Fig.(2.9) the image separation

depends on the value of n: larger n gives a more curved deflection angle profile and thus more

images with smaller separation and vice versa.

Lens profiles with n = 1 and n = 2 are the perfectly convergent lens and the Singular Isothermal

Sphere model (see section (2.3.3)), respectively.

• n>2: the deflection angle profile decreases with x for all n and has a singularity in x = 0,

namely these lenses always produce two images, one inside and one outside the Einstein radius,

since the time-delay surface is not continuously deformable. The radial eigenvalue is never zero,

giving an absolute radial magnification factor µr < 1 always. Thus the images are always radially

demagnified. The radial critical line does not exist. The case n = 3 corresponds to the point-mass

lens.

Fig. 2.9. Image diagrams for different values of n<2: the blue solid line is the deflection angle function,
while the colored dashed lines are the f(x) = x − y functions, with varying y value. Figure from M.
Meneghetti, 2017 [19]

2.3.3 Singular Isothermal Sphere

A simple model to describe galaxy and cluster mass distributions is the Singular Isothermal Sphere

(SIS), with surface mass density

Σ(ξ) =
σ2
v

2Gξ
(2.37)

where ξ the distance from the lens center. If this profile is described by assuming an ideal gas confined

by a spherically symmetric potential, in thermal and hydrostatic equilibrium. The gas particle velocity

dispersion is σv (i.e. stars in galaxy, galaxies in cluster). This profile is not physical, since it has a

singularity at the center and the total mass is infinite, but the behaviour of (2.37) at 0 � ξ < ∞
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reproduces the observed flat rotation curves of spiral galaxies. By choosing ξ0 = 4π
(
σv
c

)2 DLDLS

DS
as

length scale, we can write the dimensionless form of Eq.(2.37):

Σ(x) =
Σcrit
2x
⇒ κ(x) =

1

2x
. (2.38)

Thus the SIS profile is a power-law lens profile with n = 2. From the convergence definition, we obtain

the deflection angle and the lens equation:

α(x) =
x

|x|
(2.39a)

y = x− x

|x|
(2.39b)

The solutions of the lens equation depend on the source position y:

• when 0 < y < 1 two solutions exist, on opposite sides of the lens center, one in x− = y − 1 and

one in x+ = y + 1; their angular positions are θ± = β ± θE , with θE from Eq.(2.29). Thus the

image angular separation is always ∆(θE) = 2θE .

• when y > 1 only one solution exists, i.e x+ = y + 1.

Fig. 2.10. Different alignments between a SIS lens (triangle) and an extended source (green dot).
Figure from C. Jensen, 2012 [20].

Therefore the circle of radius yc = 1, called the cut, has the same role of a radial caustic for power-law

lens models with n < 2, separating the source plane in regions with different image multiplicities (but

35



2.3. EXTENDED LENS PROFILES CHAPTER 2. GRAVITATIONAL LENSING

it is not a caustic).

Computing the radial eigenvalue of the lensing Jacobian we find that it is λr = 1 always, meaning that

the magnification is only tangential; thus the radial size of all images is always equal to the source’s

size, there is only a tangential stretch. The magnification for an image at x is given by

µ(x) =
y

x

dy

dx︸︷︷︸
=1

=
|x|
|x| − 1

. (2.40)

Since for y < 1 the images form in x− and x+, substituting above

µ+(y)︸ ︷︷ ︸
outside Einstein ring

= 1 +
1

y
; µ−(y)︸ ︷︷ ︸

inside Einstein ring

= 1− 1

y
(2.41)

from which we see that for y approaching unity the image in x− fades until it disappears; moreover, if

y increases µ+ decreases and the image resembles more and more the source shape.

From Eq.(2.33), it follows that the shear and convergence profiles are equal

γ(x) =
1

2x
= κ(x) (2.42)

with shear components:

γ = 1
2

cos 2φ
x

γ = 1
2

sin 2φ
x

(2.43)

where φ is the polar angle.

Non-singular Isothermal Sphere To avoid the SIS profile central singularity an additional param-

eter ξc can be used to introduce a flat core in the surface density profile. The new modified surface

density profile is then:

Σ(ξ) =
Σ0√

1 + ξ2/ξ2
c

with Σ0 =
σ2
v

2Gξc
. (2.44)

By introducing the same scale length ξ0 defined in Sec.(2.3.3), and defining xc = ξc/ξ0, we can write

the dimensionless convergence profile as

κ(x) =
1

2
√
x2 + x2

c

. (2.45)

36



2.3. EXTENDED LENS PROFILES CHAPTER 2. GRAVITATIONAL LENSING

The lens equation is

y = x−
√

1 +
x2
c

x2
− xc

x
, (2.46)

which can be reduced to a third order polynomial. Thus the NIS lens can produce up to three images

of a given source whose multiplicity depends on xc. In particular it can be shown (M. Meneghetti, 2017

[19]) that the tangential and radial critical lines only exist for xc < 1/2 (in θE units), and that the

tangential caustic line is a point at yt = 0 while the radius of the radial caustic line varies with xc,

as shown in Fig.(2.11). If xc > 1/2 the convergence is never larger than unity, meaning the surface

Fig. 2.11. NIS critical lines radius as function of xc. Note that for xc = 0, yr = 1, i.e. we find the SIS
cut. Figure from M. Meneghetti, 2017 [19].

density never exceeds the critical surface density Σcr and we are talking about a “weak” lens that can

not produce multiple images because the critical lines are not produced.

2.3.4 Singular Isothermal Ellipsoid

Observations show that galaxies are better represented by elliptical mass distributions. Kormann,

Schneider, and Bartelmann (1994 [21]) developed a lens model of the Singular Isothermal Ellipsoid

(SIE), introducing the ellipticity in the SIS profile. In particular, they substitute the radial coordinate
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ξ with
√
ξ2
1 + f2ξ2

2 , obtaining

Σ(~ξ) =
σ2
v

2G

√
f√

ξ2
1 + f2ξ2

2

. (2.47)

The surface density in Eq.(2.47) is constant on ellipses with axis ratio f = b/a. By choosing the same

reference scale length ξ0 as for the SIS, we find the convergence

κ(~x) =

√
f

2
√
x2

1 + f2x2
2

. (2.48)

The deflection angle can be computed from the gradient of the lensing potential in polar coordinates; in

analogy with the SIS case, it can be shown that the shear is γ = κ for the SIE as well. From the lensing

Jacobian determinant, we find the two eigenvalues

λt(~x) = 1− 2κ(~x)

λr(~x) = 1
(2.49)

from which we see that even the SIE does not produce a radial critical line, and the radial magnification

is always unity; the tangential critical line is the ellipse of equation κ(~x) = 1/2. Due to the singularity

at the center of the lens, even for the SIE profile we find a multiple image region not enclosed by the

caustic, but by the cut. The number of multiple images that can be produced by this lens depends on

how the caustic and cut lines are placed: as shown in Fig.(2.12), depending of the value of f, the cut

(the ellipse) can enclose the tangential caustic (the astroid) or not, so since crossing the cut changes by

1 the image number, and crossing the caustic changes it by 2, the first three configurations can produce

1/2/4 images; in the last case instead, 3 multiple images can be produced since two cusps of the astroid

cross the cut, but it can be demonstrated that this is possible only for f < 0.3942.

Non-singular Isothermal Ellipsoid To remove the singularity of the surface mass density, in the

SIE model, we introduce a core radius ξc, so we can write the surface mass density and the convergence

as

Σ(~ξ) =
σ2

2G

√
f√

ξ2
1 + f2ξ2

2 + ξ2
c

(2.50a)

κ(~x) =

√
f

2
√
x2

1 + f2x2
2 + x2

c

(2.50b)

Kormann, Schneider, and Bartelmann (1994) [21] discussed the critical lines and caustics topology and

image multiplicity. In Fig.(2.13) we show that depending on the value of f and xc, the lens can produce

different multiplicity of a source behind it. The lens can have both radial and tangential critical lines
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Fig. 2.12. Different f configurations of the SIE cut (ellipse) and tangential caustic (astroid). Figure
from Kormann et al., 1994[21].

and caustics, producing up to 5 multiple images. For some other values, only the tangential critical line

and caustic exist, so it can produce 1 or 3 multiple images. For some value, it can have no critical and

caustic line at all.

2.3.5 The PIEMD profile

The description of this profile is fully provided in Elíasdóttir et al. (2017) [22], to which we refer in this

work. The Pseudo Isothermal Elliptical Mass Distribution (PIEMD) profile has different variants and

it a very useful tool in lens modeling; its main perks are analytic expressions of the lensing potential

and first and second partial derivatives. It was first defined by Kassiola & Kovner (1993) [23] without a

scale radius. The following expressions refer to a PIEMD profile with a core radius and a scale radius,

also called the dual Pseudo Isothermal Elliptical mass distribution (dPIE). Thus, considering a spherical
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Fig. 2.13. NIE caustics topologies varying f and xc. Figure from Kormann et al., 1994 [21]

system with scale radius s, the three-dimensional density distribution is

ρ(r) =
ρ0

(1 + r2/a2) (1 + r2/s2)
; s > a, (2.51)

where a is the core radius and ρ0 is the central density. The relation between the central density and

the 1D-central velocity dispersion σ0, is (Limousin et al., 2005 [24])

ρ0 =
σ2

0

2πG

a+ s

a2s
. (2.52)

For r < a, the density follows ρ ≈ ρ0/
(
1 + r2/a2

)
. For a ≤ r ≤ s, the density is isothermal. Finally, for

r > a, the density falls off as ρ ∼ r−4. The surface mass density is written as

Σ(ξ) =2

∫ ∞
ξ

ρ(r)r√
r2 − ξ2

dr

=Σ0
as

s− a

(
1√

a2 + ξ2
− 1√

s2 + ξ2

) (2.53)

where ξ is the two-dimensional radius and Σ0 is

Σ0 = πρ0
as

s+ a
. (2.54)
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The convergence κ can be computed from (2.15) and the shear is

γ(ξ) =
Σ0

Σcrit

as

s− a

[
2

(
1

a+
√
a2 + ξ2

− 1

s+
√
s2 + ξ2

)

+

(
1√

a2 + ξ2
− 1√

s2 + ξ2

)] . (2.55)

Integrating Eq.(2.51), we can compute the total 3D mass enclosed by the physical radius r, as

M3D(r) =4π

∫ r

0

ρ(r̄)r̃2dr̄

=4πρ0
a2s2

s2 − a2

[
s arctan

(r
s

)
− a arctan

( r
a

)]. (2.56)

We can now define the mass enclosed in the projected radius R, in order to obtain an expression for the

projected lensing potential, thus

M2D(ξ) =2π

∫ ξ

0

Σ(ξ̄)ξ̄dξ̄

=2πΣ0
as

s− a

(√
a2 + ξ2 − a−

√
s2 + ξ2 + s

). (2.57)

Note that this profile has a finite total mass, given by Mtot = 2πΣ0as. Setting ξL as a limiting radius,

we can integrate the 2D mass profile to obtain the projected lensing potential as

Ψ(ξ) =2G

∫ ξL

ξ

M2D(ξ̃)

ξ
dξ̄

=4πGΣ0
as

s− a

(√
s2 + ξ2 −

√
a2 + ξ2 + a ln

(
a+

√
a2 + ξ2

)
− s ln

(
s+

√
s2 + ξ2

))
+ constant

, (2.58)

from which we can finally compute the deflection angle:

α(ξ) =− 2

c2
DLS

DS

dΨ

dξ

=
8πG

c2
DLS

DS
Σ0

as

s− a

(
ξ/a

1 +
√

12 + (ξ/a)2
− ξ/s

1 +
√

12 + (ξ/s)2

) (2.59)

LENSTOOL As we will further discuss in Chapter (4.2), the dPIE is implemented in the LENSTOOL

software, that will be used in this work to construct a lens model. Hereafter, we will refer to cluster-

scale halos as PIEMD profiles (which is a dPIE in the limit rcut −→ ∞), and to galaxy-scale halos as

dPIEs. The profile is defined by eight parameters: the redshift (z), the central position (RA,DEC), the

ellipticity (e) and orientation (θ), the scale radius (rcut), the core radius (rcore) and a central velocity
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dispersion (σ0). We note that the LENSTOOL parametrization of the dPIE profile requires a fiducial

velocity dispersion σLT , related to the σ0 as σ0 =
√

3/2σLT . In particular, the projected velocity

dispersion can be obtained using (2.56), thus

σ2
P (ξ) =

2G

Σ(ξ)

∫ ∞
ξ

M3D(r)ρ(r)

r2

√
r2 − ξ2dr. (2.60)

2.3.6 The Navarro-Frenk-White profile

Navarro, Frenk and White (1995) [25] derived from N-body numerical simulations a simple universal

model to fit the density profiles of dark matter halos in a CDM scenario. The NFW profile is given by

ρ(r) =
ρs

(r/rs) (1 + r/rs)
2 (2.61)

where rs is the scale radius, and ρs is defined from ρ(r = rs) = ρs
4 . The profile is isothermal near rs,

but is significantly shallower than r−2 near the center, following ρ(r) ∝ r−1, and is steeper at large radii,

changing to ρ(r) ∝ r−3. The total mass of a DM halo can be expressed in terms of a virial overdensity

as

Mvir =
4π

3
r3
vir

∆vir

Ωm(z)
Ω0ρc (2.62)

where ∆vir is the overdensity within the virial radius rvir and depends on cosmology and redshift, and

Ωm(z) as defined in section (1.3.2). In NFW framework to parametrized the DM halos the mass M200

is used, which is the mass enclosed by the virial radius r200, namely the radius of a sphere of mean

overdensity of 200 with respect the critical density (1.25): thus the covered mass range in NFW work is

∼ 3×1011 < M200/M� <∼ 3×1015. Another useful definition is the virial concentration cvir = rvir/rs.

From the definition of r200, the concentration c ≡ r200/rs can be linked to the characteristic density as

ρs =
200

3
ρc

c3

(ln(1 + c)− c/(1 + c))
(2.63)

NFW found from the numerical simulations that the concentration, or equivalently the overdensity, is a

function of the halo mass by reflecting the different formation redshift of different mass halos.

The description of different aspects of lensing by halos with NFW density profiles is derived in

Bartelmann (1996 [26]) : the projected density profile is

Σ(x) =
2ρsrs
x2 − 1

f(x), (2.64)
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with

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1 (x > 1)

1− 2√
1−x2

arctanh
√

1−x
1+x (x < 1)

0 (x = 1)

. (2.65)

So the lensing potential is given by

Ψ(x) = 4κsg(x), (2.66)

with κs ≡ ρsrsΣ−1
cr and

g(x) =
1

2
ln2 x

2
+



2 arctan2

√
x− 1

x+ 1
(x > 1)

−2 arctanh2

√
1− x
1 + x

(x < 1)

0(x = 1)

. (2.67)

Thus the deflection angle is

α(x) =
4κs

x
h(x) (2.68)

with

h(x) = ln
x

2
+



2√
x2 − 1

arctan
√
x− 1

x+ 1
(x > 1)

2√
1− x2

arctanh
√

1− x
1 + x

(x < 1)

1(x = 1)

(2.69)

Integrating the convergence we can obtain the dimensionless mass, as

κ(x) = 2κs
f(x)

x2 − 1
−→ m(x) = 4ksh(x). (2.70)

The logarithmic slope of the surface density in Eq.(2.64) is significantly smaller than the SIS one at the

center, so the magnification is larger. On the contrary, the profile is significantly steeper than isothermal

at large radii and the decrease away from the critical lines is shallower.

2.3.7 External shear

When describing a lens placed in a particularly dense environment it is often needed to account for

every other possible gravitational lens surrounding it. To parametrize this environment effect, ot often
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used an external shear field, defined by means of a potential Ψγ that satisfies

γ1 = 1
2 (Ψ11 −Ψ22) = const.

γ2 = Ψ12 = const.

κ = 1
2 (Ψ11 + Ψ22) = const.

(2.71)

so that Ψ11 and Ψ22 are constant. In this case, the potential is quadratic, i.e.

Ψγ = Cx2
1 + Cx2

2 +Dx1x2 + E (2.72)

so the conditions in Eq.(2.71) can be expressed as

γ1 = 1
2 (Ψ11 −Ψ22) = C − C ′

γ2 = Ψ12 = D

κ = 1
2 (Ψ11 + Ψ22) = C + C ′

(2.73)

We distinguish two cases:

• Placing the lens on a matter sheet: there are no privileged directions, so the shear is zero, γ1 =

γ2 = 0. Neglecting irrelevant constants the external convergence potential is

Ψκ =
κ

2
x2 (2.74)

thus the deflection angle and the lens equation can be expressed as

~α = ~∇Ψκ = κ~x, (2.75a)

~y = ~x− ~α = ~x(1− κ). (2.75b)

thus if κ = 1, every position ~x on the lens plane is mapped onto the same point y = 0, having a

perfectly convergent lens.

• If the perturbation does not contribute to the convergence (κ = 0), then C = −C ′ = γ1/2. The

external shear potential is

Ψγ =
γ1

2

(
x2

1 − x2
2

)
+ γ2x1x2, (2.76)
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or in polar coordinates

Ψγ =
γ

2
x2 cos 2 (φ− φγ) , (2.77)

where φγ is the angle defining the direction of the external shear.
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Chapter 3

Galaxy Clusters

Galaxy clusters are bound systems of galaxies whose existence and observations currently helps our

understanding and measurements of the main cosmological parameters, on top of providing a probe

for the largely accepted standard cold dark matter scenario. As already explained in Sec.(1.4), the

existence of these large-scale structures is the evidence of our not perfectly homogeneous Universe: the

gravitational instability of primordial density perturbations leads to the formation of small structures

that then merge forming galaxy clusters. Gravitational lensing is one of the most powerful methods to

constrain the mass distribution of clusters, which also helps understanding the interaction between dark

and baryonic matter. In this Chapter we describe the main properties of galaxy clusters, focusing on

their strong lensing properties.

3.1 Main properties

To distinguish a galaxy clusters from other bound structures such as groups of galaxies we can rely

on a richness criterion defined in Abell (1958 [27]) : if m3 is the magnitude of the third brightest

cluster member (within ' 1.5h−1 Mpc from the cluster center) then a cluster must contain at least 30

galaxies brighter than m3 +2m. Observed clusters show a population of 100-1000 galaxies, mostly Early

Type Galaxies (ETGs), with a median line-of-sight velocity dispersion of tipically ∼ 750km/s; from the

velocity dispersion we find a total mass of Mtot ∼ 5× 1014h−1M�, but the stellar mass is only a small

fraction of the total. Another important component is the hot gas, which is in virial equilibrium in

the cluster’s potential well. This intracluster medium (ICM) extends as far as the galaxy concentration

and is extremely rarefied, with small density and high temperature: the temperature range is tipically

2 < T < 14 keV, and the number density is n ∼ 0.1 − 0.01cm−3 in the center, and n ∼ 10−4cm−3 in
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Property Value for clusters
Richness 30-300 galaxies
Radius (1− 2)h−1Mpc

Velocity dispersion (los) 400-1400 km/s
Median velocity dispersion (los) 750 km/s

Mass (1.5h−1Mpc) 1014 − 1015h−1M�
Luminosity (B band) 6× 1011 − 6× 1012h−2L�

〈M/LB〉 ∼ 300hM�/L�
TX 2-14 keV
LX

(
1042 − 1045

)
h−2ergs−1

Mass fraction in galaxies 5%

Tab. 3.1. Main properties of rich galaxy clusters, for comparison with groups see Bahcall (1996 [28]).

the outskirts. Through the bremsstrahlung radiation from this hot plasma we can detect and measure

the X-ray emissivity along the line of sight, and compute the total X-ray luminosity. The typical X-ray

luminosity is of the order of LX ∼ 1044 erg/s. These properties are listed in Bahcall (1996 [28]), along

with others summarized in Tab.(3.1).

3.1.1 Cluster members

The formation and evolution of galaxies in clusters is still not fully understood since cluster member

galaxies show many differences with respect to field galaxies. Mostly differences are attributed to

the dense environment that can affect the galaxy interstellar medium (ISM) through ram pressure

stripping (Gunn and Gott, 1972 [29]), evaporation (Cowie and Songalia, 1977 [30]), merging and other

dynamical processes (Gorkom 2003 [31], Nulsen 1982 [32]). For instance, the Brightest Central Galaxies

(BCGs) in clusters are classified as cD galaxies and are only found in cluster cores. Thus in clusters

different morphologies are found at different densities: Dressler (1980 [33]) found a relationship between

density and morphological type, for which ETGs and S0 are mostly found at high densities while

spirals and irregulars exists in regions where gas density is lower; moreover the proportion of ETGs and

late-type galaxies (LTGs) is different, being ETGs predominant in clusters while in the field we find

E = 10%,S0 = 10%, and Sp + Irr = 80% (Sandage & Tamman 1979 [34]).

It is possible to highlight this population segregation in cluster in terms of star-formation (SF): high SF

is detected in blue galaxies with a young stellar population, while low to none is found in red, quiescent

galaxies. The dependence on environment of the color–magnitude relation of galaxies is described in

Hogg et al. (2004 [35]). In Fig.(3.1) we show how in high density environments (e.g. cluster cores)

red colors, hence ETGs, dominate the population. Galaxies are an important component of the cluster

system that we need to consider in our mass models and that can have a non negligible role in creating
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Fig. 3.1. Distribution in absolute i-band magnitude and [g-r] color for a galaxies sample. In each panel
the grey scale monotonically represents the abundace of sample galaxies. The first row shows how the
entire sample distribute at increasing density, we can see the separation in the red sequence (ETGs, low
SF), and in the blue cloud (LTGs, high SF). At higher densities, hence clusters core, mostly the red
sequence is present.
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Fig. 3.2. Stellar mass fraction as a function of the cluster mass. The cluster mass is defined as in
Eq.(2.62) with ∆vir = 500. The blue solid line marks the best fit relation for a 27 clusters sample.
Figure from Lin et al., 2003 [37].

perturbations in the lensing signal. Nevertheless, the stellar component in clusters is not the dominant

one, not even among baryonic matter: in fact, the cosmic value for ρbaryons/ρtot is ∼ 0.17 (Spergel et al.,

2003 [36]), but stars in cluster make up only ρstars/ρtot ∼ 0.02 (Lin et al., 2003 [37]). In Fig.(3.2) we can

see a plot that relates the fraction of halo mass that has been turned into stars in a 27 clusters sample

with data from the 2MASS survey (Lin et al., 2003 [37]) and the total halo M500 mass: the considered

mass is defined as in Eq.(2.62) at r500, the radius of a sphere of mean overdensity of 500 with respect

the critical density. Note the decreasing trend, namely the most massive clusters have a smaller stellar

mass fraction than the least massive ones, in a range of 0.01− 0.05. Lin et al. (2003 [37]) also showed

that massive galaxy clusters have a baryon fraction approaching the cosmic baryon fraction. Since stars

in clusters only make up for a 0.02, baryons must be present in a different component. Considering

that clusters potential wells are extremely deep, it is reasonable to assume that baryons can not escape.

Thus most baryons must be in form of gas, with a fraction of ρgas/ρtot ∼ 0.15.
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3.1.2 Gas

Due to the high temperature (T∼ 108K) of the gas, galaxy clusters are luminous X-ray sources and

this emission rises primarly from thermal bremsstrahlung from the ICM. Sazarin (1988 [38]) reviewed

the physical properties of hot diffuse plasma: the particles are assumed to have a Maxwell-Boltzmann

distribution at the temperature T; the particles mean free paths are generally much shorter than the

length scales of clusters (∼ 1 Mpc) so the ICM can be considered a collisional fluid. At the characteristic

low densities of the ICM, excitation and de-excitation processes are described in the framework of

collisional ionization equilibrium (CIE) (Smith and Hughes, 2010 [39]). The gas is generally thought to

be in hydrostatic equilibrium in the potential well of the cluster, so under the assumption that the ICM

is locally homogeneous and the cluster is spherically symmetric, the hydrostatic equilibrium equation

can be written as (Gitti et al., 2012 [40]):

1

ρ

dp

dr
= −dφ

dr
= −GM(r)

r2
, (3.1)

where p = ρkT/µmp is the gas pressure, ρ is the gas density, φ is the gravitational potential of the

cluster and M(r) is the total cluster mass enclosed in the radius r from the cluster center. Neglecting

the gas self-gravity, its distribution can be fully determined by the potential φ(r) and the temperature

T (r) radial profiles. The galaxy cluster’s total the gravitational mass Mtot is:

Mtot(< r) = − kTr

Gµmp

[
d ln ρ

d ln r
+
d lnT

d ln r

]
. (3.2)

Thus, measuring the density and the temperature profiles, ρ(r) and T (r), it is possible to estimate the

gravitational mass of the cluster (see e.g. Gitti et al., 2007 [41], Voigt and Fabian, 2006 [42]).

An important and extensively used model for the density profile is the β−model, derived by Cavaliere

and Fusco-Femiano (1976 [44]). They assume that both ICM and galaxies are in equilibrium in the

cluster potential well and that the galaxy distribution is described by a King profile (King, 1962 [45]);

moreover both gas and galaxies are considered “isothermal”, namely the gas temperature is constant and

the galaxies’ velocity dispersion is isotropic. Under these assumptions the density profile can be written

as

ρ(r) = ρ0

[
1 +

(
r

rcore

)2
]−(3/2)β

, (3.3)

where the parameter β is

β =
σ2
r

kT/µmp
. (3.4)
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Fig. 3.3. Mass profiles of MS0735+7421 (Gitti et al., 2007 [43]). Red circles: total mass profile
derived from deprojected gas temperature and density profiles. Black solid line: total mass calculated
with Eq.(3.5) by estimating the temperature gradient from the deprojected temperature profile. The
corresponding to the 90% confidence limits are given by the long dashed lines. Black dotted line: total
mass calculated with Eq.(3.5) by assuming a constant temperature of 4.79 keV. Red triangles: gas mass
profile derived from deprojected analysis. Black dashed line : gas mass profile derived from β−model
fit.

In the last equation σr is the line-of-sight velocity dispersion. The great advantage of this model is that

we can recover an analytical expression for the total mass:

Mtot(< r) =
kr2

Gµmp

[
3βrT

r2 + r2
c

− dT

dr

]
. (3.5)

Since the gas density increases in the central regions and the bremsstrahlung emission depends on the

square of the gas density, the X-ray emissivity increase in those regions causing the gas to cool and flow

towards the center: the cooling flows (see e.g. Ettori and Brighenti, 2008 [46]). In cool-core clusters the

central regions are not well described by a single β−model, but a second β−model is needed (Fig. 3.4).

3.1.3 Dark Matter

Since the first studies of radial velocity in rich clusters, it became clear that the cluster visible and

dynamical masses do not match (Zwicky, 1933 [48]). The discrepancy was reduced by X-ray observa-
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Fig. 3.4. Chandra radial gas density profile of Abell 2029, a cool-core cluster (Lewis et al., 2003 [47]):
the large circles are centered on the data point, the dotted green curve is a single β−model, the dashed
red curve is the double β−model.

tions that accounted for the gaseous mass, but it is not resolved without introducing the dark matter

component dominating the overall mass (Sanders, 2003 [49]). Extensive reviews on galaxy clusters as

cosmological probes can be found in e.g. Voigt (2005 [50]) and Allen et al. (2012 [51]); these works

highlights that, as already discussed in Sec.(2.3.6), numerical simulations of cluster formation yield

density profiles for the DM halos that are shallower than isothermal in the central regions and steeper

than isothermal at large radii (see e.g. Gao et al. 2012 [52]; Newman et al. 2013a [53], 2013b[54]) can

characterize an halo in terms of its virial concentration parameter cvir, defined as the ratio between the

virial radius and the scale radius (see Sec.(2.3.6)). The scale radius corresponds to the radius where the

NFW profile slope is isothermal. Thus this radius marks the transition of the NFW profile from one

trend to the other. Typical concentration parameters for simulated clusters are in the range c ∼ 4− 10

(Jing, 2000 [55]), and the higher concentration parameters are found in lower-mass objects, formed

earlier in time when the overall density of the Universe was larger (Navarro et al., 1997 [56]). However

recent N-body simulations showed that the density profile of clusters can differ from the NFW, see

e.g. Meneghetti et al. (2014) [57] who found that a large fraction of simulated halos are better fitted

by a generalized NFW (gNFW 1), namely a steeper/shallower NFW profile modified by an additiona
1ρ(r) = ρs(

r
rs

)β(
1+ r

rs

)3−β
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parameter β, and Einasto profiles (Einasto, 1965 [58]).

Cluster member galaxies are surrounded by halos of dark matter, meaning that it is important to quan-

tify the distribution around the single galaxies given that these can serve as gravitational lenses inside

the main cluster lens (see section (3.2.3)); as shown in Fig.(3.5) Hubble Space Telescope (HST) ob-

served the lensing geometry of the Sloan Lens ACS Survey (SLACS) sample of 98 elliptical galaxies that

strongly lens blue star-forming galaxies at intermediate redshift (Bolton et al., 2008 [59]), showing how

the DM distribution is clearly spatially more extended than the luminous stellar component.

Fig. 3.5. HST images of some of the many elliptical lenses of the SLACS survey, that show the blue
background galaxy deformed by the foreground red elliptical lens. Figure from Bolton et al., 2008 [59].

3.2 Galaxy clusters as lenses

3.2.1 Strong lensing

The appearance of multiple and highly distorted images, such as gravitational arcs, are common man-

ifestation of strong lensing. In order to produce multiple images, and thus critical and caustic lines,

a lens must be compact and massive enough to satisfy Σ > Σcrit somewhere. This condition is more

easily satisfied in the center of galaxies, groups and galaxy clusters, where shear and convergence are

close to unity. In order to find strong lenses nowadays the ideas are to either search for lensing features

around the most probable lenses or search for highly deformed sources and then find their lenses; some

examples of surveys with this purpose on galaxy scales are the CLASS (Myers et al., 2003 [60], Browne

et al., 2002 [61]), HATLAS and SLACS.

Gravitational lensing surveys with galaxy clusters are mostly dedicated to study the matter distribu-

tion and evolution of cosmic structures, as well as to explore the distant and faint Universe. In the

past decade several multi-cycle programs of the Hubble Space Telescope (HST) have produced detailed
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observations of the center regions of many strong lensing clusters:

Fig. 3.6. HST image of cluster MACS J0416.1-2403, with labeled the multiple images families. Figure
from Grillo et al., 2015 [62].

• Cluster Lensing and Supernova Survey with Hubble (CLASH): they mapped the distribution of

dark matter in a sample of 25 rich galaxy clusters using strong lensing and studied the evolutionary

and structural characteristics of the cluster member galaxies (Postman et al., 2012 [63]) ;

• Hubble Frontier-Fields (HFF): focused on 6 strong lensing clusters with HST 840 orbits, thus each

object was observed with a depth comparable to the Hubble Ultra Deep Field (Ferguson H., 2000b

[64]) down to to 29th magnitude in 7 bands. The goal was to combine the power of HST with the

high magnification produced by clusters detect and study the distant galaxy populations (Lotz et

al., 2014 [65], Koekemoer et al., 2014 [66]).

• Reionization Lensing Cluster Survey (RELICS): survey designed to deliver a large sample of bright

high-redshift galaxies from the first billion years after the Big Bang, through HST and Spitzer

observations of 41 galaxy clusters (Coe et al., 2019 [67]).
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• Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO): will expand existing

coverage of the Hubble Frontier Fields (HFF) to simultaneously find high-redshift galaxies and

study the properties of dark matter and galaxy assembly (Steinhardt et al., 2020 [68]).

The datasets recovered from these programs are extensively used to produce gravitational lensing

models of galaxy clusters. The observational constraints exploited to produce the mass models are mainly

three: astrometric constraints, namely the positions of the multiple images from sources at different

redshifts, photometric constraints, based on the measured flux of the images, and time constraints,

from the time-delay measurements. The matter distribution can be recovered from the observed strong

lensing constraints with lens inversion methods, that can be divided in two main classes: those following

the free-form approach, where the observables are mapped onto the lens plane divided into individual

cells and then linked to the lens potential or deflection field (see e.g. Merten et al. 2010 [69], Diego

et al., 2005 [70], Lam et al., 2019 [71]); those following the parametric approach, where each cluster

component is described by a mass component with an anylitic density profile positioned following the

luminous matter and characterized by a set of parameters that need to be optimized to achieve the

best reproduction of the observed positions and magnification of multiple images (see e.g. Natarajan &

Kneib, 1997 [72], Sharon et al., 2012 [73]). Given the complexity of cluster lenses, the number of free

parameters can be very large, hence the need to reduce them by exploiting scaling relations that can link

the lensing properties of galaxy-scale mass components to easily accessible observables: for example, the

galaxy luminosity can be related to the velocity dispersion by the Faber-Jackson (Faber & Jackson, 1976

[74]) scaling relation, reducing the free parameters to the normalization and reference luminosity only.

A comprehensive comparison between lens modeling techniques is discussed in Meneghetti et al. (2017

[75]), based on HFF data and using synthetic lenses. These methods are further discussed in Sec.(4.1).

3.2.2 Weak lensing

In the weak lensing regime we can expect a slight distortion of background galaxies, but no multiple

images or large shape deformation. Weak lensing measurements allow to trace the mass distribution of

galaxy clusters at large radii from the center and the measurement of the cluster mass up to the virial

radius.

In the weak lensing regime the amplitude of the deflection angle is small. In addition, the deflection

angle varies on scales much larger that the size of the galaxies so that κ and γ are small and nearly

constant. The lens equation can be linearised and the lens mapping is described by the lensing Jacobian.

In this case a circular source is mapped into an ellipse with semi-axes linked to the local convergence
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Fig. 3.7. Color image from the Magellan (left panel), and 500 ks Chandra image (right panel) of the
Bullet Cluster. The white bar indicates 200 kpc at the distance of the cluster. The green contours are
the weak lensing κ reconstruction, with the outer contour level at κ = 0.16 and increasing steps of 0.7.
The white contours represents the 68.3%, 95.5%, 99.7% confidence leves on the position of the κ peaks.
Figure from Clowe et al., 2006 [76].

and shear values. The main issue is that sources are not circular and not even perfectly elliptical, but

rather irregular. To define the ellipticity of background galaxies we can use their surface brightness

distribution I(~θ), where ~θ is the position on the lens plane. The image surface brightness centroid is

~θ =

∫
d2θqI [I(~θ)]~θ∫
d2θqI [I(~θ)]

, (3.6)

where qI is a weight function that defines the iso-photal limit within which the surface brightness is

measured. Then we define the tensor the second order brightness moments,

Qij =

∫
d2θqi[I(~θ)]

(
θi − θ̄i

) (
θj − θ̄j

)∫
d2θqi[I(~θ)]

, i, j ∈ {1, 2}, (3.7)

whose trace gives the size of the image. From the element of this tensor, Qij , one can define the complex2

ellipticity:

ε = ε1 + iε2 =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2 (Q11Q22 −Q12)
1/2

(3.8)

Since galaxies are not circular it is necessary to separate the ellipticity introduced by lensing from the

intrinsic ellipticity of the source. Hence we define the same tensor Q(s)
ij for the unlensed source in terms

of the source surface brightness at ~β on the source plane. It is possible to show that

Q(s) = AQAT = AQA (3.9)
2A complex number can be expressed as a + ib, where a and b are real numbers, and i represents the imaginary unit

that satisfies i2 = −1.
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where A is the lensing Jacobian given in Eq.(2.16). Since the Jacobian can be written in terms of

the complex reduced shear g, then we can find the link between the intrinsic and observed ellipticity:

ε(s) =


ε−g

1−g∗ε if |g| ≤ 1

1−gε∗
ε∗−a∗ if |g| > 1

(3.10)

where the notation * denotes the complex conjugation3. Being the ellipticity a complex quantity, it is

characterized by a module and a phase, and the phase is responsible for the orientation of the ellipse we

use to describe the image. By assuming that the phases of the complex ellipticity, or equivalently the

intrinsic orientations of the galaxies, are random then the expectation value of the intrinsic ellipticity

is:

〈ε(s)〉 = 0 −→ 〈ε〉 =

 g if |g| ≤ 1

1/g∗ if |g| > 1
(3.11)

so in the weak lensing regime the mean value for the lensed galaxies in a region where κ and γ are

constant gives the reduced shear. The noise on the shear value in a given region of the sky is determined

by the intrinsic ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉

(3.12)

and can be reduced by averaging over many galaxy images. For a given number density of galaxies,

if the sampled area is large we can average over more galaxies, at the expenses of spacial resolution.

Alternatively, we can improve the measurements of the lensing signal by increasing the source number

density with deeper observations. Other sources of noise are seeing or smearing effects, the instrument

PSF can introduce anisotropy, and the pixels on the CCD yield a non continuous surface brightness

profile.

The weak lensing allows to reconstruct the mass distribution in outskirts of galaxy clusters. Several

algorithms exist to perform such reconstruction. For historical reasons we mention here the Kaiser

& Squires (1993 [77]) free-form inversion method that yields an expression linking the projected mass

density, or equivalently κ to the reduced shear:

κ(~θ) =
1

π

∫
d2θ′

[
D1

(
~θ − ~θ′

)
g1(1− κ) +D2

(
~θ − ~θ′

)
g2(1− κ)

]
(3.13)

where D is a filter function and this equation can be iteratively solved from κ = 0.
3The complex conjugate of the complex number c = a+ ib is given by c∗ = a− ib.

57



3.2. GALAXY CLUSTERS AS LENSES CHAPTER 3. GALAXY CLUSTERS

3.2.3 Galaxy-galaxy lensing

A statistical technique similar to the weak lensing one can be used to measure the extent of dark

matter halos around individual galaxies. In the weak lensing framework the dark matter halo can

introduce small distortion to the shapes of background galaxies (Parker et al., 2007 [78]); we refer to

this phenomenon as galaxy-galaxy lensing, firstly detected in Brainerd et al. (1996 [79]). On the other

hand, if the galaxies are cluster members, their halos can introduce additional strong lensing effects on

the background sources, already lensed by the overall mass of the cluster: these galaxy-galaxy strong

lensing (GGSL) events manifest mostly through small-scale features, around the critical lines of the

substructures. The Hubble Space Telescope cameras and resolution have allowed the identification of

multiply imaged systems in galaxy clusters that can be traced back to these small-scale strong lensing

events and thus offer the best way to probe the distribution and characteristics of substructures in a

ΛCDM scenario. On this matter in Natarajan et al., 2017 [80] they compared the sub-halo mass function

Fig. 3.8. The 3D visualization of the substructure distribution derived from HFF dataset for three
clusters: (a) Abell 2744, (b) MACSJ 0416, (c) MACSJ 11449. Figure from Natarajan et al., 2017 [80].

(SHMF), obtained from the substructure distribution inferred from lensing constraints, to theoretical

predictions and numerical simulations for three HFF clusters: while the simulated and observed SHMFs

are in excellent agreement, the radial distribution of sub-halos is quite different, probably due to the

dynamical properties and merging morphologies of the real clusters not well represented in simulations.

A more recent study (Meneghetti et al., 2020 [81]) on GGSL events conducted on 11 galaxy clusters

highlighted a discrepancy between the observed number of events in these clusters and the predicted

one from CDM simulations; in Fig. (3.9) the observed and simulated probability of GGSL differs by

more than one order of magnitude. This excess of observed events could point at incorrect assumptions

on the role of dark matter in the standard cosmological model and its interaction with baryons.
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Fig. 3.9. Comparison between the mean GGSL probability for the reference sample (blue solid line),
for the HFF (light blue dotted line), the CLASH (violet dotted line) samples, and simulations (orange
dotted line). The difference is about one order of magnitude.
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Chapter 4

Lens Modeling

4.1 Methods

Multiple images can be used to constrain the galaxy cluster mass distribution that produced them.

As already briefly discussed in Sec.(3.2.1) lens modeling approaches can be distinguished in two main

categories, the parametric ones and the free-form ones. Tipically, in the strong lensing regime, the

parametric approach is the most used. The mass distribution is described by a set of mass clumps on

different scales representing galaxies and DM halos, whose mass profiles are defined by a number of

parameters (for example, the SIS mass distribution is described by three parameters, the center position

(x,y) and the velocity dispersion). The recent high-quality observations with HST of some clusters

revealed many families of multiple images usable to build detailed mass models. Furthermore this

collection of positional constraints can be improved adding the information from morphology, color and

redshift to map the multiple images to the same background galaxy (Broadhurst et al., 2005 [82]). The

redshift-confirmed multiple image samples now available are the basis for new, more accurate cluster

models.

The advantage of parametric models is that the mass distribution of a cluster can be described

analytically using only few parameters. Sometimes this description of the lenses can be simplistic. In

addition, it relies on strong assumptions, such that the light traces the mass. This encouraged the

development of non-parametric (i.e. free-form) methods, where the description of the cluster mass

distribution is described by arbitrary basis functions and relies on few or no assumptions on the DM

distribution. The usual approach to these techniques is to map the mass or the potential on a grid of

smaller quantity elements, the “pixels” (Diego et al. 2005a [70], Bradač et al. 2005 [83]), that can be
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regular or irregular (Coe et al. 2008 [84], 2010 [85]) and then interpolate these quantities at the position

of the strong or weak lensing constraints in order to minimise the χ2 that tests how well the model

matches the observations. The main strength of free-forms is the flexibility in describing more complex

systems, such as merging clusters where the dark matter is not necessarily following the light. The

large degree of flexibility can also be a weakness, because these methods are often prone to overfitting,

without a suitable regularization (Kneib & Natarajan, 2011 [86]). Moreover, the non-parametric models

often do not include the galaxy scale substructures, which are non negligible to the overall multiple

image configuration.

To obtain the best from both techniques it is convenient to develop a so-called “hybrid” approach,

where free-form is complimented with a mass component associated to the cluster members. In Meneghetti

et al. (2017 [75]), these different methods are compared in the reconstruction of two simulated clus-

ters: the results of this project highlighted how the parametric methods are generally more accurate

in reconstructing the convergence map and in determining the mass around cluster members. Instead,

the free-forms usually can reach a smaller spatial resolution. Moreover, free-forms radial profiles of the

convergence and the enclosed mass measurements are as much accurate as the parametric ones.

4.2 LENSTOOL

In this work we will rely on the parametric software LENSTOOL (Kneib et al. 1996 [87], Jullo et al.

2007 [88], Jullo & Kneib 2009 [89]) to perform lens modeling. The software method is thus based on

the decomposition of the examined lens mass into different mass component, each described by a set of

parameters. Then the software explores the parameter space around the optimized results and produces

a catalogue of expected multiple images with associated uncertainties. The current version exploits a

Bayesian Markov Chain Monte Carlo (MCMC) approach.

In order to constrain the mass in a complex lens system we need to use multiple images with measured

spectroscopic redshifts. Hence we need to define a likelihood function L for the observed positions xobs

of the images and parameters p of the model (Jullo et al. 2007 [88]):

L = Pr(xobs | p) =

N∏
i=1

1∏ni
j=1 σij

√
2π

exp−
χ2
i (p)

2 (4.1)

where N is the number of families of multiple images, ni is the number of multiple images from the i-th

family, and σij is the error on the position of the j-th image. The model is optimized by minimizing the

χ2(p) that defines the displacement between the observed and predicted (xpred) position of the images
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on the lens plane:

χ2(p) :=

N∑
i=1

ni∑
j=1


∥∥∥xobsi,j − xpredi,j (p)

∥∥∥
σi,j

2

(4.2)

We can write the number of degrees-of-freedom (DoF) of the model as the difference between the number

of constraints (namely the positions of the total number of observed images Ntot) and the number of

free-parameters Npar (Bergamini et al., 2020 [90]):

DoF = Ncon −Npar = (2×Ntot − 2×N)−Npar (4.3)

where the positions (in the (x, y) directions) of the background sources (2×N) of the N families, being

additional free parameters, are subtracted from the number of image positions. Optimizing on the lens

plane means starting from the observed image positions, assuming a model to trace these images to a

position on the source plane and then solve the lens equation from the source position to obtain the

predicted images positions. Another way is optimizing on the source plane, which is definitely faster,

since it only requires to find the set of parameters that trace the multiple images from the lens plane on

a sufficiently small region on the source plane. This would require to minimize a source plane χ2
S(p),

analogous to (4.2). However, while the lens plane optimization may be slower, it yields more precise

results. One can rapidly optimize on the source plane in order to understand the parameters range and

then run on the lens plane to refine the model.

Another indicator of the goodness of the fit, besides the χ2
min, is the root-mean-square (rms) between

the observed and the model predicted positions of the multiple images, defined as (e.g. Caminha et al.

2016 [91], Bergamini et al. 2020 [90]):

∆rms =

√√√√ 1

Ntot

Ntot∑
i=1

‖∆i‖2, with ∆i = xobsi − xpredi (4.4)

where Ntot is the total number of multiple images and ∆i represents the displacement of the i-th observed

multiple image from the predicted position.

Moreover, two additional criteria can be adopted to help the selection among a set of models:

• the Akaike information criterion (AIC, Akaike 1974 [92]), which provides a means for model

selection by evaluating the relative amount of information lost by a given model. It is defined as

AIC ≡ −2 ln (Lmax) + 2Npar (4.5)
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where Lmax is the maximum value of the likelihood function for the model. The criterion evaluates

the goodness of fit by assessing the likelihood function, but penalize the introduction of new

parameters in the model to avoid overfitting. The preferred model will be the one with the smaller

AIC value.

• the Bayesian information criterion (BIC, Schwarz 1978 [93]), is closely related to the AIC

for model selection. This criterion as well aims at discouraging overfitting by penalizing the

introduction of extra parameters; is it defined as

BIC ≡ −2 ln (Lmax) +Npar ln (Ncon) (4.6)

so in this case the penalty term is larger than in AIC. The model with the lowest value for the

BIC is preferred.

4.2.1 Parametric mass profiles

The lens mass distribution can be divided into a sum of parametric mass components. For a galaxy

cluster the components mostly fall in two main categories: the cluster-scale halos (including DM ha-

los and ICM), and the galaxy-scale halos (sub-halos, including stars and DM in galaxies). Thus the

gravitational potential can be writtes as

φtot =
∑
i

φCSi +
∑
j

φSHj (4.7)

where φCSi are the cluster-scale potentials and φSHj are the sub-halo potentials. It is often necessary

to introduce additional potentials to describe the presence of massive structures not belonging to the

cluster but nonetheless relevant to the lensing system, such as a foreground object (φforeg) or an extra

term introducing an external shear (φshear).

Each halo is described by at least two parameters for the their position (x, y) in the sky, one for the

projected ellipticity and one for a position angle; more parameters are specific for the potential profile

used to describe the component. Usually, in the description of clusters as lenses, isothermal and PIEMD

profiles are assumed: the isothermal profile, described in Sec.(2.3.3), is often not sufficient to describe

a complex system, limited by the divergent mass and the central singularity in the density profile; on

the other hand, the PIEMD profile, whose parameters are listed in Sec.(2.3.5), is a suitable choice for

cluster-scale and galaxy-scale halos. In fact, the introduction of a truncation radius (rcut) and a core

radius (rcore) solve the limitations of the isothermal profile. In most cases for cluster-scale halos, the
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truncation radius is assumed to be extremely large, far beyond the area covered by multiple images,

while the core radius is a free parameter. On the contrary, for galaxy-scale halo the core radius is fixed

and the truncation radius is optimized, since it is unlikely to find multiple images near the galaxy core.

The galaxy-scale component is needed to achieve precise lensing models and to reproduce at best the

multiple image distribution on the lens plane, therefore in LENSTOOL the number of sub-halos to include

in a model needs to be quantified. Except for a set of perturbing sub-halos that can influence the

formation of images, all other cluster members that increase the total mass need to be catalogued by

usually selecting galaxies within the cluster red sequence brighter than a given luminosity threshold

(Jullo et al., 2007 [88]). To reduce the number of sub-halo parameters we assume some scaling relations

between an observable quantity (such as the luminosity L) and the parameters defining the lens mass

distribution. Following the approach adopted by Brainerd et al. (1996 [79]) for modeling galaxy-galaxy

lensing events, and assuming a PIEMD profile to describe the individual sub-halos, the parameters

follow a scaling relation for the central velocity dispersion, the truncation radius and the core radius:


σ0 = σ?0

(
L
L∗

)α
rcore = r∗core

(
L
L∗

)1/2
rcut = r?cut

(
L
L∗

)β (4.8)

where L is the luminosity of the cluster member and L∗ is the reference luminosity, of a galaxy at the

cluster redshift. If we fix the slopes, the only free parameters to optimize are the normalizations of

the velocity dispersion, and the truncation, and core radius relations corresponding to the reference

luminosity.

4.2.2 Bayesian statistics

LENSTOOL latest implementations include the Bayesian MCMC package BayeSys (Skilling, 2004 [94])

to perform the lens model fitting. We refer to Keeton, C. (2016 [95]) for a brief review of the important

aspects of Bayesian statistics. Given two random variables x and y, we can define three different proba-

bility distributions: the marginal distribution p(x) describes the values that x can assume independently

on the values of y and it is obtained by integrating over y; the joint distribution p(x,y) describes all the

possible values that x and y can have; the conditional distribution p(x|y) describes the values that x

can assume when y assume a specific value.

In the modeling framework, we can consider the variables are the data d and the model parameters m,

we can write the Bayes theorem:
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p(m | d) =
p(d |m)p(m)

p(d)
(4.9)

where p(d |m) is the probability of the data given the model, hence the likelihood L, p(m) is the prior

probability distribution, hence informations on m before updating with new constraints, p(d) is the

model evidence, i.e. the probability of obtaining the data for a class of models. Finally, p(m | d) is

the posterior probability distribution for the model constrained by the data. During the optimization

of a model, it we proceed by drawing points from the parameter space and computing the posterior

distribution, using the technique called Monte Carlo Markov Chains (MCMC), which works in steps.

In particular, for the largely used Metropolis-Hastings algorithm (Metropolis et al. 1953 [96], Hastings

1970 [97]) we can summarize the steps as (see e.g. Trotta 2017 [98]):

• Start from a random point θ0 with associated posterior p0 ≡ p(θ0 | d);

• Draw a candidate point θc from a trial distribution q
(
θ0, θc

)
;

• The candidate point is accepted only if its posterior pc = p (θc | d) satisfies

P = min

(
pcq
(
θ(c), θ(0)

)
p0q

(
θ(0), θ(c)

) , 1) ; (4.10)

• If accepted, it is added to the chain and the chain iterates from there. If rejected, the chain stays

at the old point.

Fig. 4.1. The figure shows the superimposition of a MCMC on the contours of the likelihood function,
for 50 (left panel), 150 (middle panel) and 250 (right panel) steps. Figure from C. Keeton, 2016 [95].

The Bayesian MCMC sampler is one of the possible runmodes in LENSTOOL. It explores the pa-

rameters space to sample the real shape of the posterior PDF (for flat priors, posterior and likelihood

have the same shape). The set of parameters that gives the best-fit and it is consistent with the prior
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PDF, have the highest posterior PDF. When starting, LENSTOOL initializes the so-called “walkers” that

sample the parameters space by evaluating the posterior probability distribution function (PDF) for

every point. They move towards areas with higher posterior. BayeSys run 10 interlinked MCMC so

at each step the walkers draw 10 new samples from the current posterior PDF (which is the prior PDF

at the beginning). The samples are then weighted on their likelihood and selected with a variant of

the Metropolis-Hastings criteria. The MCMC convergence to the posterior PDF is performed with a

techinque called selective annealing (O Ruanaidh & Fitzgerald, 1996 [99]).

In LENSTOOL are implemented different optimization methods besides BayeSys, such as the maximum

likelihood runmode: LENSTOOL increases in time a cooling coefficient to maximize the likelihood, hence

driving the walkers towards the peak in the likelihood surface. This method looks for the best sample

of parameters. Both these modes have a burn-in phase: the walkers are randomly initialized in the

parameter space, hence to help the search of the peak of the likelihood during this phase, the likelihood

influence is raised progressively through a cooling factor λ, which is increased in steps from λ = 0 to

λ = 1 (see Jullo et al., 2007 [88]). The burn-in phase is then eliminated to disregard the starting point

of each chain.

4.2.3 Degeneracies

The posterior PDF gives the probability of the model parameters given the data, hence in order to focus

on a subset of the parameters we need to obtain the marginal distribution, integrating over the other

“nuisance” parameters, not of interest for the problem. The integration gives the probability distribution

functions of only the parameters of interest, however possible correlations between the parameters can

be hid from the marginalization. A useful way to visualize the one- and two-dimensional projections of

the posterior PDF of the parameters is a corner plot: this shows, for each parameter, the marginalized

two dimensional posterior distribution and the one dimensional one for each parameter independently

along the diagonal. From the confidence regions in the corner plots it is easy to see the inner degeneracies

presents between the model parameters involved in the computation of the mass. For example, the DM

halos can balance their mass in different ways to reproduce the same multiple images configuration.

We consider the case of a single PIEMD model: the position of the multiple images is dependent

from the mass inside the Einstein radius. The mass is determined by the truncation radius and the

velocity dispersion, where we can see the degeneracy. The definition of the PIEMD potential leads to

the expression of the projected mass enclosed in an aperture of radius R. Rewriting Eq.(2.57) as in

Limousin et al. (2005 [24]), we obtain:
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M(< R) =
πrcutσ

2
0

G

(
1−

√
r2
cut +R2 −

√
r2
core +R2

rcut − rcore

)
(4.11)

For a vanishing core rcore = 0 the enclosed mass becomes

M(< R) =
πσ2

0

G

(
R+ rcut −

√
r2
cut +R2

)
(4.12)

which shows how the same value for the enclosed mass can be recovered from different combinations of

rcut and σ0.

Fig. 4.2. Confidence regions that shows the two-dimensional marginalized posterior PDFs of a cluster-
scale halo described with a PIEMD profile, for three different multiple image configurations. This
highlights the strong degeneracy existing between the normalization parameters of the σ−L and rcut−L
relations The solid lines are the isodensity contours. Figure from Jullo et al., 2007 [88].
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Chapter 5

PSZ1-G311 galaxy cluster

In this chapter we present the construction of the lens model for the galaxy cluster PSZ1 G311.65-18.48

(hereafter, PSZ1-G311), a peculiar object for its geometry and symmetry that produces an exceptionally

extended arc magnifying a distant background galaxy. Such system configuration is worth exploring,

being the arc the result of a rare almost perfect alignment between us, the cluster lens, and the distant

source. Such alignment results in a very high magnification, unveiling details in the source that would

be visible otherwise. The discovery of a transient object in the arc triggered the need for building a

lens model, on whose accuracy depends the predictions of the next transient appearance. Moreover,

the observation of a lensed transient object can be exploited to make independent measurements of

cosmological parameters. In the first and second section of this chapter we introduce the object and

the studies already conducted on his properties. In the third section we describe the steps for the

construction of the lens model of PSZ1-G311, hence the available data-sets, the multiple images and

cluster members selection and the parametrization of the cluster- and galaxy-scale halo components.

Then we discuss the results by comparing different lens models reconstruction. Finally, in the fourth

section, we draw the conclusions on the chosen reference model.

5.1 Detection and follow-ups

PSZ1-G311 was first detected in the ESA Planck survey and catalogued as a Sunyaev-Zel’dovich source

(PSZ) (Planck Collaboration XXIX 2014 [100]). One of the ways to select a cluster is through the

inverse Compton (IC) scattering of the Cosmic Microwave Background (CMB) photons by the high

energy electrons in the intracluster medium, the Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zel’dovich,

1972 [101]; Sunyaev & Zel’dovich, 1980 [102]). The frequency shift caused by the IC scattering results
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Fig. 5.1. PSZ1-G311 color composite image with HST observations.

in a decrement in the CMB intensity in the Rayleigh-Jeans part of the blackbody spectrum and an

increment in the Wein tail, in particular this shift is uniquely identified at the frequency of 218 GHz.

A galaxy cluster can thus be identified as an area where the CMB temperature appears higher than

2.7K. The SZ cluster PSZ1-G311 is part of the PSZ1 catalogue (Planck Collaboration XXIX 2014

[100]), detected at S/N = 4.64 close to the PSZ1 signal-to-noise threshold of S/N = 4.5. PSZ1-G311 is

located in the southern hemisphere at coordinates (RA,Dec) = (237.5291667d,−78.19222d) in a region

of medium Galactic extinction but relatively high foreground star density (Dahle et al., 2016 [103]).
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5.1.1 Optical observations

The Planck Collaboration undertook extensive follow-up programmes to confirm the SZ clusters de-

tection with optical telescopes such as the Russian-Turkish 1.5m (RTT150) telescope and the Canary

Islands observatories (Planck collaboration XXVI 2015 [104], Planck collaboration XXXVI 2016 [105]),

with the aim of determining the redshifts of all PSZ1 sources. For the first time Dahle et al. 2016 [103]

reported the discovery of the exceptional arc in the field of PSZ1-G311 as a result of inspection of the

ESO New Technology Telescope (NTT) imaging data from an ongoing follow up programme on 120

PSZ1 cluster candidates (Aghanim et al., in prep.).

We refer to Dahle et al. (2016 [103]) for more details on the data analysis that follows. The instrument

used for optical observations was the EFOSC2 at the NTT. In particular, they conducted 3 × 400s

expositions in the Bessel R (central wavelength 6431 Å) and Gunn z (central wavelength 8400 Å) filter:

the images show the Brightest Cluster Galaxy (BCG) with an offset of 36′′ from the Planck detection,

and the arc feature north-west of the BCG (denoted as PSZ1-ARCG311.6602-18.4624 in Dahle et. al,

2016 [103], and nicknamed “Sunburst Arc” in Rivera-Thorsen et al., 2017 [106]). To measure the redshift

of the BCG, which is then adopted as the cluster redshift, they took a long-slit spectrum (with spectral

resolution R ' 700) with 2 × 750s exposures with the IMACS instrument at the Magellan-I Baade

Telescope: the slit covered simultaneously the BCG and the brighest R-band knot in the arc. The BCG

spectrum showed strong [OII] doublet emission at λλ = 3727, 3729 Å and absorption lines typical of

ETGs, yielding a spectroscopic redshift for the cluster of z = 0.44316± 0.00035. More details on optical

follow-ups of the Sunburst Arc given in Sec.(5.2) and Sec.(5.2.1).

5.1.2 SZ mass estimate

The amplitude of the SZ effect is quantified by the Compton parameter y(θ). If l is the distance

along the line of sight, we can define the Compton parameter as (see e.g. Morandi et al. 2007 [107],

Rodriguez-Gonzalvez et al. 2017 [108]):

y(s) =
σT
mec2

∫
Pe(r)dl (5.1)

where s is the projected distance from the cluster center such that r2 = s2 + l2, Pe(r) ≡ ne(r)kTe(r)

is the ICM electron pressure at radius r, me is the electron mass, and σT is the Thomson scattering

cross-section. If we integrate the signal over the solid angle Ω, we obtain the integrated-y parameter Y
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as

Y ≡
∫

Ω

y(s)dΩ ∝ MgTe
D2
A(z)

, (5.2)

which is proportional to the total gas mass. However, to define a proper scaling relation we need to

introduce a distance-independent mass proxy. We can use the intrinsic integrated Compton parameter

Υ, defined as

Υ ≡ D2
A(z)Y. (5.3)

The Planck SZ data revealed a degeneracy between the cluster size (θ) and the SZ flux (i.e. the

integrated Compton parameter): breaking the degeneracy to use the flux measure as mass proxy would

require fixing the cluster size. We define R500 as the cluster radius enclosing a density 500 times the

critical density of the Universe at the cluster redshift. Then we denote θ500 as the cluster size and

Y500 as the integrated Compton parameter within R500. The size-flux degeneracy can be broken using

the M500 − Υ500 relation: since Υ is defined as in Eq.(5.3), this offers a relationship between the θ500

and Y500 when the redshift is known. Intersecting the degeneracy curves of the size-flux relation and

M500−Υ500 relation we obtain a value for Y500. The derived Y500 from the intersection is called Yz and

it is equivalent to the X-ray mass proxy. Hence it provides an estimate of the SZ-mass X-ray calibrated.

Using the measured redshift and the Planck degeneracy curves, Dahle et al. (2006 [103]) obtained the

mass estimate

M500SZ = 6.6+0.9
−1.0 × 1014M�. (5.4)

5.2 The Sunburst Arc

The first observations in the R- and z-band showed a very long gravitational arc north-west of the BCG,

which appears composed of three segments. An additional arc is observed south-est of the BCG. All these

arc segments are images of the same source. They show multiple bright knots, interpreted as sites of star

formation in the lensed galaxy. The arc R-band magnitude is ∼ 18, measured running SExtractor

(Bertin & Arnouts 1996 [109]) on stacked R- and z-band images. The infrared imaging was obtained

with one 2100s exposure in the J-band (reference wavelength 12361.81 Å) and one 800s exposure in

the Ks band (reference wavelength 21414.86 Å) with the FourStar instrument on the Magellan-I Baade

Telescope, yielding total magnitudes of J ∼ 17 and Ks ∼ 15 with SExtractor. Using the same long-

slit observations discussed above, Dahle et al. (2016 [103]) obtained the arc spectrum in the wavelength

range between 4000 Å and 6500 Å: the observed lines are reported in Tab.(5.1), from which they inferred

a redshift of z = 2.3686± 0.0006 for the lensed source.
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Lines Rest-frame wavelength [Å] Observed wavelength [Å]
Lyα 1215.67 4095.59
SiII 1259 4241.57
SiIII 1294 4359.48
C IV 1548 5215.2
C IV 1550 5221.95
He II 1640 5525.16
OIII ] 1666 5612.75
SiIII ] 1892 6374
CIII ] 1907 6424.68
CIII ] 1909 6431.42

Tab. 5.1. Emission and absorption lines revealed in the Sunburst arc spectrum, rest-frame wavelength
and corresponding observed wavelength at the galaxy redshift.

The observed spectrum, in Fig. (5.2), shows strong Lyα emission, low-ionization absorption lines

from neutral outflowing gas, and high-ionization lines with P-Cygni profile (CIV doublet) (Robinson

K., 2007 [110]) from stellar winds: typical features of starbursts that results in strong outflows in the

interstellar medium (ISM).

Fig. 5.2. Observed spectrum of the Sunburst Arc from IMACS at the Magellan-I Baade Telescope.
Figure from Dahle et al., 2016 [103].

5.2.1 Ly-C knot

The Sunburst Arc galaxy can be classified as a Lyα emitter (LAE) from the strength of the measured

rest-frame equivalent width of the line. In this framework, it is important to define the the phenomenon

of reionization, an epoch in the Universe evolution that started less than a billion years after the Big

Bang. Between z ∼ 14 and z ∼ 6, the hydrogen in the intergalactic medium, which was neutral since
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the recombination, is “reionized” due to ultraviolet radiation from the first luminous objects (see e.g.

Fan et al., 2006 [111]). In particular, this radiation corresponds to photons with wavelengths shorter

than 912 Å, that contribute to the Lyman continuum (LyC). To escape into the intergalactic medium

(IGM) and be observed, the LyC photons need to avoid the absorption from neutral hydrogen within

the host galaxy. There are numerous ways for these photons to escape from galaxies, mostly allowed by

radiative or mechanical feedback from young stars that can carve a path into the optically thick IGM

ionizing most of the gas (see e.g. Zackrisson et al. 2013 [112], Bik et al., 2018 [113]). The kinematics and

geometry of the escape scenario is reflected in the spectral shape of the Lyα line at rest-frame wavelength

of 1216 Å. Specifically, escape from an optically thin medium yield a narrow double-peaked Lyα, while

the escape from neutral gas-free channels carved in an optically thick medium yields a narrow and bright

single line. Finally, if there are few narrow channels, the Lyα most probably will be trapped in resonant

scattering the dense neutral medium, producing a triple-peaked profile with a narrow brighter peak at

the line center over the typical broader double-peaked profile (Rivera-Thorsen et al., 2017 [106]).

This last feature was observed in the spectrum of the Sunburst Arc, thus indicating the presence of

Fig. 5.3. The top panel shows the 1D profile of the Lyα in the LyC knot of the Sunburst Arc. Note the
triple peaked shape, caused by espace through a clear channel in a optically thick neutral medium. The
lower panels represents the 2D Lyα profiles of the four MagE exposures. Figure from Rivera-Thorsen
et al., 2017 [106].

Ly-C leakage from one of the brightest knots.
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Rivera-Thorsen et al. (2019 [114]), later presented Hubble Space Telescope (HST) observations of the

Sunburst Arc, showing that the Ly-C radiation leakes from 12 multiple images of the same knot: the

Lyα profile is triple-peaked, as shown in the spectrum in Fig.(5.3) obtained with the Magellan Echellette

(MagE) spectrograph on the Magellan-I telescope. The arc was observed in the UVIS channel of HST

Wide Field Camera 3 (WFC3) in the F275W filter, whose wavelength cut-off matches the lowest-energy

limit of the LyC (3072 Åat the galaxy redshift) , for a total exposure time of 9422s. It was also observed

with the HST Advanced Camera for Surveys (ACS) in the filter F814W, sensitive to near-UV non-

ionizing radiation not absorbed by the neutral hydrogen, with eight exposures of total time 5280s.

Fig. 5.4. The image shows an overview of the Sunburst Arc, with different cutouts to further highlight
the morphology of the galaxy. The bright LyC knot is identified 12 times in all the four subsegments
of the arc. The F814W filter is more sensitive to the ionizing photons, while the F814W filter allow a
comparison with the non-ionizing near-UV radiation coming from the same stars. Figure from Rivera-
Thorsen et al., 2019 [114].

Vanzella et al. (2019 [115]) further investigated the LyC continuum emission from the brightest knot,

presenting VLT/MUSE observations conducted with 3 × 1483s exposures. They argue that this knot

could be a gravitationally bound system such as a star cluster, hence they address the determination

of quantities as the stellar mass and physical size of the emitting region. The stellar mass is estimated
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to be ranging between 106 − 107M� depending on the chosen initial stellar mass function (IMF) and

the magnification. The effective radius of the region is then smaller than 20pc if µtot > 25, and smaller

than 9pc if µtot > 50.

5.2.2 Transient

Vanzella et al. (2020 [1]) discovered a possible transient stellar object between a couple of multiple

images of Ly-C knot, using the VLT/MUSE observations. Then, they took additional spectroscopic

observations with VLT/X-Shooter at resolution R=11400 and VLT/ESPRESSO at R=70000. The pe-

Fig. 5.5. Cutouts of the four multiple arcs are shown in RGB color images (R=F160W, G=F814W,
B=F606W) from HST. Highlited the position of the transient in a yellow circle and its expected position
in the other families of multiple images with a red arrow. Figure from Vanzella et al., 2020 [1].

culiar feature that led to the identification of this object is the Bowen fluorescence (Bowen, 1934 [116]).

This emission mechanism is characterized by photoexcitation by accidental resonance, namely the strong

emission at a given wavelength can excite different chemical elements that have a transition close to

this wavelength and when they return to the ground state, they emit a group of fluorescing lines. In

Fig.(5.5) we show the four segments of the arc, where the knots A,B,C are identified as the images of

three different star-forming knots in the host galaxy. The transient observed and expected positions are

indicated with a yellow circle and arrows, respectively. One characteristic corroborating the transient

hypothesis is the appearance of the object only in one segment of the arc, in between knots A and B; its

magnitude (magF814W ' 22) would imply its detection 8 times between the multiple images of the same

knots in the other arc segments. The detailed analysis of the transient spectrum lines and its magnitude,
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led to the hypothesis that it could be a luminous supernova (SN) explosion. In fact, fluorescence lines

have been already detected in the spectra of type II SNe with strong interaction between the ejecta and

the surrounding gas, idea further supported by the long-lasting light curve of the transient. This could

also point to a giant eruption of a massive star. However, the lack of Balmer lines Hα and Hβ and HeI

questions the hypothesis of a SN explosion in an hydrogen-rich medium. An alternative explanation

could be the observation of an H-poor interacting SN, or an extremely stripped core-collapse SN powered

by the interaction between the ejecta and the surrounding medium without showing H or HeI.

The importance of lensed transient lies in the possibility of exploiting measures of time-delays between

their multiple images to provide an independent measure of the Hubble constant H0 and other cosmo-

logical parameters such as ΩM (see e.g. Refsdal 1964 [117], Grillo et al., 2015 [62]). For this purpose it

is fundamental to develop a lens model to predict the reappearance of the transient in other positions

in the arcs.

5.3 Lens model

5.3.1 HST and MUSE data-sets

This work is based on the HST observations of PSZ1-G311 conducted in different programs between

February 2018 and June 2019. The cluster was observed in the UVIS channel of HST WFC3 in the

filters F555W, F275W (program ID 15101 and 15418 respectively, PI: H. Dahle) and F606W (program

ID 15377, PI: M. Bayliss); in the IR channel of HST WFC3 in the filters F140W, F105W (program

ID 15101, PI: H. Dahle) and F160W (program ID 15377, PI: M. Bayliss); finally, with the HST ACS

using the filters F275W and F814W (program ID 15418 and 15101 respectively, PI: H. Dahle). The lens

model based on the multiple images constraints is further strengthened by VLT/MUSE spectroscopic

observations, that provided a set of velocity dispersion measurements: MUSE data-cubes have a field-

of-view of 1 arcmin2 with a spatial sampling of 0.2”; the wavelength range covers from 4700 Å to 9350

Å with a dispersion of 1.25 Å/pix, and a spectral resolution of ∼2.6 Å, rather constant across the

entire spectral range. A total integration time of 1.2 hours with was used to acquire the data during

May-August 2016 with seeing 0.5′′-0.8′′, based on the DDT programme 297.A-5012(A) (PI. Aghanim)

and first presented in Vanzella et al. (2020 [115]). We show how we can identify the multiple images

through MUSE observations in Fig.(5.6).
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Fig. 5.6. MUSE observations in three different wavelengths. In the wavelength λ = 5211 Å(blue cut-
out) there is no significant emission from the knots, as opposed to the wavelengths λλ = 5215.2, 5221.95
Å, where we can see the C IV doublet emission. This allows the matching of different knots by recognizing
the same emission features.
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5.3.2 Cluster members selection

One of the main ingredients for the construction of a lens model is the selection of cluster galaxies. This

is essentially based on the identification of the cluster red-sequence: in fact, cluster galaxies are typically

early type galaxies with similar colors, independently of their magnitude (de Vaucouleurs 1961 [118],

Holden et al. 2004 [119], Lidman et al. 2008 [120]). For this purpose we used Source Extractor

(SExstractor, Bertin & Arnouts 1996 [109]), a software for the automated detection and photometric

analysis of sources in a given FITS (Flexible Image Transport System) file. SExtractor works in step

regulated by an input configuration file containing parameters defining image and background infor-

mations, detection and photometry limits and outputs. After scanning the entire image, SExtractor

measures the background and subtracts it to isolate the luminous objects over the given detection thresh-

old; then it performs shape and positions measurements and photometry, all informations listed in the

output final catalogues. To enhance the detection process, SExtractor allows a runmode based on two

Fig. 5.7. Plot relating the dimension of objects (FWHM_WORLD) identified with SExtractor and their
magnitude in the filter F160W; the yellow points are the stars, approximately of the same dimension
indipendently on their magnitude.

input images, one usually is a deeper observation used as reference for the detection, and one is in the

filter of interest to perform the photometry. We applied the analysis on the HST observations, taking
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a stacked IR image as the detection reference for PSZ1-G311 while the photometry was performed on

the F160W, F814W and F606WU filters.

The output parameters used to delimit the cluster red-sequence are essentially the magnitude and the

object classification. The magnitude is measured from a flexible elliptical aperture around every de-

tected object (MAG_AUTO parameter), as described in Kron (1980, [121]). The object classification is

described by the parameter CLASS_STAR, which can assume a value between 0 and 1, being 0 an extended

object and 1 a star. As shown in Fig.(5.7) the point-like objects, independently of their magnitude,

have roughly the same dimension, defined as the full-width at half maximum (FWHM) when assum-

ing a Gaussian profile for the object (FWHM_WORLD parameter). To avoid contamination, all objects

attributed with a CLASS_STAR parameter higher than 0.1 are excluded from the final selection. The

last step is constructing a color-magnitude diagram, as shown in Fig.(5.8), of the remaining extended

objects in the field: we can see a clear sequence in the redder colors, which we can enclose in a range

of 0.7 < mF814W − mF160W < 2.0. Adopting these selection criterion the cluster members catalogue

contains 273 objects brighter than mF160W = 24. Following a visual inspection of this first catalogue,

73 objects are excluded because possible stars or foreground sources. Further spectroscopic analysis

Fig. 5.8. Color-magnitude diagram for PSZ1-G311 cluster members: the orange points indicate the red-
sequence, delimited by the red horizontal lines at mF814W −mF160W = 0.7 and mF814W −mF160W = 2.0
and the grey dotted vertical line at mF160W = 24.
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is conducted on this catalogue, obtaining the redshifts for 54 objects. Of those, we considered only

the spectroscopically identified members within 3000km/s from the median cluster redshift, z=0.4436;

this second catalogue is concatenated with the photometric one, obtaining a final selection of 205 total

cluster members, including the BCG. Of these, 155 are photometrically identified without a redshift, 46

are spectroscopically confirmed with an associated magnitude value and 4 without one. As described in

Sec.(4.2.1), the sub-halo mass component in LENSTOOL is described both by a small set of small-scale

mass components whose parameters are optimized individually, and by all the other cluster members

which are generally modeled adopting scaling relations to reduce the number of free parameters. In this

work the catalogue of cluster galaxies for LENSTOOL contains 200 galaxies, indicated in Fig.(5.9) with

red circles, excluding the 4 without a magnitude measurements and the BCG.

Fig. 5.9. PSZ1-G311 determined cluster members from the final catalogue are circled in red, while the
BCG is circled in green. Only the galaxies inside the the cyan contours of the MUSE data-cube are
considered to extract the l.o.s. velocity dispersion.
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5.3.3 Measured velocity dispersions

Following the approach of Bergamini et al. (2019 [122]), we use the VLT/MUSE observations to extract

the line-of-sight (l.o.s.) stellar velocity dispersions (σgalap ) of a sample of the cluster galaxies. These

measurements are used to calibrate the normalization and slope of the σ − mag scaling relation for

the cluster galaxies, parameters that can be used as prior for the scaling relations of the sub-halo

component in the lens model. We measure the average luminosity-weighted value of the l.o.s. projected

velocity dispersion, obtained extracting the spectra of the galaxies from the MUSE data-cube inside an

aperture of Rap = 0.8′′. The choice of the aperture radius is the optimal compromise between a low

contamination from other sources and an high signal-to-noise ratio (〈S/N〉). To measure the velocity

dispersion consider only 46 of the cluster galaxies inside the MUSE data-cube for which we could obtain a

spectrum (see Fig.(5.9)). We use the software pPXF (Cappellari & Emsellem 2004 [123]; Cappellari 2017

[124]) which can extract the stellar kinematics from the galaxy spectra by performing a full spectrum

fitting: in particular, pPXF cross-correlates the input observed spectrum with a set of stellar templates

and returns a measure of the velocity dispersion from the best-fit. Each produced spectrum from this

procedure is visually inspected to check that the fit was performed correctly. The selected wavelength

range is [3600-5000]Å rest-frame, in order to avoid the red wavelengths of the MUSE spectra, which are

the most contaminated by skylines residuals, and at the same time to include the galaxy absorption

lines (such as the Ca doublet). If the skyline residuals are high, we mask the corresponding pixels to

exclude them from the fitting procedure and avoid the introduction of bias in the measurements (see

Fig.(5.11)). For the i-th cluster member galaxy we obtain a velocity dispersion value (σgalap,i ± δσ
gal
ap,i)

and a 〈S/N〉i. To ensure a robust measurement we only consider galaxies with σgalap > 60 km/s and a

〈S/N〉> 10. The final sample includes 14 galaxies.

We can now write the σ −mag scaling relation for the sample as

σ̂galap,i = σrefap 100.4(mrefF160W−m
gal
F160W,i)α (5.5)

where the σ̂galap,i is the predicted velocity dispersion from the Faber-Jackson relation (Faber and Jack-

son, 1976 [74]) for the i-th cluster member with magnitude mgal
F160W,i. To determine the values of the

normalization σrefap and the slope α that better fit our sample of cluster galaxies, we adopt a Bayesian

approach. We also include the parameter ∆σap, the intrinsic scatter of the galaxies around the Faber-

Jackson. Using the Bayes theorem (see Sec.(4.2.2)), the maximized posterior is defined as the product

of a likelihood and a prior which are respectively defined as
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Fig. 5.10. Plot relating the measured internal stellar velocity dispersion of 14 cluster galaxies and their
HST/F160W magnitude. The galaxies are represented by the filled circles, where their color varies as a
function of the mean signal-to-noise ratio. The magenta line is the best-fit σ −mag relation obtained,
while the light blue area corresponds to the intrinsic ∆σap scatter.

ln
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(5.6)

and

ln
[
p
(
σrefap , α,∆σap

)]
=



− ln (∆σap) , if σrefmin < σrefap < σrefmax

and αmin < α < αmax

and (∆σap)min < ∆σap < (∆σap)max

−∞, otherwise

. (5.7)

The limits in Eq.(5.7) are chosen based on the measured velocity dispersions. The sampling of the

posterior is based on the Affine-Invariant MCMC Ensemble sampler (see Goodman & Weare 2010 [125],

Foreman-Mackey et al. 2013 [126]). It is performed by 100 walkers that sample 5000 points each, and we

remove 80 steps in the burn-in phase. The marginalized posterior distribution for the fitting parameter,

along with the median values and [16-th, 84-th] percentiles of their marginalized posterior distributions

are shown in Fig.(5.12). The resulting best-fit scaling relation is the solid magenta line in Fig.(5.11),

while the light-blue band represent the fitted intrinsic scatter (∆σap) of the relation. These results are

useful in our lens model, since to reduce the number of free-parameters we adopt the following scaling
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Fig. 5.11. Plots showing the fitting procedure performed by pPXF for three cluster members of PSZ1-
G311, and the resulting velocity dispersions (σgalap ), 〈S/N〉 and F160W magnitudes. The spectral ex-
traction is performed in the white dashed apertures of 0.8” radius as shown in the HST RGB image
cut-outs. The pPXF best-fit models are shown in red over the black galaxy spectra. The green points
represent the data-model residuals, and the blue bands (with corresponding blue points) represent the
excluded rest-frame wavelength ranges due to high sky contamination. The three galaxies are the highest
signal-to-noise cluster members in our sample.
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relations for each sub-halo component:

 σgalLT,i = σrefLT

(
Li
Lref

)α
rgalcut,i = rrefcut

(
Li
Lref

)βcut (5.8)

where σLT is the fiducial velocity dispersion defined in LENSTOOL, related to the central velocity dis-

persion of the dPIE as σ0 =
√

3
2σLT ; Li is the luminosity of the i-th cluster member and Lref is the

reference luminosity; the two normalizations are computed at the reference luminosity. From the values

of the measured velocity dispersions, in our lens models, we can fix the the value of the slope α to the

fitted one. Also, the value of the slope βcut is inferred by assuming that the galaxy mass-to-light ratio

scales as a function of the luminosity as Mtot,i/Li ∝ Lγi . In this case, we can show that

βcut = γ − 2α+ 1. (5.9)

We adopt γ = 0.2 in according to the observed fundamental plane (Faber et al. 1987 [127], Bender et

al. 1992 [128] ). Since α = 0.311+0.076
−0.079, we obtain βcut = 0.577+0.151

−0.158. For the normalization σrefLT we

use a flat prior with limits evaluated on the measured velocity dispersions of our sample, and for the

normalization rrefcut we adopt a large flat prior between 0.1′′ and 25′′.

Δσ  = 30.8
+ 8.4
- 6.2ap

α = 0.311α = 0.311
+ 0.076
- 0.079

σ   = 249.8
+ 29.6
- 28.8

ref
ap

α

Fig. 5.12. Marginalized 2D and 1D posterior PDF for the scaling relation parameters obtained from
the measured velocity dispersions of 14 cluster member galaxies. We report the median value of the
parameter with the 16-th and 84-th percentiles (also shown as dashed lines in each histogram) of the
marginalized distribution.
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Spec-members

Median redshift

All members

Spec-members

Measured velocity
dispersion

Fig. 5.13. Top: redshift distribution of the spectroscopically identified cluster member galaxies with
a redshift within 3000 km/s from the median cluster redshift, z=0.4436 (black dashed line). Bottom:
distribution of the cluster member galaxies as a function of their F160W band magnitude; the light
blue histogram represents all 201 identified cluster members, the magenta histogram represents the 46
spectroscopic members, and the 15 cluster members with a measurement of their velocity dispersion are
in dark blue.

5.3.4 Important deflectors

As already explained in Sec.(4.2.1), some of the catalogued cluster members and background/foreground

objects can be parametrized separately from the scaling relations. This implies that they are described

by a mass profile where its parameters are fixed or can vary between limits based on a choice of a prior.

The values chosen for the flat priors limits in the different tested lens models are discussed in the next

section. Here, we list the important deflectors of our catalogue:

• Deflector 1678: described by a circular dPIE model (e = 0). In all models this deflector has a

fixed position and core radius, while the velocity dispersion and cut radius are free parameters.
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Fig. 5.14. HST RGB image of the northern segment of the arc, with cut-outs of all the important
deflectors included in the lens models described in Sec.(5.3.4).

The multiple images in the north-eastern part of the arc are better reproduced with this cluster

member outside the scaling relations. See the white cut-out of Fig.(5.14).

• Deflector 1677: described by a circular dPIE model (e = 0). In all models this deflector has a

fixed position and core radius, while the velocity dispersion and cut radius are free parameters.

From its magnitude, we can deduce that its velocity dispersion is higher than that of deflector

1678. The multiple images in the central part of the arc are better reproduced with this cluster

member outside the scaling relations. See the red cut-out of Fig.(5.14).

• Deflector N-ARC RIGHT: described by an elliptical dPIE mode. This object is clearly elliptical

and its superposition with the arc creates three multiple images of the same knot. The ellipticity

and position angle are additional free parameters, and the prior limits are changed during the

testing. See the blue cut-out of Fig.(5.14).

• Deflector BK N-NW: described by a circular dPIE model (e = 0). This object is a background

galaxy at redshift z = 0.5578. Since LENSTOOL can not perform multi-plane lensing, we can
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describe the contribution of this deflector by parametrizing a fictitious halo at its position assuming

it is at the same redshift of the cluster. See the cyan cut-out of Fig.(5.14).

• Deflector BK NW-LEFT: described by by an elliptical dPIE model. This object is a background

galaxy at redshift z = 0.7346. Its contribution to the multiple images is accounted by parametrizing

it as a fictitious halo at the cluster redshift. In some models, its position is left free to vary. See

the magenta cut-out of Fig.(5.14).

• Deflector 1298: described by an elliptical dPIE model. The peculiar configuration of families

5.1 (h,i,l) is only reproduced by leaving this cluster member out of the scaling relations. The

ellipticity and position angle are additional free parameters, and the prior limits are changed

during the testing. See the yellow cut-out of Fig.(5.14).

5.3.5 Multiple images identification and catalogue

Galaxy clusters are so powerful lenses that they can lens simultaneously several sources. In addition,

given the extreme stretching that the background sources can experience when they are lenses by

a cluster, we can often distinguish multiply imaged point-like knots in their images as described in

Sec.(5.2) and Sec.(5.2.2). We define the multiple images of the same knot as a family, and all the images

coming from the same source a system. The identification and pairing of the several multiple images

can be carried out either by means of their color patterns, or by using their positions and morphology

which must follow specific parity inversion rules. For example, we can see in Fig.(5.2.2) how the knot

A show a clear emission in the F160W band and knots B and C configuration also shows a repeating

color association that allows determining the position with less uncertainty. For those multiple images

for which the color study is not definitive, we can speculate on the position of the critical lines by

searching for sign of mirroring (see Fig.(5.15)) between pairs of knots and then test our hypothesis

through subsequent steps in the modeling, as discussed in the next section.

System Redshift (z) Number of families Total num. of multiple images
1 3.505 4 8
2 2.196∗ 2 4
3 2.393 1 2
4 1.186 1 2
5 2.369 14 60

Tab. 5.2. Identified multiple images as regrouped in different systems and families, for a catalogue of
76 total multiple images. *The redshift z2 is the mean value obtained from the optimization of Model
10 in Sec.(5.4).
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Fig. 5.15. Figure showing an example of the identification and pairing of multiple images by searching
for mirrored configurations. The green cut-out highlights families 5.7, 5.8 and 5.9 c configuration
matched with the respective d configuration, while the magenta cut-out highlights families 5.12 and
5.13 g and h configurations.

The construction of the catalogue of multiple images is based on the following nomenclature: each

multiple image is identified through an ID containing a number and a letter, where the integer part

of the number identifies the system, the fractional part of the number identifies the family, and the

letter identifies all the images belonging to the same family. For example Sys-5, that corresponds to

the Sunburst Arc, is composed by fourteen different image families (with IDs 5.1-5.9, 5.11-5.15): of

these, family 5.1 contains twelve multiple images (from 5.1a to 5.1n) of the LyC knot, described in

Sec.(5.2.1). The redshifts of the systems are measured using MUSE spectra. Altogether the catalogue

used in our lens model contains a total of 76 multiple images coming from 5 background sources at

different redshifts. Some details on these systems of multiple images are given in Tab.(5.2). For each of

them we also report the measured redshift. While this was measured spectroscopically for Sys-1,3,4,5,

for Sys-2 the redshift is estimated by LENSTOOL. Indeed, it is used as a free parameter during the model

optimization process. All the systems and the multiple images are shown in Fig.(5.16). The coordinates

of each image in our catalogue are reported in Tab.(5.3).

88



5.3. LENS MODEL CHAPTER 5. PSZ1-G311 GALAXY CLUSTER

Multiple image RA [deg] Dec [deg] Multiple image RA [deg] Dec [deg]
1.1a 237.57392850 -78.18547050 5.3g 237.50833380 -78.18489690
1.1b 237.49811550 -78.19423620 5.3h 237.50496350 -78.18555120
1.2a 237.57721440 -78.18732470 5.3m 237.49404200 -78.19091930
1.2b 237.49737000 -78.19380270 5.3n 237.56351420 -78.19638080
1.3a 237.57816950 -78.18802790 5.4a 237.53053750 -78.18258360
1.3b 237.49685590 -78.19346700 5.4b 237.52599170 -78.18277860
1.4a 237.57833520 -78.18811950 5.4c 237.52471000 -78.18289080
1.4b 237.49684050 -78.19338580 5.4d 237.51934170 -78.18322190
2.1a 237.57126620 -78.19509460 5.4e 237.51819130 -78.18332720
2.1b 237.50142040 -78.19036930 5.4f 237.51764370 -78.18339440
2.2a 237.57208180 -78.19467860 5.5a 237.52867080 -78.18261250
2.2b 237.50141330 -78.19064780 5.5b 237.52719090 -78.18267390
3a 237.56717330 -78.19493140 5.5c 237.52397540 -78.18292360
3b 237.49528420 -78.19269000 5.5d 237.52005380 -78.18312970
4a 237.55932290 -78.19395080 5.6a 237.52934380 -78.18253640
4b 237.50903040 -78.19001330 5.6b 237.52710830 -78.18262160
5.1a 237.53086790 -78.18256990 5.6c 237.52374540 -78.18289800
5.1b 237.52561570 -78.18281030 5.6d 237.52009070 -78.18306850
5.1c 237.52493010 -78.18286890 5.7c 237.52367960 -78.18301330
5.1d 237.51916050 -78.18323520 5.7d 237.52074440 -78.18316290
5.1e 237.51830380 -78.18331130 5.8c 237.52332440 -78.18299810
5.1f 237.51751690 -78.18340990 5.8d 237.52105850 -78.18310360
5.1g 237.50925300 -78.18470480 5.9c 237.52313140 -78.18296550
5.1h 237.50157090 -78.18631220 5.9d 237.52109980 -78.18304890
5.1i 237.49984950 -78.18680110 5.11c 237.52282320 -78.18299740
5.1l 237.49897480 -78.18713330 5.11d 237.52155460 -78.18305280
5.1m 237.49392040 -78.19082100 5.12g 237.50752850 -78.18494690
5.1n 237.56288320 -78.19652950 5.12h 237.50602110 -78.18524470
5.2a 237.52815520 -78.18265610 5.13g 237.50746700 -78.18511750
5.2b 237.52747910 -78.18268700 5.13h 237.50646360 -78.18530950
5.2c 237.52396860 -78.18295440 5.13m 237.49411630 -78.19072630
5.2d 237.52020090 -78.18315250 5.14i 237.50003930 -78.18683690
5.2g 237.50884650 -78.18480390 5.14l 237.49919580 -78.18714270
5.2h 237.50384950 -78.18578400 5.15a 237.53276520 -78.18241490
5.2m 237.49400480 -78.19086520 5.15f 237.51713490 -78.18331080
5.2n 237.56327320 -78.19644360 5.15h 237.50371900 -78.18565270
5.3c 237.52353250 -78.18298000 5.15m 237.49378830 -78.19152710
5.3d 237.52075450 -78.18311290 5.15n 237.56323270 -78.19629390

Tab. 5.3. Coordinates (RA,Dec) of the 76 multiple images in our catalogue.
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Fig. 5.16. HST color composite image of PSZ1-G311 with all catalogued multiple images shown. The
first segment of the Sunburst Arc is highlighted in the magenta cut-outs a,b and c, and with the cyan
cut-outs a and b, we can see almost all families of Sys-5. Sys-1 is visible in both the orange and blue
cut-out. In the latter we can also see family 3b. Sys-2 is visible in both the yellow and green cut-out.
In the yellow cut-out we can also see images 3b, 4a, 5.1n, 5.2n, 5.3n and 5.15n. Images 4b, 5.1m, 5.2m,
5.3m and 5.13m are visible in the green cut-out.
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5.3.6 Models evolution

In this section we discuss some of the lens models built in different steps in order to obtain a final

solution that best describes our galaxy cluster’s mass distribution. In the following, we start from the

simplest model and each improvement is characterized by increasing complexity and modifications in

the limit range for the free parameters. The optimization is performed using the maximum-likelihood

runmode.

The choice of the values of the limits for the free parameters’ flat priors is dictated by different

factors: for instance, the evaluation of the position of the multiple images guided the starting guess for

the truncation and core radii as explained in Sec.(4.2.1); the measurements of the velocity dispersions, as

described in Sec.(5.3.3), allowed to define the limits for the parameter in each profile; other parameters

such as ellipticity and positions, are visually evaluated from the HST images. Each starting guess is

then re-evaluated based on the outcome of the model, and changed when necessary.

• Model 1: the first model is based only on the most secure multiple image family, namely 5.1. It

is composed by two DM halos, the BCG and the six deflectors outside the scaling relations. The

main cluster-scale DM halo is described by an elliptical PIEMD profile centred on the BCG. The

velocity dispersion is a free parameter, varying between 400 km/s and 1200 km/s, along with the

ellipticity and core radius. The ellipticity is small, since the Sunburst Arc shape suggests that the

cluster is quite circular, and the core radius varies between 0′′ and 20′′. The second DM halo is

introduced to take into account asymmetries in the mass distribution not well described by the

central elliptical halo. It is described by an elliptical PIEMD profile positioned in the north-east

area near the first segment of the arc and its velocity dispersion varies between 250 km/s and 750

km/s. The BCG is described by a circular dPIE profile, since there are no multiple images to

constrain the ellipticity, and its position is taken as the reference centre for all other halos. For

the BCG we expect a small core radius. Therefore, we fix it at 0.01′′. We assume that the velocity

dispersion is in the range 10 km/s and 600 km/s, and that the cut radius is between 0.1′′ and 20′′.

In this first model all deflectors are described by circular dPIEs, with velocity dispersions lower

limits at 50 ÷ 80 km/s and higher limits at 120 ÷ 150 km/s, fixed core radius at 0.01′′, and cut

radius between 0.1′′ and 10′′. This is the simplest model and the total ∆rms of this model is 0.31′′.

• Model 2: this model includes Sys-3, Sys-4 and families 5.1 to 5.3. It is composed by the two DM

halos and the six deflectors, while the BCG is incorporated in the main DM halo to investigate

whether its contribution is relevant to the model or we can obtain a good model with less free

parameters by not including it. In this model we add the position angle and ellipticity to the
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free parameters for deflector N-ARC RIGHT and for deflector 1298. The ellipticity of deflectors

N-ARC RIGHT and 1298 varies between 0.0 and 0.7, and between 0.2 and 0.9, respectively. The

images are all well reproduced by the model, except for 5.1a that is mapped with a great off-set

within respect to the observed position (see Fig.(5.17), orange box). We try to solve this problem

by modifying the priors on the position of the second DM halo. The total ∆rms of this model is

0.12′′.

• Model 3: this model includes also families 5.7 to 5.9. It is composed by the two DM halos and the

six deflectors, while the BCG is incorporated in the main DM halo. We modified the prior limits

for the main DM halo velocity dispersion, to 700-1200 km/s and the prior limits for the second

DM halo y-position to 15′′ ÷ 31′′ from the reference point (i.e. the BCG position); this fixed the

problem with image 5.1a (see Fig.(5.17), cyan box). The distribution of the resulting displacements

between the observed and predicted multiple images in this model is shown in Fig.(5.18), for a

total ∆rms of 0.14′′.

Fig. 5.17. This image shows the comparison between the position of the critical line in Model 2
(orange box) and 3 (cyan box), that influences the predicted position of image 5.1a. The observed
image is indicated in red, while the model-predicted one is shown in green. Note how in Model 3
the positions of the observed and the predicted image match perfectly.

• Model 4: this model includes also families 5.4(a,b,c), 5.6 and 5.11. It is composed by the two DM

halos and the six deflectors, while the BCG is incorporated in the main DM halo. Based on the last

model results, we modified the priors for the main DM halo ellipticity, which we assume to be in

the range 0.0÷0.5, and the priors for deflector N-ARC RIGHT ellipticity, which we assume in the

range 0.0÷ 0.9. Moreover, we modified the priors for deflector BK NW-LEFT velocity dispersion

(10÷ 150 km/s), and we added the position angle and ellipticity, with limits between 0.0 and 0.9,
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Fig. 5.18. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 3. Each family is marked with a
different color, for a total of 36 multiple images.
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Fig. 5.19. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 4. Each family is marked with a
different color, for a total of 45 multiple images.

to its free parameters. As expected, the model predicts the presence of additional multiple images

of family 5.4, that are already catalogued as 5.4(d,e,f). More multiple images of families 5.7, 5.8,

5.9 and 5.11 are predicted, for instance in the third segment of the arc, where the resolution did

not allow us a secure identification. The distribution of the resulting displacements between the

observed and predicted multiple image positions with this model is shown in Fig.(5.19). The total

∆rms is 0.13′′.

• Model 5: this model includes the additional families 5.4(d,e,f), and families 5.12, 5.13(g,h). The

last two show a mirrored configuration (see Fig. (5.15), magenta box) which is not reproduced

correctly by the previous models. In particular, the critical lines for those models were not passing

at the expected positions based on the geometrical configurations of these images. We add these

families now as additional constraint. The components are the two DM halos and the six deflectors,
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while the BCG is incorporated in the main DM halo. This model results show how now the critical

line position is where it is expected to be, passing in between the two 5.12, 5.13 families. However,

this modification yields some problems with images 5.1h, 5.1i and 5.1l. In this area, the critical

line should go around image 5.1i in order to reproduce the triplet, and to better achieve this

configuration we can try adding family 5.14 to further bend the critical line (see Fig.(5.20), orange

box). The total ∆rms of this model is 0.17′′.

Fig. 5.20. The image shows the position of the critical line passing between families 5.1h, 5.1i
and 5.1l: in Model 5 (orange box) the offset between observed (red) and predicted (green) images
is small, but the critical line should go around image 5.1i to reproduce the symmetry of this
configuration; in Model 6 (cyan box) this problem is fixed with the addition of family 5.14.

• Model 6: this model includes also family 5.14. It is composed by the two DM halos and the six

deflectors, while the BCG is incorporated in the main DM halo. Based on the last model best

fit results, we modified the priors for deflector 1298 velocity dispersion (50 ÷ 150 km/s). The

addition of family 5.14 solved the problem of the critical line position in the area highlighted in

Fig.(5.20, (cyan box)), but at the cost of an extreme ellipticity assigned to deflector 1298. In the

next steps we can try adding more families or we can add the (x,y) position to the free parameters

of deflector BK NW-LEFT. The distribution of the resulting displacements between the observed

and predicted multiple images in this model is shown in Fig.(5.21), for a total ∆rms of 0.19′′.

• Model 7: this model includes also family 5.5. It is composed by the two DM halos and the six

deflectors, while the BCG is incorporated in the main DM halo. With the addition of this family

the ∆rms lowers but the critical line passing between families 5.12 and 5.13 is now misplaced.
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Fig. 5.21. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 6. Each family is marked with a
different color, for a total of 52 multiple images.
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Fig. 5.22. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 7. Each family is marked with a
different color, for a total of 54 multiple images.

To fix this issue the last step is freeing the position of deflector BK NW-LEFT, so that the

best fit can determine where its centre should be to better reproduce the critical line near that

configuration. The distribution of the resulting displacements between the observed and predicted

multiple images in this model is shown in Fig.(5.19), for a total ∆rms of 0.14′′.

• Model 8: in this model the multiple image catalogue is the same as in Model 7, and the position

of BK NW-LEFT is left free to vary. It is composed by the two DM halos and the six deflectors,

while the BCG is incorporated in the main DM halo. The best fit now solved the problem with

the position of the critical line between families 5.12 and 5.13, but the ellipticity of deflector BK

NW-LEFT and 1298 is extreme. The total ∆rms of this model is 0.15′′.

• Model 9: this model includes also families 5.15(h,f,m,n) and 5.13m, while the remaining 5.15a is

excluded because the identification is not secure. It is composed by the two DM halos and the six
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Fig. 5.23. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 9. Each family is marked with a
different color, for a total of 63 multiple images.

deflectors, while the BCG is incorporated in the main DM halo. The inclusion of these families

introduces some problems such as the prediction of extra multiple images of Sys-4 that are not

visible and a shift in the position of the critical line near the three images 5.1(h,i,l), as seen in

Model 5. Since this modification results in a considerable increase of the ∆rms, in the next model

these families are excluded. The distribution of the resulting displacements between the observed

and predicted multiple images in this model is shown in Fig.(5.19), for a total ∆rms of 0.24′′.

Note that in all these models we never included Sys-1: this is the result of a series of test with this

system, that yielded many problems such as predicting many invisible extra images of Sys-3 along the

arc; this problem is caused by an unsecure matching of the multiple images, since the MUSE obser-

vations only covered part of the cluster. Thus, the identification, based on the Ly-α emission, can be

verified only for the images inside the MUSE cube. This uncertainty led to the decision of excluding

the system from the testing. All models’ features are summarized in Tab.(5.4).

In Fig.(5.24) we show the magnification maps and the projected mass-density maps for each model: the
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Model ID Description M.I. Systems
Number

of constraints

Free

parameters
∆rms [arcsec]

Model 1 lensmodel_02_12_20
BCG + MAIN DMH + NORD DMH

6 Deflectors
5.1 22 28 0.31

Model 2 lensmodel_07_01_21
MAIN DMH + NORD DMH

6 Deflectors
3 + 4 + [5.1-5.3] 50 30 0.12

Model 3 lensmodel_10_01_21
MAIN DMH + NORD DMH

6 Deflectors

3 + 4 + [5.1-5.3]

+ [5.7-5.9]
56 30 0.14

Model 4 lensmodel_12_01_21
MAIN DMH + NORD DMH

6 Deflectors

3 + 4 + [5.1-5.3] + 5.4(a,b,c)

+ [5.6-5.9] + 5.11
68 32 0.13

Model 5 lensmodel_12_01_21
MAIN DMH + NORD DMH

6 Deflectors

3 + 4 + [5.1-5.4]

+ [5.6-5.9] + [5.11-5.13(g,h)]
78 32 0.17

Model 6 lensmodel_14_01_21
MAIN DMH + NORD DMH

6 Deflectors

3 + 4 + [5.1-5.4] + [5.6-5.9]

+ [5.11-5.13(g,h)] + 5.14
80 32 0.19

Model 7 lensmodel_18_01_21
MAIN DMH + NORD DMH

6 Deflectors

3 + 4 + [5.1-5.9]

+ [5.11-5.13(g,h)] + 5.14
86 32 0.14

Model 8 lensmodel_20_01_21
MAIN DMH + NORD DMH

6 Deflectors (free position pot.7)

3 + 4 + [5.1-5.9]

+ [5.11-5.13(g,h)] + 5.14
86 34 0.15

Model 9 lensmodel_22_01_21
MAIN DMH + NORD DMH

6 Deflectors (free position pot.7)

3 + 4 + [5.1-5.9]

+ [5.11-5.14] + 5.15(h,f,m,n)
94 34 0.24

Model 10 lensmodel_25_01_21
MAIN DMH + NORD DMH

6 Deflectors (free position pot.7)

3 + 4 + 2 + [5.1-5.9] +

[5.11-5.13(g,h)] + 5.14
90 36 0.14

Tab. 5.4. The table summarizes the components and the resulting ∆rms for each tested model. The
description column lists the potential included in each model, and the multiple images systems column
shows the increasing complexity of the models. Also listed, the number of constraints and of free
parameters of each model.

magnification maps are created computing the absolute valute of µ at each position on the lens plane for

the Sunburst-Arc redshift (z = 2.369), and the color scale is set between 0 and 100, so that the lighter

color helps visualize where the magnification formally diverges in correspondence of the critical lines;

the projected mass-density maps are shown in units of 1012M�/kpc2, and the color scale varies between

0 and 0.005. The evolution of the models can be seen in these maps. For example, we note that the

Model 1 magnification map does not show the radial critical line. In fact, this model’s only constraint

is family 5.1, hence we do not have constraints in the cluster core. This leads to very small core radius

assigned to the components in the cluster core, such as the BCG. By adding multiple images systems

at different redshifts the core is better described. Moreover, we note how the progressive introduction

of different families results in a better constrained second DM halo. In the last models, we can see how

there is more mass associated to the second DM halo.

The next and final model, Model 10, will be taken as reference model since it is optimized with the

most complete catalogue of multiple images and it is characterized by a low ∆rms. We discuss it in the

next section.

99



5.3. LENS MODEL CHAPTER 5. PSZ1-G311 GALAXY CLUSTER

Fig. 5.24. Absolute magnification and projected mass-density maps for each model. The cool colormap
ranges between 0 and 100, while the heat colormap ranges between 0 and 0.005 1012M�/kpc2

.
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5.4 Reference Model - Model 10

We describe here the results of the reference model, Model 10. In this model the DM content of

the cluster halo is parametrized by two PIEMD profiles with infinite truncation radius. The BCG is

not included, and we include all the deflectors described in Sec.(5.3.4). In this model the multiple

image catalogue includes all families except family 5.15, 5.13m and Sys-1 (see Tab.(5.4)), for a total

of 62 multiple images. Since we were not able to determine the redshift of Sys-2, this is optimized

by LENSTOOL: the input parameters and the optimized output of Sys-2 redshift are summarized in

Tab.(5.5). The reference model predicts 117 multiple images associated to 4 background sources. There

are 55 extra model-predicted multiple images for which there is not a secure identification. In Fig.(5.25)

Family Input Redshift Optimized Redshift

2.1 1.9 ÷ 2.5 2.197+0.026
−0.025

2.2 1.9 ÷ 2.5 2.194+0.022
−0.021

Tab. 5.5. Input interval values for the Sys-2 redshift determination and the optimized median value
obtained from Model 10, with errors corresponding to the [16-th, 84-th] percentiles from the marginalized
posterior distribution.

we show the 2D (scatter plot) and 1D (histograms) distributions of the difference in position in the

x and y directions, between observed and predicted multiple images. We can see that the optimized

positions are well determined, in fact most images show less than a 0.2′′ displacement in both directions.

Indeed, the resulting ∆rms = 0.14′′ from the best-fit is the lowest obtained for a model with this level

of complexity. We can further describe the goodness of the fit by evaluating the absolute displacement

(‖∆i‖) between observed and predicted multiple images. In Fig.(5.26) we show the spatial distribution

of the multiple images, with circles’ sizes scaling proportionally to the absolute displacements. Fig.(5.26)

also shows the surface density contour levels corresponding to 8.0, 12.0, 16.0 ×108M�/kpc2.

The input parameters of our reference model are reported in Tab.(5.6). The free parameters are

reported with the interval limits of the flat priors, while the fixed parameters are single numbers. In

the last row of the table, we quote the input parameters for the optimization of the scaling relations,

such as the number of cluster member galaxies (Ngal) included in the scaling relations, the reference

magnitude (mref
F160W , the magnitude of the brightest cluster member galaxy in our catalogue), the slope

(α, determined as in Sec.(5.3.3)) and the normalization (σrefLT ) of the σ −mag relation, and finally the

slope (βcut, obtained from Eq.(5.9) and the quoted value of γ) and the normalization (rrefcut ) of the cut

radius-magnitude scaling relation. The best fit values of the free parameters of the lens model, along

with the Sys-2 redshift, are obtained with a maximum-likelihood method.
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Fig. 5.25. The graph shows the 2D and 1D distribution of the displacements ∆x and ∆y between
the observed and predicted position of the multiple images of Model 10. Each family is marked with a
different color, for a total of 62 multiple images.
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Fig. 5.26. RGB image of PSZ1-G311 with the observed positions of the 62 observed multiple images
marked by circles. The size of the circles scales proportionally with the absolute displacements (‖∆i‖)
between observed and model-predicted positions. The different systems are marked with different colors
corresponding to the different redshifts. The white overlaid contours represent the total projected mass-
density distribution of Model 10 in units of 108M�/kpc2.
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Input parameter values and intervals of Model 10

x [arcsec] y [arcsec] e θ [°] σLT [km/s] rcore [arcsec] rcut [arcsec]

Main DM Halo -3.0 ÷ 3.0 -3.0 ÷ 3-0 0.0 ÷ 0.3 -40.0 ÷ 40.0 800.0 ÷ 1100.0 2.0 ÷ 15.0 2000.0

Nord DM Halo -16.0 ÷ 0.0 10.0 ÷ 34.0 0.0 ÷ 0.9 -90.0 ÷ 90.0 300.0 ÷ 800.0 0.01 ÷ 15 2000.0

1678 0.72 34.72 0.0 0.0 30.0 ÷ 120.0 0.01 0.1 ÷ 15.0

1677 5.04 33.0 0.0 0.0 50.0 ÷ 150 0.01 0.1 ÷ 20.0

N-ARC RIGHT 8.07 29.91 0.0 ÷ 0.9 0.0 ÷ 140.0 10.0 ÷ 150.0 0.01 0.0 ÷ 20.0

BK N-NW 12.31 25.96 0.0 0.0 30.0 ÷ 150.0 0.01 0.1 ÷ 15.0

BK NW LEFT 12.0 ÷ 16.0 22.0 ÷ 26.0 0.0 ÷ 0.9 -90.0 ÷ 90.0 10.0 ÷ 200.0 0.01 0.1 ÷ 15.0

1298 19.0 14.71 0.6 ÷ 0.9 0.0 ÷ 180.0 10.0 ÷ 200.0 0.01 0.0 ÷ 15.0

Scaling relations Ngal = 194 mref
F160W=17.71 α=0.31 σrefLT = 180.0 ÷ 280.0 βcut=0.57 rrefcut = 0.1 ÷ 25.0 γ=0.2

Tab. 5.6. Input parameters values of Model 10. The singles numbers are fixed parameters, while for
the free parameter we report the limits of the input flat priors. In the last row, we report the input
parameters for the scaling relations.

The model uncertainties on the free parameters are evaluated using the the Bayesian MCMC sampler of

LENSTOOL, described in Sec.(4.2.2). The parameters space is sampled to obtain the posterior probability

distribution function. The corner plots, such as in Fig.(5.27), show us the shape of the 2D and 1D

marginalized posterior PDF of the parameters that allow an estimation of the uncertainties. In Tab.(5.7)

we quote, for the optimized parameters of the reference model, the median values derived from the

marginalized parameter distributions and the errors corresponding to the 16-th and 84-th percentiles of

the distributions. The quoted errors on the parameters are obtained re-scaling the errors on the input

positions of the multiple images (from 0.5′′ to 0.1396′′, and from 1′′ to 0.2792′′) in such a way that the

reduced chi-squared1 of the model is 1.

As explained in Sec.(4.2.3), we expect to see a degeneracy between the normalization parameters of

the σLT − L and rcut − L (Eqs.5.8) scaling relations. In Fig.(5.27) we show the marginalized posterior

PDF for the scaling relations normalization parameters σrefLT and rrefcut . The posterior PDF confirms the

degeneracy between the parameters.

In Fig.(5.28) we show the magnification map for the reference model. The magnification map shows

the absolute value of µ in each pixel for the Sunburst-Arc redshift (z = 2.369). The color scale is set

between 0 and 100, so that the lighter color helps visualize where the magnification formally diverges

along the critical lines (mapped in red). The yellow and green cut-outs show, respectively, the least

and the most magnified multiple images of family 5.1. The least magnified image is 5.1g, with a factor

1The reduced chi-squared is defined as the chi-squared per degree of freedom (Eq.(4.3)): χ2
dof = χ2

DoF
.
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Fig. 5.27. Marginalized 2D and 1D posterior probability distributions for the normalization parameters
of the σLT − L and rcut − L scaling relations obtained from the optimization of Model 10. We quote
the [16-th,84-th] percentiles values, also represented as the black dashed lines in the histograms. As
expected, we can see a degeneracy between the two parameters.
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Fig. 5.28. Top: Absolute magnification map for the reference model at the Sunburst Arc redshift
(z = 0.369). The scale is set between 0 and 100, and the critical lines are overlaid in red. Green cut-out :
we show image 5.1g, the least magnified image of family 5.1, in magenta the observed and in green the
model-predicted position. Yellow cut-out : we show image 5.1l, the most magnified image of family 5.1,
in magenta the observed and in green the model-predicted position. Bottom: Projected mass-density
map for the reference model. The color scale is set between 0 and 0.006 in units of 1012M�/kpc2.
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Optimized output parameters of Model 10

x [arcsec] y [arcsec] e θ [°] σLT [km/s] rcore [arcsec] rcut[arcsec]

Main DM Halo 0.12+0.17
−0.20 −2− 61+0.39

−0.28

0.10+0.01
−0.01

−1.11+3.10
−2.98 942.73+21.90

−15.13 5.16+0.33
−0.34 2000.0

Nord DM Halo −3.27+0.81
−0.77 17.80+1.57

−1.35 0.41+0.08
−0.07 −26.38+3.38

−5.03 448.36+31.77
−40.48 1.50+1.02

−0.83 2000.0

1678 0.72 34.72 0.0 0.0 90.22+5.77
−6.06 0.01 12.99+1.37

−2.22

1677 5.04 33.0 0.0 0.0 116.57+7.31
−6.05 0.01 8.77+6.54

−5.24

N-ARC RIGHT 8.07 29.91 0.33+0.18
−0.17 88.31+36.18

−44.72 61.98+4.04
−3.22 0.01 4.56+2.05

−1.85

BK N-NW 12.31 25.96 0.0 0.0 59.55+16.49
−14.67 0.01 10.79+2.90

−5.17

BK NW LEFT 12.95+0.51
−0.52 24.47+0.30

−0.27 0.64+.12
−0.12 23.02+20.62

−18.83 96.10+17.69
−16.83 0.01 5.81+1.67

−2.04

1298 19.0 14.71 0.89+0.01
−0.01 54.63+1.10

−1.11 93.23+6.29
−3.67 0.01 10.20+2.92

−3.60

Scaling relations Ngal=194 mref
F160W=17.71 α=0.31 σrefLT = 200.56+10.21

+8.00 βcut=0.57 rrefcut = 15.15+3.21
−2.39 γ=0.2

Tab. 5.7. Output parameters values from the optimization of Model 10. We report the median value of
the parameter with errors corresponding to the [16-th, 84-th] percentiles from the marginalized posterior
distribution.

µ = 10.8, while the most magnified image is 5.1l, with a factor µ = 80.8. In the same figure, bottom

panel, we show the projected mass-density map for our model. The displayed values are in units of

1012M�/kpc2, and the color scale is set between 0 and 0.006.

Finally, in Fig.(5.29) we plot in magenta the cumulative projected total mass distribution of PSZ1-

G311 as a function of the projected distance from the BCG, R. We also plot in green the contribution

from the cluster member galaxies (i.e. sub-halos). For both profiles, we show the 1-σ uncertainties,

computed by extracting parameters from the MCMC chains of 500 random realizations of the reference

model. We note that the profile is better constrained at the radii corresponding to the multiple images

positions, marked with black vertical lines. Furthermore, we show the ratio between the sub-halo and

the total mass profile, fM (blue line). The sub-halo contribution is small at all projected distances from

the BCG. The cluster members contribute to less than 2% to the total mass near the BCG and, while

the contribution increases at larger radii, it never exceeds 10% at R > 100kpc.
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Fig. 5.29. Top: Projected cumulative mass profiles of PSZ1-G311 as a function of the projected
distance from the BCG (R). In magenta we show the median value and the 1-σ confidence levels for
the total mass profile. In green we show the median value and the 1-σ confidence levels for the sub-halo
component mass profile. The positions of the multiple images are marked with black segments. Bottom:
Fractional contribution of the cluster member galaxies mass to the total cumulative mass shown in blue.
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5.4.1 Time-delay map

In Fig.(5.30) we show the time-delay map for the Sunburst Arc redshift computed from the Model 10

best fit. The map contains for each pixel the arrival time (in days) on the image plane of the photons

that were emitted by a background source at the same time. As explained in Sec.(5.2.2), we exploited

the best fit lens model and the observed position of the recently discovered transient object to predict

its expected future appearances. Following our nomenclature, the family associated to the transient

is family 5.16 and the observed image of the transient is 5.16d. This image is taken as reference to

compute the relative arrival time of the other multiple images. The model-predicted multiple images of

the transient are displayed with crosses in the two panels of Fig.(5.30). In Fig.(5.31) we show in detail

the model-predicted positions of the transient object on the color-composite image of the cluster.

To obtain the time-delay (∆τ) between two images of the same source we need to compute the difference

Fig. 5.30. Left: Time-delay map for the Sunburst Arc redshift. The map show for each pixel the time
of arrival in units of 104 days. The position of the predicted multiple images of the transient object are
marked in white, while the observed transient object is marked in yellow. Right: Color-composite image
of PSZ1-G311 with the position of the model-predicted multiple images of the transient object in red.

in arrival time between the two images positions. Taking image 5.16d as the reference position, the time-

delays in days within respect to the observed transient are reported in Tab.(5.8). If the resulting ∆τ > 0

the appearance of the image is in the future within respect to the appearance of 5.16d. If the resulting

∆τ < 0 the appearance of the image has already happened in the past. In Tab.(5.8) we also report the

magnification factor (µ) of each model-predicted image. We note that image 5.16g, while representing

a future appearance of the transient, will be highly de-magnified.
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ID RA [deg] Dec [deg] µ ∆τ [days]

5.16a 237.5237354 -78.1829845 12.99 -97

5.16b 237.5202441 -78.1832065 15.83 -106.5

5.16c 237.5090686 -78.1847487 14.90 17.3

5.16d 237.5027200 -78.1861004 55.97 -

5.16e 237.4942090 -78.1907123 14.59 122.7

5.16f 237.5630487 -78.1964912 13.73 -5614.2

5.16g 237.5289044 -78.1917973 0.36 8903.6

Tab. 5.8. Time-delay of the model-predicted images of the observed transient object (5.16d, yellow
row). For each image we report the ID, the (RA,Dec) position, the magnification factor (µ) and the
time-delay (∆µ) in days within respect to the reference image 5.16d. A positive time-delay points to a
future appearance, while a negative time-delay points to a past event.

Fig. 5.31. Color-composite image of PSZ1-G311 with the position of the model-predicted multiple
images of the transient object in red. In the different cut-outs we show in detail the position of the
predicted appearances of the transient object along the arc.
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Conclusions

In this thesis we produced a lens model for the galaxy cluster PSZ1-G311. No other models of this clusters

exists in the literature. Our work is based on HST imaging and MUSE spectroscopic observations. For

the optimization of our models we used the parametric gravitational lensing software LENSTOOL. The

construction of the lens model presented in this thesis can be summarized as follows:

• We identified the cluster member galaxies to construct a catalogue. To isolate the cluster red-

sequence, first we conducted a photometric analysis on HST data using SExtractor; then, we

cross-matched the photometric catalogue with the spectroscopically identified members. Our final

catalogue contains 205 cluster member galaxies, of which 155 are photometrically identified with

a magnitude value, 46 are also spectroscopically identified, and 4 are without a magnitude value.

• We measured the inner velocity dispersion of the spectroscopically identified cluster member galax-

ies to construct the σ − L scaling relation for the galaxies. To extract the velocity dispersions we

used the software pPXF. To ensure a robust measurement we limited the sample to 14 galaxies

with resulting measured velocity dispersions higher than 60 km/s and a 〈S/N〉 higher than 10.

This sample is used to fit the normalization and slope of the scaling relation that is incorporated

in our lens model. We found a slope of α = 0.311+0.076
−0.079 and a normalization of σrefap = 249.8+29.6

−28.8

km/s.

• We identified 6 important deflectors that are parametrized separately from the scaling relations.

These contribute the most on the multiple images configurations.

• We constructed a multiple image catalogue. The identification and pairing of the several mul-

tiple images was performed inspecting the color pattern when possible, or by comparing similar
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arrangements in position. The final catalogue used in our lens model contains a total of 76 mul-

tiple images coming from 5 background sources. We determined the spectroscopic redshift for 4

systems: z1 = 3.505, z3 = 2.393, z4 = 1.186, z5 = 2.369. Sys-2 redshift was optimized in our lens

model, finding a mean value of z2 = 2.196+0.024
−0.023.

• We tested several different models of increasing complexity. We reported the 9 most significant

models, which are the steps to the construction of the reference model. During testing, we found

that we can exclude the BCG from the optimized halos and still reach a low ∆rms. We also

excluded Sys-1 due to unsure matching.

• We reported the results of our reference model. This model parametrizes 2 DH Halos and 6

Deflectors outside the scaling relations, and the multiple images catalogue includes a total of 62

images. It reaches a low ∆rms of 0.14′′. We showed the total cumulative projected mass profile

of the cluster as a function of the projected distance from the BCG. We found that the sub-halo

component contribution to the total mass is small at all radii, never exceeding 10%.

• Finally, we produced the time-delay maps for the Sunburst Arc redshift. This allowed a prediction

on the future appearances of a transient object discovered in the arc.

The Sunburst Arc configuration is the product of a rare alignment of observer, lens, and source along

the line of sight, and it is a complex system to model. On the other hand, this extended arc stretches

the shape of the source to the point where we could identify many different star-forming knots that are

resolved and multiply-imaged. Such resolution at the source redshift is not reachable with our technology

yet. The powerful strong lensing effect allows us to explore in detail both the background source and the

mass-distribution of the lens, is the main motivation for the building a robust lens model for this galaxy

cluster. Our lens model reproduces the observed multiple images with very high accuracy. Moreover,

it will be extremely useful in future works to further characterize the physical properties of the source

originating the Sunburst Arc, as well as to make further time-delay analysis on a recently discovered

transient object.

The usage of galaxy clusters as cosmic telescopes, as illustrated in this thesis, allows to observe distant

sources in the primordial Universe with a level of details that is not reachable from any existing facility.
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