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Sommario

I metodi di calcolo tradizionali per le teorie di gauge su reticolo risultano
problematici in regioni di diagrammi di fase a grandi valori del potenziale
chimico o quando sono utilizzate per riprodurre la dinamica in tempo reale
di un modello. Tali problemi possono essere evitati da simulazioni quanti-
stiche delle teorie di gauge su reticolo, le quali stanno diventando sempre
più riproducibili sperimentalmente, grazie ai recenti progressi tecnologici. In
questa tesi formuliamo una versione delle teorie di Yang-Mills su reticolo ap-
propriata per risolvere il problema della dimensione infinita dello spazio di
Hilbert associato ai bosoni di gauge. Questa formulazione è adatta per esse-
re riprodotta in un simulatore quantistico e ne implementiamo una completa
simulazione su un computer quantistico digitale, sfruttando il framework Qi-
skit. In questa simulazione misuriamo le energie del ground state e i valori di
aspettazione di alcuni Wilson loop al variare dell’accoppiamento della teoria,
per studiarne le fasi e valutare la prestazione dei metodi usati.





Abstract

The standard computational tools for lattice gauge theories encounter prob-
lems in regions of phase diagrams with large chemical potentials or when
they are used to reproduce the real-time dynamics of a model. These issues
can be avoided by performing quantum simulations of lattice gauge theories,
which are becoming experimentally realizable thanks to recent technological
advancements. In this thesis we formulate on a lattice a suitable version of
Yang-Mills theories that solves the problem of the infinite dimensionality of
the Hilbert space associated with the gauge bosons. This model is suited to
be realized on a quantum simulator and we implement the full simulation on
a digital quantum computer within the Qiskit framework. The ground state
energy and the expectation values of some Wilson loops have been measured
at several values of the coupling of the theory, in order to study its phases
and to test the performance of our methods.
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Introduction

The concept of gauge symmetry lies at the heart of our current understanding
of many fundamental phenomena in nature, touching fields from condensed
matter to high-energy physics. It was first introduced as an intrinsic re-
dundancy in the description of the classical electromagnetic field through its
potential Aµ

= (�, ~A ): different potential functions �(x), ~A(x) generate to
the same electric and magnetic fields ~E(x), ~B(x) if they are related by a par-
ticular relation called “gauge transformation”. Hence, we have the freedom to
choose different configurations that describe the same physical state. Gauge
freedom is not an actual symmetry, nevertheless it strongly constraints the
structure and the properties that the theory should have. For instance, in
QED it has the key role of forbidding unitarity violations [65].

The gauge symmetry of QED can be constructed by promoting the global
U(1) electric charge symmetry to a local one. Similarly also the other two
fundamental interactions of the Standard Model of particle physics are for-
mulated as Yang-Mills gauge theories, which can be seen as a generalization
of QED to arbitrary non-abelian gauge groups, and gauge symmetries play
an essential role also in the Higgs mechanism, which generates the mass of all
fundamental particles. Besides the electroweak and strong interactions, also
gravity can be thought of as a gauge theory, since when it is made local, the
global Poincaré symmetry can lead to the diffeomorphism invariance typical
of general relativity, even though some subtleties are involved [11].

Stepping aside from high-energy physics, gauge symmetries are important
also in condensed matter models [29]. The simplest way to introduce them is
to modify the Ising model in such a way that its Z2 symmetry becomes local,
leading to a very interesting model that cannot magnetize but still shows a
phase transition. Gauge symmetry is useful also to describe phenomena like
superconductivity (whose explanation inspired the development of the Higgs
mechanism), or to characterize topological phases like fractional quantum
Hall effect states, which can be described as a Chern-Simons theory. In
spite of their very constrained formulation, the behaviour of gauge theories
is extremely rich, giving shape to the multi-colored variety of phenomena
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that we observe in nature. This makes it extremely challenging to solve
their dynamics from first principles and several approaches were tried. In
continuum quantum field theory, interacting models are typically treated
with perturbative expansions on the coupling constant, only meaningful as
long as the coupling constant is small. However, it is well known that the
physical couplings are not actually constants, but they run with the energy
scale of the process under consideration. For Quantum Electrodynamics, the
coupling constant (electric charge) is weak for low energies and the large scale
electromagnetic phenomena that we observe can be treated with perturbation
theory. Increasing the energy, the coupling constant grows and this effect
can be interpreted in a very clear way as the screening of the electric charge
due to a progressive production of virtual electron-positron dipoles. This
interpretation is sensible until the energy scale of ⇤

QED

= 10

286 eV where
QED has a Landau pole and the coupling constant diverges, meaning that
perturbation theory has to break down at a scale ⇤ < ⇤

QED

[65]. Nonetheless,
for QED the Landau pole is not an actual phenomenological problem, since
10

286 eV is a huge scale, far larger than Planck’s mass, and we already expect
something else to appear and change the physics before.

The same cannot be said for Quantum Chromodynamics, the SU(3) gauge
theory describing the strong interaction between quarks. QCD is asymptoti-
cally free and the strong coupling vanishes when the energy scale is pushed
to infinity; therefore, for small distance/high-energy processes, the coupling
constant is finite but small and calculations can be done using perturbation
theory. Instead, low energy QCD is characterized by a large coupling con-
stant which diverges at a scale ⇤

QCD

⇡ 300 MeV [65]. Unlike for QED, this
is now a matter of concern: perturbation theory loses its meaning roughly at
the scale of the mass of the hadrons, signaling that the degrees of freedom
that we use to formulate small distance QCD probably are not best suited
to describe large distance strong phenomena. One possibility could be to use
effective field theories where the hadrons become the fundamental degrees of
freedom, otherwise, we should find alternative non-perturbative approaches.

QCD is formulated in terms of quarks. The success of the quark con-
stituent picture of hadrons, both for the interpretation of the systematics of
their static properties and for the description of their dynamics, has always
made very difficult to believe that quarks do not exist, even though they
have never been seen as isolated fractional charges. This suggests the exis-
tence of a confinement mechanism, that prevents quarks from appearing as
separate particles in a final state. Whatever non-perturbative approach we
choose, we should take into account that confinement has to be explained
somehow. The most important non-perturbative approach is probably lat-
tice QCD, first studied by Ken Wilson in 1974 [90], in an paper where he
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Figure 1: The proposed form of the QCD phase diagram, drawn with
respect to the chemical potential on the x axis and the temperature on the
y axis, both in MeV. This image is taken from [72].

introduced a hypercubic spacetime lattice as a gauge-invariant regulator of
the ultraviolet divergences, with quark fields living on the lattice sites and
gluons residing on the links between the nearest neighbour sites. If we work
on a Wick-rotated euclidean spacetime and if we discretize it by formulating
the theory on a lattice, QCD becomes a typical model of statistical mechan-
ics. Wilson showed analytically that lattice QCD exhibits confinement in its
strong coupling limit, suggesting also that it should be a phase transition
what distinguishes the confined and deconfined regions of QCD. In addition
to that, thanks to the connection between lattice gauge theories and sta-
tistical mechanics, particle physics profited enormously from the numerical
methods used for condensed matter systems, such as Monte Carlo algorithms
[32]. This approach made numerically accessible to classical computers sev-
eral important quantities, such as masses and matrix elements of baryons
and mesons, or properties at thermal equilibrium of the quark-gluon plasma,
which is a phase of QCD that we expect to take place at sufficiently high
temperatures and large values of the chemical potential.

The phase structure of QCD is not completely understood yet, either
theoretically or experimentally, but it is suspected to resemble the phase
diagram reported in Fig. 1. Close to the origin of the (T, µ) plane, we
expect a hadronic phase, where quarks are confined and the relevant degrees
of freedom are the hadrons. Increasing the temperatures, while keeping low
values of the chemical potentials, we expect to get a gas of hadrons until we
enter the quark-gluon plasma phase, where the relevant degrees of freedom
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are well-separated deconfined quarks, antiquarks and gluons, forming the
so-called “quark matter”. Another form of quark matter is present in the
colour-flavour locked phase, expected at ultra high-density regions, where
quarks should show a colour-superconducting behaviour. Regions with high
temperatures and small densities can be explored with high-energy hadron
collisions, such as the ones studied with the ALICE experiment at LHC,
whereas regions with high densities and lower temperatures might correspond
to the phases of matter contained in the core of neutron stars. We expect the
hadronic-confined and the quark matter-deconfined phases to be separated
by a critical line along which there is the spontaneous symmetry breaking
of the chiral symmetry. In the hadronic phase the chiral symmetry should
break, because an unbroken (although approximate, since the quarks u and
d are not exactly massless) symmetry is not compatible with the huge mass
difference that we measure between parity partners such as the nucleon N
with mN = 940 MeV and N⇤ with mN⇤

= 1535 MeV [32].
Monte Carlo calculations led to great results, but they are not able to

explore the whole QCD phase diagram, since at high density regions the
large values of the chemical potential cause the famous sign problem. We are
typically interested in computing sums over configurations of the form

hA i =
R

D� A(�) e�S(�)R
D� e�S(�)

,

where A is some observable and � a generic variable encoding the configu-
ration. Sweeping over the whole configuration space with D� would be a
computationally intensive operation and usually one relies on Monte Carlo
importance sampling methods [1]: as long as the measure e�S is positive defi-
nite, it can be interpreted as a probability distribution and we can simplifying
the sum by considering only the most relevant contributions. However, this
is the situation only at µ = 0, since when a chemical potential is added the
euclidean action becomes in general a complex number, which can be highly
oscillating. In this regime, importance sampling algorithms fail because e�S

cannot be interpreted as a probability and, in general, the near-cancellations
of positive and negative contributions to the integral introduce large errors
in numerical methods. In addition to that, trying to reproduce the real-time
dynamics has a similar kind of bottleneck, so that also out of equilibrium
properties are hard to obtain using this approach [64].

The same issues arise in condensed matter systems and researchers started
to study different approaches to tackle them. However it has been shown [87]
that a general solution of the sign problem is NP-hard, meaning that any
other NP problem can be mapped into it, so that a polynomial solution of
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the sign problem would automatically provide a polynomial solution for all
NP problems, therefore implying that P=NP. This is clearly a difficult task,
so the attention was drawn by different methods and some of them were
borrowed from the field of quantum information. The idea is to simulate
quantum models with algorithms specifically tailored to encode the quantum
properties of the system under attention. They usually require the theory
to be formulated in the hamiltonian formalism (which is automatically free
of the aforementioned sign problems) and, given an appropriate initial state
| (0)i, they aim to simulate its time evolution | (t)i = e�iHt| (0)i. However,
when implemented on a classical computer, they meet the problem of the
explosion of the dimension of the Hilbert space. A quantum system of 40
spins |s = ±1/2i has 2

40 independent states and its hamiltonian will be
represented by a 2

40 ⇥ 2

40 matrix, which occupies 4 TB of memory by itself.
Being the growth exponential, small increases of the number of lattice sites
are enough to exceed the computational capabilities of even the most powerful
supercomputers. Currently, the most common approach aims to optimize
the computation on a classical computer, for instance by using particularly
efficient algorithms like the DMRG (density matrix renormalization group)
[8], or by exploiting the symmetries of the model to restrict its dynamics
(and consequently the computation) to the physical Hilbert space, using e.g.
a tensor network representation [57] of the gauge-invariant states.

A natural solution to this problem was proposed by Richard Feynman in
1982 [24], who suggested that we should use a quantum simulator to repro-
duce the behaviour of another quantum system, since only a truly quantum
device might be able to encode all the quantum properties of the system under
interest. Another advantage of quantum simulations is that many standard
proposal using the DMRG and tensor networks are suited for 1d models
and their generalization in other dimensions is far form trivial, whereas in
principle the simulation approach can be employed in any dimension.

Today we have reached the technology sufficient to realize such quantum
simulators: there are condensed matter systems, such as ultra-cold matter
on optical lattices, superconducting qubits, nuclear spins or photon systems,
whose interactions can be engineered with the freedom sufficient to represent
wide classes of hamiltonians. The recent technological advancements fueled a
vigorous interest on the topic and several projects have been proposed and re-
alized by pioneering experiments with analog simulators. For instance, ultra-
cold Fermi gases in optical superlattices can be used as quantum simulators
of relativistic fermions on a D=3+1 lattice, allowing to realize a simulation of
a 3d topological insulator [10] or to reproduce fractional quantum Hall states
and non abelian anyons [35]. Cold atoms may be used to test also exactly
solvable theories like the Thirring model or the Gross-Noveau model, that
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can be used as a benchmark to demonstrate the ability of these simulators
to reproduce important dynamical phenomena [15]. Another example is [93],
where cold atoms are used to enforce gauge symmetry by taking advantage
of the angular momentum conservation. These are only a few of many recent
works of the field [8]: quantum simulations are becoming increasingly feasible
and the number of proposals is growing. One could also try to encode the dy-
namics of a condensed matter system on digital quantum computers, which
are still at a first development stage, but they are experiencing extremely fast
improvements. Quantum computers are supposed to be universal, meaning
that they have the potential of being able to reproduce the dynamics of any
quantum system through purely digital methods.

The present thesis fits into this context, aiming to study a general method
to simulate lattice gauge theories on a digital quantum computer and to im-
plement a simple example. The simulation of lattice gauge theories using
digital quantum computers is a young field of research and there are only a
few studies in this direction, such as [21, 54, 56, 77]. Therefore this thesis is
not meant to observe new physics, but rather our aim is to make a prelimi-
nary analysis of the performances of the methods we propose and to find out
how to improve them, which is relevant since their generality suggests that
one day they might be used to simulate any lattice gauge theory. We shall
start by quickly discussing in Chapter 1 Yang-Mills theories in the continuum,
putting our emphasis on the objects of primary importance when the theory
is placed on a lattice. The general construction of a lattice gauge theory is
explained both in the path integral formalism and in the hamiltonian for-
malism, which is crucial for the implementation of the theory on a quantum
simulator. In Chapter 2 we move to the description of the general structure
of quantum simulations and the problems that can be met when implement-
ing one as well as some common approaches used to overcome them, before
focusing on the finite group approximation for the rest of the thesis. Chap-
ter 3 describes a possible definition of a hamitonian for a finite group lattice
theory, relying on the mathematical structure of the well established theory
for continuous gauge groups, and presents a quantum algorithm able to sim-
ulate the corresponding time evolution for an arbitrary gauge group. Finally
we focus on Zn lattice gauge theories, outlining their general behaviour in
Chapter 4 and describing in Chapter 5 the implementation of our simulation
of a pure Z2 model as well as its results.



CHAPTER I.

Yang-Mills theory on a lattice

The Standard Model of particle physics is based upon the formulation of
gauge theories first given by Chen Nin Yang and Robert Mills in 1954 [?],
who extended the local U(1) symmetry of QED to the non abelian group
SU(2) in an attempt to describe the strong interactions in atomic nuclei as a
consequence of a local isospin symmetry. Their work can be directly general-
ized to any non abelian group, allowing to formulate the SU(2)

L

and SU(3)
C

theories that describe weak and strong interactions. Quantum field theories
are formulated in terms of continuous fields on a continuous spacetime, but
if we want to reproduce them on any kind of computer, classical or quantum,
we ought to discretize them, since computers have finite memory resources
and an infinite amount of information cannot be represented. In this way,
we get to a theory defined on a discrete lattice, ideally large but still finite.
Lattice gauge theories, and in particular lattice QCD, were one of the first
non perturbative approaches introduced to study properties such as quark
confinement. This chapter aims at introducing lattice Yang-Mills theory
and more specifically their hamiltonian formulation, which is fundamental
for quantum simulations. We start by describing the continuum Yang-Mills
theory, in order to set the notation and to underline some key points and
then we give the standard path integral description of lattice gauge theories,
before moving on to their hamiltonian formulation.

1.1 Continuum Yang-Mills theory

QED describes the interactions between a charged Dirac spinor  and the
electromagnetic field Aµ where the interaction term is given by the minimal
coupling, which can be interpreted in a geometrical setting by introducing
the U(1) covariant derivative Dµ = @µ � iAµ [65]. A similar theory can be
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14 Chapter 1. Yang-Mills theory on a lattice

constructed with different matter fields, such as complex scalars. Yang-Mills
theories are defined by the choice of the gauge group G, usually supposed
to be a compact Lie group, and by the choice of the matter fields plus the
representation of G they belong to. Keeping in mind the example of QCD,
we take G = SU(N) and matter made of Dirac spinors in the fundamental
representation. The gauge fields Aµ are elements of the Lie algebra g =

su(N) and can be expanded as Aµ = Aa
µ Ta, if we introduce a set {Ta},

a = 1, . . . , dimG of hermitian generators of su(N), usually chosen to satisfy

[Ta, Tb] = i fabcTc (1.1)

tr (TaTb) =
1

2

�ab , (1.2)

where fabc are the completely anti-symmetric structure constants of SU(N).
In these formulas we are employing Einstein’s summation convention over re-
peated indices. If we take the Minkowski metric with signature (+,�, . . . ,�),
the action of the free matter field in D = d+ 1 dimensions is

S0[ , ¯ ] =

Z
dd+1x ¯ (i/@ �m) (1.3)

and it is invariant under global transformations  (x) 7! g  (x), where g is
any element of the gauge group SU(N). The symmetry can be promoted to
local if we introduce the gauge field Aµ, interacting with the matter field  
according to the Yang-Mills action

SYM [A, , ¯ ] =

Z
dd+1x ¯ (i /D �m) � 1

2g2
tr (Fµ⌫F

µ⌫
) , (1.4)

where the covariant derivative is Dµ = @µ � iAµ and the associated
curvature tensor, also called field strength tensor, is

Fµ⌫ = i [Dµ, D⌫ ] = @µA⌫ � @⌫Aµ � i [Aµ, A⌫ ] = F a
µ⌫Ta . (1.5)

The symmetry is local, i.e. if we define a function g(x) : M ! SU(N) on the
spacetime M, the simultaneous transformations

 (x) 7! g(x) (x) (1.6)
Aµ(x) 7! g(x)Aµ(x)g(x)

�1
+ ig(x)@µg(x)

�1 (1.7)

leave SYM invariant, as Dµ (x) ! g(x)Dµ (x) and Fµ⌫ 7! g(x)Fµ⌫g(x)�1

so that, thanks to the ciclicity of the trace, SYM 7! S
0

YM = SYM . One
should keep in mind that we are being a little sloppy here: since the group
elements do not act directly on  but only through the chosen representation
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⇢, we should have written ⇢(g(x)) (x). For instance, if the matter field is
�, belonging to the adjoint representation, the covariant derivative becomes
Dµ� = @µ� � i[Aµ,�]. An equivalent formulation can be given by rescaling
Aµ ! ˜Aµ = Aµ/g, so that Dµ = @µ � ig ˜Aµ and ˜Fµ⌫ = Fµ⌫/g = @µ ˜A⌫ �
@⌫ ˜Aµ � ig [ ˜Aµ, ˜A⌫ ] ; the kinetic term for ˜Aµ becomes �1/2g2 trFµ⌫F µ⌫

=

�1/2 tr ˜Fµ⌫
˜F µ⌫ . In the following developments it will be convenient to split

Fµ⌫ into the chromoelectric field Ei
= F 0i , Ei = Ea

i Ta and into the chro-
momagnetic field Bi

= �1
2✏

ijkFjk , Bi = Ba
i Ta. ~E and ~B are 3d objects so

we take Ei
= Ei, Bi

= Bi even though Ai
= �Ai. The quantization of the

theory is commonly performed in the path integral formalism, where

Z =

Z
DAD ¯ D e i S[A, , ̄] (1.8)

is the naive path integral. In the continuum formulation it is divergent as
a result of the integration on the infinite redundant degrees of freedom [65]
and it has to be taken care of using the Faddeev-Popov procedure and BRST
quantization . On a lattice instead, the gauge redundancy does not pose a
threat to the finiteness of Z [58], since the integral will be performed on the
elements of the gauge group, which is compact, in place of the elements Aµ

of the Lie algebra, that is an unbounded vector space.
This was a recap of the formulation of Yang-Mills theories on Minkowksi

spacetime, however, lattice theories are often formulated on a euclidean
spacetime. There are mainly two reasons for choosing to do so. One is
that the Feynman’s weight eiS is mapped to a Boltzmann’s weight e�S

E ,
whose damped behaviour is easier to handle than the oscillations of eiS and
allows to exploit the traditional Monte Carlo methods. The second reason
is that minkowskian quantum field theories have to be Lorentz invariant,
but the non-compactness of SO(1,3) causes the residual symmetry to lose
any remnant of the boosts [86]. Instead, SO(4) is a compact group and this
symmetry of the euclidean theories leaves a well behaved discrete symmetry
subgroup after the reduction of the continuous spacetime to a lattice.

In order to get the euclidean formulation, we have to analytically extend
x0 to imaginary times. The usual Wick rotation x0 ! �ixD implies that a
minkowskian action SM transforms according to

i SM �! �SE , (1.9)

where the euclidean action SE represents the energy of the system. If we
consider e.g. D=4, since d4xM ⌘ dx0d3x ! �i dx4d3x ⌘ �i d4xE we get
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SE =

Z
d4xE LE (1.10)

i SM = i

Z
d4xM LM �!

Z
d4xE LM = �SE (1.11)

and we can identify the euclidean lagrangian with LM ! �LE. A vector
field is supposed to transform consistently with @/@xµ

M , so the time compo-
nent of the euclidean vector field AE

µ is defined as AM
0 ! i AE

4 . Substituting
it into the definition of the field strength tensor, we get FM

0k ! i FE
4k, so that

the gauge part of the lagrangian transforms as

LM � � 1

2g2
tr (FM

µ⌫F
µ⌫
M ) �! � 1

2g2
tr (FE

µ⌫F
µ⌫
E ) ⇢ �LE . (1.12)

Of course the euclidean objects do not distinguish between up and down
indices and we have raised them only for aesthetic reasons. The matter part
of the lagrangian contains spinors and we have to make use of euclidean Dirac
matrices, which satisfy a euclidean Clifford algebra

{�µE, �⌫E} = 2�µ⌫ . (1.13)

Since LM � ¯ (i�µM@µ + �µMAM
µ �m) and i�0M@0 ! ��0M@4, we choose

�4E = �0M , �kE = i �kM , (1.14)

so that i �µM@µ ! ��µE@µ and i�µM ! i �µEA
E
µ and together they yield

LM � ¯ (i�µM@µ + �µMAM
µ �m) �! � ¯ (�µE@µ � i�µEA

E
µ +m) . (1.15)

Then, if we set DE
µ = @µ � iAE

µ and if we recall that LM ! �LE, the
euclidean Yang-Mills lagrangian can be identified with

LE =

1

2g2
tr
�
FE
µ⌫F

µ⌫
E

�
+

¯ (�µED
E
µ +m) . (1.16)

1.2 Lattice regularization

Quantum field theories are disseminated of divergent integrals and the run-
ning of the parameters made necessary by renormalization calculations may
cause perturbation theory to break down at some regimes, where a non-per-
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turbative approach is needed [32]. We choose to discretize the spacetime by
formulating the theory on a hypercubic oriented lattice

⇤ =

n
x 2 M

��� x =

DX
µ=1

nµaµ̂ , nµ = 0, 1, . . . , Lµ � 1

o
,

where a is the spacing, µ̂ is a unit vector in the µ direction and Lµ is the
extension of the lattice along µ. Let f be a function on ⇤. The discretized
version of the integral clearly isZ

M

dDx ! aD
X
x2⇤

, (1.17)

then we can define the lattice Fourier transform of f as

˜f(p) = aD
X
x2⇤

e�ip·xf(x) . (1.18)

If we put periodic boundary conditions f(x + aµ̂Lµ) = f(x), we want the
plane waves e�ip·x to satisfy the same requirement [73]. This selects the set
of allowed values for pµ, which is the reciprocal lattice

˜

⇤ =

n
p 2 R

D
��� pµ =

2⇡

aLµ

kµ , kµ = �Lµ

2

+ 1, . . . ,
Lµ

2

o
.

Denoting the size of the lattice with |⇤| = L1 · ... ·LD, the previously defined
Fourier transform can be inverted with the following formula:

f(x) =
1

aD |⇤|
X
p2 ⇤̃

eip·x ˜f(p) . (1.19)

All momenta can be restricted to the first Brillouin zone, therefore the pres-
ence of the lattice introduces a finite momentum cut-off, which regulates the
divergences of the theory. We can discretize also @µ as

�µf(x) =
f(x+ aµ̂)� f(x)

a
. (1.20)

This is the lattice forward derivative; a backward derivative can be analo-
gously defined [58]. When we discretize the spacetime, any field �(x) should
correspondingly get restricted to the lattice. Let us consider a scalar field to
begin with. The dynamics of the lattice field should be governed by a prop-
erly discretized action; suppose that the continuum action for � in D = 4

dimensions takes the standard form

S[�] =

Z
d4x

1

2

�
@µ�(x)

�2
+ V

�
�(x)

�
. (1.21)
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Then, if we assume that the lattice field �(x) is defined on the lattice sites
x 2 ⇤ (as we are going to see in section 1.4, this assumption is correct only
for matter fields), the naive discretization of S[�] provides

S[{�(x)}] = a4
X
x2⇤


1

2

4X
µ=1

✓
�(x+ aµ̂)� �(x)

a

◆2

+ V
�
�(x)

��
. (1.22)

This naive lattice action can be considered correct only when � is a scalar
field, because also fermions are problematic [58]. If we are interested in the
low-energy physics of the model, we can limit ourselves to consider

V(�) =
m0

2

�2
+

�0
4!

�4 (1.23)

since all the other terms allowed by the symmetries are irrelevant in the sense
of the RG flow [86]. Once the action is chosen, the euclidean path integral
on the lattice can be defined as follows

Z =

Z
D� e�S[�] ⌘

Z ✓ Y
x2⇤

d�(x)

◆
e�S[{�(x)}] . (1.24)

It has the form of a partition function for a model of statistical mechanics,
whose configuration is defined by the values of field {�(x)}, playing the role
of one component real “spins” attached to each site x 2 ⇤. The path integral
can be used to compute any correlation function. In particular, the 2-point
correlator falls off exponentially within a scale given by the correlation length
⇠, which is related to the mass gap m = E1 � E0 of the theory as [46]

m =

1

⇠ a
. (1.25)

Consequently an interesting continuum limit a ! 0 with a finite mass spec-
trum can only be found when ⇠ ! 1, i.e. at a critical point. It is, therefore,
crucial to study the phase diagram of lattice theories and the nature of their
critical regions.

1.3 Parallel transport and Wilson loops

Before we describe the discretization procedure for the Yang-Mills field, it is
convenient to pause and define some objects that will be crucial in the devel-
opment of this thesis. Generally speaking, in order to “feel” gauge transfor-
mations, matter fields must have some internal degrees of freedom belonging
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to a vector space V on which the gauge fields act through a representation
⇢ : G ! GL(V). For instance, the quark fields of QCD are functions

q : M �! C

3
�
⌦ C4

�
, q(x) =

0@qR(x)
qG(x)
qB(x)

1A .

where each qa(x) is a Dirac spinor belonging to C

4. Here, the internal space of
the chromoelectric charge is V = C

3, where the fundamental representation
of SU(3) acts. The dynamics of these objects is governed by a covariant
derivative, which, as it is well known in differential geometry, is related to a
notion of parallel transport: it tells us how a chromoelectric charge vector
~w 2 V rotates when we drag it along a path on the spacetime M.

Mathematically speaking, this parallel transport is defined on a vector
bundle E which locally looks like E ⇠ M ⇥ V and the quark fields q(x) can
be seen as local sections of E [6] (neglecting the C

4 part of spinors, which
has no relevance here). The covariant derivative

Dµ = @µ � iAµ

is the structure that we need to differentiate local sections on a fiber bundle.
Being Aµ = Aa

µ Ta 2 g, under the representation ⇢ to whom matters belongs,
Aµ is realized as a matrix A i

µj belonging to End(V)

Aµ = Aa
µ Ta

d⇢�! A i
µj = Aa

µ (Ta)
i
j .

Let {~ej} be a basis for V. The Christoffel symbols for Dµ are given by

Dµ~ej = �iA i
µj ~ei (1.26)

Suppose that we want to drag a vector ~w 2 V, defined a point xi 2 M,
along the path �(⌧) , ⌧ 2 [⌧i, ⌧f ] s.t. �(⌧i) = xi. The resulting vectors are
found by imposing that their covariant derivatives along the tangent vector
v(⌧) = �0(⌧) vanish, meaning that they are parallel transported. Expanding
the covariant derivative on the bases ~w = wi ~ei and Dv = vµDµ, one finds

Dv ~w = vµ@µw
i~ei � iA i

µjv
µwj~ej . (1.27)

Recalling that v = �0(⌧) = d/d⌧ , we see that ~w is parallel-transported along
the path �(⌧) iff the parallel transport equation is satisfied

D�0(⌧) ~w =

d~w

d⌧
� i


Aµ

d�µ

d⌧

�
~w = 0 . (1.28)
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The second term �i[Aµ d�µ/d⌧ ] ~w is a rotation of ~w, since A = Aµdxµ is a
one-form that acts on a vector d�µ/d⌧ , giving an element of the Lie algebra,
that under ⇢ is represented by a matrix acting on V. The solution of the
equation (1.28) can be expressed in the following way:

~w(⌧f ) = U [�(⌧), A] ~w(⌧i) , (1.29)

where U [�(⌧), A] is called comparator, parallel transporter or Wilson line and
it can be expressed as the following path ordered exponential [6]:

U [�(⌧), A] = P exp

⇢
i

Z ⌧
f

⌧
i

d⌧
d�µ

d⌧
Aµ(�(⌧))

�
= P e i

R
�

A . (1.30)

Aµ(�(⌧)) is the gauge field evaluated at the point �(⌧) and the path order-
ing P is analogous to the time ordering of quantum field theory, the only
difference being that ⌧ is a generic parameter of a curve and it may not be
interpreted as a time variable. The comparator belongs to the gauge group,
because it is the exponential of an element of its Lie algebra. If we apply a
gauge transformation identified by the elements g(x) 2 G, then

~w0
(⌧) = g(�(⌧)) ~w0

(⌧) (1.31)

and U [�(⌧), A0
] is the linear transformation sending ~w0

(⌧i) to ~w0
(⌧f ). Then,

identifying xi = �(⌧i), xf = �(⌧f ), the comparator transforms according to

U [�(⌧), A] 7�! U [�(⌧), A0
] = g(xf )U [�(⌧), A] g(xi)

�1 . (1.32)

When the path �(⌧) is a loop at a point x0, U [�(⌧), A] becomes a linear map
on the fiber V at x0 (called holonomy by mathematicians) and we can use it
to defines a gauge-invariant quantity called Wilson loop

trW [�(⌧), A] = tr
⇣
P e i

H
�

A
⌘
. (1.33)

This is clearly gauge-invariant, because when xi = xf the two factors g(xf )

and g(xi)
�1 cancel thanks to the cyclicity of the trace. The simplest example

one can give is about electromagnetism. When the gauge group is U(1),
abelian, P is irrelevant and the vector potential Aµ is a real number, meaning
that the comparator U [�, A] is a complex phase. If we drag a charged particle
whose wavefunction is called  along a loop �, we find

 (⌧f ) = e i
H
�

A
µ

dxµ

 (⌧i)

and the wavefunction will return to the initial point �(⌧i) = �(⌧f ) after having
acquired a phase. This is the familiar Aharonov-Bohm effect [3]. The impor-
tance of these objects is due to the fact that Wilson was able to characterize
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confinement using the behaviour of their expectation values [90]. Roughly
speaking, the expectation values always decay exponentially according to
the size of the loop, but how fast this decay is determines the presence of
confinement. When the decay scales with the area of the loop, quark paths
cannot separate macroscopically and the resulting phase is confined, while,
if the decay scales with the perimeter, the final states of QCD processes can
have well separated quarks and the theory is in a deconfined phase. Wilson
loops and comparators are also the building blocks we need to give a general
construction for the action and for the hamiltonian of a lattice gauge theory.

1.4 Gauge fields on a lattice

To see how gauge fields should be represented on a lattice, let us consider
the coupling term with a scalar matter field �. On the continuum, the
minimal coupling is realized by the introduction of a connection @µ ! Dµ. On
geometrical terms, this is needed because the derivative of � should be defined
as a limit of the difference �(x)��(y) when x and y are infinitesimally close,
but it is the connection what tells us how the two chromoelctrically charged
vectors �(x) and �(y), defined at different points, should be compared.

On a lattice we do not have the limit anymore, but the problem of com-
paring fields at different points still persists. The lattice derivative should be
defined at two nearest neighbours sites x, x+ aµ̂, therefore we have to drag
�(x+ aµ̂) back to the site �(a) using the equation (1.29). The link denoted
(x, µ̂), connecting the sites x and x + aµ̂, is a path and we can consider the
comparator defined on it; let this comparator be Uµ(x). (x+aµ̂,�µ̂) is (x, µ̂)
but travelled along the opposite direction, therefore it is associated with the
inverse comparator Uµ(x)�1. Then, the lattice covariant derivative is [58]

Dµ�(x) =
Uµ(x)�1�(x+ aµ̂)� �(x)

a
. (1.34)

The intrinsic role of the gauge field is to tell matter how to evolve along a
path and the truly important object is the comparator. A gauge potential
Aµ(x) defined on a site and belonging to the Lie algebra will not be needed
to formulate the theory (implying that lattice gauge theories can be defined
also when the gauge group is discrete!), so we conclude that the lattice gauge
variables are the comparators along elementary paths, i.e. links. The defi-
nition of a gauge transformation on a lattice clearly reduces to the choice of
an element g(x) attached to each site x 2 ⇤. Taking G=SU(N), it will act
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on matter fields and on comparators according to

�(x) 7! g(x)�(x) (1.35)
Uµ(x) 7! g(x+ aµ̂)Uµ(x)g

†
(x). (1.36)

Like in the continuous case, lattice covariant derivative transforms as

Dµ� (x) 7! g(x)Dµ� (x) (1.37)

and the lattice version of the gauge-invariant kinetic term for � is

aD
X
x2⇤

|Dµ�(x)|2 = aD�2
X
x2⇤

DX
µ=1

h
2�†

(x)�(x)

��†
(x)Uµ(x)

†�(x+ aµ̂)� �†
(x+ aµ̂)Uµ(x)�(x)

i
.

(1.38)

The continuum form of the kinetic term for the gauge fields contains the
square of the curvature tensor Fµ⌫F µ⌫ . The curvature tensor tells how much
a vector changes when it is transported along an infinitesimal loop, so it is
natural to build the action looking at the Wilson loops on the plaquettes,
which are the elementary loops on a lattice. A plaquette, denoted as ⇤, can
be identified with a sequence of four links

(x, µ) ! (x+ aµ̂, ⌫) ! (x+ aµ̂+ a⌫̂,�µ) ! (x+ a⌫̂,�⌫) .

Then, the corresponding Wilson loop is given by the following equation

trW⇤ = tr
⇥
Uµ(x)U⌫(x+ aµ̂)Uµ(x+ a⌫̂)†U⌫(x)

†⇤ . (1.39)

To compare it with continuum objects, we have to reintroduce the gauge
potential Aµ(x). On an elementary path, the integral reduces to a multipli-
cation by the spacing a. Therefore, we can identify

Uµ(x) = eiaAµ

(x) . (1.40)

Substituting it into trW⇤, one finds [32] that up to higher order terms

trW⇤ = tr
h
eia

2F
µ⌫(x)

+ . . .
i
= tr


I+ ia2Fµ⌫ �

a2

2

Fµ⌫Fµ⌫ + . . .

�
,

where the indices µ, ⌫ are not summed on. Fµ⌫ is traceless and, working in
the fundamental representation of SU(N), tr I = N . Then it holds

trW⇤ = N +

a2

2

trFµ⌫Fµ⌫ +O(a6) . (1.41)
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Notice that, since FijFij = (

P
k ✏ijkB

k
)

2 and F0iF0i = E2
i , when the plaquette

⇤ sits on two space directions i, j trW⇤ contributes to the magnetic term,
while the electric term is given by plaquettes along a space direction i and
the time direction 0. To get rid of the constant term we can use tr(I�W⇤)
instead. Then, we get an action that reduces to the continuum one in the
limit a ! 0 if we sum on all plaquettes

SW [{Uµ(x)}] =
2

g2a4�D

X
⇤

Re tr
�
I�W⇤

�
, (1.42)

where Re has been added because the sub-leading order terms may not be
real. This is the Wilson action and it is the simplest gauge-invariant lattice
action for gauge fields one can write; other possibilities exist, but they differ
only in higher order terms. An explicit labeling for W⇤ is Wµ⌫(x), where x
is the origin of the plaquette and µ 6= ⌫ are the directions that identify the
plane where it lies. Then, the sum on all plaquettes can be rewritten as a
sum on all lattice sites x 2 ⇤ and on all directions 1  µ < ⌫  D, so that

SW =

2

g2a4�D

X
x2⇤

X
µ<⌫

a4

2

trFµ⌫Fµ⌫ =
aD

2g2

X
x2⇤

X
µ,⌫

trFµ⌫F
µ⌫ ,

where a factor 1/2 comes from the antisymmetry of Fµ⌫ . We have proved
that the continuum limit is correct. An equivalent form of the action is

SW [{Uµ(x)}] = � 1

g2a�D

X
⇤

⇣
trW⇤ + trW †

⇤

⌘
, (1.43)

because the constant term is non-dynamical and it can be neglected. The
lattice path integral for gauge fields is defined in the following way:

Z =

Z
DU e�S

W

[U ] ⌘
Z ⇣Y

(x,µ)

dUµ(x)
⌘
e�S

W

[{U
µ

(x)}] . (1.44)

Each integral with differential dUµ(x) is done on the group manifold. The
proper integration measure that defines them is the Haar measure [58]. Its
main property is that it is both left and right invariant: given a function
f(U) on the group SU(N), 8g 2 SU(N) it holds thatZ

SU(N)

dU f(g · U) =

Z
SU(N)

dU f(U) =

Z
SU(N)

dU f(U · g) , (1.45)

meaning that the integral respects the gauge symmetry. Given an observable
O, one is typically interested in computing the average

hOi = 1

Z

Z
DU O(U) e�S

W

[U ] . (1.46)
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A gauge transformation maps the right hand side of this equation toZ
DU O({g(x+ aµ̂)Uµ(x)g(x)

†})e�S
W

[{g(x+aµ̂)U
µ

(x)g(x)†}] ,

which is equal to the original integral thanks to left and right invariance. But
the action is gauge-invariant, so it also equalsZ

DU O({g(x+ aµ̂)Uµ(x)g(x)
†}) e�S

W

[{U
µ

(x)}]

for arbitrary functions g(x), implying that the average of a local observable
hOi can be different from zero only when O is gauge-invariant. The special
importance of Wilson loops is underlined by the following fact: any gauge-
invariant observable that depends continuously on the link variables can be
approximated arbitrarily well by polynomials of the kind [58]

1X
n=0

X
�1...�2

a(�1, . . . , �2) trW [�1] . . . trW [�n] . (1.47)

Another consequence of this fact is the important statement known as
Elitzur’s theorem: gauge symmetries cannot be spontaneously broken [46].1
If a system has a symmetry, the order parameter that signal its spontaneous
breaking has to be non-invariant under the symmetry transformation. But
this fact implies that their expectation value will always vanish, so an SSB
cannot happen. We have considered here only a quantum statistical system
at zero temperature, the fluctuations are only quantum, but if we added also
thermal fluctuations the results would be the same.

Consider for instance a “gauged” version of the Ising model, that has
been modified to promote its Z2 global symmetry to a local one. Its gauge
symmetry cannot be broken, but nevertheless the phase diagram of this is
non-trivial and it is an interesting issue to find an order parameter able to
detect its transition. The key point is that we had assumed that O was a
local function: on a gauge system phase transitions signaled by non-local
order parameters can still happen.

1.5 Hamiltonian Yang-Mills theory

Path integrals are the standard tool used to study lattice gauge theories.
However, the hamiltonian approach has some important advantages: truly

1It is often said that the Higgs mechanism corresponds to the SSB of a gauge symmetry.
This is misleading, as it is forbidden by Elitzur’s theorem: what is broken is only the global
part of a local symmetry, while the redundancy still persists [28].
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dynamical phenomena can be described only in a real-time hamiltonian set-
ting, which avoids also the sign problem when a chemical potential is added
[8], has we have already discussed in the introduction. Moreover, the in-
terpretations of the variables is more transparent, since the observables are
treated as the usual operators on a Hilbert space. Before formulating the
lattice theory in its hamiltonian version, let us quickly review the continuum
case. Matter does not need additional considerations with respect to the free
case, so we shall consider only the gauge part.

The main issue we have to deal with is gauge invariance: the lagrangian
is written with some redundant non-dynamical degrees of freedom. This is
reflected into the fact that LYM does not contain ˙A0

⇧0 =
@LYM

@ ˙A0
= 0 ,

A0 is not dynamical, since it has no conjugate momentum. Then we can
isolate the A0 dependent part of LYM , thus finding [49]

LYM =

1

g2
tr
⇣
~E2 � ~B2

⌘
+

1

g3
tr
�
A0G

�
(1.48)

G a
(x) = Ea

i (x) + fabcAb
i(x)E

c
i (x) = Di E

a
i (x) (1.49)

again with G = G a Ta. A0 is a Lagrange multiplier and its equation of motion
corresponds to the phase space constraint Di Ea

i (x) = 0: gauge theories are
constrained systems. Di Ea

i (x) = 0 is the generalization of the Gauss’s law:
when G is abelian, like for G=U(1), [Ai, Ei] = 0 and

Di Ei(x) = ~r · ~E(x) = 0 .

Instead, non-abelian gauge fields, carry a colour charge and a density term
is added. The quantization can be simplified by imposing a gauge fixing
condition from the start. We work in the temporal gauge A0 = 0, in order to
quantize only the dynamical degrees of freedom Ai. Now, the lagrangian is

LYM =

1

g2
tr
�
~E2 � ~B2

�
=

1

2g2
�
Ei

aE
i
a � Bi

aB
i
a

�
and using Ei

a = � ˙Ai
a =

˙Aa
i we find the momentum conjugate to Aa

i

⇧

i
a =

@LYM

@ ˙Aa
i

=

Ei
a

g2
. (1.50)

The hamiltonian can be found from the Legendre transformation

HYM = ⇧

i
a
˙Aa
i � LYM =

1

2g2
�
Ei

aE
i
a +Bi

aB
i
a

�
(1.51)

HYM =

Z
dDxHYM =

Z
dDx

✓
g2

2

⇧

i
a⇧

i
a +

1

2g2
Bi

aB
i
a

◆
. (1.52)
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To quantize the theory, we have to promote the fields to operators that satisfy
canonical equal-time commutation relations

[

ˆAa
i (x), ˆAb

j(y)]x0=y0 = 0 = [

ˆ

⇧

i
a(x), ˆ⇧

j
b(y)]x0=y0 (1.53)

[

ˆAa
i (x), ˆ⇧

j
b(y)] = i�ab �

j
i �

3
(~x� ~y) . (1.54)

The simplest representation of these relations is probably achieved on the
space of wavefunctionals h ~A(x) | i =  [ ~A ]. Similarly to what happens in
finite-dimensional quantum systems with [x̂i, p̂j] = i�ij, Aa

i (x) acts on  [ ~A ]

multiplicatively while ˆ

⇧

i
a is the generator of translations

ˆAa
i (x) [ ~A ] = Aa

i (x) [ ~A ] (1.55)

ˆ

⇧

i
a(x) [ ~A ] = �i

�

�Aa
i (x)

 [ ~A ] . (1.56)

However, the Hilbert space of all wavefunctionals  [ ~A ] is still too large. The
temporal gauge keeps a residual gauge invariance for time independent gauge
transformations A0 7! gA0g�1

+ ig@0g�1, which is still vanishing if A0 = 0

and @0g = 0. At the quantum level, it means that

 [ ~A ] ⇠  [g ~Ag�1
+ ig~rg�1

] , (1.57)

the two wavefunctionals should identify the same physical state. Classically
DiEi(t, ~x) = 0, it is an integral of motion and it is promoted to a local
operator ˆG(~x) = Di

ˆEi(~x) (depending only on the spatial position, in the
Schrödinger picture) that commutes with the hamiltonian

[

ˆHYM , ˆG(~x)] = 0 . (1.58)

It can be shown that ˆG(~x) = Di
ˆEi(~x) is the quantum generator of time-

independent gauge transformations [27]. For instance, in the simpler abelian
case the commutation relations (1.54) imply

ˆR[�] = exp

⇢
i

g2

Z
d3x�(x)~r · ˆ~E(~x)

�
(1.59)

ˆR†
[�] ˆAj(~x) ˆR[�] = ˆAj(~x) + @j ˆ�(~x) . (1.60)

If we apply the quantum version of the Gauss’s law constraint on the Hilbert
space ˆG| i = Di

ˆEi(~x) | i = 0, the states that satisfy it are unchanged by
(1.60), so it is equivalent to (1.57) and applying it removes the residual gauge
redundancy. In conclusion, we can identify the physical Hilbert space with

Hphys =

n
|physi

��� ˆG(~x) |physi = 0

o
. (1.61)
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If we included charged matter fields, the constraint term would be modified
by including matter density. For instance, in QED the traditional Gauss’s
law would be recovered as (

~r · ˆ~E � q ˆ †
ˆ )|physi = 0.

1.6 The Kogut-Susskind hamiltonian

The main difference between the path integral and the hamiltonian formalism
for lattice theories is that for the hamiltonian one time can be kept real and
continuous, while path integrals are formulated on a full spacetime lattice
(with imaginary time). The hamiltonian should be the generator of time
translations for all values of t on the real line. Two approaches can be followed
to find the lattice hamiltonian.

One common approach to find the lattice hamiltonian is to use the transfer
matrix formalism [46]. The idea is that for any lattice theory with discrete
time, using the transfer matrix T⌧ 0,⌧ , the partition function can be written as

Z =

NX
n=0

h�(⌧n+1, ~x) | ˆT |�(⌧n, ~x) i = tr ˆTN , (1.62)

as long as there are periodic boundary conditions on the time direction.
Taking advantage of the fact that the euclidean action represents the energy
of the system, we can interpret the transfer matrix can as the generator of
an imaginary time evolution between the two time slices ⌧n and ⌧n+1. The
duration of this time evolution equals the lattice spacing a, so that

ˆT = e�a
[

Ĥ
a

+O(a)
] . (1.63)

This defines the lattice hamiltonian, which is not a actual hamiltonian be-
cause of the discrete time. However, if we place the theory on an inhomoge-
neous lattice, with time spacing a0 kept different from the spatial spacing a,
we can perform the limit a0 ! 0, which recovers a continuous time. Then

ˆH = lim

a0!0
ˆHa0 . (1.64)

For point-like quantum system, whose path integral is defined only on a
discrete time since they do not have a spatial extension, this limit recovers
the correct quantum hamiltonian. Therefore this is a sensible definition also
for field theories on a spatial lattice.

Instead of taking this route, we place directly a spatial lattice on the
hamiltonian formulation of the continuum theory [57]. To recover the hamil-
tonian (1.52), we recognize that the chromoelectric term and the chromomag-
netic are the same appearing in the lagrangian but with the opposite relative
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sign: the former behaves as a kinetic term, while the latter as a potential one.
We already know how to discretize the lagrangian. The magnetic part of the
Wilson action is given by a sum on all spatial plaquettes of trW⇤ and this
can be repeated straightforwardly for the hamiltonian. Instead, some prob-
lems appear for the electric term, which was obtained by summing trW⇤ on
time-like plaquettes. Now the lattice is only spatial and time-like plaquettes
do not exist anymore! We are not only unable to get the electric term like
before, but also we cannot specify a group element Uµ(x) for µ = 0, since
there are no links in the time direction.

To avoid this issue, we perform again the quantization in the temporal
gauge A0 = 0, so that time-like links become associated with the identity and
they do not affect comparators anymore [73]. Then, a classical configuration
of the lattice pure-gauge theory is identified by the choice of a matrix U 2
SU(N) for all spatial links at a fixed time. The system can be seen as a many-
body model made of several links, each one with SU(N) as its configuration
space. Correspondingly, the Hilbert space of a single link can be identified
with the wavefunctions  : SU(N) ! C, with the usual requirement of being
square integrable. The full Hilbert space is given by the tensor product

HN
L

=

N
LO

`=1

L2
�
SU(N)

�
= SU(N) ⌦ · · ·⌦ SU(N)| {z }

links

. (1.65)

The wavefunctions  (U) take as input the group elements, which define the
analog of the position basis. We can promote the “position” of a single
link U 2 SU(N) to a state |Ui 2 H1. The set { |Ui | 8U 2 SU(N)} is a
generalized basis of H1 = L2

(SU(N)) satisfying the orthonormality relation
hU |V i = �(U, V ), similarly to what happens with L2

(R) and |xi [57]. The
physical (normalized) states will then be

| i =
Z

dU  (U) |Ui ,  2 L2(SU(N)) (1.66)

where, as usual, dU represents the Haar measure on the gauge group. The
single link Hilbert space we have just described is called by mathematicians
the group algebra of SU(N); more details about it can be found in Appendix
A. |Ui is an eigenstate of the “position” operators ˆUij

ˆUij |Ui = |UiUij , (1.67)

associating to the link in the eigenstate |Ui the corresponding matrix ele-
ments in the appropriate representation. Notice that ˆUij is neither hermi-
tian, since the eigenvalues Uij are not necessarily real, nor unitary, because
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the conjugate of (1.67) is hU |( ˆUij)
†
= U⇤

ijhU |, which implies

hU | ( ˆUij)
†
ˆUij |Ui = U⇤

ijUij hU |Ui 6= hU |Ui .

The adjoint “position” (

ˆUij)
† acts also on kets as (

ˆUij)
†|Ui = |UiU⇤

ij, since
for all bras h | =

R
dV  (V )

⇤hV | it holds that

h |
⇣
(

ˆUij)
†|Ui

⌘
⌘
⇣
h |( ˆUij)

†
⌘
|Ui =

Z
dV  (V )

⇤ V ⇤
ij hV |Ui =  (U)

⇤ U⇤
ij

=) h |
⇣
(

ˆUij)
†|Ui

⌘
= h |Ui U⇤

ij 8 h | .

What prevents ˆUij from being unitary is that this conjugation does not re-
verse the order of the indices i, j . We can define the matrix of operators ˆU
whose elements are ˆUij s.t. [ ˆU ]ij |Ui = |UiUij. Being a matrix, its hermitian
conjugate includes both a transposition and a Hilbert space adjunction

[

ˆU †
]ij = (

ˆUji)
† . (1.68)

When the chosen representation is unitary, the previous equation implies

hU |
X
j

[

ˆU †
]ij

ˆUjk|Ui =
X
j

U ⇤,t
ij UjkhU |Ui = hU |Ui ,

meaning that the matrix of operators ˆU is the unitary object. At this point,
we can define comparators on a path as Hilbert space operators [57]. Con-
sider an elementary path e on a link ` and call ˆU [e] the comparator on it.
Comparators are matrices in the colour space which map charged fields on
the origin of the path into charged fields on the endpoint of the path. Like
we did in the path integral case, we identify the group element on the link `
with the comparator ˆU [e] when the directions of e and ` coincide, otherwise
they are the inverse of each other. So we have

ˆU [e] =

(
ˆU(`) if e k `
ˆU †
(`) if e k �`

, (1.69)

denoting with ` the link where the “position” matrix is placed. The com-
parator on a general path � = e1 · ... · en, sequence of the elementary paths
e1, ..., en, is given by the composition

ˆU [�] = ˆU [e1] · ... · ˆU [en] . (1.70)

If the path � is closed, we can define the Wilson loop operator

tr ˆW [�] = tr
⇣
ˆU [e1] · ... · ˆU [en]

⌘
(1.71)
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For instance, when � is a plaquette the previous equation yields

tr ˆW⇤ = tr ˆU(x, i) ˆU(x+ aˆi, j) ˆU(x+ aˆj, i)† ˆU(x, j)† (1.72)

We recover the magnetic part ˆHB by summing on all spatial plaquettes

ˆHB = � 1

g2a4�d

X
⇤

⇣
tr ˆW⇤ + tr ˆW †

⇤

⌘
. (1.73)

The trace is giving the missing 1/2 factor with respect to (1.52), while the
power of a is now d = D � 1 because the lattice is only spatial.

To find the electric term, recall that in the continuum hamiltonian it is
given by the square of ˆ⇧i

a = �i �/�Aa
i , which generates translations on  [ ~A ].

On a lattice we do not work with the potential ~A anymore and states are
elements of the group algebra, i.e. square integrable functions SU(N) ! C,
however, we can still write the electric term using the generator of trans-
lations. Translations on the group algebra are defined through the regular
representation (cf. Appendix A) of the gauge group: U acts on |V i as

ˆLU |V i = |UV i . (1.74)

The corresponding action of U on the wavefunction  (V ) is given by

ˆLU (V ) =  (U�1V ). (1.75)

ˆL is an infinite-dimensional unitary representations of SU(N) onto the space
of wavefunctions L2(SU(N)) and it satisfies the relations

ˆL†
U
ˆLU = I , ˆL†

U =

ˆLU† . (1.76)

Actually, this is only the left regular representation. One may also choose
to work with the right regular representation ˆRU |V i = |V U�1i , which has
analogous properties and would lead to the same results. The momentum
operator is proportional to the generator of translations, therefore we need
to find the Lie algebra representation ˆ` of su(N) that corresponds to ˆL [71],

ˆ` : su(N) ! End
�
L2(SU(N))

�
.

Making use of the Lie exponential map, we can write any U 2 SU(N) as
U = eiX , X 2 su(N). The compatibility of ˆ` and ˆL is encoded into

ˆLeiX = ei
ˆ̀(X) .
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Expanding on the Lie algebra generators X = XaTa , ˆLeiXa

T

a

= eiX
a ˆ̀

a . Here
ˆ`a ⌘ ˆ`(Ta) is the generator of su(N) in the regular representation, which is
the momentum operator we need. Being a representation, it satisfies

[

ˆ`a, ˆ`b] = i fabcˆ`c . (1.77)

Notice that ˆ`a has only the Lie algebra index a, while the continuum mo-
mentum ˆ

⇧

i
a has also a spatial index i. The spatial direction is implicit on a

lattice, because ˆ`a is placed on a link (x, i), which is already characterized
by a specific direction i. The electric term, then, can be identified as

ˆHE =

g2

2ad�2

X
(x,i)

X
a

ˆ`a(x, i)
2 . (1.78)

It contains the sum on all directions a of the squared generators of transla-
tions, giving a generalization of the laplacian operator on the gauge group,
while the external sum is over all spatial links (x, i). ˆ`a is a good choice for
the momentum operator because it has the correct continuum limit, implying
that also ˆHE is the right electric term of the hamiltonian. This follows from
the lattice version of the canonical commutation relations [52]

[

ˆ`a, ˆUij] = �(Ta
ˆU)ij (1.79)

[

ˆ`a, ˆU
†
ij] = (

ˆU †Ta)ij . (1.80)

To derive them, consider the one-parameter subgroup h(s) = eisXa . Under
the regular representation, [ ˆLh(s) ](U) = [eis

ˆ̀
a ](U) =  (e�isX

aU). Apply-
ing a derivative and evaluating it at s = 0, we find

[

ˆ`a  ](U) = �i
d

ds
 
⇣
e�isX

aU
⌘����

s=0

, (1.81)

which is equivalent to ˆ`a = �i d
ds
ˆLeisXa

��
s=0

. One should apply this result
to the straightforward equality [

ˆLU , ˆUij]|V i = (Vij � (UV )ij)
ˆLU |V i, taking

U = h(s). This allows to prove (1.79) and the second one can be found
similarly. (1.79) implies that the action of ˆ`a on  (U) can be represented as

ˆ`a = �(TaU)ij
@

@Uij

. (1.82)

After having reintroduced the potential U = eiaA
aT

a , it can be shown [52] that
if a ! 0 the expression above reduces to ˆ`a(x, i) ! �ad�1

ˆ

⇧

i
a(x)(1 + O(a)),
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meaning that ˆ`a is the correct lattice expression for the momentum operator.
Putting together the two parts gives us the Kogut-Susskind hamiltonian

ˆHKS =

g2

2ad�2

X
(x,i)

X
a

ˆ`a(x, i)
2 � 1

g2a4�d

X
⇤

⇣
tr ˆW⇤ + tr ˆW †

⇤

⌘
(1.83)

which has to be though as the hamiltonian corresponding to the Wilson action
in the temporal gauge [47]. Again, the A0 = 0 condition leaves a residual
freedom for time-independent gauge transformations. Gauge transformations
act on the states of the system, that are now elements of a Hilbert space. On
a single link (x, i), a gauge transformation is

|U(x, i)i 7! |g(x+ aˆi )U(x, i) g(x)†i . (1.84)

If we call a link e ⌘ (x, i), e� = x the source site and e+ = x+ aˆi the target
site, then the transformation is realized by the operator ˆJe : He ! He s.t.

ˆJe |U(e)i = |g(e+)U(e) g(e�)
†i = ˆLg(e+)

ˆRg(e�) |U(e)i . (1.85)

Overall, H =

N
e He and the states are generated by the basis

�N
e |U(e)i

 
.

Since each factor of a tensor product of operators acts on its original space,
the complete gauge transformation on the whole lattice is

ˆJ : H ! H , ˆJ =

O
e

ˆLg(e+)
ˆRg(e�) . (1.86)

One can check immediately that [

ˆHB, ˆJ] = 0 with a direct calculation. It
is less obvious that [

ˆHE, ˆJ] = 0, but it also holds. The reason is that the
electric term of each single link is proportional to the quadratic Casimir of
the gauge group (see Appendix A), which acts trivially on each irreducible
representation and the action of a gauge transformation is just a reshuffling
of the states within the same representation. Together they yield

[

ˆHKS, ˆJ] = 0 (1.87)

and the Kogut-Susskind hamiltonian is gauge-invariant. The physical states
will be selected by a Gauss’s law, requiring their gauge invariance⇣O

e

ˆLg(e+)
ˆRg(e�)

⌘
|physi = |physi . (1.88)
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1.7 Phase structure of gauge theories

The interest in lattice gauge theories was raised by Wilson, who showed that
lattice QCD exhibits confinement in the strong coupling phase [90]. In gen-
eral, both continuum and lattice gauge theories provide interesting phase
diagrams, whose behaviour is often driven by complex non-perturbative ef-
fects [66]. Notice that in the previous sections we have discussed only QFT
at zero temperature. The lattice models we are considering have only quan-
tum fluctuations and the transitions at T = 0 we encounter are quantum
phase transitions. In order to outline a phase diagram, one usually studies
some kind of order parameter. But remember the Elitzur’s theorem: gauge
symmetries cannot undergo a spontaneous symmetry breaking and the usual
local order parameters are insensitive to their phase transitions.

Only gauge-invariant objects can have non-vanishing expectation values,
so a plausible candidate for the order parameter can be the Wilson loop.
Indeed, they are be able to show a phase transition thanks to their non-local
nature, which allows them to feel changes in global properties of the system,
such as the emergence of topological excitations and topological phase tran-
sitions [29]. However, other non-local order parameters do exist, such as the
electric strings that will be described in the fourth chapter, or the ’t Hooft
loops that were introduced to characterize SU(N) theories exploiting their
Zn center symmetry [33, 38].

Let CR,T be the closed rectangular path consisting of the links

CR,T = (0, ~x; 0, ~y) · (0, ~y; T, ~y) · (T, ~y; T, ~x) · (T, ~x; 0, ~x) ,

where R = |~x�~y|, that is represented represented in Fig. 1.1. Let trW [CR,T ]

be the Wilson loop along it and consider its expectation value e.g. in the
path integral formalism. Then

h trW [CR,T ] i =
1

Z

Z
DA trW [CR,T ] e

�S
W ⇠

T!1
e�V (R)T . (1.89)

V (R) is the so-called static quark potential and it represents the energy of a
quark-antiquark pair which are kept fixed at a distance R [73].

A strong coupling expansion [32] allows to show that in lattice QCD
V (R) ⇠ �R when g ! 1 (and R is sufficiently large): the interaction be-
tween the two quarks is like a spring which keeps them tied. When the
distance between the quark-antiquark pair is increased, the energy grows
until it overcomes twice the mass of the quark and it becomes energeti-
cally favourable to break in halves the string and to produce another quark-
antiquark pair. The two quarks cannot be separated, since, instead, we end
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(0, ~x) (0, ~y)

(T, ~x) (T, ~y)

⌧

0

T

Figure 1.1: The loop CR,T on a spacetime lattice. It represents the bound-
ary of the worldsheet covered by the trajectory of a quark-antiquark pair
fixed at positions ~x, ~y linked by a string of the gauge field.

up with two quark-antiquark pairs. This dynamical process is called string
breaking mechanism and it characterizes the confined phase. In this limit,
Wilson loops satisfy the area law

h trW [CRT ] i ⇠ e��RT
= e��A[C

R,T

] , (1.90)

where A[CR,T ] is the area enclosed by CR,T . In the small coupling limit,
instead, V (R) ⇠ 1/R, yielding a Coulomb potential. This is easy to see also
in continuum QCD. Considering the rescaled potential ˜Aµ, ˜F a

µ⌫ = @µ ˜Aa
⌫ +

@⌫ ˜Aa
µ+gfabc

˜Ab
µ
˜Ac
⌫ : when g ! 0 it reduces to the QED field strength and it is

natural to expect an electric-like interaction. This is the so-called Coulomb
phase and it is deconfined, since we need a finite amount of energy to keet
the two quarks infinitely distant. Of course, when R is large V (R) ⇠ 1/R
does not contribute to the exponential damping of the Wilson loop. Other
terms dominate and what holds now is the perimeter law [58]

h trW [CRT ] i ⇠ e�↵ p[C
R,T

] , (1.91)

where now p[CR,T ] indicates the perimeter of the loops CR,T . Another com-
mon possibility is a Higgs phase. It is still deconfined, but gauge fields
develop a mass gap and Coulomb-like interactions undergo a screening, thus
becoming short-ranged. Wilson loops in the Higgs phase satisfy again the
perimeter law [28].
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The proportionality constant � is different from 0 if there is confine-
ment, while it vanishes in decofined phases. Then, the string tension � can
be seen as an order parameter for the confinement-deconfinement transi-
tion. To see why (1.89) holds, let us switch to the hamiltonian formalism.
Here, working in the temporal gauge, the Wilson loop operator tr ˆW [CR,T ] =

tr
�
ˆU [0, ~x; 0, ~y] ˆU [0, ~y; T, ~y] ˆU [T, ~y; T, ~x] ˆU [T, ~x; 0, ~x]

�
becomes

tr ˆW [CR,T ] = tr
�
ˆU [0, ~x; 0, ~y] ˆU [T, ~y; T, ~x]

�
. (1.92)

Now consider a system with ˆH = p̂2/2m+V (x̂) in a euclidean time t = �iT .
Then, its propagator is given by

K(T, x0
; 0, x) = hx0|e�ĤT |xi �!

m!1
�(x� x0

)e�iV (x�x0)T . (1.93)

If the initial and final states are not eigenstates of the hamiltonian in the
static limit m ! 1, we can expand them on the eigenstates |ni and

K(T,�0
; 0,�) =

X
n

h�0|nihn|�i e�E
n

T ⇠
T!1

h�0|0ih0|�i e�E0T . (1.94)

The static limit can be taken again, thus leaving only the potential part of
the energy. Now we repeat this procedure for the lattice theory. Consider a
static quark-antiquark pair as the initial state

|�0i = ¯

ˆ

 (0, ~x) ˆU [0, ~x; 0, ~y] ˆ (0, ~y) |0i . (1.95)

We had to include a Wilson line ˆU , connecting the two points (0, ~x) and (0, ~y),
to make |�0i a gauge-invariant state: physically this means that two quarks
are always connected by a flux line of the gauge field. Their propagator is

G(T, ~x 0, ~y 0
; 0, ~x, ~y) = h0|T

⇥
¯

ˆ

 (T, ~y 0
)

ˆU [T, ~y 0
; T, ~x 0

]

ˆ

 (T, ~x 0
)

¯

ˆ

 (0, ~x) ˆU [0, ~x; 0, ~y] ˆ (0, ~y)
⇤
|0i

(1.96)

In the same limits that we have considered above, this reduces to

G(T, ~x 0, ~y 0
; 0, ~x, ~y) ⇠

m!1
T!1

�3(~x 0 � ~x)�3(~y 0 � ~y)C(~x, ~y) e�V (R)T . (1.97)

V (R) is the static quark potential and it is the lowest energy contained into
the quark-antiquark state whose overlap with the ground is non vanishing.
C(~x, ~y) is a function describing this overlap. But the two probes are static
and the energy V (R) is only that of the gauge field, apart from self-energy
terms. The static quarks can be decoupled from the dynamics and what
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(1.96) does is essentially to compute (1.89), up to the trace which does not
change the exponential damping.

This sketched proof holds for time-like Wilson loops, but the confinement
criterion is correct also for Wilson loop that live on a fixed-time surface [86].
The reason is that a Wilson loop operator on a spatial closed path C can
be seen as the creator of a loop of electric flux along C . Then h0|tr ˆW [C ]|0i
becomes the tunneling amplitude of the electric flux loop into the vacuum,
which is highly suppressed in the confined phase because flux tubes are sta-
ble. Confinement is a property of the gauge field themselves and the tran-
sition is driven by a drastic change in the properties of their vacuum. In
fact, it is typically seen as a condensation of magnetic monopoles, which is
somehow dual to the Cooper pair condensation of superconductors [22]. For
instance, consider a U(1) pure-gauge theory. Polyakov showed that in three
dimensions it is always in a confined phase thanks to the contribution of the
instantons, forming a gas of magnetic monopoles which produces the linearly
confining force between quarks. Thankfully, in four dimensions it has also
a familiar small coupling Coulomb phase, in addition to the strong coupling
confined phase [67, 68], while in 1+1 dimensions is trivially confining, since
the Coulomb potential is already V (R) ⇠ R.

In general, it has been proven that for all compact gauge groups, both
continuous and discrete, the corresponding LGT in any spacetime dimension
has a confined phase for sufficiently strong couplings [58]. The behaviour of
pure U(1) LGTs traces the continuum one: in D = 3 it is always confined,
while in D = 4 there is also the Coulomb phase. The group U(1) can be
approximated by Zn. In D = 3, a Zn LGT of course has a strong coupling
confined phase, but at small couplings it exhibits a deconfined Higgs phase
(that can exist also in the pure gauge case, provided that it is defined accord-
ing to the behaviour of Wilson and ’t Hooft loops [60, 26]), which shrinks
and tends to disappear in the n ! 1 limit. When D = 4 the structure
with a shrinking Higgs phase is similar, but the Coulomb phase appears only
for Zn�5. We underline that the spatial Wilson loop criterion holds only at
zero temperature: discrete group LGTs at a finite temperature have an addi-
tional deconfined phase with area law behaviour [12, 13]. For the SU(2) and
SU(3) groups it is considerably harder to extract continuum analytical re-
sults, while Monte Carlo lattice simulations using finite groups tend to show
confinement at all couplings [20], even though QCD at small coupling has to
be deconfined.



CHAPTER II.

Quantum simulations for lattice

gauge theories

The main interest of this thesis is to study the behaviour of lattice gauge theo-
ries and in particular their phase diagram. The rich interactions they involve
make them challenging to study analytically and, during the last decades,
the interest in computer simulations of lattice gauge theories received an im-
portant incentive. However, our focus is slightly shifted: we are interested
in quantum simulations, instead of simulations on classical computers. The
reader will find in this chapter some considerations on how quantum simula-
tions work in general and the description of more specific examples for lattice
gauge theories.

2.1 Analog and digital simulations

Physics is typically studied within a bottom-up approach: the description of
a complex object is usually obtained by first studying separately its smaller
components and, then, by putting them together to understand the behaviour
of the original system. Sometimes, however, the starting object may be com-
posed of too many parts and the elevated complexity prevents us from car-
rying on this project until its very end. We need to find alternative routes
that may lead us anyway to a good and predictive description of the system.
Among the various possibilities, one is to simulate the system: we artificially
reproduce its properties and its dynamical evolution within an environment
which is completely under our control, called the simulator. Generally speak-
ing, a simulation is usually divided into three steps. First, we have to figure
out how to encode the information we have about the system into the simula-
tor; here “information” can refer to the variables that characterize its state, or

37
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Figure 2.1: Representation of the steps of a digital quantum simulation.
The model has to be encoded into the variables of the simulator, then its time
evolution is decomposed into a collection of quantum gates and the outcome
will be transformed back into an observable of the original system [81].

to the properties that we want to observe. After having given the simulator
a proper initial state as the input, we have to elaborate it. This elaboration
can be the time evolution of the properties of the system that we want to
study and, in classical simulations of lattice gauge theories, this elaboration
typically is the evaluation of path integrals with Monte Carlo techniques.
The final step is the extraction of the output we need.

A straightforward example of a simulator may be a classical computer,
but in principle any other well controlled physical system could be fine (and
this is what allows us to overcome classical simulations when they run into
trouble!). The examples can be many, but we are interested here in the case
of quantum systems. When trying to simulate them, classical computers
meet a few intrinsic problems that limit their usage, such as the previously
mentioned sign problems that make the simulations of quantum many body
systems difficult in a finite density region. Another fundamental issue is the
exponential scaling of the dimension of the Hilbert space of the system with
respect to its number of components, which causes an exponentially large
request of storage resources. A possible solution was proposed by Feynman
[24]: in 1982, he conjectured that using a controllable quantum device as a
computing instrument would provide significant advantages in the simulation
of quantum systems.
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The Feynman’s proposal is built upon the general idea that since nature
ultimately behaves quantum mechanically, only a computing machine obey-
ing quantum mechanical laws can be able to accurately simulate it. This
quantum simulator has to be controllable, in the sense that we can adjust its
degrees of freedom and we can freely modify its hamiltonian to mimic the
ones of the original system under interest. It is clear that this approach will
overcome the problem of the exponential scaling of memory demands, since
also the dimension of the Hilbert space of the simulator will grow exponen-
tially and we will be able to balance the requests with our new resources.
Moreover, in the context of lattice gauge theories, the hamiltonian approach
is known to be free of the sign problems, so if we realize the elaboration of
the initial state as its time evolution we will be able to fully simulate it.

Quantum simulators may be both analog and digital [8]. Analog simula-
tions represent the abstract system that we want to reproduce on a physical
set-up under externally controlled conditions. The time evolution means ac-
tually letting the quantum system sit and evolve unperturbed (or else its state
would collapse) for a chosen time interval and the extractions of the outputs
are physical laboratory measurements. In a digital simulation, the system
is encoded into a quantum computer, which aims to be a general purpose
and programmable quantum device. The operations that we perform on the
input state, like the time evolution, will be realized through the application
of successive quantum gates. The computer should be universal in the sense
that in this way we should be able to realize any operation. The figure 2.1
schematically represents the typical steps of a digital quantum simulation.

This difference between analog and digital simulators can be subtle, be-
cause in the end any quantum computer is a concrete quantum system and
the extraction of the output will be a physical measurement. Today’s quan-
tum computers are mostly realized with superconducting qubits or with
trapped ions trapped in an optical lattice: to realize a quantum gate we
need to interact with the system, using proper circuits or through optical
impulses! If we look inside the internal structure of a digital simulator of
course we see an analog system, but the supposed universality of the digital
simulators allows us to work without doing so. Usually analog simulators are
specific purpose and their hamiltonians can be modified to reproduce a small
class of quantum systems. Instead, universal computers can be used to sim-
ulate in principle any hamiltonian, independently of their internal structure.
However, with the current technologies we should always be aware of what
kind of quantum computer we are using, because different architectures have
different advantages and drawbacks that need to be taken into account [81].
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2.2 First step: encoding

In this section we describe more specifically how the steps sketched before
work in the case of quantum simulations. Suppose that we want to simulate
a system with hamiltonian H0 and with Hilbert space H0. The first step was
the encoding of the properties of the system within the degrees of freedom of
the simulator, tha now is a quantum computer made of qubits. A qubit is an
abstract two state quantum system, which can be represented in many ways:
a spin 1/2 particle, or a two-level atom... Different physical realizations of a
qubit provide different possible architectures of quantum computers.

Let H1/2 = span{|0i, |1i} be the Hilbert space of a single qubit. To
encode the states of the system means to map its Hilbert space into the
Hilbert space of an N-qubit quantum computer, which is H = H⌦N

1/2 . This
mapping should be an isomorphism H0 ! H, or at least a 1-1 function,
otherwise it could not be inverted and decoded in a univocal way. As a
consequence, it holds the following fact: since dimH = 2

N < 1, only finite
dimensional systems can be exactly simulated. If dimH0 = 1, some kind of
truncation of the Hilbert space must be involved and the quantum computer
will necessarily simulate approximate properties of the system.

In addition to the states, we have to encode the observables into the
ones of the quantum computer. On a single qubit, observables are hermitian
operators, which can be represented in the Pauli basis as

A =

3X
µ=0

�µ�µ , �µ = (I,~�) ,

while quantum gates are by definition unitary and can be realized through
their exponentials. Considering N qubits, each one will be associated to
its set of Pauli matrices {�j

x, �
j
y, �

j
z}, j = 1, . . . , N , satisfying an �N

j=1su(2)j
algebra defined by the commutation and anticommutation relations

[�j
µ, �

k
⌫ ] = 2i�jk✏µ⌫��

j
� , {�j

µ, �
k
⌫} = 2�µ⌫�jkI ,

where ✏µ⌫� is the totally antisymmetric Levi-Civita symbol. To encode the
observables of the system into the quantum computer, we have to represent
the hermitian operators A0 on H0 in terms of Pauli matrices as A = A({�})
on H, in such a way that the action of A({�}) on qubits is compatible with
the one of A0 on the abstract space H0. From a formal point of view, we
have to build a *-algebra isomorphism A0 ! A = A({�}) between the two
operator algebras [78].
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2.3 Second step: time evolution

After having understood how to digitalize the properties of the system re-
specting their quantum nature, we want to simulate its behaviour when we let
it evolve under some specified external conditions. Of course, the first thing
to do is to prepare the qubits in a properly chosen initial state. For example,
if we want to simulate a fermionic many body system we may want the input
state to reproduce a Slater determinant [64], or if we are studying a lattice
gauge model the initial state may be better if chosen as gauge-invariant. Also
the algorithms that we use to extract the final outputs may demand specific
choices of initial states. The initial state preparation is a full fledged part
of the computation, but we will not describe it in general since it strongly
depends on the case under consideration.

Once we have prepared an appropriate initial state, we have to make it
evolve forward in time by implementing the evolution operator U(t) = e�iHt

(supposing that the hamiltonian H is time independent). Each quantum
platform is endowed with its native set of unitary gates, which are the ones
most easily realized on that kind of hardware [81]. For example, supercon-
ducting quantum computers have as their native set

S1 = {R↵(✓), CNOT} ,

where R↵(✓) = exp(�i✓/2�↵) is a single qubit su(2) rotation along the di-
rection ↵ and the CNOT is a two-qubit entangling gate that leaves always
unchanged the first qubit (called the control qubit) while switching the sec-
ond one when the control qubit is on (see Appendix B). Instead, trapped
ions-quantum computers typically have as their native gates the set

S2 = {T (1)
1 (✓), . . . , T (N)

1 (✓), T2(✓), T3(✓,�), T4(✓,�)} ,

where

T (j)
1 (✓) = exp

�
�i✓�j

z

�
,

T2(✓) = exp

⇣
�i✓

NX
j=1

�j
z

⌘
, T3(✓,�) = exp

⇣
�i✓

NX
j=1

�j
�

⌘
,

T4(✓,�) = exp

⇣
�i✓

X
j<k

�j
��

k
�

⌘
and �� = �x cos� + �y sin�. The T (j)

1 ’s are single qubit z rotations, T2 and
T3 are collective non entangling gates, while T4 is an entangling operation
called Mølmer-Sørensen gate. These gates encode interactions of the kind
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�j
z�

k
z , where j , k are not restricted to be neighbours, so trapped ions are best

exploited to reproduce hamiltonians with non local multi-body interactions.
Both S1 and S2 are universal, i.e. for any N-qubit unitary operator U there
exists a combination of gates within each set whose composition realizes U
exactly [81]. In particular, one can always find a quantum circuit that repro-
duces the evolution operator U(t) = e�iHt, but nothing guarantees that this
procedure will be efficient as the number of elementary operations required
may blow up rapidly. Moreover, the decomposition in terms of elementary
gates may be difficult to find. To avoid this issues, instead of trying to repro-
duce e�iHt exactly, one usually implements an approximation based on the
Trotter formula [61]: if the hamiltonian is a sum H =

P
l Hl, then

exp

⇣
�i

X
l

Hl t
⌘
= lim

n!1

✓Y
l

e�iH
l

t/n

◆n

. (2.1)

In the finite dimensional case it is simply the Lie product formula, but it
holds also for selfadjoint operators on infinite dimensional Hilbert spaces
under proper assumptions. It can be shown that

exp

⇣
�i

X
l

Hl t
⌘
=

Y
l

e�iH
l

t
+ O(t2) , (2.2)

which means that we can approximate the desired unitary operator by the
independent application of the sequence of gates corresponding to the in-
dividual evolution operators e�iH

l

t, but this approximation will be increas-
ingly worse when we want the system to evolve for a longer time t. When
H =

P
l Hl is composed of locally interacting subsystems, the exponentials

e�iH
l

t will be substantially simpler to implement than the full operator e�iHt,
so to exploit this advantage also when t is longer we can divide it into n Trot-
ter steps �t = t/n (with n sufficiently large) and iterate this approximation
along each time slice �t, thus realizing the evolution operator as

e�iHt
=

⇣
e�iH�t

⌘n

⇡
✓Y

l

e�iH
l

�t

◆n

. (2.3)

Following this approach, Lloyd proved in 1996 [50] that we can simulate e�iHt

efficiently (i.e. with polynomial time and storage resources in the size of the
target system) if H is a sum of local interaction terms Hl that act only on a
small subsystem of the full Hilbert space.

The proof goes as follows [81]. A general unitary operator on N qubits
acts on a 2

N dimensional space and it can be implemented with O(2N) ele-
mentary operations [61], which is, in general, inefficient. However, for a local
system each component Hl acts on a small subspace. Let ml be its dimension
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(typically ml ⌧ 2

N), hence Hl can be realized in O(m2
l ) operations. The sys-

tem is characterized by some degree of locality p (e.g. the number of nearest
neighbours, or next-to-nearest neighbours...). The number of local terms,
then, scales polynomially with the number of qubits as L / p · N . To com-
pute the full product of the L elementary time evolutions, we need O(Lm2

max)

elementary operations, which is polynomial in the number of qubits as long
as L = poly(N). The more local are the interactions, the simpler will be to
simulate them efficiently with this kind of approximation.

On one hand we are lucky, because physically meaningful interactions are
typically local. But, on the other hand, the physical local hamiltonian is H0,
not H, and it has undergone an encoding procedure H0 ! H which in some
cases happens to generate new non local interaction terms that increase the
complexity. As already pointed out, when they arise, trapped-ions platforms
allow to realize them in the simplest way.

Today we are in the so called “NISQ era” of quantum computation [69],
meaning that state-of-the-art quantum devices are noisy and intermediate-
scale. In practice, we don’t have enough qubits to spare for error correction
and a larger amount of gates will inevitably introduce a larger noise in the
circuit, spoiling the precision of the computation. If we want to improve
the precision of our simulation of the evolution for a time interval t, the
Trotter decomposition requires to increase the number n of Trotter steps,
correspondingly increasing the number of elementary evolutions we have to
perform and the depth of the circuit. This attempt to improve the precision
ends up worsening the noise, thus limiting the improvements that we can
actually make. This results in a limit on the number of gates that we can use
to trotterize the evolution which today is fewer than 10

3 gates [81], which,
for instance, forces us to choose between a precise time evolution for a short
time and an evolution for a longer time but with larger errors.

2.4 Third step: measurements

Once we have a codified version of the time-evolved initial state e�iHt| ii,
we need to extract as outputs the observables we are interested in. To do
so, in quantum computation we always assume that we are able to perform
projective measurements in the computational basis. Any observable is en-
coded into a hermitian operator acting on N qubits, which is diagonalizable
and by the spectral theorem there is a unitary transformation that maps the
eigenvectors of the observable under interest into the computational basis.
Suppose that, after the time evolution, we are left with the state | i and
that we are interested in measuring an observable A [18]. Let the eigenstates
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of the operator A be |Aji, j 2 N. Then we can express

| i =
X
j

|Aji cj, (2.4)

for some constants cj. There exists a unitary operator UA such that it sends
the jth A eigenstate |Aji into the jth computational basis state, that we
choose to denote |ji. If we apply this rotation on | i we find

UA| i =
1X
j=1

|ji cj (2.5)

and now a projective measurement along the jth computational basis state
will provide us the amplitude of the jth A eigenstate cj. The unitary operator
UA will be implemented as a proper sequence of quantum gates, so also
the measurement has to be considered as a part of the computation and
it shall undergo the requirement of efficiency. The problem is that UA is
not an evolution operator generated by a physical hamiltonian and nothing
guarantees that its realization will be efficient. Therefore to extract the
observables one usually has to follow specific algorithms, each one tailored
to extract a small class of them.

In the following, we will show some examples. The first one is a way to
extract dynamical correlation functions [81] which are defined as

CVW (t) = h |eiHtV †e�iHtW | i , (2.6)

where V,W are two unitary operators and | i is a state that we assume to be
prepared in some way. The circuit that extracts CVW (t) is shown in figure 2.2.
We need an ancillary qubit that starts in the state |+ia = (|0i + |1i)/

p
2.

Then, on the main register R prepared in the state | iR we apply first a
controlled operator c � W , then U(t) = e�iHt and last a c � V operator,
controlled by the value |0ia of the ancilla. This chain of operations produces

| iR 7! 1p
2

⇣
|0ia| iR + |1iW | iR

⌘
7! 1p

2

⇣
|0iaU(t)| iR + |1iU(t)W | iR

⌘
7! 1p

2

⇣
|0iaV U(t)| iR + |1iU(t)W | iR

⌘
⌘ | outi

(2.7)

Then, a measurement of �x on the ancilla yields the expectation value

h�(a)
x i = tr

h
| outih out|

�
�(a)
x ⌦ I

�i
= Re [CVW (t)] , (2.8)
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Figure 2.2: Quantum circuit for extracting dynamical correlators on a
generic state | i, making use of an ancilla qubit |ai. The last gate is H
for its real part and the rotation gate measures its imaginary part.

while in a similar way it can be seen that measuring �y gives

h�(a)
y i = tr

h
| outih out|

�
�(a)
y ⌦ I

�i
= Im [CVW (t)] . (2.9)

Hence, through repeated measurements of the observables �(a)
x , �(a)

y we can
extract the complete value of CVW (t). To measure them we use the procedure
described before, that is we rotate their eigenvectors into the computational
basis, using for �x a Hadamard gate H and for �y a ⇡/2 rotation Rx(⇡/2).

The second example exploits the procedure we have just described in a
quantum-classical hybrid algorithm that extracts the spectrum of an arbi-
trary hermitian operator. Suppose that the time evolved operator V in CVW

is V = I and W = UQ(✓) ⌘ e�iQ✓, Q being the hermitian operator we want to
study. Then, the observable is just CQ(✓) = h |UQ(✓)| i and the procedure
described above extract the expectation value of the “evolution operator”
UQ(✓) at a parametric “time” ✓. Suppose that the initial state | i where we
compute CU(✓) is prepared in a linear combination of some eigenstates of Q

| i =
X
j

|qji j . (2.10)

Then, using the method described before, we are able to measure

h |UQ(✓)| i =
X
j

| j|2e�iq
j

✓ , (2.11)

where the number qj is the eigenvalue of Q corresponding to |qji. If we apply
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a classical fast Fourier transform on eq. (2.11), it results in

FFT
�
hUQ(✓)i

�
= 2⇡

X
j

| j|2�(q � qj) , (2.12)

meaning that we are able to extract the eigenvalues qj contained in | i by
looking at the peaks of function resulting from the fast Fourier transform.

2.5 Simulating lattice gauge theories

Since our main goal is to simulate lattice gauge theories on a quantum com-
puter, so let us specify the procedure that we have outlined before for this
case. The first thing to do if we want to simulate a system is to encode its
state into the one of the simulator and this has to be done through a Hilbert
space isomorphism. Remember that an exact encoding is possible only for
finite dimensional quantum systems. In our case, for instance, it implies that
fermions can be exactly encoded, because their Hilbert space is kept finite
dimensional by the Pauli exclusion principle. Instead, for an infinite order
gauge group, dimL2

(G) = 1 and it is impossible to map via an injection
all its states into the finite dimensional qubit Hilbert space. How can we
overcome this issue? There are several approaches that allow us to solve it
and the next subsections will be dedicated to some of them. Of course, in
general these methods are approximations and apart from very specific cases
an exact encoding remains unfeasible.

2.5.1 Hilbert space truncation

The first possibility is a direct truncation of the Hilbert space HG. The
accuracy of this approximation will depend on how many states we remove
but also on which are the states that we choose to remove. Let’s consider
the example of a U(1) gauge theory without matter where, for definiteness
we put a = 1. In this case the Kogut-Susskind hamiltonian becomes:

H =

g2

2

X
x,µ

`2(x, µ)� 1

g2

X
⇤

⇣
W⇤ +W †

⇤

⌘
(2.13)

W⇤ = eiA(x,µ)eiA(x+µ,⌫)e�iA(x+⌫,µ)e�iA(x,⌫) . (2.14)

U(1) is one dimensional, so the Lie algebra index disappears, moreover it is
abelian and the order of the comparators in the Wilson plaquette operator
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is irrelevant. If we define U = eiA, the relations (1.79), (1.80) are

[`, U ] = �U (2.15)
[`, U †

] = U †. (2.16)

The Hilbert space of a single link may be generated by successive applications
of U on the electric vacuum |0i [16], defined as the state satisfying

`(x, µ)|0i = 0 8 x, µ . (2.17)

The name “electric” comes from the fact that in the g ! 1 limit the electric
term dominates in the hamiltonian and the null eigenstate of ` is the ground
state. Then, the states |li ⌘ (U)

l|0i are orthogonal and they satisfy

`2|li = |li l2 (2.18)
U |li = |l + 1i (2.19)
U †|li = |l � 1i . (2.20)

These states are the electric field eigenstates and they yield another basis for
the single link Hilbert space, different from the group elements basis {|Ui},
which is made of eigenstates of the magnetic field. |Ui is an eigenstate of
H in the opposite limit g ! 0. The Hilbert space can be identified with
span{|li | l 2 Z} and it is clearly impossible to encode it into N qubits. One
way to proceed is to perform a truncation of the allowed values of l

l 2 {�1, ...,+1} ! l 2 {�lmax, ...,+lmax} .

If we have N qubits available for a link, the maximum index allowed will
correspond to lmax =

⌅
(2

N � 1)/2
⇧
. Now the Hilbert space has become finite

dimensional and it can be rewritten in the qubit spin language. The abstract
state |li becomes a state of the register |li ! |lireg and the operators of the
equations (2.18)-(2.20) will be encoded into

`2|lireg = |lireg l2 (2.21)
U+|lireg = |l + 1ireg U+|+ lmaxireg = 0 (2.22)
U�|lireg = |l � 1ireg U�|� lmaxireg = 0 . (2.23)
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A simple (but inefficient) way to implement them using Pauli matrices is

`2 =
+l

maxX
l=�l

max

l2(�l
z + 1)/2 (2.24)

U+
=

+l
maxX

l=�l
max

�l
+�

l+1
+ (2.25)

U�
=

+l
maxX

l=�l
max

�l
+�

l+a
� , (2.26)

where �± = �x ± i�y are the Pauli raising and lowering operators. These
are all the ingredients needed to carry on the simulation; the only thing we
have got to do is to choose a good value for lmax. Usually the most dominant
terms are contained into lmax ⇠ 5 � 10 [16, 41]. A possible way to make
the choice is to repeat the simulation a few times to extract values of the
observables corresponding to different values of lmax, in order to analyze their
convergence.

There are other possible choices that can be made to cut the dimension-
ality of the Hilbert space. One may choose to impose an energy cutoff in
order to keep only the states closer to the ground, which are more likely
to be occupied and they should be the dominant eigenstates of the time
evolution operator. Another possibility is to work within the framework of
the so-called “quantum link models” (cf. section 2.5.3), which represent all
observables using spin s operators that preserve the abstract commutation
relations but will act on a 2s+ 1 dimensional Hilbert space.

2.5.2 Gauge fields integration

This subsection is dedicated to a special but very interesting case where it
is possible to carry on the simulation of the full theory, without the need of
approximations to encode the states [54]. This case is the Schwinger model,
i.e. a 1d U(1) gauge theory with fermions. So far we have discussed the in-
clusion of matter only for scalar fields, because it was the simplest case and
it was not necessary either to go deeper into that direction, since the original
part of this work focuses on pure gauge theories. However, the inclusion of
fermion fields on a lattice is not a trivial matter and a few words about it
may be useful. We call “naive” the introduction of lattice fermions where
we let the field  (x) live on each site of the lattice x 2 ⇤ like it is done for
scalar fields. This naive introduction leads to the famous fermion doubling
problem: in the continuum limit, a single fermion field corresponds to several
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particles, meaning that unphysical fermions called “doublers” have appeared.
An important no-go theorem, called the Nielsen-Ninomiya theorem, states
that any lattice action with fermions satisfying the usual requirements of lo-
cality, translational invariance, hermiticity of the corresponding hamiltonian
and chirality (necessary to reproduce the Standard Model) will unavoidably
meet the presence of doublers. Any sensible way to introduce fermions on
a lattice has to break one of these assumptions. There are several ways to
do it and, among them, a common one is the usage of staggered fermions,
which break locality by spreading  (x) on several sites by the introduction
of another fermion field  (x). This method has been developed by Susskind
[80] in the 70s and it has found several applications that have become stan-
dard in lattice gauge theories [58, 32]. Recently it has received a renovated
attention in the field of quantum simulations [7, 23, 54]. In d=1 the lattice
is a chain with sites labelled with n = 1, ..., N , so we can identify the links
as (n, n + 1). On each site there is a staggered fermion  n, while the elec-
tric field operators `n,n+1 and the comparators Un,n+1 are defined on links.
In this 1d theory with continuous time, the naive introduction of fermions
causes the presence of one doubler for each physical particle and staggered
fermions solve the problem by separating its particle and antiparticle degrees
of freedom into two sites: on even sites  n is the positive energy part of  
and on odd sites it corresponds to its negative energy part [51].

Being a one dimensional model, there is no magnetic field in this case.
For convenience, we rescale A ! A/g, ` ! g `, making the electric charge g
disappear from the charge density term in (2.28) [23]. The hamiltonian is

H = J
N�1X
n=1

` 2n,n+1�iw
N�1X
n=1

✓
 

†
nUn,n+1 n+1�h.c.

◆
+m

NX
n=1

(�1)

n
 

†
n n (2.27)

where the first is the electric term, the second is the matter gauge-kinetic
term and the last one is the mass term for the staggered fermion field. The
constraint that determines the physical Hilbert space corresponds to the
imposition of the generalization of the Gauss’s law, which takes the form

Gn |physi = 0 , Gn =  

†
n n � (`n,n+1 � `n�1,n) +

1

2

[(�1)

n � 1] (2.28)

The special feature of this theory is the following: if we can restrict ourselves
to the physical Hilbert space, the gauge bosons disappear completely and
we avoid the problem of representing their infinite dimensional Hilbert space
on a quantum computer. Let us start by encoding the fermions into the
qubit Hilbert space. The fermion field operators  n can be mapped into



50 Chapter 2. Quantum simulations for lattice gauge theories

spin operators using a Jordan-Wigner transformation [64]

 n !
Y
l<n

⇥
i�l

z

⇤
�n
� (2.29)

and Un,n+1 = eigAn,n+1 can be removed by the gauge transformation

�n
� !

Y
l<n

⇥
e�igA

n,n+1
⇤
�n
� , (2.30)

which transforms the hamiltonian into H ! H 0, where

H 0
= J

N�1X
n=1

`2n,n+1 + w
N�1X
n=1

(�n
+�

n+1
� + h.c.) +

m

2

NX
n=1

(�1)

n�n
z . (2.31)

After the gauge transformation, the Gauss’s law has taken the form

`n,n+1 � `n�1,n =

1

2

[�n
z + (�1)

n
] (2.32)

and, assuming open boundary conditions, we can solve it by choosing an
initial value `1,2 = ✏0 and then solving for the successive ones, finding

`n,n+1 = ✏0 +
1

2

nX
l=1

[�l
z + (�1)

l
] . (2.33)

Eventually, the hamiltonian becomes the following (if for simplicity ✏0 = 0)

H 00
= HZZ +H± +HZ (2.34)

HZZ =

J

2

N�2X
n=1

N�1X
l=n+1

(N � l)�n
z �

l
z (2.35)

H± = w
N�1X
n=1

�
�n
+�

n+1
� + h.c.

�
(2.36)

HZ =

m

2

NX
n=1

(�1)

n�n
z � J

4

N�1X
n=1

[1� (�1)

n
]

nX
l=1

�l
z . (2.37)

We see that all the gauge variables have completely disappeared. This means
that we don’t need to bother to find how to represent the infinite states of
the electric fields, because its dynamics is already contained into the effective
interaction terms among all fermions and if we need to recover the electric
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fields we can always use eq. (2.33). Using this approach we have traded the
problem of the infinite dimensions with the complexity of the hamiltonian
and in particular of its term HZZ , which contains long distance interaction
terms of the kind �n

z �
l
z. As already pointed out, they are more difficult to

treat but can be implemented on a trapped ions quantum computer using
Mølmer-Sørensen gates [54, 81].

2.5.3 Quantum link models

The Kogut-Susskind hamiltonian of a lattice gauge theory is constructed
using the comparator U , used to form the magnetic term, and the left trans-
lation operator `, which is the surrogate for (minus) the electric field. Being
the basic building blocks, their operator algebra identifies the abstract model
we are studying. Considering again a pure U(1) theory for simplicity. The
algebra of ` and U is encoded into the commutators

[`x,x+î, Ux0,x0+î0 ] = ��x,x0�i,i0 Ux,x+î

[`x,x+î, U
†
x0,x0+î0

] = �x,x0�i,i0 U
†
x,x+î

[Ux,x+î, U
†
x0,x0+î0

] = 0 ,

(2.38)

where each operator is intended to be defined on the same link, since oper-
ators on different links simply commute. On a lattice, the generator of U(1)
gauge transformations is G (x) =

Pd
i=1

�
`x,x+î � `x�î,x

�
, the discrete version

of ~r · ~E. Gauge invariance is guaranteed by [H,G (x)] = 0 and this rela-
tion holds irregardless of the [U, U †

] commutator, which is never involved.
Consider the 3d spin operators Si, i = 1, 2, 3. Together with their corre-
sponding ladder operators S±

= S1 ± iS2, they satisfy [S3, S±
] = ±S±: this

reproduces the main part of (2.38), so under the replacements

`x,x+î ! S3
x,x+î

(2.39)

Ux,x+î ! S�
x,x+î

(2.40)

U †
x,x+î

! S+
x,x+î

, (2.41)

the algebra (2.38) is modified into the following one

[S3
x,x+î

, S�
x0,x0+î0

] = ��x,x0�i,i0 S
�
x,x+î

[S3
x,x+î

, S+
x0,x0+î0

] = �x,x0�i,i0 S
+
x,x+î

[S�
x,x+î

, S+
x0,x0+î0

] = �2�x,x0�i,i0 S
3
x,x+î

(2.42)
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and the hamiltonian defines another kind of lattice theory, called quantum
link model, which preserves the same gauge symmetry as the original model,
because the only commutator that gets modified is [U, U †

]. In contrast to
(2.38), the new building blocks are finite dimensional spin operators and
(2.42) can be realized on a finite number of qubits. The drawback of quantum
link models is that the structure of the gauge coupling is altered: the new
comparator is no longer unitary, since

(S±
)

†S±
= S⌥S± 6= I . (2.43)

The commutators (2.42) are collection of copies of the su(2) algebra and it
has an infinite number of finite dimensional representations, each labelled by
its spin s. The choice of s determines the dimension of the Hilbert space
of a single link as dimH1 = 2s + 1, therefore we can expect to improve the
approximation of the Kogut-Susskind theory by choosing larger values of s,
ultimately recovering an infinite dimensional H1 for s ! 1. Suppose that
we have chosen a value of s to work with. In this context, the eigenstates
of the electric field |ei correspond to states with a well-defined value of S3.
Then S3|ei = |ei e, e = �s, . . . ,+s and H1 =span{|ei}. The comparators
S± are ladder operators on these states: they increase or decrease the value
of the electric flux by one unit, until we reach the boundary states |� si and
| + si, which get annihilated respectively by S� and S+. This is the main
difference with Yang-Mills-like gauge theories, whose comparator is unitary
and will never annihilate a charged physical state with finite norm.

We have considered here a simple pure-gauge U(1) QLM, but matter can
be straightforwardly added, since fermions are untouched by the identifi-
cation with spin operators. The only difference with the Schwinger model
discussed in the previous subsection is that we have to replace `! S3 also in
the Gauss’s law (2.28). Quantum link models were first introduced by David
Horn in 1981 [39] for SU(2) and they have been extended also for QCD
[14] and other gauge groups [17]. Some explicit constructions for quantum
simulations have been proposed, such as in [94].

2.5.4 Finite group approximation

In order to avoid the loss of unitarity typical of quantum link models, we will
purse an alternative approach that consists in approximating the continuous
gauge group with one of its finite subgroups. When G is finite, there are
no convergence problems and L2

(G) becomes the space of all functions on
G, which is isomorphic to the free vector space generated by all elements
of G (cf. Appendix A). Therefore dimL2(G)= |G| < 1 and the gauge
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bosons can be encoded into a qubit register. The subgroup has to be chosen
properly to best reproduce the geometry of the original gauge group, for
example a good choice for approximating U(1) ⇠

=

{ei✓ | ✓ 2 [0, 2⇡[ } may be
Zn

⇠
=

{e2⇡ik/n | k = 0, 1, ..., n � 1}. For more complicated groups the choice
becomes less trivial; let us consider the case of SU(2). It is well known that
SU(2) and SO(3) are locally isomorphic via a double covering SU(2) ! SO(3)
and as a manifold SU(2) ⇠

=

S3. SO(3) contains as subgroups the symmetry
groups of three dimensional polyhedra, e.g. the tetrahedral group T or the
octahedral group O. These groups are a 3d generalization of the dihedral
groups Dn, the symmetry groups of flat polygons. We can use the covering
SU(2) ! SO(3) to lift a subgroup H < SO(3) to a subgroup 2H < SU(2) with
twice the elements of H called “binary group”. So a proper choices of finite
subgroups for SU(2) might be the binary polyhedral groups like 2T or 2O.
This approach has been studied thoroughly in [20] in the context of Monte
Carlo simulations, while we are interested in quantum simulations. The next
chapter is dedicated to explain a general method that allows us to simulate
any finite group pure-gauge theory.





CHAPTER III.

Simulating a general finite group

LGT

We have already pointed out that with a finite gauge group the encoding of
gauge bosons is possible, but of course the details on how to do it will depend
on the specific case we choose. The simplest example probably is G = Z2, so
that H1 = L2

(G)

⇠
=

span{|+1i, |�1i}: the Hilbert space of a link is a single
qubit. We restrict our attention to pure finite group-gauge theories. Suppose
that we have already mapped the states of the gauge bosons on each single
link on a qubit register, whose basis states will be denoted as |gi. A generic
state is a function f : G ! C, that in Dirac’s notation can be expanded as

|fi =
X
g 2G

|gihg|fi =
X
g 2G

|gif(g) . (3.1)

The Hilbert space is endowed with the discrete version of the L2 inner product

hf |gi =
X
h2G

f(h)⇤g(h) . (3.2)

Then it is possible to define a set of “high level” gates into which the evolution
can be decomposed:

1. inversion gate: U�1|gi = |g�1i (3.3)
2. multiplication gate: U⇥|gi|hi = |gi|ghi (3.4)
3. trace gate: Utr(✓)|gi = |gi e i✓Re(tr[g]) (3.5)

4. Fourier gate: UF

X
g 2G

f(g)|gi =
X
⇢2 Ĝ

d
⇢X

i,j=1

ˆf(⇢)ij|⇢, iji . (3.6)

55
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The first gate maps an element of the group to its inverse, the second
realizes the group left multiplication, the third one is a multiplication to a
phase related to the trace of the group element and the last gate is a group-
theoretic generalization of the Fourier transform that we are going to discuss
later. They are are all unitary transformation with respect to the inner
product above defined. If one is able to realize these gates for the chosen
gauge group using the native universal gates of the quantum computer at
hand, then the time evolution can be implemented following the procedure
that is given in Section 2. Before describing the algorithm in detail, we have
to go back to the formulation of the hamiltonian theory, since the Kogut-
Susskind hamiltonian is defined only for compact Lie groups and we want to
extend it for finite groups. This is done in the first section, while we keep
the second one for the description of the general simulation procedure.

3.1 Hamiltonian for a finite gauge group

We had already remarked a few times that lattice gauge theories make sense
also with a finite gauge group, since the theory is constructed using only
group-valued variables. This is clear in the path integral formalism, but
looking at the hamiltonian it is less evident, as the electric field in the Kogut-
Susskind hamiltonian for compact Lie groups (1.83) is a Lie algebra-valued
object, `a, even on a lattice. One possibility to obtain an electric term for
a finite group could be to work within the transfer matrix approach like
we explained in the first chapter, since for path integrals everything is well
defined [48]. Another more “intrinsic” way is possible if we take a better look
at the Kogut-Susskind hamiltonian. We shall see that its structure is deeply
related to the representation theory of the gauge group and their relationship
is crucial to develop an algorithm able to simulate them.

3.1.1 Geometric interpretation of the hamiltonian

Let us recall for convenience the form of the Kogut-Susskind hamiltonian:

HKS = HE +HB =

g2

2ad�2

X
(x,i)

X
a

`a(x, i)
2 � 1

g2a4�d

X
⇤

⇣
trW⇤ + trW †

⇤

⌘
.

The Hilbert space associated to each link is the group algebra H1 = L2
(G),

so that globally the overall Hilbert space is given by the tensor product

H =

O
links

L2
(G) .
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As we have anticipated, the magnetic term is fine also when the gauge group
G does not have a Lie algebra, therefore we shall focus on the electric part.
As long as HE is concerned, the dynamics of the links is decoupled: it is a
sum on all links of the square of the operator `a, generator of left translations
on the group algebra. More in detail, `a is a first order differential operator
generating translations on the functions defined on the group along the direc-
tion a of the group itself (it drags the points along the integral curve of the
generator Ta of G, seen as a left-invariant vector field). The interpretation
for the electric hamiltonian of a single link is clear: it is (proportional to)
the Laplace-Beltrami operator on the group manifold [58]

dim gX
a=1

` 2a = ��G . (3.7)

The metric with respect to which this laplacian is defined is the bi-invariant
metric on G induced by its Killing form [36]. Since we are assuming to work
with a compact gauge group, such as SU(N), the Killing form is negative
definite [71] and if we put it in canonical form we get the minus sign written
above. The electric term looks like a typical kinetic term, proportional to the
laplacian operator acting on the wavefunction. In order to see better how it
acts on the L2(G) wavefunctions, notice that this is also the expression of the
quadratic Casimir operator in the regular representation ⌦ and it commutes
with any other representation matrix within the regular representation:

[⌦, Lg] = 0 8 g 2 G . (3.8)

By the Schur’s lemma, it acts trivially on each irreducible subspace contained
into H. Therefore, our next step is to reduce the regular representation.

3.1.2 The representation basis

Up to now, we have always worked using the “position” basis of H made by
the group elements |gi. Generally speaking, in quantum mechanics there is
another relevant basis which is the one made of momentum eigenstates and
it can be extended also to this context. Remember that the elements of H
are functions on the group. Any | i 2 H can be expanded as

| i =
Z
G

dg  (g) |gi (3.9)

and the elements of the position basis are associated to Dirac delta functions:
the basis vector |gi corresponds to the distribution

eg(h) ⌘ hh|gi = �(g, h). (3.10)
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When the gauge group is continuous, we take as inner product the usual

h'| i =
Z
G

dg '⇤
(g) (g) . (3.11)

In order to define our “momentum” basis, we have to define a proper set of
functions of the group G. Given a representation ⇢ : G! GL(V⇢), consider
the group function

⇢̄ij : G ! C , ⇢̄ij(g) ⌘ ⇢(g)⇤ij 2 C , (3.12)

which maps each group element into its corresponding matrix elements. Let
ˆG be the set of all irreducible inequivalent representations of G. An important
result on the representation theory for compact Lie groups [76], known as the
Peter-Weyl theorem (cf. Appendix A), ensures us that the functions ⇢̄ij form
a basis of H = L2

(G) provided that we vary the representation ⇢ within ˆG
and i, j = 1, . . . , d⇢ ⌘ dim ⇢. This is called the representation basis. We
introduce again the Dirac notation by defining the basis elements |⇢, iji s.t.

hg|⇢, iji =

s
d⇢
|G| ⇢(g)

⇤
ij, (3.13)

where |G| denotes the volume of G w.r.t. the Haar measure. The matrix
elements of ⇢↵, ⇢� 2 ˆG satisfy the orthonormality relationZ

G

dg ⇢↵(g)ij⇢�(g)
⇤
kl =

|G|
d↵

�↵� �ik �jl , (3.14)

which, thanks to the normalization factor above, translates into

h⇢↵, ij|⇢�, kli = �↵� �ik �jl . (3.15)

We shall see it later in a bit more detail, but we anticipate now that the
basis |⇢, iji is exactly the one that reduces the left regular representation. A
simple way to understand it is to act on the basis elements with ⇢L:

[Lh ⇢̄(·)ij](g) = ⇢(h�1g)⇤ij = cik ⇢(g)
⇤
kj , cik = ⇢(h�1

)

⇤
ik .

The block-diagonal structure is clear, because L acts on ⇢̄(·)ij by producing
a linear combination of the other matrix elements ⇢̄(·)kj, all within the same
representation. Actually, the decomposition tells us that

L2
(G)

⇠
=

M
⇢2 Ĝ

�
V ?
⇢ ⌦ V⇢

�
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and the regular representation contains as blocks all the other irreducible
representations of the group, each one appearing a number of times equal to
its dimension. The set ˆG of all representations is discrete as long the group
G is compact, like in our case [31]. At this point, recall that the electric term
of the hamiltonian is proportional to the quadratic Casimir operator

[HE, Lg] = 0 8 g 2 G . (3.16)

The Schur’s lemma can be applied if the regular representation is restricted
to its irreducible components L =

L
⇢2 Ĝ d⇢ ⇢, implying that HE will act as

a multiple of the identity on each of them, so that

HE

��
V
⇢

= f(⇢) Id
⇢

) HE |⇢, iji = |⇢, iji f(⇢) . (3.17)

Overall, if we introduce the projector P⇢ on the representation space V⇢ the
electric term HE can be written in its spectral expansion

HE =

X
⇢2 Ĝ

f(⇢)P⇢ , P⇢ =

d
⇢X

i,j=1

|⇢, ijih⇢, ij| . (3.18)

To summarize, we have seen that there are two relevant bases. One is the
group element basis {|gi}, called also magnetic basis because it diagonalizes
the magnetic term HB, whose eigenvalues on a plaquette are related to the
value of the magnetic flux. The other is the representation basis {|⇢, iji},
called also electric basis because it diagonalizes the electric term HE and the
eigenvalues �⇢ are related to the value of the electric field on the link [57].
The relationship with the electric part of the hamiltonian and the quadratic
Casimir of the gauge group allows us to see its gauge-invariance without any
further calculation. Recall that a gauge transformation is represented by

J = Lg(e+)Rg(e�) ,

where g(e+) and g(e�) are the group elements associated to the target site
and to the source site of the link e. The left and right regular representations
share the same properties and both contain all irreducible representations as
their irreducible components. V⇢, where HE acts trivially, is an invariant
subspace for both of them and they clearly commute:

[HE,J] = 0. (3.19)

We had already commented on the gauge-invariance of the magnetic term,
which is manifest when working in the group element basis, so we have a
hamiltonian divided into two parts that are separately gauge-invariant and
this fact will also be useful for the simulation procedure.
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3.1.3 The finite group electric term

With all the machinery introduced in the previous subsection, the electric
part of the hamiltonian can be extended to the case of a finite gauge group.
The basic requirement is that we want to preserve the structure

HE =

X
⇢2 Ĝ

d
↵X

i,j=1

|⇢, iji f(⇢) h⇢, ij|

and it can be done since finite groups and compact Lie groups share a lot
of properties concerning their representations. What is left to fix are the
eigenvalues �(⇢) and the different methods that provide us a possible HE

correspond to different choice of the eigenvalues. This freedom should not
be seen as a limitation, but rather it is an opportunity: the choice of the
gauge group does not fix completely the lattice theory and several models
with different eigenvalues of the energy can be considered.

As far as we know, there is not a single best method in literature to deter-
mine this eigenvalues in general. For instance, in [63] a plausible expression
of f(⇢) for G = ZN is chosen in order to match the correct continuum limit
ZN !U(1) for N ! 1 (and assuming a unique ground state). Other works
on non abelian groups focus on dihedral groups, which should recover a O(2)
theory in the continuum limit, and [9] proposes the eigenvalues for DN ex-
ploiting its similarities with cyclic groups, since it is a semi-direct product
ZN o Z2 while [48] uses the transfer matrix method. Here, we shall review
the method proposed in the thesis [52], referring to it for more details.

The idea is to enforce the similarity of the electric term with the laplacian
on the Lie group and to keep defining it as a laplacian also when G is a finite
group. Of course, when G is finite it is not associated to a manifold and a
laplacian in the common sense cannot exist. In general, there is a whole class
of differential operators that commute with the group algebra [84, 85]. Since
a general conventional choice is lacking, we choose a simple possibility: we
define the laplacian on a finite group as the laplacian of its Cayley graph.
The Cayley graph encodes the structure of the group operation. To define it,
let us consider a symmetric generating set � of the group G. Here symmetric
means that g�1 2 � 8 g 2 �. � is not unique and each choice of � leads in
general to a different graph, so we denote it as Cay(G,�). Now

1. the vertices of Cay(G,�) are the elements of G;

2. g, h 2 G are connected by an edge if 9� 2 � s.t. h = �g , hg�1 2 �.



3.1. Hamiltonian for a finite gauge group 61

Figure 3.1: Some example of Cayley graphs, respectively for Z5 with gen-
erating set {s}, Z5 with generating set {s, s2} and D4 with generating set
{r, s}. This image is taken from [52].

� is symmetric, so it is irrelevant to definite it with gh�1 or hg�1. In Fig.
3.1 there are some examples of a Cayley graph. Typically it is chosen also
1 /2 � so that the edges do not include loops on each site. We will choose also
� to be closed under conjugation � 7! g�g�1 The laplacian of a graph is its
degree matrix minus its adjacency matrix [25]. The vector space on which it
acts is the space of all functions on the sites of the graph, but since the sites
of Cay(G,�) are the group elements we are correctly working on the group
algebra C[G] = {f :G! C}. Being a finite group, there are no convergence
issues and we don’t need the request of summability.

Let us define the two matrices in the group element basis. The degree
matrix D of a graph is the diagonal matrix whose eigenvalues are the con-
nectivities of the sites. For a Cayley graph, each site g is connected to
h = �g 8 � 2 �, so the connectivities are all equal to |�|. Therefore

D = |�| I , (3.20)

it is proportional to the identity and it is diagonal on every basis. Instead,
the adjacency matrix A has matrix element Agh = 1 if the vertices g and h
are linked by an edge. Hence, it acts on |fi =

P
g f(g)|gi as

[Af ](g) = hg|A|fi =
X
h2G

Aghf(h) (3.21)

Following [25], in this case Agh = 1 iff h = �g and we can rewrite A as an
operator using the definition of the left regular representation

[Af ](g) =
X
�2�

f(�g) =
X
�2�

L�f(g) ) A =

X
�2�

L� . (3.22)

If � is closed under conjugation, the adjacency matrix commutes with the
left regular representation, since

ALg =

X
�

L� Lg =

X
�

L�g =
X
�0

L(g�0g�1)g =

X
�0

LgL�0 = LgA (3.23)
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The Schur’s lemma implies that also A acts trivially on each irreducible
component of L and

A =

X
⇢2 Ĝ

a(⇢)P⇢ . (3.24)

Notice that it has the exact block-diagonal structure that we need for the
electric term. By making use of the familiar decomposition of the regular
representation, we can express it also as

A =

X
�2�

L� =
X
�2�

M
⇢2 Ĝ

d⇢⇢(�) =
M
⇢2 Ĝ

d⇢
X
�2�

⇢(�) (3.25)

if we equate them and if we compute the trace within each block we get

a(⇢) d⇢ =
X
�2�

�⇢(�) , (3.26)

where �⇢ is the character associated to the representation ⇢. This expression
fixes the eigenvalue a(⇢). Then, we define the laplacian as

� = D � A (3.27)

and its spectral decomposition follows from (3.20) and (3.24)

� =

X
⇢2 Ĝ

d
↵X

i,j=1

f(⇢)P⇢ , f(⇢) = |�|� 1

d⇢

X
�2�

�⇢(�) . (3.28)

The laplacian of a graph is positive-semidefinite and the trivial representation
corresponds to the ground state. It has dimension d0 = 1 and it maps every
element g 2 G to the identity matrix, so that �0(�) = tr Id

⇢

= 1 8 � 2 �,
implying that f(⇢0) = 0. For non-abelian groups, where irreducible repre-
sentations with more than one dimension are allowed, the states |⇢, iji are all
associated to the same eigenvalue and some degenerations in the spectrum
are guaranteed. We conclude this section by giving our definition for the
complete hamiltonian in the finite group case:

H = HE +HB =

g2

2ad�2

X
(x,i)

�(x,i) �
1

g2a4�d

X
⇤

⇣
trW⇤ + trW †

⇤

⌘
. (3.29)

3.2 Duality and generalized Fourier
transforms

In the first part of this chapter, we have introduced the representation ba-
sis, whose key role is manifest since it is the generalization of the electric
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field basis. However, its properties have not been fully discussed yet, as we
postponed some important comments in order to avoid losing the train of
thought while we were constructing the hamiltonian for a finite gauge group.
In particular, this section is dedicated to analyze the duality that holds be-
tween the representation basis and the group element basis, which is crucial
for quantum simulations. In a similar way to what happens in quantum me-
chanics with the usual position and momentum basis, they are related by a
Fourier transform, which in this case has to be properly generalized in order
to act on the functions defined on a group. This kind of Fourier transform
is also extremely useful in many algorithms of quantum computation, for
instance regarding the famous hidden subgroup problem [34].

We shall present their duality starting from the compact Lie group case,
but for finite groups it is equivalent and it will extend straightforwardly. The
representation basis is composed by the kets |⇢, iji, corresponding to the ma-
trix elements that realize each group element in an irreducible representation

hg|⇢, iji =

s
d⇢
|G| ⇢(g)

⇤
ij .

Being a basis, for any function f 2 L2
(G) there are some constants c⇢,ij s.t.

f(g) =

s
d⇢
|G|

X
⇢2 Ĝ

d
⇢X

i,j=1

c⇢,ij ⇢(g)
⇤
ij (3.30)

and these coefficients can be shown (cf. Appendix A) to be the following

c↵,ij = ˆf(⇢)ij , ˆf(⇢) =

s
d⇢
|G|

Z
G

dg f(g)⇢(g) . (3.31)

The object ˆf(⇢) is the Fourier transform of f : G ! C computed on the rep-
resentation ⇢ and, being a linear combination of matrices ⇢(g) 2 GL(V⇢), it is
an element of End(V⇢). This realizes an isomorphism L2

(G)

⇠
=

�⇢2 ĜEnd(V⇢).
But why is (3.31) a generalization of the Fourier transform? To see it,

take a look at the usual Fourier series. It is defined for periodic functions,
that can be regarded as functions on the circle. Given f : [0, 2⇡[! C , then

f(✓) =
X
n2Z

ˆf(n) ein✓ , ˆf(n) =
1

2⇡

Z 2⇡

0

d✓ f(✓) e�in✓ (3.32)

and it is related to the group U(1), as the function f(✓) that we are expanding
can be seen as f : U(1) ⇠

=

S1 ! C. The inequivalent representations of U(1)
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are ⇢n(ei✓) = ein✓, which are exactly the elements of the Fourier plane wave
basis, and the sum labelled by the index n 2 Z is a sum on all inequivalent
representations of U(1). Analogously, the r.h.s. of eq (3.30) has a sum on
ˆG, the set of all inequivalent representations of the group G. The second
sum is on the matrix elements i, j = 1, ..., d⇢ of the representative matrices
in the representation ⇢. This second sum disappears in the usual Fourier
series, since U(1) is abelian and all its irreducible representations are one
dimensional. Also (3.31) reduces to the usual Fourier coefficients. The reason
why we are actually comparing to the Fourier series and not to the Fourier
transform is that we have chosen to work with a compact gauge group, whose
irreducible representations ˆG form a countable set. If we had considered R,
instead, ˆ

R

⇠
=

R and, coherently, it yields the usual Fourier transform [74].
The representation basis is useful because it diagonalizes the electric part

of the hamiltonian as a consequence of reducing the left regular representa-
tion. We shall see here better why. In our context it is convenient to work
with Dirac’s notation. Using (3.13), the Fourier transform is rewritten as

ˆf(⇢)ij =

s
d⇢
|G|

Z
G

dg f(g)⇢(g) =

Z
G

dg h⇢, ij|gihg|fi . (3.33)

Using the completeness relation of the group element basis, it becomes simply

ˆf(⇢)ij = h⇢, ij|fi , (3.34)

and the Fourier expansion of eq. (3.30) takes the form of a completeness
relation for the representation basis |⇢, iji:

hg|fi =
X
⇢2 Ĝ

d
⇢X

i,j=1

hg|⇢, ijih⇢, ij|fi . (3.35)

It should be clear now that the Fourier transform is just a change of basis,
moving the vector from the group element basis, where it is expanded like in
(3.9) to the representation basis, where its expansion is the Fourier series

|fi =
X
⇢2 Ĝ

d
↵X

i,j=1

ˆf(⇢)ij |⇢, iji . (3.36)

To find the abstract expression for the Hilbert space operator associated
to the Fourier transform, let us consider first the structure of a change of
coordinates for simplicity in the finite dimensional case. A coordinate change
operator is just an identity operator expanded with two different basis on
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domain and codomain. Suppose that we want to go from the orthonormal
basis |eii of a general vector space to another orthonormal basis |fii. Using
their completeness relations, we can define the coordinate change operator

M = I · I =
X
i,j

|fii
⇣
hfi|eji

⌘
hej| . (3.37)

When acting on a vector |vi =
P

k vk|eki, it produces M |vi =
P

i |fiihfi|vi,
that is again the vector |vi but expanded in the new basis |fii. One can also
define a basis change matrix N that maps the two sets of basis vectors as

|fii =
X
j

|ejiNji . (3.38)

Notice that this is a row by column multiplication only if we gather the
basis vectors into a row vector. A straightforward calculation shows that the
matrix associated with M is the inverse of N . In our context, the two bases
are |gi and |⇢, iji and the change of coordinates operator is given by

UF =

X
⇢, ij

Z
G

dg |⇢, iji
⇣
h⇢, ij|gi

⌘
hg| (3.39)

and when it acts on a generic element |fi expanded in the group element
basis it produces exactly the relation written above in eq. (3.6). Moving the
sum on representations inside the integral, the operator takes the form

UF =

Z
G

dg |ĝihg| , |ĝi =
X
⇢2 Ĝ

d
⇢X

i,j=1

s
d⇢
|G| ⇢(g)ij |⇢, iji (3.40)

This expression can be used to prove that the left regular representation is
block diagonal. Since Lg |hi = |ghi, it can be rewritten as

Lg =

Z
dh |ghihh| . (3.41)

By changing the basis from the group elements to the matrix elements

ˆLg = UF Lx U
†
F =

Z
dxdy

Z
dh |x̂ihx|ghihh|yihŷ0| =

Z
dh |cghihˆh| ,

substituting the definitions, it can be expressed as

ˆLg =

Z
dh

X
⇢,⇢0

X
ij,i0j0

p
d⇢d0⇢
|G| ⇢(gh)ij⇢(h)

⇤
i0j0 |⇢, ijih⇢, i0j0| .
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Now, if we expand ⇢(gh)ij = ⇢(g)il⇢(h)lj we can compute the integral using
the completeness relation of the |hi basis, therefore finding [18]

ˆLg =

X
⇢2 Ĝ

X
i,j,l

|⇢, iji ⇢(g)il h⇢, lj| . =
X
⇢2 Ĝ

�
⇢(g)⌦ Id

⇢

�
, (3.42)

As it can be easily checked by computing the matrix elements of ⇢(g) ⌦ Id
⇢

onto the states |⇢, ri|⇢, si ⌘ |⇢, rsi, it is exactly to the tensor product

ˆLg =

X
⇢2 Ĝ

�
⇢(g)⌦ Id

⇢

�
, (3.43)

with the block-diagonal structure that we have claimed before. The finite
group case is completely analogous, up to minor differences. The first one it
that when G is finite the Hilbert space L2

(G) becomes the set of all func-
tions on the group, since there are no convergence problems anymore. The
elements |gi correspond to

eg : G ! C , eg(h) = �g,h ,

where �g,h is a proper Kronecker delta, so that now eg is a function instead of
a distribution and |gi is a basis for L2

(G) in the proper sense, implying that
dimL2

(G) = |G|. For a finite group the set ˆG of all inequivalent irreducible
representations is finite instead of countable [31]. Then, the formulas that
we gave for compact groups can be repeated if we make the replacement

1

|G|

Z
G

dg �! 1

|G|
X
g 2G

,

interpreting now |G| as the order of the group. For reference, we repeat here
some formulas. The Fourier transform operator of (3.40) becomes

UF =

X
g 2G

|ĝihg| , |ĝi =
X
⇢2 Ĝ

d
⇢X

i,j=1

s
d⇢
|G| ⇢(g)ij |⇢, iji (3.44)

And when it acts on |fi =
P

g f(g)|gi it reproduces exactly the Fourier gate
that we have given in the beginning of this chapter

UF

X
g 2G

f(g)|gi =
X
⇢2 Ĝ

d
⇢X

i,j=1

ˆf(⇢)ij|⇢, iji .
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To see better how it works, we conclude this subsection by giving a simple
but important example of this transform. Consider G = Z2 = {e, s}, so that

L2
(G) = span{ee, es} , (3.45)

where ee(g) = �e,g and es(g) = �s,g. Z2 is self-dual in the sense of the Pon-
tryagin duality [74], meaning that ˆ

Z2
⇠
=

Z2: its set of inequivalent irreducible
representations is still a group and it is isomorphic to the initial group. So
Z2 has only two inequivalent irreps:

• the trivial representation ⇢1, s.t. ⇢1(e) = 1, ⇢1(s) = 1 ;

• the roots of unity representation ⇢2, s.t. ⇢1(e) = 1, ⇢1(s) = �1.

Both are 1d representations and the two functions of the Fourier basis are

1p
2

⇢1(g) =
1p
2

⇣
ee(g) + es(g)

⌘
(3.46)

1p
2

⇢2(g) =
1p
2

⇣
ee(g)� es(g)

⌘
. (3.47)

We can immediately identify the matrix N introduced above by looking at

(|⇢1i, |⇢2i) = (|eei, |esi)
✓
1/
p
2 1/

p
2

1/
p
2 �1/

p
2

◆
⌘ (|eei, |esi)N . (3.48)

The change of coordinates is M ⌘ UF , so that N corresponds to U†
F

UF =

✓
1/
p
2 1/

p
2

1/
p
2 �1/

p
2

◆
= U†

F . (3.49)

This procedure can be easily generalized to any cyclic group Zn, finding that
our group-theoretical Fourier transform reduces to the usual discrete Fourier
transform. Consider Zn = {e, s , ..., sn�1}. All cyclic groups satisfy ˆ

ZN
⇠
=

Zn

and their irreps (all 1d, being Zn abelian) can be identified as

⇢j(s
k
) = e

2⇡i

n

jk , j = 0, ..., n� 1 .

If we denote with |⇢ji the representation basis, the Fourier transform of f is

ˆf(j) = h⇢j|fi =

s
dj
|Zn|

X
g2Z

n

f(g)⇢j(g) ) ˆf(j) =
1p
n

n�1X
k=0

f(sk) e
2⇡i

n

jk

(3.50)
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which is a discrete Fourier transform. Instead, the operator UF is the usual
quantum Fourier transform [61]. Being UF linear, in order to characterize it
it is enough to see how it acts on a basis, then let us specify eq. (3.6) for the
basis vectors f = eh, so that f(g) = eh(g) = �h,g. Let g = sk, h = sk̃, then

beh(j) = 1p
n

n�1X
k=0

eh(s
k
)⇢j(s

k
) =

1p
n

n�1X
k=0

�sk,sk̃ e
2⇡i

n

kj
=

1p
n
e

2⇡i

n

k̃j , (3.51)

and, using this explicit form of the Fourier transform, eq. (3.6) becomes

UF | sk̃i =
n�1X
j=0

1p
n
e

2⇡i

n

k̃j| ⇢ji . (3.52)

If we rename ˜k ⌘ k, |sk̃i ⌘ |ki and |⇢ji ⌘ |ji we see that it is just the
quantum Fourier transform, whose implementation as a quantum circuit is
well known [61]

|ki 7�! 1p
n

n�1X
j=0

e
2⇡i

n

kj|ji . (3.53)

It is straightforward to verify that in the Z2 case the matrix associated to
this transformation coincides with the one given in eq. (3.49). Notice that
our choice of normalization for the states |⇢, iji ensures their orthonormality,
so that UF < represents a change of basis between two orthonormal sets of
states and it is therefore unitary. Unitary operators are the kind of operations
that are allowed on qubits in a quantum computer! This operator is a gener-
alization of the quantum Fourier transform, often abbreviated QFT, which
is of extreme importance for the field of quantum computing, because it is
one of the few operations that have a well-known quantum algorithm whose
advantage with respect to the classical counterpart (the fast Fourier trans-
form) is exponential [61]. Moreover, many computational problems reduce
to algebraic questions, so that group-theoretical properties become funda-
mental in the algorithm design phase. Some examples of applications of the
quantum Fourier transform and its generalization, together with procedures
to implement them in circuits can be found in [34, 40, 59, 70].

3.3 Time evolution algorithm

Finally, we are ready to describe a procedure able to implement the time
evolution operator U(t) = e�iHt for a generic finite group lattice gauge theory,
using the gates introduced by [48]. We shall assume that an initial state | ii
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that is physical (i.e. it satisfies the gauge invariance condition G| ii = 0)
has already been prepared. Then, being H gauge-invariant, [G,H] = 0 and
[G, e�iHt

] = 0, implying that the evolved state will remain physical, since it
satisfies Ge�iHt| ii = 0. Now, in order to realize the time evolution we need
to implement as a quantum circuit U(t) = e�iHt, where H = HE +HB. Let
us recall the form of the Hamiltonian:

H = HE +HB = �E
X
(x,i)

�(x,i) � �B
X
⇤

⇣
trW⇤ + trW †

⇤

⌘
.

Where we have generalized the coefficients of the two terms as �E and �B.
First, we assume that for every link there is a qubit register which en-
codes its the state, identifying the states on the register with the group
element/magnetic basis of the system. Then we proceed by following the
trotterization procedure described in Section 2.3. First, divide t into n Trot-
ter steps �t = t/n, so that

U(t) =
nY

j=1

e�i(H
E

+H
B

)�t . (3.54)

Then, use the Trotter approximation on the operators HE, HB to decompose

U(t) ⇡
nY

j=1

e�iH
E

�te�iH
B

�t . (3.55)

Notice that now we are not time evolving along the original hamiltonian,
but along an approximation and in general it may lose gauge invariance. In
this occasion we do not have this problem, as both HE and HB are sepa-
rately gauge-invariant and time evolving with eq. (3.55) will not break the
physicality of the initial state. At this point, we can realize the two electric
and magnetic parts of the time evolution taking advantage of the previous
discussion, where we have come to the conclusion that HB is diagonal in the
group element basis and HE is diagonalized by the Fourier transform gate.

Let us start from HB. Wilson loops of different plaquettes are commuting,
so we can separate exactly the exponentials on different plaquettes as

e�iH
B

�t
=

Y
p

U (p)
B (�t) . (3.56)

Now we can consider individually each plaquette; suppose that we want to
implement the evolution generated by Re tr W = Re tr[U0U1U

†
2U

†
3 ], where
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Figure 3.2: Quantum circuit realizing the time evolution of a single pla-
quette generated by the magnetic term of the hamiltonian.

Figure 3.3: Circuit realizing the time evolution of 4 links generated by HE.

0, 1, 2, 3 label the four links of a plaquette. This operator acts on a sin-
gle plaquette Hilbert space H = L2

(G)0 ⌦ L2
(G)1 ⌦ L2

(G)2 ⌦ L2
(G)3 3

|U0i|U1i|U2i|U3i. Re W is diagonal on the |Ui basis and

U (p)
B (�t) |U0i|U1i|U2i|U3i = |U0i|U1i|U2i|U3i e�i(�2�

B

�t)Re trW . (3.57)

The factor 2 comes from trW⇤ + trW †
⇤, which returns two times the real

part of the Wilson loop operator. The circuit that implements eq. (3.57)
is depicted in figure 3.2, where a triple line represents a qubit register that
encodes a single link state. First we choose one of the registers to transform
it into the sequence of group elements of the plaquette W = U0U1U

†
2U

†
3 ; a

simple choice is to start from |U3i, since our multiplication gate is a left
multiplication. This step uses the two gates U⇥, U�1: first act with U�1 on
the qubits that have to be reversed, then realize the product on |U3i Now
|U3i 7! |U0U1U

†
2U

†
3i and acting on it with U

tr

(✓) produces in the L2
(G)3
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register the phase factor of eq. (3.57) if we choose

✓ = 2�B�t (3.58)

To reproduce completely the final state, we just have to undo the first trans-
formation on L2

(G)3, so that |U0U1U
†
2U

†
3i 7! |U3i.

Now let us turn to the electric part e�iH
E

�t. Again, terms on different
links commute and we can separate the exponentials in the following way

e�iH
E

�t
=

Y
l

U (l)
E (�t) . (3.59)

The implementation of U (p)
B (�t) was straightforward because it was already

diagonal, now we choose to diagonalize U (l)
E (�t) to simplify its realization.

Suppose to have the operator T expanded in the basis E = {|eii} and that
M is the coordinate change operator between E and F = {|fii}, which
diagonalizes T . The diagonal expansion of T in the new basis F is given by

[T ]F = M [T ]EM
�1 . (3.60)

In our case, M = UF and we denote U (l)
E (�t) in the new basis and it will be

a diagonal phase gate that is simple to realize. We get

U (l)
E (�t) = U†

F Uph UF . (3.61)

In figure 3.3 there is represented the circuit that realizes the electric part
of the time evolution operator, that is just eq. (3.61) implemented link by
link. We cannot specify further the structure of Uph because it will be highly
dependent on the model considered and it has to be studied case by case.





CHAPTER IV.

Zn gauge models

Approximating the gauge group with one of its finite subgroups is a possible
path that can lead to accurate simulations of lattice Lie-group gauge theories.
To start this program regarding quantum simulations, we consider the case of
the approximation of the group U(1) with Zn. We have focused on a simple
case, in order to better analyze the performance of this approach. If we added
matter fields, our model would become a finite group approximation of QED
in an arbitrary number of dimensions. Even if this is the simplest case it is
not a trivial one, since, as we have outlined in the first chapter, also abelian
gauge theories can have very interesting phase diagrams.

4.1 Pure Zn lattice hamiltonian

We start by specifying the construction of the previous chapters to the
group G=Zn. The single link Hilbert space is L2

(Zn) and it is generated
by |gi , 8 g 2 Z = {e, s, . . . , sn�1}. The electric term is most easily written
in the representation basis, made of the elements |⇢ji, j = 1, . . . , n, which
satisfy the duality relation

hsk|⇢ji =
1p
n
⇢j(s

k
)

⇤
=

1p
n
e�

2⇡i

n

jk .

We need the laplacian of the group Zn. Let us choose the generating subset
of the Cayley graph as � = {s, s�1}, so that |�| = 2. The irreducible
representations ⇢j are all one dimensional, so the characters are

�j(s
±1
) = ⇢j(s

±1
) = e± 2⇡i

n

j.

73



74 Chapter 4. Zn gauge models

The resulting laplacian for Zn can be expressed by the following equation

� =

n�1X
j=0

f(⇢j)Pj , f(⇢j) = 2


1� cos

✓
2⇡j

n

◆�
= 4 sin

2

✓
⇡j

n

◆
(4.1)

and the electric term is proportional to the sum of the laplacians on all links

HE = �E
X
(x,i)

�(x,i) . (4.2)

The magnetic term instead is diagonal on the magnetic/group element basis
|ski. If we work within the representation j = 1 of the roots of the unity,
sk ⇠ e

2⇡i

n

k and the “position” operator is U such that

U |ski = |ski e 2⇡i

n

k . (4.3)

The operator U is used to build the magnetic term of the hamiltonian:

HB = ��B
X
⇤

⇣
W⇤ +W †

⇤

⌘
= �2�B

X
⇤

ReW⇤

W⇤ = U`1U`2U
†
`3
U †
`4
,

where we have called `1, . . . , `4 the oriented links of the plaquette ⇤. The
trace is irrelevant here, since we are working with a one dimensional rep-
resentation. Recall that the two bases are related by the quantum Fourier
transform (3.52). Furthermore UF is just an identity operator expanded in
two different bases, so that we can actually identify the abstract vectors as

|ski = 1p
n

n�1X
j=0

e
2⇡i

n

kj |⇢ji .

It can be interesting to see how the operator U acts on the electric/representation
basis. Acting with conjugate of the equation (4.3) on the ket |⇢ji, one finds

hsk|U |⇢ji =
1p
n
e�

2⇡i

n

k(j+1)
= hsk|⇢j+1 (modn)i ,

where modn means that we are identifying n+1 ⇠ 1, n+2 ⇠ 2 etc. As long
as this identification is understood, it can be rewritten as

U |⇢ji = |⇢j+1i . (4.4)

The states |⇢ji have a definite value of the electric field and the operator
U acts as a ladder operator, raising the electric field on the link where it
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is defined. Clearly, U † is the corresponding lowering operator. Recall our
quick discussion of quantum link models in section 2.5.3. QLM also had U
and U † represented as ladder operators, but they where spin operators and
they annihilated the states with maximum or minimum value of the third
component of the spin. Now, instead of annihilating the extremal states, we
get a cyclic action able to preserve the unitarity of the model.

In this context, the electric field is represented by an operator V somewhat
dual to the magnetic field operator U . V is diagonal on the representation
basis and its eigenvalues are the same that also U has, because ˆZn

⇠
=

Zn:

V |⇢ji = |⇢ji e
2⇡i

n

j (4.5)

and it will act by cyclically permuting the eigenstates of the magnetic term
|ski. A computation [53] shows that they satisfy the Schwinger-Weyl algebra

V U = e
2⇡i

n V U , (4.6)

which can be taken as the starting point to build these Zn models along
another path [53, 63]. The Schwinger-Weyl group is the discretization of the
Weyl group, generated by the commutator of a coordinate with its conju-
gate momentum [q, p] = i and this fact can be used to perform a controlled
continuum limit Zn !U(1) [53].

4.2 Ising gauge theory

Today, quantum computers are still at a first development stage. As we have
already pointed out, apart from the intrinsic quantum uncertainties, they
suffer from noise-related problems, decoherence and we don’t have a large
amount of qubit at our disposal. In order to keep the circuits as simple as
possible, we focus on the Z2 case, which happens to be a relevant model by
itself: it is related to the first lattice gauge theory introduced by Wegner [89]
in 1971 promoting the global symmetry of the Ising model to a local one.

4.2.1 Formulations of the model

When G=Z2, each element is the inverse of itself: g = g�1. Working within
the unitary representation ⇢1(sk) = e

2⇡i

2 k, the elements of Z2 are e ⇠ +1, s ⇠
�1 and they satisfy g† = g. As a consequence, the operator U becomes
hermitian and so does any Wilson loop W⇤, therefore we do not need to add
its conjugate to the magnetic hamiltonian, that becomes

HB = ��B
X
⇤

W⇤ = ��B
X
⇤

ReW⇤ . (4.7)



76 Chapter 4. Zn gauge models

With this convention, there is a lacking factor 2 with respect to the original
Kogut-Susskind term. The U operator acts as

U |ei = |ei (+1)

U |si = |si (�1) ,

therefore on the magnetic basis it is represented by the Pauli matrix �z

U = |eihe|� |sihs| ) U =

✓
1 0

0 �1

◆
= �z (4.8)

and the magnetic term takes the following form:

HB = ��B
X
⇤

�z
`1
�z
`2
�z
`3
�z
`4
. (4.9)

The eigenvalues of the laplacian are now f(⇢0) = 0 and f(⇢1) = 4, so that
on the electric basis it can be expressed as

� = |⇢0i 0 h⇢0|+ |⇢1i 4 h⇢1| . (4.10)

hence the electric term becomes

HE = �E
X
`

�` . (4.11)

The original Wegner’s model had the same structure, the only difference
being that the electric term had eigenvalues �1, +1, so that its diagonal form
was given by the matrix ��z. The magnetic and electric bases are related
by a Z2 quantum Fourier transform, which is represented by

UF =

1p
2

✓
1 1

1 �1

◆
= U†

F .

More explicitly, the representation basis eigenstates can be found as

|⇢0i =
|ei+ |sip

2

, |⇢1i =
|ei � |sip

2

. (4.12)

Performing this change of basis on ��z shows that it is represented by ��x

on the magnetic basis, so the hamiltonian of Wegner’s Z2 gauge theory was

HW = ��E
X
`

�x
` � �B

X
⇤

�z
`1
�z
`2
�z
`3
�z
`4
. (4.13)

The same model can be found also as a suitable limit of a deformed toric
code, as it is explained in [82]. We shall stick to our form of the electric term,
but what we are going to say can be repeated also for Wegner’s model, since
the only difference is a rescaling of the electric eigenvalues and it does not
change the general behaviour of the system.
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4.2.2 Structure of the Hilbert space

Consider a 2d N ⇥N lattice with periodic boundary conditions, which con-
tains N2 plaquettes and 2N2 links. In the magnetic basis, a single link Hilbert
space is H1 = span {|�z

= +1i, |�z
= �1i} ⇠

=

C

2. The full Hilbert space of
the model is H ⇠

=

(C

2
)

⌦2N2 . In this case, a transformation can only change
the state of a link by flipping it and, in the magnetic basis we are working
in, it is exactly what �x does:

�x
=

✓
0 1

1 0

◆
) �x |�z

= ±1i = |�z
= ⌥1i .

The plaquette operator, renaming in counterclockwise direction the plaquette
links from 1 to 4 starting from the bottom, is now A gauge transformation
is defined by choosing a group element g(x) at each site of the lattice. A
link will transform under the action of the element at its source and of the
element of its target point. Overall, each site acts on its four neighbouring
links (see Fig. 4.3); if g(x) = e the action will be trivial, while if g(x) = s
the states of the four links will be reversed. If we denote ` � x the set of
links that contain the site x, given any site x 2 ⇤ we can define

A(x) =
O
`�x

�x
` , (4.14)

which is sometimes called star operator and it encodes the action of a Z2

gauge transformation. It clearly commutes with the electric term, since they
are diagonal in the same (representation) basis and a straightforward calcu-
lation shows that it commutes also with the magnetic term. Hence, the full
hamiltonian is gauge-invariant as it should be and it satisfies

[A(x), H] = 0 8 x 2 ⇤ . (4.15)

gauge-invariant states should satisfy the constraint A(x) |physi = |physi 8 x.

A(x)

l1l3

l4

l2
W⇤

l1

l3

l2l4

Figure 4.1: Example of how a star operator and a plaquette operator act.
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Figure 4.2: Some examples of gauge-invariant electric loops on a single
plaquette and on a 4⇥ 4 lattice with open boundary conditions.

The two eigenstates of the single link electric term are also eigenstates of �x

|⇢0i =
|�z

= +1i+ |�z
= �1ip

2

= |�x
= +1i

|⇢1i =
|�z

= +1i+ |�z
= �1ip

2

= |�x
= �1i .

The electric vacuum is the overall state |⇢0i⌦2N2 , where all links are in the
state |⇢0i. It is gauge-invariant and it is the ground state of the electric term.
Consider now the state where all the links are in |⇢0i but one, that is taken
in the state |⇢1i. Let that link be `, connecting the points `� and `+. It
is an eigenstate of all star operators, but A(`�) and A(`+) have eigenstate
-1. This is the state of the gauge field corresponding to the presence of two
electric charges in the sites `� and `+ [29, 53]: it is not a gauge-invariant
state but it is nevertheless meaningful, since it would become gauge-invariant
if we added matter. A straightforward generalization of this state is the one
where, instead of a single link, we have switched on to |⇢1i all the states
along a path Cxy from a site x to another site y. In this case it represents
the string that links two electric charges in the sites x and y.
To get a gauge-invariant state, each A(x) must act on an even number of |⇢1i
states. Consequently, the gauge-invariant Hilbert space is generated by the
states where the links in |⇢1i form a closed path, such as the ones represented
in Fig. 4.2. We call this basis for the gauge-invariant Hilbert space the basis
of the electric loops and it will be denoted B. The electric loops of arbitrary
shape and size are exactly the states generated by acting on the electric
vacuum with arbitrary products of plaquette operators W⇤, which behave
like creation operators for the physical Hilbert space.



4.2. Ising gauge theory 79

4.2.3 The Z2 confined phase

It is simple to see that in the strong coupling limit the behaviour of this
model is confined. Recall that in our hamiltonian

H = �E
X
`

�` � �B
X
⇤

W⇤ ,

the coefficients �E and �B are proportional to g2 and 1/g2, so that in the
strong coupling limit g ! 1 the electric term dominates. In this limit, at
the leading order the ground state is the electric vacuum

|E0i1 =

O
`

|⇢0i` ,

which is the ground state of the electric term. This fact is general for any
gauge group, since |⇢0i is always the ground state of the laplacian on each link
and it is a gauge-invariant state. The first excited states are the short electric
loops along each plaquette. Each link carries energy E = 4�E, so that the
state has energy E = 16�E. The basis of gauge-invariant states described
before covers exactly the set of eigenstates of the electric term: a generic
eigenstate is an electric loop along L links, whose energy is E = 4�E L.

Other states typical of the this phase are the confined quark-antiquark
pairs. As we have seen, in the Z2 case there are only two possible values for
the charge: 0, absence of charge, and �1, presence of a charge, so that the
distinction between particles and antiparticles is lost. Consequently, here a
quark-antiquark pair becomes the state with two electric charges linked by a
gauge string that has already been introduced. Also this state can be realized
by acting on the electric vacuum with a suitable operator. Notice that the
Pauli matrix �z becomes �x in the basis of the eigenstates of �x, implying
that �z|�x

= 1i = |�x
= �1i. Therefore, going back to the magnetic basis,

the state with two electric charges at x and y is

W [C xy] |E0i1 =

O
`2C

xy

�z
` |E0i1 . (4.16)

W [Cxy], that we can call the Wilson string operator, creates two electric
charges at the endpoints of the string Cxy. In abstract, it takes the form

W [C xy] =

O
`2C

xy

U` . (4.17)

To see that it is a confined phase, let us compute the string tension on this
state with two electric charges, that we take for simplicity along the same
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direction and with distance R = |x � y|. As we have already argued, the
corresponding state of the gauge field is a string connecting x and y, whose
energy is E = 4�E L. The string tension is computed with the minimum en-
ergy eigenstate contained into the trial state with two charges, consequently
L has to be the length of the shortest string from x to y and we get

E(R) = �R +O(1/g2) , � = 4�E . (4.18)

As we have claimed, there is a finite string tension and the phase is confined
and, furthermore, this proves that time-like Wilson loops satisfy the area law.
With a bit more work it is possible to prove that also space-like Wilson loop
satisfy the area law [30, 39]. At the leading order, W [C ] |E0i1 switches on the
links along the loop C and 1hE0|W [C ] |E0i1 = 0: the states are orthogonal.
Treating the magnetic term as a small perturbation of the hamiltonian, it can
be shown that the first order in perturbation theory at which the perturbed
ground |E0i overlaps with the state W [C ] |E0i is n, where n equals to the
number of plaquettes surrounded by C [29]. Therefore n is proportional to
the area of the loop C and the resulting behaviour is

hE0|W [C ] |E0i = const ·
✓

1

g2

◆n

= const · e�µ(g)A[C ] . (4.19)

More in detail, it is possible to prove [46] that the strong coupling expan-
sion has a finite radius of convergence and this implies the existence of a
critical coupling gc at which a quantum phase transition takes place, since
the analyticity breaks down. The ground state can be written as a different
superposition of electric loops at any coupling, since it must be a gauge-
invariant state. In the limit g ! 1 all links are turned off and getting closer
to gc increases the size and the number of the electric loops contributing to
the ground, so that at the quantum critical point gc the electric loops prolif-
erate. The correlation length ⇠ is related to the size of the electric loops and
it diverges as g ! gc

⇠(g) ⇠ (g � gc)
�⌫ , (4.20)

where ⌫ is the corresponding critical exponent. Like it is typical in quantum
phase transitions, the energy gap � shrinks at the critical point and the first
excited state becomes degenerate with the ground [44, 75]

� ⇠ (g � gc)
z ⌫ ⇠ ⇠ z . (4.21)

Here z is another critical exponent. The correlation length at a given cou-
pling is sometimes taken as a measurement of the characteristic length of
confinement at that scale.
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4.2.4 The Z2 deconfined phase

In the weak coupling limit, instead, the phase of the model turns out being
deconfined and it has a non-trivial topological structure. When g = 0 the
hamiltonian contains only the magnetic term and its ground state has on each
link |�z

= 1i, the eigenstate of �z with eigenvalue +1 (and not �1, because
of the minus in front of the magnetic term). In abstract the eigenstates of
�z form the group element basis and, in particular, |�z

= 1i corresponds to
the identity element. The overall ground state is then

|E0i0 =
O
`

|ei` . (4.22)

This state is not gauge invariant: |ei = |�z
= 1i and the action of the star

operator flips to |�z
= �1i the states of the links where it acts. Gauge

invariant states are most easily described in the electric basis, where gauge-
invariant states have only loops of switched on links. |�z

= 1i satisfies

|�z
= 1i = |�x

= 1i+ |�x
= �1ip

2

,

then a gauge invariant ground state can be written as a uniform superposition
of all gauge-invariant states in the basis of electric loops B [29, 44]

|E0i0 =
X

| i 2B

| i . (4.23)

This is a manifestly gauge-invariant form for |E0i0 and it shows the prolif-
eration of electric loops in the deconfined case. A spatial Wilson loop is a
product of �z operators, so that at the leading order obviously

0hE0|W [C ] |E0i0 = 1 .

A similar kind of reasoning to the one we have outlined in the confined
case using perturbation theory [28] shows that only the plaquettes along C
contribute to corrections, resulting in the perimeter law

hE0|W [C ] |E0i = e�f(g) p[C ] . (4.24)

In the confined phase the excited states were electric charges, now there are
excitation corresponding to magnetic charges, or magnetic vortices. Under
the action of the star operator, a state | i having an electric charge in the
position x satisfies

A(x) | i = �| i . (4.25)
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x̃
X[

eC ]

ỹ

x

W [C ]

y

Figure 4.3: The Wilson line operator W [C ] acts on the links where the
path C lies, while the ’t Hooft loop operator X[

eC ] acts on the links crossed
by the path on the dual lattice eC .

Similarly, | i contains a magnetic vortex in the plaquette ⇤ iff

U⇤ | i = �| i . (4.26)

Consider the dual lattice ˜

⇤, whose sites lie in the middle point of each plaque-
tte in the 2d case. Let eC be a path on ˜

⇤ joining two sites x̃, ỹ and therefore
their corresponding plaquettes. A with two magnetic vortices can be created
if we act on the deconfined vacuum |E0i0 with a ’t Hooft string operator

X[

eC ] =

O
`\ eC

V` =
O
`\ eC

�x
` , (4.27)

where by ` \ eC we mean the links that intersect the path on the dual latticeeC . The second expression is its realization in the magnetic basis, showing
that it flips the state of the links where it is acting on. The figure 4.3 shows
a pictorial representation of these two operators. In contrast to W [C ], X[

eC ]

is a product of �x operators and it is gauge-invariant, so it is allowed to have
a non-vanishing expectation value. This enables another interpretation of
the confinement transition: Wegner’s model is dual to the 2D quantum Ising
model and under this duality the operator that creates magnetic charges
maps to the magnetization. Deep in the confined phase, where the ground
state is close to having |�x

= 1i on each link, the expectation value of
X[

eC ] is clearly of the order of the unity and the confined phase maps to
the ferromagnetic phase, while in the thermodynamic limit it is 0 in the
whole deconfined phase [82]. Therefore, the transition from deconfinement
to confinement can be seen as a condensation of magnetic monopoles [29].
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X1

X2

Figure 4.4: On the left the simplest visual example of how contractible ’t
Hooft lines are not independent of star operators. On the right, two non-
contractible ’t Hooft lines are shown.

4.2.5 Boundary conditions and the Z2 topological fluid

We have yet to consider the effects of the boundary conditions on the model.
What has been said up to know holds irrespectively from them, but the
periodic boundary conditions embed the Z2 lattice on a torus and it earns a
non-trivial topological structure. Consider the operator X[

eC ]. Obviously it
commutes with the electric part of the hamiltonian, but, using the algebra
of Pauli matrices �i�j

= �ij + i✏ijk�k, a direct calculation shows that it
commutes also with the magnetic term when the path eC is a loop, owing to
the fact that each plaquette is intersected 0 or 2 times by eC if it is closed

[X[

eC ], H] = 0 . (4.28)

Since these ’t Hooft strings are gauge-invariant operators, there seems to
be a wealth of other symmetries of the model. This is actually incorrect,
because on a contractible loop X[

eC ] can be expressed as a product of star
operators, as it is represented in 4.4, so (4.28) does not provide any further
information that is not already contained in the gauge invariance of the
hamiltonian. However, our model lives on a torus and there are two non-
contractible loops on the dual lattice eC1 and eC2, along which the ’t Hooft
loop cannot be a product of star operators: the theory on a torus has two
additional independent symmetries, generated by the ’t Hooft loop operators

Xµ ⌘ X[

eCµ] =

O
`\ eC

µ

V` , (4.29)

with µ = 1, 2. The other relevant gauge-invariant operator, i.e. Furthermore,
when g = 0 the hamiltonian has another interesting symmetry. Let Cµ be
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a non-contractible loop that wraps around the µ direction of the toroidal
lattice. Then we define the Wilson loop operator along it

Wµ ⌘ W [Cµ] =

O
`2C

µ

U` (4.30)

and it clearly commutes with H at g = 0 because the hamiltonian has only
the magnetic term ⇠ �z. Putting everything together, these operators satisfy
the following commutation relations [21]

[Xµ, H] = 0 (4.31)
[Wµ, H] = 0 if g = 0 (4.32)

{Xµ,W⌫} = 0 if µ 6= ⌫ , (4.33)

trivially completed by [Wµ,W⌫ ] = 0 and [Xµ, X⌫ ] = 0. As always, the
presence of a (true) symmetry implies degeneration: Xµ and H commute and
there is a common basis of eigenstates |x1x2, Ei. W⌫ maps an eigenstate of
Xµ into another one with opposite eigenvalue due to their anticommutation:

Xµ

�
W⌫ |x⌫i

�
= �W⌫Xµ |xµi =

�
W⌫ |xµi

�
(�xµ) .

As we shall see soon, the eigenvalues of Xµ are ±1. So if we start with the
eigenstate of X1, X2 (but not yet of H) |++i we get the quadruplet:

|++i (4.34)
W1 |++i = |+�i (4.35)
W2 |++i = |�+i (4.36)

W1W2 |++i = |��i . (4.37)

The model has four symmetry sectors that are called topological sectors,
since their presence is determined by the topological global structure of the
lattice. Now, if the initial state is chose as an eigenstate also of H |++, Ei,
the states where the operators Wµ send it may have a different energy, but
at g = 0 [Wµ, H] = 0 and the four topological sectors | + +, Ei, | + �, Ei,
|�+, Ei, |��, Ei are degenerate.

Consider the electric vacuum |E0i1, on which all links occupy the state
|�x

= 1i. Then, clearly |E0i1 belongs to the (+,+) sector. The ground state
always belongs (+,+). In general, it is possible to prove that the splitting of
the topological sectors in the deconfined phase is suppressed exponentially
by the length of the torus and in the thermodynamical limit the four sectors
become degenerate on the whole deconfined phase [29]. Suppose now to flip
from |�x

= 1i to |�x
= �1i all the links on a non-contractible loop along the
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direction ˆ

1 on the lattice. The state has become a non-trivial electric loop
along ˆ

1 and it is an eigenstate of X2 with eigenvalue �1. In general, it is im-
mediate to see that Xµ measures the parity of the number of non-contractible
electric loops along ⌫̂, making clear their topological nature. More in gen-
eral, the topological sectors are related to the “handles” of the surface we
are working in: if the surface has genus g, the ground state degeneracy is
4

g. This degeneracy that is present only in one phase and not in the other is
not related to a loss of symmetry, but it depends on the different topological
properties of the ground states: in one case the electric loops proliferate and
wrap around the handles, in the other case only short trivial loops are present
and the ground has to be in the (+,+) sector. The deconfined phase of this
model is a topological phase called Z2 topological fluid. This structure can
be extended to all Zn models. General ’t Hooft and Wilson loops are

Xµ =

O
`\ eC

µ

V` , Wµ =

O
`\C

µ

U` (4.38)

and they satisfy again [Xµ, H] = 0 and [Wµ, H] = 0 if g = 0, but {Xµ,W⌫} =

0 is replaced by the Schwinger-Weyl algebra commutation relation (4.6).
Each Xµ operator has n eigenvalues corresponding to the representations
of Zn, which result in n topological sectors for each dimension, each one
counting the number of non-trivial loop along the other directions modn. In
general, a Zn model of this kind in d dimensions will show nd topological
sectors.





CHAPTER V.

Implementation of the quantum

algorithm

Now that we have described how our Zn models are constructed and what
behaviour should be expected, all there is left to do is to realize the digital
quantum simulation using the methods that have been discussed so far. For
our simulation we have chosen to focus on the simplest case, that is n = 2, for
mainly two reasons. One is that the number of qubits demanded is propor-
tional to the order of the gauge group, hence with more complicated groups
the requirements would quickly exceed the current hardware availabilities.
The second reason is that this is a rather young field of study and, to our
knowledge, the published works where the simulations have actually been
implemented on a digital quantum computer are not many [8, 21, 77, 56];
consequently, working with a relatively simple and well-known model can
serve as a benchmark to test the performance of the methods employed. In
Appendix B a few basics of quantum computing are quickly discussed. After
having specified the U gates for G=Z2 we describe our simulation, which
consists in the preparation of the ground states at several values of the cou-
pling and in the measurements of the corresponding expectation values of the
energy and of some Wilson loops. These observations can be used to study
the phases of the system.

5.1 The gate-set for Z

2

In the third chapter we have introduced four unitary operations, U�1, U⇥, Utr

and UF , which can be used to decompose the time evolution generated by
the hamiltonian of a lattice gauge theory with an arbitrary gauge group. In
this section we see how to represent them for Z2, where they turn out being

87
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Figure 5.1: Quantum circuits that implement the Z2 multiplication (above)
and the Z2 trace gate (below).

particularly simple. We can express the group Z2 as

Z2 = {e, s | s2 = e} . (5.1)

It is a group of order 2, so dimL2
(G) = |Z2| = 2 and a register of single

qubit is enough to encode the Hilbert space of a single link. We choose
to identify the computational basis with the group element basis and in
particular |0i ⌘ e and |1i ⌘ s. To implement the U gates, we should see first
how they act on the group element basis and then realize the corresponding
transformation on the states of the computational basis.

1. Inversion gate U�1|gi = |g�1i

In this case it is trivial: since e�1
= e, g�1

= g, we can conclude that U�1 = I.

2. Multiplication gate U⇥|gi|hi = |gi|ghi

The table of all products of Z2 is e · e = e, e · g = g, g · e = g, g · g = e. The
identifications above allow us to translate it into a truth table for U⇥.

g h g g · h
0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

We immediately see that on |gi it is an identity, while it acts on |hi as a
CNOT controlled by |gi, so U⇥ can be realized as the circuit in figure 5.1.
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3. Trace gate U
tr

(✓)|gi = |gi e i✓Re tr[g]

To define a trace on Z2 we have to work within a specific representation, so
now we should identify e = 1 and g = �1. Therefore U

tr

(✓) acts as

|0i 7! |0i ei✓

|1i 7! |1i e�i✓ .

A phase gate U(�) maps |0i 7! |0i, |1i 7! |1i ei� and it is represented by

U(�) =

✓
1

ei�

◆
. (5.2)

We can revert its action by applying an X ⌘ �x gate before and after it:

¯U(�) = XU(�)X =

✓
ei�

1

◆
, (5.3)

that produces the transformation |0i 7! |0i ei�, |1i 7! |1i. In the end, U
tr

(✓)
can be realized as ¯U(✓)U(�✓), as depicted in figure 5.1.

4. Fourier gate UF

P
g2G f(g)|gi =

P
⇢2Ĝ

Pd
⇢

i,j=1
ˆf(⇢)ij|⇢, iji .

As it was described in Section (3.5), on Zn this gate is the usual quantum
Fourier transform and its implementation as a quantum circuit is well known.
Here it happens to be a single Hadamard gate, as it can be see in Eq. (3.49).

5. Phase gate U (l)
E (�t) = U†

F Uph UF .

A precise expression for Uph is given once we specify the electric term HE.
As we have already said, we choose the Yang-Mills like electric term defined
by the Zn laplacian (4.1), that in the electric basis takes the form

UFHEU
†
F = �E

X
links

X
⇢
j

f(⇢j) ˆP⇢
j

, f(⇢j) = 4 sin

2

✓
⇡j

N

◆
. (5.4)

Specifying it for Z2, j = 0, 1 and then f(0) = 0, f(1) = 4, which implies

UFHEU
†
F = �E

X
links

⇣
|⇢0i 0 h⇢0|+ |⇢1i 4 h⇢1|

⌘
. (5.5)

Taking the exponential of each single link term we find Uph = U†
F e

�iH
E

�tUF =

e�iU†
F

H
E

U
F

�t, that is associated to the matrix
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Uph = exp

⇢
�i�E�t

✓
0 0

0 4

◆�
=

✓
1 0

0 e�4i�
E

�t

◆
(5.6)

and it can be directly implemented as the phase gate U(� = �4�E �t).
Given an arbitrary initial state encoded into a suitable set of qubits, the cor-
responding evolved states given by the applications of e�iH

E

�t and e�iH
B

�t

are obtained by applying these gates in the combinations described in the
section 3.3. This is the gate Uph appearing in the electric time evolution
(3.61), while U�1, U⇥ and U

tr

(✓) are used to build the magnetic evolution
(3.57). The only difference to what is described in the third chapter is that
now the parameter ✓ has to be chosen as

✓ = �B�t , (5.7)

which does not have the factor 2 of the equation (3.58), because the Z2

magnetic term given in (4.7) is already self-adjoint without needing to sum
its conjugate.

5.2 Preparation of the initial state

Our aim is to compute the expectation of values of some operators on the
ground state of the hamiltonian, which is a different state |E0ig depending
on the value of the coupling g. We have to find a way to prepare the ground
state at any given value of g and this will be the first part of the computa-
tion, as it has been described in the second chapter. There are two possible
ground states that are particularly simple to describe and, hopefully, to im-
plement: the electric vacuum |E0i1 and the magnetic vacuum |E0i0, that
are respectively the grounds in the two limits g ! 1 and g ! 0

|E0i1 =

O
`

|�x
= 1i , |E0i0 =

O
`

|�z
= 1i .

A possible approach that can be followed to prepare |E0ig is to employ the
protocol of adiabatic quantum computation. The idea is to exploit the adia-
batic theorem of quantum mechanics [55], which, roughly speaking, consists
in the following statement. Consider a time dependent hamiltonian H(t) and
its ground state at t = 0 |E0(t = 0)i. If the hamiltonian were time inde-
pendent, the state would be unchanged by time evolution, which would be
realized by the operator e�iHt. Now the hamiltonian is time-dependent, but,
if its evolution is sufficiently slow, the time-evolved state will remain very
close to the instantaneous ground state at the time t |E0(t)i. This state-
ment can be made more precise and we shall see in a while what controls
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the accuracy of this approximation. A review on the topic is [4]. As a con-
sequence, if we encode the time dependence of the hamiltonian into a slow
evolution of the coupling g(t), we should be able to get an approximation of
the ground state |E0ig(t) by time-evolving the ground state at a fixed value
of the coupling g(t = 0) with the methods described before.

Which of the two limiting ground states is more convenient to take as the
initial state? This question probably does not have a single best answer, as
each choice has its advantages and drawbacks. The most immediate advan-
tage of the electric vacuum is its simplicity: it is already gauge invariant and
it can be immediately realized by applying a Hadamard gate on each link,
because |�x

= 1i = (|�z
= 1i+ |�z

= �1i)/
p
2. Furthermore this procedure

can be straightforwardly generalized to any other gauge group and it can be
always implemented with the gate-set introduce before, since the state |⇢0i of
the representation basis can be prepared with the aid of the Fourier gate. A
gauge invariant vacuum in the g ! 0 limit is less immediate to prepare. The
article [21] describes a possible implementation of this state, but it involves
projection operators, that are not unitary and cannot be inserted as a part of
an actual quantum computation. Projections can be simulated by perform-
ing measurements on the system, but it turns out being only a probabilistic
realization of the desired projector and this would decrease the efficiency of
the procedure on a real quantum device. The authors of [21] were able to
circumvent this issue because they had employed a classical simulator of a
quantum computer, so, for the sake of the general spirit of this thesis (i.e.
to keep the methods used as general and as “quantum” as possible) we shall
stick to the first possibility. We are going to see this point better, but the
disadvantage of this choice is that it increases the range of values of the
coupling that has to be covered, which results in worse uncertainties.

After all these comments, let us describe in detail the first part of the
simulation algorithm. We start the procedure with each qubit on the state
|0i = |�z

= 1i = |ei. Then, we apply on each of them a Hadamard gate that
produces the electric vacuum with

|+i = |�z
= 1i+ |�z

= �1ip
2

= |�x
= 1i

on every link. If we plan to produce the ground state at any other coupling
with an adiabatic evolution that starts from the confined electric vacuum, it
is convenient to rewrite the hamiltonian as follows:

H =

X
`

�` + h
X
⇤

U`1U`2U`3U`4 . (5.8)
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We have placed a single coupling constant h in front of the magnetic term,
so that in the limit h ! 0 the electric term dominates and the ground state
is our desired initial state. The adiabatic evolution that prepares the ground
state at any other coupling h can be implemented with a slight modification
of the Trotter algorithm presented in the second chapter: we reproduce the
time evolution generated by an evolving hamiltonian by letting the coupling
vary in each Trotter step, starting from hj=0 = 0 to a large enough value
hj=N

s

= hf , where Ns is the total number of Trotter steps. If the evolution
of hj is sufficiently slow, i.e. if the steps �h at which h is increased are
sufficiently small, the adiabaticity should be preserved. At each step j, the
hamiltonian is

Hj = HE + hj HB =

X
`

�` + hj

X
⇤

U`1U`2U`3U`4 , hj = �h · j (5.9)

where the magnetic term has been renamed with the coupling extracted for
convenience. If each Trotter step lasts for ts, hj = �h · j is the coupling
hj ⌘ h(tj) at the time tj = ts · j, so we are effectively realizing a linear
growth of the coupling h(tj) = �h/ts · tj. The evolution we implement is

N
sY

j=1

e�iH
j

t
s

=

N
sY

j=1

e�iH
E

t
s

�ih
j

H
B

t
s (5.10)

and the electric and magnetic evolution terms are decoupled by making use
of the Trotter approximation

N
sY

j=1

e�iH
j

t
s ⇡

N
sY

j=1

⇣
e�iH

E

t
s e�ih

j

H
B

t
s

⌘
. (5.11)

Since the electric part and the magnetic part of the hamiltonian are sepa-
rately gauge invariant, this decomposition will preserve the gauge invariance
of the initial state. Furthermore, they also separately commute with the two
non-contractible ’t Hooft loops Xµ, µ = 1, 2, so that the state will remain in
the (+,+) topological sector throughout all the evolution. For each step, the
error introduced by this approximation is estimated by the operator norm of
their difference [77], which is bounded by the commutator������ e�i(H

E

+h
j

H
B

) t
s � e�iH

E

t
s e�ih

j

H
B

t
s

������  t2s
2

����⇥HE, hjHB

⇤���� . (5.12)

Recall that our single link electric term, in the representation basis, is given
by the laplacian �

Z2 = diag (0, 4). In the same basis, V = diag (�1, 1),
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implying that �
Z2 = 2V +2I. Consider the magnetic term on a plaquette in

the group element basis, where it is represented by �z
`1
�z
`2
�z
`3
�z
`4

. It does not
commute only with the electric terms on the links of the plaquette, with V
being represented by a �x matrix in this basis. The Pauli algebra implies����⇥

2�x
`1
+ 2I, hj �

z
`1
�z
`2
�z
`3
�z
`4

⇤ ����
=

�����4hji �
y
`1
�z
`2
�z
`3
�z
`4

����
= 4hj

since the norm of a tensor product of operators is the multiplication of their
norms and Pauli matrices have a unitary norm [5]. Taking into account
the 4 links for each plaquette whose operators �x do not commute with the
magnetic term and the overall Np plaquettes, the error on a single step is

�T,j 
t2s
2

16Np hj = 8Npt
2
s hj (5.13)

and it should be propagated on all steps. Since hj = �h · j, we have

�T =

N
sX

j=0

�T,j  8Npt
2
s�h

N
sX

j=0

j = 8�hNpt
2
s

Ns(Ns � 1)

2

.

Recall that �h = hf/Ns. Then, apart from the factor 4, approximation
Ns(Ns � 1) ⇡ N2

s yields the scaling law of the error

�T ⇡ hf NpNs t
2
s . (5.14)

It is important to keep track also of the conditions under which the adiabatic
theorem provides a good approximation of the exact vacuum. The adiabatic
theorem is exact if the evolution is infinitely long and infinitesimally slow,
but this is of course impracticable. The standard quantitative version of the
theorem states that the adiabatic approximation is good as long as the rate
at which the matrix elements of the hamiltonian vary is slow compared to
the time scale set by the inverse of the energy gap � between the ground
and the first excited state [4]. If tf is the total evolution time, the adiabatic
condition can be expressed as

max

t2 [0,t
f

]

|hE1(t)| @H/@t |E0(t)i|
|�(t)|2 ⌧ 1 . (5.15)

The approximation is spoiled if the state of the system gets soiled by un-
wanted transitions in higher energy states and the transitions that are more
likely are on the states with closest energies. This is why often it is enough to
restrict the attention to the first excitation. The energy eigenvalues also vary
with t, so one should make sure that the condition is satisfied in the worst
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case, when the gap �(t) is the smallest and spurious transitions are more
likely to happen. There seems to be a problem here: by varying the coupling
this model should cross a critical point, where the correlation length becomes
infinite and the gap shrinks like in Eq. (4.21). If � = 0, the corresponding
time scale 1/� becomes infinite and the adiabatic approximation inevitably
fails. The way-out is that the gap actually shrinks only in the thermody-
namic limit and we are going to implement the simulation only for small
lattices, so that with a sufficiently slow evolution this issue can be avoided.
Yet another difficulty has to be overcome: as we have explained in the section
4.2, the four topological sectors become degenerate in the deconfined case.
Again this would break the adiabaticity of the evolution, but this problem
too can be avoided. The reason is that this is a symmetry protected transi-
tion: there are symmetry operators Xµ commuting with the hamiltonian for
all the values of the coupling hj

[Xµ, Hj] = 0

which implies that the population transfers between states belonging to dif-
ferent symmetry sectors are exactly forbidden [92], so the gap that has to be
considered is between the ground and the first excitation in the (+,+) sector.
The time dependence of the hamiltonian is contained only in the coupling,
that increases of �h in a time step ts, so a rough estimate of the parameter
that governs the adiabatic approximation can be given by the ratio

r =
�h

ts
=

hf

Ns ts
, (5.16)

which has to be compared with the squared gap at any coupling [21]. We see
a non-trivial interplay between these two error sources: the Trotter approx-
imation works better if the evolution time is shorter, but a variation of the
coupling occurring in a very short time may result in a quench that spoils
the adiabaticity. Consequently, the choice of the parameters Ns, ts will be a
delicate matter.

5.3 Measurement of physical observables

After having realized an approximation of the ground state at a given cou-
pling h with the methods described in the previous section, we measure some
quantities which help us characterizing the state that we have prepared. We
have chosen to measure the ground state energy and the expectation values
of contractible Wilson loops, whose behaviour can be used to characterize the
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phases of the model, as explained in the fourth chapter. The hamiltonian is

H =

X
`

�` � h
X
⇤

U`1U`2U`3U`4

and a generic Wilson loop operator along a path C is defined as

W [C ] =

O
`2C

U` .

The hamiltonian is always hermitian, but in the Z2 also Wilson loops are
hermitian operators due to the self-adjointness of U` = U †

` . To measure
them, we employ a slightly modified version of the algorithm for dynamical
correlation functions (2.6) presented in the second chapter.

Let Q be an hermitian operator that we want to measure. If we replace the
unitary operators in (2.6) with V = I , W = e�iQt the previously described
procedure allows us to measure C(t) = h | e�iQt | i on any state | i, that
in our case consists in the approximate ground state |E0ih. Then, to extract
the expectation value of Q we make the estimate

h |Q| i = i
d

dt
h | e�iQt | i

���
t=0

⇡ i
C(✏)� C(0)

✏
, (5.17)

Where ✏ is some small time interval that has to be chosen. If we expand the
state | i into the basis of the eigenstates |qi of Q, we get

C(✏) =
X
q

e�iq ✏h |qihq| i =
X
q

e�iq ✏ p (q) . (5.18)

Actually, it is enough to measure only the imaginary part of C(✏). To see it,
let us expand at the first order the equation above

C(✏) =
X
q

⇣
cos(q✏) p (q)� i sin(q✏)p (q)

⌘
=

=

X
q

p (q)� i
X
q

q✏ p (q) +O(✏2) = 1� i
X
q

q✏ p (q) +O(✏2)

because all probabilities add up to one. Then C(0) = 1, so (5.16) implies

h |Q| i ⇡ i
�i✏

P
q qp (q) +O(✏2)

✏
= i

i ImC(✏) +O(✏2)

✏
.

In conclusion, we can measure the expectation value of an operator Q as

h |Q| i ⇡ �ImC(✏)

✏
. (5.19)
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Figure 5.2: Circuit measuring the expectation value of a Z2 Wilson loop
along the links `1, `2, `3, `4, `5, `6, on the state encoded by the registers on
the left.

We apply this method to the operators Q = H and Q = W [C ]. To do it
we only need to know how to implement the unitary evolutions generated
by them and this is very simple. For the energy we have to realize e�iHt,
which is the ordinary time evolution operator and we have already explained
how to implement it. W [C ] is a product of independent U` operators, so it
has exactly the same structure of the magnetic term of the hamiltonian. For
instance, if the loop along which we are studying the Wilson loop consists of
the links `1, `2, `3 travelled in the positive direction and `4, `5, `6 travelled
in the negative direction, the corresponding Wilson loop operator is

W [C ] = U`1U`2U`3 U
†
`4
U †
`5
U †
`6
= U`1U`2U`3U`4U`5U`6 (5.20)

and e�iW [C ]t can be implemented with the circuit in Fig. 5.2, that is anal-
ogous to the circuit which realize the magnetic part of the time evolution,
apart from the adaptation of the number of links and a modification of the
parameter ✓ of the trace gate U

tr

(✓), which now has to be chosen as

✓ = �ts . (5.21)

If the gauge group were something different from Z2 and W [C ] were not her-
mitian, we should have measured separately the real part and the imaginary
part of the expectation value. This measurement can be carried on with the
circuit represented in Fig. 2.2. We only need the imaginary part, which
equals the expectation value of �y acting only on an ancillary qubit prepared
in the state |+i. The eigenstates of �y are mapped into the computational
basis states by the rotation

Rx

⇣⇡
2

⌘
= e�i ✓2 X

=

p
2

2

✓
1 �i
�i 1

◆
, (5.22)

in such a way that Rx(⇡/2)|�y
= 1i = |0i and Rx(⇡/2)|�y

= �1i = |1i. As a
consequence, ImC(✏) will be measured by counting the occurrences of zeroes
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and ones in the computational basis:

ImC(✏) = (+1) p (�
y
= 1) + (�1) p (�

y
= �1) =

= pR
x

(⇡/2) (0)� pR
x

(⇡/2) (1) .
(5.23)

5.4 Implementation and results

Using the methods described before, we have realized the simulation for the
3⇥ 3 lattice with periodic boundary conditions represented in Fig. 5.3. The
periodic conditions ensure that the number of sites equals the number of
plaquettes, so that we have worked with Np = N2

= 9 plaquettes and sites,
while the number of links is N` = 2N2

= 18, which corresponds to 18 qubits
needed to encode the lattice, plus an additional ancilla for the measurements.
The simulation has been carried out within the Qiskit framework and using
the local qasm simulator (see Appendix B), in order to avoid dealing with
the additional noise introduced by the large number of gates employed.

The simulation algorithm contains three free parameters: the number of
Trotter steps Ns, the duration of each step ts and the short time ✏ used
to approximate the derivatives that give us the expectation values. The
parameter ✏ has been chosen as ✏ = 20 ts for all simulations, after several
attempts that probed its influence on the measurements. In this context the
Trotter step ts is our “infinitesimal” time and clearly ✏ has to be larger than
ts. On a time scale of the order ✏ ⇠ ts the results were too much unstable,
while if ✏ is too large it does not provide anymore a good approximation
of the derivative. The other two parameters were chosen to be the ones
whose corresponding circuit for the trotterized adiabatic evolution prepares
the best approximation of the ground state, while keeping the running time
of the program sufficiently short. Each run follows the steps below:

1. choice of the final coupling h;

2. construction of the circuit (with Ns steps, each with duration ts) that
adiabatically prepares the ground state at the coupling h;

3. construction of the circuit that measures the expectation value of one
observable (the energy or a Wilson loop);

4. executions on the local simulator and extraction of the output.

The quantum algorithm stops at each extraction of the output, since projec-
tive measurements cause the final quantum state to collapse. The executions
of the circuit should be many because each measurement tells us if the state
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Figure 5.3: The lattice on which the simulation has been implemented,
which is composed of 32 plaquettes and 2 ·32 links due to the periodic bound-
ary conditions. The links are labelled starting from the horizontal ones and
then by enumerating all the vertical ones.

of the ancilla has collapsed into |0i or into |1i and we need to find the prob-
abilities for the two cases, following Eq. (5.23). We have chosen to extract
the probabilities with 1000 shots of the quantum circuits and they provide a
single measurement of the chosen observable (energy or Wilson loop). The
measurements of the output were unstable due to the quantum nature of the
final states, so we had to extract some statistics by taking repeated measure-
ments at each value of the coupling. Then, these steps have been iterated
for several values of the final coupling, in order to outline a graph of the be-
haviour of the observable. The range of values that we cover should at least
cross the phase transition region, in order to observe interesting physics.

The results for the ground state energy are reproduced in Fig. 5.4, with
two different sets of parameters ts, Ns. Fig. 5.4 (a) has ts = 0.005 and
Ns = 200, which correspond to the errors

�T ⇡ hNpNst
2
s = 4, 5 · 10�2 · h

r =
h

Nsts
= h

and Fig. 5.4 (b) has parameters ts = 0.0008 and Ns = 600, corresponding to

�T ⇡ hNpNst
2
s ⇡ 3.45 · 10�3 · h

r =
h

Nsts
=

25

12

h .
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(a) ts = 0.005, Ns = 200

(b) ts = 0.0008, Ns = 600

Figure 5.4: Measurements of the expectation value of the energy of the
Z2 LGT on a 3 ⇥ 3 lattice with p.b.c. on the approximate ground states
at couplings h. The red line shows the exact values of the ground state
energy, computed with an exact diagonalization algorithm. The error bars
are discussed in the text.

Both the Trotter error �T and the parameter r estimating the adiabaticity
are proportional to the final value h at which the evolution stops. This
behaviour is reflected in the two pictures: at small values of the coupling,
the measured value of the energy coincides with the exact value with great
accuracy, while the deviations increase together with the coupling. The exact
values of the ground state energy have been independently computed using
an exact diagonalization algorithm.
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Figure 5.5: The behaviour of the first energy levels of the system, evaluated
with an exact diagonalization. The figure of the left has depicted the ground
and the first excited state in the topological sector (+,+), which shrink at the
phase transition point. The figure on the right represents the ground states
of the four topological sectors, that become degenerate in the deconfined
phase. The sectors (+,�) and (�,+) are symmetric and their grounds are
overlapping on the blue line, while the red line actually is the ground of the
(�,�) sector only after the level crossing indicated by the cusp, since at
h = 0 its energy is 24 > 12.

The measurements reported in the two pictures correspond to the mean
values of a set of 30 measurements taken at each coupling h, while the er-
ror bars are the standard deviations of the distributions. Usually the error
associated to a mean value is the standard deviation of the mean, but it
has been chosen to draw the bare standard deviation to show more clearly
that the second choice of the parameters (supposed to improve the Trotter
error at the expense of the adiabaticity) entails an enlargement of the overall
errors. This second choice ts = 0.0008, Ns = 200, however, results also in an
improvement of the mean values. With ts = 0.005, Ns = 200, the energies
were compatible with the actual ground level until h ⇡ 3. This means that
the state which has been prepared by our adiabatic evolution is a very good
approximation of the true ground until h ⇡ 3, while after that value the
errors become macroscopic, they produce larger deviations in the prepared
state which, in turn, result in an increasing number of collapses in the first
excited states instead of the ground. Instead, with ts = 0.0008, Ns = 600,
the results are in agreement until h ⇡ 6, which is a notable improvement,
and even above that value the deviations accumulate more slowly. This be-
haviour is not unexpected. To explain it, let us consider more in detail the
adiabatic condition, recalling that the parameter r should be compared to the
square of the gap with the first excited state. There is a slight difference with
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what we have explained in the fourth chapter due to small dimension of the
lattice. When h = 0 the overall ground state corresponds to all links in the
electric ground |⇢0i = |�y

= 1i. With a large lattice, the first excited states
have a single plaquette whose links are switched on into |⇢1i = |�y

= �1i,
corresponding to the energy 4 · 4 = 16. Since this is a 3 ⇥ 3 lattice, the
states with a single non-contractible electric loop now have energy 4 ·3 = 12,
which is smaller and, at least when h = 0, they are the first excited states.
However, like we have already argued, this is a symmetry protected process
and the transitions to these states belonging to different topological sectors
are forbidden. Therefore we have to consider the gap with the first excited
state in the (+,+) sector, that is the plaquette with energy 16 mentioned
above. If h = 0 in both cases we have

r = h ⌧ 16

2 , r =
25

12

h ⌧ 16

2

and the adiabatic condition is satisfied. The behaviour of the true values of
the ground and the first excited states is depicted in 5.5. In the thermody-
namic limit, this gap should close at the phase transition point, thus making
the adiabatic approximation inapplicable. But we are far from the thermo-
dynamic limit, since this is only a 3 ⇥ 3 lattice, so the two levels get only
slightly closer. Therefore, when h is increased, the deviations to the ground
start close to the phase transition point, where there is a sudden (although
small) shrinking of the gap, but after the critical point the gap starts to in-
crease again, since when the coupling h is large the magnetic term dominates
the hamiltonian and the gap becomes proportional to h. Consequently, the
adiabatic error becomes more and more irrelevant with larger values of h, at
which r / h ⌧ const·h2. In the end, our observation is that the Trotter error
is dominating over the adiabatic error, apart from the small phase transition
region. One could try to improve further the Trotter error at the expense
of the adiabatic one: the results would get even closer to the actual ground
level, until a point is reached where the adiabatic error has become too large
and it becomes the dominating one, worsening instead the results. The in-
creasing of the adiabatic error can be mitigated by using a larger number
of Trotter steps Ns, but that in turn results in a longer running time of the
program. This is also why when passing from Ns = 200 to Ns = 600 we have
decreased the number of points of the graph, since each execution of the code
takes three times longer.

Using the same values of ts, Ns we have measured the expectation values
of four Wilson loops, that form a maximal set of loops that does not wrap
around the lattice, which due to the boundary conditions has the topology
of a torus. The loops considered are the ones represented in Fig. 5.6:
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W0 W01 W014 W0134

Figure 5.6: The Wilson loops whose ground expectation values have been
measured in our simulation. Their orientation is irrelevant in the Z2 case.

• W0, along the links 0-10-3-9:

• W01, along the links 0-1-11-4-3-9;

• W014, along the links 0-1-11-14-7-13-3-9;

• W0143, along the links 0-1-11-7-6-12-9.

The plaquettes of the lattice in Fig. 5.3 can be enumerated from 0 to 9
starting from the bottom left corner to the top right one. The subscripts
in the names of the loops represent the plaquettes that they cover with the
labelling above. The results of the measurements have been reported in Fig.
5.7 and in Fig. 5.8. Due to the small range of values that these observables
cover (which should be the interval [0, 1], as explained in the fourth chapter),
the width of final mixture of states induces on the Wilson loops relative
errors that are larger than the ones for the energy. In these graphs the error
bars are the standard deviations of the means, which have been estimated
by taking additional repeated set of measurements.

Let us consider first the case with ts = 0.0008 and Ns = 600 (see Fig.
5.7), which was the one producing more accurate ground states. Despite the
large dispersion, we see an overall behaviour of the mean values that fulfills
our expectations: in the deconfined phase the Wilson loops tend to flatten
towards 0, whereas in the confined phase their values are close to 1. Moreover
one can observe a tendency of the larger loop W0143 (made of 4 plaquettes) to
be smaller than W0 (made of a single plaquette), at least in the region with
smaller couplings, where the preparation of the ground state is more reliable.
At larger couplings the deviations become more consistent and the expec-
tation value becomes significantly lower than 1. The stronger suppression
of the loop W0143 is expected: the area and perimeter laws, respectively for
the confined and deconfined phases, predict exponential suppressions propor-
tional to sizes of the loop. One could try to check these laws numerically by
computing ratios of the logarithms of the mean values, but the results would



5.4. Implementation and results 103

Figure 5.7: Expectation values of the Wilson loops W0 and W0143 on
the approximate ground states at several couplings h prepared with ts =

0.0008, Ns = 600.

Figure 5.8: Expectation values of the Wilson loops W0, W01, W014 and
W0143 on the approximate ground states at several couplings h prepared with
ts = 0.005, Ns = 200.

not be significant because of the large error bars. The strong fluctuations of
this measurement and the fact that we are far away from the thermodynamic
limit prevent us from validating quantitatively the two laws, even though the
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qualitative behaviour is correct. The only numerical value that is reproduced
is the quantum critical point: the behaviour of the Wilson loop changes at
hc ⇡ 4, which is the same value predicted by Fig. 5.5. The location of the
phase transition is in agreement to what we could have naively expected: the
Ising gauge theory with coupling g attached to the electric term is dual to
the 2D quantum Ising model and its critical point is known to be at gc ⇡ 0.3;
our model has the coupling on the magnetic term and the electric eigenvalues
are modified (but kept at the same order of magnitude), so it is sensible to
get a critical point that is close to 1/3. We expect, however, that the position
of the critical point will move when considering larger lattices and it should
stabilize towards the TD limit.

The remaining measurements of the Wilson loops were made at ts =

0.005, Ns = 200. These values provided worse approximation of the ground
state at the couplings above the quantum critical point, however, in com-
parison to the energies, Wilson loops appear to be less influenced by the
deviations from the actual ground of the state that has been prepared. This
behaviour does not come as a surprise: a measurement of the energy “feels”
the state of all the links simultaneously, while Wilson loops depend only on
the links where the loop lies and a flip of the state of a random link is less
likely to modify the value of a Wilson loop. Furthermore, coherently with
what we have already observed in the measurement of the energy, these pa-
rameters provide smaller dispersions of the measurements about their means.
Apart from these comments, there is not much that can be added to the
previous observations. The qualitative behaviour of the measurements cor-
roborates our expectations: the loops are close to 0 in the confined phase and
close to 1 in the deconfined phase, plus there is a tendency to flatten towards
0 in a more evident way the loops that are larger, but the strong dispersions
prevent us from verifying quantitatively the area law and the perimeter law.
The quantum phase transition point appears again at hc ⇡ 4. These large
errors are a consequence of our initial choice to place the coupling attached to
the magnetic term, which results in a larger value critical coupling and forces
us to span a larger region of couplings h in order to see the phase transition.
If we had placed h on the electric term, we would have found hc ⇡ 1/4 and
in that shorter adiabatic evolution the Trotter errors would not have ended
up accumulating that much.



Conclusions and perspectives

In the present thesis we have analyzed how lattice gauge theories with a
general gauge group can be simulated on a digital quantum computer and
we have implemented a full simulation for the Z2 model within the Qiskit
environment to test the methods discussed.

We started our discussion with a quick review of continuum gauge theo-
ries, in order to underline the role of the objects playing a major role when the
model is placed on a lattice. Then we explained how to construct a general
lattice gauge theory with continuous gauge group both in the path integral
formalism, which is used to prove many important results for lattice gauge
theories, and in the hamiltonian formalism, that was the one employed for
the rest of the thesis. Afterwards we outlined the typical phase structure of
these theories, discussing how confined and deconfined phases may arise and
their relations with topological properties of the system. After this general
introduction, we set up the problem of simulating the theory by illustrating
the typical structure of a quantum simulation and the issues that have to
be overcome, focusing in particular on the problem of the infinite dimension
of the Hilbert space associated with the gauge bosons associated to a Lie
gauge group. Then we reviewed the most common approaches in the physics
literature used to circumvent this issue, before focusing on the finite group
approximation for the rest of the thesis. To devise our simulation model, we
had to adapt the construction of the hamiltonian of a lattice gauge theory to
the case of a finite gauge group. Our discussion, highlighting the algebraic
and geometric structures involved, allowed us to formulate an algorithm able
to implement the corresponding the time evolution for any finite gauge group
and to prove its correctness. In order to both discretize the gauge group and
implement the time evolution, we had to generalize the Fourier transform on
functions acting on any group. This object is well known in the mathematical
literature and we only had to reformulate the results in more physical terms.
After having described how to proceed in general, we focused on a simple case
to realize our own full simulation. We chose to implement a simple model,
since the aim were not to solve a new theory but rather to start a systematic
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analysis of the advantages and drawbacks of our approach. We discussed the
structure of Zn lattice gauge theories and in particular the Hilbert space and
the phases in the Z2 case, for which we have written and executed a quantum
code. Our algorithm prepares the an approximation of the ground state at an
arbitrary value of the coupling at measures the behaviour of the ground state
energy and of the expectation value of some Wilson loops, finding clear signs
of the phase transition involved. The large fluctuations involved, however,
prevent us from making a quantitatively accurate analysis of the transition,
even though the qualitative behaviour is correct. We have identified two
systematic errors and described their influence.

One way to improve our results could be to modify the Trotter approxi-
mation of the time evolution operator [21]: had we employed e�i(H

E

+H
B

)t ⇡
e�iH

E

t/2e�iH
B

te�iH
E

t/2, instead of e�i(H
E

+H
B

)t ⇡ e�iH
E

te�iH
B

t, the trotterized
evolution would have been characterized by a better scaling of the errors, at
least in a classical simulator of a quantum computer. In an actual quantum
computer, the increased number of gates would require some further atten-
tion due to the noise that they introduce. Overall, we can expect that the
fluctuations would still be relevant even with the improvement of the Trotter
decomposition, because the large accumulation of the errors is caused by our
evolution that has to cover a wide range of values of the coupling. We had
a large range to span because we chose to put the coupling on the magnetic
term, in order to get an initial state that was simple to formulate and to pre-
pare with our methods for any gauge group. With the current technology,
our completely general methods struggle to provide a quantitatively accurate
simulation and some specific optimization probably is required. Another is-
sue that can be considered is the implementation on other platforms apart
from than Qiskit which may have better performances, such as running our
algorithm on the QuEST GPU simulator.

Apart from the possible optimization of the results, this work can be ex-
tended in many directions. Our analysis can be deepened by studying the
behaviour of additional observables, such as ’t Hooft strings, that can be
used also to detect the confinement-deconfinement transition. The method
presented in Section 5.3 can be adapted straightforwardly to measure them,
since the time evolution they generate is diagonal in the representation ba-
sis. Other observables that can be measured are time-like Wilson loops,
whose behaviour can be interesting to compare with spatial Wilson loops.
Another direction that should be followed is the realization of the model on
larger lattices, which should be used to study the scaling properties of our
measurements and to extract a sensible continuum limit. In this case the
main issue that should be overcome is the shrinking of the gap between the
ground and the first excited state in the (+,+) sector, which would inhibit
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the adiabatic approximation. A possible way out could be to implement
the time evolution of the coupling using instead of h(t) = �h/ts · t a non
linear functions whose growth becomes slower close to the transition point.
Our methods can be adapted to simulate any other finite gauge group, both
abelian and non-abelian, provided that a suitable realization of the U gates
is found. The Z4 case should be the easiest one, since the corresponding
quantum Fourier transform is simply realized and the internal operation is
isomorphic to the sum modulo 4 [61]. Other possible interesting groups are
the dihedral groups, which are among the smallest non abelian groups. When
considering more complicated gauge groups, one should keep in mind that
the number of qubits required for each link is proportional to the order of
the group, so that the dimension of the largest lattice that can be simulated
decreases. Matter may also be added, allowing to reproduce interesting dy-
namical phenomena such as the string breaking effect or pair production from
the vacuum.





APPENDIX I.

The mathematical toolbox:

groups and representations

This appendix gathers the main results on group theory and representation
theory that needed throughout the thesis. We start from the case of finite
groups and later we shall extend it for compact Lie groups, for whom very
similar statements hold. Some useful references are [31, 36, 71, 76, 79, 83].

A.1 Fourier analysis on finite groups

Given any group G, two representations ⇢, ⇡ 2 Hom(G ! GL(V)) on the
same vector space V are equivalent if they have the same action up to a
change of basis, i.e. if there exists A 2 Aut(V) such that ⇢(g) = A ⇡(g)A�1

8 g 2 G. The equivalence of representations is an equivalence relation, which
creates a partition of the set of all representations of a group. If we choose
a representative element from each class, we get a quotient set made of all
inequivalent representations of the group.

Theorem A.1. Let G be a finite group acting on a vector space endowed
with an inner product. Then any representation can be chosen to be unitary.

Definition A.1. Given a finite group G, ˆG is the set of all unitary irreducible
inequivalent representations of G.

Theorem A.2. Let G be a finite group. Then it has a finite number of
irreducible inequivalent representations, i.e. ˆG is finite. Furthermore, if
d↵ ⌘ dim ⇢↵ for all representations ⇢↵ belonging to ˆG, thenX

↵2Ĝ

d2↵ = |G| .
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In general, all irreducible representations of a finite group are finite dimen-
sional. If G is abelian, by the Schur’s Lemma all irreducible representations
are one-dimensional. It follows that an abelian group always has exactly |G|
inequivalent irreducible representations (which can be made unitary).

Theorem A.3. (Orthogonality relation) Let ⇢↵ , ⇢� be two irreducible rep-
resentations belonging to ˆG and consider their matrix elements. Then

1

|G|
X
g 2G

[⇢↵(g)]
⇤
ij[⇢�(g)]kl =

1

d↵
�↵��ik�jl .

The group algebra is the set of all functions from the finite group G to the
field of complex numbers and it can be endowed with a natural inner product.

Definition A.2. (Group algebra) C[G] = {f : G ! C}.

Definition A.3. (Inner product) Consider two functions f, g 2 C[G]. Then

hf, gi = 1

|G|
X
h2G

f(h)⇤g(h) .

In a quantum-mechanical context it is more natural to remove the normal-
ization 1/|G|, in order to mimic completely the L2 inner product, as it is
done in the main text. For all g 2 G, we can define the function eg : G ! C

s.t. eg(h) = �g,h. Then any function f 2 C[G] can be expanded as

f(g) =
X
h2G

f(g)eg(h) ,

showing that {eg}g 2G is a basis for C[G]. Notice that it will be a finite
dimensional vector space, as long as |G| is finite. The Dirac notation can be
introduced by identifying |gi ⌘ eg, so that the group algebra can be seen as
the free vector space generated by the elements of the group

C[G]

⇠
=

span {|gi | g 2 G} .

C[G] is an algebra with respect to an internal operation that respects the
structure of the group. If we define it in such a way that eg ⇤ eh = egh, then✓X

g

a(g)eg

◆
⇤
✓X

h

b(h)eh

◆
=

X
g,h

a(g)b(h) egh =

X
g0

✓X
h

a(g0h�1
)b(h)

◆
eg0



A.1. Fourier analysis on finite groups 111

and we see that the internal operation on C[G] is the convolution

(a ⇤ b)(g) =
X
h

a(gh�1
)b(h) .

Basically an element g of the group is acting on its algebra C[G]. We can
define similarly the (left) regular representation of the group.

Definition A.4. (Regular representation) The left regular representation
of G is the homomorphism ⇢L : G ! GL(C[G]) such that ⇢L(g) eh = egh.
Similarly, the right regular representation satisfies ⇢R(g) eh = ehg�1 .

A simple computation shows that the actions on f(g) =
P

h f(g)eg(h) are

[⇢L(g)f ](h) = f(g�1h)

[⇢R(g)f ](h) = f(hg) .

The regular representations share analogous properties, which are particu-
larly interesting because they are not irreducible and their decomposition
contains all the other irreducible representations of G. Consider for instance
the character of the left regular representation, that is the function

�L : G ! C , �L(g) = tr(⇢L(g)) ,

so it is an element of the group algebra. Clearly ⇢L(e) = I, then �L(e) =

|G| since dimC[G] = |G|. When g 6= e, ⇢L(g) eh = egh 6= eg, therefore
⇢L(g) is a permutation matrix of the basis vectors eg and it is always 0
along its principal diagonal. This implies �L(g) = 0 whenever g 6= e. Any
representation ⇢ of a finite group can be reduced using the inner product [76]

⇢ =
M
↵2Ĝ

a↵⇢↵ , a↵ = (�↵,�⇢) =
1

|G|
X
g

�↵(g)
⇤�⇢(g)

For our case �L(g) = 0 8 g 6= e implies (�↵,�L) = d↵. Then it follows

Theorem A.4. The regular representation can be reduced as ⇢L =

L
↵2Ĝ d↵ ⇢↵

and it holds the vector space isomorphism C[G]

⇠
=

L
↵2Ĝ

�
V � d

↵

↵

�
.

Notice that dim
�
V � d

↵

↵

�
= (dimV↵)2 = dim End(V↵), implying also that

C[G]

⇠
=

M
↵2 Ĝ

End(V↵) .
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This is even an isomorphism of algebras, as it can be seen by linearly ex-
tending all the irreps. In particular, we extend ⇢↵ : G ! GL(V↵) to
F↵ : C[G] ! End(V↵), using the chain of identifications

G �! C[G] �! End(V↵)
g 7�! eg 7�! ⇢↵(g)

where the linearity we assume is � eg+µ eh 7! � ⇢↵(g)+µ ⇢↵(h) 2 End(V↵).
In general it does not belong to GL(V↵) because the sum of invertible matrices
may not be invertible. It is an algebra homomorphism since eg ⇤ eh = egh 7!
⇢↵(g)⇢↵(h) = ⇢↵(gh), which implies that

F↵(a ⇤ b) = F↵(a)F↵(b) .

The usual Fourier series is related to the representation theory of U(1). This
procedure applied on a generic element f 2 C[G] yields the generalized
Fourier components on a finite group.

Definition A.5. (Fourier transform) The Fourier transform on a finite group
is the mapping F↵ : C[G] ! End(V↵) defined by the relation

F↵[f ] ⌘ ˆf(⇢↵) =
X
g 2G

f(g)⇢↵(g) .

Explicitly, the correspondence that realizes this isomorphism of algebras is

' : C[G] !
M
↵2 Ĝ

End(V↵) , '[f ] =
M
↵2 Ĝ

ˆf(⇢↵).

Notice that a function has a Fourier component for any irreducible represen-
tation ⇢↵ of G and the components ˆf(⇢↵) are, in general, matrices. When G
is abelian its irreducible representations are all one dimensional by the Schur
lemma, so that the Fourier components get back to being numbers. ' is an
isomorphism and maps bases into bases. Using it, we could try to build an
alternative basis for C[G] sending back the canonical basis for End(V↵) (i.e.
the elementary matrices). Consider the functions

⇢̄↵(·)ij : G 7�! C , ⇢̄↵(g)ij = ⇢↵(g)
⇤
ij .

Now let us compute its Fourier component on a representation �. We get

⇢̄↵(·)ij =
X
g

⇢↵(g)
⇤
ij eg 7!

X
g

⇢↵(g)
⇤
ij F�[eg] =

X
g

⇢↵(g)
⇤
ij ⇢�(eg)
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and by the orthogonality formula we immediately find its matrix elements�
F�[⇢̄↵(·)ij]

�
kl
=

|G|
d↵

�↵� �ik �jl ,

which are exactly the element of the elementary matrices of the canonical
basis of End(V↵) apart from the normalization factor. Therefore ⇢̄↵(·)ij is a
basis of C[G] and we can express any function f 2 C[G] as

f(g) =
X
↵

X
ij

c↵ij ⇢↵(g)
⇤
ij .

To find the components c↵ij, we can employ again the isomorphism '. It maps

f 7! ˆf(⇢↵)ij =
X
g

f(g) ⇢↵(g)ij

and we can compare this expression to what we get after having expanded f

f =

X
�,kl

c�kl ⇢̄�(·)kl 7! ˆf(⇢↵)ij =
X
�,kl

c�kl
|G|
d�

��↵ �ki �lj =
|G|
d↵

c↵ij .

In both cases we have computed ˆf(⇢↵)ij, so this provides us an expression
for the components. The following theorem holds.

Theorem A.5. The set {
p
d↵⇢̄↵(·)ij}↵2Ĝ, ij=1...d

↵

is an orthonormal basis for
C[G] w.r.t. the inner product given in definition A.3. Moreover, 8 f 2 C[G]

f =

X
↵2Ĝ

d
↵X

i,j=1

d↵
|G|

ˆf(⇢↵)ij ⇢̄↵(·)ij .

This expansion is the generalization to a finite group of the Fourier series of
f . It relates the components f(g) with respect to the basis eg, called group
element basis, to the components ˆf↵, ij corresponding to the representation
basis ⇢̄↵(·)ij. This theorem is the finite-dimensional analog of the Peter-
Weyl theorem for compact Lie groups. The Fourier transform is exactly the
transformation that reduces the regular representation. Notice that

[⇢L(h) ⇢̄↵(·)ij](g) = ⇢↵(h
�1g)⇤ij = cik ⇢↵(g)

⇤
kj , cik = ⇢↵(h

�1
)ik .

The action of the left regular representation on an element of the represen-
tation basis shuffles only the elements within the same representation ↵: the
block-diagonal structure is clear. Furthermore, the sum is only on one index
k, so that it contains #k = d↵ elements and each block will appear d↵ times.
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A.2 Fourier analysis on compact
Lie groups

We start by stating the statements similar to those of finite groups that hold
for compact Lie groups.

Theorem A.6. Let G be a compact Lie group acting on a Hilbert space.
Then any representation can be chosen to be unitary.

Definition A.6. Given a compact Lie group G, ˆG is the set of all unitary
irreducible inequivalent representations of G.

Theorem A.7. Let G be a compact Lie group acting on a Hilbert space.
Then any irreducible representation is finite dimensional and the the set of
all irreducible inequivalent representations of G is countable.

Theorem A.8. (Orthogonality relation) Let ⇢↵, ⇢� be two irreducible rep-
resentations belonging to ˆG and consider their matrix elements. Then

1

V ol(G)

Z
G

dg [⇢↵(g)]
⇤
ij[⇢�(g)]kl =

1

d↵
�↵��ik�jl .

As always dg is the Haar measure on G and by V ol(G) we mean the volume
of G w.r.t. dg. In this case, the group algebra has to be defined differently.
We cannot consider all functions on G because there may be convergence
problems with the inner product and we want to work on a Hilbert space.
Therefore we restrict our attention to the square integrable functions (with
respect to the Haar measure) on the compact Lie group.

Definition A.7. (Group algebra) C[G] = (L2
(G), dg)

Definition A.8. (Inner product)Consider two functions f, g 2 L2
(G). Then

hf, gi = 1

V ol(G)

Z
G

dh f(h)⇤g(h) .

The regular representations can be defined likewise to what we did for finite
groups and their basic properties carry on to this case. The most important
result is the Peter-Weyl theorem, which lies at the core of harmonic analysis
on Lie groups. Consider again the matrix elements ⇢̄↵(·)ij in the (countable)
set of unitary irreducible representations of G. The theorem then states
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Theorem A.9. (Peter-Weyl) The set {
p
d↵⇢̄↵(·)ij}↵2Ĝ, ij=1...d

↵

is an or-
thonormal basis for L2

(G) w.r.t. the inner product given in definition A.8.

Again, the representation basis is dual to the group element basis via a
generalization of the Fourier transform. Given any f 2 L2

(G) it is defined as

F↵[f ] ⌘ ˆf(⇢↵) =

Z
G

dg f(g)⇢↵(g)

and it yields the Fourier coefficients of the series expressing the function f

f =

X
↵2 Ĝ

d
↵X

i,j=1

d↵
V ol(G)

ˆf(⇢↵)ij ⇢̄↵(·)ij .

Like it happens for the finite group case, the left regular representation is
block-diagonal on the representation basis and it establishes the isomorphism

L2
(G) =

M
↵2 Ĝ

End(V↵) .

Notice that there is a sum only because we have chosen to work with a
compact group, whose irreducible representations are countable. If we worked
for instance with R, we would have found ˆ

R

⇠
=

R, it has infinite irreducible
representations labelled by the Fourier variable k dual to x.

A.3 Riemannian structure on Lie groups

In this section we gather the main results on Lie groups that allow us to
interpret geometrically the electric term of the Kogut-Susskind hamiltonian.
A natural laplacian is automatically defined on a manifold when it is en-
dowed with a Riemannian structure, so we shall quickly review here some
key definitions about to the standard procedure to introduce a metric on a
Lie group. For more details, see e.g. [71]

Let G be the Lie group we are considering and let g be its Lie algebra.
First, recall the definition of the adjoint representation of g: it is the Lie
algebra homomorphism ad : g ! End g such that adXY = [X, Y ].

Definition A.9. (Killing form)  : g⇥ g ! R , (X, Y ) = tr (adX � adY )

In general  is a bilinear form on g and it satisfies the following properties:

1. given any triple X, Y, Z 2 g, ([X, Y ], Z) = (X, [Y, Z])
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2. given any ' 2 Aut (g) , ('(X),'(Y )) = ('(X),'(Y ))

3. ij = fn
im fm

jn, on the basis vectors that satisfy [Ei, Ej] = fk
ijEk

An ideal of a Lie algebra g is the subset I ⇢ g s.t. given any i 2 I [i, X] 2
I 8X 2 g. Trivially, {0} and g itself are always ideals of g. g is a called
a simple Lie algebra whenever it is non-abelian and it has no trivial ideals.
Non-simple Lie algebras may still be semisimple, meaning that g is a direct
sum of simple Lie algebras. It holds the following theorem.

Theorem A.10. (Cartan’s criterion) The Killing form on g is non-degenerate
if and only if g is a semisimple Lie algebra.

Most of the groups that are interesting for physics are indeed simple or
semisimple and in that case the Killing form is nondegenerate, so that the
bilinear form defines an inner product on g. Studying the eigenvalues of the
Killing form provides also important informations about the topology of the
associated Lie group.

Theorem A.11. G is a compact Lie group if and only if the Killing form
on g is negative definite.

The Lie algebra associated to a group G can be thought as the tangent space
on the identity element, or equivalently to the set of left-invariant vector
fields on G. This fact can be used to define a (semi-)Riemannian metric on
the whole Lie group given an inner product on its Lie algebra such as the
Killing form, which is the most relevant one. The left translation on a Lie
group is the action L : G ! Diff(G) , Lab = a · b, while the right translation
is R :G! Diff(G) , Rab = b · a�1. Then

Definition A.10. Let g be a metric on G and let u, v 2 TbG. Then, g is
left-invariant iff gb(u, v) = gab((dLa)bu, (dLa)bv).

Definition A.11. Let g be a metric on G and let u, v 2 TbG. Then, g is
right-invariant iff gb(u, v) = gba�1

((dRa)bu, (dRa)bv).

Definition A.12. Let g be a metric on G and let u, v 2 TbG. Then g is
bi-invariant if it is both left-invariant and right-invariant.

In these definitions e.g. (dLa)b is the differential of the diffeomorphism La

computed at the point b, which yields the push-forward of a vector from TbG
to TabG. An inner product on TeG can be extended to a metric on the whole
group manifold with the following theorem.
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Theorem A.12. Let h , i be an inner product on g ⇠
=

TeG. Given u, v 2
TaG, define ga(u, v) = h(dLa�1

)au, (dLa�1
)avi. Then g is a left-invariant

metric on G.

When h , i is taken to be the Killing form, the resulting metric becomes
bi-invariant. Bi-invariant semi-Riemannian metrics on a Lie groups have
several important properties, among them there is the fact that the Levi-
Civita connection corresponding to the given metric is proportional to the
adjoint representation, in particular it holds the relation

rXY =

1

2

[X, Y ] .

If one defines the corresponding laplacian as the trace of tensor hessian, it
results equal to the quadratic Casimir element, seen as a differential oper-
ator [36]. This statement can be seen intuitively by looking directly at the
definition of the quadratic Casimir. We identify here g and its dual space,
since they are finite dimensional. Let {Ei} be a basis for g and let { ˜Ei} be
its dual basis satisfying ( ˜Ei, Ej) = �ij . Its definition is [45]

Definition A.13. (Quadratic Casimir element) ⌦ =

P
ij (Ei, Ej)

˜Ei
˜Ej .

⌦ is an element of the universal enveloping algebra U(g), which is the tensor
algebra generated by g modulo the identification X ⌦ Y � Y ⌦X ⇠ [X, Y ].
In the definition, the tensor product symbol has been omitted. When the
Lie algebra is semisimple and  is non-degenerate, the quadratic Casimir is
unique and independent of the basis. Moreover, it belongs to the center Z(g)
of the universal enveloping algebra, meaning that it commutes with any other
element. Using the duality relation, we could have alternatively written it as

⌦ =

X
ij

ij Ei Ej ,

where ij is the inverse matrix of ij. If we interpret the elements Ei as left-
invariant vector fields and we recall that in differential geometry vectors are
directional derivatives, it is immediate to identify the universal enveloping
algebra as the algebra of all left-invariant differential operators on G [36]
and ⌦ becomes a second order differential operator with exactly the same
structure of the laplacian w.r.t the metric .





APPENDIX II.

The computational toolbox:

quantum codes and Qiskit

Quantum computing is a deloping technology that exploits quantum me-
chanical effects to handle information differently to what classical computers
do. In this thesis we have performed a simulation of a quantum system
on the IBM platform Qiskit. This appendix gathers a few key facts about
quantum computing and Qiskit, in order to provide some context and to fix
some notations. We refer to the literature for an introduction on the topics:
a standard textbook on quantum computation is [61], while [2] provides a
quick introduction on the basics of quantum computation within the Qiskit
environment. Furthermore, the site https://qiskit.org itself provides an
online textbook for Qiskit, in addition to the complete documentation.

Quantum computers perform operations by manipulating quantum sys-
tems. A state of a classical computer is expressed by a string of bits ‘b1b2...bn’.
On a quantum computer, bits are replaced by qubits |qi = ↵|0i+�|1i, so that
a state becomes the tensor product |q1i|q2i...|qni ⌘ |q1q2...qni. The opera-
tions are represented by quantum gates, that replace the classical logic gates.
Any operation of a quantum computer can be thought as a time evolution
e�iKt generated by some effective hamiltonian K applied on a subset of the
qubits of the computer. Consequently, quantum gates can be any unitary
operator acting on a subset of qubits. An important quantum gate that acts
on a single qubit is the Hadamard gate H, that acts on the computational
basis |0i = (1, 0)T , |1i = (0, 1)T as

H =

1p
2

✓
1 1

1 �1

◆
) H|0i = |0i+ |1ip

2

, H|1i = |0i � |1ip
2

.

The Hadamard gate can be used to produce the superposition states that
are one of the main tools that quantum computers have and that classical
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computers do not. Other relevant single-qubit gates the Pauli matrices, the
phase gate U(�), and the single-qubit rotations R↵(✓):

X =

✓
0 1

1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0

0 �1

◆
U(�) =

✓
1 0

0 ei�

◆
, R↵(✓) = exp

✓
�i
✓

2

X↵

◆
.

The other new tool of quantum computing is that we can take advantage
of is entanglement. The Hilbert space of a many-component system is the
tensor product of the single Hilbert spaces, so the Hilbert space associated
with a quantum computer is the product of the spaces associated to the
single qubits. For simplicity, let us consider a two qubit Hilbert space. If
|q1i 2 H1 and |q2i 2 H2, their direct product |q1i|q2i ⌘ |q1q2i is an element
of H1 ⌦ H2, but not all elements of H1 ⌦ H2 can be written as |q1i|q2i for
some |q1i and |q2i. In mathematical terms, these states are called “non-
decomposable tensors” and they correspond to entangled states. The most
important two-qubit gate probably is the controlled-NOT, or CNOT gate

CNOT =

0BB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA ,

which acts as a NOT gate on the second qubit controlled by the state of
the first one. If the first qubit is in the state |0i it leaves the second qubit
unchanged, while if the first one is in |1i it flips the second qubit. It is a
simple exercise to show that

CNOT
�
H|0i ⌦ |0i

�
=

|00i+ |11ip
2

,

that is an entangled state: if we make a measurement of first qubit, the pro-
cedure will automatically cause a collapse also of the state of the second qubit
and vice-versa. Here the tensor product has been made explicit for clarity. A
typical quantum algorithm consists of a sequence of quantum gates applied
to the set of input qubits and after them some appropriate measurements
are performed on the final state that the gates have prepared. Measurements
make the states collapse and we measure what is the eigenstate into which the
state has collapsed, so that the outputs typically are classical bits. Today we
know few efficient quantum algorithms, such as the algorithm developed by
Shor computing quantum Fourier transforms or Grover’s search algorithm.
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Figure B.1: The topologies of some of the quantum computers made avail-
able by IBM. Two qubits are connected by an edge if it is possible to apply
a physical CNOT gate between them. The picture is taken from the site
https://quantum-computing.ibm.com

Quantum algorithms are difficult to find because the more intuitive classical
problem should be rethought in terms of a quantum evolution and the com-
putation has to be decomposed into a sequence of unitary operations, which
in general may be a very difficult task. However, these few “fundamental”
quantum procedures can be used as building blocks to devise other algo-
rithms that tackle other specific tasks. For instance the quantum Fourier
transform can be used to improve factoring algorithms, while, of course,
Grover’s algorithm improves all problems whose best solution would other-
wise be a straightforward binary search. These improvements are remarkable:
the quantum Fourier transform grants an exponential speedup in compari-
son to the classical case, while the quantum search a quadratic one. As a
consequence, despite knowing only a small class of fundamental quantum al-
gorithms that outspeed the classical counterparts, the applications that these
algorithms have found stimulated the construction of the first actual quan-
tum computers, which are being built by leading technology companies and
research institutes. Among them, some of the quantum computers provided
by IBM are publicly available through the online cloud system IBM Quantum
Experience. Quantum algorithms are written using the open-source frame-
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work Qiskit, that, in practice, can be used as python library. Within Qiskit,
the characteristic objects of quantum computing are realized as instances of
classes. Qubits are element of the QuantumRegister class, for the classical
bits there is the class ClassicalRegister and quantum circuits belong to
the class QuantumCircuit, whose standard constructor takes as arguments
both qubits and classical bits (necessary when the circuits includes mea-
surements). The methods belonging to the QuantumCircuit class allow to
add gates and measurement operations to the qubits that initialize the cir-
cuit object. Consequently, these quantum computers can be programmed by
writing familiar python codes, which can be executed on the actual quantum
computers as well as on a local classical computer, that becomes a classical
simulator of a quantum computer. When working on a real quantum com-
puter, one has to take into account the connectivity of its qubits, also known
as the topology of the device. Some examples are reported in Fig. B.1. Typ-
ically, the physical realizations of the quantum computers do not allow to
entangle directly a qubit with any other one. If it is possible to physically
realize a CNOT gate between the qubits j and k and the qubits k and l, a
CNOT between j and l can be effectively realized as

CNOTjl = CNOTkl CNOTjk CNOTkl CNOTjk .

Other simulators are freely available, such as QuEST or Microsoft’s Q#.
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