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Introduction

Several physical properties of condensed matter related to lattice dynamics and collective
motions - such as the sound velocity, the elastic constants and the interatomic force con-
stants - are investigated through the study of the elastic waves propagating in a medium.
Furthermore, examining the effects of pressure on the propagation of acoustic waves in a
material allows to characterize its elasticity, mechanical stability, strength, and to better
understand phase transition mechanisms. Elasticity under extreme conditions of pres-
sure and temperature also has a crucial importance in constraining models of the Earth
and planetary interiors. In fact, one of the main obstacles in determining the planets’
chemical composition is constituted by the limitation in direct sampling and by the lack
of direct investigation methods [1]. Seismology, which studies the travel times of elastic
waves generated by earthquake and by the planet free oscillations, arguably is the most
reliable probe allowing to constrain the properties of planetary interiors. Even when lim-
iting to radially averaged models, seismic observations provide one-dimensional profile
of the compressional velocity, VP , shear velocity, VS, and density with depth across the
entire Earth [2]. Great efforts were invested by the Apollo program to deploy a seismic
array on the Moon [3] and first seismological observations are now available for Mars
as well [4]; [5]. However, seismological models alone do not allow to relates geophysical
observations to compositional and structural models and require deciphering [6]. The
determination of the elastic properties of the candidate materials comprising planetary
interiors via experimental measurements is thus of fundamental importance, because
such measurements provide the guidance to interpret coherently the seismological ob-
servations and the link to derive consistent model of the composition and structure of
planets [6], [7]. Compressional (or longitudinal) and shear (or transverse) waves’ veloci-
ties directly depend on the elastic properties, i.e. on the bulk and shear moduli, of the
medium in which they propagate. So, observed depth dependence and discontinuities in
the propagation of the sound velocity across a planet directly reflect pressure and tem-
perature effects, or phase transitions, in the constituent materials. Despite the fact that
reference seismic model for the Earth is available since mid ’80s [2], elastic properties of
geo-materials at relevant pressure and temperature conditions are not fully established
yet. This is a direct consequence of fact that all the experimental methods used to in-
vestigate elasticity under extreme conditions suffer of limitations, be these the highest
attainable pressure, the nature of the investigated materials, or the limited instrumental
access.
Thus, this work consists in establishing an experimental protocol for the determina-
tion of single crystals’ elastic constants, Cij, of materials at ambient pressure and high
pressure by picosecond acoustics. Picosecond acoustics is an experimental pump-probe
technique that allows to directly probe the acoustic waves propagating within a sample.
The concept is similar to the pulse-echo ultrasonic technique (travel time determination)
with the advantage of optical methods (no contact and no bonding effects). Further-
more, thanks to the possibility of combining the diamond anvil cell (DAC) technology
to picosecond acoustics, sound velocity and elastic properties can be obtained at the
high-pressure conditions relevant for planetary interiors. Finally, picosecond acoustics is
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a promising experimental method because it has no specific limitations on the nature of
the materials that can be investigated and it is a laboratory-based and non-destructive
experimental technique.
As test cases, two materials were studied in this work: magnesium oxide, MgO, and
ruthenium, Ru. Both were studied at ambient temperature and pressure. Ru was also
studied up to 10 GPa. MgO, an optical transparent insulator, is investigated because it
is an end-member mineral composing planetary mantles and forms a solid solution with
FeO; single crystal of high quality are commercially available and can serve as a test
case to determine an experimental protocol that allows the investigation of transparent
samples. Ru, an opaque metal, is studied because of its analogy with Iron: they are
isoelectronic, but the advantage on studying Ru is that at ambient conditions shows
hexagonal symmetry while Fe shows bcc phase, making difficult to perform studies on
the hcp single crystal of Iron, phase that is stable only at high-pressure.
Beside this introduction, this thesis is divided into three chapters followed by short
conclusions. Chapter 1 consists of a brief treatment of the fundamental principles of
elasticity, the Christoffel equation, the elastic properties of single crystals and aggre-
gates, and a short description of the Birch-Murnaghan’s equation of state. An overview
of the existing techniques employed to probe elastic properties is then provided, with
specific emphasis on the limitations driving the choice of developing picosecond acous-
tics. Chapter 2 presents the experimental, analytical and computational methods used
in this work. In particular, picosecond acoustics and diamond anvil cells are described
in some detail. The section dedicated to computational methods describes the programs
that allow to extract information on the sound velocities and on the elastic constants of
the sample from the acoustic waves measurements. In Chapter 3 all the results obtained
are presented and discussed.

5



Chapter 1

Elasticity at high pressure

This chapter presents three topics: the first part (from section 1.1 to section 1.3) concerns
theoretical background necessary to understand the basic physical principles underlying
the experiments; the second part (section 1.4) is dedicated to a brief review of the exist-
ing experimental techniques, highlighting their current limitations, and presenting how
picosecond acoustics can be used to overcome such limitations; the third part (section
1.5) summarizes the properties of the materials investigated in this thesis work, includ-
ing some hints about their symmetry group, their elastic tensors and the main reasons
motivating their study.

1.1 Acoustic phonons
Phonons are the quanta describing the lattice vibrations inside a material. Acoustic
phonons correspond to in phase collective vibrations, whose frequencies vanish for small
k with a slope proportional to sound velocity. The goal pursued in this thesis work
consists in the study of material’s elastic properties, which depends on acoustic phonons.
In appendix A, mathematical derivation of phonon frequencies for the simple case of
linear chains are presented.

1.2 Fundamental concepts of elasticity
The mathematical treatment presented in [8] will be here summarized to present the
fundamental concepts of elasticity.
Theory of elasticity relates the stress tensor, σij, which expresses the internal forces that
neighbouring particles of a continuous material exert on each other, and the strain tensor,
εkl, which is the deformation in terms of relative displacement of particles in the body. A
solid is defined as “elastic solid” when the initial state is recovered once the all mechanical
forces that were acting on it are switched off. For the majority of materials it has been
demonstrated that the elastic behavior is well approximated under the hypothesis of
small deformation developed up to the second order of Taylor expansion:

σij(εkl) = σij(0) +
(
∂σij
∂εkl

)
εkl=0

εkl + 1
2

(
∂2σij

∂εkl∂εmn

)
εkl,εmn=0

εklεmn (1.1)

In most cases, experimental results are well described by truncation at first-order term
of the Taylor expansion.
Assuming that σij(0)=0, Equation 1.1 becomes the generalized Hooke’s law, that defines
for an elastic solid a linear relation between stresses σij and strains εkl:

σij = Cijklεkl (1.2)
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where:
Cijkl =

(
∂σij
∂εkl

)
εkl=0

(1.3)

Cijkl is a tensor of rank 4 with 34= 81 components and is called stiffness tensor (or elastic
tensor). Equation 1.2 corresponds to the most general linear relation between stress and
strain, first formulated in one-dimensional case by Hooke. Since tensors σij and εkl are
symmetric (see [8]), the elastic components defined by the stiffness tensor are unchanged
when either the first two or the last two indices are interchanged, so that:

Cijkl = Cjikl and Cijkl = Cijlk (1.4)
In terms of displacement, ~u, Hooke’s law (eq. 1.2) becomes:

σij = 1
2Cijkl

∂uk
∂xl

+ 1
2Cijkl

∂ul
∂xk

(1.5)

and by considering the symmetry of stiffness tensor given by Equation 1.4, it becomes:

σij = Cijkl
∂ul
∂xk

(1.6)

The symmetry relation expressed by Equation 1.4 allows to reduce the number of inde-
pendent elastic constants from 81 to 36. Indeed, a pair of unordered indices (i, j) can give
only six independent variables. By performing the indices’ reduction presented below:

(11)↔ 1 (22)↔ 2 (33)↔ 3
(23) = (32)↔ 4 (31) = (13)↔ 5 (12) = (21)↔ 6 (1.7)

It is possible to rewrite the elastic tensor Cijkl as a 6 x 6 matrix. Thanks to this, the
independent elastic constants (also called elastic moduli) can be written with just two
indices (α, β), where α is related to (i,j) and β to (k, l).

Cαβ =



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66


(1.8)

Another tensor, the compliance tensor Sijkl can be defined since it is related to stiffness
tensor through:

Sαβ = (Cαβ)−1 (1.9)
In the generalized case, Hooke’s law can be written equivalently in terms of stiffness
tensor Cαβ and in terms of compliance tensor Sαβ as follows :

σα = Cαβεβ
εα = Sαβσβ

(1.10)

During this work, we studied two materials, magnesium oxide, MgO, and ruthenium,
Ru, which respectively have cubic and hexagonal crystal symmetry. Below the elastic
tensors in the case of cubic and hexagonal symmetries are reported. It can be proven
that elastic tensor in the case of cubic crystal symmetry is written as follows:

Cαβ =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(1.11)
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with three independent elements: C11, C12 and C44. More details about cubic symmetric
single crystals are reported in [9].
While, the elastic tensor in the case of hexagonal crystal symmetry is simplified as follows:

Cαβ =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


(1.12)

in which C66 is equal to C11−C12
2 . So the independent elements are five: C11, C12, C13,

C33 and C44.

1.3 Single crystal elastic moduli and aggregate elas-
tic properties

When action and/or reaction are tensorial quantities and are linearly related, such as
stress and strain (see section 1.2), the material property that links the exerted action
with the associated reaction also has a tensorial character. The physical evidence of
anisotropy is the difference in the reaction to the same action when the latter is exerted
along a different direction in the material. In practice, elastic properties of single crystals
are always anisotropic, although, more or less, depending on crystal symmetry.
For all symmetries, except for monoclinic and triclinic, we can assume that:

δV/V ≈ ε1 + ε2 + ε3 (1.13)

where εi are the diagonal components of strain tensor. Eq. 1.13 implies that the volume
variation (indicated through the ratio δV/V ) as a consequence of high pressure can be
written as the sum of the strains in the three independent crystallographic directions.
The bulk modulus, K, is defined as:

K = −V δP/δV = −δP/(ε1 + ε2 + ε3) = (S11 + S22 + S33 + S12 + S13 + S23)−1 (1.14)

where P is the pressure.
For a macroscopic non-single crystal sample, the aggregate properties are the volume av-
erage of the constituents single-crystalline grains properties. Aggregates of non-interacting
grains can exhibit or not anisotropy, depending on the random or not random distribution
of orientation (texture).

1.3.1 Christoffel equation
Christoffel equation sets the formal basis on which many results of elasticity are inter-
preted and analyzed. In fact, it provides the link between sound velocities and elastic
constants. Christoffel equation takes the form of an eigenvalue problem:∣∣∣Γil − ρV 2δil

∣∣∣ = 0 (1.15)

where Γil is the Christoffel tensor, ρ the density and V indicates the phase velocity.
The mathematical derivation is reported in appendix B.
In general, for a given direction of propagation ~n, phase velocities are roots of the secu-
lar problem set by the Christoffel equation. To each velocity corresponds an eigenvector
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which defines the direction of matter displacement. Descending from symmetry of stiff-
ness tensor, Christoffel tensor is symmetric too. This means that its eigenvalues are real
and its eigenvectors are orthogonal. Furthermore, it is possible to demonstrate that the
eigenvalues are positive [8]. Finally, it can be derived a general result which concludes
that three plane waves with orthogonal polarizations can propagate in the same direc-
tion with different velocities. The displacement vector ~u is not in general parallel or
perpendicular to the direction of propagation ~n. The wave with polarization closest to
~n is called quasi-longitudinal wave, while the waves with polarization closest to be ⊥ to
~n are called quasi-transverse. Thus, all solid bodies are characterized by the possibility
to carry three waves that propagate at different velocities: longitudinal waves and two
different transverse waves.
As described later in Chapter 2, in picosecond acoustics experiment, the pump laser can
be focused on a spot of dimension variable with respect to sample’s dimensions. For
highly focused configurations, elastic waves can be considered as generated from a point
source, while in case of defocused beam from an extended source. In the fist case the
resulting wave can be considered spherical, while in the second the wave front resulting
from the diffracting spherical waves approaches a plane wave.
As said before, Christoffel equation is a powerful tool to determine elastic constants from
phase sound velocity and viceversa. On the other hand, picosecond acoustics detects the
intensity change (the change in reflectivity), which is an energy per area, and thus carries
information on energy sound velocity, ~V e, and not directly on the phase sound velocity
~V . In the following lines, the relation between the two will be briefly described.
The energy sound velocity ~V e is by definition equal to Poynting vector divided by the
energy per unit volume, so that:

V e
i =

Cijklu
T
j u

T
l nk

ρV
for uT

i
2 = 1 (1.16)

Let us consider the scalar product:

~V e · ~n = V e
i ni =

Cijklu
T
j u

Tulnink

ρuT
i

2V
(1.17)

it can be proven that:
~V e · ~n = V (1.18)

which means that the projection of energy velocity on the direction of propagation gives
the phase velocity. Energy velocity, expressed in Equation 1.16, tells which is the direc-
tion of energy transport, i.e. the direction of acoustic ray. When this ray is perpendicular
to wave fronts, so parallel to ~n, wave mode is called “pure” (where polarization is either
longitudinal or transverse). In general, energy flux and group velocity directions are per-
pendicular to wave fronts in the case of isotropic media while in the case of anisotropic
media they are perpendicular only for certain crystallographic directions.
In appendix B, derivation of Christoffel tensor for a given symmetry group and a given
direction of propagation in derived. Choosing the direction for which Christoffel tensor is
in its simplest form for a given symmetry, can give a great advantage in the calculations.
In general, depending on the symmetry group, to get the full elastic tensor Cijkl, more
than one direction of propagation is needed.
In Table 1.1 formulas to get velocity through elastic moduli for cubic symmetric crystals
and selected propagation directions are listed.
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Propagation direction Polarization Velocity
[001] [001] (L)

√
C11
ρ

[100] plane (100) (T)
√

C44
ρ

[110] [110] (L)
√

C11+C12+2C44
ρ

[110] [11̄0] (T)
√

C11−C12
2ρ

[110] [001] (T)
√

C44
ρ

Table 1.1: Velocity dependence of the three waves (one longitudinal and the two transverses)
to elastic moduli in the case of cubic symmetry for selected direction of propagation
[8].

In Table 1.2 velocities dependence on elastic moduli in the case of hexagonal crystal
sample are listed:

Propagation direction Polarization Velocity
[001] [001] (L)

√
C33
ρ

[001] plane (001) (T)
√

C44
ρ

plane (001) [001] (L)
√

C11
ρ

plane (001) plane (001) (T)
√

C11−C12
2ρ

plane (001) [001] (T)
√

C44
ρ

Table 1.2: Velocity dependence of the three waves (one longitudinal and the two transverses)
to elastic moduli in the case of hexagonal symmetry for selected direction of prop-
agation [8].

1.3.2 Aggregate elastic moduli
Most Earth’s materials present heterogeneous character, often at different scales. Rocks
are aggregates of several different anisotropic minerals that frequently have widely vary-
ing properties [10]. Samples of the same rock may exhibit different elastic behavior and
represent heterogeneity on a scale larger than the grain size. For this reason, study the
mechanical properties of aggregates is primarily important in geophysics.
Voigt and Reuss were the first to work on elastic properties of polycrystals and together
with Hill, they elaborated what is called the Voigt-Reuss-Hill average rule, which still
today is largely used to determine the elastic moduli of aggregates starting from single
crystalline properties [10]. In the most general case, in order to determine the properties
of the aggregate is not sufficient to make a simple directional average, since grain inter-
actions have to be taken into account. Also, aggregates of non interacting crystalline
grains can exhibit anisotropy arising from the non random distribution of orientations
[11]. In this context, Voigt average and Reuss average can be both used to derive the bulk
modulus, K, and the shear modulus, G, of aggregates. Voigt average assumes uniform
strain accross grains and constitutes the lowest upper bound to the aggregate properties.
Reuss average assumes uniform stress across grains and constitutes the highest lower
bound. The mean value of the two is the widely used Voigt-Reuss-Hill average[11].
Voigt averages states that:

KV = 1
9 (C11 + C22 + C33) + 2

9 (C23 + C13 + C12)

GV = 1
15 (C11 + C22 + C33)− 1

15 (C23 + C13 + C12) + 1
5 (C44 + C55 + C66)

(1.19)
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While within the Reuss average:
1
KR

= (S11 + S22 + S33) + 2 (S23 + S13 + S12)

1
GR

= 4
15 (S11 + S22 + S33)− 4

15 (S23 + S13 + S12) + 3
15 (S44 + S55 + S66)

(1.20)

Where Cαβ are the components of stiffness tensor and Sαβ terms are the ones of com-
pliance tensor. Needless to say, increasing the symmetry of the crystalline structure,
expression of K and G greatly simplifies.
Once the density, ρ, is known, aggregate compressional velocity, VP , and shear velocity,
VS, can be derived from the bulk and shear moduli, as follows:

V 2
P = 1

ρ

(
K + 4

3G
)

V 2
S = G

ρ

(1.21)

1.3.3 Birch-Murnaghan equation of state
Equations of state provide the link between volume V and thermodynamic variables such
as pressure P and temperature T. These are fundamental for acquiring thermodynamic
data that, in turn, are required, for example, for the calculation of equilibrium phase
diagrams. Equations of state provide insights into the interatomic interactions within
the material.
One of the most largely used finite-strain equation of state to describe the P-V com-
pressional curve of solid materials is the Birch-Murnaghan equation of state. Birch-
Murnaghan equation of state approximated at the third-order is reported below:

P (V ) = 3K0

2

(V0

V

) 7
3
−
(
V0

V

) 5
3

1 + 3
4 (K ′0 − 4)

(V0

V

) 2
3
− 1

 (1.22)

where P is the pressure, V the volume at a given pressure P, K0 is the isothermal bulk
modulus at ambient conditions and the K ′0 is the first-order pressure derivative of bulk
modulus at ambient conditions. Noteworthy the isothermal bulk modulus entering into
the equation is thermodyanmically defined as K = −V

(
∂P
∂V

)
T

, which is different from
the adiabatic bulk modulus calculated from elastic constants Cijkl, see previous section.
Isothermal bulk modulus KT and adiabatic bulk modulus KS are related by the thermal
expansion α and the Grüneisen parameter γ:

KS = (1 + αγT )KT

1.4 Experimental techniques
In this section some of the major experimental techniques that are more commonly
used for the investigation of the materials’ elastic constants are briefly presented, paying
attention to the aspects which limit their applications for studies under extreme thermo-
dynamic conditions. Development of picosecond acoustics offers the promise to overcome
many of these limitations.

1.4.1 Ultrasonic interferometry
Ultrasonic interferometry is the most commonly used experimental technique for the
study of materials’ elastic constants. The general working principle implies the use of
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both megahertz tone burst, transmitted via a piezoelectric transducer, and a delay line
(buffer rod), (see Figure 1.1). The propagating waves are partially reflected at each
interface. Each echo (i.e. acoustic waves reflected n times by sample’s interfaces) is
recorded by the transducer with a time delay, t, due to the waves travelling roundtrip
inside the sample, and with a phase shift caused by bonding material between buffer rod
and the sample (θ). When the phase shift between roundtrip travel and the bond is an
integer multiple n of π, the buffer rod echo and sample echo will appear to be in phase
(when n is even) or out of phase (when n is odd). In this way is possible to derive the
travel time [12].
Known the travel time, ∆t, and the sample thickness is possible to derive the sound
velocity. Since transducers works at MHz frequencies, required sample dimensions have
to be of the order of mm, fact that represents a big disadvantage for application at high
pressure. In particular, diamond anvil cells (see section 2.2) cannot be used to reach
very high pressure, since these high-pressure devices require sample’s dimensions of the
order of hundreds of µm at maximum. As such ultrasonic interferometry measurements
are typically performed in large volume presses, leading to max pressures of the order of
30 GPa [12].

Figure 1.1: Schematic diagram for ultrasonic interferometric measurements.

1.4.2 Brillouin spectroscopy
Brillouin spectroscopy is an optical technique that allows determining acoustic velocities
and their directional dependence in materials subject to a wide range of environmental
conditions, including measurements in diamond anvil cells, see Figure 1.2. The light is
scattered by thermally excited acoustic waves in an homogeneous medium. More pre-
cisely, Brillouin scattering consists in the inelastic scattering of photons by spontaneous
thermal fluctuations/excitations in a material. Phonons contribute to fluctuations of
the dielectric tensor of the material that are responsible for the scattering of light in
directions different from that of the incident light propagation[13]. Although Brillouin
spectroscopy is one of the most established technique for determination of elastic tensor
and sound velocities, it can be used for only optically transparent materials. This aspect
constitutes a great limitation on the study of Earth’s deep interior, being opaque both
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the Fe-bearing major minerals comprising the mantle, both the metallic Fe-alloy forming
the core.

Figure 1.2: Schematic representation of a Brillouin spectrometer.

1.4.3 Other experimental techniques based on scattering pro-
cess

All the experimental techniques based on scattering of incident particle by matter can
be described by the same scheme presented in Figure 1.3. An incident beam with energy
Ei and momentum ki, whether composed by photons, neutrons or electrons, is scattered
by the lattice phonons of the crystal. After the scattering process, the emitted particle
will emerge with different energy, Ef and momentum ki. The scattering angle 2θ and
energy difference Ef − Ei carry information on the inelastic process within the sample.

Figure 1.3: Schematic of a scattering process: an incoming particle is scattered (by a phonon).
The emitted particle carries the information about the energy exchanged during
the scattering process.

Inelastic neutron scattering (INS)

Inelastic neutron scattering is an experimental technique which exploits neutron beams
as incident beam for the scattering process. One can view the energy lost (or gained) by
a neutron while interacting with a crystal as being due to the emission (or absorption)
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of phonons, and by measuring the emergent angles, 2θ and energies Ef of the scattered
neutrons one can extract direct information about the phonon spectrum [14]. Neutron
scattering cross section depends from sample to sample, but the neutron flux are generally
relatively low, and focusing schemes not very efficient. This practically limits applications
of INS at high pressure to large volume presses such as the Paris-Edinburgh press, with
upper limit to about 10 GPa [15].

Inelastic X-ray scattering (IXS)

Inelastic X-ray scattering is an experimental technique that employs X-rays as probing
beam. It can be applied to any material and, similarly to INS, probes the momentum-
resolved phonon dispersions. An incoming photon with energy Ei and momentum ki,
is scattered by a phonon of the lattice into an outcoming photon with energy Ef and a
momentum kf . Excited phonon has an energy E = Ef−Ei and a momentum Q = kf−ki

(see Figure 1.3). Thanks to the high flux of third generation synchtrotron sources and
efficient focusing schemes, IXS can be used in combination with diamond anvil cell [16].
Furthermore IXS can be used both on transparent and opaque samples, but it necessitates
the third-generation synchrotron source, which makes difficult to repeat the experiments
and to perform systematic studies. Furthermore, the very high energy resolution needed
to resolve energy differences of the order of 10s of meV (energy of phonons) using KeV
photons, makes IXS collection time very long (several hours) effectively posing problems
when extreme thermodynamic conditions are difficult to maintain stable for long time.

Nuclear resonant inelastic X-ray scattering (NRIXS)

Inelastic nuclear resonance X-ray scattering is a phonon-probing technique, that in con-
trast to other relevant methods like IXS and INS, does not deal with phonon dispersion
relations but, complementary to that, gives direct access to the phonon density of states
(DOS)[17]. NRIXS is based on the Mössbauer effect for which a nucleus can emit or ab-
sorb a X-ray without loss of energy to a nuclear recoil. The absence of recoil is guaranteed
by the crystal lattice. It exploits nuclear resonant isotopes as a source of X-rays: the
most suitable is 57 Fe, that decay to the ground state, emitting a photon with a precise
wavelength of 14.4 keV in the case 57Fe. The sample to be investigated has to contain
in its composition a Mössbauer isotope resonating at the energy of the X-ray source.
The X-ray photon is absorbed by the material. In NRIXS the signal is only generated
from particular nuclei with a complete isotope selectivity, and materials surrounding the
sample that do not contain resonant nuclei produce no unwanted background, permit-
ting detailed studies of iron-containing materials in a diamond anvil cell [18].This sets
an important constraint in the material’s choice: only samples that contain Mössbauer
isotopes can be measured. Another disadvantage for the study of elasticity, is that from
the phonon density of state only the Debye velocity is measured, and that derivation of
compressional velocity, VP , and shear velocity, VS, needs the input of sample equation of
state. Finally, as in the case of IXS, third-generation synchrotron radiation sources are
needed for the measurements, which imposes limitations on the amount of time available
to measure.

1.4.4 Picosecond acoustics
The above described limitations in the maximum attainable pressure or the choice of
the materials or simply to allow more systematic investigations clearly call for other
laboratory-based experimental techniques capable of routinely providing the same in-
formation and allowing the investigation of any materials. Picosecond acoustics is an
optical pump-probe technique mainly used to carry out measurements of the mechanical
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and thermal properties of thin-film materials, which has been recently adapted to make
possible measurements of acoustic echoes in diamond anvil cell. The pulse of a fs laser
is focused either directly on a metallic sample or on a transducer. When absorbed, it
generates a sudden and small temperature increase (few K). The corresponding thermal
stress generated by thermal expansion relaxes lunching a longitudinal strain field which
propagates across the sample. Its arrival at the opposite surface is detected by the probe
beam, measuring the relative variation of the optical reflectivity, (see Figure 1.4). When
implemented together with a diamond anvil cell and a laser heating set-up, picosecond
acoustics experiment allows to determine the elastic properties of the investigated sam-
ples at desired pressure and temperature.
As detailed in the next Chapter, travel time measurements or phonon imaging technique
can be used to extract elastic constants and refine the other parameters such as sample’s
density and thickness. Picosecond acoustics is a powerful and promising experimental
technique, which, without any loss of information, overcomes most of the constraints
imposed by previously described techniques described.

Figure 1.4: Schematic of measuring process in picosecond acoustics technique implemented
in the “temporal mode”. Travel times difference, ∆t, between waves reflected by
the sample’s interfaces, is measured. A coating of sample’s surfaces is sometimes
necessary when the material is absorbing at the working laser wavelength to avoid
the laser beams to cross the sample.

1.5 Presentation of investigated materials
Materials that have been investigated during this internship were: magnesium oxide
(MgO) and ruthenium (Ru). They are respectively an insulator and a metal. The first
is transparent, while the second is opaque. First material is cubic, while the second is
hexagonal.
In the next sections some of the properties of the two materials directly relevant for
this study, will be briefly presented together with a brief description of their geophysi-
cal interest to better understand compositions and properties of telluric (or terrestrial)
planetary interiors.

1.5.1 Magnesium oxide (MgO)
MgO is an archetypal end-member forming planetary mantles. It forms a solid solution
with FeO, (Mg, Fe)O, which is the second most abundant mineral of Earth’s lower
mantle. Elasticity of MgO has been largely studied by experimental techniques such
as Brillouin spectroscopy [19]and through computations including Density Functional
Theory (DFT) [20]. Being well known, MgO is routinely used to assess the accuracy of
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new experimental techniques and often used as a calibrant. High quality single crystal
samples are commercially available and having easy cleavage along [100] direction, sample
preparation and orientation are relatively easy.
In Figure 1.5 it is shown the MgO cubic crystal structure: Mg2+ atoms (denoted in
red, left side figure) occupy the octahedral sites and O2− atoms (in yellow, left side
figure) occupy other octahedral sites as well. The lattice parameter of MgO at ambient
conditions is 4.212 Å and the density is 3.58 g/cm3.

Figure 1.5: Two different representations of the crystalline structure of MgO: the one on the
left highlights the cubic unit cell, whose lattice parameter is 4.212 Å; the figure
on the right helps in visualizing the proportions between Mg2+ and O2− atoms.
Image on the left taken from [21], image on the right from [22].

At ambient conditions, elastic tensor of MgO, taken from [23], is presented below:

Cαβ =



297.7 95.3 95.3 0 0 0
95.3 297.7 95.3 0 0 0
95.3 95.3 297.7 0 0 0

0 0 0 154.5 0 0
0 0 0 0 154.5 0
0 0 0 0 0 154.5


(1.23)

1.5.2 Ruthenium, Ru
Ruthenium, Ru, is a 4d transition metal that belongs to the platinum (Pt) group of
the periodic table [24]. From a geophysical point of view the importance of studying
ruthenium is in its analogy with iron, indeed they are isoelectronic. Iron, Fe, is one of the
major constituents of telluric planets’ cores [25]. At ambient conditions the stable crystal
structure of Fe is the body centered cubic (bcc), but the relevant crystal structure at the
pressure and temperature conditions of the Earth’s core is the hexagonal close packed
(hcp), see Appendix C [26]. The volume change across the bcc-hcp phase transition
does not allow to retain single crystal at high pressure. As such, working on analogue
materials, such as Ru which is stable in the hcp structure at ambient conditions, offer an
interesting opportunity. In particular, as illustrated in Figure 1.6, Ru retains the HCP
structure up to 2000 K and at least 90 GPa.
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Figure 1.6: P-T phase diagram of ruthenium. The hcp structure of Ru is stable below 2000 K
and until 90 GPa. Image taken from [27].

However, information on the elasticity of Ru at high-pressure and high-temperature
are still limited to axial compressibility measured at ambient temperature by X-ray
diffraction [24]. Further important information is the elastic anisotropy, in particular
the C33/C11 ratio, and how this evolves with pressure. Indeed, geophysical observations
argue for a elastic anisotropy of the solid Earth’s inner core, with seismic waves travelling
3-4% faster along polar path than in equatorial plane. Such feature is generally explained
invoking elastic anisotropy of hcp iron, which however have not been measured yet.
Measuring elastic anisotropy of hcp Ru can shed light on this topic.
In Figure 1.7 unit cell in hcp structure is illustrated: a and c are the two parameters
characterizing the hexagonal unit cell, , the first corresponding to the size of the basal
hexagonal plane, the second to the height. At ambient conditions in Ru a measures 2.705
Å and c measures 4.281 Å [24]. At high pressure, it is interesting to study not only the
behaviors of a and of c separately, but also how their ratio c/a varies. In fact, the ideal
value of c/a, corresponding to maximum packing, is equal to 1.633 (

√
24/3). At ambient

conditions c/a for Ru measures 1.583 ([24]), but we expect this value to become close to
the ideal one when pressure increases.

Figure 1.7: Hexagonal symmetry structure where c corresponds to the height while a to the
side of the hexagon. c/a ratio is an important parameter when studying high
pressure behavior of ruthenium [28].
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At ambient conditions, elastic tensor of Ru, expressed in GPa, appears as reported
in [29]:

Cαβ =



563 188 168 0 0 0
188 563 168 0 0 0
168 168 624 0 0 0
0 0 0 181 0 0
0 0 0 0 181 0
0 0 0 0 0 187.5


(1.24)

In a hexagonal crystal every planes passing through the principal axes, [001], are elasti-
cally equivalent.
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Chapter 2

Methods: experimental techniques,
analytical and computational tools

This Chapter will treat the experimental, the analytical and the numerical techniques
used during this work: picosecond acoustics, and its use in combination with diamond
anvil cell, the analytical methods used for the data analysis and the inversion program
for the extraction of elastic constants. More precisely, section 2.1 is dedicated to the
description of picosecond acoustics set-up. In section 2.2 diamond anvil cells, preparation
and operation are presented. Section 2.3 deals with the sample preparation. Section, 2.4,
focuses on the analytical methods for the data analysis for the extraction of the inputs
for the inversion program, whose principles are described in the last section, 2.5.

2.1 Picosecond acoustics technique
Picosecond acoustics belongs to the class of pump-probe experimental techniques that
employ two laser beams (pump and probe) to excite the sample and detect optical re-
sponses of ultra rapid acoustic phenomena. It exploits light pulses to generate acoustic
waves. The general idea consists in detecting the different echos (reflections of the acous-
tic waves at sample’s interfaces) to extract materials’ sound velocities both at ambient
and extreme conditions. Sound velocities measurements as a function of pressure carry
information on how the mechanical properties’ change when a material experiences an
increased compression. In particular, concerning geophysical application, it is possible
to compare these measurements with the seismological data, allowing for the inference
on planets’ inner constituents.
Figure 2.1 shows a picture of the experimental setup, in which the most important com-
ponents are indicated:

1. Laser source;

2. Polarizing beam splitter. It splits the laser coming out from the laser box into two
beams: pump and probe;

3. Delay line. It produces a time delay between probe and pump beams;

4. Acoustic-optic modulator (AOM). It modulates pump beams with squared pulses
of 1 MHz each to enhance signal to noise ratio by Lock-in techniques;

5. Pump objective;

6. Probe objective;
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7. Michelson inteferometer.

Figure 2.1: Picture of the set up seen from two different perspectives. The principal compo-
nents are indicated by numbers: 1. Laser source 2. Beam splitter, which divides
pump and probe beams 3. Delay line, which delays probe beam with respect to
pump, 4. AOM (acoustic optic modulator), imposing a time structure exploited
by the Lock-in system to gain in signal to noise ratio, 5. Pump objective 6. Probe
objective, 7. Michelson interferometer, needed for measuring the imaginary part
of the change in sample reflectivity.

2.1.1 Signal generation
Qualitatively, the signal generation occurs as follow (see Figure 2.2): a pulsed laser
beam, called the pump beam, hits sample surface (or a coupler deposited on the sample
surface) in one spot, causing the material to increase locally its temperature, creating
a thermal gradient. The so-generated thermal stress relaxes through a strain (acoustic
waves) that propagates across the sample. At the probe-side surface, the arrival of the
train of waves is detected by probe beam and is partially transmitted and partially
reflected back to the pump-side surface, where, again it is partially reflected. Depending
on sample attenuation and acoustic mismatch at interfaces, the first arrival or multiple
echoes are detected.
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Figure 2.2: Working principle for signal generation and detection for a sample for which an Al
coating (coupler) is necessary to improve coupling with the laser.
First (top left) the pump, focused on the surface, generates the acoustic waves;
then, they propagate through the sample (top right), and arrive to the other surface
where probe detects the signal (bottom left); and finally they are partially reflected
back, creating the echo (bottom right) inside the sample.

The amplitude of the elastic waves decreases during propagation because of inelas-
tic and dissipating effects, the attenuation is generally less the harder is medium [8].
A detailed mathematical treatment about signal generation in picosecond acoustics is
presented in [30].

2.1.2 Signal detection
In picosecond acoustics, the probe beam detects the change of reflectivity that occurs at
the sample surface when acoustic waves arrive. Qualitatively, both acoustic and thermal
effects alter the optical reflectivity in two ways: the photo-elastic effect, which affects
the real part of the optical reflectivity, and the surface displacement, mostly visible by
measuring the imaginary part of the optical reflectivity. Indeed, remembering that:

R =
∣∣∣∣1− n1 + n

∣∣∣∣2 (2.1)

a change in the refractive index, n, causes reflectivity, R, to change.
The mathematical treatment describing this phenomenon is reported in Appendix D.
Here the main result, expressing the sample’s reflectivity change, ∆r(t)

r
, is shown:

∆r(t)
r

= ik0
{

2u0(t) + 4n
1−n2

∫+∞
0 dz

[
∂n
∂T

∆T (z, t) + ∂n
∂η

∆η(z, t)
]
e2ik0nz

}
(2.2)

The change in reflectivity is a complex number that has several terms: u0(t) describes the
surface displacement caused by the acoustic wave’s propagation, ∂n

∂T
∆T (z, t) corresponds

to the temperature increase caused by pump, while ∂n
∂η

∆η(z, t) describes the effect of
a deformation η on the optical properties of a material,where ∂n

∂z
is the photo-elastic

coupling coefficient [31].
Equation 2.2 can be rewrite in a simpler form as follows:

∆r(t)
r0

= ρ(t) + jφ(t) (2.3)
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where ρ(t) is the real part and φ(t) is the imaginary part.
Picosecond acoustics measures either the real part, ρ(t), or the imaginary part, φ(t), of
the change in reflectivity through two different set-up configurations, reflectometry mode
for the real part and interferometry mode for the imaginary part. These two modes will
be treated in details in this Chapter. Whether is preferable to detect the signal in one
configuration or in the other depends on which of the terms in Equation 2.2 dominate.
The theoretical prediction of which are the dominant terms for the studied materials is
beyond the scope of this thesis. For each sample we will use the mode that will grant us
the best detection of the signal.
One important aspect that needs to be stressed concerns the quality of the sample’s
surface. Since all the set-up is based on reflection processes, sample’s surface should
be mirror quality. More details about this aspect are presented later in this chapter in
the section dedicated to the sample preparation. The detailed mathematical treatment
about signal detection in picosecond acoustics is provided by [30].

2.1.3 Main components of picosecond acoustics set-up
Laser

The laser is a Ti:Sapphire type working at a wavelength of 800 nm (frequency of 80
MHz = 12.55 ns) with a pulse width of 100 fs. The Ti:Sapphire laser is split by a 90:10
polarized beam splitter (PBS) into two different laser beams, pump (90) and probe
(10), where the first is devoted to the excitation and the second to the collection. High
intensity pump beam is required to induce the thermal stress necessary for the generation
of acoustic waves. Pump and probe will be described in detail separately in the next
lines.

Pump beam

Pump beam is an high-power laser beam aimed at the excitation of acoustic waves inside
the sample. Once out from the PBS, it goes into the AOM (acoustic-optical modulator)
that modulates it with a frequency of 1MHz. Taking into account that the change in
reflectivity is small and so, difficult to be detected, pump beam is modulated in frequency,
in order to allow Lock-In rejection of the noise and improve on the signal to noise ratio.
The pulsed behaviour of the pump is the key of generation, in fact it acts like an hammer
which produces a big hit on a sample spot in a very short time interval. Thus, the pump
beam is focused on a spot of few microns in diameter (2 µm), causing a rapid and
localized increase of temperature. The beam also necessitates to be highly focused, to
guarantee the generation of spherical acoustic waves.

Probe beam

Probe beam is much less intense than pump and is devoted to the detection of the signal.
It goes into a optical delay line, which introduces a time delay in the probe beam with
respect to pump beam, allowing the detection of the signal at different time instants,
as it will be explained in the section dedicated to the delay line. However, even at the
minimal difference in the path, due to set-up construction features, pump and probe
beams are not perfectly coincident, and pump beam hits the material at a time t0 6= 0
ns in the reference system of probe beam. Time t0 can be evaluated thanks to a simple
reasoning based on the equality of all the ∆t, as:

t1 − t0 = t2 − t1 = t3 − t2 = ∆t → t3 − t1 = 2× (t1 − t0)→ t0 = t1 −
t3 − t1

2 (2.4)
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The offset time, t0, is then derived substituting in the previous section the arrival times
collected from ruthenium ambient pressure measurements, obtaining for the configuration
used in this thesis work:

t0 = t1 −
t3 − t1

2 = 0.308 ns

Pump and probe objectives

Long working distance (20 mm focal length) 20x objectives are used to focus both pump
and probe beams down to a spot of about 2 µm in diameter. This high spatial resolution
is crucial to provide a point source for acoustic waves generation and as well for the
detection, enabling the possibility to probe a signal from a material’s portion of diameter
of 2µm, property fundamental for temporal mode measurements, as it will be explained
later in this chapter. However, the high spatial resolution leads to the necessity of
performing a scan of the sample surface to acquire a 2D image in imaging mode.

Delay line

Probe beam is temporally delayed with respect to pump beam by means of the delay
line so to capture the propagation of the acoustic waves at an arbitrary time after its
generation [31]. This is practically achieved by increasing the optical path of the probe
beam. The delay line is composed by three back reflectors, see Figure 2.3: two are
movable and they are placed in front of a third fixed one. Incident beam is totally
reflected by a mirror to the first movable back reflector. Here, it is reflected to the
opposite fixed back reflector and then to the second movable one. Movable mirrors
travel up to a maximum distance of ∼ 1 m moving with velocity, v, adjustable between
1 mm/s and 100 mm/s. The probe beam performs inside the delay line an optical path
of minimum ∼ 0.1 m and maximum ∼ 4 m, that are the minimum and the maximum
positions of the movable back reflectors. This allows to introduce a temporal delay to the
probe beam with respect to the pump beam from a minimum of 0.1 ns to a maximum
of 13.3 ns.

Figure 2.3: The delay line is a displacing optical system that introduces a time delay on probe
beam with respect to pump by increasing the optical path of the probe beam by a
controlled distance, up to 1 m. Mirrors move with velocity, v, adjustable between
1 mm/s and 100 mm/s.

Fixing the position of the movable back reflectors to a selected position, x, along
the delay line (see Figure 2.4), the corresponding temporal delay, tdelay, is obtained as
follows:

tdelay = 4(x+ t0c)
c
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where c is the light velocity and 4 corresponds to the total number of the reflections
of probe beam inside the delay line. Before t0, the probe beam arrives earlier than the
pump beam and no time delay in the probe beam with respect to the pump is introduced.

Figure 2.4: Position of the movable back reflectors along the delay line.

AOM (acoustic-optic modulator)

Pump beam passes through an acoustic-optical modulator which modulates it with a
given frequency (F) of 1MHz in a way to allow a Lock-In amplifier to enhance the
acoustic signal from external noises. A train of waves is generated inside the AOM,
producing a change of refractive index and creating a network of refractive indices that
diffracts the incoming beam imposing to a characteristic modulation (see Figure 2.5).

Figure 2.5: Pump diffraction by train of elastic waves generated by the modulator. While
propagating, the acoustic wave modifies the refractive index of the medium that
leads to the diffraction of pump beam, that change its frequency as f ± nF, where
f is the initial pump frequency[31].

2.1.4 Operational modes
As already pointed out in section 2.1.2, there are two operational modes in picosecond
acoustics depending on the detection mode: reflectometry mode, to measure ρ(t), and
interferometry mode, to measure φ(t), see Equation 2.3.
Here both modes will be explained in more detail. Besides the possibility of working
in interferometry or in reflectometry modes, experiments can be run either in temporal,
imaging and movie modes. These operations modes will be presented later on.
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Reflectometry mode

The set up in reflectometry mode is schematically presented in Figure 2.6. Briefly, the
probe beam is focused on the sample surface opposite to the one where the acoustic
wave is generated. The intensity of the reflected is measured through a photodiode.
Thus, variation in the reflectivity due to the arrival of an acoustic wave can be directly
measured.

Figure 2.6: In the reflectometry mode, the intensity of the probe beam reflected by the sample
surface, is measured by a single photodiode.

Interferometry mode

Interferometry mode exploits a Michelson interferometer. Before impinging on sample
surface, probe beam is split by an additional 50:50 PBS into two separate beams: probe
1 and probe 2. Probe 1 is reflected directly by the sample surface, while probe 2 is
reflected by a mirror, whose position is set to provide interference fringes. Thus, these
two reflected beams will serve as inputs for the Michelson interferometer. After their
respective reflections, the two beams enter the two photodiodes, A and B, which convert
them in electrical signals. When an elastic wave produces a change in the imaginary
part of sample reflectivity, it is possible to record it by analysing the interference pattern
changes.
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Figure 2.7: In the interferometry mode, a Michelson interferometer is exploited to measure
the imaginary part of ∆r/r0. Probe beam, before being focused on the sample,
is split into two beams with equal intensities: one goes into the interferometer,
being reflected by a mirror, while the other goes directly on the sample. After
the respective reflections, the two beams enter two different photodiode and their
interference pattern is used to deduce the change in reflectivity.

Temporal mode

In temporal mode, pump and probe beams are collinear and the objectives are kept
fix during the measurements. This set-up is conceived to detect particle displacements
normal to the sample surface, that are generally produced by longitudinal waves1. Thus,
data collected from a temporal measurement will provide information about longitudinal
waves, including multiple echos (waves produced by previous or subsequent laser pulses
that are reflected by the sample’s interfaces). Because of the periodicity of the laser
pulses, occurring with a repetition rate T = 12.55 ns, all the acoustic waves, including
the echos generated by previous laser pulses, can be detected in a unique temporal
window of 13.3 ns, that is the maximum time delay provided by the delay line. Thus,
the non-scaled arrival time, t̄n, of an acoustic wave is derived from the detected one, tn,
as:

t̄n = tn − t0 + kT (2.5)

where k is the number of the laser pulse.
In Figure 2.8 a typical plot of measurements in temporal mode is shown. The arrival
of longitudinal waves produces a sharp intensity variations (sort of peaks) like the ones
visible around 7 ns, 8.5 ns, 9.9 ns and 10.9 ns.

1The transverse waves can have a component that leads to a particle displacements normal to the
surface allowing their detection.
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Figure 2.8: Reflectivity as a function of time acquired on Ru sample (48 µm thick) with [001]
direction along the beam path. Around 7 ns an intense peak occurs, t1: it corre-
sponds to the arrival of the longitudinal wave. Between 8 and 9 ns, at t3, another
wave, less intense arrives: it is the echo of acoustic wave that have been generated
by previous laser pulse. Other two echoes of acoustic waves that were generated
by, respectively, two and three previous laser pulses, are detected between 9 and
10 ns, at t5, and between 10 and 11 ns, at t7.

Imaging mode

In this operational mode, a 2D image of the sample surface is obtained. The probe objec-
tive is mounted on a piezoelectric stage, whose controlled motion enables the possibility
to scan, at a fixed delay time, the sample surface and thus reconstruct a 2D image over
an area of 100 µm x 100 µm. This mode can work either in DC mode (without using the
Lock-In amplifier), producing an actual picture of the surface, or in Lock-In mode, using
the Lock-In amplifier, whose cutoff frequency is set to cut most of the noise coming from
sample surface defects and from external perturbation ( ambient light, etc.). The DC
image is generally used to check sample surface quality and homogeneity, as well as to
refine the laser focus. An example of DC mode image is presented in Figure 2.9, where
the black spots are surface defects.
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Figure 2.9: 100× 100 µm DC image of the surface of MgO single crystal (001).

The imaging mode with the Lock-In on produces as well a 2D image of sample, as
represented in 2.10, but the frequency cutoff is such to optimize the visualization of the
acoustic waves (circles in Figure 2.10) at the sample’s surface, and is used to collect data.

Figure 2.10: 100 × 100 µm image showing the acoustic waves on Ru single crystal oriented
with surface normal along (001).

Movie mode

The movie mode is an operational mode similar to imaging mode, but in which the delay
line moves in between each 2D image by a step decided by the experimenter and collects
data over a chosen time lapse. In this mode collected data are saved as a set of images,
each corresponding to a different position of the delay line, and hence different time delay
between pump and probe. A subset of such data is represented in Figure 2.11.
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Figure 2.11: Acoustic waves propagating inside ruthenium (68 µm thick), recorded in movie
mode from 9.750 ns to 10.500 ns, with the delay line moving with a step of 0.250
ns from one image to the following.

2.2 Diamond anvil cell for high pressure generation
Diamond anvil cell (DAC) is a unique apparatus capable of generating static pressure (P)
in excess of hundreds of GPa and allowing a large variety of in situ measurements. Since
its invention in 1959, the DAC has evolved to become the most powerful tool among all
static high-P research apparatuses. All DACs have the common key component of two
opposed diamond anvils that generate P and provide transparent windows for optical
and x-ray access. The principle of the DAC design is simple: two opposing diamond
anvils with small culets point to each other, and the sample is squeezed between these
two (see Figure 2.12). A single-crystal diamond is the chosen anvil material because of its
unique properties, including its unmatched extreme hardness to support high P, chemical
inertness, transparency to infrared, visible, and ultraviolet radiations (< 5 eV) for optical
spectroscopy, transparency to X-ray (> 10 keV) for X-ray diffraction, spectroscopy and
imaging, and compatibility for electrical and magnetic transport measurements [32].

Figure 2.12: Picture of the open DAC which has been used for the experiments.

Figure 2.13 shows a picture of diamond culet seen through a microscope.
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Figure 2.13: Image of diamond culet seen through the microscope. Diamond culets are re-
quired to be flat and perfectly parallel in order to generate uniform pressure.
The alignment of the diamonds’ culets is done by looking at the interference
fringes through the microscope: when there are none the two diamonds are par-
allel. Diameter of culets is selected according to the target pressure and other
experimental constraints remembering that P = F

A and so higher pressures re-
quire diamonds cut with smaller culets.

2.2.1 Gasket and gasket indentation
The gasket is a thin metallic foil of ∼ 200 µm of thickness, which is placed between
the two diamonds and acts as sample chamber. A desirable material to be employed
as gasket is Rhenium because is a hard material that supports high pressures without
excessive deformations. First step in preparing a DAC is the gasket indentation: the
gasket is placed between the two diamonds and squeezed by applying a force to the cell
so to increase the pressure and let the diamonds’ culets leave a permanent imprint on
the gasket and reducing the initial gasket thickness to the desired one. The so-produced
gasket is then drilled at its center (e.g. by a laser) so to serve as the sample chamber.
Gasket thickness during indentation is estimated based on previous experiences, either
by monitoring the pressure on the membrane used for compression or by measuring the
pressure by an optical gauge (see next section). Figure 2.16 shows a picture of a gasket
after the indentation.
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Figure 2.14: Image of indentation of a Rhenium gasket foil taken at microscope. Gasket in-
dentation is performed by diamonds culets (diameter 400 µm) which squeeze the
gasket without the sample till it reaches the desired thickness (65 µm in the
present case).

2.2.2 Ruby fluorescence shift as P calibrant
The force applied to a DAC is transmitted to the anvil culets and generates a P dis-
tribution which can be probed and mapped by internal calibrants. Limiting to experi-
mentation at ambient temperature, ruby is the most largely used optical gauge, because
its very intense and characteristic fluorescence signal. Fluorescence signal is sensitive to
P changes and has been calibrated and tested using many pressure transmitting media
[32].

Figure 2.15: Ruby fluorescence collected at two different pressures: on the left pressure is 5.04
GPa and on the right 10 GPa. Position of R1 peak, the first and most intense of
the two ruby fluorescence peaks, is calibrated against pressure: on the left R : 1
position corresponds to a wavelength of 696.5 nm, while on the right R1 peak
wavelength is at 697.3 nm.

The pressure is derived from the measured wavelength of the R1 fluorescence line
according to the relation provided by [33]:

PR = A

B

( λ
λ0

)B
− 1

 (2.6)
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where A= 1904 GPa, B=9.5 GPa, λ0 is the uncompressed ruby wavelength and corre-
sponds to 694.3 nm, and λ indicates the ruby fluorescence wavelength at a given pressure.
The transparency of diamonds to laser and ruby fluorescence wavelengths guarantees the
possibility to perform fluorescence spectroscopy measurements at high pressure. Exam-
ples are reported in Figure 2.15.

2.2.3 Sample chamber
The sample chamber contains the sample. Once the indentation is done, through a laser
beam is possible to cut within the gasket a cavity centered within the imprint left by the
diamonds, creating in this way the sample chamber. Thanks to the previous indentation,
two rims running around diamond culets have been created. Since rhenium is an hard
material, the scope of the two rims is to exercise an opposition to the horizontal stress
occurring parallel to the plane of the gasket and thus, avoiding the sample chamber to
be totally squeezed.

2.2.4 Pressure transmitting medium
The vast majority of high pressure experiments are aimed to be carried out under hydro-
static conditions, as under uni-axial deformation not every sample’s portion experiences
the same experimental conditions. The practical realization consists of immersing the
sample in a fluid pressure transmitting medium (PTM) which is supposed to support
no shear. However, the melting line of fluids increases with pressure and solidifica-
tion inevitably occurs at some pressure value. Beyond this value, the pressure across
the experimental volume is generally inhomogeneous and differential (mostly uni-axial)
stress and shear stresses appear [34]. PTM are selected based on their inertness to the
sample, compatibility with the experiment, operational convenience, and the degree of
quasihydrostaticity in the experimental P-T range. For example, a 4:1 methanol/ethanol
mixture and silicon oil are fluid P media for experiments below 10 GPa but harden at
higher P[32]. In high-pressure measurements performed during this internship, we used
methanol/ethanol 4:1 mixture. It was shown by numerous groups that the glass transi-
tion is at 4 GPa and the loss of the quasi-hydrostaticity occurs at 10.5 GPa [34].
Figure 2.16 schematically show a DAC sample chamber containing the sample and a
pressure marker embedded in a PTM.
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Figure 2.16: The principal components of the DAC are shown: two opposed diamond culets
squeeze the sample that is contained inside the sample chamber. Sample chamber
is created starting from a rhenium foil, called gasket. Inside the sample chamber,
beyond the sample, a ruby, working as a pressure calibrator, and a pressure
transmitting medium, are contained as well[32].

2.2.5 Implementation of DAC in picosecond acoustics
Implementing an experimental protocol to allow picosecond acoustic measurements on
single crystals compressed in diamond anvil cell is one of the objectives of this thesis
work. This configuration enables the possibility to measure elastic constants and sound
velocities at high pressures. In Figure 2.17 the complete set up is presented. The set-
up is the same as the one already presented in the beginning of the chapter, with the
addition of the DAC containing the sample. High- pressure measurements on Iron using
picosecond acoustics technique combined with DAC up to ∼ 150 GPa are is presented
by [35]. We stress however, that these measurements are limited to temporal detection
on polycrystalline samples. Measurements on single crystals are so far limited to cubic
samples and ∼ 8 GPa [36].
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Figure 2.17: Schematic diagram of picosecond acoustics set up in combination with the DAC
in the interferometry configuration.

2.3 Sample preparation
Both picosecond acoustics and DAC impose constraints on given characteristics of the
sample. Firstly, since signal generation and detection are based on reflection processes,
sample surfaces need to be of high quality. Secondly, the sample needs to be optically
opaque to infrared wavelength otherwise the generation does not occur. If the studied
sample is not opaque a coating is necessary. Moreover, in order to be suitable for DAC,
sample should have thickness of the order of tens of µm and a diameter of hundreds µm,
or less. In the next paragraphs the various steps in sample preparation are separately
described.

2.3.1 Sample orientation
Orienting the sample along one precise crystallographic direction is an important step
to be done before proceeding with the sample polishing (process leading to high quality
surface and desired thickness) because it determines which elastic constants can be de-
rived from the inversion of the Christoffel equation. The most commonly used methods
for single crystal orientation are X-Ray diffraction and the orientation by apparent crys-
tallography for big samples. Specific to this work, the samples used were bought already
oriented along a precise direction. For cubic symmetry single crystals, like MgO, the
direction [001] gives access to all the independent elastic constants, while for hexagonal
symmetry single crystals, like Ru, two directions, for example [001] and [010], are needed
to obtain the all independent components of the elastic tensor.

2.3.2 Sample thickness and high quality surfaces
To obtain both the desired thickness and the needed surface quality, a mechanical polish-
ing machine was used. By using a rotating disk on which is glued a paper with diamond
grains of selected dimensions, one can perform both rough polishing for thinning (coarse
diamonds grains) and fine polishing for final surface quality (0.5 µm diamond grains).
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2.3.3 Surface coating
The studied samples necessitate to absorb the infrared wavelength to allow the genera-
tion and the detection of acoustic waves. The penetration length, δP , of the laser inside
the sample depends strongly on its optical properties and for each new sample it has
to be established if a coating acting as laser coupler is necessary or not. The coating
generally consists of a deposition of thin layer, of tens to hundreds of nm, of a material,
typically a metal, which absorbs in the infrared, for example Aluminum.
The Lambert-Beer law describes the attenuation of a radiation passing through a mate-
rial, as follows:

I1 = I0e
−αl (2.7)

where α is the absorbance coefficient, I0 the incident radiation intensity and I1 the
radiation intensity once out from the material.
The penetration depth is defined for I1 = 0.37I0, when Equation 2.7, becomes:

δp = 1
α

(2.8)

It is empirically observed that when δP > 20 nm a coating is necessary.
Other than absorption, there are different parameters on the basis of which the coating
material can be chosen: acoustic impedance, optical reflectivity of the coating material,
chemical affinity between sample and coating material. The acoustic impedance differ-
ence between the coating and the sample should be small to maximize the transmission
of the acoustic energy; coating’s reflectivity is required to be high to guarantee laser re-
flections and chemical affinity is recommended to deposit an homogeneous coating layer
[31].

2.4 Analytical methods
This section presents the analytical methods used for the data analysis of temporal and
imaging data.

2.4.1 Temporal data
The temporal data provides the acoustic waves’ arrival times. Exploiting the periodicity
of the laser repetition rate, all the acoustic waves, including their echoes, are acquired
in an unique temporal window, whose range is determined by the delay line and goes
from 0.1 ns (minimum pump-probe delay time) to 13.3 ns (maximum pump-probe delay
time). The difference between two successive arrival times, tn and tn−2, is the travel
time:

∆t = tn − tn−2 (2.9)
A simple relation relates travel time ∆t, sample thickness l and sound velocity V :

l = V ×∆t
2 (2.10)

where the division for 2 is motivated by the fact that the acoustic waves cross the
sample twice between two successive arrival times, being the detection only at probe
sample surface, as shown in Figure 2.18.
An exception to Equation 2.10 is when t0 and t1 are the arrival times considered: in this
case the acoustic waves cross the sample only one time. The correct equation for this
case is:

l = V ×∆t where ∆t = t1 − t0 (2.11)
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Figure 2.18: Arrival times of the acoustic waves and of the first echo at probe sample surface.
The image has a clarifying purpose and is not a realistic representation because
the inner reflections at the interfaces occur at the same sample position.

2.4.2 Imaging data
The data acquired in imaging mode are 2D images of the acoustic waves arriving at
the sample surface. The function describing the variation of the acoustic wave’s radius
with respect to the delay time is provided by a simple mathematical derivation using the
geometrical construction illustrated in Figure 2.19:

R(t) =
√
x2(t)− l2 →

R(t) =
√

(V 2
φ (t− t0 + kT )2 − V 2

[001](t′ − t0 + kT )2 (2.12)

where Vφ is the acoustic wave velocity at a given angle φ; t is the acoustic wave’s arrival
time at a generic position of the sample’s surface; t′ is the acoustic wave’s arrival time at
the focus spot’s position; t0 is the time of the acoustic wave’s generation (introduced in
the section “Probe beam”); k denotes the k-th laser pulse and T is the repetition rate.
The Equation 2.12 describes a parabolic relation between the acoustic wave’s radius and
the time.
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Figure 2.19: Schematics for the geometrical derivation of the form function describing the
variation of acoustic wave’s radius with time.

2.5 Computational methods
Picosecond acoustics experiment provides the travel times from temporal data and the
radii of the acoustic waves as a function of time from the imaging data. Two software are
used for the direct problem (simulate picosecond acoustic signal for samples of known
elasticity and dimensions) and for the inverse program (derive elastic properties from
measured picosecond acoustic signal).

2.5.1 Direct program
The direct program was developed within the group before this internship. This program
is based on the Christoffel equation and performs a simulation of the “direct problem”:
given the elastic constants, it derives the travel times of longitudinal and transverse
waves, including the echos. It requires as input the sample thickness, the density, the
symmetry class and orientation of the crystal. The program is also useful to visualize
the shape and the type (longitudinal or transverse) of the acoustic waves in samples.
Figure 2.20 shows the user interface and Figure 2.21 the outcome of the simulation for
the example case of Ru.
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Figure 2.20: Top images: user interface from which is possible to choose the symmetry of the
material that is going to be simulated, if it is a polycrystal (random orientation)
or not. After the user has to insert the elastic constants and the density. Bottom
image: .exe user interface showing the expected arrival times of longitudinal and
transverse waves for the sample given its thickness.
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Figure 2.21: Top images: simulation through the direct program of longitudinal wave at given
times in 48 µm thick Ruthenium single crystal oriented along (001). Bottom
images: simulation of transverse waves in same sample.

2.5.2 Inversion program
The inversion program is another software, developed within group before this intern-
ship, which allows the extraction of the elastic constants from collected longitudinal and
transverse waves. It consists basically in the inversion of Christoffel equation. As already
seen in Chapter 1, this equation provides the link between the sound velocities and the
elastic tensor. By inverting the equation, the elastic constants can be derived if sound
velocities are known. Since for arbitrary directions not always an analytical solution to
the equation exists, the program exploits iterative methods to solve it numerically.
The general idea consists of minimizing the difference between values of experimental
sound velocities vnexp and the theoretical ones, vntheo, obtained from the elastic moduli.
The theoretical values of sound velocities (corresponding at the same delay pump-probe
used in the experiment) are calculated by simulation [31], starting from initial guess of
values of Cij and progressively refined. Two different iteration methods have been ex-
ploited: least square methods (LSM) and a Monte Carlo Method. The inversion program
will search for the solutions which minimize the χ2 of experimental and theoretical sound
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velocities, as:

χ2 =
n=N∑
n=1

vntheo − vnexp
σ2
n

(2.13)

in which σn is the error on the velocity measurements. It requires as inputs the radii of
the acoustic waves as a function of time that are extracted with a LabView program as
it will be explained in the next Chapter. Figure 2.22 shows the user interface: on the left
the user decides whether refining the sample’s thickness or the elastic constants writing
the number 1, or not refining, writing the number 0; on the right image, the user inserts
the type of the wave, the number of the generating laser pulse and the acoustic waves’
radii as a function of time.

Figure 2.22: User interface of the inversion program in the case of MgO. ’0’ indicates to the
program to not refine that parameter while ’1’ to refine it.
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Chapter 3

Results and discussion

In this Chapter the main results obtained during this thesis are presented and discussed.

3.1 Measurements on MgO
Two pre-oriented single-crystals of MgO (001)1(Optowise), with a nominal thickness of
(100 ± 20) µm, were investigated at ambient conditions. An Al coating layer was
deposited on MgO surfaces to guarantee the generation of acoustic waves, as the pene-
tration depth δP is equal to :

δPMgO = 1
0.00025 nm = 4 × 1012 m (3.1)

Thus, δP , is much bigger than 20 nm, that is the maximum value of the penetration
depth for the acoustic waves’ generation.
Indeed, MgO is transparent not only in the visible range, but as well in the near infrared.
One of the two samples (MgO/Al) was coated only on one side, while the other one
(Al/MgO/Al) was coated on both sides. Acoustic measurements on the two samples are
presented and discussed in the following paragraphs.

3.1.1 MgO/Al
This configuration allows to detect Brillouin oscillations of MgO, given by the interference
between the probe beam and the propagating acoustic wave. Probe and pump beams
were focused respectively on MgO/Al interface and Al/air interface, as shown in Figure
3.1.

1In cubic symmetry crystal the directions [100], [010] and [001] are equivalent. In picosecond acoustics
set-up the z direction is conventionally assumed along the laser path, and so we will refer to MgO oriented
along one of these axis as MgO (001).
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Figure 3.1: Configuration of MgO (001) coated with aluminum only at pump side surface.

Figure 3.2 shows the signal intensity as a function of pump-probe delay time acquired
in temporal mode and reflectometry configuration of the picosecond acoustics set-up (see
section 2.1.4 in Chapter 2). The signal can be seen as made up of two main contributions:
the sharp intensity variation corresponding to the arrivals of sound wave propagating
across aluminum, modulated by oscillations at constant frequency (the Brillouin signal
of MgO). MgO’s longitudinal sound velocity along [001] direction of propagation, VL[001],
can be derived from Brillouin oscillations’ frequency, ν, as :

VL[001] = νλ

2n(λ) (3.2)

where λ = 800 nm is the laser wavelength and n = 1.7272 is real part of MgO’s refractive
index.
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Figure 3.2: Intensity as a function of delay time in MgO (001) single crystal (2mm x 2mm
and 100 µm thick). The signal is composed by the arrival acoustic waves prop-
agating in aluminum layer modulated by Brillouin oscillations resulting from the
interference between the propagating acoustic echo in MgO and the probe. Oscil-
lation frequency depends on sound velocity and refractive index of the investigated
material.

Figure 3.3 shows the signal intensity as a function of delay time after the subtraction
of background baseline. This last was determined using the following code, executed in
Origin Lab script window :
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Figure 3.3: Background subtraction in Intensity versus Time temporal measurement on single
coated MgO (001) single crystal.

The intensity of Brillouin oscillations shows a decrease at higher pump-probe time
delay, caused by the acoustic attenuation of the sample. The data can be fit through
a function Y having the form of a sinusoid modulated by a decaying exponential with
decay constant 1/d, illustrated by Figure 3.4, as:

Y = Ae−t/dsin(νt− b)

where A is the amplitude, ν the oscillations frequency, b the phase shift and d is related
to the acoustic attenuation of the sample.
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Figure 3.4: Intensity of Brillouin oscillations as a function of pump-probe time delay fit to a
damped sinusoidal function Y of the form Y = Ae−t/dsin(νt− b).

The Brillouin oscillations’ frequency, ν, extracted from the full-range fit is equal to
(245.9± 0.2) GHz. Substituting the ν value obtained from the fit, in Equation 3.2, the
velocity VL[100] can be derived, resulting in:

VL[001] = 245.9 GHz × 800 nm
2× 1.7272× 2π = (9.06± 0.07) km/s

where the uncertainty is calculated considering only the uncertainty on the frequency ν
as the other terms’ uncertainties are negligible.
The homogeneity of the sample along its thickness can be tested by comparing the
frequencies extracted from the fits performed over four different delay time ranges, as
illustrated in Figure 3.5. The selected ranges are chosen in order to avoid the echoes due
to the propagation of the acoustic wave in the Al coating layer, which carry no informa-
tion about the MgO. The measured signal varies with time because the relative phase
of the light scattered by the acoustic phonons and reflected by interfaces continuously
changes with time due to the variation in the spatial position of the acoustic phonons.
If the acoustic phonons propagate at a constant velocity in a spatially homogeneous
medium, the phase difference between the interfering light fields changes linearly in time
causing sinusoidal variations in the signal amplitude at a frequency precisely equal to the
Brillouin frequency [37]. The frequencies associated to the selected delay time ranges,
listed in Table 3.1, are within mutual uncertainties, indicating a sample’s homogeneity.
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Figure 3.5: Intensity of Brillouin oscillations as a function of pump-probe time delay fit to the
function Y = Ae−t/dsin(νt− b) in four different time ranges.

Table 3.1 summarizes the frequencies derived from the fits and the relative longitu-
dinal sound velocities in direction [001], V[001], in the four selected ranges. The velocities
have been derived from Equation 3.2.

Time range ν (GHz) VL[100] (km/s)
1st range
[0.42 ns-0.52ns] 246.4 ± 0.9 9.08 ±0.03

2nd range
[0.61 ns-0.76ns] 246.4 ± 0.8 9.08 ±0.03

3rd range
[0.77 ns-0.90ns] 246.0 ± 0.7 9.07 ±0.03

4th range
[0.92 ns-1.12 ns] 247.2 ± 1.5 9.11 ±0.06

Table 3.1: Oscillation frequencies and derived sound velocities for each selected range. The
uncertainties on the frequencies directly come from the fit, while for the velocities,
errors’ propagation rule was used.

The frequencies’ mean value ν̄ = (246.5 ± 0.5) GHz (with statistical uncertainty at
one σ) is compatible with the frequency of full-range fit, ν = (245.9 ± 0.2) GHz. The
value of the acoustic wave velocity in the [001] direction was assumed as the average of
the velocity values obtained in the four selected time ranges and the uncertainty as the
standard deviation, resulting:

V̄L[100] = (9.09± 0.02) km/s (3.3)
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This value agrees within the uncertainties with the acoustic wave velocity evaluated with
the formula in Table 1.1, using C11 provided from Brillouin spectroscopy measurements
by [23]:

VL[001] =
√
C11

ρ
=
√

297.7 GPa
3.584 kg/cm3 = 9.11 km/s

Ideally, the thickness of the coating should not be more than 200 nm so that the acoustic
signal does not overlap with MgO signal. However, the physical vapor deposition ma-
chine (PVD) used to coat the MgO sample in this set of measurements, has a sensitivity
of 1 µm, making it very difficult, if not impossible, to provide an homogeneous coat-
ing with the thickness thinner than the sensitivity. The obtained coated layer was thus
thicker than expected, allowing the detection of the acoustic waves propagating across
it. The two peaks in Figure 3.2, t1 and t3, are the arrival times of the acoustic waves that
propagate inside the coated layer of Al. The first arrival of the acoustic wave is detected
at t1 = 0.373 ns and corresponds to the arrival of the acoustic waves at MgO/Al inter-
face; the echo t3 = 0.574 ns relates to the acoustic wave reflected by MgO/Al and Al/air
interfaces and detected by the probe beam at MgO/Al interface after these reflections.
This peak is less intense than the one at t1 because of the acoustic attenuation inside the
sample and because of the transmission/reflection processes occurring at the interfaces.
The Al layer’s thickness, l, can then be estimated from the measured travel time,
∆t = t3 − t1, using as input the compressional sound velocity of Al [38], as follows:

l = VAl ×∆t
2 = 6.40 km/s× 0.201 ns

2 = 643 nm

3.1.2 Al/MgO/Al
A second MgO sample was coated on both surfaces as illustrated in Figure 3.6. This
time, an evaporation deposition machine, having the precision of tens of nm, was used.
Coating thicknesses were 200 nm at pump side and 100 nm at probe side, measured
by optical profilometry. In this configuration the probe beam is focused on Al as is the
pump beam: the acoustic waves generated at pump surface propagate inside MgO and
are detected at probe side.

Figure 3.6: Second MgO sample with two surfaces coated with Al: pump side coating is 200
nm and probe side coating is 100 nm.
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Figure 3.7 shows the signal intensity as a function of pump-probe time delay acquired
in temporal mode and reflectometry configuration. The arrival time of the longitudinal
wave is detected at tLongi= 12.398 ns.
The MgO’s nominal thickness was given with an uncertainty of 20 % that would propa-
gate with an uncertainty of at least 20% on the sound velocity’s uncertainty. Thus, MgO
thickness, l, can be derived from the travel time that are measured with a much smaller
uncertainty, as follows:

l = VL[001] ×∆t with ∆t = t1 − t0 (3.4)

where VL[001] is the MgO longitudinal sound velocity in the direction [001] ( as for instance
obtained by analysis of the Brillouin oscillation, see previous section), t1 is the arrival
time of the longitudinal wave measured on probe surface and t0 is the time of acoustic
signal generation, at the pump side. Thus,

l = 9.09 km/s× 12.09 ns = (109.9± 0.2) µm

Figure 3.7: Intensity as a function of pump-probe time delay plot acquired in temporal mode
and reflectometry configuration for the Al/MgO/Al sample. The peak at tLongi
is the arrival time of longitudinal acoustic wave of velocity, V[001], while the peak
at ttrans is the time when the transverse wave, that arrived at sample surface
somewhere else, reaches the focus sample spot of the probe beam.

The ttrans visible in the temporal mode measurement shown in Figure 3.7 corresponds
to the arrival of the transverse acoustic wave at the point where the probe beam is fo-
cused. From the direct program simulation and from the imaging data, we know that
this time is not the arrival time of the transverse acoustic wave at the opposite MgO
sample surface and cannot be used to derive the transverse wave sound velocity.
More information can be obtained from phonon imaging, exploiting the imaging data
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collection mode. As described in section 2.5.2, an inversion program can be used to
derive the elastic constants and the thickness of the sample using as inputs the acoustic
waves’ arrival times, the type of wave (longitudinal or transverse) and the acoustic waves’
“radii” as a function of time. In this context the term radius is used for both isotropic
and anisotropic materials to indicate, respectively, the standard radius of a circle or
the distance between the intersection point with the high-symmetry axes and the center
(i.e. position corresponding to straight propagation of the acoustic wave generated on
the other side of the sample). Radii are obtained from the imaging mode data using
a LabView program, as illustrated in Figure 3.8. The yellow axes corresponds to the
direction [100] and the red axes to the direction [110]. Information about the character
of the wave and distinct shape can be confirmed by comparison with direct program’s
simulations. The refined elastic constants are obtained from the inversion program. The
bulk and the shear moduli, are derived through Voigt-Reuss-Hill rule and the acoustic
waves velocities are obtained from Equation 1.21 in section 1.3.2.

Figure 3.8: 100 µm × 100 µm images showing the transverse (left) and longitudinal (right)
waves in MgO, detected respectively at 5.3 ns and at 12.4 ns. The yellow axes
show the direction [100], while the red axes show the the direction [110]. The
LabView program determines the distance, i.e. the acoustic waves’ radius, between
the intersection points of the propagating acoustic waves with the high-symmetry
axes and the center of the acoustic wave, providing the input for the inversion
program.

Figure 3.9 shows the reference system used for the experiment: the acoustic waves at
probe side surface are visible on the plane given by the directions [100] and [010].
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Figure 3.9: Reference system exploited for the experiment is schematically presented. The
acoustic waves are visible on the plane given by the direction [100] and [010].

Figure 3.10 shows the radius of the acoustic waves, for both longitudinal or transverse
waves in directions [100] and [110] as a function of time. These are used as inputs for
the inversion program. From the figure we see that there are values of the radii as a
function of time at instants between 0 and 1 ns and after 12 ns. From the simulation
through the direct program it emerged that the arrival time of the longitudinal wave
generated by the laser for 0 delay pulses is 12.38 ns. Considering the repetition rate
of the laser, T = 12.55 ns, and the arrival time of the simulated longitudinal wave at
t1 = 12.38 ns, the acoustic waves visible in the time range between 0 and 1 ns correspond
to the longitudinal acoustic waves generated by the previous laser pulse (k = −1). In
fact, t−1 = 12.38 ns− 1× (12.55 ns) = −0.17ns. Noteworthy, as both longitudinal and
transverse waves are bulk waves, the variation of their radii as a function of time follows
the relation 2.12 presented in section 2.4.2, (see Figure 3.10).
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Figure 3.10: Radius as a function of time, for longitudinal and transverse waves in Al/MgO/Al
along directions [100] and [110]. These observations are the inputs for the inver-
sion program. Radii of longitudinal waves propagating along [100] and [110]
direction overlaps as a consequence of crystal symmetry.

The independent elements of the elastic tensor Cij resulting from the inversion are
reported in Table 3.2 together with literature values from Brillouin spectroscopy mea-
surements [23]. The redundancy of the probed directions in present measurements (2D
images) with respect to single direction determination by classic Brillouin spectroscopy
[23] directly reflects in the smaller uncertainties of our determinations.

l
(µm)

C11
(GPa)

C44
(GPa)

C12
(GPa)

This work 109.38 ± 0.04 296.96 ± 0.19 153.60 ± 0.10 98.78 ± 0.11
Sinogeikin et al. – 297.7 ± 3 154.5 ± 1.5 95 ± 1

Table 3.2: Elastic constants of MgO obtained in this work compared to literature values [23].

The refined thickness l = (109.38±0.04) µm is compatible with the one derived from
travel times in the previous section.
The estimated values of the aggregate bulk and shear moduli, as well as aggregate com-
pressional and shear velocities according to Equation 1.21 are listed in Table 3.3.

K (Gpa) G (Gpa) VP km/s VS km/s
This work 164.8 ± 0.1 131.33 ± 0.05 9.692 ± 0.002 5.996 ± 0.003
Sinogeikin et al. 162.767 130.398 9.691 ± 0.03 6.032 ± 0.03

Table 3.3: Bulk and shear moduli, compressional and shear velocities of MgO.
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The longitudinal acoustic wave’s velocity in direction [001] can be recalculated using
the refined C11:

VL[001] =
√

296.96 GPa
3.5839 g/cm3 = (9.10± 0.05) km/s

where the uncertainty is estimated propagating uncertainty on C11.
This value is in good agreement with the one derived through Brillouin oscillations in
the previous section and in good agreement with the literature.

3.2 Discussion on MgO measurements

3.2.1 MgO/Al
Picosecond acoustics measurements on MgO/Al sample allowed to extract the Brillouin
oscillations frequency and the longitudinal sound velocity in direction [001], VL[001]. The
obtained value agrees within uncertainty with the literature. However, the aluminum
coating was too thick (643 nm) due to the limited performances of the used PVD machine.
For this reason, the acoustic waves propagating inside aluminum were also detected.
While this was not a problem of the detection and analysis of the MgO Brillouin signal,
this should be avoided because of potential overlap of the acoustic waves propagating
within the sample and within the coating. As demonstrated in the case of MgO/Al, the
sample homogeneity along its thickness can be evaluated selecting specific time ranges out
from the whole probed delay time range and comparing the extracted frequencies from
each interval. Tests on the homogeneity are essential when natural samples are studied,
because they can present inhomogeneities. Similarly, quality of synthetic samples can be
probed to discriminate on synthesis protocols. While not done in this work, to test the
sample homogeneity over the other directions, the same measurements changing the focus
spot position should be performed. To conclude, the developed experimental protocol
can be extended to the study of all the transparent materials once their refractive index
is know and changing the coating coupler if the acoustic mismatch with Al is too high.

3.2.2 Al/MgO/Al
In the Al/MgO/Al specimen the acoustic waves propagating within the sample were
generated on one side of the sample and their arrival detected on the opposite side. This
time the coating was deposited using the evaporation deposition machine that guarantees
a precision of tens of nm, so effectively producing layers of desired thickness. However,
due to an internal malfunctioning, the deposited coating resulted to be not homogeneous
over the entire surface. Even if we could not generate an acoustic signal everywhere on
the surface of the sample, we managed in finding a spot in which it was possible. Focusing
on this spot, the data were successfully acquired and the full elastic tensor Cij at ambient
pressure was derived from the inversion program. Obtained results are in agreement with
literature values [23]. In particular, we stress that the very high number of directions
simultaneously probed by the imaging, allowed for inversion of the elastic moduli with
a much higher precision than inversion from Brillouin measurements performed for one
direction at the time, and consequently along a much reduced number of directions.
From the elastic tensor the bulk and the shear moduli were derived by classic averaging
schemes, and from them the compressional and shear velocities were also determined.
The here developed protocol involving the use of picosecond acoustics technique and of
the inversion program were successfully tested to provide the material’s elastic tensor at
ambient pressure. However, these measurements allowed to evidence the importance of
the quality and homogeneity of the coating. Accordingly, the next set of measurements
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on MgO should be performed on samples with a more homogeneous and thinner coating
layer. In order to extend these measurements to high-pressure, the MgO sample thickness
should be decrease from 100 µm down to about 40 µm to fit the DAC constraints, while
still allowing for the use of the phonon imaging technique.
Finally, some considerations have to be made concerning the selection of the operation
mode. The temporal mode only provides the travel times of the acoustic waves, while to
derive sound velocity sample’s thickness is also necessary. For measurements at ambient
pressure the sample thickness can be determined with high precision by interferometry
or from travel time determination if the value of the sound velocity is known (either
from literature, or, from Brillouin oscillations in case of transparent samples). For high
pressure experiments, the procedure is typically different: the sound velocities must be
derived from the travel times measurements making use of known equation of state to
estimate sample thickness at pressure (this protocol will be used for Ru measurements).
As such, pressure derivative of the velocities are derived with higher precision than
absolute values. On the other hand, the information extracted from the data collected
in imaging mode is more complete and allows to directly determine the thickness of
the sample as well as the elastic constants through the inversion program. Imaging
mode is thus preferable when possible, but necessitating bigger samples than temporal
measurements, is less apt to very high pressures (P> ∼ 50 GPa).
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3.3 Measurements on Ru
The ruthenium sample was a single-crystal with orientation in (0001)2 plane bought
from Princeton Scientific Corporation, and was investigated both at ambient- and high-
pressure conditions. The sample was mechanically polished to a thickness of ∼ 50 µm,
as measured by a micrometer. Several disks of 150 µm of diameter were laser-cut out
from the big sample to make them suitable for experimentation in the DAC. Ruthenium
directly absorbs in infrared wavelength not requiring a coating of the surfaces. In fact,
the penetration depth, δP , is:

δP = 1
α

= 16 nm < 20 nm

where 20 nm is the maximum value of penetration depth to generate the acoustic waves.
Picosecond acoustic measurements in the imaging collection mode performed on hexag-
onal samples along the direction [001], allow to only partially obtain the elastic tensor:
four independent components out of five (C11, C33, C44 and C13). To obtain the missing
elastic constant, C12, another orientation is needed, for instance measurements along the
direction [010].
The travel times are measured with high precision (order of picosecond). Sample thick-
ness can be inverted from data collected in imaging mode, while it is an independent
input for determining sound velocity from data collected in temporal mode. Depending
on the precision on the direct instrumental measurement, errors on sample thickness
can be of the order of several percent, generally being the largest source of uncertainties
for sound velocity determination by temporal measurements. Thus, the most commonly
used protocol for sound velocity measurements at high pressure by temporal mode is
based on:

1. the precise determination of sample thickness at ambient conditions by using the
measured travel time in combination with independent measurements or literature
values of sound velocities, and

2. the use of know equation of state to estimate thickness variation at high pressure,
to be used together with direct travel time determination to derive sound velocity.

3.3.1 Ru at ambient pressure
Measurements at ambient pressure were performed at first on a “ big sample” (2mm x
2 mm and about 50 µm thick), then on “small sample” disks (150 µm in diameter and
about 50 µm thick). In both cases, the sample thickness was derived with precision from
the arrival times by analysing the temporal data and from the inversion program.
Figure 3.11 shows the intensity as a function of the pump-probe delay time in the big
sample of Ru acquired in temporal mode and in interferometry configuration.

2The notation with four indices, [h k i l ], where i=-h-k, is usually used for hexagonal symmetry
crystals. From now on the simplified notation with three indices, [h k l], will be used.
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Figure 3.11: Intensity as a function of pump-probe delay time in Ru big sample (2mm x 2mm
and about 50 µm thick) along [001] direction.

Due to the visualization of the acoustic waves’ arrival times in an unique temporal
window (allowed by the periodicity of the laser pulses), as explained in section “Temporal
mode” (Chapter 2), it is not known a priori which are the laser pulses, k, that gener-
ated the visible signal peaks. Deriving the real time at which the signal was detected
is fundamental to calculate the thickness. Aiming at this, each arrival time, tn, was
hypothesized as if generated by the the four previous laser pulses (see Table 3.4). The
sample’s thickness corresponding to each hypothesis (listed in Table 3.4) was derived
from:

l = VL[001] × tn
n

(3.5)

where
VL[001] =

√
C33

ρ
=
√

624 GPa
12.365 g/cm−3 = 7.10 km/s (3.6)

where C33 is provided by [29] and ρ by [24]3.
There is only one combination of the arrival time, tn, and of the number, k, of delay
laser pulse for which the sample’s thickness is the same, and it is for:

• t1 generated by k= 0 previous laser pulse;

• t3 generated by k = 1 previous laser pulse;

• t5 generated by k = 2 previous laser pulse;

• t7 generated by k = 3 previous laser pulse.
3The density is not explicitly provided by [24], which only reports the unit cell volume, Va. Thus,

density was derived according the relation ρ = ma

Va
where ma and Va are respectively the mass and

the volume of the unit cell. The ma = (n×M)/Na where n is the coordination number for hexagonal
crystals, M the molar mass and Na the Avogadro’s constant.
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k t1 (ns) l (µm) t3 (ns) l (µm) t5 (ns) l (µm) t7 (ns) l (µm)
0 6.872 48.81782 8.072 19.11416 9.281 13.18621045 10.497 10.65277
1 19.422 137.9714 20.622 48.83203 21.831 31.01693356 23.047 23.389
2 31.972 227.1251 33.172 78.5499 34.381 48.84765667 35.597 36.12523
3 44.522 316.2787 45.722 108.2678 46.931 66.67837978 48.147 48.86146

Table 3.4: Arrival times of the acoustic waves and the corresponding sample’s thicknesses
according to different hypothesis concerning the laser pulse k which generated the
acoustic waves. Bold characters were used to highlight which k − th laser pulse
generated the acoustic wave visible at each arrival time.

The sample’s thickness is taken as the mean value of the obtained thicknesses, being:

l = (48.84± 0.02) µm

where the standard deviation is assumed as the uncertainty on the sample’s thickness.
Figure 3.12 shows the signal intensity as a function of pump-probe delay time for the
small sample acquired in temporal mode and interferometry configuration.

Figure 3.12: Intensity as a function of pump-probe delay time in Ru small sample (disk of 150
µm in diameter and about 50µm thick) oriented along [001] direction.

Following same protocol detailed for the bigger sample, the small’s sample thickness,
l, is determined to be:

l = (48.01± 0.02) µm (3.7)

The two thicknesses are slightly different, most likely because of original sample not
polished perfectly parallel, resulting in variation in thickness of few microns over a mm
distance. As such, disks cut out from different portion of the sample result having slightly
different thickness.

56



The elastic constants of the big sample are derived from the inversion program using as
initial inputs the sample’s thickness obtained from the analysis of the temporal data and
the radii of the acoustic waves as a function of time provided by the LabView program,
as illustrated in Figure 3.13. Along direction [001] hexagonal single-crystals (as Ru) are
isotropic, and the wave fronts are spherical, as shown in Figure 3.13.

Figure 3.13: 100 µm × 100 µm image showing the longitudinal acoustic wave in Ru-single
crystal along [001] direction at a delay time of 7.9 ns. LabView program allows
to determine the radius of the acoustic wave at a given time.

Figure 3.14 shows the radii of the acoustic waves as a function of time for both the
big and the small samples. The form function of the acoustic waves’ radii is described
in section 2.4.
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Figure 3.14: Acoustic waves’ radii as a function of time for the two investigated samples. They
serve as inputs to the inversion program.

Elastic constants provided by Tromans at al. [29] and the density ρ = 12.365 g/cm3

calculated starting from the volume measured in Anzellini et al. [24] were used as
starting values for the inversion of measurements on the big sample. Then, measurements
performed on small sample are inverted, using as initial values for the elastic constants
the ones obtained as output of inversion for the big sample and as sample’s thickness the
value obtained from temporal data analysis. The results are summarized in Table 3.5.

Sample l
(µm)

C11
(Gpa)

C33
(GPa)

C44
(GPa)

C13
(GPa)

Big sample 49.2 ± 0.3 560 ± 5 622 ± 7 180.5 ± 0.4 181 ± 5
Small sample 47.9 ± 0.3 568 ± 7 629 ± 9 183.9 ± 0.6 169 ± 8
Mean value – 564 ± 6 626 ± 8 182.2 ± 0.5 175 ± 7

Table 3.5: Refined samples’ thicknesses and Ru elastic constants. Errors on the mean values
are calculated through errors’ propagation rules.

Table 3.3 lists the values obtained in this work and the literature values.

C11(GPa) C33 (GPa) C44 (GPa) C13 (GPa)
This work 564 ± 6 626 ± 8 182.2 ± 0.5 175 ± 7
Tromans et al. 563 624 181 168

Table 3.6: Elastic constants obtained in this work compared to literature values from Tromans
[29].
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The elastic constants derived for the big and the small samples are within mutual
uncertainties. This good agreement witness the reliability of the inversion scheme, as no
differences are expected on the elastic constants, as the experimental conditions did not
change. The bulk and shear moduli presented in Table 3.7 were derived using Equations
1.19 and 1.20 and the compressional and shear acoustic wave’s velocities from Equation
1.21 (for C12 we assumed the value from [29]). They are compatible with the ones
provided by Tromans et al. [29], see Table 3.7.

KV RH (GPa) GV RH (GPa) VP (km/s) VS (km/s)
This work 314 ± 4 190.9 ± 1.1 6.78 ± 0.02 3.93 ± 0.01
Tromans et al. 310.7 191.0 6.75 3.93

Table 3.7: Bulk and shear moduli derived from Voigt-Reuss-Hill average rule and compres-
sional and shear acoustic wave’s velocities. Uncertainties are calculated propagat-
ing the uncertainties associated to the elastic constant provided by the inversion
program.

3.3.2 Ru at high-pressure
High-pressure test measurements on Ru single-crystal were performed inside the diamond
anvil cell, up to 10 GPa. Due to technical problems with the gas loading system, it was
not possible to use a noble gas as PTM, as more suited for the planned measurements.
The selected PTM was then a 4:1 mixture of methanol-ethanol which solidifies at 4.5
GPa and is considered to retain pressure hydrostaticity up to 10.5 GPa [34].
In order to minimize contribution from pump diffusion in the measured signal, ( enhanced
in DAC measurements by the diffusion due to the presence of diamonds, and more
difficult to reject by cross polarization due to depolarization effects of diamonds on laser
beam) the probe side diamond was covered with a very thin layer of Tin (less then 1
µm, obtained pressing a small piece of Tin between the two diamonds), as illustrated in
Figure 3.15.

Figure 3.15: Schematics of the used configuration for high pressure measurements in Ru single
crystal.
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Figure 3.16 shows probe side view of the sample loaded in the DAC deposited with
Tin, before compression (left) and after decompression (right).

Figure 3.16: Pictures taken by the camera at probe side, showing the diamond deposited with
Tin before compression (left) and after decompression (right). The dashed lines
show the culet dimensions. The arrows show the Tin-free portion of the sample
used for the measurements.

Figure 3.17 shows the signal intensity as a function of pump-probe delay time for in-
creasing pressures acquired in temporal mode and interferometry configuration. Qualita-
tively we observe the arrival time shifting with pressure towards shorter time, compatible
with the combined effect of pressure-induced increasing velocity and decreasing sample
thickness. For a better visualization, Figure 3.18 shows only two temporal data corre-
sponding to measurements at ambient pressure and at 8.27 GPa. The overall peaks’ shape
observed at high pressure changed with respect to measurements at ambient conditions:
the signal peaks are broader and less distinguishable because of a noisy background.
Moreover, the signal intensity at t3, corresponding to an acoustic wave generated by a
previous laser pulse, unexpectedly results more intense than the one at t1.
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Figure 3.17: Intensity as a function of pump-probe delay time of the small sample (150 µm in
diameter and about 50 µm thick) at different applied pressures. These measure-
ments were acquired in temporal mode and interferometry configuration.

As illustrated in the zoomed zone of Figure 3.18, the peaks’ shape changed: at
ambient pressure the signal peak shows a positive part followed by a negative part; at
8.27 GPa the signal peak is positive and bell-shaped.
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Figure 3.18: Temporal data at ambient pressure and at 8.27 GPa. The t7 at 8.27 GPa is not
well resolved due to the presence of several overlapping oscillations.

The sample thicknesses at the experimental pressures investigated in this work were
derived from thickness measured at ambient conditions and making use of Ru’s equation
of state provided by [24]. Under the assumption of hydrostatic compression, the macro-
scopic compression of the sample’s thickness is proportional to microscopic compression
of the hexagonal unit cell along [001] direction, i.e. c axes (see Figure 1.7). Being:

c (P )
c (P0) = l (P )

l (P0) (3.8)

where c(P ), c(P0) are provided by [24] and l(P0) was derived in the last section (small
sample). The so obtained thicknesses evaluated at the experimental pressures are listed
in Table 3.8.

P (GPa) c (Å) l (µm)
0 4.2809 48.01
5.04 4.2603 47.779
5.61 4.2581 47.754
6.07 4.2562 47.733
7.07 4.2523 47.689
7.94 4.2493 47.652
8.27 4.2477 47.638
9.14 4.2444 47.600
9.79 4.2419 47.573
9.99 4.2411 47.564

Table 3.8: Experimental pressures and expected sample’s thicknesses derived according to the
equation of state provided by [24].
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Having estimated the thickness at pressure and having measured the travel times,
∆t, from the temporal data, the longitudinal sound velocity in direction [001], VL[001], is
derived using Equation 2.10 explicitly expressed for VL[001] :

VL[001] = 2l
∆t where ∆t = t3 − t1

Figure 3.19 shows V[001], as a function of pressure. Data collected in DAC, qualitatively
show the increase in sound velocity expected with increasing pressure, but absolute values
appear inconsistent with sound velocity determination at ambient pressure (P0), being
the VL[001] at P0 higher than VL[001] at 6 GPa [39]. Possible origins for this anomaly will
be discussed later on.

Figure 3.19: Sound velocities of Ru small sample (150 µm in diameter and about 50 µm thick)
along direction [001] as a function of pressure.

3.4 Discussion on Ru measurements

3.4.1 Ru at ambient pressure
Ambient pressure measurements on Ru single crystals allowed to collect high quality
data. The high-level of surface quality of the produced samples was very important
to achieve this. A big Ru sample (2mm x 2mm and ∼ 50 µm thick) and a small one
(150µm in diameter and ∼ 50 thick)- laser-cut out from the big sample- were studied.
Laser cutting by femtosecond laser did not degrade crystalline quality and the reduced
diameter, compatible with size constraints imposed by use in DAC, did not affect the
quality of the results.
In hexagonal symmetry crystals, there are five independent components in the elastic
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tensor Cij, and only one direction of propagation is not sufficient to extract all of them.
In the present study we considered a Ru single crystal oriented along direction [001]
that allows us to extract four out of five independent elastic constants, namely C11, C33,
C44 and C13, missing C12. The obtained values are in agreement with the values in
literature as are the bulk and the shear moduli and compressional and shear velocities
calculated from determined Cij according to the Voigt-Reuss-Hill average. The ratio of
compressional and shear sound velocities, VP/VS is:

VP
VS

= 1.73

highlighting that compressional sound velocity propagate faster ( with about a double
velocity) than the shear sound velocity.
The transverse wave arrival was simulated by the direct program: it was generated by
a previous laser pulse with respect to the laser pulse generating the longitudinal wave.
Thus, the apparent arrival of the transverse wave before the longitudinal one in the tem-
poral data finds an explanation.
Sample thickness values for both the big and the small samples were derived from tem-
poral data analysis and from imaging data analysis (inversion program), and are summa-
rized in Table 3.9. Both analysis highlighted a slightly difference in the value of thickness
of the big and the small samples, revealing a non perfect parallelism of sample’s faces.
This probably arises from having measured the signal of the big sample in a spot differ-
ent from the portion from which the small sample was cut out. However, the degree of
non-parallelism is very small. The thickness values of the big sample and of the small
sample each derived from both temporal data analysis and from imaging data analysis
agree within the uncertainties.

l (µm)
Big sample (temporal analysis) 48.84 ± 0.02
Big sample (imaging data) 49.2 ± 0.3
Small sample (temporal analysis) 48.01 ± 0.02
Small sample (imaging data) 47.9 ± 0.3

Table 3.9: Big sample and small sample thickness values extracted from temporal data and
imaging data analysis.

This serves us to understand that temporal data and imaging data can be indepen-
dently used for the thickness derivation. In high-quality data -derived from high quality
samples surfaces-, the arrival times and the acoustic waves’ shapes are clearly distin-
guishable, allowing to get the elastic constants with precision. Picosecond acoustics
measurements can be extended to all the metals, that generally do not necessitate the
surface coating.

3.4.2 Ru at high-pressure
High-pressure measurements on Ru single crystal oriented along direction [001] were
performed up to 10 GPa. Due to the impossibility to load a noble gas as PTM, a 4:1
methanol-ethanol mixture was used because easy to use and because expected to insure
the pressure hydrostaticity up to 10.5 GPa. However, quality of collected data is much
poorer than results obtained on silicon single crystal compressed using neon as PTM
under similar pressure conditions [40]. Temporal data acquired for Ru at each pressure
show a noisy background with many oscillations that make difficult, even though not
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impossible, to identify the arrival times. Although, the arrival times decrease with in-
creasing pressure, consistently with volume compressional, the sound velocities, obtained
assuming as sample thickness values estimated under the hypothesis of hydrostatic com-
pression and making use of literature equation of state established by X-ray diffraction
experiments conducted by [24], show an unexpected decrease from ambient to 5 GPa
pressures. Longitudinal sound velocities are expected to increase with density according
to the Birch’s law [39]. This apparent decrease of the sound velocity could be explained
by a path of the acoustic wave longer than the sample thickness. A possibility would
be an internal reflection by a crack occurred within the sample when the PTM solidi-
fied at 4.5 GPa. A crack in the sample could lead to internal reflections that would be
compatible with a longer path of the acoustic wave. Moreover, the noisy background
in temporal data appear from 5 GPa, where also the peaks’ shape changed. At ambi-
ent pressure measurement the signal peak shows a positive and then a negative parts
while at high pressure measurements the signal peaks show a positive bell shape. All
these observations suggest sample deterioration/alteration. Nonetheless, data have been
analyzed. The here-used information in temporal data to derive sound velocity are the
arrival times. Changes in peaks’ shape and intensity are qualitatively interpreted, but
served us only to detect the signal. The hypothesis of the crack within the sample is not
sufficient to explain why the peaks’ shape changed and why the t3 is more intense than
the t1 at higher pressures values.
In next set of measurements on Ru single crystal a different PTM will be used, most
probably Helium or Neon, which are expected to provide more hydrostatic conditions.
Moreover, another Ru single crystal oriented along direction [010] will be investigated to
extract the C12 elastic component.
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Conclusions

This thesis work aimed at establishing an experimental protocol for the determination
of the single-crystal elastic constants, Cij, of materials at ambient pressure and at high
pressure by picosecond acoustics. In this thesis we considered two test cases: magnesium
oxide (MgO) and ruthenium (Ru). The first is an optically transparent insulator, while
the second is an opaque metal. Furthermore, MgO is cubic, while Ru is hexagonal. Thus,
a protocol working for both cases, assures a good versatility for future applications.
Beside these practical aspects, MgO and Ru have been also chosen on the basic of their
interest, more or less direct, for Earth and planetary science. In particular, MgO is an
end-member mineral composing, planetary mantles and it forms a solid solution with
FeO, constituting the second most abundant mineral of the Earth’s lower mantle. Ru
single crystal is chosen because of its analogy with Iron, Fe. Ru and Fe are isoelectronic,
but the heavier Ru is stable in the hcp structure already at ambient conditions, while Fe,
which is bcc at ambient conditions, stabilizes the hcp only at high pressures pertinent to
the core of the Earth. Then, studying the hcp-Ru single crystal can provide information
as well about the hcp-Fe, which, due to the bcc-to-hcp phase transition, is not available
as single crystal. In particular, the ratio C33/C11 of hcp-iron controlling the seismic
anisotropy of the Earth’s inner core, can be assessed by studying pressure effects on the
C33/C11 ratio of hcp-Ru at high pressure.
The following conclusions can be drawn from the work carried out during this thesis:

MgO

• The frequency of the Brillouin oscillations, ν = 246.5 GHz, was measured in the
MgO/Al sample (nominal value of thickness ∼ 100 µm). From the frequency, the
longitudinal sound velocity in direction [001], VL[001] = (9.06 ± 0.07)km/s, was
derived. The so obtained value agrees within uncertainty with the value VL[001] =
9.11 km/s calculated from the C11 reported in the literature [23].

• The elastic constants of MgO were extracted from measurements on the sample
Al/MgO/Al (∼ 100 µm thick) at ambient pressure, obtaining C11= (296.96 ±
0.19) GPa, C44=(153.6 ± 0.1) GPa and C12=(98.78 ± 0.11) GPa. These results
agree within uncertainty with the data presented by Sinogeikin in [23]. The ob-
tained compressional and shear waves’ velocities, VP = (9.692 ± 0.002) km/s and
VS = (5.996 ± 0.003) km/s, are also compatible with the data in the literature.
Finally, the longitudinal sound velocity in direction [001], derived using the deter-
mined elastic constant C11, VL[001] = (9.10 ± 0.05) km/s, was compared with the
same value calculated from the measurements on the Brillouin oscillations, result-
ing compatible.

In conclusion, a protocol using picosecond acoustics on transparent sample was
successively developed.
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Ru

• The elastic properties of ruthenium (50 µm thick) oriented in the [001] direction
have been investigated through picosecond acoustics. In crystals with hexago-
nal symmetry a single direction of propagation is not sufficient to derive all the
elastic constants: in particular, by selecting the direction [001] only four out of
five independent components can be derived, with the exception of the C12. The
obtained elastic constants are: C11 = (564 ± 6) GPa, C33 = (626 ± 8) GPa,
C44 = (182.2 ± 0.5) GPa and C13 = (175 ± 7) GPa. They are in agreement
within uncertainty with the data present in the literature [29]. The bulk and shear
moduli were derived assuming the C12 to be the same as the value provided by
the literature. From these, the compressional and shear velocities were derived
according the Voigt-Reuss-Hill average, obtaining: VP = (6.78 ± 0.02) km/s and
VS = (3.93± 0.01) km/s.

• The elastic constants extracted from measurements on big and small samples yield
compatible results. This suggest that any significant alteration on the sample
(crystallinity, defects, remelting) were induced by laser cutting. Thus, as shown
for Ru, picosecond acoustic measurements can be performed on samples available
in small quantities or with dimensions compatible with DACs.

• For the first time, high-pressure measurements (up to 10 GPa) were carried out on
ruthenium single crystal through picosecond acoustics combined with DAC tech-
nology for high pressure generation. Due to impossibility in using the gas loading
system at the time of the measurements, we resorted to a 4:1 liquid mixture of
methanol-ethanol, as pressure transmitting medium, less hydrostatic than a no-
ble gas. Although it was possible to measure an acoustic signal in both tem-
poral and imaging modes and interferometry configuration, confirming the suc-
cess of the picosecond acoustics in combination with the DAC, the acquired data
showed inconsistencies with what expected. In fact, the experimental sound ve-
locity, which should increase with pressure, are observed to apparently decrease,
although marginally, from ambient pressure to 5 GPa and increase only upon fur-
ther compression. This behavior is compatible with a longer path of the acoustic
waves on the sample at 5 GPa with respect to ambient conditions, which however
would contrast with the volume compression that occurs at increasing pressures.
Chemical reactions between samples and PTM were not observed on the recov-
ered sample, thus excluding chemical sample’s alteration as a cause. A possible
hypothesis may be the scattering of the acoustic wave by presence of an internal
crack within the sample occurred upon compression between 0 GPa and 5 GPa.
Probably the selected PTM produced a uni-axial pressure while solidifying at 4.5
GPa, which caused the sample to crack.

In the next set of measurements, MgO will be studied at high pressure and so it will be
necessary to reduce its thickness from 100 µm to 40 µm to suit the constraints imposed by
experimentation in DAC. Ruthenium will be investigated again in a new set of measure-
ments using a sample oriented along the [010] direction which allows to extract also the
C12, in order to derive the complete elastic tensor at ambient pressure. For high-pressure
measurements a noble gas, Neon or Argon, will be used as pressure transmitting medium.

The most general conclusion that can be drawn from this thesis work concerns the suc-
cess of the picosecond acoustics measurements and the data analysis based on inversion
program - which allows extracting the elastic constants from the sound velocities - in
determining the elastic constants of materials. Picosecond acoustics confirms to be an
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experimental technique of great interest and potentiality, thanks to its versatility in the
choice of materials, and thanks to the possibility it offers to conduct laboratory-based
experiments, which allow much more flexibility that synchrotron based techniques, in
particular in term of reproducing experiments and performing studies with a systematic
character. As we outlined in Chapter 1, all currently-used experimental techniques for
studying elastic properties show limitations, which we can be overcome by picosecond
acoustics.
While not directly part of this thesis work, an upgrade of the set-up to implement a laser
heating system is currently ongoing. This will allow experiments to be conducted at
combined high pressure and high temperature conditions, over a P-T range larger than
what achieved so far [41]. Picosecond acoustics show all the potentialities to become
at term a reference laboratory-based technique, able to measure the sound velocities of
materials at extreme conditions. In particular, it will allow probing sound wave propa-
gation at the actual conditions of pressure and temperature existing inside the planets,
providing direct guidance to interpretation of seismological observations and allowing to
built reliable composition and structural models inverted from observations.
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Appendix A

Acoustic phonons

A.0.1 One-dimensional chain of ions: the simplest discussion
about phonons

The mathematical treatment here presented is the one followed by [42]. Let’s consider
a one dimensional chain of ions of mass M sitting at equilibrium distances a connected
by springs of constant K (see figure A.1). There are N ions and the total length of the
chain is L= Na. Let us make the assumption that each ion interacts only with its nearest
neighbors.

Figure A.1: One dimensional chain of N ions connected by springs: the simplest discussion of
phonons[42].

Denoted by ul the deviation of ion l ∈ [0,.., N-1] from its equilibrium position, with
periodic boundary condition implying that uN = u0 then

Mül = K
(
ul+1 − ul

)
+K

(
ul−1 − ul

)
(A.1)

A solution of this equation is given by plan waves:

ul = εeikla−iωt (A.2)

The periodic condition implies:

kNa = 2πn⇒ k = 2πn/(Na), n ∈ [0 . . . N − 1] (A.3)

Substituting equation A.2 in equation A.1, we obtain:

−Mω2εeikla−iωt =
[
K
(
eika − 1

)
+K

(
e−ika − 1

)]
εeikla−iωt

⇒ −Mω2 = K(2 cos(ika)− 2)⇒ ω = 2
√
K
M
| sin(‖a/2)|

(A.4)
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and simplifying with respect to ω:

ω = 2
√
K
M
|sin(ka/2)| (A.5)

A.0.2 One-dimensional chain with basis

Figure A.2: One-dimensional chain of ions of two different species placed alternatively [42].

Next level of complexity is the case of one-dimensional chain of ions with basis.
Consider again a one-dimensional chain of ions, but this time with two different types
of ions having mass M1 and M2. They are placed alternatively in the one-dimensional
chain (see figure A.2).
Let us assume that each ion interacts just with its nearest neighbors. By performing
similar reasoning as done in the precedent section, we impose:

M1ü
′
1 = K

(
ul2 − 2ul1 + ul−1

2

)
M2ü

l
2 = K

(
ul+1

1 − 2ul2 + ul1
) (A.6)

By assuming a solution in the form:

ulj = εje
ikla−ωt (A.7)

and substituting it in A.6, we obtain:

⇒− ω2M1ε1e
ikla = K

(
ε2 − 2ε1 + ε2e

−ika
)
eikla

− ω2M2ε2e
ikla = K

(
ε1e

ika − 2ε2 + ε1
)
eikla

(A.8)

That solved with respect to ω, becomes:

⇒ ω =
√
K

√√√√M1 +M2 ±
√
M2

1 + 2M1M2 cos ka+M2
2

M1M2
(A.9)

The two solutions of eq. A.9 correspond to two branches of phonon dispersion relation:
optical branch and acoustic branch (see fig.A.3). The latter vanishes linearly near k=0
with a slope proportional to sound velocity.
For small k the two branches, the acoustic branch and the optical one (respectively the
top equation and the bottom equation in the following equation) take the form:

ω(k) =
√

K
2(M1+M2)ka, ε1 = 1; ε2 = 1 + ika/2

ω(k) =
√

2K(M1+M2)
M1M2

, ε1 = M2; ε2 = −M1(1 + ika/2)
(A.10)
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Figure A.3: Phonon dispersion relation for one dimensional chain composed by two types of
ions with mass M1 and M2 positioned alternate in the chain. [42].

In conclusion, by interpreting the results expressed in A.10, for the acoustic mode,
atoms within the unit cell move essentially in unison, while for the optical mode, atoms
within the unit cell vibrate out of phase (represented in fig.A.4).

Figure A.4: Acoustic phonons vibrate in unison inside the unit cell while optical phonons
vibrate out of phase [42].
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Appendix B

Mathematical derivation of
Christoffel equation

The mathematical treatment here presented has been taken from [8]. Assuming that a
perturbation has been applied to a solid, so that it results to be locally in movement.
Each displacement ui of each point of the solid described by coordinates xk is time-
dependent, so we can write ui = ui(xk, t). By considering the fundamental equation of
dynamics we can write:

ρ
∂2ui
∂t2

= ∂σij
∂xj

(B.1)

By taking into account Hooke’s law:

ρ
∂2ui
∂t2

= Cijkl
∂2ul
∂xj∂xk

(B.2)

This is a system of three second order differential equations in three dimensions. Eq.
B.2 is in the same form as the d’Alembert waves’ equation for propagating waves:

ρ
∂2u

∂t2
= 1
χ

∂2u

∂x2 (B.3)

whose general solution is in the form:

u = F (t− x/V ), with V 2 = 1/ρχ (B.4)

Thus, similar conclusions can be deduced for eq. B.2, in fact we look for a solution
with the form of a travelling plane wave propagating within the solid along a defined
direction indicated by a unitary vector −→n=(n1, n2, n3) perpendicular to wave’s plane
which satisfies:

ui = uT
i F

(
t−
−→n−→x
V

)
= uT

i F
(
t− njxj

V

)
(B.5)

In order to determine the phase velocity V and the wave polarization uT
i , that is the

direction of particles displacement, we can substitute in eq. B.2 the result expressed in
B.5. Substituting the second-order derivative of F, F′′ , and the first-order derivative F′

in eq. B.2, we obtain:

∂2ui
∂t2

= uT
i F
′′ and ∂ul

∂xj
= −uT

l

nj
V
F ′ (B.6)

from which:
∂2ul
∂xj∂xk

= uT
l

njnk
V 2 F ′′ (B.7)
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Thus,
ρuTi F

′′ = Cijklnjnku
T
l

F ′′

V 2 (B.8)

which, in the end, leads to:
ρV 2uT

i = Cijklnjnku
T
l (B.9)

This last equation is called Christoffel equation and provides a relation between the
phase velocity, V, of a wave with elastic constants of the material. We can introduce a
tensor Γil = Cijklnjnk, the Christoffel tensor (second-order rank tensor), and rewrite eq.
B.9 in terms of this new tensor, obtaining:

ΓiluT
l = ρV 2uT

i (B.10)

This equation shows that polarization vector ~uT is an eigenvector of Γil with eigenvalue
γ = ρV 2. So phase velocity, V, and polarization of plane waves propagating along a
direction −→n within a crystal with stiffness tensor Cijkl, are respectively eigenvalues and
eigenvectors of Christoffel tensor. In general, for a given direction of propagation, phase
velocities are roots of this secular problem:∣∣∣Γil − ρV 2δil

∣∣∣ = 0 (B.11)

The theoretical treatment presented above is valid for plane waves but since any spher-
ical wave can be seen as composition of plane waves (through Weyl integral) analogous
solutions can be derived in the case of spherical waves [43].
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Appendix C

Hexagonal closed-packed phase

Close-packed structures often occurs in practice because they are natural forms for
monoatomic crystals, under the assumption of hard spheres atoms. Hexagonal close-
packed (hcp) is the one which optimizes better the space. A visualization of how hcp
is produced can be done starting from a plane of identical atoms that can be arranged
in a hexagonal fashion. There are two ways of stacking such layers of spheres. Taking
the first layer to have spheres centred at point A, the second layer has centre at points
B, above the interstices of the first layer. For the third layer there are two choices: the
centres can be above points C or A (see figure C.1). In the first case the centres have a
sequence ABC in each period, giving the FCC face-centred cubic. The second case has
layers with centres ABAB, giving the hexagonal close-packed (hcp) [8].

Figure C.1: Under the assumption of atoms as hard spheres: first layer of atoms placed in
hexagonal fashion centred in A, the second layer of atoms can be placed in a
way to have the centres of the spheres on the interstices (point B), to create hcp
structure the third layers̀ı should have the atoms centres at the first layer atoms’
centres, i.e. point A.
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Appendix D

Change in sample’s reflectivity due
to acoustic waves

The mathematical treatment reported below is the one proposed in [44]. An acoustic or
thermal gradient induces at any point in the sample a gradient in the dielectric constant.

ε(z, t) = ε+ ∆ε(z, t) = [n+ ∆n(z, t)]2 (D.1)

where ∆n(z, t) = ∂n
∂X
X(z, t). X represents the temperature or the strain, n is the complex

refraction index of the medium and ∂n
∂X

is a complex thermo-optical or acousto-optical
constant. Solving the equation of the electromagnetic field E:

∂2E

∂z2 = [ε+ ∆ε(z, t)]∂
2E

∂t2
(D.2)

we obtain:
Et = t01

∫
dΩEi(Ω)ei(Ωt−nk0z) (D.3)

where there is no gradient, Ω is the angular frequency of the electromagnetic field, k0 the
wave vector in vacuum and t01 = 2

1+n is the transmission coefficient of the air-sampple
interface. Considering that the light frequency is much greater than the spectrum of
∆ε(z, t) the equation for propagation can be solved for a Fourier component of the
electromagnetic field, this allows to treat the perturbation induced by the gradient as
quasi-static. At the beginning we can assume the thickness of the material as infinitesimal
dz, with a refractive index n modified by an amount of ∆n at a distance z from the
surface.(
a0
b0

)
= 1
t01t12t21

(
1 r01
r01 1

)(
e−ink0z 0

0 eink0z

)(
1 r12
r12 1

)(
e−i(n+∆n)k0dz 0

0 ei(n+∆n)k0dz

)(
1 r21
r21 1

)(
as
0

)

(D.4)

where
r01 = 1

1 + n
, r21 = ∆n

2n+ ∆n,∆n = ∆ε
2n

Then, by expanding in powers of ∆n and dz, we can infer the r(z,t):

r(z, t) = b0
a0

= r01 + ik0(1− r2
01)e2ik0nz∆n(z, t)dz (D.5)

and
∆r
r

= r(z, t)− r01

r01
= ik0

1− r2
01

r01
e2ik0nz∆n(z, t)dz (D.6)
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We have to integrate over the overall sample thickness in order to obtain the total
contribution of the gradient to the change of reflectance:

∆r(t)
r
|gradient = ik0

∂n

∂X

4n
1− n2

∫ +∞

0
dzX(z, t)e2ik0nz (D.7)

Also the surface displacement, u0 plays a role, affecting the imaginary part of ∆r
r

∆r
r
|geom = 2ik0u0(t)

Summing up, the total from acoustic and thermal effects is described by the equation
below:

∆r(t)
r

= ik0
{

2u0(t) + 4n
1−n2

∫+∞
0 dz

[
∂n
∂T

∆T (z, t) + ∂n
∂η

∆η(z, t)
]
e2ik0nz

}
(D.8)

It is possible to see that the change of reflectivity may be caused by different contribu-
tions: first due to the surface displacement caused by the acoustic wave’s propagation.
Second contribution corresponds to the temperature increase caused by pump. Third
term is due by the influence that a deformation η can have on the optic properties of a
material, described by its photo-elastic coupling coefficient ∂n

∂z
[31].
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