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Abstract

Despite its success, the standard model (SM) presents some important shortcomings,

and because of these there has been a long search for physics beyond the SM which can

be associated to the production of a new particle. Since for the moment there is no clear

evidence of this we are motivated to use effective field theory to characterise corrections

of the Lagrangian of the SM.

The CMS experiment uses the effective field theory (EFT) with four different approaches,

based on: 1) the reinterpretation of inclusive measurement, constraining the Wilson

coefficient by using EFT parametrizations; 2) relying on reinterpretation of differential

measurements at particle and parton level; 3) hybrid EFT measurements at detector

level; 4) by characterising EFT directly with the data.

Measurements of top quark tt differential cross-sections using simulated events produced

in proton-proton collisions are presented. The differential cross-section is defined as a

function of kinematic variables for the three decay channels: all-hadronic, semi-leptonic

and dileptonic at particle and detector level. The cross-section has been measured for

the SM events and EFT using the ctG, cQq81 and ctq8 Wilson coefficients, which were

the most relevant. We analyse the different effects that are presented in each channel and

also which are the relevant kinematic variables in each case. Based on the differential

cross-section histograms we calculate the ratio between EFT and SM production, and

analyse the trend of the linear fit in order to see which variables could help us constrain

more the Wilson coefficients.
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Chapter 1

Introduction

The standard model (SM) is a relativistic theory of quantum fields, which describes how

the elementary particles interact with each other through the electromagnetic, weak and

strong force. The discovery of the Higgs boson in 2012 was an additional confirmation of

the effectiveness of this model. The Higgs field assigns mass to other particles of the SM

through the Higgs mechanism [1]. Despite of the success of the SM, this is not complete

because it does not include the gravitational interaction, which is one of the four fun-

damental forces. It also does not explain why gravity is weaker than electromagnetic or

nuclear forces. Another problem of this model is that it assumes that neutrinos do not

have mass, but according to the neutrinos oscillation experiment they do have mass [2].

Also, it does not explain the presence of dark matter in the universe and has a hierarchy

problem [3]. The major contribution to the mass of the Higgs boson is associated to the

loop of the quark top; because the quark top is the most massive particle of the SM,

this loop introduces a quadratic divergence at high energies [4].

There are different theories beyond the standard model, BSM that can give a possible

solution to these problems, like supersymmetry (SUSY) [5], which extends the number

of particles of the SM assigning a superpartner to each particle with the same properties

but different spin. Nevertheless, these new particles have not been detected. The ab-

sence of this detection could be because the masses of these particles are beyond of our

reach. The lack of evidence of BSM physics motivates the use of an effective field theory

(EFT) [6]. This theory is characterised by corrections to the SM Lagrangian, which is

composed by a series of expansions in the inverse of the energy scale 1/Λ, where Λ is

the mass of the new particle. This new Lagrangian will also depend on a dimensionless

coupling constant, called the Wilson coefficient, which parameterize the strength of the

new physics interactions. This will also have a contribution on the cross-section. The
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advantage of EFT is that it provides a framework depending on as few assumptions as

possible, with which we can discuss the presence of BSM physics, even if it is associated

to particles whose properties are unknown and with mass beyond the energy reach.

In this work we study the contributions of the Wilson coefficients and find which ones

gives a larger relative effect to constrain better these coefficients. In order to do this,

we measure the tt differential cross-section in a p-p collision as a function of a variable

for the standard model and the EFT. We do the analysis on top quarks since it is the

heaviest known elementary particle and it has the strongest coupling to the Higgs field,

therefore, top quarks may play a special role in this search for new physics phenomena.

The analysis was made in the three different decay channels: the All-hadronic, semi-

leptonic and dileptonic.

For this we generate Monte-Carlo samples for the standard model signal, and EFT

process by turning on one coefficient at a time. We use different values of the coefficient

to see in which we can obtain a higher cross-section. The analysis has been made at two

levels: at particle level and detector level. The simulations where made using MadGraph,

which generates the events at parton level. Then we use Pythia, to generate the parton

shower and hadronization, and we use Delphes to simulate the detector.

The relevant coefficients are ctG, cQq81 and ctq8, we based our analysis in this three

coefficients, since these where the ones that gives a better contribution to the EFT

process. The variables of interest for the all-hadronic channel are: the jet multiplicity,

the transverse momentum of the leading jet and the THT variable. For the semi-leptonic

and dileptonic channel the variables of interest are: the transverse momentum of the

lepton and the THT variable.



Chapter 2

Theoretical concepts

2.1 Standard model

The SM is a renormalizable field theory, and its Lagrangian refers to the symmetry group

SU(3)× SU(2)× U(1), which describes strong, weak and electromagnetic interactions,

through the exchange of the corresponding spin-1 gauge fields. The SM classifies the

elementary particles in two big families: quarks and leptons. There are six leptons,

with spin 1/2, which are classified according to their charge (e or 0), mass and lepton

number. They are the electron, muon and tau, plus their corresponding neutrinos. To

each lepton corresponds an antilepton with opposite charge and lepton number. There

are also six quarks with spin 1/2 and electric charge 2e/3 or −e/3. They are named

up, down, charm, strange, top and bottom, with a specific flavour quantum number

associated to them. To each quark corresponds an antiquark with opposite charge and

flavour number. Quarks are bound together to form hadrons, which are classified in

baryons, that are made by three quarks, and mesons, made of a quark and an antiquark.

Each family is classified in three generation types, where each generation is heavier than

the previous one.

The SM also describes three of the four fundamental forces, where each force has its

corresponding boson: the strong force is carried by the gluon, the electromagnetic is

carried by the photon and the weak force is carried by the charged bosons W+ and W−

and the neutral boson Z. All the known fundamental particles are shown in Fig. 2.1.

Additionally, the Higgs field assigns mass to the other particles of the SM model through

the Higgs mechanism.
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Figure 2.1: Particles of the standard model [7]

The Lagrangian of the standard model LSM can be divided in two parts, one for the

strong interaction, described as quantum chromodynamics (QCD), and the other part

for the electroweak interaction, so we have:

LSM = LQCD + LEM . (2.1)

Quantum chromodynamics describes the interaction of the quarks and gluons, mediated

by the strong force through color charge. Its Lagrangian has an SU(3)C color symmetry

and is expressed as:

LQCD = −1

4

∑
i

F iµνF
iµν + i

∑
r

qrαγ
µDα

µβq
β
r , (2.2)

where qr represent the quark field of flavor, α and β represent the color indices and Dα
µβ

is the covariant derivative, which is defined as:

Dα
µβ = ∂µδ

α
β +

i

2
gF
∑
i

Giµλ
i
αβ, (2.3)

where gF is the strong coupling constant, λi are the matrices generators of SU(3) and

the tensors F iµν are defined as:

F iµν = ∂µG
i
ν − gF fijkGjµGkν , (2.4)
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where Gi (i=1,..,8) represent the eight gluonic fields and fijk are the SU(3) structure

constants.

The electroweak (EW) Lagrangian is invariant under gauge transformations of SU(2)L×
U(1)Y , where SU(2)L refers to the weak isospin I and U(1)Y to the weak hypercharge

Y. The SU(2)L group has three generators which give rise to three gauge vector boson

fields. The corresponding gauge coupling is denoted as g2. However, the EW theory

physical observable gauge fields are the photon fields Aµ, the neutral Z boson field and

the two charged W boson fields W±µ , which is a linear superposition of the four gauge

field of SU(2)L × U(1)Y gauge group

Aµ = sinθWW
3
µ + cosθWBµ, (2.5)

Zµ = cosθWW
3
µ − sinθWBµ, (2.6)

W±µ =
1√

2(W 1
µ ∓ iW 2

µ)
, (2.7)

where θW is the weak mixing angle, which is defined as:

tanθW =
g1
g2
. (2.8)

From Eqs. 2.5,2.6, 2.7 an invariant quantum field theory rise, with Lagrangian

LEW = i
∑
f

fdµγ
µf − 1

4

∑
G

FµνG FGµν , (2.9)

where the sums are extended over all the fermionic fields f and the vector field G

respectively, and the covariant derivative (Dµ) is defined as:

Dµ = ∂µ − igG(λαGα)µ, (2.10)

where gG is the coupling constant of a fermion to the field Gα and λα are the generators

of the symmetry group G.

2.1.1 The Higgs mechanism

The Lagrangian symmetry structure does not permit the gauge bosons and the chiral

fermions to have mass, so it is necessary to break the symmetry of the Lagrangian in

order that the SM particles can acquire masses.
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To break the SU(2)L × U(1)Y symmetry an isospin doublet is introduced:

φ =

(
φ†

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.11)

It only adds SU(2)L × U(1)Y multiplets in order that the Lagrangian retains all its

symmetries. We add a left-handed doublet with weak isospin 1
2 , and the electric charge

of the doublet are chosen to ensure that the weak hypercharge Y=+1. [8]

Then, a potential V (φ) is added for the field that will break the symmetry, the potential

is given by:

V (φ) = µ2(φ†φ) + λ(φ†φ)2, with µ2 < 0 (2.12)

This potential depends on two parameters: µ and λ, where λ > 0 is requested to ensure

the existence of a lower bound for the potential, and µ2 > 0 so the symmetry of the V (φ)

potential can be broken. On the other hand, the Lagrangian for the auto-interacting

scalar field is:

Lscalar = (Dµφ)†(Dµφ)− V (φ), (2.13)

where Dµ is the covariant derivative associated to SU(2)L × U(1)Y :

Dµ = ∂µ + ig
1

2
−→τ ·
−→
Wµ + ig′1

2
Y Bµ (2.14)

where g and g′ are the coupling constants of the fermions to the Wµ for the SU(2) group.

This field describes the charged W bosons, while the Bµ field is SU(1) group.

If µ2 < 0 the symmetry of the potential V (φ) may be broken because it has a minimal

asymmetrical value:

φ†φ = −µ
2

2λ
, (2.15)

so the vacuum expectation value of the field is φ0 = v√
2
. A representation of a potential

symmetry breaking is shown in Fig. 2.2.

When the symmetry SU(2) × U(1) is broken, the ground state of the electric charge

symmetry group U(1) has:

Q = I3 +
Y

2
. (2.16)
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Figure 2.2: Potential of the Higgs field for µ2 < 0 [9]

In this case we choose I = 1
2 , I3 = −1

2 and Y=+1, because this breaks SU(2)×U(1), but

leaves U(1)EM invariant, leaving only the photon massless, so that the electric charge,

weak isospin and the hypercharge are related. The field φ can be written as:

φ =
1√
2

(
0

v + h0

)
.

The interaction of the Higgs field with the particles field generates their masses. If we

expand SU(2)L × SU(1)Y around the ground state, we obtain:

g2W i
µ(W j)µ

[
φ
τiτj
4
φ
]
− (g′)2 1

4

v

2
BµB

µ + 2gg′W 3
µB

µ
[
φ
τ3
4
φ
]

(2.17)

From Eq. 2.17 we can extract the mass terms for each vectorial field in form of a matrix,

given by:

M =
1

4
v2

(
g2 −gg′
−gg′ (g′)2

)
(2.18)

For non-zero eigenvalues, the W± and Z bosonic fields acquire mass:

mW =
v

2
g, (2.19)

mZ =
v

2

√
g2 + g′2. (2.20)

Differently from the Z boson, the γ boson remains massless, while the mass for the Higgs

boson is given by:

mh =
√

2λv2. (2.21)
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The Higgs boson was discovered on July 2012, by the ATLAS and CMS experiments [10]

[11] which observed a new particle in the mass region around 126 GeV, consistent with

the properties of the Higgs boson. On March 2013, the two experiments, with twice the

data that was available in July 2012, found that the new particle resembled the Higgs

boson even more.

2.1.2 Problems of the standard model

Despite of the great success of the SM, where many of its predictions have been confirmed

experimentally to great accuracy, including the existence of the Higgs boson, it is clear

that the SM cannot be the final theory to describe particle physics because it suffers

from important problems that we describe below.

Gravity and neutrinos mass. The gravitational interaction is not fundamentally

linked to the other interactions. This model does not explain why gravity is weaker

than the nuclear and electromagnetic force. On the other hand, in the SM model the

neutrinos do not have mass, but according to the neutrino oscillation experiments the

neutrinos do have mass [2].

Dark matter. The Wilkinson Microwave Anisotropy Probe (WMAP) [12] is a space-

craft that measure the temperature differences that are observed in the cosmic microwave

background (CMB), and is also able to measure the density and composition of the uni-

verse. WMAP measures the relative density of the baryonic and non-baryonic matter,

and determines some properties of the non-baryonic matter and the interactions with the

baryonic matter and with itself. WMAP discovered that the universe was flat and that

the dark matter made up only 24% of the density required to produce a flat universe. In

order to explain the flatness of the universe 71.4% of the energy density in the universe

is dark energy, which has a gravitationally repulsive effect. Based on these and other

measurements, it appears that the matter of the universe is composed by (Fig. 2.3):

• 4.9% of atoms.

• ∼ 27% of ”dark matter”. It is likely to be composed by sub-atomic particles that

interact weakly with ordinary matter. Dark matter was proposed in 1933 by Friz

Zwicky when he was studying the gravitational effects of the rotation speed of a

cluster of galaxies. The particles of dark matter are involved in the gravitational

and weak interaction, and must have a mass large enough to form dark matter

[13]. In the SM there are no particles that satisfy these conditions.
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• ∼ 68% of ”dark energy”. Measurements of the Cosmic Microwave Background

(CMB) and analysis of a supernova of type Ia with a large redshift suggested that

most of the energy content of the universe is of an undetermined form called dark

energy.

Figure 2.3: Composition of matter in the universe [14]

In the SM there are no particles that can be associated to dark matter, so it is necessary

to propose new theoretical models.

Hierarchy problem. The hierarchy problem emerges from the radiative corrections of

the mass of the Higgs boson. The major contribution to the Higgs boson mass is the

one associated to the loop involving the top quark because the top quark is the particle

with the greatest mass in the SM and hence the strongest Yukawa coupling to the Higgs

boson. This loop introduces a quadratic divergence at high energies as shown in Fig.

2.4.

Figure 2.4: Loop of top quarks.[15]

The renormalized mass of the Higgs boson is given by:

m2
H = (m0

H)2 +
3Λ2

8π2v2
(m2

H +m2
W +m2

Z − 4m2
t ), (2.22)
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where m0
H is the bare mass of the Higgs boson, mZ is the mass of the Z boson, mW is the

mass of the W boson, mt is the mass of the top quark and Λ is the scale of adjustment.

In order to disregard the term of the top quark and the W and Z boson, the mass of the

Higgs boson must be adjusted in such a way that:

m2
H = 4m2

t − 2m2
W −m2

Z ≈ (320 GeV )2. (2.23)

2.2 Standard Model Effective Field Theory (SMEFT)

Since the SM theory is incomplete there has been a long search for BSM physics. So

far there is no clear evidence for it, which motivates the use of an effective field theory

(EFT) to characterise corrections to the Lagrangian of the SM.

BSM physics can be associated to the production of new particles. If a new particle

exists with a mass below the energy reach of the LHC, it would appear as a peak in the

spectrum of the invariant mass, as if there is a new particle with low mass we expect the

presence of a bump at a certain point, as shown in Fig. 2.5 by the red line. If the mass

is instead greater than the energy reached by the LHC the bump will not be seen, but

the effect of this peak can still be seen as an increase in the tail of the SM distribution,

as shown in Fig. 2.5 by the green line.

Figure 2.5: Schematic of new physics search within the energy range (red) of the LHC
and beyond (green).

If a particle Ω has a mass Λ, there will be a new physical coupling g?, where its propagator

is:
g2∗

p2 − Λ2.
(2.24)
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In the case that the particle mass is greater than the momentum of the interaction the

propagator, Eq.2.24, then can be approximated as:

−g2∗
Λ2

. (2.25)

This means that the interaction with a massive mediator can be replaced by a point-like

interaction, as shown in the Feynman diagrams in Fig. 2.6

Figure 2.6: Feynamn diagram of a new particle Ω with mass Λ, that couples with
the SM particle with a new coupling g? (left), and the EFT vertex that describe the

point-like interaction (right) [16].

We know that the SM Lagrangian is of dimension four, which means that all their

operators are of dimension four and are scaled with a dimensionless coupling constant.

To construct the SMEFT framework the SM Lagrangian is extended to higher order

operators, which are combinations of the SM fields. This new Lagrangian is composed

by a series of expansion in the inverse of the energy scale 1/Λ, which is suppressed by

powers of an energy scale Λ. The EFT Lagrangian is thus:

LEFT = LSM +
∑
d>4

∑
i

Ci
Λd−4

O
(d)
i , (2.26)

where the index d represent the dimension of the operator O, the index i runs over all the

operators of a given dimension, and Ci is a dimensionless coupling constant called Wilson

coefficient. This coefficient parameterizes the strength of the new physics interaction. In

this case we use dimension-six operators [17], and the number of operators depends on

the flavour assumption. Assuming baryon B and lepton L number conservation, yields

59 dimension-six operators.

In order to search for new physics we measure the production cross-section, which can

be expressed as the SM value plus an additional contribution due to the effects of the

SMEFT. Using dimension-six operator, the cross-section becomes:

σ = σSM +
∑
i

Ci
Λ2
σ̃i +

∑
ij

CiCj
Λ4

δ̃ij , (2.27)
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where i and j run over all the operators. The term σ̃i represent the strength of interfer-

ence of the SMEFT operator with SM, while δ̃ij represent the pure EFT contribution.

Since no signs of new particles have been found at the LHC, new particles may emerge in

the TeV region. For this we need to use lower limits on Λ to constrain its form. Baryon

number, lepton number and CP can be approximated symmetries of the new theory at

the TeV scale. A solution to this is to impose that the EFT respect the Minimal Flavour

Violation (MFV). MFV requires that all flavour and CP violations are related to the

Yukawa coupling. Under the assumption of MFV the dimension-six operators can be

divided into the ones that involved four heavy quarks (4H) and those who involve two

heavy and two light quarks (2H2L). In tables 2.1 and 2.2 we show the operators based

on the basis used by the LHC Top Working Group [18].

4H

c1QQ

c8QQ

c1Qt

c8Qt

c1Qb

c8Qb

c1tt

c1tb

c8tb

c1IQtQb

c8IQtQb

Table 2.1: Dimension six-operators
for the flavour B, L conserving degrees
of freedom for four heavy quarks [18]

2H2L

c3,1Qq

c3,8Qq

c1,1Qq

c1,8Qq

c1Qu

c8Qu

c1Qd

c8Qd

c1tq

c8tq

c1tu

c1td

c8td

Table 2.2: Dimension six-operators
for the flavour B, L conserving degrees
of freedom for two heavy quarks and

two light quarks [18].



Chapter 3

Experimental framework

3.1 Fundamental Concepts

3.1.1 Cross-section

For the calculation of an inclusive cross-section in a proton-proton collision we have

to consider the parton distribution functions (PDFs) and the combination of different

initial partons. The cross-section σ for a hard scattering with two hadrons in the initial

state can be defined as

σ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F )σ̂i,j(p1, p2, Q

2/µ2F , Q
2/µ2R), (3.1)

where P1 and P2 are the four-momenta of the initial hadron and p1 and p2 are the four

momenta of the partons present in the hard interactions. The parameters x1 and x2

are the fractions of momentum carried by the partons, fi and fj are the PDFs for the

partons at a factorization scale µF . Q2 is the characterization scale of the scattering,

and µR is the renormalization scale. Partons carry only a fraction of the four momentum

of the initial proton, which gives a parton level center-of-mass energy
√
ŝ smaller than

the total proton-proton energy
√
s. Both of them can be related by a factor τ , which is

defined as:

τ = x1x2 =
ŝ

s
, (3.2)

where ŝ = (p1 + p2)
2 and s = (P1 + P2)

2. The differential parton luminosity is defined

as:

dLi,j
dτ

=
1

τ

1

(1 + δi,j)

∫
dx1dx2[x1fi(x1)x2fj(x2) + (1→ 2)]δ(τ − x1x2), (3.3)

13
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so the cross section is given by:

σ(s) =
∑
i,j

∫
dτ

τ

(
1

s

dLi,j
dτ

)
ŝσ̂i,j . (3.4)

3.1.2 Luminosity

In scattering theory the instantaneous luminosity is defined as the ratio of the number

of events in a certain time interval (dt) to the cross section(σ):

L =
1

σ

dN

dt
. (3.5)

The instantaneous luminosity is determined by the overlap of the core of the beam

distribution. To calculate the instantaneous luminosity, we assume Gaussian profiles in

all dimensions of the form:

ρiz(z) =
1

σz
√

2π
exp

(
− z2

2σ2z

)
where i = 1, 2, z = x, y. (3.6)

We assume equal beams, which means that σ1x = σ2x, and σ1y = σ2y. The instantaneous

luminosity is given by:

L =
N1N2fNb

4πσxσy
. (3.7)

Where N1 and N2 are the number of protons in each bunch, Nb the number of bunches

and f the revolution frequency

The integrated luminosity is defined as:

L =

∫
Ldt. (3.8)

The integrated luminosity collected by the CMS experiment for proton-proton collision

at
√
s = 13 TeV is shown in Fig. 3.1
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Figure 3.1: Cumulative integrated luminosity of the CMS experiment in 2017 [19]

3.2 Jets

Quarks, gluons and antiquarks are the constituents of protons, neutrons and other

hadrons, but they are never observed isolated by themselves. A high energy quark

is transformed into a spray of hadrons, called jets. The hadronic final states appear as

a collection of particles, called jet of hadrons. In Fig. 3.2 is shown the relation between

the parton level of outgoing particles and the hadronic final state.
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Figure 3.2: Illustration of the evolution from the partonic final state to the hadronic
final state [20]

Jets are measured and studied in order to determine the properties of the original quarks.

There exist different techniques to identify jets, that we explain below:

3.2.1 Cone algorithm

First, particles are classified according to their transverse momentum (pT ). The particle

with the highest pT is defined as the central particle. The algorithm looks for particles

inside a cone of fixed radius ∆R around the central particle, in terms of the pseudo-

rapidity η and the azimuthal angle φ of the central particle (denoted by c) and the i-th

particle, defined as:

∆Rci =
√

(∆η)2 + (∆φ)2, (3.9)

where ∆η = ηc − ηi and ∆φ = φc − φi. Then the algorithm determines the total

momentum of the particles that are inside the cone, i.e. ∆Rci < ∆R, associating this

value to the central particle of the next iteration. If the momentum is the same as the

momentum of the central particle, a stable cone is defined as a jet and all the particles

inside the cone are removed. The interaction stops when all particles in an event are

inside a specific jet.
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3.2.2 Sequential clustering algorithm

This algorithm assumes that particles within jets have small differences in transverse

momenta. The first distance variable is between two particles i and j:

dij = min(pati, p
a
tj)×

R2
ij

R
, (3.10)

where R is the radius parameter which determines the final size of the jet, and R2
ij is

the (η − φ) space distance between the two particles, defined as

R2
ij = (ηi − ηj)2 + (φi − φj)2 (3.11)

The second distance variable is diB = pati, the momentum space distance between the

beam axis and the detected particle. This algorithm first find the minimum of the entire

set dij , diB [21]. Based in the value of the parameters a, two specific algorithms are

defined as follows: for a = 2. In this case the definitions are:

• kt algorithm

dij = min

(
p2ti, p

2
tj ×

R2
ij

R

)
(3.12)

diB = p2ti (3.13)

The kt algorithm prefers to cluster soft particles first.

• Anti-kt algorithm for a = −2 and corresponding to:

dij = min

(
1

p2ti
,

1

p2tj

)
×
R2
ij

R
(3.14)

diB =
1

p2ti
(3.15)

This algorithm prefers to cluster hard particles first. The anti-kt algorithm gen-

erates a circular hard jet, which clips a lens-shaped region out of the soft one. In

Fig. 3.3 is shown an event with several jets reconstructed using this algorithm

with R=1.
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Figure 3.3: An example of events containing several jets reconstructed with the anti-kt
algorithm [22].

3.3 Large Hadron Collider (LHC)

The LHC is the world’s largest and powerful particle accelerator. It consists of a 27

kilometer ring of superconducting magnets with a number of accelerating structures to

boost the energy of the particles along the way. The accelerator tubes and collision

caverns are 100 meter underground. Inside the accelerator, there are two high-energy

proton beams accelerated by radio frequency (RF) cavities, up to a speed close to the

speed of light. The beams travel in opposite directions in separate beam pipes and

they are guided around the accelerator ring by a strong magnetic field maintained by

superconducting electromagnets. The collider operates typically with more than 2808

bunches per beam. The collisions create the conditions to produce many elementary

particles.

To reach the colliding energy the proton beams go through different acceleration steps.

These steps are shown schematically in Fig. 3.4.
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Figure 3.4: schematic of the acceleration process [23].

First, protons are produced in the LINAC and then they are accelerated in the booster.

After that they are delivered to the proton synchrotrons where they acquire an energy

of 450 GeV. Finally, they pass to the main ring to achieve their final energy and then

they collide in one of the four main detectors: The Compact Muon Solenoid (CMS), the

Toroidal LHC Apparatus (ATLAS), the LHCb or the Large Ion Collider Experiment

(ALICE). The ATLAS detector has an inner tracker that detects and analyzes the mo-

mentum of the particles and calorimeters surrounding the inner tracker to measure the

particles energy. This detector also has a muon spectrometer to measure the momentum

of each muon. The ALICE experiment is used to study collisions between heavy ions,

and with these collisions scientist expect to see the ions breaks apart into a mixture of

a quark and a gluon. The main purpose of the LHCb is to investigate the difference

between matter and anti-matter through the study of b quarks.

3.3.1 CMS experiment

The CMS detector is 21.6 m long and has a diameter of 14.6 m . The central feature

of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. The

solenoid magnet is located at the center of the CMS detector, it has a length of 12.9 m

that cover the barrel region of the detector. The solenoid is composed by 2168 turns of

superconducting niobium-titanium, and runs a current of 19.5 kA at a temperature of 4.6

K. Inside the solenoid there is an homogeneous magnetic field of 3.8 T. The coordinate

system used in the CMS detector has the origin at the collision point, the y-axis point

towards the surface, the x-axis towards the center of the accelerator ring, and the z-axis

points along the beam axis. The pseudorapidity is used instead of polar angles since it
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is Lorentz invariant, this is given by:

η = −ln
[
tan

θ

2

]
. (3.16)

The tracking system measures the trajectories of charged particles. It covers an azimuth

angle (φ) from 0 to 2π, allowing the measurement of momentum balance in the plane

transverse to the beam direction, and it covers a pseudorapidity range |η| < 2.5. The

tracking system consist of large silicon strips and an innermost silicon pixel detector,

so it can maintain a good signal-to-noise ratio. For single muons with high momentum

tracks the resolution is about 1 to 2%, the transverse impact parameter resolution is

about 10 µm, while a low momentum track is degraded by multiple scattering. For

pions and hadrons the efficiency is lower due to the interaction with the materials in

the tracker. A part of the tracking system is the pixel system, which is responsible

for measuring small impact parameters. It contributes also tracking points in r − φ

and z, and is very important to the reconstruction of secondary vertices from b and tau

decays. A lead-tungstate crystal electromagnetic calorimeter and a brass and scintillator

hadron calorimeter surround the tracking volume, and provide energy measurements of

electrons, photons and hadronic jet in the range of |η| < 3.0, while muons are measured

within |η| < 2.4 by gas ionization detectors embedded in the steel flux-return yoke of

the solenoid [24].

The electromagnetic calorimeter (ECAL) is hermetic; it measures the energy of emerging

particles, in particular of electrons and photons. It is made with lead tungstate (PbWo4)

scintillator crystals, having a high density of 8.28 g/cm3, a radiation length of 0.89 cm

and a Moliere radius of 2.2 cm. Because of the crystal characteristic this is a fine

granularity and compact calorimeter. When electromagnetic showers pass through the

crystals they generate light which is then capture in photodiodes with intrinsic gain in

order to amplify the signal. The ECAL detector is composed by three parts: the barrel

ECAL (EB), the endcap ECAL (EE) and the ECAL preshower (ES), which is placed in

front of the endcap crystal.

The EB is made of 61200 crystals, it has a granularity of 360-fold in φ and 2 × 85-fold

in η, covering the pseudorapidity range |η| < 1.479. The cross-section of the crystal is

0.0174 × 0.0174 in η − φ. Moreover, the EE is composed by 7324 crystals in each of

the two endcaps. It cover a pseudorapidity range 1.479 < |η| < 3.0, and consists of

identical crystals grouped in units of 5 × 5 crystals consisting of a carbon-fibre alveola

structure. Finally, the preshower detector is composed by two layers of lead absorbers,

with silicon strips behind them. This detector helps to identify the neutral pions in the

endcaps, and the position of the electrons and photons with high granularity, in the
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region 1.653 < |η| < 2.6. A schematic overview of the ECAL detector is shown in Fig.

3.5.

Figure 3.5: Schematic of the electromagnetic calorimeter system [25]

The hadron calorimeter (HCAL) is placed after the ECAL calorimeter and it measures

the hadron jets, providing indirect measurement of neutrinos and exotic particles that do

not interact. The calorimeter finds the position, energy and arrival time of the particle.

In order to measure the particle energy, the calorimeter use alternating layers of absorber

and fluorescent scintillator, which produce a light pulse when the particle passes through,

then special optic fibers collect the produced light and feed it into readout boxes where

photodetectors amplify the signal. It is organized into barrel, the HB and HO, an

endcap (HE) and forward (HF) sections. The (HB) consist of 36 identical azimuthal

wedges [24]. This system cover a pseudorapidity range of |η| < 1.4. The HO system

has an additional layers of scintillators outside the magnet volume. In this system the

remaining parts of the hadronic shower are captured, increasing the resolution on the

missing transverse energy and the energy of the jets. The HB/HO system covers a

range of |η| < 1.26. On the other hand the HE system have 2304 modules with a

much broader segmentation but with the same pseudorapidity segmentation as the HB,

covering a range of 1.3 < |η| < 3.0. Finally, we have the HF, which is located close

to the beampipe and covers a range of 3.0 < |η| < 5.2. It is made of steel absorbers

with quartz scintillating fibre. This system is based on Cherenkov light produced in

the quartz fibres. The energy resolution for the hadronic calorimeter is of the order

of 10-20% for hadrons with an energy between 50 and 100 GeV. The schematic of the

hadronic calorimeter is shown if Fig. 3.6.
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Figure 3.6: Schematic representation of the hadronic calorimeter [25].

The muon system has 3 functions: muon identification, measurement of the momentum,

and triggering. The system reconstructs the momentum and charge of the muon over all

the kinematic range of the LHC. It has a cylindrical, barrel section and 2 planar endcap

regions. The barrel drift tube chambers cover the pseudorapidity region |η| < 1.2 and

are organized into 4 stations. The first 3 stations contain 8 chambers, in 2 groups of 4,

which measure the muon coordinate in the r−φ bending plane, and 4 chambers measure

in the z direction [26].The drift tubes allow for an excellent spatial resolution. In the

second endcap region the muon system uses cathode strip chambers (CSC), which are

multi-wired proportional chambers composed by anode wires that are oriented parallel

to the cathode in a gaseous volume. The signals from the anode wires are fast and can

be used in the trigger. The CSC identify muons that have |η| values between 0.9 and

2.4. Because the muon detector covers the full pseudorapidity interval |η| < 2.4 with

no acceptance gaps, the muons identification is in the range 10◦ < θ < 170◦. Each of

these modules are supplemented with a resistive plate chamber (RPC) allowing a precise

timing resolution of the order of 1 ns. The first level of the CMS trigger system, uses the

information from the calorimeters and the muon detectors to select the most interesting

events in a fixed time interval of less than 4µs. A diagram of the detector is shown in

Fig. 3.7.
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Figure 3.7: A perspective view of the CMS detector [26].



Chapter 4

Top quark physics

4.1 Production of Top quarks at LHC

Particles at the LHC are produced by proton-proton collisions. Classically, the proton

is composed by two up quarks and one down quark, but in a quantum mechanical

description there is a probability that all quarks and gluons are present in the protons,

this probability being described by the proton parton density function (PDFs). These

PDFs are functions of the fractional momentum of the proton that the parton carries.

At the LHC top quarks are produced singly, in pairs, and also four of them at the same

time by proton-proton collisions, where each process has its own cross section and final

states. The top quark pair production is the one with higher cross-section. This final

state is produced in two different ways: the first one is by gluon fusion, as illustrated

by the leading order (LO) Feynman diagram in Fig. 4.1, the second one is by the

annihilation of a quark and anti-quark, as shown in Fig. 4.2

Figure 4.1: LO Feynman diagrams of the top quark pair production by gluon fusion
at the LHC.

24
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Figure 4.2: LO Feynman diagram of the top quark pair production by quark anti-
quark annihilation at the LHC.

The theoretical calculation of the cross-section at the next-to-leading order (NLO) for

the top quark pair production at a center-of-mass energy of 13 TeV amounts to σtt ≈ 831

pb [27].

On the other hand, the production of a single top quark can occur in three ways: the

s-channel, t-channel and the tW production. The Feynman diagrams of these process

are shown in Fig. 4.3. These diagrams involve mostly electroweak processes.

Figure 4.3: LO Feynman diagrams of: (a) the s-channel, (b) t-channel and (c) the
tW production.

The cross section for each of these process are shown in Table 4.1
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Process cross-section

s-channel 10.32 pb

t-channel 216.99 pb

tW production 71.7 pb

Table 4.1: Cross-section for different processes of single top quark production.

Another way in which top quarks are originated is by producing 4 quarks at the same

time, although this process has a very low cross-section of about 9.2 fb. This is a very

rare process but it is interesting to study it since it has a great sensitivity to new physics

effects.

4.2 Top quark decays

Most of the particles can decay by several different routes and in such circumstances the

total decay rate is the sum of all individual decay rates

Γtot =

n∑
i=1

Γi, (4.1)

The branching ratio is the fraction of all particles of the given type that decay by each

mode. The branching ratios are determined by the decay rates as follow:

BRi = Γi/Γtot. (4.2)

Top quarks decay through electroweak interaction into a W boson and a bottom quark

with a branching ratio near 100%. The different top quark decays are classified according

to the decay of the W boson. The branching ratio of W decaying to quarks is 67% and

the branching ratio of the W decaying to lepton-neutrino pairs is 33%. Given this, there

are three possible decay channels to study for top quark pair production:

• All-hadronic channel: In this channel both W bosons decay to two quarks and

originate two jets (W± → jj). This channel has a branching ratio of ∼ 45%. In

this case in the final state there are 2 b-jets and 4 jets which come from the W

decays (Fig. 4.4).
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Figure 4.4: Diagram of the top quark decay in the all-hadronic channel

• Semi-leptonic channel: In this channel one W decays into two jets and the other

to a lepton-neutrino pair, as

W+ → jj,W− → lνl, (4.3)

or

W+ → lνl,W
− → jj (4.4)

This channel has a branching ratio of ∼ 45%. In the final state there are an

undetected neutrino, one charged lepton, 2 b-jets, 2 jets and missing transverse

energy that comes from the neutrino (Fig. 4.5).

Figure 4.5: Diagram of the top quark decay in the semi-leptonic channel

• Dileptonic channel: Both W bosons decay into a lepton-neutrino pair, according

to

pp→ tt→W+bW−b, (4.5)

where

W+ → νll, (4.6)
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W− → νll (4.7)

This channel has a branching ratio of ∼ 10%

Figure 4.6: Diagram of the top quark decay in the dileptonic channel

In the final state there are two bjets, two undetected neutrinos and two charged

leptons (see Fig. 4.6). So in this channel there is more missing transverse energy

that comes from the two neutrinos. The BR value for the leptonic channel is

reduced if only electrons and muons are considered as charged leptons

4.3 Effective Field Theory in CMS

There are four current approaches to use the Effective Field Theory in analyses at the

CMS. The first one is based on the reinterpretation of an inclusive measurement, such as

the cross-section of an SM process. In this case they use this quantity to constrain the

Wilson coefficients by using EFT parametrizations. The second approach relies on the

reinterpretation of differential measurements, where different quantities are measured

that are sensitive to EFT at parton and particle level. The third approach considers

hybrid EFT measurements at detector level. The last one characterizes EFT directly,

comparing EFT simulations to the observed data.

4.3.1 Reinterpretation of an inclusive measurement

There are several analyses using this approach. One of these measures the cross-section

of top quark pair production in association with a W or Z boson using proton-proton

collision at a center-of-mass energy of 13 TeV with an integrated luminosity of 35.9 fb−1

[28]. These productions are among the most massive signatures that can be studied with

high precision. The analysis is done for three final states:

• The production of ttW events decaying in 2 leptons with the same charge (SS). This

channel has less backgrounds because other processes with same-charge leptons
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have small cross-section. In this case, two SS leptons (µµ, µe, ee) requiring the

transverse momentum (pT ) of both leptons to be more than 25 GeV, and the

electron with higher with higher pT have pT > 40 GeV are selected. In order to

suppress the different backgrounds for this channel, the invariant mass of the two

leptons is required to be greater than 12 GeV, and that the missing transverse

energy (pmissT ) greater than 30 GeV.

• The production rate of ttZ events is measured in the final state with three leptons.

Events are selected to contain exactly three leptons (µµµ, µµe, eee), requiring the

leading, sub-leading and the trailing lepton pT to be greater than 40, 20, and 10

GeV, respectively. To reduce the background the difference between the invariant

mass of the lepton pair, M(ll), and of the Z boson, M(Z), be smaller than 10

GeV.

• The final state with four leptons is used to measure the signal of ttZ. This chan-

nel is characterized by the presence of two b-jets, four leptons and large missing

transverse energy. The leading jet must have pT > 40 GeV, the invariant mass of

any lepton pair has to be greater than 10 GeV, and |M(ll) −M(Z)| < 20 GeV.

To distinguish the signal from the background a multivariate analysis (MVA) was

used. The observables that were used to discriminate the signal are: number of

jets, Nj , number of b-jets, Nb, the scalar sum of pT of the jets, HT , pmissT , the

invariant mass of the lepton pair, MT , the highest and lowest pT of the jets, and

the separation ∆R between the trailing lepton and the nearest selected jet.

In this research the final state with two leptons was used to extract the signal of ttW

events and the state with three or four leptons to measure the signal of ttZ. Using the

cross-sections obtained from each process, the Wilson coefficient of eight dimension-six

operators are constrained. These operators are of particular interest since they modify

the expected cross-section of ttW and the ttZ. ttZ is affected by O3G, O2G, OuB. Only

ttZ is affected by OHu, and all these process are affected by OuG and OuW . The con-

strain presented in this analysis was obtained by considering one operator at a time.

The other research is for the the standard model production of four top quarks using

single-lepton channel with exactly one muon or electron plus jets, and opposite-sign

dilepton, (µ+µ−, µ±e∓, e+e−), plus jets (pp→ tttt) [29]. For the single-lepton channel

is required at least one isolated muon with pT > 24 GeV and |η| < 2.4 or an isolated

electron with pT > 32 GeV and |η| < 2.1. For the dilepton channel they required

|η| < 2.4 for muons and |η| < 2.5 for electrons. To identify the top quarks and improve

the discrimination between signal and background boosted decision trees (BDTs) were
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used. In this case only four operators contribute to tttt production: O1
tt, O1

QQ, O1
Qt, and

O8
Qt.

4.3.2 Reinterpretation of differential measurements

One analysis uses this approach for the measurement of the differential cross-section of

the top quark pair production containing two oppositely charged leptons. The differ-

ential cross-sections are presented as a function of the kinematic observables, and are

defined with parton level quarks in a fiducial and full phase space. For each observable

the absolute and normalized differential cross-sections are calculated. All the results are

compared with standard model predictions from Monte Carlo simulations with next-to-

leading-order (NLO). The absolute particle-level differential cross-section as a function

of ∆φ(ll) is used to constrain the top quark chromomagnetic dipole moment [30].

Another study has been carried measuring the top quark polarization and tt spin cor-

relations using dilepton final states. The differential cross-section, sensitive to the in-

dependent coefficients of the spin dependent parts of the tt production density matrix

is measured. The measured distribution is then compared with SM predictions using

NLO accuracy in QCD. In this analysis the distributions are corrected to a parton level

and extrapolated to the full phase space. A significant discrepancy with respect to the

expectation of the SM was not found. In order to constrain the contributions from

ten dimension-six effective operator statistical and systematic covariance matrices were

used in simultaneous fits. Two of these operator represent the anomalous chromomag-

netic, and chromoelectric dipole moments, and constraints on their Wilson coefficients

of −0.24 < CtG/Λ
2 < 0.07 TeV −2 and −0.33 < CttG/Λ

2 < 0.20 TeV −2, were obtained

at the 95% confidence level [31].

4.3.3 Hybrid EFT measurements at detector level

Top quark pair production in association with a Z boson has been studied for final states

with three or four leptons. The measured inclusive cross-section σ(ttZ) = 0.95 ± 0.06

pb is in good agreement with the SM prediction of 0.84± 0.10 pb.The differential cross-

section is measured as a function of pT (Z) and cosθ∗Z , and it is defined in the phase space

where the top quark pair is produced in association with two leptons with an invariant

mass of 70 < M(ll) < 110 GeV. The cross-sections are then calculated from the measured

event yield. For this analysis an anomalous coupling Lagrangian is considered, which

contains neutral vector and axial-vector current couplings, written as

L = eut

[
γµ(C1,V + γ5C1,A) +

iσµνpν
m(Z)

(C2,V + iγ5C2,A)

]
vtZµ. (4.8)
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This study is based on the interpretation given in the context of SMEFT in the Warsaw

basis formed by 59 independent Wilson coefficients, where only 15 are have a large

impact in this process. They consider separately the operators that induce anomalous

interactions of the top quark with the remaining neutral gauge bosons, the Z boson and

the photon. For this case the relevant Wilson coefficients are ctZ , c
[I]
tZ , cφt, and cφQ [32].

Another search of new physics is done using tt and tW events in dilepton final states. All

dimension-six operators are investigated that contribute to top quark pair production

and single top quark production in association with W boson. The EFT effect in the

production of the top quarks and not in the decays are considered. The search is sensitive

to new physics contributions to tW and tt production, and the six effective couplings,

CG, C
(3)
φq , CtW , CtG, CuG, and CcG, assuming one non-zero at a time, are constrained.

A deviation from the SM prediction has been seen for CG, C
(3)
φq , CtW , CtG [33].



Chapter 5

Methodology

5.1 Simulation programs

In the following, the possible presence of BSM physics will be characterized comparing

events produced according to EFT models, to those expected instead from SM. To

this purpose, proton-proton collision events are simulated using the MadGraph Monte

Carlo generator followed by Pythia for the parton showering, to produce a description of

the events at hadron level, which can be studied with the MadAnalysis package. This is

followed by the Delphes program for the simulation of the CMS detector. An illustration

of the two stages of stages of simulation is provided by the simple cartoon of Fig. 5.1

5.1.1 Madgraph

MadGraph [34] is a matrix-elements (ME) generator, and it is written in Python pro-

gramming language. In a proton-proton collision at high energies, there is a probability

that the particles generated in the collision have large momentum: this is considered a

Figure 5.1: Illustration of the two stages of the simulation.
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hard scattering and the calculations must be done using perturbative QCD. The two

principal processes that MadGraph executes are: 1) the formulation of the Lagrangian

for the study of processes from the standard model or from additional physics BSM; 2) a

complete next-to-leading-order optimization of next to leading order (NLO) calculations

for SM and BSM processes. The theory used for the computation has to be declared. As

a result, MadGraph generates the Feynman diagrams and calculate the matrix-elements

amplitudes at randomly chosen points of phase-space. These amplitudes are then used

by MadEvents [34] to compute cross-sections for the chosen processes.

5.1.2 Pythia

Pythia [35] is used in the study of particle collisions at high energies where final multi-

hadronic states are generated. In this program there is a great number of analytic

models based on QCD, that can cover several phenomena at subatomic scale, such as

initial/final states parton shower, decays, hard and soft interactions, parton distribution,

hadronization, emission of initial and final radiation particles and fragmentation.

5.1.3 MadAnalysis

MadAnalysis is a framework based on C++ kernel, named SampleAnalyzer [36], which

uses the Root platform. This allows to analyse events files generated by a large class

of Monte Carlo event generators. This package has a reader of events files at parton-

level, at hadron-level or at the reconstructed-level. Then from the information in the

files the users can generate histograms illustrating various properties of the generated

physical process. Moreover, all the events information from the hard-scattering process

to the final-state hadrons is stored. This framework allows also the event selection using

Python commands, and the tagging of each event as a background or a signal, allowing

us to for an automatic treatment of the signal-over-background ratio.

5.1.4 Delphes

Delphes [37] is a C++ program that simulates the response of a detector like CMS

composed of an inner tracker, electromagnetic and hadron calorimeters and a muon

system. The user specifies the detector active volume, the calorimeter segmentation and

the strength of the uniform magnetic field.

The particle propagation in the detector depends on the interaction of the particle with

the magnetic field, that is located in the inner tracker volume. The neutral particles
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follow a straight line trajectory from the production points to a calorimeter cell. In the

case of a charged particles, the trajectory is helicoidal and the particle can deposit its

energy in the hadronic or electromagnetic calorimeter. Particles that are outside the

tracker volume are ignored. The tracking efficiency, energy and momentum resolution

depend on the particle type, transverse momentum and pseudo-rapidity.

After the propagation in the magnetic field, the long-lived particles reach the calorime-

ters. The electromagnetic calorimeter, ECAL, measures the energy of electrons and

photons. On the other hand, the hadron calorimeter, HCAL, measures the energy of

long-lived charged and neutral hadrons. The calorimeters have a finite segmentation in

pseudo-rapidity (η) and azimuthal angle (φ). The coordinate of the resulting calorimeter

energy deposit, the tower, is computed as the geometrical centre of the cell. The long-

lived particles deposit a fraction of their energy in the corresponding ECAL (fECAL)

and HCAL (fHCAL) cells. The cells of ECAL and HCAL are grouped together in the

calorimeter tower. In Delphes the electrons and the photons leave all their energy in

ECAL (fECAL = 1). Also, hadrons deposit all their energy in HCAL (fHCAL = 1).

Neutrinos, do not deposit energy in the calorimeters.

The resolution of ECAL (σECAL) and HCAL (σHCAL) are parameterized as a function

of the particle energy and pseudo-rapidity:

( σ
E

)2
=

(
S(η)√
E

)2

+

(
N(η)

E

)2

+ C(η)2, (5.1)

where S, N and C are the stochastic, noise and constant terms respectively. The deposit

of the electromagnetic and hadronic energy is independently smeared by a log-normal

distribution (ln N ). So the final tower energy is given as:

ETower =
∑

particles

lnN (fECAL · E, σECAL(E, η)) + lnN (fHCAL · E, σHCAL(E, η)) (5.2)

In Delphes the particle flow event reconstruction is based on the tracking system and

the calorimeters. The particle flow algorithm [38] produces two collections of 4-vectors,

particle flow tracks and towers; later on this is use as input for reconstructing high

resolution jets and missing transverse energy. The output data is stored in a Root tree

format, in such a way that it can be analyzed and visualized with the help of the Root

Data Analysis.
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5.2 EFT simulation

To simulate the EFT process inside MadGraph we import the model dim6top LO UFO

[18]. The degrees of freedom of the top quark process are defined by linear combinations

of the Warsaw basis operator coefficients.

Dim6top characteristics are:

• The implementation of dim6top is a tree-level one.

• Λ is fixed to 1 TeV and the EFT parameters are dimensionful coefficients c̃i = ci/Λ2

expressed in units of TeV −2.

• The CKM matrix is approximated as a unit matrix.

• All fermions masses and Yukawa couplings are neglected by default, except for the

top and bottom quarks.

• The Goldstone boson is removed and the unitary gauge is use.

• All operator of the Warsaw basis that satisfy a U(2)q+u+d flavour symmetry and

involve a top quark are included. Operators that violate baryon and lepton number

are not included. In total the model includes O(90) flavour conserving degrees of

freedom, which have a DIM6=1 coupling order.

• Flavour Changing Neutral Currents (FCNCs) allow a quark to break the flavour

symmetry and couple the third generation with the first or the second. Operators

are included with either one light and one heavy quark, one light quark one heavy

quark and two leptons, one light quark and three heavy quarks, three light and

one heavy quark. The degrees of freedom are assigned as FCNC=1 coupling order.

As we have seen the cross-section for the EFT has two parts, one is linear and represents

the interference part with the standard model, while the other terms is a quadratic and

represents the pure EFT contribution. So in order to simulate completely the EFT

process we need to simulate each part. For the interference part the syntax is:

generate pp > tt ∼ QCD=2 FCNC=0 DIM6=1 DIM6∧2==1,

and for the quadratic term is:

generate pp > tt ∼ QCD=2 FCNC=0 DIM6=1 DIM6∧2==2.
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5.3 Preliminary results

First we find the cross-section for the production of a top quark-antiquark pair in a pp

collision at
√
s = 13 TeV, taking into account only the (SM) part. For this case we

obtain a LO cross-section of 505.7± 0.8 pb. The cross-section of the standard model

effective field theory (SMEFT) can be expressed as the SM value plus an additional

contributions due to EFT:

σ = σSM +
∑
i

Ci
Λ2
σ̃i +

∑
ij

CiCj
Λ4

δ̃i,j , (5.3)

where σ̃ signifies the strength of the interference of the SMEFT operators with the SM,

δ̃ represents the pure EFT contribution, and the index i and j run over all the operators.

For simulating SMEFT processes we use the dim6top model. We generate top quark-

antiquark pairs including SMEFT contributions enabling separately the interference

and the quadratic terms. In each case we turn on one operator at a time, setting the

corresponding Wilson coefficient to a value different from zero, namely 1. The cross-

section obtained for each Wilson coefficient is given in Table 5.1.
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Coefficient Interference σ(pb) Quadratic σ(pb)

ctG 138.5 ±0.2 20.46 ± 0.04

cQq83 1.286± 0.007 1.22 ±0.003

cQq81 6.407 ± 0.012 1.226 ± 0.003

cQu8 3.847 ± 0.011 0.758 ± 0.002

cQd8 2.558 ± 0.005 0.469 ±0.001

ctq8 6.395 ± 0.015 1.223 ± 0.004

ctu8 3.849 ± 0.007 0.7549 ± 0.0018

ctd8 2.559 ± 0.005 0.4689 ± 0.0011

cQq13 1.692 ± 0.004 5.503 ±0.014

cQq11 0.4692 ± 0.0031 5.501 ±0.014

cQd1 0.1002 ± 0.0002 2.109 ±0.006

ctq1 0.3406 ± 0.0017 5.512 ± 0.015

ctu1 0.579 ± 0.001 3.41 ±0.01

ctd1 0.1916 ± 0.0004 2.111 ±0.006

cQu1 0.299 ± 0.00078 3.407 ± 0.016

Table 5.1: Cross-section for the interference and quadratic terms, for the different
Wilson coefficients.

The relative cross-section difference due to the inclusion of the EFT terms with respect

to the SM is given by

1000 ∗ σEFT
σSM

. (5.4)

The results are shown on Table 5.2.
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Coefficient Relative difference

Interference Quadratic

ctG 273.88 40.45

cQq83 2.54 2

cQq81 12.67 2.4

cQu8 7.61 1.5

cQd8 5.05 0.93

ctq8 12.65 2.4

ctu8 7.61 1.5

ctd8 5.06 0.93

cQq13 3.35 11

cQq11 0.93 11

cQd1 0.19 4.2

ctq1 0.67 11

ctu1 1.14 6.7

ctd1 0.38 4.2

cQu1 0.59 6.7

Table 5.2: Cross-section relative difference (in per mille).
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Based on the cross-sections obtained in Table 5.1 we see that the coefficient that has

the largest effect on the cross-section is ctG. Turning on only this coefficient we simulate

10,000 tt̃ events generated according to the SM, and as many events according the

SMEFT. For the analysis we consider events with no leptons, but only jets. In this case

the vetoed leptons are the electrons and muons with |pT | > 20 GeV and η < 2.4, while

jets are required to have |pT | > 30 GeV and |η| < 2.0 . We consider as variables of

interest the jet multiplicity, N(j), the transverse momentum pT of the most energetic

(leading) jet, and the scalar sum THT of the pT of all jets. We fill histograms with

the differential cross-section, comparing the expectation from the SM process to what

obtained adding the EFT contribution. The histograms for each variables are shown in

Figs. 5.2-5.4:

Figure 5.2: Differential cross-section as a function of the jet multiplicity, for SM+EFT
and SM-only contributions. For the EFT contribution, only the ctG coefficient is con-

sidered.
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Figure 5.3: Differential cross-section as a function of the transverse momentum of the
leading jet, for SM+EFT and SM-only contributions. For the EFT contribution, only

the ctG coefficient is considered.

Figure 5.4: Differential cross-section as a function of the scalar sum THT, for
SM+EFT and SM-only contributions. For the EFT contribution, only the ctG co-

efficient is considered.

To highlight the effect of EFT, we plot, for the same variables, the cross-section ratio

defined as:

R =
σ(SM + EFT )

σ(SM)
. (5.5)
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Figure 5.5: Cross-section ratio vs the jet multiplicity (for ctG=1).

Figure 5.6: Cross-section ratio vs the transverse momentum of the leading jet (for
ctG=1).
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Figure 5.7: Cross-section ratio vs THT (for ctG=1).

We repeat the same analysis for the next most relevant coefficients, cQq81 and ctq8.

In Figs. 5.8- 5.10 we show the histograms for the chosen variables, setting cQq81=5 to

enhance the EFT contribution.

Figure 5.8: Differential cross-section as a function of the jet multiplicity, for SM+EFT
and SM-only contributions. For the EFT contribution, only the cQq81 coefficient is

considered.
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Figure 5.9: Differential cross-section as a function of transverse momentum of the
leading jet, for SM+EFT and SM-only contributions. For the EFT contribution, only

cQq81 the coefficient is considered.

Figure 5.10: Differential cross-section as a function of THT, for SM+EFT and SM-
only contributions. For the EFT contribution, only the cQq81 coefficient is considered.

The corresponding cross-section ratios are shown in Figs. 5.11-5.13.
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Figure 5.11: Cross-section ratio vs the jet multiplicity (for cQq81=5).

Figure 5.12: Cross-section ratio vs the transverse momentum of the leading jet (for
cQq81=5).
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Figure 5.13: Cross-section ratio vs the THT (for cQq81=5).

The cross-section comparison for each variable in the case of ctq8=5 are shown in Figs.

5.14- 5.16, with the ratios shown in Figs. 5.17-5.19.

Figure 5.14: Differential cross-section as a function of the jet multiplicity, for
SM+EFT and SM-only contributions. For the EFT contribution, only the ctq8 co-

efficient is considered.
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Figure 5.15: Differential cross-section as a function of transverse momentum of the
leading jet, for SM+EFT and SM-only contributions. For the EFT contribution, only

the ctq8 coefficient is considered.

Figure 5.16: Differential cross-section as a function of THT, for SM+EFT and SM-
only contributions. For the EFT contribution, only the ctq8 coefficient is considered.
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Figure 5.17: Cross-section ratio vs the jet multiplicity (for ctq8=5).

Figure 5.18: Cross-section ratio vs the transverse momentum of the leading jet (for
ctq8=5).
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Figure 5.19: Cross-section ratio vs THT (for ctq8=5).



Chapter 6

Analysis

The preliminary results shown in the previous chapter, clearly indicates the need for a

more detailed study. To this purpose we improve the analysis by:

• Increasing the number of simulated events;

• Separating the commonly defined final states.

For this analysis we generate 100,000 events of pp → tt for the SM and for the EFT

separately. For the EFT process we only select one Wilson coefficient at a time, assigning

to it different values. For this case we select the Wilson coefficient that we found more

relevant in the preliminary results, which are the ctG, cQq81 and ctq8. The respective

cross-section for each tt process is shown in Table 6.1

Process Cross-section (pb) Difference relative to SM (in per mille)

SM 505.7 -

ctG=1 158.69 313.8

cQq81=1 7.64 15.1

ctq8=1 7.61 15.04

cQq81=5 62.69 123.97

ctq8=5 62.67 123.93

Table 6.1: Cross-section for the different processes, and the relative difference with
respect to the SM.

We do the analysis for the three possible decays: the all-hadronic, the single lepton and

the dileptonic.

49
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6.1 At hadron/particle level

6.1.1 All-hadronic final state

This channel is defined by the following requirements:

• No leptons (e or mu) with pT > 20 GeV and |η| < 2.4;

• at least 6 jets having a pT > 30 GeV and |η| < 2.0.

Differential cross sections are determined in the following for the same variables intro-

duced in the previous chapter, i.e. the jet multiplicity, the pT of the leading jet and the

scalar sum THT, considering the most relevant Wilson coefficients ctG, cQq81 and ctq8.

Cross sections after the event selection for this channel are summarized in Table 6.2

Process Cross-section (pb) Difference relative to SM (in per mille)

SM 49.32 -

ctG=1 16.30 330.49

cQq81=5 5.02 101.78

ctq8=5 5.44 110.30

Table 6.2: Cross-section for the hadronic channel for the different processes, and the
relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.1-6.6 for the ctG, in Figs.

6.7-6.12 for the cQq81, and in Figs. 6.13-6.18 for the ctq8. For the ratios, a linear fit is

applied, to show the possible indication of a trend in the distribution.

Figure 6.1: Differential cross section
as a function of the jet multiplicity, in
the all-hadronic state, for the ctG co-

efficient.

Figure 6.2: Cross section ratio as a
function of the jet multiplicity,in the
all-hadronic state, for the ctG coeffi-

cient.
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Figure 6.3: Differential cross section
as a function of the transverse mo-
mentum of the leading jet, in the all-
hadronic state, for the ctG coefficient.

Figure 6.4: Cross section ratio as a
function of the transverse momentum
of the leading jet,in the all-hadronic

state, for the ctG coefficient.

Figure 6.5: Differential cross section
as a function of the THT variable, in
the all-hadronic state, for the ctG co-

efficient.

Figure 6.6: Cross section ratio as
a function of the THT variable,in the
all-hadronic state, for the ctG coeffi-

cient.

Figure 6.7: Differential cross section
as a function of the jet multiplicity, in
the all-hadronic state, for the cQq81

coefficient.

Figure 6.8: Cross section ratio as a
function of the jet multiplicity,in the
all-hadronic state, for the cQq81 coef-

ficient.



52

Figure 6.9: Differential cross section
as a function of the transverse mo-
mentum of the leading jet, in the all-
hadronic state, for the cQq81 coeffi-

cient.

Figure 6.10: Cross section ratio as a
function of the transverse momentum
of the leading jet,in the all-hadronic

state, for the cQq81 coefficient.

Figure 6.11: Differential cross sec-
tion as a function of the THT vari-
able, in the all-hadronic state, for the

cQq81 coefficient.

Figure 6.12: Cross section ratio as
a function of the THT variable, in the
all-hadronic state, for the cQq81 coef-

ficient.

Figure 6.13: Differential cross sec-
tion as a function of the jet multiplic-
ity, in the all-hadronic state, for the

ctq8 coefficient.

Figure 6.14: Cross section ratio as a
function of the jet multiplicity, in the
all-hadronic state, for the ctq8 coeffi-

cient.
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Figure 6.15: Differential cross sec-
tion as a function of the transverse
momentum of the leading jet, in the
all-hadronic state, for the ctq8 coeffi-

cient.

Figure 6.16: Cross section ratio as a
function of the transverse momentum
of the leading jet, in the all-hadronic

state, for the ctq8 coefficient.

Figure 6.17: Differential cross sec-
tion as a function of the THT vari-
able, in the all-hadronic state, for the

ctq8 coefficient.

Figure 6.18: Cross section ratio as
a function of the THT variable, in the
all-hadronic state, for the ctq8 coeffi-

cient.

6.1.2 The semi-leptonic process

This channel is defined by the following requirements:

• A single lepton (e or mu) with pT > 20 GeV and |η| < 2.4;

• at least 4 jets having a pT > 30 GeV and |η| < 2.0.

Differential cross sections are determined in the following for the same variables intro-

duced in the previous chapter, i.e. the pT of the leading lepton and the scalar sum THT,

considering the most relevant Wilson coefficients ctG, cQq81 and ctq8. Cross sections

after the event selection for this channel are summarized in Table 6.3
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Process Cross-section (pb) Difference relative to SM (in per mille)

SM 48.49 -

ctG=1 15.66 322.95

cQq81=5 5.84 120.44

ctq8=5 6.12 126.21

Table 6.3: Cross-section for the semi-leptonic channel for the different processes, and
the relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.19-6.22 for the ctG, in Figs.

6.23-6.26 for the cQq81, and in Figs. 6.27-6.30 for the ctq8. For the ratios, a linear fit

is applied, to show the possible indication of a trend in the distribution.

Figure 6.19: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the ctG co-

efficient.

Figure 6.20: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the ctG coefficient.

Figure 6.21: Differential cross sec-
tion as a function of the THT variable,
in the semi-leptonic state, for the ctG

coefficient.

Figure 6.22: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the ctG coeffi-

cient.
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Figure 6.23: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the cQq81

coefficient.

Figure 6.24: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the cQq81 coeffi-

cient.

Figure 6.25: Differential cross sec-
tion as a function of the THT vari-
able, in the semi-leptonic state, for the

cQq81 coefficient.

Figure 6.26: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the cQq81 co-

efficient.

Figure 6.27: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the ctq8

coefficient.

Figure 6.28: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the ctq8 coefficient.
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Figure 6.29: Differential cross sec-
tion as a function of the THT variable,
in the semi-leptonic state, for the ctq8

coefficient.

Figure 6.30: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the ctq8 coef-

ficient.

6.1.3 The dileptonic process

This channel is defined by the following requirements:

• Two leptons (e or mu) with pT > 20 GeV and |η| < 2.4;

• at least 2 jets having a pT > 30 GeV and |η| < 2.0.

Differential cross sections are determined in the following for the same variables intro-

duced in the previous chapter, i.e. the pT of the leading lepton and the scalar sum THT,

considering the most relevant Wilson coefficients ctG, cQq81 and ctq8. Cross sections

after the event selection for this channel are summarized in Table 6.4

Process Cross-section (pb) Difference relative to SM (in per mille)

SM 21.89 -

ctG=1 7.58 346.28

cQq81=5 3.39 154.86

ctq8=5 3.42 156.24

Table 6.4: Cross-section for the dileptonic channel for the different processes, and the
relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.31-6.34 for the ctG, in Figs.

6.35-6.38 for the cQq81, and in Figs. 6.39-6.42 for the ctq8. For the ratios, a linear fit

is applied, to show the possible indication of a trend in the distribution.
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Figure 6.31: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the ctG coef-

ficient.

Figure 6.32: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the ctG coefficient.

Figure 6.33: Differential cross sec-
tion as a function of the THT vari-
able, in the dileptonic state, for the

ctG coefficient.

Figure 6.34: Cross section ratio as
a function of the THT variable, in
the dileptonic state, for the ctG co-

efficient.

Figure 6.35: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the cQq81 co-

efficient.

Figure 6.36: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the cQq81 coefficient.



58

Figure 6.37: Differential cross sec-
tion as a function of the THT variable,
in the dileptonic state, for the cQq81

coefficient.

Figure 6.38: Cross section ratio as
a function of the THT variable, in the
dileptonic state, for the cQq81 coeffi-

cient.

Figure 6.39: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the ctq8 coef-

ficient.

Figure 6.40: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the ctq8 coefficient.

Figure 6.41: Differential cross sec-
tion as a function of the THT vari-
able, in the dileptonic state, for the

ctq8 coefficient.

Figure 6.42: Cross section ratio as
a function of the THT variable, in the
dileptonic state, for the ctq8 coeffi-

cient.
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6.2 Analysis at detector level

The final states are defined as for the analysis at particle level, and with the same

thresholds for lepton and jets.

6.2.1 All-hadronic

We defined this channel the same way as we did for the all-hadronic channel at particle

level.

The differential cross-section after the event selection for SM and EFT for this channel

are summarized in Table 6.5

Process Cross-section (pb) Difference relative to SM (in per mille)

SM 65.28 -

ctG=1 21.48 329.04

cQq81=5 4.85 74.29

ctq8=5 5.52 84.56

Table 6.5: Cross-section for the hadronic channel for the different processes at detector
level, and the relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.43-6.48 for the ctG, in Figs.

6.49-6.54 for the cQq81, and in Figs. 6.55-6.60 for the ctq8. For the ratios, a linear fit

is applied, to show the possible indication of a trend in the distribution.

Figure 6.43: Differential cross sec-
tion as a function of the jet multiplic-
ity, in the all-hadronic state, for the

ctG coefficient.

Figure 6.44: Cross section ratio as a
function of the jet multiplicity,in the
all-hadronic state, for the ctG coeffi-

cient.
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Figure 6.45: Cross section as a func-
tion of the transverse momentum of
the leading jet, in the all-hadronic

state, for the ctG coefficient.

Figure 6.46: Cross section ratio as a
function of the transverse momentum
of the leading jet, in the all-hadronic

state, for the ctG coefficient.

Figure 6.47: Differential cross sec-
tion as a function of the THT vari-
able, in the all-hadronic state, for the

ctG coefficient.

Figure 6.48: Cross section ratio as
a function of the THT variable, in the
all-hadronic state, for the ctG coeffi-

cient.

Figure 6.49: Differential cross sec-
tion as a function of the jet multiplic-
ity, in the all-hadronic state, for the

cQq81 coefficient.

Figure 6.50: Cross section ratio as a
function of the the jet multiplicity, in
the all-hadronic state, for the cQq81

coefficient.
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Figure 6.51: Differential cross sec-
tion as a function of the transverse
momentum of the leading jet, in the
all-hadronic state, for the cQq81 coef-

ficient.

Figure 6.52: Cross section ratio as a
function of the transverse momentum
of the leading jet, in the all-hadronic

state, for the cQq81 coefficient.

Figure 6.53: Differential cross sec-
tion as a function of the THT vari-
able, in the all-hadronic state, for the

cQq81 coefficient.

Figure 6.54: Cross section ratio as
a function of the THT variable, in the
all-hadronic state, for the cQq81 coef-

ficient.

Figure 6.55: Differential cross sec-
tion as a function of the jet multiplic-
ity, in the all-hadronic state, for the

ctq8 coefficient.

Figure 6.56: Cross section ratio as a
function of the jet multiplicity, in the
all-hadronic state, for the ctq8 coeffi-

cient.
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Figure 6.57: Differential cross sec-
tion as a function of the transverse
momentum of the leading jet, in the
all-hadronic state, for the ctq8 coeffi-

cient.

Figure 6.58: Cross section ratio as a
function of the transverse momentum
of the leading jet, in the all-hadronic

state, for the ctq8 coefficient.

Figure 6.59: Differential cross sec-
tion as a function of the THT vari-
able, in the all-hadronic state, for the

ctq8 coefficient.

Figure 6.60: Cross section ratio as
a function of the THT variable, in the
all-hadronic state, for the ctq8 coeffi-

cient.

6.2.2 Semi-leptonic process

We defined this channel the same way as we did for the semi-leptonic channel at particle

level.

The differential cross-section after the event selection for SM and EFT for this channel

are summarized in Table 6.6
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Process Cross-section (pb) Difference relative to SM (in per mille)

SM 37.02 -

ctG=1 11.77 317.94

cQq81=5 3.09 83.47

ctq8=5 3.32 89.68

Table 6.6: Cross-section for the semi-leptonic channel for the different processes at
detector level, and the relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.61-6.64 for the ctG, in Figs.

6.65-6.68 for the cQq81, and in Figs. 6.69-6.72 for the ctq8. For the ratios, a linear fit

is applied, to show the possible indication of a trend in the distribution.

Figure 6.61: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the ctG co-

efficient.

Figure 6.62: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the ctG coefficient.

Figure 6.63: Differential cross sec-
tion as a function of the THT variable,
in the semi-leptonic state, for the ctG

coefficient.

Figure 6.64: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the ctG coeffi-

cient.
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Figure 6.65: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the cQq81

coefficient.

Figure 6.66: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the cQq81 coeffi-

cient.

Figure 6.67: Differential cross sec-
tion as a function of the THT vari-
able, in the semi-leptonic state, for the

cQq81 coefficient.

Figure 6.68: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the cQq81 co-

efficient.

Figure 6.69: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the semi-leptonic state, for the ctq8

coefficient.

Figure 6.70: Cross section ratio as
a function of the transverse momen-
tum of the leading lepton, in the semi-
leptonic state, for the ctq8 coefficient.
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Figure 6.71: Differential cross sec-
tion as a function of the THT variable,
in the semi-leptonic state, for the ctq8

coefficient.

Figure 6.72: Cross section ratio as
a function of the THT variable, in the
semi-leptonic state, for the ctq8 coef-

ficient.

6.2.3 Dileptonic process

We defined this channel the same way as we did for the dileptonic channel at particle

level.

The differential cross-section after the event selection for SM and EFT for this channel

are summarized in Table 6.7

Process Cross-section (pb) Difference relative to SM (in per mille)

SM 5.85 -

ctG=1 1.98 338.46

cQq81=5 0.54 92.31

ctq8=5 0.52 88.89

Table 6.7: Cross-section for the dileptonic channel for the different processes at de-
tector level, and the relative difference with respect to the SM.

Differential cross sections and ratios are shown in Figs. 6.73-6.76 for the ctG, in Figs.

6.77-6.80 for the cQq81, and in Figs. 6.81-6.84 for the ctq8. For the ratios, a linear fit

is applied, to show the possible indication of a trend in the distribution.
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Figure 6.73: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the ctG coef-

ficient.

Figure 6.74: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the ctG coefficient.

Figure 6.75: Differential cross sec-
tion as a function of the THT vari-
able, in the dileptonic state, for the

ctG coefficient.

Figure 6.76: Cross section ratio as
a function of the THT variable, in
the dileptonic state, for the ctG co-

efficient.

Figure 6.77: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the cQq81 co-

efficient.

Figure 6.78: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the cQq81 coefficient.



67

Figure 6.79: Differential cross sec-
tion as a function of the THT variable,
in the dileptonic state, for the cQq81

coefficient.

Figure 6.80: Cross section ratio as
a function of the THT variable, in the
dileptonic state, for the cQq81 coeffi-

cient.

Figure 6.81: Differential cross sec-
tion as a function of the transverse
momentum of the leading lepton, in
the dileptonic state, for the ctq8 coef-

ficient.

Figure 6.82: Cross section ratio as a
function of the transverse momentum
of the leading lepton, in the dileptonic

state, for the ctq8 coefficient.

Figure 6.83: Differential cross sec-
tion as a function of the THT vari-
able, in the dileptonic state, for the

ctq8 coefficient.

Figure 6.84: Cross section ratio as
a function of the THT variable, in the
dileptonic state, for the ctq8 coeffi-

cient.



Chapter 7

Discussion and considerations

The discussion of the results obtained in the previous chapter are based on:

• showing which are the relevant coefficients that might be constrained by tt analysis,

i.e. the comparison of the observed to expected events;

• evaluate the relative effects obtained in each channel;

• considering the ratio of the differential distributions for relevant variables, to see

those which show a significant trend which might enable a stronger constraint on

the Wilson coefficients.

The EFT contribution on the tt differential cross-section depends on the Wilson coeffi-

cient that we chose. Analysing the total EFT cross-section, which includes the interfer-

ence and quadratic term for each Wilson coefficient with a value of 1, we can see that

the ones that give the higher contribution to the cross-section are:

• ctG with an EFT cross-section of 159 pb, corresponding to a relative difference of

≈ 300 per mille with respect to the SM cross-section alone;

• cQq81, with an EFT cross-section of 7.6 pb, corresponding to a relative difference

of ≈ 14 per mille;

• ctq8, with an EFT cross-section of 7.6 pb, corresponding to a relative difference

of ≈ 14 per mille;

Due to the fact that these coefficients are the ones that have a higher contribution, they

might be better constrained by a complete tt analysis.
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The Wilson coefficients cQq81 and ctq8 contribute less to the cross-section that the

ctG coefficients. To emphasize their contribution we calculated the effect of setting the

coefficient values equal to 5, instead of 1. In this case the EFT cross-section for both

cQq81 and ctq8 would become 63 pb, with a relative increase with respect to the SM

cross-section of ≈ 120 per mille. Clearly, a complete tt̄ analysis would be able to impose

weaker constraints on cQq81 and ctq8, with respect to those possible for ctG; similarly

allowed intervals for cQq81 and ctq8 values will be wider than those possible for ctG.

Based on the analysis made in the three different channels we can see that there are

different effects in each channel, and also that each one has different kinematic variables

which are most relevant. We notice that different results are obtained at particle level

and at detector level. After applying all the requirements and comparing the cross-

sections for selected events we see that these values are typically largest in the case of

the all-hadronic channel. Considering both levels, we obtain for the all-hadronic channel

at detector level an event cross-section of ≈ 65 pb for the SM, and of ≈ 22 pb for the

EFT model including the ctG coefficient; at particle level these two values are ≈ 49

pb and ≈ 16 pb, respectively. This means that a channel selection based on the same

thresholds for pT and η of jets/e/µ is more efficient when considering detector-level

quantities. The cross-section values for the semi-leptonic channel are slightly smaller

than for the all-hadronic one, while their are about half for the dilepton channel, both

at particle and detector level. For all channels, the ctG coefficients is the one that has

the largest contribution, with ctq8 and cQq81 having a smaller and similar contribution.

Based on the histograms that we made of the differential cross-section as a function of

the different variables, we calculate the ratio between SMEFT and SM, as shown in Eq.

5.5 and we do a linear fit to see more clearly if there is a trend which will help us to

constrain the Wilson coefficients.

At particle level for the ctG variable in the hadronic channel, we can see that:

• there is a trend in jet multiplicity: the fitted line decreases with the increasing

number of jets;

• for the pT of the leading jet, the ratio slightly increases at large values of pT ;

• for the scalar sum THT, the ratio does not show a significant trend

This suggest us that in order to better constrain the ctG coefficient in a possible analysis

one could concentrate on low values for the jet multiplicity, large values for the leading-

jet pT and large values for THT. Of course this consideration will need to be re-evaluated

when a complete analysis accounts also for the behavior of background events.
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Based on the trend shown in ratios for the cQq81 and ctq8 in the all-hadronic channel

we could have a better constrain if we required low jet multiplicity, higher values of pT

of the leading jet and THT. In the semi-leptonic channel for this three coefficients we

can see that larger values of THT and of the leading lepton pT give a better sensitivity,

meaning that the coefficients can be better constrained selecting this kinematical regions.

In the dileptonic channel we see that for the THT variable the fit line that we calculate

is almost flat, meaning that there is no trend in this variable, and nothing to be gained

by selecting a particular region. For the pT of the leading lepton there is a small trend,

and something can be gained by selecting high values.

At detector level, we obtain for the ctG coefficient results similar to what we seen at

particle level: a slightly better sensitivity at a low number of jets, at high values for

the leading jet pT . For the cQq81 and ctq8 coefficients, the number of jets and the pT

of the leading jet have a similar behaviour to what observed at particle level, while the

THT variable does not help in the hadronic channel, since the linear form of the ratio

is quite flat. The same happens in the semi-leptonic channel where the THT variable

does not help much. In the dileptonic case some gain is possible for the cQq81 and ctq8

coefficient by selecting large values of leading lepton pT and for the THT variables, while

for the ctG coefficient these two variables does not help much.



Chapter 8

Conclusions

Effective field theories help us to search for new particles, by characterising corrections

to the Lagrangian and the cross-section of the SM in order to construct the SMEFT

framework. In this case the SM Lagrangian is extended to higher order operators, and

will depend on the Wilson coefficients that parametrize the strength of new physics

interactions. In this project we based our analysis on tt production, since the top quark

is possibly the SM state that is closest to the new physics sector, due to the fact that it

is the heaviest particle, and the one that has the largest Yukawa coupling.

We perform an analysis at particle and detector level for the three decay channels of tt:

all-hadronic, semi-leptonic and dileptonic. We have generated 100,000 events for the SM

and EFT productions with the most relevant coefficients: ctG with a value of 1, cQq81

and ctq8 with a value of 5, which give larger contributions to the cross-section. We

analysed the differential cross section as a function of the different kinematic variables

to see which regions will help us constrain the Wilson coefficients.

We conclude that for the ctG, cQq81 and ctq8 coefficients in the all-hadronic channel

we should concentrate in the region of low jet multiplicity and large values of leading jet

pT and THT. Instead for the semi-leptonic channel we could obtain a better sensitivity

if we focus in the regions with high leading lepton pT and THT. In the dileptonic case

we can see that for the THT variable we cannot gain anything. In order to improve the

analysis we can study other variables that will help to obtain a larger contribution of

the EFT cross-section, taking into account also the background events, to see which are

the regions that will help to constrain more each Wilson coefficient.
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